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Multiple imputation methods can generally be divided into two broad frame-

works: joint model (JM) imputation and fully conditional specification (FCS)

imputation. JM draws missing values simultaneously for all incomplete vari-

ables using a multivariate distribution, whereas FCS imputes variables one at a

time from a series of univariate conditional distributions. In single-level mul-

tivariate normal data, these two approaches have been shown to be equivalent,

but less is known about their similarities and differences with multilevel data.

This study examined four multilevel multiple imputation approaches: JM

approaches proposed by Schafer and Yucel and Asparouhov and Muthén and

FCS methods described by van Buuren and Carpenter and Kenward. Analytic

work and computer simulations showed that Asparouhov and Muthén and

Carpenter and Kenward methods are most flexible, as they produce imputations

that preserve distinct within- and between-cluster covariance structures. As

such, these approaches are applicable to random intercept models that posit

level-specific relations among variables (e.g., contextual effects analyses,

multilevel structural equation models). In contrast, methods from Schafer and

Yucel and van Buuren are more restrictive and impose implicit equality con-

straints on functions of the within- and between-cluster covariance matrices.

The analytic work and simulations underscore the conclusion that researchers

should not expect to obtain the same results from alternative imputation rou-

tines. Rather, it is important to choose an imputation method that partitions

variation in a manner that is consistent with the analysis model of interest. A

real data analysis example illustrates the various approaches.
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Multiple imputation is one of the predominant methods for treating missing

data in educational and behavioral research. Imputation approaches can be

divided into two general frameworks: joint model (JM) imputation (Rubin,

1987; Schafer, 1997) and fully conditional specification (FCS) imputation

(Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van Buuren,
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2012; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006). JM draws

missing values for all incomplete variables in a single step from a multivariate

distribution, whereas FCS imputes variables one at a time, drawing missing

values from a series of univariate distributions. Historically, JM was the predo-

minant method for single-level imputation of multivariate normal data (Rubin,

1987; Schafer, 1997), and FCS was proposed later as a tool for dealing with

mixtures of categorical and continuous variables (Raghunathan et al., 2001; van

Buuren, 2007). Because single-level JM usually generates imputations from a

saturated model, it is able to preserve associations for a wide range of linear

models. Single-level FCS possesses the same qualities, and JM and FCS are

known to be equivalent with multivariate normal data (Hughes et al., 2014).

The extension of JM and FCS to multilevel data is relatively recent, and little

is known about the similarities and differences of the two frameworks in this

context. Schafer and Yucel (2002) and Asparouhov and Muthén (2010) outlined

JM imputation strategies based on a multivariate linear mixed model. Like their

single-level counterparts, these methods draw imputations from a multivariate

normal distribution, but they differ in their treatment of complete variables.

Consistent with Enders, Mistler, and Keller (2016), we henceforth refer to these

methods as JM-SY and JM-AM, respectively. van Buuren (2011) proposed an

extension of FCS based on a series of univariate linear mixed models, and

Carpenter and Kenward (2013, p. 220) described a modification to FCS devel-

oped by Ian White (cited as a personal communication) that incorporates Level-2

cluster means as covariates, much like the classic contextual effects model from

the multilevel literature (Longford, 1989; Lüdke, Marsh, Robitzsch, & Trautwein,

2011; Shin & Raudenbush, 2010). We henceforth refer to these variations as

FCS-VB and FCS-WCK, respectively. JM-SY is implemented in the PAN, JOMO,

and MLMMM packages in R (Schafer, 2001; Schafer & Yucel, 2002; Yucel,

2008), the REALCOM-IMPUTE package for MLwiN and Stata (Carpenter, Gold-

stein, & Kenward, 2011), and SAS (Mistler, 2013); JM-AM is available in Mplus

(Muthén & Muthén, 1998–2012). FCS-VB is available in the R package MICE

(van Buuren, & Groothuis-Oudshoorn, 2011), and FCS-WCK is implemented in

the BLImP application (Enders, Keller, & Levy, 2016).

Although JM and FCS are equivalent to single-level multivariate normal data

(Hughes et al., 2014), the same is not necessarily true in the multilevel context,

where algorithmic features and variations in the underlying models can lead to

different estimates (Enders, Mistler, & Keller, 2016). The differences between

JM and FCS approaches are particularly important for multilevel data sets where

relations among lower level variables differ at Level 1 and Level 2, a situation

that Snijders and Bosker (2012, p. 60) characterize as “the rule rather than the

exception.” One such example is the classic contextual effects model that parti-

tions the association between a pair of Level-1 variables into between- and

within-cluster components (Longford, 1989; Lüdke et al., 2011; Lüdke et al.,

2008; Raudenbush & Bryk, 2002; Shin & Raudenbush, 2010):
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Y2ij ¼ b0 þ b1Y1ij þ b2Xij þ b3
�X j þ bj þ eij; ð1Þ

where b2 represents the pooled within-cluster regression of Y2 on X, and b3

captures the difference between the within-cluster regression and the between-

cluster regression of �Y 2j on �X j (i.e., the contextual effect). Raudenbush and Bryk

(2002) illustrated a contextual effects analysis with student-level socioeconomic

status (SES) and school average SES (i.e., Xij and �X j, respectively) predicting

academic achievement, and numerous other examples appear in the applied

literature (Harker & Tymms, 2004; Kenny & La Voie, 1985; Lüdke, Köller,

Marsh, & Trautwein, 2005; Miller & Murdock, 2007; Simons, Wills, & Neal,

2015). Multilevel structural equation modeling is another common analysis

framework for examining within- and between-cluster covariance structures.

As an example, Martin, Malmberg, and Liem (2010) used multilevel factor

analysis to study the internal structure of individual and school average academic

motivation and engagement, and similar applications abound in the applied

literature (Dunn, Masyn, Jones, Subramanian, & Koenen, 2015; Huang &

Cornell, 2015; Muthén, 1991; Reise, Ventura, Neuchterlein, & Kim, 2005;

Toland & De Ayala, 2005).

A chief concern of this article is whether (and which) JM and FCS imputation

approaches generate replacement values that are appropriate for modeling unique

covariance structures at Level 1 and Level 2 (e.g., the aforementioned contextual

effects analysis and multilevel structural equation models). To date, the metho-

dological literature provides little insight into the situations under which multi-

level imputation approaches would produce similar (or different) results, and no

studies have undertaken a rigorous comparison of the aforementioned strategies.

Thus, the purpose of this study is to examine the situations under which JM and

FCS reproduce (or preserve) the covariance structure of a population random

intercept model with multivariate normal data. To do so, we use analytic methods

to examine the model-implied covariance structure of the four imputation

approaches, and we then demonstrate the analytic findings with Monte Carlo

computer simulations. Because the four methods do not necessarily preserve the

population joint distribution, the results from this study have important practical

implications for substantive researchers in the behavioral sciences. In particular,

the analytic results show that JM-AM and FCS-WCK employ rather unrestrictive

imputation models, whereas the JM-SY and FCS-VB models place implicit

constraints on the within- and between-cluster covariance matrices. When these

constraints are incompatible with the analysis model, imputation can introduce

bias, even under a benign missing completely at random (MCAR) mechanism.

Thus, our results underscore the need to select an imputation approach that

honors the covariance structure of subsequent analysis model.

The organization of this article is as follows: First, we begin with a brief

section that establishes some notation. Second, we provide an overview of JM

A Comparison of Joint Model and Fully Conditional Specification Imputation

434



and FCS, highlighting differences among the four approaches. Third, we use

analytic methods to examine whether the imputation approaches reproduce

the covariance structure from a population model with random intercepts.

Fourth, we use computer simulations to verify and illustrate the analytic

findings. Fifth, we demonstrate the imputation methods using data from the

classic high school and beyond study. Finally, we conclude with a brief

discussion, highlighting the practical implications of our findings to beha-

vioral science researchers.

