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ABSTRACT.	 Topological	 data	 analysis	 (TDA)	 is	 a	 collection	 of	 powerful	 tools	 that	 can	 quantify	
shape	and	structure	in	data	in	order	to	answer	questions	from	the	data’s	domain.	This	is	done	by	
representing	some	aspect	of	the	structure	of	the	data	in	a	simplified	topological	signature.	In	this	
article,	 we	 introduce	 two	 of	 the	 most	 commonly	 used	 topological	 signatures.	 First,	 the	
persistence	diagram	represents	 loops	and	holes	 in	the	space	by	considering	connectivity	of	 the	
data	points	 for	 a	 continuum	of	 values	 rather	 than	 a	 single	 fixed	 value.	 The	 second	 topological	
signature,	 the	mapper	 graph,	 returns	 a	 1-dimensional	 structure	 representing	 the	 shape	 of	 the	
data,	 and	 is	 particularly	 good	 for	 exploration	 and	 visualization	 of	 the	 data.	 While	 these	
techniques	 are	 based	 on	 very	 sophisticated	 mathematics,	 the	 current	 ubiquity	 of	 available	
software	 means	 that	 these	 tools	 are	 more	 accessible	 than	 ever	 to	 be	 applied	 to	 data	 by	
researchers	in	education	and	learning,	as	well	as	all	domain	scientists.	
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1 INTRODUCTION 

With	 the	 introduction	 of	 sensors	 in	 everything	 and	online	 systems	with	 click	 by	 click	 data	 on	 all	 user	
activity,	 data	 science	now	 touches	 nearly	 every	 field	 of	 study.	However,	 the	 traditional	 techniques	of	
data	 analysis	 have	not	 always	 kept	 up	with	 the	 exploding	quantity	 and	 complexity	 of	 data	 since	 they	
often	rely	on	overly	simplistic	assumptions.	The	field	of	topological	data	analysis	(TDA)	has	attempted	to	
fill	 this	void	by	producing	a	collection	of	 techniques	stemming	 from	the	 idea	that	data	has	shape	that	
can	 be	 rigorously	 quantified	 in	 order	 to	 investigate	 data.	 This	 quantification	 takes	 the	 form	 of	 a	
topological	 signature:	a	 representation	of	 some	aspect	of	 the	 shape	 in	a	 simplified	 form	 for	 study.	As	
with	 any	 summary,	 producing	 a	 topological	 signature	 from	 data	 is	 a	 lossy	 process;	 that	 is	 some	
information	will	be	lost	during	the	creation	of	the	summary.	However,	the	art	of	using	TDA	is	to	put	the	
data	 in	a	form	that	both	fits	 into	the	standard	TDA	pipelines,	and	where	the	 lossy-ness	of	the	method	
serves	 to	 remove	 high-dimensionality	 rather	 than	 important	 structure.	 The	 user	 also	 needs	 to	
understand	 what	 features	 of	 the	 data	 can	 be	 found	 with	 (and	 which	 are	 ignored	 by)	 the	 methods	
available	in	order	to	choose	the	right	hammer	for	the	nail	of	interest.	

In	this	spirit,	this	article	will	serve	as	an	introduction	to	the	standard	TDA	methods	for	domain	scientists	
interested	in	using	these	tools.	This	will	 focus	on	how	to	view	real	data	in	the	TDA	context	 in	order	to	
use	the	available	open	source	software.	In	particular,	we	will	investigate	two	commonly	used	topological	
signatures	from	TDA.	The	first	is	the	persistence	diagram	in	Section	3.	This	topological	signature	gives	a	
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concise	description	of	the	structure	of	the	data	by	only	keeping	track	of	loops	in	the	space.	Second,	we	
will	 investigate	 the	 mapper	 graph	 in	 Section	 4	 which	 provides	 a	 graph	 representing	 the	 underlying	
structure	of	the	data.	

2 DATA WITH DISTANCE 

The	first	hurdle	to	clear	is	to	have	a	universal	understanding	for	what	we	mean	by	the	word	“data”	as	
this	 term	means	many	different	 things	 in	many	different	domains.	Here,	we	will	 take	data	 to	mean	a	
collection	of	data	points	with	each	arising	from,	say,	different	people,	different	students,	different	times,	
and	so	on.	

