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Researchers addressing posttreatment complications in randomized trials often

turn to principal stratification to define relevant assumptions and quantities of

interest. One approach for the subsequent estimation of causal effects in this

framework is to use methods based on the “principal score,” the conditional

probability of belonging to a certain principal stratum given covariates. These

methods typically assume that stratum membership is as good as randomly

assigned, given these covariates. We clarify the key assumption in this context,

known as principal ignorability, and argue that versions of this assumption are

quite strong in practice. We describe these concepts in terms of both one- and

two-sided noncompliance and propose a novel approach for researchers to

“mix and match” principal ignorability assumptions with alternative assump-

tions, such as the exclusion restriction. Finally, we apply these ideas to ran-

domized evaluations of a job training program and an early childhood

education program. Overall, applied researchers should acknowledge that

principal score methods, while useful tools, rely on assumptions that are typi-

cally hard to justify in practice.
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1. Introduction

Principal stratification has become an increasingly important framework for

addressing posttreatment complications in randomized trials in education, beha-

vioral science, and related fields. Examples of principal stratification include

estimating impacts in the presence of complex patterns of noncompliance, esti-

mating how the impact of alternative high schools varies by the quality of the

counterfactual school, and estimating the effect of a job training program on
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wages for individuals who would be employed regardless of the program (see

Page, Feller, Grindal, Miratrix, & Somers, 2015, for a recent review).

Although principal stratification has gained widespread use for defining esti-

mands of interest, the method of estimation can differ dramatically from appli-

cation to application. In the article first defining principal stratification, for

example, Frangakis and Rubin (2002) advocate a full model-based estimation

strategy such as that found in Imbens and Rubin (1997) and Hirano, Imbens,

Rubin, and Zhou (2000). Although this strategy is relatively common in statistics

and biostatistics, there has been limited adoption of this approach among edu-

cation and policy researchers, perhaps due to the complexity of implementation

and unfamiliarity with Bayesian and likelihood methods. In this article, we

explore an alternative approach that leverages covariates and various conditional

independence assumptions to identify target estimands of interest. In particular,

this approach utilizes the principal score (Hill, Waldfogel, & Brooks-Gunn,

2002), defined as the conditional probability of belonging to a certain principal

stratum given covariates, which plays a role analogous to the (generalized)

propensity score in traditional observational studies.

Our article makes two main contributions. Our first main contribution is to

review existing principal score methods and clarify their corresponding assump-

tions. In particular, we investigate the role of the critical principal ignorability

(PI) assumption and discuss two versions of this assumption, which we term

strong and weak PI. We describe these assumptions in terms of real-world appli-

cations and argue that (1) strong PI is highly unlikely to hold in practice and that

(2) weak PI, while strictly weaker, is still quite strong. We then discuss estima-

tion via principal score weighting (Ding & Lu, 2017; Stuart & Jo, 2015), and

introduce the key ideas with a simple illustration using a single, binary covariate.

Our second main contribution is to show how researchers can “mix and

match” weak PI with other assumptions, especially the more common exclusion

restriction. Thus, PI can be part of a broader menu of options for researchers

seeking to estimate principal causal effects. This novel methodological contri-

bution sets up the use of PI in more complex principal stratification settings.

We illustrate the key concepts with two randomized evaluations of social

policy interventions with noncompliance. First, we review the example in Jo

and Stuart (2009) of the Job Search Intervention Study (JOBS II), a rando-

mized evaluation of a job training program for unemployed individuals that

focused on mental health and job search skills (see also Mattei, Li, & Mealli,

2013). We use this example to highlight principal score methods in the

simpler setting of one-sided noncompliance, in which only individuals

assigned to the program are able to participate (i.e., “no crossovers”). As

in Jo and Stuart (2009), we also fail to find evidence against the exclusion

restriction for Never Takers in this evaluation.

Second, we explore the Head Start Impact Study (HSIS), a randomized eva-

luation of the Head Start program (Puma, Bell, Cook, Heid, & Shapiro, 2010).
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This is an example of two-sided noncompliance, where control group children

who were formally denied access to the Head Start program were nonetheless

able to enroll. Although we are most interested in the impact of enrolling in Head

Start on children’s test scores, there is a concern that the assumptions necessary

for a standard instrumental variables approach, namely the exclusion restriction,

might be invalid (Gibbs, Ludwig, & Miller, 2011). Leveraging the mix and match

strategy, we find evidence that there are positive impacts for Always Takers,

although the uncertainty intervals are wide.

Overall, we believe that our article is a useful contribution to the small but

growing literature on principal score methods. Like many statistical concepts, the

idea of the principal score has multiple origins in different subfields. In biosta-

tistics, the concept was first formalized by Follmann (2000), who called this the

compliance score (see also Aronow & Carnegie, 2013; Joffe, Ten Have, & Bren-

singer, 2003). In the literature on statistics in the social sciences, the idea is due to

Hill, Waldfogel, and Brooks-Gunn (2002), who introduced the term principal

score (see also Jo, 2002; Jo & Stuart, 2009; Stuart & Jo, 2015). There have been

many examples of this approach in practice, particularly in education and pro-

gram evaluation, with some recent prominent examples from Schochet and Bur-

ghardt (2007) and Zhai, Brooks-Gunn, and Waldfogel (2014) as well as

variations in economics, especially Crépon, Devoto, Duflo, and Parienté

(2015). Schochet, Puma, and Deke (2014) offer a recent overview. Porcher,

Leyrat, Baron, Giraudeau, and Boutron (2016) give a recent simulation study.

Ding and Lu (2017) provide theoretical justification for a more general setup and

offer additional guidance on estimation and sensitivity analysis.

This article proceeds as follows. Section 2 defines the relevant estimands and

assumptions in the case of one-sided noncompliance. Section 3 extends these

ideas to the case of two-sided noncompliance. Section 4 defines principal scores

and discusses some of their properties. Section 5 gives details for estimating

causal effects using principal scores. Section 6 applies the underlying methods

to JOBS II and HSIS. Section 7 offers some thoughts for future research and

concludes. The Appendix includes a discussion of some alternative estimation

methods, a comparison with other identifying assumptions, and a proof of some

desirable properties of the principal score.

2. One-Sided Noncompliance: JOBS II

2.1. Setup and Estimands

Following Jo and Stuart (2009), we illustrate the key concepts for principal

score methods for one-sided noncompliance using the JOBS II, a randomized

evaluation of a job training program for unemployed individuals that focused on

mental health and job search skills. Let Zi 2 {0,1} be an indicator for whether

individual i is randomly offered the opportunity to enroll in the program. Also, let
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Y obs
i denote individual i’s observed outcome of interest, which we will set as a

measure of depression 6 months after randomization. We invoke the stable unit

treatment value assumption, which states that there is no interference between

units and that there is only one version of the treatment (see Imbens & Rubin,

2015). With this assumption, we can define the potential outcomes for individual

i, Yið1Þ and Yið0Þ, which denote the depression score if individual i is assigned to

treatment or control, respectively. Given this, a natural estimand is the overall

intent to treat (ITT),

ITT ¼ E½Yið1Þ � Yið0Þ�;

which is the average impact of the opportunity to enroll on depression.

An important complication is that only 59% of the individuals assigned to

treatment actually participated in the program. Let Di 2 f0; 1g be an indicator for

whether individual i participated in the program, defined as attending at least one

session, with corresponding potential outcomes Dið1Þ and Dið0Þ indicating

whether individual i will participate if assigned to treatment or control, respec-

tively. Since these are potential outcomes, we regard them as fixed pretreatment.

In JOBS II, individuals assigned to control were unable to attend these sessions;

thus, Dið0Þ ¼ 0 for all i. Following Angrist, Imbens, and Rubin (1996) and

Frangakis and Rubin (2002), we define compliance types or principal strata

based on the joint values of treatment received under treatment and control,

ðDið0Þ;Dið1ÞÞ. Since Dið0Þ ¼ 0 for all individuals, principal strata are com-

pletely defined by Dið1Þ. We then have two compliance types:

Si �
Never Taker ðnÞ if Dið0Þ ¼ 0 and Dið1Þ ¼ 0;

Complier ðcÞ if Dið0Þ ¼ 0 and Dið1Þ ¼ 1:

(

In addition, define ps � PfSi ¼ sg as the proportion of stratum s in the pop-

ulation. We do not fully observe these strata. Instead, we observe groups based on

treatment assignment and participation. Table 1 shows the relationship between

observed groups, defined by Z and Dobs, and (partially) latent compliance types.