Background and Notation

To establish some notation, let Y denote a set of Q incomplete Level 1

variables, Y¼ fY(1), . . . , Y(Q)g, and let X represent a set of S complete covariates,

X ¼ fX(1), . . . , X(S)g. Unless otherwise noted, we use Y and X to differentiate

incomplete and complete variables, respectively, and this notation is not meant to

carry information about a variable’s role in an analysis model (e.g., a component

of Y could be a predictor in an analysis model). Consistent with Rubin and

colleagues (Little & Rubin, 2002; Rubin, 1976), M is a set of Q missing data

indicators, M ¼ fM(1), . . . , M(Q)g, where M(q) ¼ 1 if Y(q) is missing and M(q) ¼ 0

if Y(q) is complete. The missing data indicators partition Y into observed and

missing parts, Yobs and Ymis, respectively, where Yobs ¼ fYobs(1), . . . , Yobs(Q)g
and Ymis ¼ fYmis(1), . . . , Ymis(Q)g. The goal of multiple imputation is to sample

several versions of Ymis (e.g., 20 or more; Graham, Olchowski, & Gilreath, 2007)

from a distribution that conditions on the observed data in Yobs and X. Under the

missing at random (MAR) mechanism, M is conditionally independent of Ymis,

given the values of Yobs and X. That is,

PðMjYobs;Ymis;XÞ ¼ PðMjYobs;XÞ; ð2Þ

where P(�) denotes a probability distribution.

The key difference between JM and FCS is that the former samples values

from a Q-dimensional multivariate distribution, whereas the latter draws values

from Q univariate conditional distributions, one for each incomplete variable. To

accommodate the variable-by-variable imputation scheme of FCS, we must dif-

ferentiate target variable Y(q) from the remaining variables in Y. Following van

Buuren’s (2006) notational convention, let Y(�q) denote all variables in Y except

Y(q). For example, if Y(2) is the target of a particular imputation step, then Y(�q)¼
Y(�2) ¼ fY(1), Y(3), . . . , Y(Q)g. Finally, for certain imputation approaches, we

must treat the cluster means as distinct variables. When necessary, we use �Y

and �X to represent the cluster means of Y and X, respectively,
�Y ¼ f �Y ð1Þ; : : :; �Y ðQÞg and �X ¼ f �X ð1Þ; : : :; �X ðSÞg, where �Y is computed from the

filled-in variables in Y.
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JM Imputation

Both JM-SY and JM-AM use a multivariate linear mixed model to define a

multivariate normal distribution for the missing values. A multivariate regression

model with random intercepts can be written as:

Yij ¼ aþ Xijbþ bj þ eij; ð3Þ

where Yij is the row vector of k outcome scores for case i in cluster j, Xij is a

corresponding row vector of l covariate scores, a is the row vector containing the

k intercepts, b is an l � k matrix of regression coefficients, bj is a row vector

containing the k Level-2 residuals for cluster j, and eij is the row vector of k

Level-1 residuals for case i in cluster j. The Level-1 and Level-2 residuals are

assumed to follow a multivariate normal distribution with zero means and covar-

iance matrices
P

e and
P

b, respectively. Note that we use
P

e and
P

b to denote

blocks of the overall covariance matrix, the values of which are assumed constant

for all clusters. The model from Equation 3 is the basis for both JM-SY and JM-

AM, but the two procedures differ in their treatment of X and Y.

The imputation phase of JM employs Bayesian estimation machinery that

views the missing values, Level-2 residuals, and model parameters as random

variables having a joint distribution. Bayesian estimation expresses this joint

distribution as a series of full conditional distributions, and it uses a Markov

chain Monte Carlo (MCMC) algorithm to iteratively sample variables in three

major steps: (a) draw missing values from a multivariate distribution that con-

ditions on the observed data, the current Level-2 residuals, and the current model

parameter values, (b) draw Level-2 residuals from a multivariate distribution that

conditions on the complete data from the previous step and the current model

parameter values, and (c) draw model parameters from distributions that condi-

tion on the quantities from the first two steps.

More formally, a single iteration t of the MCMC algorithm can be summar-

ized as:

Y
ðtÞ
mis*P

�
Ymisjbðt�1Þ ; yðt�1Þ ;Yobs ;X

�
bðtÞ*P

�
bjyðt�1Þ
ð1Þ ;Y

ðtÞ
mis ;Yobs; X

�
yðtÞ*P

�
yjbðtÞ; Y

ðtÞ
mis; Yobs; X

�
;

ð4Þ

where P denotes a probability distribution and y represents the collection of

multilevel model parameters, y ¼ fa; b;Sb;Seg. Because the sampling steps for

the model parameters and Level-2 residuals borrow from established complete-

data Bayesian estimation procedures (Browne & Draper, 2000; Goldstein,

Bonnet, & Rocher, 2007; Goldstein, Carpenter, Kenward, & Levin, 2009; Kasim

& Raudenbush, 1998; Schafer & Yucel, 2002; Yucel, 2008), we restrict our

attention to the imputation step for Ymis.
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JM-SY

Schafer and Yucel’s (2002) seminal work on JM imputation employs the

linear mixed model from Equation 3, where the incomplete variables serve as

outcomes in Y and complete covariates function as predictors in X. Using para-

meter values and Level-2 residual terms from a previous MCMC step, JM-SY

imputation draws the missing parts of Y from a multivariate normal conditional

distribution:

Y
ðtÞ
ijmis

*MVN
�
aðt�1ÞþXijb

ðt�1Þ þ b
ðt�1Þ
j ;Sðt�1Þ

e

�
; ð5Þ

where the mean vector aðt�1ÞþXijb
ðt�1Þ þ b

ðt�1Þ
j contains predicted values from

the model, and the covariance matrix is the within-cluster residual covariance

matrix from the multilevel regression of Y on X. Note that the usual unit vector is

not part of X because we separate the intercepts from the b matrix (doing so

facilitates the analytic work later in the article).

To illustrate JM-SY, consider an imputation model with three variables, Y1,

Y2, and X, where Y1 and Y2 are incomplete and X is complete. Expressed in scalar

notation, the conditional distribution that generates imputations is as follows:

Y
ðtÞ
1ijmis

Y
ðtÞ
2ijmis

" #
*N2

aðt�1Þ
Y1
þXijb

ðt�1Þ
Y1jX þ b

ðt�1Þ
jY1

aðt�1Þ
Y2
þXijb

ðt�1Þ
Y2jX þ b

ðt�1Þ
jY2

" #
;Sðt�1Þ

e

 !
: ð6Þ

Note that we subscript the parameters and residual terms with variable names

to emphasize that each equation requires unique values. Although not explicit in

the previous equation, note that
P

e (an estimate of which is obtained from the

MCMC algorithm) defines the variance–covariance matrix of the Level-2 inter-

cept residuals, eY1j
and eY2j

.

Conceptually, the imputations from Equation 6 can be viewed as the sum of

predicted values and residual terms (e.g., Y
ðtÞ
1ijmis
¼ Ŷ 1ij þ eijY1

and

Y
ðtÞ
2ijmis
¼ Ŷ 2ij þ eijY2

), where the mean vector defines the predicted values (e.g.,

Ŷ 1ij ¼ aY1
þXijbY1jX þ bjY1

) and the within-cluster covariance matrix
P

e defines

the variances and covariances of eY1
and eY2

. A key consideration for this article

is whether the above conditional distribution preserves the covariance structure

of the population data. To gain some intuition about the imputation model, it is

useful to note that setting the Level-2 intercept residuals in the mean vector to

zero gives a single-level imputation model where Y1 and Y2 have only one source

of variability. Thus, the presence of Level-2 residuals infuses the imputations

with between-cluster variation, and sampling these residuals from a multivariate

normal distribution preserves the between-cluster association between Y1 and Y2,

the magnitude of which is determined by
P

b. Further, because the bj and eij

terms are orthogonal, the imputation model allows the variance–covariance

matrix of Y1 and Y2 to differ at Level 1 and Level 2.
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JM-AM

Asparouhov and Muthén (2010) described a variation of JM that also applies

the linear mixed model from Equation 3, but JM-AM treats all variables as

outcomes in Y, regardless of missing data pattern. That is, the Y vector in

Equation 3 contains incomplete and complete variables, and X is empty. To

illustrate JM-AM, reconsider the imputation problem for Y1, Y2, and X. Expressed

in scalar notation, the conditional distribution that generates imputations is as

follows.