Much	of	TDA	is	based	around	the	notion	that	there	is	an	idea	of	proximity	between	these	data	points.	
So,	 for	 example,	 if	 each	 data	 point	𝑥	 = 	 𝑥$,···	, 𝑥' 	 consists	 of	𝑛	 numerical	 values,	we	 have	 an	 easy	
definition	of	proximity	that	comes	from	the	standard	Euclidean	distance:	this	is	the	generalization	of	the	

standard	 distance	 in	 the	 plane	𝑑 𝑥, 𝑦 = 𝑥$ − 𝑦$ , + 𝑥, − 𝑦, ,	.	 Euclidean	 distance	 gives	 a	 good	
intuitive	 starting	 place	 for	 the	 requirements	 of	 a	 generalized	 distance	 in	 the	 mathematical	 sense.	 A	
distance1	 is	 a	 function	 on	 two	 inputs	 𝑑(𝑥, 𝑦)	 which	 satisfies	 the	 commonly	 used	 properties	 of	 the	
Euclidean	distance,	namely:	

• (Positivity)	𝑑 𝑥, 𝑦 ≥ 0,	and	𝑑(𝑥, 𝑦) = 0	if	and	only	if	𝑥 = 𝑦.	The	distance	between	two	points	is	
a	positive	number,	and	the	distance	is	0	if	and	only	if	the	points	are	the	same.	

• (Symmetry)	𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).	The	distance	from	one	point	to	another	 is	 the	same	as	going	 in	
the	opposite	direction.	

• (Triangle	 inequality)	𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).	 The	 distance	 between	 two	 points	𝑥	 and	 𝑧	 is	
always	no	longer	than	taking	a	detour	through	point	𝑦.	
	

When	we	have	a	collection	of	data	points	with	a	definition	of	a	distance,	we	often	refer	to	this	collection	
as	a	point	cloud.	See,	for	example,	the	black	dots	of	Figure	1,	which	inherit	a	distance	from	being	inside	
of	the	plane.	

Note	 that	 the	 Euclidean	 distance	 assumes	 that	 the	 inputs	 are	 numeric.	 There	 are,	 of	 course,	 other	
distances	that	can	be	defined	on	numeric	data	as	well	 (i.e.,	 the	Minkowski	distance);	however,	having	
entirely	numeric	data	is	not	a	requirement	to	define	a	generalized	distance.	One	can	also	define	many	
different	 distances	 when	 the	 data	 is	 categorical	 rather	 than	 numeric.	 This	 might	 simply	 be	 done	 by	
looking	at	matches	 (define	 the	distance	between	data	points	by	 the	number	of	entries	which	are	 the	
same),	or	by	including	a	more	nuanced	view	of	the	categorical	entries.	See	Boriah,	Chandola,	and	Kumar	
(2008)	for	an	overview	of	metrics	on	categorical	data.	

                                            
1	NB:	In	this	paper,	the	terms	distance	and	metric	are	used	interchangeably.	
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3 PERSISTENT HOMOLOGY 

The	first	topological	signature	comes	from	persistent	homology,	a	powerful	tool	in	TDA	for	investigating	
the	structure	of	data	(Edelsbrunner,	Letscher,	&	Zomorodian,	2002;	Zomorodian	&	Carlsson,	2004).	The	
persistence	diagram	can	show	a	great	deal	of	 information	about	a	given	point	cloud	such	as	clustering	
without	an	expert-chosen	connectivity	parameter,	which	is	usually	necessary.	It	can	also	describe	more	
complicated	 structure	 such	 as	 loops	 and	 voids	 that	 are	 not	 visible	 with	 other	 methods.	 Persistent	
homology	 has	 found	 success	 in	 the	 investigation	of	 data	 from	many	different	 domains;	 these	 include	
image	processing	(Carlsson,	Ishkhanov,	de	Silva,	&	Zomorodian,	2008;	Perea	&	Carlsson,	2014;	Adcock,	
Carlsson,	&	Carlsson,	2016),	 time	series	analysis	 (Perea,	Deckard,	Haase,	&	Harer,	2015;	Khasawneh	&	
Munch,	 2016;	 Emrani,	 Gentimis,	 &	 Krim,	 2014),	 phylogenetics	 (Chan,	 Carlsson,	 &	 Rabadan,	 2013),	
neuroscience	 (Giusti,	 Pastalkova,	Curto,	&	 Itskov,	 2015;	Dabaghian,	Mémoli,	 Frank,	&	Carlsson,	2012),	
and	sensor	networks	(de	Silva	&	Ghrist,	2007;	Adams	&	Carlsson,	2015;	Munch,	Shapiro,	&	Harer,	2012).	

 
Figure	1:	An	example	using	persistent	homology	to	investigate	a	point	cloud	data	set	by	constructing	
the	Rips	complex,	whose	edge	set	is	drawn	in	black	on	each	figure.	The	Rips	complex	includes	any	
higher	dimensional	simplex	if	all	the	edges	are	present,	so	these	are	not	explicitly	drawn.	The	

persistence	diagram	drawn	at	the	bottom	right	gives	a	summary	of	the	appearance	and	disappearance	
of	loops	in	the	space	as	the	Rips	complex	parameter	changes.	