Since the joint values ðDið0Þ;Dið1ÞÞ are fixed for each individual, we can

regard Si as a pretreatment covariate. Therefore, we can think of subgroup

TABLE 1.

Relationship Between Observed Groups and Principal Strata in the Job Search

Intervention Study

Zi Dobs
i Principal Strata

1 1 Complier

1 0 Never Taker

0 0 Complier or Never Taker
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treatment effects for Never Takers and Compliers the same way we would

consider subgroup effects among men and women or among old and young.

Within each principal stratum, it is as if we have a randomized experiment that

could allow us to estimate these principal causal effects of interest (Frangakis &

Rubin, 2002):1

CACE ¼ EfYið1Þ � Yið0ÞjSi ¼ cg ¼ mc1 � mc0;

NACE ¼ EfYið1Þ � Yið0ÞjSi ¼ ng ¼ mn1 � mn0;

where msz � EfYiðzÞjSi ¼ sg, CACE is the Complier average causal effect, and

NACE is the Never Taker average causal effect. We are primarily interested in

the CACE, which is the effect of actually participating in the job training

program.

We have the following relationships between average outcomes for observed

groups, Y zd � EfY obs
i jZi ¼ z;Dobs

i ¼ dg, and average outcomes for (partially)

latent principal strata, msz:

Y 11 ¼ mc1;

Y 10 ¼ mn1;

Y 00 ¼ pcmc0 þ ð1� pcÞmn0 :

ð1Þ

The above shows that, since we directly observe whether individuals assigned to

treatment are Compliers or Never Takers, we can immediately estimate mc1 and

mn1 via the average observed outcomes, Y 11 and Y 10, respectively. We can also

directly estimate the proportion of Compliers pc by the proportion of individuals

assigned to treatment who participate in the program. Due to randomization, the

distribution of compliance types is the same in the treatment and control groups

in expectation. Finally, pn ¼ 1� pc.

Unfortunately, estimating the corresponding principal stratum means for

individuals assigned to control is more difficult. As shown in Equation 1,

individuals assigned to control are a mixture of Compliers and Never Takers.

Without additional structure, we have one equation and two unknowns and

cannot identify mc0 and mn0.

Following Angrist et al. (1996), the classic solution to this problem is to

assume the exclusion restriction for the Never Takers; that is, to assume that

NACE ¼ mn1 � mn0 ¼ 0. This assumption is reasonable when we believe that the

only impact of randomization on the outcome is via participating in the program.

Thus, if the encouragement has no impact on program participation, the encour-

agement should also have no impact on the outcome. At the same time, this

assumption rules out (“excludes”) other possible effects of randomization on the

outcome. In the JOBS II example, this assumption states that there is no impact of

randomization on depression for those individuals who would never participate

in the program; that is, there is no “placebo” or motivation effect.
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Under the exclusion restriction, we can use the standard instrumental variable

approach to directly estimate mn1 from the treatment arm, which reduces the

above equation to a single unknown. If the exclusion restriction does not hold,

however, the resulting estimate for the CACE could be biased. The goal of a

principal score analysis for JOBS II is to estimate the CACE without relying on

the exclusion restriction.

Before explaining principal score analysis in detail, we briefly note that there

are a range of alternative approaches that broadly fall under the umbrella of

principal stratification. First, without any additional assumptions, the means in

Equation 1 are set identified; that is, we can obtain nonparametric bounds for mc0

and mn0 rather than point estimates (e.g., Zhang & Rubin, 2003). Although

unadjusted bounds are typically too wide for practical use, there are several

strategies for sharpening these bounds, such as by leveraging pretreatment cov-

ariates (Grilli & Mealli, 2008; D. S. Lee, 2009; Long & Hudgens, 2013; Miratrix,

Furey, Feller, Grindal, & Page, 2017) or secondary outcomes (Mealli & Pacini,

2013). Second, we could exploit specific conditional independence assumptions

between covariates and outcomes conditional on principal strata (Ding, Geng,

Yan, & Zhou, 2011; Mealli, Pacini, & Stanghellini, 2016) or among multiple

outcomes conditional on principal strata (Mealli et al., 2016) to achieve full

identification of principal causal effects. Jo (2002) uses such methods to estimate

the CACE in the JOBS II example. The necessary assumptions are often quite

strong in practice, however.

Finally, we could use a fully model-based estimation strategy, such as orig-

inally proposed by Imbens and Rubin (1997), which requires imposing distribu-

tional assumptions on the outcome to disentangle the mixture. For example, we

might assume that Y obs
i jSi ¼ s; Zi ¼ z*Nðmsz;s

2Þ, possibly conditional on cov-

ariates. Mattei, Li, and Mealli (2013) use this approach to estimate the CACE in

the JOBS II example. A key concern of these model-based approaches is that

results are sensitive to the particular choice of model. Feller, Greif, Miratrix, and

Pillai (2016) also highlight additional dangers of relying on parametric mixture

models for estimating principal causal effects.

2.2. Principal Ignorability

As in Jo and Stuart (2009), we observe a rich set of pretreatment covari-

ates for each individual i, denoted by xi. In the JOBS II example, we focus

on seven covariates: baseline measures of depression, sense of mastery,

economic hardship, and motivation, as well as age, years of schooling, and

gender. Intuitively, PI states that, given these covariates, whether an individ-

ual is a Complier or Never Taker is as good as randomly assigned. We now

make this statement more precise, showing that there is a strong and weak

version of PI. Consider two conditional independence assumptions:2
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E½Yið1ÞjXi ¼ x;Dið1Þ ¼ 1� ¼ E½Yið1ÞjXi ¼ x;Dið1Þ ¼ 0� ¼ E½Yið1ÞjXi ¼ x�; ð2Þ

E½Yið0ÞjXi ¼ x;Dið1Þ ¼ 1� ¼ E½Yið0ÞjXi ¼ x;Dið1Þ ¼ 0� ¼ E½Yið0ÞjXi ¼ x�: ð3Þ

Weak PI assumes Equation 3. Strong PI assumes both Equations 2 and 3. Note

that Dið1Þ ¼ 1 and Dið1Þ ¼ 0 are equivalent to Si ¼ c and Si ¼ n, respectively.

We can also rewrite strong PI in terms of impacts:

CACEðxÞ ¼ NACEðxÞ ¼ ITTðxÞ; ð4Þ

where CACEðxÞ � E½Yið1Þ � Yið0ÞjXi ¼ x;Dið1Þ ¼ 1�, NACEðxÞ � E½Yið1Þ�
Yið0ÞjXi ¼ x;Dið1Þ ¼ 0�, and ITTðxÞ � E½Yið1Þ � Yið0ÞjXi ¼ x�, which are the

subgroup CACE, NACE, and ITT estimands, respectively. In other words, given

covariates, the CACE, NACE, and ITT are all equal.

Equation 2 states that, for individuals assigned to treatment, whether they

actually participate in the program is unrelated to their outcome, given covari-

ates. For illustration, imagine we observe a group of 30-year-old men with high

school degrees and identical baseline measures of depression, sense of mastery,

economic hardship, and motivation. All of these men are assigned to the JOBS II

treatment group, but half attend the program and the other half do not. Equation 2

states that the average outcomes for these two groups should be the same, even

though we know that half actually attended the training program and the other

half did not. Equivalently, Equation 4 states that the subgroup CACEðxÞ and

NACEðxÞ are equal to the overall ITTðxÞ, which precludes any impact from

program participation. There are some specific cases in which this might be

plausible, for example, if Never Takers receive an equivalent program to Com-

pliers. But, in general, this assumption is quite difficult to justify in practice.

Equation 3 states that, for individuals assigned to control, whether they would

have participated in the program if offered is unrelated to their outcome given

covariates. This is a weaker condition than Equation 2 since Yið0Þ and Dið1Þ are

realized in different states of the world. Returning to JOBS II, imagine that the

group of 30-year-old men is instead assigned to the control condition; we no

longer know which half would participate in the program if offered (i.e., whether

they are Compliers or Never Takers). Equation 3 states that, given covariates,

knowing whether these men would participate when assigned to treatment is

unrelated to their outcomes when assigned to control. Importantly, neither Com-

pliers nor Never Takers enroll in the program when assigned to control, so they

have the same observed program participation (i.e., Dobs
i ¼ 0). Thus, while Equa-

tion 3 is still a very strong assumption, it is generally weaker than Equation 2 and

is more plausible in the JOBS II setting.

