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This article draws on some ideas explored during and after a writing 
workshop to develop classroom resources for the reSolve: Mathematics by 

Inquiry (www.resolve.edu.au) project. The project is well into its development 
phase, is funded by the Australian Government Department of Education and 
Training and conducted by the Australian Academy of Science in collaboration 
with the Australian Association of Mathematics Teachers. The project develops 
classroom and professional learning resources that will promote a spirit of 
inquiry in school mathematics from Foundation to year ten.

The centrepiece of reSolve is the reSolve Protocol, a framework that 
both underpins the development of the resources and provides a vision for 
excellence in teaching and learning mathematics generally. The Protocol has 
three key elements:
•	 reSolve mathematics is purposeful;
•	 reSolve tasks are challenging yet accessible; and
•	 reSolve classrooms have a knowledge-building culture.

The activity described in this article, and particularly the way in which it was 
developed, exemplifies these three elements. It starts with a curious number 
activity that students are asked to explain. The clear purpose is to show the 
power of algebra as generalised arithmetic, as it is only by expressing what is 
happening algebraically that students can explain why the ‘trick’ works. This 
leads to a task in which students explore other possible relations made with a 
similar process. The use of spreadsheets and the numerical approach make 
the activity accessible, while the results themselves, as will be clear later in 
the article, provide a level of challenge that extends well beyond school-level 
mathematics.

The article attempts to convey the sense of discovery and excitement that 
was experienced by some of the people involved in developing the lesson. 
It was only by talking through the problem and testing some ideas that we 
were able to discover that there was much more to the problem than first 
met the eye. This led to an exploration of some sophisticated mathematical 
relationships that were completely new to us that we were able to research and 
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work on further. This is the essence of a knowledge-building culture. It is to be 
hoped that the same enthusiasm will infect the students for whom the lesson 
was designed and will inspire further investigation and generalisation both for 
students and for teachers.

The activity: Addition chains

The teacher invites students to think of two numbers, write them down one 
below the other on a whiteboard and to add them, putting the sum on a third 
line. Then, the second number is added to the third and the sum is appended 
to the list. The process continues until the list contains ten numbers. Some 
students are asked to write their ten numbers on the board, during which time 
the teacher is mysteriously and unerringly able to announce the sum of all ten 
numbers as soon as the seventh number in the addition chain is calculated. 
Table 1 shows an example of some possible numbers in the addition chain, 
which in this case sum to 1364.

After seeing several examples using different seed numbers, some students 
may realise that the sum is eleven times the seventh number. (The arrangement 

of numbers and sum can be implemented 
on a spreadsheet so that many different 
pairs of seed numbers can be tried quickly 
to test this observation.)

This is by no means an original activity, 
and is shown on a number of websites and 
YouTube clips. However, we have never 
seen any further explorations of whether 
there might be other multiplicative 
relationships of this kind. Here began a 
gradual departure from the immediate 
requirements of the lesson. 

In thinking about how we might 
extend the lesson we decided to develop a 
spreadsheet and look not only at the sum 
of ten numbers, but at the cumulative 
sums as they progress. We created a table 
such as that shown in Table 2 to look for 
relationships.

Looking at the numbers in the table, 
some other relationships may appear 
to be true. For example, the fourth 
cumulative sum appears to be 16 times 
the first number in the addition chain, or 
the seventh cumulative sum appears to be 

Table 1. The Addition chain.

n Addition chain
1 4

2 13

3 17

4 30

5 47

6 77

7 124

8 201

9 325

10 526

Table 2. Addition chain and cumulative sums.

n Addition chain Cumulative 
sums

1 4 4

2 13 17

3 17 34

4 30 64

5 47 111

6 77 188

7 124 312

8 201 513

9 325 838

10 526 1364
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26 times the second number in the addition chain, but it is clear that these are 
mere coincidence as the first two numbers in the addition chain are arbitrary. 
However, the sixth cumulative sum appears to be four times the fifth number 
in the addition chain, a result which may be coincidence but is potentially a 
general result. This search for possible relationships forms the body of the 
lesson.

Algebra enters the exercise as the tool for confirming the result for the 
seventh number and the sum of all ten numbers, and for confirming or 
rejecting other conjectures. This is where the mathematical purpose of 
the lesson is captured, in that algebra is essential to developing and testing 
generalisations. Table 3 shows the algebraic representation of the addition 
chain and cumulative sums.