3.1 Simplicial Complexes 

The	 main	 goal	 of	 TDA	 is	 to	 investigate	 the	 intrinsic	 shape	 of	 the	 data	 using	 a	 provided	 distance.	
However,	 the	 data	 as	 provided	 is	 nothing	more	 than	 a	 collection	 of	 individual	 points,	 often	with	 too	
many	 coordinates	 each	 to	 be	 fully	 visualizable.	 For	 instance,	 the	 point	 cloud	 in	 Figure	 1	 seems	 to	 be	
sampled	 from	 some	 sort	 of	 circular	 structure,	 but	 how	 can	 that	 structure	 be	 found	 or	 represented,	
particularly	if	the	data	came	with,	say,	73	coordinates	instead	of	2	as	drawn?	Thus,	we	need	a	structure	
that	can	be	used	as	a	proxy	for	the	shape	during	our	investigations.	
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Graphs	 are	 a	 commonly	 used	 structure	 in	 many	 data	 analysis	 applications	 since	 they	 can	 store	
relationships	between	data	points.	In	a	way,	graphs	encode	a	1-dimensional	skeleton	of	the	data.	That	
is,	the	vertices	can	be	thought	of	as	0-dimensional	objects,	and	the	edges	as	1-dimensional	objects.	But,	
like	 a	 skeleton,	 there	 are	 higher	 dimensional	 relationships	 that	 are	 lost	 when	 we	 can	 only	 see	 the	
skeleton.	Think	of	the	human	forearm:	if	we	could	only	see	the	radius	and	ulna	bones,	we	would	think	
the	human	arm	had	a	gaping	hole.	When	we	can	pass	to	understanding	not	only	the	human	skeleton	but	
the	muscle,	 too,	 we	 realize	 that	 arm-hole	 is	 filled	 in	 and	 so	 it	 is	 not	 an	 inherent	 part	 of	 the	 body’s	
structure.	 Simplicial	 complexes	 generalize	 the	 notion	 of	 graphs	 by	 allowing	 for	 2-,	 3-,	 and	 higher	
dimensional	building	blocks,	called	simplices.	

This	 can	be	 seen	 in	 the	 following	way.	 Let	us	 start	building	a	 simplicial	 complex	with	each	data	point	
representing	a	vertex.	A	vertex,	or	“0-dimensional	simplex,”	consists	of,	obviously	enough,	one	vertex.	
An	edge,	or	“1-dimensional	simplex,”	is	defined	by	its	two	endpoint	vertices.	A	2-dimensional	simplex	is	
a	triangle,	given	by	its	three	vertices,	and	so	on.	Generally,	a	𝑑-dimensional	simplex	is	defined	by	𝑑 + 1	
vertices.	

A	 face	 of	 a	 simplex	 is	 one	 defined	 by	 a	 subset	 of	 its	 vertex	 set.	 So,	 the	 faces	 of	 an	 edge	 (given	 by	 2	
vertices)	are	the	two	endpoint	vertices	(and	technically	the	edge	itself).	The	faces	of	a	2-simplex	(triangle	
given	 by	 3	 vertices)	 are	 the	 three	 vertices,	 the	 three	 edges,	 and	 the	 triangle	 itself.	 A	 collection	 of	
simplices	 is	 called	 a	 simplicial	 complex	 if	 all	 faces	 of	 any	 simplex	 in	 the	 collection	 are	 also	 in	 the	
collection.	 For	 example,	 a	 2-simplex	 cannot	 be	 in	 the	 simplicial	 complex	 unless	 all	 its	 edges	 are	 also.	
Figure	2	gives	an	example	of	a	simplicial	complex	which	has	0-,	1-,	and	2-dimensional	simplices.	

	

Figure	2:	An	example	of	a	simplicial	complex.	The	green,	pink,	and	blue	collections	represent	1-
dimensional	homology	classes,	where	the	pink	and	green	classes	are	said	to	be	equivalent	since	they	
encompass	the	same	hole.	The	rank	of	the	1-dimensional	homology	(that	is,	the	1st	Betti	number	𝜷𝟏	)	

is	3	due	to	the	three	holes	in	the	space.	



