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Eliciting algebraic reasoning  
with hanging mobiles

The importance of laying a foundation for algebraic 
reasoning at a young age is increasingly being empha-
sised. In this article, we report on an activity that elicits 
in a natural way algebraic strategies that in a later stage 
of learning algebra are crucial for solving equations. The 
activity brings about the students’ spontaneous use of 
symbolic notations. It also makes students’ reasoning 
visible both to themselves and to their teacher and helps 
build students’ conceptual understanding and foster  
productive classroom discussion. This activity involves 
working with a hanging mobile.

In this article we describe the work of students aged 
11–12, using a hanging mobile as shown in Figure 1.  
This mobile can be considered as a balance model  
representing an equation with unknowns. The chains  
on both sides of the mobile support coloured bags. The 
different bags each have a particular weight to make the 
balance ‘workable’, but the weight aspect is not explicitly 
mentioned to the students. Neither are the students 
told that the activity is about solving equations with 
unknowns. For them, this is a puzzle. They have to figure 
out what you can do with the bags in the hanging mobile 
while keeping the mobile in balance and then use these 
strategies to find relationships among the bags. Figuring 
out these puzzles does not require formal algebra, as 
students can physically add, remove and exchange bags 
and can see the result of their actions.  

In this way, they develop strategies such as restructuring 
(e.g. moving bags with respect to each other but keeping 
them on one side), isolation (e.g. removing the same 
bags from both sides of the hanging mobile), and 
substitution (replacing bags with different coloured 
bags), strategies which are very important for solving 
equations. In fact, the informal strategies that come up 
now form a pre-stage of the most prominent strategies 
that are used when solving formal equations. Promoting 
such informal reasoning in the field of algebra is in 
line with the proficiency strands of the Australian 
Curriculum: Mathematics (ACARA, 2015; see also 
Hurrell, 2012).

The large-size physical hanging mobile that we used in 
this activity was inspired by mobile puzzles. The idea of 
these puzzles is old (Kroner, 1997) but their curricular 
use is newer (Goldenberg, Mark, Kang, Fries, Carter, & 
Cordner, 2015; see http://solveme.edc.org for an online 
version). Like the mobile puzzles on paper, the physical 
model can trigger algebraic reasoning in students. Both 
do this without requiring formal techniques or nota-
tions, but the advantage of the physical hanging mobile 
is that the students physically interact with the mobile 
and have an embodied experience in keeping the mobile 
in balance. Another positive aspect of the physical mo-
bile is that the students can watch each other’s actions, 
which can support classroom discussion.
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How algebraic reasoning can be fostered within the important big idea of equivalence is 
demonstrated using hanging mobiles. A concrete-representational-abstract approach is 
used, without any formal algebraic symbolism, to elicit algebraic reasoning and higher- 
order thinking.
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               Figure 1. Physical mobile.

A physical model of equivalence

A balance models the mathematical idea of equivalence, 
a crucial concept for understanding equations (Faulkner, 
Walkowiak, Cain, & Lee, 2016; Greenes & Findell, 1999; 
Hurrell, 2012). The mobile thus represents an equation 
that students can handle physically, using their sense and 
intuition to build the logical system of algebra. Part of 
this system is the meaning of the equal sign. Students 
often interpret the equal sign as a “to do”sign—as it is  
on a calculator—instead of an “is equal to”sign (Carraher 
& Schliemann, 2007). The hanging mobile presents this 
latter meaning without any notational hurdle and builds 
on the balancing experiences young children already have 
in everyday life (e.g., seesaws). The mobile gives students 
bodily experiences of the concept of equivalence, which 
can help them anchor this concept, in line with the 
theory of embodied cognition (cf. Núñez, Edwards,  
& Matos, 1999).

Lala’s work with the hanging mobile

We will focus first on one child, showing how the  
physical hanging mobile can give relevant experience  
on reasoning about equivalence. Lala, 12 years old,  

is in a sixth-grade classroom in the Netherlands. She had 
no prior instruction on solving equations; early algebra 
is not part of the Dutch primary school mathematics  
curriculum. Lala was presented an empty mobile and 
some black, grey, and white bags that could be hung  
on it. Two black bags were equivalent to three grey bags  
and were also equivalent to six white bags, but Lala was  
not told this information. She was interviewed by Mara, 
the first author of this article.

Because we wanted to know Lala’s reasoning, it 
was important to hear what wording she chose when 
working with the mobile. Therefore, we introduced the 
task without using terms like hanging mobile, balance, 
equal, and equivalence. Only when Lala spontaneously 
used these more formal words did Mara use them as 
well. Mara (M) began the activity with the following 
question:
M:  Can you find out what happens to this thing 

when you add or remove bags?
L:  [Hangs a white, grey, and black bag on each side 

(Figure 2a)].
M:  Well done! You have two white ones and also  

a grey one remaining. Could you use these 
[bags] as well?

L:  [Hangs the grey on the left, the two whites on 
the right; watches the mobile (Figure 2b)].