The algebraic notation makes it clear that the tenth sum is always eleven 
times the seventh number no matter what the initial choices of seed numbers, 
since 55a + 88b = 11(5a + 8b).

If the sequence of numbers in the first 
list is given the notation tn and those in 
the cumulative sum list are called sn, we 
might write the following after looking at 
the lists as far as they go:

s1 = t1

s2 = t3

s3 = 2t3

s6 = 4t5

s10 =11t7

While the first result is obvious, it 
is curious that, if we ignore the third 
result, the subscripts on the ti in the 
relations found above are consecutive 
odd numbers while there is a hint that 
the subscripts on the si might increase 
in jumps of 4. Curiosity led us to extend 
the lists to look for a pattern beyond ten 
numbers (Table 4).

We checked and found that indeed, 
this pattern continues as far as this 
extended list goes.

s14 = 29t9

s18 = 76t11

s22 = 199t13

Table 3. Algebraic representation of the addition chain and 
cumulative sums.

n Addition chain Cumulative 
sums

1 a a

2 b a + b

3 a + b 2a + 2b

4 a + 2b 3a + 4b

5 2a + 3b 5a + 7b

6 3a + 5b 8a + 12b

7 5a + 8b 13a + 20b

8 8a + 13b 21a + 33b

9 13a + 21b 34a + 54b

10 21a + 34b 55a + 88b

Table 4. Extension of the addition chain and cumulative 
sums beyond 10 entries.

n Addition chain Cumulative 
sums

11 34a + 55b 89a + 143b

12 55a + 89b 144a + 232b

13 89a + 144b 233a + 376b

14 144a + 233b 377a + 609b

15 233a + 377b 610a + 986b

16 377a + 610b 987a + 158b

17 610a + 987b 1597a + 2583b

18 987a + 1597b 2584a + 4180b

19 1597a + 2584b 4181a + 6764b

20 2584a + 4181b 6765a + 10945b

21 4181a + 6765b 10946a + 17710b

22 6765a + 10946b 17711a + 28656b
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Neither of us was aware of this result, and of course, it was begging for an 
explanation. We decided to first see if the coefficients of the ti that had been 
revealed so far, excluding those corresponding to s1 and s3, {1, 4, 11, 29, 76, 
199…} formed a known sequence. So we typed it into the Online Encyclopaedia 
of Integer Sequences (OEIS) at https://oeis.org and found that the sequence 
of numbers was contributed by Lekraj Beedassy on 31 December 2002. There 
is also a list of the first 200 numbers in the sequence at https://oeis.org/
A002878/b002878.txt . 

Given the appearance of the Fibonacci numbers in the lists we might 
suspect a Fibonacci-like process in the coefficients. According to the OEIS this 
sequence is the bifurcation of a particular Lucas sequence. A Lucas sequence 
is a generalisation of the Fibonacci sequence. In this case 

L1 = 2
L2 = 1
Ln = Ln–1 + Ln–2, n > 2

Specifically, by taking every second term of the sequence of Lucas numbers 
{2, 1, 3, 4, 7, 11, 18, 29…} we get the sequence of coefficients above. 

Alternatively, and more usefully, we observe that the sequence cn of 
coefficients of the ti is given by

c1 = 1
c2 = 4
cn = 3cn–1 – cn–2, n > 2

This is a second-order linear homogeneous recurrence relation with 
characteristic equation t2 – 3t + 1 = 0. Solving this gives t = 3± 5

2 .
If we now call the two distinct roots r and s, and let cn = Arn + Bsn, by 

substitution into the values for c1 and c2 we obtain the explicit formula for cn:

	

cn = 5 −1
2

3+ 5
2

⎛
⎝⎜

⎞
⎠⎟

n

− 5 +1
2

3− 5
2

⎛
⎝⎜

⎞
⎠⎟

n

This seems appealing. However, although a sequence has been named and 
has been characterised in various ways, the challenge remains of showing that 
it is correct. 