	
(2017).	A	user’s	guide	to	topological	data	analysis.	Journal	of	Learning	Analytics,	4(2),	47–61.	http://dx.doi.org/10.18608/jla.2017.42.6	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 51	

3.2 The Rips Complex 

The	next	 task	 is	 to	build	a	useful	 simplicial	 complex	 representing	 the	 structure	of	 the	data	and	which	
uses	 the	original	data	as	 the	vertex	set.	Assume	we	have	decided	on	a	metric	 for	 the	data	points	and	
pick	a	number	𝑡 ≥ 0	to	start.	The	Vietoris-Rips	complex	(sometimes	called	Rips	complex)	for	parameter	
𝑡	is	constructed	in	the	following	way.	The	vertex	set	is	given	by	the	data	set	itself.	For	each	pair	of	points	
𝑥, 𝑦	in	the	data	set,	we	include	the	edge	𝑥𝑦	if	the	distance	between	them	is	at	most	𝑡:	𝑑 𝑥, 𝑦 ≤ 𝑡.	For	a	
higher	 dimensional	 simplex	 given	by	 vertices	𝑥8,⋯ , 𝑥:,	we	 include	 the	 simplex	 if	 the	 complex	 has	 all	
possible	 edges;	 explicitly,	 this	 means	 that	 every	 vertex	 𝑥8,⋯ , 𝑥: 	 is	 within	 distance	 𝑡	 of	 every	 other	
vertex	in	the	simplex.	

The	Rips	complex	is	shown	in	Figure	1	for	several	different	choices	of	t.	Note	that	saying	that	two	points	
are	within	distance	t	of	each	other	is	the	same	as	saying	that	the	pair	of	disks	of	radius	𝑟 = 𝑡/2	centred	
at	each	point	 touch.	 So	 in	 the	 figures,	we	have	an	edge	whenever	 two	of	 the	disks	 intersect,	 and	we	
assume	that	we	have	triangles	and	higher	dimensional	simplices	whenever	possible	although	these	are	
not	explicitly	drawn.	The	data	of	this	example	appears	to	have	come	from	a	circular	structure.	We	can	
see	 that	 there	 is	 a	 range	 of	 parameter	 values	 for	which	 the	 Rips	 complex	 has	 this	 circular	 structure,	
namely	 from	 approximately	 𝑡 = 1.8	 (radius	 = .9)	 to	 𝑡 = 4.2	 (radius	 = 2.1).	 The	 question	 remains,	
however,	 how	 to	 do	 a	 good	 job	 of	 choosing	 the	 𝑡	 parameter	 so	 that	 the	 Rips	 complex	 reflects	 the	
structure	of	the	underlying	data	set.	It	is	exactly	this	question	that	leads	us	use	the	persistence	diagram	
as	a	topological	signature	of	the	data.	

3.3 What Can Persistence Find? 

As	we	have	seen,	the	Rips	complex	is	particularly	useful	for	seeing	structure	in	the	data	as	 long	as	the	
connectivity	parameter	𝑡	is	chosen	well.	But,	how	can	we	do	a	good	job	of	choosing	𝑡?	The	answer	is	to	
not	choose	𝑡,	but	instead	to	look	at	the	continuum	of	possible	𝑡	values	looking	for	ranges	that	seem	to	
represent	 something	 interesting	 in	 terms	of	 structure.	 There	 are	 two	pieces	 to	 the	 idea	 of	 persistent	
homology.	Homology	is	a	tool	from	classical	algebraic	topology	that	can	measure	certain	structures	of	a	
simplicial	 complex.	 The	 “persistent”	 part	 comes	 from	 looking	 at	 all	 possible	 𝑡	 values	 to	 see	 where	
structure	appears	and	disappears;	that	is,	the	collection	of	𝑡	values	for	which	the	structure	persists.	

Homology	 is	 divided	 into	 different	 dimensions	 representing	 the	 dimension	 of	 the	 structure	 being	
measured;	 see	 Figure	 3	 for	 information	on	homology	 for	 some	 commonly	 studied	 topological	 spaces.	
Here,	 0-dimensional	 homology	 measures	 clusters;	 1-dimensional	 homology	 measures	 loops;	 and	 2-
dimensional	homology	measures	voids	(air	bubbles).	There	are,	of	course,	definitions	of	𝑘-dimensional	
homology	for	higher	𝑘,	but	 they	are	beyond	the	scope	of	 this	article.	We	 lose	the	ability	 to	 intuitively	
visualize	the	structures	we	are	capturing	for	higher	𝑘,	thus	these	have	not	yet	been	commonly	used	in	
applications.	 Figure	 3	 gives	 the	 so-called	 Betti	 number	 𝛽D 	 for	 different	 example	 spaces.	 The	 Betti	
number	 is	 the	 rank	 of	 the	 𝑘-dimensional	 homology	 group;	 in	 particular,	 it	 counts	 the	 number	 of	
structures	 seen	 in	 that	 dimension.	 For	 the	 purposes	 of	 concreteness,	 we	 will	 discuss	 1-dimensional	
homology	and	persistent	homology	here,	and	defer	to	Edelsbrunner	and	Harer	(2010),	Hatcher	(2002),	
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and	Munkres	(1993)	for	more	rigorous	and	thorough	introductions	to	general	homology	and	persistent	
homology.	