Y
ðtÞ
1ijmis

Y
ðtÞ
2ijmis

Xij

2
64

3
75*N3

aðt�1Þ
Y1
þb
ðt�1Þ
jY1

aðt�1Þ
Y2
þb
ðt�1Þ
jY2

aðt�1Þ
X þb

ðt�1Þ
jX

2
664

3
775;Sðt�1Þ

e

0
BB@

1
CCA: ð7Þ

Consistent with JM-SY, the mean vector contains predicted values from the

model (e.g., Ŷ ij ¼ aY1
þ bjY1

), which in this parameterization are analogous to

latent group means (Lüdke et al., 2011). As before, each imputation can be

viewed as the sum of a predicted value and a within-cluster residual (e.g.,

Y1ijmis
¼ �Y 1 þ bjY1

þ eijY1
), the variances and covariances of which are given

by
P

e. By treating all variables as outcomes, JM-AM partitions each variable

into a within- and between-cluster component, such that
P

e and
P

b are unstruc-

tured within- and between-cluster covariance matrices, respectively. As

explained later, this parameterization requires somewhat stricter distributional

assumptions than JM-SY (i.e., multivariate normality vs. conditional normality).

FCS Imputation

The FCS approaches employ a series of Q univariate linear mixed models to

define a normal distribution for the missing values, one for each incomplete

variable. A univariate regression model with random intercepts can be written as:

Yij ¼ aþXijbþ bj þ eij; ð8Þ

where Yij is the outcome score for case i in cluster j, Xij is the corresponding row

vector of covariate scores, a is the intercept, b is a row vector of regression

coefficients, bj is the Level-2 intercept residual for cluster j, and eij is the Level-1

residual for case i in cluster j. The Level-1 and Level-2 residuals are assumed to

follow normal distributions with zero means and variances s2
ε and s2

b , respec-

tively. The model from Equation 8 is the basis for both FCS-VB and FCS-WCK,

but the contents of X differ under the two procedures.

The imputation phase of FCS employs the same Bayesian estimation machin-

ery as JM. The MCMC algorithm iteratively samples values in three major steps

(i.e., sample missing values, draw Level-2 residuals, and sample model para-

meters), but it does so separately for each of the Q incomplete variables in a
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sequence. More formally, a single iteration t of the MCMC algorithm can be

expressed as:

Y
ðtÞ
misð1Þ*P

�
Ymisð1Þjbðt�1Þ

ð1Þ ; θðt�1Þ
ð1Þ ;Y

ðcurrentÞ
ð�1Þ ;X

�
b
ðtÞ
ð1Þ*P

�
b ð1Þjθðt�1Þ

ð1Þ ; Y
ðtÞ
misð1Þ ; Yobsð1Þ; Y

ðcurrentÞ
ð�1Þ ; X

�
θðtÞð1Þ*P

�
θð1ÞjbðtÞð1Þ; Y

ðtÞ
misð1Þ; Yobsð1Þ; Y

ðcurrentÞ
ð�1Þ ; X

�
..
.

Y
ðtÞ
misðQÞ*P

�
YmisðQÞjbðt�1Þ

ðQÞ ; θðt�1Þ
ðQÞ ; Y

ðcurrentÞ
ð�QÞ ; X

�
b
ðtÞ
ðQÞ*P

�
b ðQÞj θðt�1Þ

ðQÞ ; Y
ðtÞ
misðQÞ; YobsðQÞ; Y

ðcurrentÞ
ð�QÞ ; X

�
θðtÞðQÞ*P

�
θðQÞj bðtÞðQÞ; Y

ðtÞ
misðQÞ; YobsðQÞ; Y

ðcurrentÞ
ð�QÞ ; X

�
;

ð9Þ

where Y current
�q represents all incomplete variables except Y(q) at the current itera-

tion and θ(q) denotes the set of model parameters for variable Y(q),

θðqÞ ¼ faðqÞ; b1ðqÞ;s
2
bðqÞ;s

2
eðqÞg. We use the (current) superscript in lieu of the

iteration index t because the previously imputed variables in Y(�q) do not neces-

sarily originate from the same MCMC iteration (e.g., when 1 < q < Q, the filled-

in variables Y(1) through Y(q-1) are obtained from iteration t, while Y(qþ1) through

Y(Q) are obtained from iteration t � 1).

FCS-VB

van Buuren’s (2011, 2012) extension of FCS to the multilevel context

employs a linear mixed model whereby incomplete variable Y(q) serves as the

outcome variable and previously imputed variables and complete covariates

function as predictors. That is, the X vector in Equation 8 contains complete

variables and the previously imputed variables in Y(�q). To illustrate FCS-VB,

reconsider the trivariate imputation problem from the previous section. FCS-VB

imputes the incomplete variables in a sequence. Expressed in scalar notation, the

conditional distribution that generates Y1 imputations is

Y
ðtÞ
1ijmis

*N
�
aðt�1Þ

Y1
þXijb

ðt�1Þ
Y1jX þY

ðt�1Þ
2ij bðt�1Þ

Y1 jY2
þ b

ðt�1Þ
jY1

;s2
εðY1Þ

�
; ð10Þ

where Y
ðt�1Þ
2ij is the filled-in variable from the previous iteration. After sampling

new residual terms and model parameters for the next round of Y1 imputation,

FCS-VB switches the roles of Y1 and Y2, such that Y1 defines the conditional

distribution of Y2(mis), as follows:

Y
ðtÞ
2ijmis

*N
�
aðt�1Þ

Y2
þXijb

ðt�1Þ
Y2 jX þY

ðtÞ
1ijb

ðt�1Þ
Y2jY1
þ b

ðt�1Þ
jY2

;s2
eðY2Þ

�
: ð11Þ

Consistent with JM imputation, the Level-2 residuals in the mean vector

infuse between-cluster variation into the imputations, and s2
eðqÞ provides
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additional within-cluster variation. Because the MCMC algorithm samples bjY1

and bjY2
from independent univariate normal distributions, FCS-VB effectively

imposes a diagonal structure on
P

b, where s2
bY1

and s2
bY2

define the diagonal.

The absence of correlation between the Level-2 residuals implies that the

fixed effects alone are responsible for preserving between-cluster covariation,

and FCS-VB makes no attempt to partition associations into distinct within- and

between-cluster components. Finally, it is important to note that Equations 10

and 11 assume a common residual variance for all clusters, but van Buuren

(2011) describes another version of FCS-VB that introduces heterogeneous

within-cluster variances (Kasim & Raudenbush, 1998). van Buuren (2011) sug-

gested that the heterogeneous model can improve imputations for incomplete

predictor variables, but we limit our attention to the standard homogeneous

model in order to maintain comparable assumptions for JM and FCS.

FCS-WCK

Carpenter and Kenward (2013, p. 220) describe a modification to FCS

proposed by Ian White that introduces the cluster means of Level-1 variables

(complete or imputed) as covariates in each imputation model. To illustrate

FCS-WCK, reconsider the previous trivariate imputation problem. The condi-

tional distribution that generates Y1 imputations is:

Y
ðtÞ
1ijmis

*N
�
aðt�1Þ

Y1
þXijb

ðt�1Þ
Y1 jX þY

ðt�1Þ
2ij bðt�1Þ

Y1jY2
þ �X jb

ðt�1Þ
Y1j �X þ �Y

ðt�1Þ
2j bðt�1Þ

Y1 j �Y 2
þ b

ðt�1Þ
jY1

;s2
eðY1Þ

�
; ð12Þ

where �X j is the mean of X in cluster j, Y
ðt�1Þ
2ij is the imputed variable from the

previous iteration, and �Y
ðt�1Þ
2j is a cluster mean computed from the filled-in data.