It will be necessary to prove that for positive integers n, cnt2n+1 = s4n–2.
To do this, it will be helpful if each term in this proposed equation can be 

expressed in terms of Fibonacci numbers, Fi.
We have, for i > 2, 

ti = Fi–2a + Fi–1b and 
si = Fia + (Fi+1 – 1)b. 
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By inspection, it appears that ci = 2F2i – F2i–1. This is proved by induction. It 
is true when i = 3 and we suppose it is true that ck = 2F2k – F2k–1 for a positive 
integer k > 3. 

We have ck+1 = 3ck – ck–1 = 3(2F2k – F2k–1) – (2F2(k–1) – F2(k–1)– 1).
And after several applications of the fact that Fn–1 = Fn+1 – Fn, we find that 

ck+1 = 2F2k+2 – F2k+1 as required.
Thus, to prove that cnt2n+1 = s4n–2 we have to prove that 

	 (2F2n – F2n–1)(F2n–1a + F2nb) = F4n–2a + (F4n–1 – 1)b 
for all values of a and b.
This can only be the case if both the following equations hold:
	 (2F2n – F2n–1)F2n–1 = F4n–2

and
	 (2F2n – F2n–1)F2n = F4n–1 – 1

We will need three lemmas about Fibonacci numbers:
(1)	 F2k = Fk–1Fk + FkFk+1

(2)	 F2k+1 = Fk+2Fk+1 – FkFk–1

(3)	 Fk–1Fk+1 = Fk
2  + (–1)k

Using (1), we have 
	 F4n–2	 = F2(2n–1) 
		  = F2n–2F2n–1 + F2n–1F2n

		  = (F2n – F2n–1)F2n–1 + F2n–1F2n

		  = F2n–1(2F2n – F2n–1)
as required.
Using (2), we have

	 F4n–1 – 1	 = F2(2n–1)+1 –1
		  = F2n+1F2n – F2n–1F2n–2 –1
		  = (F2n + F2n–1)F2n – F2n–1(F2n – F2n–1) – 1
		  = F2n

2 + F2n−1
2  + (–1)2n–1

Then, using (3),
	 F4n–1 –1	 = F2n

2  + F2n–2F2n

		  = F2n(F2n + F2n–2)
		  = F2n(2F2n + F2n–1)

as required.

For completeness, we should prove the three lemmas concerning Fibonacci 
numbers that were used in the proof that cnt2n+1 = s4n–2. This can be done using 
induction arguments that we leave to the reader.

The addition chains lesson activity led to a chain of enquiries about a 
pattern of common factors found in the coefficients of a and b in the sequence 
of cumulative sums compared to the coefficients in the addition chain. While 
the explanation was not immediately obvious, persistence led to success. 
The activity exemplifies the three central elements of the reSolve Protocol: 
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purposeful mathematics, challenging yet accessible tasks, and a knowledge-
building culture. In particular it promotes persistence on a challenging task, 
the focus of one of the reSolve professional learning modules.

The potential of this activity has not been exhausted. The algebraic lists of 
numbers and cumulative sums still hold mysteries. For the students, it could 
be noted that the coefficients of a and b in the sequence tn are successive 
Fibonacci numbers and they seem never to have common factors. 

This could be explained by arguing that if two adjacent Fibonacci numbers 
had a common factor other than 1, then because of the way the sequence of 
Fibonacci numbers is constructed, all Fibonacci numbers would have the same 
common factor. But, since successive Fibonacci numbers without common 
factors are easy to find, it must be that no successive pairs of Fibonacci 
numbers have common factors.

On the other hand, the coefficients of a and b in the sequence sn of 
cumulative sums are regularly both even and do sometimes have other 
common factors, namely the numbers cn. Questions remain: When, other 
than in the observed instances, do the coefficients of sn have common factors 
and what can these factors be?

Notes

•	 We used Anderson (1989), A first course in combinatorial mathematics, as a 
reference to assist in the mathematical derivations.

•	 The addition chains activity can be found at http://www.1728.org/
fibonacci.htm or http://www.pleacher.com/mp/puzzles/tricks/fibo.html.

•	 A YouTube clip is at https://www.youtube.com/watch?v=CWhcUea5GNc.

Reference

Anderson, I. (1989). A first course in combinatorial mathematics. Oxford, UK: Clarendon Press. 

A
us

tr
al

ia
n 

S
en

io
r 

M
at

he
m

at
ic

s 
Jo

ur
na

l v
ol

. 
3

1
 n

o.
 1

64