	

	

	

	

	

	

	

	

Figure	3:	Betti	numbers	𝜷𝒌	for	different	topological	spaces:	a	point,	a	circle,	a	sphere,	a	torus	(donut),	
and	a	Klein	bottle.	The	𝒌th	Betti	number	gives	the	rank	of	the	𝒌-dimensional	homology	group,	thus	

measures	different	properties	of	the	space	in	each	dimension.	For	example,	𝒌 = 𝟎	measures	
connectivity,	𝒌 = 𝟏	measures	loops,	and	𝒌 = 𝟐	measures	voids.	

Structures	 in	homology	are	given	by	 “classes.”	A	 class	 in	1-dimensional	homology	 is	 represented	by	a	
collection	of	1-simplices	(edges)	that	have	an	even	number	of	edges	touching	each	vertex.2	For	example,	
a	collection	of	edges	that	form	a	closed	loop,	as	 in	the	example	of	Figure	2,	satisfies	this	requirement.	
The	reason	for	using	the	word	“represented”	is	that	different	closed	loops	can	represent	the	same	class.	
Essentially,	 for	 two	 loops	 to	 represent	 the	 same	 class,	 they	must	 encircle	 the	 same	hole,	 such	 as	 the	
dashed	pink	and	solid	green	loops	in	Figure	2.	Working	with	homology	means	that	rather	than	studying	
the	incredibly	large	collection	of	all	such	loops,	we	can	divide	them	into	groups	where	all	elements	of	a	
group	represent	the	same	structure	in	the	space.	

While	homology	measures	the	structure	of	a	single,	stagnant	space,	persistent	homology	watches	how	
this	structure	changes	as	the	space	changes.	Consider	the	example	 in	Figure	1.	 In	this	case,	we	have	a	
point	cloud	and	can	build	the	Rips	complex	for	several	different	choices	of	the	parameter	𝑡.	As	𝑡	grows,	
more	and	more	edges	and	higher	dimensional	simplices	are	added.	So,	we	can	choose	a	representative	
for	a	1-dimensional	homology	class	at	one	𝑡,	and	see	if	 it	still	represents	a	class	at	a	larger	𝑡.	The	𝑡	for	
which	a	class	is	first	seen	is	called	the	birth	diameter,	and	the	𝑡	for	which	a	class	is	no	longer	different	
from	the	previously	seen	classes	 is	called	the	death	diameter.	 In	 the	example	of	Figure	1,	we	see	a	1-
dimensional	class	(a	loop)	is	born	when	the	radius	gets	to	𝑟 = 0.5	(𝑡 = 1);	however,	this	fills	 in	by	the	

                                            
2	Note	for	experts:	we	compute	homology	using	ℤ,	coefficients.	
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time	𝑟 = 1	(𝑡 = 2).	On	the	other	hand,	there	 is	a	 large	 loop	born	when	𝑟 = 0.9	 𝑡 = 1.8 ,	which	does	
not	die	until	𝑟 = 2.1	(𝑡 = 4.2).	

For	each	class,	we	have	a	pair	of	numbers	(𝑎, 𝑏)	for	the	birth	diameter	and	death	diameter.	These	pairs	
of	numbers	are	drawn	as	a	point	in	the	persistence	diagram.	For	example,	there	are	points	at	(1,2)	and	
(1.8,4.2)	 representing	 those	 two	classes	discussed	 in	 the	previous	paragraph.	Note	 that	 if	a	class	dies	
very	 soon	after	 it	 is	born	 (i.e.,	 if	 it	has	a	 short	 lifetime),	 it	will	be	 represented	by	a	point	 close	 to	 the	
diagonal.	If	the	class	has	a	long	lifetime,	then	it	will	be	represented	as	a	point	far	from	the	diagonal.	In	
many	applications,	the	existence	of	a	few	points	far	from	the	diagonal	relative	to	the	rest	of	the	points	in	
the	persistence	diagram	can	be	taken	to	mean	that	these	classes	come	from	the	 inherent	structure	of	
the	data,	while	the	rest	of	the	points	are	artifacts	of	noise.	

Of	great	use	 in	 the	case	of	data	with	noise	 is	 the	existence	of	a	distance	on	 the	persistence	diagrams	
themselves.	This	way,	we	have	a	computable	measure	of	just	how	similar	two	persistence	diagrams	are.	
Take,	 for	 example,	 the	 two	 point	 clouds	 in	 the	 left	 of	 Figure	 4.	 The	 red	 circle	 point	 cloud	 is	 a	 noisy	
version	of	 the	black	square	point	cloud.	The	persistence	diagrams	 for	 the	 two	point	clouds	are	drawn	
overlaid	in	the	right	of	Figure	4.	While	the	red	diagram	has	quite	a	few	more	points	due	to	noise,	both	
diagrams	have	a	single	point	far	from	the	diagonal,	thus	they	represent	similar	underlying	structures.	