In a similar vein, the conditional distribution that generates Y2 imputations is as

follows:

Y
ðtÞ
2ijmis

*N
�
aðt�1Þ

Y2
þXijb

ðt�1Þ
Y2 jX þY

ðtÞ
1ijb

ðt�1Þ
Y2jY1
þ �X jb

ðt�1Þ
Y2j �X þ �Y

ðtÞ
1j b
ðt�1Þ
Y2 j �Y 1
þ b

ðt�1Þ
jY2

;s2
eðY2Þ

�
; ð13Þ

where Y
ðtÞ
1ij and �Y

ðtÞ
1j are again obtained from the imputed data at iteration t. Note

that the logic of FCS-WCK imputation parallels the classic contextual effects

model that uses cluster means to partition the relations among Level-1 variables

into within- and between-cluster components (Longford, 1989; Lüdke et al.,

2011; Shin & Raudenbush, 2010). Unlike FCS-VB, the absence of correlation

between bjY1
and bjY2

places no constraints on the imputations because FCS-

WCK uses cluster means to model this relation.

Informal Comparison of Imputation Methods

An important issue for our investigation is whether the imputation approaches

preserve the multilevel covariance structure of the population data. An inspection
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of the previous models allows for some informal conclusions, and the next

section presents a more rigorous analytic comparison of the four methods. To

put the problem in a context, consider the contextual effects analysis model from

Equation 1. Further, assume that Y1 and Y2 are incomplete and X is complete.

Importantly, notice that the analysis model posits a single relation between Y2

and Y1, but it uses distinct slopes to capture the within- and between-cluster

influence of X on Y2.

To begin, consider the JM-AM imputation model from Equation 7. As

explained previously, JM-AM partitions every variable into within- and

between-cluster components, and it uses unrestricted covariance matrices (i.e.,P
e and

P
b) to generate imputations that allow the magnitude of the variation

and covariation to differ at Level 1 and Level 2. As such, JM-AM is more general

than this particular analysis model because it includes additional effects that are

not present in Equation 1. In particular, JM-AM allows the Y1–Y2 relation and the

Y1–X relation to differ at the within- and between-cluster levels, whereas the

analysis model posits a common slope for the regression of Y2 on Y1. The FCS-

WCK imputation models from Equations 12 and 13 also accommodate unique

within- and between-cluster covariance structures for all variables, but the mod-

els achieve this generality by introducing cluster means as predictor variables. In

the single-level context, employing a rich imputation model with additional

variables or effects (e.g., auxiliary variables) is usually not detrimental and is

often beneficial (Meng, 1994; Schafer, 2003). Thus, we would expect JM-AM

and FCS-WCK to produce appropriate imputations for analyses that posit distinct

within- and between-cluster effects. The contextual effects model in Equation 1

is one such example, and multilevel structural equation models are another

common example (e.g., a confirmatory factor analysis that imposes a different

factor structure at Level 1 and Level 2).

Although JM-AM and FCS-WCK are comparable in the sense that they

accommodate unique within- and between-cluster covariance matrices, they are

subtly different in at least two ways. First, JM-AM uses random effects to model

between-cluster associations, whereas FCS-WCK uses cluster means computed

from the filled-in data. This distinction is analogous to using a latent versus

manifest variable approach to estimating contextual effects models (Lüdke

et al., 2011; Lüdke et al., 2008). Second, because JM-AM treats complete vari-

ables as outcomes, it assumes multivariate normality for all variables in the

imputation model. Although the procedure does not draw replacement values

for complete variables, the conditional distributions from which MCMC samples

random effects and parameter values derive from the multivariate normal distri-

bution. In line with standard linear mixed models, FCS-WCK instead treats

complete variables as fixed predictors, thus requiring the less stringent assump-

tion that only the incomplete variables are multivariate normal. Whether this

difference in distributional assumptions has any practical impact on imputation

quality is an open question in the literature.
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Whereas JM-AM and FCS-WCK are flexible enough to accommodate unique

within- and between-cluster associations for all variables, JM-SY and FCS-VB

employ simpler imputation models that place restrictions on the covariance

structure. As explained previously, JM-SY uses Level-2 residuals with an

unstructured covariance matrix (i.e.,
P

b) to preserve distinct within- and

between-cluster covariance matrices for the incomplete variables. However,

returning to Equation 6, notice that the model does not include a distinct

between-cluster component for the complete variable X. As such, we would

expect JM-SY to yield biased estimates when applied to the contextual effects

analysis model from Equation 1. Borrowing from the FCS-WCK method, a

simple remedy for this shortcoming is to include the complete variable cluster

means in the imputation model’s X matrix, thereby allowing all associations to

differ at Level 1 and Level 2. Finally, FCS-VB appears to be the most restrictive

of the four imputation approaches because it makes no attempt to partition

relations into distinct within- and between-cluster components. Consequently,

we would expect FCS-VB to yield biased estimates when applied to analysis

models such as that in Equation 1—or more generally, to any analysis that

models distinct covariance matrices at Level 1 and Level 2 (e.g., a multilevel

factor analysis model with different structures at the two levels).

Analytic Comparison of Multilevel Imputation Models

This section presents an analytic comparison of multilevel imputation meth-

ods in the context of a two-level random intercept population model with nor-

mally distributed Level-1 variables. We restrict our attention to random

intercepts because existing JM approaches have little or no capacity for accom-

modating random slope variation (Enders, Mistler, & Keller, 2016; Yucel, 2011).

Further, we focus on Level-1 variables because there is no established strategy

for handling incomplete Level-2 variables with JM-SY and the FCS approaches

(Gelman & Hill, 2007; Yucel, 2008). Finally, focusing on a scenario with random

intercepts and Level-1 variables is a logical starting point, given the nascent state

of the multilevel imputation literature.

To keep the analytic work simple without a loss of generality, we consider a

population model with three Level-1 variables. We previously suggested that the

four imputation strategies have different capacities for preserving associations

between pairs of incomplete variables and between pairs of incomplete and

complete variables. To examine this possibility, we consider the situation where

two of the three variables are incomplete; in line with our earlier examples, we

refer to the incomplete variables as Y1 and Y2, and we denote the complete

variable as X. Although relatively simple, a trivariate problem with two incom-

plete variables should yield conclusions that generalize to scenarios with addi-

tional variables and general missing data patterns (e.g., a method that fails to
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partition a particular relation into within- and between-cluster components would

necessarily do so when applied to a much larger set of variables).

Population Joint Distribution

The population random intercept model partitions variables into within- and

between-cluster components, as follows.

Y1ij

Y2ij

Xij

2
4

3
5 ¼ �Y 1

�Y 2

�X

2
4

3
5þ Y1ij � �Y 1j

Y2ij � �Y 2j

Xij � �X j

2
4

3
5þ �Y 1j � �Y 1

�Y 2j � �Y 2

�X j � �X

2
4

3
5

¼
�Y 1

�Y 2

�X
þ

Y1ðWÞ
Y2ðWÞ
XðWÞ

2
4

3
5þ Y1ðBÞ

Y2ðBÞ
XðBÞ

2
4

3
5:

3
5

2
4

ð14Þ

The Level-1 and Level-2 deviation scores are multivariate normal with zero

means and unstructured covariance matrices:

Y1ðWÞ
Y2ðWÞ
XðWÞ

2
4

3
5*N3ð0;SwÞ

Y1ðBÞ
Y2ðBÞ
XðBÞ

2
4

3
5*N3ð0;SBÞ; ð15Þ

where the cluster-specific blocks of the covariance matrices are:

SW ¼
s2

Y1 ðWÞ sY1Y2 ðWÞ sY1X ðWÞ
sY2Y1 ðWÞ s2

Y2 ðWÞ sY2X ðWÞ
sXY1 ðWÞ sXY2 ðWÞ s2

X ðWÞ

SB ¼
s2

Y1 ðBÞ sY1Y2 ðBÞ sY1X ðBÞ
sY2Y1 ðBÞ s2

Y2 ðBÞ sY2X ðBÞ
sXY1 ðBÞ sXY2 ðBÞ s2

X ðBÞ

2
64

3
75:

3
75

2
64

ð16Þ

Thus, the population joint distribution has a total of 15 unique parameters (i.e.,

3 means and 6 unique elements each in the within- and between-cluster covar-

iance matrices), the exact values of which are not important for the ensuing

analytic work. Importantly, the population model places no restrictions or equal-

ity constraints on the elements of the covariance matrices.