As shown in Table 1, in the case of one-sided noncompliance, we directly

observe stratum membership for individuals assigned to treatment. Thus, Equa-

tion 2 is unnecessary for identification since we can estimate the relevant mean

outcomes directly. In fact, as we discuss below, we can compare these estimates
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to what we would get if this assumption were true, giving an immediate testable

implication.

3. Two-Sided Noncompliance: Head Start Impact Study

3.1. Setup and Estimands

We now extend the setup and assumptions from one-sided noncompliance to the

more complex case of two-sided noncompliance, that is, where individuals assigned to

the control arm have access to the program. Our running example is the Head Start

Impact Study (Puma et al., 2010), discussed in more detail in Section 6.2. As above, let

Zi denote whether child i is randomly offered the opportunity to enroll in Head Start;

Y obs
i denote child i’s observed outcome of interest, which we will set as the Peabody

Picture Vocabulary Test (PPVT) score; and xi denote a vector of pretreatment cov-

ariates including pretest score. Let Di 2 f0; 1g be an indicator for whether child i

enrolls in Head Start. Importantly, children are classified as enrolling in Head Start

regardless of which specific Head Start center they attend. Thus, many children

formally denied a spot at their initial Head Start center (i.e., assigned to control)

nonetheless enrolled in a different Head Start center; these children are denoted as

Di ¼ 1.

Following Angrist et al. (1996), there are four possible compliance types

(without additional restrictions):

Si �

Always Taker ðaÞ if Dið0Þ ¼ 1 and Dið1Þ ¼ 1

Complier ðcÞ if Dið0Þ ¼ 0 and Dið1Þ ¼ 1

Defier ðdÞ if Dið0Þ ¼ 1 and Dið1Þ ¼ 0

Never Taker ðnÞ if Dið0Þ ¼ 0 and Dið1Þ ¼ 0:

8>>>><>>>>:
In HSIS, it is reasonable to invoke the monotonicity or “no defiers” assumption,

which assumes that the offer of enrollment in Head Start did not induce any

children to not enroll in the program and vice versa (for discussion, see Puma

et al., 2010). This yields three possible principal strata: Si 2 fa; c; ng. The primary

estimand of interest is the CACE, the effect of enrolling in Head Start for those

children who would enroll if offered the opportunity to do so and would not enroll

if not offered. We are also interested in the Always Taker average causal effect

(AACE), the effect of the offer of enrollment on children who would enroll in a

Head Start center regardless of treatment assignment. For instance, this could be

the impact of attending some Head Start centers that are higher quality than others.

If this effect is nonzero, then the exclusion restriction for Always Takers is invalid

and the standard instrumental variable estimate will be misleading.

Table 2 shows the relationship between observed groups and principal strata

in this example. This yields four equalities:

Feller et al.

733



Y 11 ¼ pc

pc þ pa

mc1 þ
pa

pc þ pa

ma1;

Y 10 ¼ mn1;

Y 01 ¼ ma0;

Y 00 ¼ pc

pc þ pn

mc0 þ
pn

pc þ pn

mn0:

We can immediately estimate ma0 and mn1 via Y 01 and Y 10, the observed

average outcomes for fi : Zi ¼ 0;Dobs
i ¼ 1g and fi : Zi ¼ 1;Dobs

i ¼ 0g, respec-

tively. Analogous to the one-sided case, we can also estimate the overall pro-

portion of each principal stratum: pa ¼ PfDið0Þ ¼ 1jZi ¼ 0g,
pn ¼ PfDið1Þ ¼ 0jZi ¼ 1g, and pc ¼ 1� pa � pa.

However, we now have two mixtures to disentangle: the mixture of Compliers

and Always Takers assigned to treatment and the mixture of Compliers and

Never Takers assigned to control.

3.2. Principal Ignorability

We now clarify the PI assumptions in the case of two-sided noncompliance and

highlight the ability to mix and match PI and exclusion restriction assumptions.

3.2.1. Strong PI. First, we can extend Equations 2 and 3 to allow for three

compliance types:

E½Yið1ÞjXi ¼ x; Si ¼ a� ¼ E½Yið1ÞjXi ¼ x; Si ¼ n� ¼ E½Yið1ÞjXi ¼ x; Si ¼ c�; ð5Þ

E½Yið0ÞjXi ¼ x; Si ¼ a� ¼ E½Yið0ÞjXi ¼ x; Si ¼ n� ¼ E½Yið0ÞjXi ¼ x; Si ¼ c�: ð6Þ

Strong PI assumes both of these equations and is essentially identical to the

one-sided case. Equivalently, CACEðxÞ ¼ NACEðxÞ ¼ AACEðxÞ ¼ ITTðxÞ. In

the context of HSIS, these assumptions state that, given treatment assignment and

covariates, whether a child actually attends Head Start is unrelated to that child’s

observed test score. Equivalently, given covariates, whether a child actually

TABLE 2.

Relationship Between Observed Groups and Principal Strata in the Head Start Impact

Study Under Monotonicity

Zi Dobs
i Principal Strata

1 1 Complier or Always Taker

1 0 Never Taker

0 1 Always Taker

0 0 Complier or Never Taker

Principal Score Methods

734



attends Head Start is unrelated to the impact of randomization on test score.

Again, strong PI is quite a strong assumption and seems implausible in practice.

As in the one-sided case, this yields testable implications since we directly

observe the average outcome for Always Takers assigned to control and the

average outcome for Never Takers assigned to treatment.

3.2.2. Weak PI for Compliers, Always Takers, and Never Takers. Similar to the

one-sided case, we can relax strong PI, though we now need a pair of

assumptions:

E½Yið1ÞjXi ¼ x;Dið1Þ ¼ 1;Dið0Þ ¼ d� ¼ E½Yið1ÞjXi ¼ x;Dið1Þ ¼ 1� for d ¼ 0; 1;

ð7Þ

E½Yið0ÞjXi ¼ x;Dið0Þ ¼ 0;Dið1Þ ¼ d� ¼ E½Yið0ÞjXi ¼ x;Dið0Þ ¼ 0� for d ¼ 0; 1:

ð8Þ

Equations 7 and 8 comprise weak PI in this setting. Equation 7 states that, for

children assigned to treatment who enroll in Head Start, whether they would have

enrolled in Head Start if denied a spot is unrelated to their test scores, given

covariates. Analogously, Equation 8 states that, for children assigned to control

who do not enroll in Head Start, whether they would have enrolled in Head Start

if offered is unrelated to their test scores, given covariates. This equation is the

weak PI assumption under one-sided noncompliance, in which Dið1Þ and Yið0Þ
are realized in different states of the world. Equations 7 and 8 are strictly weaker

assumptions than Equations 5 and 6 since they only apply to a subset of indi-

viduals in each treatment arm, for example, Equation 5 applies to all children

assigned to treatment while Equation 7 only applies to those children assigned to

treatment who actually enroll in Head Start (i.e., excluding Never Takers). In

addition, these equalities are only for units within observationally indistinguish-

able groups.

3.2.3. Weak PI for Compliers and Always Takers and exclusion restriction for

Never Takers. For two-sided noncompliance, we need identifying assumptions

for each of the two mixtures. This suggests a strategy where we target these

assumptions to each mixture; that is, we mix and match PI and exclusion restric-

tions. For example, in the Head Start scenario, we can (1) assume that, given

covariates, treatment outcomes are the same for Always Takers and Compliers;

and (2) assume that there is no effect of the offer of enrollment on those children

who would never enroll in Head Start regardless of treatment assignment. This

yields,

E½Yið1ÞjXi ¼ x;Dið1Þ ¼ 1;Dið0Þ ¼ d� ¼ E½Yið1ÞjXi ¼ x;Dið1Þ ¼ 1� for d ¼ 0; 1;

ð9Þ

E½Yið1ÞjSi ¼ n� ¼ E½Yið0ÞjSi ¼ n�: ð10Þ
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We have replaced the second weak PI assumption with an exclusion restriction.

The exclusion restriction for Never Takers is relatively uncontroversial for HSIS

since these children do not change their behavior as a result of randomization and

never enroll in a Head Start program (Gibbs et al., 2011; Puma et al., 2010).

4. Principal Scores

4.1. Definition

As in standard observational studies, researchers will typically find PI more

plausible if they have a rich set of covariates. Without additional structure,

however, high-dimensional X can be unwieldy in practice, as we would observe

few units for any given combination of covariate values. Borrowing from the

propensity score literature, we can reduce the dimensionality of X by calculating

the principal score (Hill et al., 2002) for stratum s:

esðxÞ � PfSi ¼ sjXi ¼ xg;

the conditional probability that individual i belongs to stratum s given covariates

Xi ¼ x. With some abuse of notation, we will sometimes write this as esðxiÞ to

emphasize that this is the principal score for individual i.