	
Figure	4:	Two	example	point	clouds	are	overlaid	at	left,	and	their	persistence	diagrams	are	overlaid	at	
right.	Notice	that	the	point	clouds	are	close	in	some	sense.	The	fact	that	the	persistence	diagrams	are	

also	close	is	a	result	of	the	stability	theorem	for	persistence.	

Two	 metrics	 are	 commonly	 used	 to	 measure	 the	 similarity	 of	 these	 objects:	 the	 bottleneck	 and	
Wasserstein	distances.	Each	works	by	matching	points	of	one	diagram	with	points	of	another	diagram	
while	allowing	the	match	to	be	done	with	the	diagonal	if	necessary.	Bottleneck	distance	is	the	maximum	
distance	between	any	pair	of	points,	and	thus	gives	a	measure	for	the	most	work	that	must	be	done	to	
push	 one	 diagram	 into	 the	 configuration	 of	 the	 other.	 Wasserstein	 distance	 sums	 powers	 of	 the	
distances	 between	 the	 pairs;	 unlike	 the	 bottleneck	 distance,	 it	 takes	 all	 of	 the	 points	 into	 account,	
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including	the	noisy	diagonal	points.	The	former	is	better	for	a	simple	test	of	proximity	of	diagrams;	the	
later	is	better	when	the	noisy	classes	on	the	diagonal	hold	useful	information	about	the	data.	

Arguably	 the	most	 important	 theorem	 for	 justifying	 the	use	of	persistent	homology	as	a	 tool	 for	data	
analysis	is	the	stability	theorem	(Cohen-Steiner,	Edelsbrunner,	&	Harer,	2007).	It	says	that	the	distance	
between	 two	 persistence	 diagrams	 (using	 bottleneck	 distance)	 cannot	 be	 larger	 than	 the	 distance	
between	the	two	data	sets	(using	the	so-called	Hasudorff	distance)	used	to	obtain	them.	When	we	view	
this	result	in	the	context	of	data,	it	says	that	even	if	we	are	given	a	data	set	infected	by	a	little	noise,	the	
persistence	diagram	obtained	from	this	data	is	approximately	correct	because	it	is	close	to	the	diagram	
we	would	have	from	the	noise-free	data.	

3.4 Further Reading 

This	 idea	 of	 understanding	 persistent	 homology	with	 respect	 to	 noisy	 data	 has	 led	 to	 a	 great	 deal	 of	
work	combining	persistence	with	statistical	methods.	Many	of	the	standard	statistics	techniques	do	not	
immediately	apply,	however,	because	unlike	the	standard	literature,	the	statistic	used	to	represent	the	
data	 is	 not	 a	 real	 number,	 but	 a	 much	 more	 complicated	 object:	 the	 persistence	 diagram.	 Several	
methods	have	been	proposed	for	looking	at	the	mean	of	a	collection	of	diagrams,	including	the	Fréchet	
mean	(Turner,	Mileyko,	Mukherjee,	&	Harer,	2014;	Munch	et	al.,	2015)	and	the	persistence	 landscape	
(Bubenik,	2015).	There	are	confidence	intervals	for	persistence	diagrams	(Fasy	et	al.,	2014b),	as	well	as	
intersections	with	the	machine	learning	framework	(Niyogi,	Smale,	&	Weinberger,	2011).	

It	 is	 important	 to	 note	 that	 the	pipeline	described	 above	 (point	 cloud	 to	Rips	 complex	 to	 persistence	
diagram)	is	not	the	only	way	to	use	persistent	homology	to	study	data.	One	particularly	useful	version	
looks	at	the	so-called	sublevelset	filtration	of	an	image,	which	builds	up	the	simplicial	complexes	using	
the	 values	 at	 the	 pixels	 rather	 than	 starting	 with	 a	 collection	 of	 points	 (Kaczynski,	 Mischaikow,	 &	
Mrozek,	2006;	Robins,	Wood,	&	Sheppard,	2011).	There	are	also	many	variants	of	persistent	homology	
that	may	be	of	 interest	depending	on	 the	application.	 These	 include	persistent	 cohomology	 (de	 Silva,	
Morozov,	&	Vejdemo-Johansson,	2011),	zigzag	persistence	(de	Silva	et	al.,	2011),	and	multidimensional	
persistence	(Carlsson	&	Zomorodian,	2009).	