To examine the compatibility (or lack thereof) of each imputation model to

the population joint distribution, we employ a strategy similar to that of Shin and

Raudenbush (2007) in the context of maximum likelihood estimation. Specifi-

cally, we first restate the joint distribution as a conditional distribution having the

same form as a given imputation model (e.g., incomplete variables as outcomes,

the complete variable as a predictor). Next, we parameterize the conditional

distribution in terms of linear mixed model parameters. Finally, we compute the

parameters of each imputation model from the parameters of the transformed

joint distribution. Methods that fail to preserve the joint distribution use fewer

than 15 parameters and thus require constraints on one or more population

parameters. This final step highlights incompatibilities between the imputation

and population models.
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JM-SY

To facilitate comparisons with the JM-SY imputation model in Equation

6, we first restate the population joint distribution as a conditional distri-

bution that expresses Y1 and Y2 (the incomplete variables) as a function of

X (the complete variable). Because the elements of
P

W and
P

B are ortho-

gonal, the covariance matrix of the joint distribution can be written as

follows:

Y1ij

Y2ij

Xij � �X j

�X j

2
664

3
775*N4

�Y 1

�Y 2

0
�X

2
664

3
775;

s2
Y1ðWÞ þ s2

Y1 ðBÞ sY1Y2 ðWÞ þ sY1Y2 ðBÞ sY1X ðWÞ sY1X ðBÞ
sY2Y1ðWÞ þ sY2Y1 ðBÞ s2

Y2 ðWÞ þ s2
Y2 ðBÞ sY2X ðWÞ sY2X ðBÞ

sXY1 ðWÞ sXY2ðWÞ s2
X ðWÞ 0

sXY1 ðBÞ sXY2 ðBÞ 0 s2
X ðBÞ

2
6664

3
7775

0
BBB@

1
CCCA:

ð17Þ

Next, we use elements from the above covariance matrix to solve the coeffi-

cients from the multivariate regression of the incomplete variables on the within-

and between-cluster components of X:

gY1 jX ðWÞ gY2jX ðWÞ
gY1jX ðBÞ gY2jX ðBÞ

� �
¼

sXY1 ðWÞ

s2
X ðWÞ

sXY2 ðWÞ

s2
X ðWÞ

sXY1 ðBÞ

s2
X ðBÞ

sXY2 ðBÞ

s2
X ðBÞ

2
6664

3
7775

uY1jX
uY2jX

� �
¼

�Y 1 � �XgY1 jX ðBÞ
�Y 2 � �XgY2 jX ðBÞ

� �
;

ð18Þ

where uY1jX and uY2jX denote intercepts, gY1jX ðWÞ and gY2jX ðWÞ are pure within-

cluster regression slopes, and gY1jX ðBÞ and gY2jX ðBÞ denote between-cluster coeffi-

cients from the regression of the incomplete variables on �X j. Note that we change

notation (i.e., u replaces a for the intercepts and g replaces b for the slopes) in

order to differentiate the population model from the imputation models. Using

quantities from Equation 18, the residual covariance matrix of Y1 and Y2 condi-

tional on X is:

SY1Y2jX ¼

�
s2

Y1 ðBÞ � s2
X ðBÞg

2
Y1 jX ðBÞ

�
þ
�
s2

Y1 ðWÞ � s2
X ðWÞg

2
Y1jX ðWÞ

�
�
sY2Y1 ðBÞ � s2

X ðBÞgY2jX ðBÞgY1jX ðBÞ

�
þ
�
sY2Y1 ðWÞ � s2

X ðWÞgY1jX ðWÞgY2jX ðWÞ

�
2
4

3
5

jj

�
sY1Y2 ðBÞ � s2

X ðBÞgY2jX ðBÞgY1jX ðBÞ

�
þ
�
sY1Y2 ðWÞ � s2

X ðWÞgY1jX ðWÞgY2jX ðWÞ

�
�
s2

Y2 ðBÞ � s2
X ðBÞg

2
Y2jX ðBÞ

�
þ
�
s2

Y2 ðWÞ � s2
X ðWÞg

2
Y2jX ðWÞ

�
2
4

3
5;
ð19Þ

where || symbol denotes horizontal concatenation of two 2 � 1 vectors.

Finally, to match the form of the JM-SY imputation model, we use the results

from Equations 18 and 19 to express the population joint distribution as a
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conditional distribution that is parameterized in terms of mixed model

parameters. The distribution of the incomplete variables given the complete

variable is:

Y1ij

Y2ij

� �
*N2

uY1
þ XijgY1jX ðWÞ þ �X j

�
gY1jX ðBÞ � gY1 jX ðWÞ

�
þ u1j

uY2
þ XijgY2jX ðWÞ þ �X j

�
gY2jX ðBÞ � gY2 jX ðWÞ

�
þ u2j

2
4

3
5;Se

0
@

1
A; ð20Þ

where u1j and u2j denote the population Level-2 residuals, and
P

e is the

population within-cluster residual covariance matrix. Again, we switch

notation for the parameters and Level-2 residuals (i.e., Se replaces SW for

the Level 1 covariance matrix and u replaces b for the intercepts) in order

to differentiate the population distribution from the imputation models.

Because each element of the residual covariance matrix from Equation

19 contains additive terms involving within- and between-cluster compo-

nents, we can write the within- and between-cluster covariance matrices as

follows:

Se ¼
s2

Y1 ðWÞ � s2
X ðWÞg

2
Y1jX ðWÞ sY1Y2 ðWÞ � s2

X ðWÞgY1jX ðWÞgY2jX ðWÞ
sY2Y1 ðWÞ � s2

X ðWÞgY2 jX ðWÞgY1jX ðWÞ s2
Y2 ðWÞ � s2

X ðWÞg
2
Y2jX ðWÞ

" #

Su ¼
s2

Y1 ðBÞ � s2
X ðBÞg

2
Y1jX ðBÞ sY1Y2 ðBÞ � s2

X ðBÞgY2jX ðBÞgY1jX ðBÞ
sY2Y1 ðBÞ � s2

X ðBÞgY2jX ðBÞgY1jX ðBÞ s2
Y2 ðBÞ � s2

X ðBÞg
2
Y2jX ðBÞ

" #
:

ð21Þ

Finally, although the traditional mixed model framework treats predictor

variables as fixed, our evaluation of JM-SY treats X as a random variable with

the following marginal distribution:

X*N
�

�X ;s2
X ðWÞ þ s2

X ðBÞ

�
: ð22Þ

This marginal distribution is common to both the imputation and population

models.

Having expressed the population joint distribution as a multilevel model that

matches the form of the JM-SY imputation model from Equation 6, we can now

determine whether the imputation model preserve the associations in the popu-

lation model. Comparing the number of parameters reveals that JM-SY is more

restrictive than the population model because it includes a total of 13 parameters

(2 intercepts, 2 regression coefficients, 3 unique elements in the Level-2 covar-

iance matrix, 3 unique elements in the Level-1 covariance matrix, and 3 para-

meters in the marginal distribution of X), whereas the population model includes

two additional regression coefficients. A comparison of Equations 6 and 20

reveals that the population distribution contains distinct coefficients for the

within- and between-cluster influence of X on the incomplete variables, whereas

the JM-SY imputation model uses a single slope to preserve the relation between

X and Y1 and X and Y2. As such, JM-SY is inappropriate for models that posit

unique within- and between-cluster associations between pairs of complete
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variables and incomplete variables, although it can preserve level-specific rela-

tions between pairs of incomplete variables. Returning to the contextual effects

analysis model from Equation 1, the analytic results suggest that JM-SY should

yield biased estimates of the regression slopes because it generates imputations

from a model where the cluster means of X have no additional explanatory power

above and beyond the Level-1 scores.