M:  What are you thinking now? […]
L:  Well, I think that these ones [Lala points to the 

three bags (white, grey, black) on the left side 
(Figure 2b), looks back and forth to the same  
bags on the right side] keep each other in 
balance. And this one [points to the remaining 
grey bag on the left] is equally heavy as these 
two [points to the remaining two white bags  
on the right].

M:  OK, how can you find out if this is correct?
L:  I don’t know. Oh wait, I think I know [takes 

away all bags except for one grey bag on the left 
side and two white bags on the right (Figure 
2c)].

Without explicitly being asked, Lala tried to bring  
the mobile into balance. From the start, she seemed to  

Figure 2. Schematic representation of the mobiles Lala created.
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expect equivalence to apply to this situation. Moreover, 
she could express one unknown in terms of another 
unknown (one grey is “equally heavy” as two whites; in 
formal algebra this would be expressed as y = 2x). She 
had some difficulties choosing the right words, but she 
made herself understood by using gestures. Eventually 
she could test her assumption that one grey “is as heavy 
as” two whites, by applying the algebraic isolation 
strategy. By removing equal numbers of equal unknowns 
on each side (one white, grey, and black bag), only one 
type of unknown remained on each side of the mobile.

Mara asked if Lala could add more bags to the mobile, 
making sure that it remained “like this” (horizontal 
gesture with her arm). Lala replied that she would add 
“the double”, and hung two grey bags on the left and 
four white on the right (Figure 2d):
L:  One grey equals two white ones. And then if  

you add another grey one, you have to double  
the white ones as well.

Lala showed she could generate equivalent sets of bags  
by keeping the ratio the same.

To stimulate Lala to think about which words and 
notations to use—a first step towards a formal notation 
—we asked Lala to draw or write down her findings 
(Figure 3). This stimulation is important, since research 
has shown that even for Grade 6 and 7 students who are 
already able to solve equations, formal symbolising can 
still be a major obstacle (Van Amerom, 2003). Lala used 
the equal sign correctly to express the relationships be-
tween the bags (Figure 3), showing that she understood 
that it was not just a sign of ‘here comes the answer’.

Figure 3. Lala’s notes (translated from Dutch) explaining the mobile 
shown in Figure 2d.

From the physical mobile to drawings  
on a worksheet

Shifting from operating a physical mobile to solving 
puzzles on paper (Figure 4) helps move the experiments 

into one’s head. We showed Lala two mobiles that  
we said were balanced (mobiles A and B in Figure 4).  
From that, she had to discover relationships between the 
coloured blocks, and use these relationships to complete 
the empty mobiles, using only one colour on each side 
and making them balance. This challenge involves more 
than the transition from the physical mobile to paper; 
one must combine the values expressed in two mobiles 
to come to an answer. In other words, students have to 
develop algebraic strategies such as isolating unknowns 
and substituting them to solve the problems. For stu-
dents who have not yet encountered problems like these 
and have not developed a standard method for solving 
these problems, this requires higher-order thinking.

 Mara clarifies the worksheet without giving Lala  
any scaffolding for solving the puzzle.
M:  Here you see two examples [points to mobiles  

A and B, Figure 4], you can use to solve the 
problem. To make one that hangs like this  
[points to problem 1, Figure 4.1, making  
a horizontal gesture with the arm], how many 
greys do you have to put on this side [left]  
and how many blacks on that side [right]?  
Just try, you can do anything you want,  
including crossing things out.

L:  I think… I don’t know! Oh, I think that two  
of these blacks equal one grey [points to the  
four black blocks in mobile A, then to the  
two grey blocks].

M:  Why do you think so?
L:  Because eh… This is already correct: one white
 and another white [points to the two white 

blocks balancing each other in mobile A]. But 
here are two [points to the two greys in mobile 
A], and there are twice as many [points in mo-
bile A to the four black], so I thought, if I divide 
this by two, then two blacks equal one grey  
(see Figure 4.1 for her drawing).

This pictorial notation is not algebraic, but Lala’s 
description and reasoning are; she can simplify the 
equation by taking away equal unknowns on both sides 
of the equal sign to isolate the grey unknown. She also 
used this isolation principle when working with the 
physical mobile. Subsequently, she demonstrated that 
she could simplify the remaining equation (2 grey = 4 
black), by performing the same operation on both sides  
of the equal sign (dividing by two). The experience 
of puzzling this out for oneself is powerful: it shows 
students not only that they can figure out things for 
themselves, but gives them a much more intuitive and 
logic-based understanding than an explained set of 
procedures is likely to give them.

Otten, van den Heuvel-Panhuizen, Veldhuis, Heinze & Goldenberg
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Lala then continued with the second task.
L:  [Points first to her solution of problem 1 (Figure 

4), going back and forth between the grey block 
on the left side and two blacks on the right]. You 
already know for sure that two of these [black] 
equal one grey. [Then points to mobile B (Figure 
4)]. So two whites have to be equal to three 
greys. If you have one white… That would be 
how many blacks…? [draws one white block as a 
start (Figure 4.2)]. Two blacks equalled one grey 
[points to her solution of the first assignment]. 
And… Wait, I can draw two whites, that makes 
it easier [then draws the second white block 
(Figure 4.2)].