3.5 Available Software 

There	is	an	extensive	library	of	open	source	software	available	for	computation	of	persistence.	Dionysus	
(Morozov,	 2015)	 is	 one	 of	 the	 most	 versatile	 packages	 available,	 with	 functionality	 for	 not	 only	
persistent	 homology,	 but	 also	 persistent	 cohomology,	 zigzag	 persistence,	 and	 the	 bottleneck	 and	
Wasserstein	 distances.	 Kerber,	Morozov,	 and	 Nigmetov	 (2016)	 also	 have	 software	 for	 computing	 the	
bottleneck	 and	 Wasserstein	 distances.	 Perseus	 (Nanda,	 2015;	 Mischaikow	 &	 Nanda,	 2013)	 utilizes	
discrete	Morse	theory	to	speed	up	persistence	computation,	and	provides	easy	access	to	persistence	for	
point	clouds	as	well	as	for	images.	There	is	also	a	TDA	package	for	R	that	additionally	brings	in	the	newly	
developed	 statistical	 methodology	 (Fasy,	 Kim,	 Lecci,	 &	 Maria,	 2014a).	 The	 recently	 released	 Ripser	
(Bauer,	 2016)	 does	 persistence	 for	 point	 clouds.	 Rivet	 provides	 a	 first	 step	 towards	 visualizing	 and	
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understanding	multidimensional	persistence	(Lesnick	&	Wright,	2015,	2016).	Readers	looking	for	an	easy	
way	to	test	out	some	of	these	ideas	and	computations	should	visit	the	website	(Tralie,	2016),	which	does	
computation	of	persistent	homology	in	the	browser	for	example	point	clouds.	This	is	not	by	any	means	
an	 exhaustive	 list;	 see	Otter,	 Porter,	 Tillmann,	 Grindrod,	 and	Harrington	 (2015)	 for	 a	 good	 survey	 on	
software	packages.	

4 MAPPER 

Another	very	powerful	signature	arising	from	TDA	is	mapper	(Singh,	Mémoli,	&	Carlsson,	2007).	The	idea	
is	to	represent	the	1-dimensional	structure	of	a	data	set	using	a	graph.	Unlike	the	persistence	diagram,	
data	points	have	associated	locations	to	points	in	the	mapper	graph.	Since	these	graphs	are	much	easier	
to	visualize	than	the	possibly	high	dimensional	data	used	to	construct	it,	mapper	is	an	excellent	tool	for	
investigation	 and	 visualization	 of	 the	 structure	 of	 a	 data	 set.	 It	 has	 been	 used	 extensively	 in	 data	
analysis,	particularly	in	the	biology	and	health	domains	(Nicolau,	Levine,	&	Carlsson,	2011;	Li	et	al.,	2015;	
Torres	et	al.,	2016;	Nielson	et	al.,	2015;	Yao	et	al.,	2009).	

	
Figure	5:	A	small	example	of	mapper.	The	filter	function	for	the	given	data	is	given	by	the	𝐲-

coordinate.	A	cover	is	chosen	for	the	function	values,	and	then	the	point	cloud	is	clustered	within	each	
portion	defined	by	the	cover.	The	resulting	graph	at	right	is	the	mapper	graph	for	the	chosen	

parameters.	

4.1 What Can It Find? 

Like	with	the	persistence	diagrams,	we	start	with	a	point	cloud	and	a	choice	of	distance	on	the	points.	
However,	unlike	the	persistence	diagram,	we	have	a	few	more	choices	to	make	along	the	way	in	order	
to	construct	the	mapper	graph.	

The	main	additional	piece	of	data	required	for	the	mapper	graph	construction	is	called	a	filter	function.	
This	filter	function	is	simply	an	assignment	of	a	real	number	for	each	data	point	and	is	used	to	spread	
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out	the	data.	Some	examples	include	using	one	or	a	combination	of	the	coordinates	for	each	point	(as	in	
Figure	5),	eccentricity	(as	in	Figure	6),	or	density.	

Then,	we	decide	on	a	cover	of	the	filter	function	values.	A	cover	for	the	interval	[𝑎, 𝑏]	is	a	collection	of	
overlapping	sets	such	that	each	number	between	a	and	b	 is	 included	in	at	 least	one	set;	see	the	black	
bars	in	Figure	5	for	an	example	of	a	cover	with	three	sets.	Finally,	we	consider	the	subset	of	points	with	
function	values	in	a	single	set	from	the	cover,	and	then	cluster	the	points.	Each	cluster	becomes	a	node	
in	 the	 mapper	 graph	 as	 in	 the	 far	 right	 of	 Figure	 5.	 Edges	 are	 included	 based	 on	 the	 intersection	
information	from	overlapping	sets	in	the	cover.	