To equate JM-SY to the population model, one of the two situations

must occur. First, imposing equality constraints on the within- and

between-cluster coefficients from the population model reduces the number

of parameters by two, thereby equating the fixed effect portion of the two

models, as follows:

gY1jX ðWÞ ¼ gY1 jX ðBÞ ¼ bY1jX
gY2 jX ðWÞ ¼ gY2jX ðBÞ ¼ bY2 jX :

ð23Þ

Of course, researchers have no control over the associations in the population

model, so the realistic course of action is to adopt a richer imputation model that

is capable of preserving a wider range of effects. Although Schafer and Yucel

(2002) do not discuss this option, introducing the cluster means of the complete

covariates into the fixed effect predictor matrix X (e.g., as with JM-WCK) would

increase the number of parameters by two, thereby equating JM-SY to the pop-

ulation model in Equation 20.

JM-AM

Comparing JM-AM to the population joint distribution does not require the

same analytic steps as JM-SY because the imputation model from Equation 7

does not condition on covariates. Rather, the JM-AM imputation model can be

compared directly to the joint distribution given by Equations 15 and 16. The

equivalence of JM-AM and the joint distribution is immediately apparent when

considering that both models require 15 parameters: 3 grand means, 6 unique

elements in the Level-2 covariance matrix, and 6 unique elements in the within-

cluster covariance matrix.

FCS-VB

Because the FCS imputation models from Equations 10 and 11 have the same

form (one incomplete variable predicted from all other variables), we consider

only the Y1 imputation model in this section. Equivalence (or lack thereof)

between the FCS-VB imputation model for Y1 and the population distribution

would imply the same for Y2.

Our evaluation of FCS-VB applies the same analytic steps as the previous JM-

SY section. For brevity, we omit intermediate computations and show the pop-

ulation joint distribution expressed in terms of the mixed model parameters. Full
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computational details are available upon request. The marginal distribution of the

predictor variables is

Xij

Y2ij

� �
*N2

�X
�Y 2

� �
;

s2
X ðWÞ þ s2

X ðBÞ sXY2 ðWÞ þ sXY2 ðBÞ
sY2X ðWÞ þ sY2X ðBÞ s2

Y2 ðWÞ þ s2
Y2 ðBÞ

" # !
; ð24Þ

and the conditional distribution of Y1 given X and Y2 is

Y1ij*N
υY1
þ XijgY1 jX ðWÞ þ �X j

�
gY1jX ðBÞ � gY1jX ðWÞ

�
þ

Y2ijgY1 jY2ðWÞ þ �Y 2j

�
gY1 jY2ðBÞ � gY1jY2ðWÞ

�
þ u1j

;Se

0
@

1
A; ð25Þ

where uY1
is the intercept, gY1jX ðWÞ and gY1jY2ðWÞ are pure within-cluster regres-

sion slopes of Y1 on X and Y2, and gY1jX ðBÞ and gY1jY2ðBÞ are the corresponding

between-cluster coefficients from the regression of Y1 on the cluster means. As

before, the marginal distribution from Equation 24 applies to the imputation

model as well. Finally, population within- and between-cluster residual variances

are as follows:

s2
e ¼ s2

Y1 ðWÞ � s2
X ðWÞg

2
Y1jX ðWÞ � s2

Y2 ðWÞg
2
Y1jY2ðWÞ � 2sY2X ðWÞgY1jX ðWÞgY1jY2ðWÞ

s2
u ¼ s2

Y1 ðBÞ � s2
X ðBÞg

2
Y1jX ðBÞ � s2

Y2 ðBÞg
2
Y1jY2ðBÞ � 2sY2X ðBÞgY1 jX ðBÞgY1jY2ðBÞ:

ð26Þ

Again, we switch notation systems here to differentiate the population and impu-

tation models.

Consistent with the procedure for JM-SY, comparing the number of para-

meters required by the FCS-VB model in Equation 10 reveals that FCS-VB is

more restrictive than the population model because it includes a total of 13

parameters (1 intercept, 2 regression coefficients, a single Level-2 variance, a

single Level-1 variance, and 8 parameters in the marginal distribution of X

and Y2). A comparison of Equations 10 and 25 shows that the population

distribution contains distinct within- and between-cluster regression coeffi-

cients for each predictor, whereas the FCS-VB uses a single slope to preserve

the relation between X and Y1 and Y2 and Y1. As such, FCS-VB is inap-

propriate for models that posit unique within- and between-cluster associa-

tions between pairs of incomplete variables and/or between pairs of

incomplete and complete variables and thus is even more restrictive than

JM-SY. Returning to the contextual effects analysis model from Equation

1, the analytic results suggest that FCS-VB should yield biased estimates of

the regression slopes because it generates imputations from a model where

the cluster means of X have no additional explanatory power above and

beyond the Level-1 scores.

To equate FCS-VB to the population model, one of the two situations must

occur. First, imposing equality constraints on the within- and between-cluster

coefficients from the population model reduces the number of parameters by two,

thereby equating the fixed effect portion of the two models, as follows:
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gY1jX ðWÞ ¼ gY1 jX ðBÞ ¼ bY1jX
gY1jY2ðWÞ ¼ gY1jY2ðBÞ ¼ bY1jY2

:
ð27Þ

These constraints are useful for illustrating a population model for which

FCS-VB would work well, but a realistic course of action is to adopt a richer

imputation model that is capable of preserving a wider range of effects. The FCS-

WCK modification to FCS achieves this goal.

FCS-WCK

Because the FCS-WCK imputation models from Equations 12 and 13 have the

same form, we again restrict our attention to the Y1 imputation model from

Equation 12. Further, we can reuse the population expressions from the FCS-

VB results, given in Equations 24 through 26. The equivalence of JM-WCK and

the population joint distribution is immediately apparent when considering that

both models require 15 parameters: 1 intercept, 4 regression coefficients, a single

Level-2 variance, a single Level-1 variance, and 8 parameters in the marginal

distribution of X and Y2. Returning to the contextual effects analysis model from

Equation 1, the analytic results suggest that FCS-WCK should yield accurate

estimates of all regression model parameters because it generates replacement

values from an imputation model that is more general (i.e., has more parameters)

than the analysis model. Finally, we can infer that JM-AM and FCS-WCK are

themselves asymptotically equivalent in the case of normally distributed contin-

uous variables because both procedures exactly reproduce the population joint

distribution. As such, these procedures are appropriate for a range of analysis

models that posit level-specific relations (e.g., multilevel models with contextual

effects, multilevel structural equation models).

Computer Simulation

For the simulation study, we generated the data under a population model

where correlations among the Level-2 residuals differ from the corresponding

within-cluster associations, as this is the situation that differentiates the four

imputation approaches. Note that it was not our goal to provide a comprehensive

simulation that investigates the performance of multilevel imputation techniques.

Rather, the goal was to perform a focused set of simulations that illustrated and

tested the propositions derived from the analytic work.

For consistency with the previous sections, we used Equations 14 through 16

as the data-generating model, where Y1 and Y2 were incomplete and X was

complete. Consistent with Enders, Mistler, and Keller (2016), we did not vary

the missing data rate, as this factor has a predictable effect on bias (e.g., as the

missing data rate increases, so too does nonresponse bias). Rather, we imposed a

constant rate of 20% missingness on Y1 and Y2, as this value should be large
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enough to confirm the analytic results without harming generalizability.