Lemma 1 shows that principal scores share two desirable properties with

propensity scores. A proof of this lemma is in Appendix A.3; see also Jo and

Stuart (2009) and Ding and Lu (2017).

Lemma 1 (Properties of the Principal Score): The principal score, esðxÞ, is a

balancing score in the sense that SivXijesðxÞ: Furthermore, if either strong or

weak PI holds given Xi that same assumption also holds given esðxÞ.

As a result, we can reduce the dimensionality of X to a scalar in an analogous

way to the propensity score in observational studies. Similar to propensity scores,

the balancing score property holds only in theory and must be assessed in prac-

tice. Section 5.4 discusses this in more detail in addition to assessing the overall

principal score model fit.

4.2. Estimation

4.2.1. One-sided noncompliance. In this setting, we can estimate the principal

score directly since PfDobs
i ¼ 1jZi ¼ 1;Xi ¼ xg ¼ PfSi ¼ cjZi ¼ 1;Xi ¼ xg ¼

PfSi ¼ cjXi ¼ xg ¼ ecðxÞ. Therefore, we can obtain a nonparametric estimate of

ecðxÞ asymptotically by estimating the proportion of Dobs
i ¼ 1 for each Xi ¼ x in

the treatment group (see, e.g., Abadie, 2003). Alternatively, following Schochet

and Burghardt (2007) and Jo and Stuart (2009), we can estimate ecðxÞ via mod-

eling, such as with a (logistic) regression of D on X among individuals with

Zi ¼ 1. Regardless, once we have a model, we can estimate ecðxÞ for the entire

sample including the control group. See Abadie, Chingos, and West (2016) for
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additional considerations in using the same data for estimating both the principal

score model and the causal effect.

4.2.2. Two-sided noncompliance: marginal method. Estimation is slightly more

complicated in this setting because we never observe Compliers directly. We

can, however, estimate two separate, marginal models and combine. This

approach takes advantage of the useful fact that, under monotonicity, we can

directly observe Never Takers assigned to treatment and Always Takers assigned

to control. In particular, we can directly estimate eaðxÞ � PfSi ¼ ajXi ¼ xg via

the predicted probability from a (logistic) regression of D on X in the control

group. Similarly, we can estimate enðxÞ � PfSi ¼ njXi ¼ xg via 1 minus the

predicted probability from a (logistic) regression of D on X in the treatment

group. Then, by construction, becðxÞ ¼ 1� beaðxÞ � benðxÞ. Of course, we could

replace logistic regression with nonparametric regression or similar estimation

approaches.

4.2.3. Two-sided noncompliance: joint method. An obvious concern is that sep-

arately estimating beaðxÞ and benðxÞ could lead to estimates for becðxÞ that are

outside ½0; 1�. We can impose this constraint by jointly estimating the principal

score models. One estimation approach is via data augmentation, with stratum

membership as a partially observed variable (for additional details, see Ding &

Lu, 2017, as well as Ibrahim, 1990; Aronow & Carnegie 2013; Hsu & Small

2014; Zhang, Rubin, & Mealli, 2009). The key idea is to alternate between two

steps. Starting with an initial vector of compliance types, repeat the following

steps until convergence:

� Estimate the principal score. Given the vector of compliance types, estimate the

principal score via multinomial logistic regression of S on X, ignoring treatment

assignment.

� Impute compliance type. Given the principal score model, impute compliance types

for all individuals with unknown type. For expectation maximization, this is via

maximization. For Markov chain Monte Carlo, this is via imputation.

In practice, researchers can first compute the simpler “marginal” principal score

estimates and only proceed to the “joint” model if estimates are outside ½0; 1�.

5. Estimating Impacts Under Principal Ignorability

Researchers have proposed a range of methods for estimating principal

causal effects given PI. We focus on the weighting method of Stuart and Jo

(2015) and Ding and Lu (2017), which is intuitive and straightforward to

implement. Other methods that we do not discuss here include regression (Bein,

2015; Joffe, Small, & Hsu, 2007) and matching (Hill et al., 2002; Jo & Stuart,

2009). For further discussion, see Porcher et al. (2016), who conduct extensive
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simulation studies and find that weighting has slightly better finite sample

performance than matching in practice. As these alternative methods are inher-

ently driven by PI, we anticipate that the intuition we give for the weighting

method should carry over.

Appendix A.1 explores the “discrete subgroup” method of Schochet and

Burghardt (2007). We show that, even under strong PI, this method only yields

unbiased estimates in certain degenerate cases. Nonetheless, we view this

approach as a useful exploratory method; it is particularly promising when

researchers are actually interested in predicted subgroups rather than the princi-

pal strata themselves.

5.1. Estimation With Single, Binary Covariate

To build intuition for more complex methods, we first show how to estimate

impacts under PI in the simplest nontrivial case: one-sided noncompliance in

which we assume that PI holds given a single, binary covariate. For illustration,

we use an indicator in JOBS II that is coded “female” or “male.” Let X be this

covariate, Xi 2 fm; f g; let pðxÞ � PfXi ¼ xg be the proportion of individuals in

the population with Xi ¼ x; let pðxjsÞ ¼ PfXi ¼ xjSi ¼ sg be the proportion of indi-

viduals with Xi ¼ x among those in stratum s; and let esðxÞ � PfSi ¼ sjXi ¼ xg be

the proportion of individuals in stratum s among those with Xi ¼ x.

5.1.1. Estimating stratum characteristics. First, we can obtain pðxjsÞ via Bayes’s

rule:

pðxjsÞ ¼ PfXi ¼ xjSi ¼ sg ¼ PfSi ¼ sjXi ¼ xg PfXi ¼ xg
PfSi ¼ sg ¼ esðxÞ pðxÞ

ps

:

Under one-sided noncompliance, we can estimate ps via the observed pro-

portion of individuals assigned to the treatment group who participate in the

program; we can estimate esðxÞ with the corresponding proportion for the sub-

group with Xi ¼ x. Finally, we can directly observe the overall proportion, pðxÞ.
We then plug these sample analogs into the above equation to estimate pðxjsÞ.

Separately for each value of X , we can estimate Y zdðxÞ, the average outcome

for individuals with Xi ¼ x assigned to condition Zi ¼ z with observed partici-

pation Dobs
i ¼ d. We can also ignore program participation and estimate

Y z�ðxÞ � EfY obs
i jZi ¼ z;Xi ¼ xg, the average outcome for all individuals with

Xi ¼ x assigned to treatment condition Zi ¼ z, averaging over D.

5.1.2. Estimating average control outcomes. To estimate mc0 and mn0, we assume

Equation 3, weak PI. We can rewrite this assumption more compactly as

mc0ðf Þ ¼ mn0ðf Þ ¼ Y 0�ðf Þ and mc0ðmÞ ¼ mn0ðmÞ ¼ Y 0�ðmÞ;
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where mszðxÞ � EfYiðzÞjSi ¼ s;Xi ¼ xg. This states, for example, that average

outcomes for females assigned to control are unrelated to whether they would

take up the treatment if offered. Under this assumption, Y 0�ðf Þ, the average

outcome for those with Xi ¼ f in the control group, is equal to both mc0ðf Þ
and mn0ðf Þ.

Given this, estimating the overall means for Compliers and Never Takers

assigned to control is immediate. For Compliers, the overall average, mc0, is the

weighted mean of the average outcome for males, mc0ðmÞ, and the average

outcome for females, mc0ðf Þ, weighted by the group sizes:

mc0 ¼ pðf jcÞ mc0ðf Þ þ pðmjcÞ mc0ðmÞ

¼ ecðf Þpðf Þ
pc

Y 0�ðf Þ þ
ecðmÞpðmÞ

pc

Y 0�ðmÞ : ð11Þ

The first line demonstrates that this is a weighted average of two subgroup means.

The second line rewrites this weighted average in terms of quantities that we can

directly estimate. Specifically, we have the following plug-in estimators:

bmc0 ¼
becðf Þ bpðf Þbpc

bY 0�ðf Þ þ
becðmÞ bpðmÞbpc

bY 0�ðmÞ;

bmn0 ¼
benðf Þ bpðf Þbpn

bY 0�ðf Þ þ
benðmÞ bpðmÞbpn

bY 0�ðmÞ;

where bY zdðxÞ is the sample average outcome for individuals with Zi ¼ z,

Dobs
i ¼ d, and Xi ¼ x.