Lala drew two white blocks in Figure 4.2 probably 
because the given mobile B (Figure 4) also has two 
white blocks on the left side.
L:  Two whites would imply three greys here, for 

example [points to where the black blocks have 
to be drawn]. So… yes, six! Six blacks [draws six 
black blocks]! So one such thing [white block] 
equals three blacks.

M:  Why does one such thing equal three blacks?
L:   Because two of these… [points to the drawn 

white blocks in Figure 4.2]. Oh, yes! If you 
divide this by two [points again to the white 
blocks] then you also have to divide this by  
two [points to the six blacks; starts drawing  
a new mobile (Figure 4, bottom right)].

 
Figure 4. Lala’s worksheet (questions translated from Dutch).

Eliciting algebraic reasoning with hanging mobiles

17APMC 22(3) 2017



Lala clearly expresses a proportional relationship she 
has seen, and she uses the algebraic principle of substi-
tution to come to the solution, an element of algebraic 
reasoning we had not seen her use earlier. She used her 
previously found solution of two blacks equalling one 
grey to turn the three greys into six blacks.

In the classroom

     Figure 5. Two boys working with the physical mobile  
  in the classroom.

Lala’s work is quite representative of what happened 
with a similar activity in a classroom. A fifth-grade class 
tackled the transition from working with one physical 
mobile (Figure 5), to combining the information of  
two mobiles (Figure 6) to determine what should make 
a third mobile balance. 

       

Figure 6. Tessa combines information of two mobiles  
to explain the composition of the third.

Figure 7. Schematic 
representations of the 
physical mobiles shown 
in the classroom.

Otten, van den Heuvel-Panhuizen, Veldhuis, Heinze & Goldenberg

 The teacher set up the three mobiles (Figure 7) and 
asked the class whether, based on the first two mobiles  
(A and B), they could have known that the bags on third 
(C) had to be hung in this way, for the mobile to be 
straight. Although the context (and model) of the mobile 
plays a crucial role in eliciting students’ algebraic reason-
ing, the contribution of the teacher is equally important. 
The students are challenged and put at ease. Students  
can see that the third mobile (C) is hanging straight, so  
finding the result is not an issue; the students can con-
centrate on figuring out how the relationships in the first 
two mobiles (A and B) can lead to the third mobile.

Tessa (Figure 6) explained: “Yes [you could have known 
that C had to look like this], because two blacks equal 
one grey, and two greys equal one white, so we have to 
double the greys to get one white, and then we have to 
double the other side too.” The teacher then challenged 
the class: “Can you show this on the mobiles?” This 
prompted Berkay (Figure 8) to substitute one grey bag 
with two black bags. The physical mobile made Berkay’s 
strategy visible to the teacher and the other students, 
allowing the teacher to assess progress and also to give 
useful feedback if needed (see, e.g., Hattie & Timperley, 
2007). The teacher helped the students to structure their 
reasoning and provided them with the adequate language 
to describe this process, by explaining that Berkay 
substituted the grey bag with two black ones. 

Subsequently, students were asked to write down their 
thinking when solving similar tasks on paper. Figure 9 
shows the work of five students that wrote down the  
ratio between green and red bags (students 1 and 2)  
and the ratio between red and blue bags (students 3, 

 

     Figure 8. Berkay substitutes the grey bag with  
     two black bags.
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Figure 9. Different ways of notating ratios between the coloured bags by students 1 to 5.
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4 and 5). While some (students 3 and 5) made 
themselves clear by drawing the bags, others (students 
1 and 2) used words or even letters (student 4) to 
represent the unknowns. Moreover, students 1 to 4 
spontaneously grouped the unknowns when notating 
them, while student 5 expanded them by drawing two 
blue bags instead of a blue bag with the number 2 in 
front (cf. student 3). Lastly, four of them used the = 
sign to express the relationships between the bags. This 
is noteworthy, since one of the common pitfalls in 
algebra is to see the equal sign as a signal to perform 
an operation, while understanding of the equal sign 
as a relational symbol of equivalence is important 
for understanding and solving of algebraic equations 
(Knuth, Stephens, McNeil, & Alibali, 2006). As such, 
asking students to write down their thinking can be  
a first step towards the use of formal notations.

Conclusion

The physical experience with the hanging mobile 
gives students the opportunity to develop embodied 
knowledge of balance and equivalence, and prompts 
them to come up with strategies such as isolation 
and substitution that we normally teach in algebra in 
secondary school. These activities show that students 
at the end of primary school, without having been 
taught formal algebra, are already able to reason about 
equations with unknowns and even about systems  
of equations with multiple unknowns.
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