Although an MCAR mechanism may not be a realistic assumption for applied

practice, we use it here to demonstrate that certain imputation methods may

introduce bias in situations where dropout is completely benign.

The simulation consisted of four manipulated factors: imputation method

(JM-SY, JM-AM, FCS-VB, and FCS-WCK), number of clusters (30 and 100),

number of observations per cluster (5 and 30), and the intraclass correlation

(ICC; .10 and .50). Table 1 gives the population correlation and covariance

matrices. Three features of the population model are worth highlighting. First,

to introduce level-specific relations, we specified Level-2 correlations that were

equal in magnitude but opposite in sign to the Level-1 associations. Second, to

manipulate the ICC, we held the Level-1 covariance matrix constant and varied

the Level-2 variances. Finally, we set the correlation between Y1 and X to zero to

isolate the influence of imputation on the relation between Y2 and X (e.g., impu-

tation cannot exploit the relation between Y1 and X to preserve the association

between Y2 and X). Data were generated in SAS/IML 13.2 by first generating two

matrices of random normal variables from a multivariate normal distribution

with the desired covariance structure, one representing the between-cluster

deviations and the other representing within-cluster deviations. Next, the three

variables were computed by summing their respective within- and between-

cluster components. An MCAR mechanism was imposed by randomly deleting

20% of the Y1 and Y2 values in each data set.

The JM approaches were implemented using Mplus (Muthén & Muthén,

1998–2012), and the FCS methods were implemented with the Blimp application

(Enders, Keller, & Levy, 2016; Keller & Enders, 2015). We chose these software

packages because they are flexible enough to accommodate the range of methods

TABLE 1.

Within- and Between-Cluster Covariance Matrices for Simulation Study

ICC ¼ .10 ICC ¼ .50

Variable M1 M2 C M1 M2 C

Level 1

M1 18.00 0.50 0.00 18.00 0.50 0.00

M2 11.02 27.00 0.40 11.02 27.00 0.40

C 0.00 6.24 9.00 0.00 6.24 9.00

Level 2

M1 2.00 �0.50 0.00 18.00 �0.50 0.00

M2 �1.22 3.00 �0.40 �11.02 27.00 �0.40

C 0.00 �0.69 1.00 0.00 �6.24 9.00

Note. Variances and covariances are in the lower diagonal, and correlations in the upper diagonal are

in boldface. ICC ¼ intraclass correlation.
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we are studying, and because JM-AM and FCS-WCK are exclusive to Mplus and

Blimp, respectively. As noted previously, JM-SY is also implemented in the

PAN and MLMMM packages in R (Schafer, 2001; Schafer & Yucel, 2002;

Yucel, 2008) as well as in MLwiN and Stata (Carpenter et al., 2011), and

FCS-VB is available in MICE (van Buuren et al., 2014). It is important to note

that the choice of software package is arbitrary in this case because the MCMC

sampling steps for incomplete Level-1 variables are common across platforms.

After examining convergence diagnostics, we created 20 imputations with 1,000

burn-in iterations and 500 between-imputation iterations. We performed 1,000

replications in each of the between-group design cells, and we used Mplus to

estimate the within-cluster and between-cluster covariance matrices from Equa-

tion 16, and we used SAS/IML 13.2 to pool the estimates and manipulate the

simulation results. The syntax for the simulations is available upon request.

A brief discussion of our analysis model is warranted. As explained previ-

ously, JM-AM uses random effects to model between-cluster associations,

whereas FCS-WCK uses cluster means computed from the filled-in data. This

distinction is analogous to using a latent versus manifest variable approach to

estimating contextual effects models (Lüdke et al., 2011; Lüdke et al., 2008).

The analytic work from the previous section shows that these approaches are

asymptotically equivalent, but the use of cluster means as covariates is known

to produce bias in some situations due to measurement and/or sampling error

(Lüdke et al., 2011; Lüdke et al., 2008). We chose Equation 15 as an analysis

model because it is identical to the JM-AM imputation model (i.e., it uses

random effects to represent the between-cluster associations) and thus provides

a “gold standard” against which to compare other methods. In particular, this

equality allows us to examine whether the use of cluster means in FCS-WCK

model has a detrimental impact on finite samples. Although contextual effects

analyses similar to Equation 1 are common in the applied literature, we felt that

employing such an analysis model would provide a less precise comparison of

JM-AM to FCS-WCK. Nevertheless, there is no reason to believe that insights

gleaned from estimating covariance matrices would differ from those of regres-

sion models.

It is well known that complete data estimation routines can produce biased

estimates of certain parameters in multilevel models (Lüdke et al., 2011; Lüdke

et al., 2008). To isolate the impact of imputation on the quality of the estimates,

we computed the average complete data estimate (i.e., the estimate based on the

full data prior to deletion) in each design cell and used these quantities as the true

values. We then calculated raw bias as the difference between the imputation

estimates and the average complete data estimates. To facilitate interpretation of

the simulation results, we standardized bias by dividing raw bias by the standard

deviation of the complete data estimates within each design cell. This standar-

dized metric expresses bias in standard error units (e.g., .40 suggests that the

average imputation estimate differs from the average complete data estimate by
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four tenths of a standard error). We used graphical and tabular displays of

standardized bias to identify the salient effects reported below.

Simulation Results

Tables 2 through 5 give the raw and standardized bias values for each

imputation approach broken down by ICC and sample size conditions, and

Figure 1 displays the standardized bias values from the tables as a trellis plot.

The analytic work suggests that the four imputation methods differ in their

TABLE 2.

Raw and Standardized Bias for JM-SY

ICC ¼ .10 ICC ¼ .50

Level 1 Level 2 Level 1 Level 2

Parameter Raw Std. Raw Std. Raw Std. Raw Std.

J ¼ 30, nj ¼ 5 J ¼ 30, nj ¼ 5

Cov. Y1–Y2 �.006 �.002 .015 .013 �.036 �.014 �.077 �.015

Cov. Y1–X .062 .053 �.067 �.097 �.069 �.053 .057 .020

Cov. Y2–X �.083 �.053 .092 .115 �.341 �.203 .290 .082

Mean Y1 NA NA �.004 �.009 NA NA �.005 �.006

Mean Y2 NA NA �.008 �.015 NA NA .002 .002

J ¼ 30, nj ¼ 30 J ¼ 30, nj ¼ 30

Cov. Y1–Y2 .010 .011 .000 .001 �.033 �.034 �.012 �.003

Cov. Y1–X �.007 �.015 .010 .030 �.011 �.025 .029 .012

Cov. Y2–X �.045 �.074 .031 .075 �.051 �.082 .040 .012

Mean Y1 NA NA .000 .000 NA NA .000 .001

Mean Y2 NA NA .000 �.001 NA NA .000 .000

J ¼ 100, nj ¼ 5 J ¼ 100, nj ¼ 5

Cov. Y1–Y2 .014 .010 �.004 �.006 �.044 �.031 �.006 �.002

Cov. Y1–X .047 .070 �.038 �.093 �.082 �.114 .060 .038

Cov. Y2–X �.129 �.154 .114 .248 �.353 �.365 .355 .179

Mean Y1 NA NA .001 .005 NA NA .000 .000

Mean Y2 NA NA .006 .021 NA NA .003 .006

J ¼ 100, nj ¼ 30 J ¼ 100, nj ¼ 30

Cov. Y1–Y2 �.005 �.009 .002 .005 �.014 �.026 .014 .005

Cov. Y1–X �.007 �.028 .009 .048 �.031 �.117 .023 .017

Cov. Y2–X �.036 �.106 .038 .160 �.055 �.166 .052 .030

Mean Y1 NA NA �.002 �.009 NA NA .000 .000

Mean Y2 NA NA .000 .001 NA NA .000 .001

Note. Values of .000 occur due to rounding; bias values are <.001 in absolute value. ICC ¼ intraclass

correlation; Std. ¼ standard; JM-SY ¼ joint model Schafer and Yucel; Cov.¼ covariance; NA¼ not

applicable.
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ability to preserve unique within- and between-cluster covariances. JM-AM

and FCS-WCK should yield the most accurate estimates because these methods

place no restrictions on the covariance matrix elements. On the other side of the

spectrum, FCS-VB should exhibit the greatest bias because it places restrictions

on relations between pairs of complete and incomplete variables as well as pairs

of incomplete variables. JM-SY should be somewhat better than FCS-VB

because it places restrictions only on relations between pairs of complete and

incomplete variables (recall the previous caveat that JM-SY would be

TABLE 3.