5.1.3. Estimating average treatment outcomes. There are two options for estimat-

ing the average stratum outcomes under treatment. First, we can directly estimate

mc1 and mn1 without any additional assumptions:

bmWeak PI
c1 ¼ bY 11; bmWeak PI

n1 ¼ bY 10

Alternatively, under strong PI, we can, just as above, estimate these quantities

via a weighted average of the subgroup averages for men and women, bY 1�ðmÞ andbY 1�ðf Þ, ignoring the actual program participation for each group:

bmStrong PI
c1 ¼ becðf Þ bpðf Þbpc

bY 1�ðf Þ þ
becðmÞ bpðmÞbpc

bY 1�ðmÞ;

bmStrong PI
n1 ¼ benðf Þ bpðf Þbpn

bY 1�ðf Þ þ
benðmÞ bpðmÞbpn

bY 1�ðmÞ:

Importantly, because m̂Weak PI
s1 and m̂Strong PI

s1 are two distinct estimators of the same

quantity, strong PI yields a testable implication. In particular, if the estimates

obtained via the weak and strong PI assumptions are not equal up to sampling
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error, Equation 2 must not hold. This test does not inform us, however, as to

whether the control (weak) side of the assumption is valid.

5.1.4. Estimating impacts. Finally, we estimate the CACE and NACE as the

difference in estimated means:

dCACE
PI
¼ bmPI

c1 � bmc0
dNACE

PI
¼ bmPI

n1 � bmn0;

where the superscript PI denotes either weak or strong PI.

Under strong PI, we can also rewrite the CACE estimator as a weighted

average of the ITT estimates for males and females:

dCACE
Strong PI

¼
becðf Þ bpfbpc

bY 1�ðf Þ þ
becðmÞ bpmbpc

bY 1�ðmÞ
� �
�
becðf Þ bpfbpc

bY 0�ðf Þ þ
becðmÞ bpmbpc

bY 0�ðmÞ
� �

¼
becðf Þ bpfbpc

dITTðf Þ þ becðmÞ bpmbpc

dITTðmÞ;

where dITTðxÞ denotes the ITT estimate for the subgroup with Xi ¼ x. Again,

observed program participation (i.e., Dobs) is irrelevant under strong PI; the only

role stratum membership plays is in subgroup weights.

Finally, we can contrast dCACE
Strong PI

with the standard instrumental variable

(IV) estimator assuming the exclusion restriction for Never Takers,

dCACE
IV
¼
dITTbpc

:

The only difference is in the numerator: The strong PI estimator replaces the

overall ITT estimate with a weighted average of two subgroup ITT estimates.

5.2. Estimation With a General Covariate

We now extend this setup to the general case of arbitrary, multidimen-

sional covariates. For illustration, we focus on estimating the average out-

come for Compliers assigned to control, mc0, in the one-sided noncompliance

setting; other estimates follow similarly (see Ding & Lu, 2017, for a more

technical presentation).

For generic X , the overall stratum-specific mean, mc0, is a weighted aver-

age across an infinite number of possible subgroups defined by Xi ¼ x (i.e.,

an integral):

mc0 ¼ E½E½Y obs
i jSi ¼ c; Zi ¼ 0;Xi ¼ x�jSi ¼ c� ¼

Z
x

mc0ðxÞ pðxjcÞ dx:
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This is the law of iterated expectations conditional on stratum membership,

where randomization allows us to drop the conditioning on Z. As in the binary

case above, we can use Bayes’s rule to replace pðxjcÞ, which yields

mc0 ¼
Z

x

mc0ðxÞ pðxjcÞ dx ¼
Z

x

mc0ðxÞ
ecðxÞ pðxÞ

pc

dx: ð12Þ

We can calculate the empirical analog of this integral via a summation over all

units assigned to the control group, plugging in Y obs
i for mc0ðxiÞ and becðxiÞ for

ecðxÞ.3 The empirical estimate of pðxÞ weights all units equally in the sum, which

introduces a 1=N0 term. In addition, bpc is the average of becðxiÞ over these units,bpc ¼
P

ibecðxiÞ=N0. This yields

bmc0 ¼
1

N0

XN0

i

Y obs
i � becðxiÞbpc

¼

XN0

i
Y obs

i � becðxiÞXN0

i
becðxiÞ

ð13Þ

Our estimate of the overall average outcome for Compliers assigned to control is

a principal score-weighted average of all individuals in the control group. This

reduces to Equation 11 for binary X .

5.3. Principal Score Weighting

Importantly, the weights in Equation 13 depend only on the estimated prin-

cipal score, becðxÞ, which is scalar regardless of the number of covariates. Thus, so

long as we can estimate ecðxÞ, we can use Equation 13. This is the principal score

weighting method of Stuart and Jo (2015) and Ding and Lu (2017).

5.3.1. One-sided noncompliance. Following Equation 13, we estimate mc0 and

mn0 via a principal score-weighted average of outcomes for individuals assigned

to control:

bmc0 ¼

XN0

i
Y obs

i � becðxiÞXN0

i
becðxiÞ

; bmn0 ¼

XN0

i
Y obs

i � benðxiÞXN0

i
benðxiÞ

:

As in the binary covariate case, there are two possible estimators for mc1 and

mn1. First, under weak PI, we can directly estimate bmWeak PI
c1 ¼ bY 11 andbmWeak PI

n1 ¼ bY 10. Second, under strong PI, we can estimate these quantities via a

principal score-weighted average of individuals assigned to treatment:

bmStrong PI
c1 ¼

XN1

i
Y obs

i � becðxiÞXN1

i
becðxiÞ

; bmStrong PI
n1 ¼

XN1

i
Y obs

i � benðxiÞXN1

i
benðxiÞ

:

Again, we can estimate the CACE and NACE by subtracting the estimated

means under treatment and control:
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dCACE
PI
¼ bmPI

c1 � bmc0
dNACE

PI
¼ bmPI

n1 � bmn0;

where the superscript PI denotes either weak or strong PI.

This is the weighting estimator proposed by Stuart and Jo (2015), with exten-

sions in Ding and Lu (2017). A minor complication is how each paper normalizes

the weights; we follow Ding and Lu (2017), who normalize weights separately

for treatment and control groups. Note that, while Jo and Stuart (2009) and Stuart

and Jo (2015) formally assume strong PI, their proposed weighting estimator is

nonetheless valid under weak PI.

5.3.2. Two-sided noncompliance. For two-sided noncompliance, we consider

three sets of assumptions: (1) strong PI, (2) weak PI for all compliance types,

and (3) weak PI for Always Takers and Compliers with an exclusion restriction

for Never Takers. This last set of assumptions is particularly important because

we believe it is the most plausible of the three for our running example of HSIS.

Average outcomes for Compliers. We begin with estimating the average out-

comes for Compliers. For mc0:

bmStrong PI
c0 ¼

X
i
Y obs

i � becðxiÞX
i
becðxiÞ

for i : Zi ¼ 0;

bmWeak PI
c0 ¼

X
i
Y obs

i � becðxiÞbecðxiÞ þ benðxiÞX
i

becðxiÞbecðxiÞ þ benðxiÞ

for i : Zi ¼ 0;Dobs
i ¼ 0;

bmPI; ER
c0 ¼ bpc þ bpnbpc

bY 00 � bpnbpc

bY 10:

The estimator under strong PI is the principal score-weighted average over all

individuals with Zi ¼ 0, ignoring observed behavior. The estimator under weak

PI is the principal score-weighted average only over individuals with Zi ¼ 0 and

Di ¼ 0, with weights normalized to exclude the probability of being an Always

Taker; that is, we weight by

bPfSi ¼ cjXi ¼ x; Si 2 fc; ngg ¼
becðxiÞbecðxiÞ þ benðxiÞ

:

The estimator under the exclusion restriction for the Never Takers is the standard

IV estimate for mc0.

For mc1, we have

bmStrong PI
c1 ¼

X
i
Y obs

i � becðxiÞX
i
becðxiÞ

for i : Zi ¼ 1;
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bmWeak PI
c1 ¼

X
i
Y obs

i � becðxiÞbecðxiÞ þ beaðxiÞX
i

becðxiÞbecðxiÞ þ beaðxiÞ

for i : Zi ¼ 1;Dobs
i ¼ 1;

bmPI;ER
c1 ¼ bmWeak PI

c1 :

Again, the estimator under strong PI includes all individuals assigned to

treatment; the estimator under weak PI only includes those with Dobs
i ¼ 1.