An	example	of	the	mapper	graph	can	be	seen	in	the	right	of	Figure	6.	The	important	thing	to	note	about	
the	mapper	graph	is	that	each	node	represents	a	subset	of	the	data	points.	This	makes	it	a	particularly	
useful	signature	for	data	investigation	since	it	can	separate	data	points	with	different	properties	even	if	
standard	clustering	cannot	differentiate	them.	For	instance,	the	example	of	Figure	6	would	be	seen	as	a	
single	cluster,	but	the	mapper	graph	allows	us	to	differentiate	between	points	on	the	circle	and	points	
on	the	different	flares.	

	Figure	6:	An	example	point	cloud	with	700	points	is	drawn	at	top	left.	The	eccentricity	filter	function	
is	shown	by	the	colouring	of	the	points.	The	mapper	graph	for	this	example	is	shown	at	the	top	right.	
Note	how	the	structure	of	the	mapper	graph	reflects	the	intrinsic	structure	of	the	point	cloud.	This	

example	was	computed	using	the	Python	Mapper	code	(Müllner	&	Babu,	2013).	

4.2 Further Reading 

Mapper	 can	 be	 thought	 of	 as	 an	 approximation	 of	 the	 Reeb	 graph	 (Biasotti,	 Giorgi,	 Spagnuolo,	 &	
Falcidieno,	2008;	Munch	&	Wang,	2016;	de	Silva,	Munch,	&	Patel,	2016),	another	commonly	used	tool	in	
TDA.	Unlike	mapper,	 the	Reeb	 graph	 starts	 not	with	 a	 dataset	 of	 points,	 but	 instead	 a	 full	 space	 (for	
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example	a	simplicial	complex)	with	a	filter	function.	However,	 like	mapper,	 it	 then	studies	the	clusters	
over	the	function	values	without	use	of	a	choice	of	cover.	For	this	reason,	it	has	been	used	largely	for	3D	
graphics	applications	such	as	data	skeletonization	(Chazal	&	Sun,	2014;	Ge,	Safa,	Belkin,	&	Wang,	2011),	
shape	 comparison	 (Escolano,	 Hancock,	&	 Biasotti,	 2013;	 Hilaga,	 Shinagawa,	 Kohmura,	&	 Kunii,	 2001),	
and	surface	denoising	(Wood,	Hoppe,	Desbrun,	&	Schröder,	2004).	

4.3 Available Software 

The	main	open	 source	 code	 is	 Python	Mapper	 (Müllner	&	Babu,	 2013).	 This	 code	 comes	with	 a	user-
friendly	 GUI,	 many	 built-in	 options	 for	 the	 mapper	 input	 parameters	 (metrics,	 filter	 functions,	 cover	
choice,	clustering	methods),	and	interactive	highlighting	of	the	data	with	respect	to	choices	of	nodes	in	
the	mapper	graph,	all	of	which	make	exploratory	data	analysis	particularly	easy.	In	addition,	Ayasdi,3	a	
Silicon	 Valley	 company	 specializing	 in	 applications	 of	 TDA,	 provides	 educational	 licenses	 for	 their	
software.	

5 DISCUSSION 

TDA	 provides	 powerful	 tools	 that	 can	 find	 structure	 in	 data	 when	 other	 methods	 may	 fail.	 The	
persistence	diagram	gives	information	about	the	underlying	structure,	particularly	loops	and	holes	in	the	
space,	 without	 the	 need	 for	 a	 user-determined	 proximity	 parameter.	 Mapper	 provides	 a	 one-
dimensional	 representation	 of	 the	 data,	 which	 is	 an	 excellent	 interface	 for	 data	 exploration	 and	
visualization.	 While	 this	 increase	 in	 strength	 comes	 with	 a	 high	 mathematical	 barrier	 to	 entry	 (the	
mathematics	 behind	 the	 tools	 discussed	 in	 this	 article	 constitute	 several	 semesters	 of	 graduate	 level	
mathematics	 courses),	 the	 ever-expanding	 toolkit	 of	 freely	 available	 code	 has	 made	 TDA	 more	
accessible	 than	 ever.	 This	 article	 was	 only	 able	 to	 scratch	 the	 surface	 of	 the	 math	 involved.	 The	
interested	reader	should	look	to	the	many	excellent	surveys	and	books	available	on	the	subject	(Ghrist,	
2008;	Carlsson,	2009;	Edelsbrunner	&	Harer,	2010;	Vejdemo-Johansson	&	Skraba,	2016;	Ghrist,	2014).	
The	expanding	availability	of	these	powerful	tools	makes	the	potential	for	application	of	TDA	an	exciting	
new	direction	for	research	on	student	learning.	
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