Average outcomes for Always Takers. For ma0:

bmStrong PI
a0 ¼

X
i
Y obs

i � beaðxiÞX
i
beaðxiÞ

for i : Zi ¼ 0;

bmWeak PI
a0 ¼ bY 01:

The weak PI estimate is straightforward because we observe Always Takers

assigned to control. For ma1:

bmStrong PI
a1 ¼

X
i
Y obs

i � beaðxiÞX
i
beaðxiÞ

for i : Zi ¼ 1

bmWeak PI
a1 ¼

X
i
Y obs

i � beaðxiÞbecðxiÞ þ beaðxiÞX
i

beaðxiÞbecðxiÞ þ beaðxiÞ

for i : Zi ¼ 1;Dobs
i ¼ 1:

As above, the strong and weak PI estimates differ by whether they are restricted

to those who are observed to participate. For both ma0 and ma1, the estimates are

the same regardless of whether we assume the exclusion restriction for Never

Takers; thus, bmPI; ER
az ¼ bmWeak PI

az for z ¼ 0; 1.

Average outcomes for Never Takers. For mn0:

bmStrong PI
n0 ¼

X
i
Y obs

i � benðxiÞX
i
benðxiÞ

for i : Zi ¼ 0;

bmWeak PI
n0 ¼

X
i
Y obs

i � benðxiÞbecðxiÞ þ benðxiÞX
i

benðxiÞbecðxiÞ þ benðxiÞ

for i : Zi ¼ 0;Dobs
i ¼ 0;

bmPI; ER
n0 ¼ bY 10:

Again, the strong and weak PI estimates differ by whether they are restricted to

the group with Dobs
i ¼ 0. The exclusion restriction states that mn0 ¼ mn1;
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thus, bmPI; ER
n0 ¼ bY 10, the average outcome for the observed Never Takers assigned

to treatment.

Finally, for mn1:

bmStrong PI
n1 ¼

X
i
Y obs

i � benðxiÞX
i
benðxiÞ

for i : Zi ¼ 1;

bmWeak PI
n1 ¼ bY 10;

bmPI;ER
n1 ¼ bmWeak PI

n1 :

Recall that, under the exclusion restriction, NACE ¼ 0.

5.3.3. Quantifying uncertainty in impact estimates. We can use standard results

from causal inference to calculate the variance of this estimator under each set of

assumptions. Assuming that the principal score is known, we have

varð dCACEÞ ¼ varðbmc1Þ þ varðbmc0Þ;

where varðbmczÞ is computed via the variance of the weighted mean and where we

ignore the covariance between the two terms under the superpopulation perspec-

tive (see, e.g., Imbens & Rubin, 2015).

This formulation highlights the precision gains from stronger identifying

assumptions. For example, consider the variance of the two estimators for mc1

in the one-sided noncompliance setting (i.e., no Always Takers) where, to give

intuition, we condition the variance on the sample covariates:

var
�bmWeak PI

c1

�
¼ var

XN1

i
Y obs

i � 1fDi¼1gXN1

i
1fDi¼1g

0B@
1CA ¼ varðYið1ÞjSi ¼ cÞ

n11

;

var
�bmStrong PI

c1

�
¼ var

XN1

i
Y obs

i � ecðxiÞXN1

i
ecðxiÞ

0B@
1CA ¼

XN1

i
ecðxiÞ2XN1

i
ecðxiÞ

� varðYið1ÞjSi ¼ cÞ
n11

;

where n11 ¼
PN1

i ecðxiÞ ¼
PN1

i 1fDi¼1g. Since ecðxiÞ are probabilities between 0

and 1,
PN1

i ecðxiÞ2 �
PN1

i ecðxiÞ. Thus, the theoretical variance under strong PI

will be smaller than the corresponding variance under weak PI, except in the

special case of perfect compliance (i.e., ecðxiÞ ¼ 1 for all i). At the same time, we

worry that the estimator assuming strong PI might be biased if the underlying,

very strong assumptions do not hold. Thus, researchers must balance these con-

siderations in deciding on the particular estimator.

In practice, we want to incorporate uncertainty from principal score estima-

tion as well as from sampling uncertainty. The standard case-resampling boot-

strap is a natural way to account for both stages in the principal score estimation

procedure. In particular, the researcher first obtains a point estimate by running
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the entire procedure on the original data set. Then, the researcher generates B

(typically 1,000 or more) bootstrap data sets by sampling N rows with replace-

ment from the original data set. Finally, the researcher runs both steps of the

principal score estimation procedure, both fitting the principal score and estimat-

ing the impacts, separately for each of the B bootstrap data sets. The 2.5th and

97.5th quantiles of the bootstrap distribution therefore generate a 95% confi-

dence interval. See Aronow and Carnegie (2013) and Ding and Lu (2017) for

additional discussion of the bootstrap in related settings.

5.4. Assessing Principal Score Fit

Just as with propensity scores, a key concern is whether the principal score

model has been correctly specified. Ding and Lu (2017) offer one promising

approach for balance checks in this setting. Due to randomization, the distribu-

tion of covariates should be the same for individuals assigned to treatment and

control within each principal stratum. The challenge is that we do not observe

principal strata directly and therefore cannot easily compare these distributions.

The key insight is that we can use the weighting scheme for estimating stratum-

specific average outcomes to estimate stratum-specific covariate distributions.

Specifically, Ding and Lu (2017) show that we can estimate any stratum-specific

function of covariates, hðxÞ, via a principal score weighted average. For example,

in the case of one-sided noncompliance, we can estimate hðxÞ for Compliers

assigned to control via the weighted average among all control individuals:

dhðxÞc0 ¼

X
i

hðxiÞ � becðxiÞX
i

becðxiÞ
for i : Zi ¼ 0:

Continuing this example, we can directly observe, say, the average age of

Compliers assigned to treatment, agec1. We can then substitute hðxiÞ ¼ agei

into the above formula to estimate agec0, which should equal agec1 in expec-

tation. A mismatch between these means suggests a poorly estimated prin-

cipal score model.

As with standard propensity score methods, we can try to improve balance by

refitting the model with additional terms, such as interactions and higher order

polynomials (e.g., Imbens & Rubin, 2015), repeating the procedure until we no

longer see imbalance. More generally, we can assess covariate balance via a

range of metrics. We focus on the normalized difference for each covariate within

each principal stratum (see Imbens & Rubin, 2015),

bDs ¼ X s1 � X s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

s1 þ s2
s0Þ=2

p ;
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where the covariate mean and standard deviation, X sz and s2
sz, are either calcu-

lated directly from the observed data or via this weighting method described

above. In the observational study setting, normalized differences greater than 0.1

are often thought to require additional adjustment, such as via linear regression,

and suggest poor covariate balance. See, for example, Imbens and Rubin (2015).

We return to this point in Section 7.

This logic extends to two-sided noncompliance. Specifically, we can compare

the estimated Never Taker covariate distribution under control with the observed

distribution under treatment. Similarly, we can compare the estimated Always

Taker covariate distribution under control with the observed distribution under

treatment. For Compliers, we must compare the weighted estimates from each

treatment arm.

6. Applications

6.1. Application to JOBS II

We now replicate the principal score analysis of JOBS II from Stuart and Jo

(2015), continuing the discussion from Section 2 (see also Jo & Stuart, 2009).

Following their analysis, we focus on the N ¼ 410 high-risk, unemployed work-

ers. Of this group, 273 were randomly encouraged to attend the job training

(Zi ¼ 1) and 137 were not (Zi ¼ 0). Among those encouraged to attend, only

160, or 59%, actually attended at least one of the five job training sessions

(Dobs
i ¼ 1). The outcome of interest is a depression score measured 6 months

after baseline (here we standardize the outcome by the mean and variance of the

control group). The overall ITT for this standardized outcome is �0.29, which

indicates that the encouragement to treatment decreased depression symptoms.

The goal of this analysis is to estimate the impact of randomization for the

subgroups of Compliers and Never Takers. In particular, there is a concern that

the exclusion restriction for Never Takers might not hold here; that is,

NACE 6¼ 0. See Jo and Stuart (2009) for additional discussion.

Following Stuart and Jo (2015), we focus on seven covariates measured at

baseline: depression, motivation, sense of mastery, economic hardship, age,

gender, and years of schooling. We estimate the principal score via a logistic

regression of D on X among those individuals assigned to treatment. We then

assess the fit of the principal score model using the procedure in Section 5.4.

Figure 1 shows the normalized covariate mean differences for the overall data set

as well as for Compliers and Never Takers.

First, even before we turn to principal strata, there are meaningful covariate

imbalances across randomization groups in this experimental subset: The encour-

agement group has lower depression levels but greater economic hardship at

baseline than the control group. It is therefore unsurprising that we see similar

(estimated) imbalances among Compliers and Never Takers. In addition, there
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seems to be meaningful imbalance on proportion female: 53% among Com-

pliers assigned to encouragement relative to 62% among those assigned to

control. Taken together, these imbalances suggest that the simple logistic

regression with main effects is not a sufficiently rich principal score model.

Unfortunately, more complex models (including adding higher order terms,

interactions, and similar modifications) do not improve these imbalances, indi-

cating that the imbalances across randomization groups are too large to correct

via principal score modeling alone. We therefore interpret the resulting prin-

cipal causal effects with caution.

Next, we use the principal score to estimate the stratum means. The first three

panels of Figure 2 show the means and bootstrapped 95% confidence intervals

separately by observed group under three different assumptions: (1) strong PI, (2)

weak PI, and (3) the exclusion restriction for Never Takers. The bottom-right

panel shows the impact by stratum, which is the difference in means from the

other panels.

There are several key takeaways. First, the means are remarkably stable across

the three assumptions. Second, there is no evidence to reject strong PI since bmc1 is

essentially unchanged under strong versus weak PI. Finally, the estimated impact

for Never Takers is quite close to zero under both strong and weak PI, which is

consistent with the exclusion restriction.

Age

Depression

Economic Hardship

Female

Grade

Mastery

Motivation

−0.2 0.0 0.2
Normalized Difference

Group
Compliers
Never Takers
Overall

FIGURE 1. Normalized treatment to control mean differences for seven key covariates in

the JOBS II evaluation.
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6.2. Application to HSIS

We now turn to HSIS. In roughly 350 Head Start centers, the offer of enrollment

was randomly assigned among eligible children. Although the original study col-

lected a range of outcomes, we focus on the Peabody Picture Vocabulary Test

(PPVT), a widely used measure of cognitive ability in early childhood. For this

outcome, the ITT estimate was 0:14 effect size units (i.e., in terms of the control

group standard deviation), which was modest relative to other estimates of Head

Start’s impact (see, e.g., Bloom & Weiland, 2014). For interpretability, we have

centered the outcome relative to the overall control group mean in the sample.

Noncompliance in HSIS was meaningful. Of those offered a spot, 18% of

children in our analysis sample were Never Takers who did not actually enroll

(i.e., bp
n
¼ 0:18). In addition, 13% of children not offered the opportunity to

enroll were Always Takers who nonetheless enrolled in a Head Start center

during the study period (i.e., bpa ¼ 0:13). Roughly half of the observed Always

Takers enrolled in the center of randomization (i.e., where they were formally

denied access to the program for that year) and half enrolled in a different Head

Start Center (Puma et al., 2010). Finally, this leaves bpc ¼ 0:69 for Compliers in

the sample.
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Since the goal of the study is to estimate the effect of enrolling in Head Start,

the standard approach would be to invoke the usual instrumental variables

assumptions to estimate the CACE: monotonicity and the exclusion restrictions

for Always Takers and Never Takers (Angrist, Imbens, & Rubin, 1996).

Although both monotonicity and the exclusion restriction for Never Takers are

highly plausible in this case, the exclusion restriction for Always Takers is

somewhat more controversial. In particular, as Gibbs, Ludwig, and Miller

(2011) argue, centers of enrollment for Always Takers could systematically

differ from their centers of randomization (see also Bloom & Weiland, 2014).

Thus, we propose using principal score methods to explore the effect of the

exclusion restriction for Always Takers on estimates of the CACE. Following

earlier analyses (Ding, Feller, & Miratrix, 2016) and to simplify exposition, we

restrict our attention to a complete-case subset of HSIS, with N1 ¼ 2;238 in the

treatment group and N0 ¼ 1;348 in the control group.4 For covariates, we will

adopt the rich set of child- and family-level covariates used in the original HSIS

analysis of Puma, Bell, Cook, Heid, and Shapiro (2010), including pretest score,

child’s age, child’s race, mother’s education level, and mother’s marital status. In

total, there are k ¼ 20 covariates after recoding factor variables. Despite these

important covariates, PI assumptions are nonetheless quite heroic in this context.

First, we fit principal score models using the “marginal method” in Section 5.3.

That is, we estimate two separate logistic regressions by treatment arm to estimatebeaðxiÞ and benðxiÞ and then subtract to estimate becðxiÞ ¼ 1� beaðxiÞ � benðxiÞ. In this

example, we use only main effects; adding in higher order interactions gave

comparable covariate balance. We then assess covariate balance given the esti-

mated principal score via the normalized difference for each child-level covariate

within each principal stratum, as described in Section 5.4. All differences are

below 0:1 in absolute value, suggesting that there is good covariate balance given

the principal score. We also estimated the principal score via the “joint method,”

which restricts the estimated principal scores to be between 0 and 1; this yielded

nearly identical results.

We then estimated principal causal effects under our different assumptions to

see how our estimates changed. Figures 3 and 4 show the estimated principal

stratum means and impacts, respectively, given (1) strong PI, (2) weak PI,

(3) weak PI plus the exclusion restriction for the Never Takers, and (4) exclusion

restrictions for both Always Takers and Never Takers (i.e., standard IV). We

obtain 95% confidence intervals via a standard case-resampling bootstrap.

We start by assessing the exclusion restriction for Never Takers. As shown in

the bottom-right panel of Figure 3, the estimate for mn0 changes very little with

and without the exclusion restriction. Figure 4 shows the same change in terms of

impacts, which emphasizes that the estimate for NACE under weak PI is not

meaningfully different from zero (i.e., the exclusion restriction). Thus, estimates

assuming weak PI for Compliers and Never Takers do not yield any evidence

against the exclusion restriction for Never Takers.
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By contrast, consider the exclusion restriction for Always Takers. As shown

in the top-left panel of Figure 3, the estimate for ma1 under weak PI is quite

different from under an exclusion restriction. Figure 4 displays the same change

in terms of impacts. Although estimates for the AACE are highly uncertain,

they are nonetheless consistently positive and away from zero. This result

suggests that, based on observable characteristics alone, we should be wary

of the exclusion restriction for Always Takers in HSIS. In the end, however, the

estimates for the CACE across these different assumptions are quite similar, as

shown in Figure 4.

We also considered the testable implications of strong PI in this example. The

top-right and bottom-left panels of Figure 3 show the estimates for ma0 and mn1,

respectively, the two principal stratum means that we can directly estimate in this

example. Since estimates are largely unchanged under strong PI and weak PI, we

do not find evidence against strong PI here. Nevertheless, since weak PI is the

strictly weaker assumption, we would typically prefer that in practice, even

though there is a meaningful loss in precision.
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FIGURE 3. Outcome means by principal stratum under different assumptions, with boot-

strap 95% confidence intervals. “Weak PI þ ER” refers to weak PI for Compliers and

Always Takers plus the exclusion restriction for Never Takers. “ER only” refers to the

exclusion restriction for both Always Takers and Never Takers (i.e., the standard instru-

mental variables assumptions).
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7. Discussion

Although principal score methods are gaining popularity in the social

sciences, these methods remain poorly understood. We make two important

contributions in this article. First, we review the literature on principal score

methods and clarify the assumptions necessary to use these approaches in prac-

tice. Second, we demonstrate how researchers can mix and match PI with other

assumptions, such as the exclusion restriction, in more complex examples. We

use this development to assess the impact of randomization on Always Takers in

HSIS, finding evidence that there is in fact a positive treatment effect for this

group, at least under weak PI. We also assess the impact of randomization on

Never Takers in the JOBS II evaluation, finding no evidence against the exclu-

sion restriction in this case.

Overall, we argue that the assumptions underlying principal score analysis are

typically unrealistic. Thus, researchers should be wary of relying solely on these

approaches. At the same time, we believe that methods based on principal scores
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can be useful as one of many ways to estimate the same principal causal effects.

For example, researchers using model-based approaches should consider estimat-

ing the same quantities via principal score methods; if the estimates diverge, results

may be particularly sensitive to modeling choices or other assumptions. More

broadly, principal score methods can be useful as simple, exploratory tools.

We briefly discuss several directions for future work. First, while we only

explore noncompliance here, extending these results to more complex settings is

straightforward. See Page et al. (2015) for some possible settings relevant to

education and behavioral science. Second, while we used simple estimators in

the main text, principal score models can be quite rich. Feller (2015), for exam-

ple, estimates the principal score for HSIS using a Bayesian hierarchical model

that accounts for the multilevel structure in the experiment. We could also

consider nonparametric or machine learning methods, which have proved effec-

tive with propensity scores (e.g., B. K. Lee, Lessler, & Stuart, 2010).

Third, our discussion has focused on the use of covariates solely for justifying

PI and estimating the principal score. In practice, we can also leverage covariates

that are predictive of the outcome to sharpen inference for the causal effects

themselves. Jo and Stuart (2009) propose a straightforward strategy of a weighted

regression of Y obs on Z and X with the relevant principal score weights. Ding and

Lu (2017) borrow methods from survey sampling and discuss model-assisted

estimation, which reduces to the strategy in Jo and Stuart (2009) in certain

settings. How best to incorporate covariates is a promising question for addi-

tional study (see also Mealli et al., 2016).

Another critical direction for future work is sensitivity analysis. Ding and Lu

(2017) take an important step in this direction, proposing formal sensitivity

analyses analogous to those approaches for observational studies first introduced

by Rosenbaum and Rubin (1983). This is especially important because, as dis-

cussed above, PI assumptions are quite strong. One potentially fruitful approach—

essentially a quick-and-dirty sensitivity analysis—is to compare principal score

estimates and their corresponding nonparametric bounds. The bounds give a range

of plausible parameter values, and the principal score estimate gives a “reasonable

guess” within this interval as to where the truth might be. Furthermore, a principal

score estimate outside these bounds—though unlikely to occur in practice—would

be strong evidence against PI. This is an attractive approach given available tools.

Finally, principal scores are useful objects for describing trends in data even in

the absence of PI assumptions, just as the propensity score can be useful in

settings other than observational studies. In particular, they can be used to

describe trends in how individuals respond to the offer of treatment, which is

often of substantive interest in its own right. We are also currently exploring how,

even without the ignorability assumptions, principal scores can be used to tighten

nonparametric bounds (see also Long & Hudgens, 2013). We anticipate that there

will be many other uses.
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Appendix A

A.1. Discrete Subgroup Method

Schochet and Burghardt (2007) suggest estimating the CACE and NACE via

discrete subgroups. First, let pc � PfSi ¼ cg be the overall proportion of Com-

pliers in the population, and let Ci be an indicator for whether individual i is a

Complier. Next, define bCi ¼ IfbecðxiÞ � bpcg, as the indicator for whether indi-

vidual i is predicted to be a Complier based on being above a given threshold.

Finally estimate the CACE via the ITT for those individuals with bCi ¼ 1 and

estimate the NACE via the ITT for those individuals with bCi ¼ 0.

The intuition is that the predictive model does not depend on outcomes or

treatment assignment. The identified subgroups, which we might call “likely

Compliers” and “likely Never Takers,” are therefore pretreatment subgroups and

can be described and explored just as any other pretreatment subgroup. Having

such easily interpretable groups and being able to estimate them in a straightfor-

ward way is appealing.

To illustrate this approach, we return to the simple case with binary X . First,

without loss of generality, assume that individuals with Xi ¼ f are more likely to

be Compliers than those with Xi ¼ m, i.e., ecðf Þ > ecðmÞ. Under strong PI, we can

estimate the CACE via the weighted average of the subgroup ITT effects for females

and males. So long as there is sufficient imbalance between females and males, the

discrete subgroup method will only use the first term of this equation to estimate ITTc:

dCACE
Sub
¼dITTðf Þ:

That is, we use the estimated ITT among females as a proxy for the CACE. This only

matches the plug-in estimator if X is perfectly predictive of C (i.e., ecðf Þ ¼ 1), or if

there is no impact variation across principal strata (i.e., ITT ¼ CACE ¼ NACE),

neither of which is an interesting case. Although it might be possible to motivate this

estimator with a different set of assumptions, these are not immediately apparent.

These quantities are, however, valid estimates for alternate estimands: the average

effects for groups defined by predicted membership. This might be of interest in

some settings and, at the very least, is a useful exploratory tool.

A.2. Comparison With Sequential Ignorability

We offer a brief comparison of PI and sequential ignorability (for additional discus-

sion, see, e.g., VanderWeele, 2011). Sequential ignorability is typically associated

with mediation methods and allows the researcher to estimate effects for the entire

population. Although appealing, this comes at a cost: We must be able to imagine a

hypothetical experiment in which D could plausibly be assigned at random.

The sequential ignorability assumption conceives of both Z and D as if they

could be randomly assigned, as in a two-stage randomization scheme or factorial
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design. Under this formulation, we doubly index the potential outcomes as

Yiðz; dÞ, leading to four possible combinations: Yið1; 1Þ, Yið1; 0Þ, Yið0; 1Þ, and

Yið0; 0Þ. We then state the sequential ignorability assumption as

Yiðz; dÞvDijXi; Zi for z 2 f0; 1g and d 2 f0; 1g:

The analogous estimands to CACE and NACE are therefore

ITTSI
c ¼ EfYið1; 1Þ � Yið0; 0Þg;

ITTSI
n ¼ EfYið1; 0Þ � Yið0; 0Þg:

As in the typical ignorability case, this estimand is defined for the entire (super)

population of individuals. By contrast, PI focuses on estimands for specific prin-

cipal strata. Thus, PI is a more “local” assumption than sequential ignorability.

A.3. Proofs

This proof is nearly identical to the analogous proofs for the propensity score in

Imbens and Rubin (2015). Following that example, we first show that the prin-

cipal score is indeed a balancing score. For convenience, let Ci be an indicator for

whether individual i is a Complier. We wish to show that

CivXijecðxiÞ;

or equivalently,

PfCi ¼ 1jXi; ecðxiÞg ¼ PfCi ¼ 1jecðxiÞg:

We will show that both sides of the equation equal ecðxiÞ. For the left-hand side,

PfCi ¼ 1jXi; ecðxiÞg ¼ PfCi ¼ 1jXig ¼ ecðxiÞ. For the right-hand side:

PfCi ¼ 1jecðxiÞg ¼ EfCijecðxiÞg ¼ EfEfCijXi; ecðxiÞgjecðxiÞg ¼ EfecðxiÞjecðxiÞg ¼ ecðxiÞ:

Therefore, the principal score is a balancing score.

Second, we show that if strong PI holds given Xi, strong PI also holds given

ecðxiÞ. We show this for Yið0Þ, with an identical argument for Yið1Þ. To do this,

we need to show that

Yið0ÞvCijecðxiÞ;

holds, or equivalently,

PfCi ¼ 1jYið0Þ; ecðxiÞg ¼ PfCi ¼ 1jecðxiÞg:

To show this:

PfCi ¼ 1jYið0Þ; ecðxiÞg ¼ EfCijYið0Þ; ecðxiÞg ¼ EfEfCijYið0Þ;Xi; ecðxiÞgjYið0Þ; ecðxiÞg
¼ EfEfCijecðxiÞgjYið0Þ; ecðxiÞg ¼ EfCijecðxiÞg
¼ PfCi ¼ 1jecðxiÞg;
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where we use PI and the fact that the principal score is a balancing score to go

from the second to third lines. Therefore, strong PI also holds, given ecðxiÞ. The

same argument applies for the various weak PI assumptions.
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Notes

1. Note that this article focuses on superpopulation estimands, which appear to

be the objects of interest in the principal score literature. We are not aware of

any discussion of finite sample versus superpopulation estimands in this

setting. See Imbens and Rubin (2015) for further discussion of finite versus

superpopulation inference.

2. Jo and Stuart (2009) and Ding and Lu (2017), among others, write these

assumptions in terms of full stochastic independence, that is, v. Since the

formal identification results only require mean independence (rather than full

stochastic independence), we use mean independence throughout for clarity

of exposition. We argue that this distinction is fairly unimportant in this

setting: Although mean independence is technically weaker than full stochas-

tic independence, it is difficult to imagine a real-world situation in which PI

holds in terms of mean independence but not full stochastic independence.

3. In theory, we could use nonparametric regression to estimate these quantities,

for example, we could replace Y obs
i with a regression estimate.

4. Although we do not do so here, it is straightforward to incorporate inverse

probability weights under the assumption of missing at random. In particular,
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the researcher can construct overall weights by multiplying the (inverse)

weights for missingness and the (direct) weights for principal scores.
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