Raw and Standardized Bias for JM-AM

ICC ¼ .10 ICC ¼ .50

Level 1 Level 2 Level 1 Level 2

Parameter Raw Std. Raw Std. Raw Std. Raw Std.

J ¼ 30, nj ¼ 5 J ¼ 30, nj ¼ 5

Cov. Y1–Y2 �.017 �.007 .027 .023 �.021 �.008 �.057 �.011

Cov. Y1–X .035 .030 �.037 �.054 .012 .009 �.016 �.006

Cov. Y2–X �.043 �.028 .025 .031 �.046 �.028 �.033 �.009

Mean Y1 NA NA .003 .006 NA NA .011 .013

Mean Y2 NA NA �.010 �.018 NA NA .002 .002

J ¼ 30, nj ¼ 30 J ¼ 30, nj ¼ 30

Cov. Y1–Y2 .013 .014 .001 .001 �.028 �.029 �.017 �.004

Cov. Y1–X �.001 �.002 .002 .006 .010 .021 .000 .000

Cov. Y2–X �.007 �.011 �.003 �.006 .001 .002 �.010 �.003

Mean Y1 NA NA �.002 �.005 NA NA .001 .002

Mean Y2 NA NA �.002 �.006 NA NA �.001 �.001

J ¼ 100, nj ¼ 5 J ¼ 100, nj ¼ 5

Cov. Y1–Y2 �.064 �.047 .042 .063 �.060 �.043 �.009 �.003

Cov. Y1–X .004 .006 �.001 �.004 �.017 �.024 �.011 �.007

Cov. Y2–X �.011 �.013 .000 .000 .012 .012 �.019 �.009

Mean Y1 NA NA .003 .010 NA NA .006 .014

Mean Y2 NA NA �.002 �.006 NA NA �.004 �.006

J ¼ 100, nj ¼ 30 J ¼ 100, nj ¼ 30

Cov. Y1–Y2 �.002 �.004 �.004 �.012 .005 .009 .000 .000

Cov. Y1–X .001 .002 �.002 �.012 �.007 �.028 .000 .000

Cov. Y2–X .004 .012 �.002 �.010 �.002 �.006 �.002 �.001

Mean Y1 NA NA �.002 �.010 NA NA .001 .002

Mean Y2 NA NA .001 .005 NA NA .000 .000

Note. Values of .000 occur due to rounding; bias values are <.001 in absolute value. ICC ¼ intraclass

correlation; Std. ¼ standard; JM-AM ¼ joint model Asparouhov and Muthén; Cov. ¼ covariance;

NA ¼ not applicable.
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equivalent to JM-AM and FCS-WCK if the complete variable cluster means are

used as predictors).

The standardized bias results in Figure 1 confirm the analytic work. Specif-

ically, notice that FCS-VB (denoted by a circle) produced the largest bias values

across all conditions, followed by JM-SY (denoted by a plus). As expected, JM-

AM and FCS-WCK produced little to no bias. Further, biases were in the

expected direction. To illustrate, consider the association between Y2 and X.

Because JM-SY and FCS-VB impose equality constraints on functions of this

relation, the Level-1 and Level-2 covariances should be biased toward a common

TABLE 4.

Raw and Standardized Bias for FCS-VB

ICC ¼ .10 ICC ¼ .50

Level 1 Level 2 Level 1 Level 2

Parameter Raw Std. Raw Std. Raw Std. Raw Std.

J ¼ 30, nj ¼ 5 J ¼ 30, nj ¼ 5

Cov. Y1–Y2 �0.446 �0.183 0.494 0.428 �1.332 �0.504 1.258 0.249

Cov. Y1–X 0.111 0.094 �0.109 �0.158 0.118 0.090 �0.135 �0.048

Cov. Y2–X �0.135 �0.087 0.124 0.154 �0.324 �0.193 0.263 0.075

Mean Y1 NA NA �0.002 �0.004 NA NA 0.001 0.001

Mean Y2 NA NA �0.014 �0.025 NA NA �0.001 �0.001

J ¼ 30, nj ¼ 30 J ¼ 30, nj ¼ 30

Cov. Y1–Y2 �0.104 �0.110 0.133 0.214 �0.154 �0.157 0.137 0.030

Cov. Y1–X 0.017 0.035 �0.017 �0.051 0.030 0.064 �0.013 �0.005

Cov. Y2–X �0.037 �0.061 0.025 0.060 �0.032 �0.051 0.026 0.008

Mean Y1 NA NA �0.001 �0.004 NA NA 0.001 0.001

Mean Y2 NA NA 0.000 0.001 NA NA 0.001 0.001

J ¼ 100, nj ¼ 5 J ¼ 100, nj ¼ 5

Cov. Y1–Y2 �0.494 �0.365 0.540 0.810 �1.324 �0.940 1.328 0.468

Cov. Y1–X 0.095 0.141 �0.089 �0.215 0.102 0.142 �0.122 �0.078

Cov. Y2–X �0.116 �0.139 0.098 0.214 �0.285 �0.295 0.289 0.145

Mean Y1 NA NA 0.002 0.009 NA NA �0.001 �0.002

Mean Y2 NA NA 0.001 0.005 NA NA 0.000 �0.001

J ¼ 100, nj ¼ 30 J ¼ 100, nj ¼ 30

Cov. Y1–Y2 �0.121 �0.230 0.138 0.412 �0.127 �0.241 0.160 0.065

Cov. Y1–X 0.019 0.070 �0.018 �0.099 0.012 0.044 �0.019 �0.014

Cov. Y2–X �0.026 �0.075 0.027 0.113 �0.034 �0.101 0.029 0.017

Mean Y1 NA NA �0.001 �0.008 NA NA 0.001 0.002

Mean Y2 NA NA 0.001 0.004 NA NA 0.001 0.001

Note. Values of .000 occur due to rounding; bias values are <.001 in absolute value. ICC ¼ intraclass

correlation; Std. ¼ standard; FCS-VB ¼ fully conditional specification van Buuren; Cov. ¼
covariance; NA ¼ not applicable.
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value. Given the configuration of population values (see Table 1), we expected

negative bias for the Level-1 covariance and positive bias for the Level-2 covar-

iance. The bias values in Figure 1 confirm these predictions. To better illustrate

this bias, Figure 2 shows the Level-2 covariance between Y2 and X by imputation

method and number of observations per cluster (the salient factors that influenced

bias), averaging across other design features. The figure shows that JM-SY and

FCS-VB produced nearly identical estimates, with the largest bias values occur-

ring in design cells with five observations per cluster.

TABLE 5.

Raw and Standardized Bias for FCS-WCK

ICC ¼ .10 ICC ¼ .50

Level 1 Level 2 Level 1 Level 2

Parameter Raw Std. Raw Std. Raw Std. Raw Std.

J ¼ 30, nj ¼ 5 J ¼ 30, nj ¼ 5

Cov. Y1–Y2 �.009 �.004 .074 .064 �.005 �.002 �.164 �.032

Cov. Y1–X .023 .019 �.020 �.029 .007 .006 �.005 �.002

Cov. Y2–X �.040 �.025 .040 .050 �.037 �.022 �.029 �.008

Mean Y1 NA NA �.005 �.010 NA NA .000 .001

Mean Y2 NA NA �.010 �.018 NA NA �.001 �.001

J ¼ 30, nj ¼ 30 J ¼ 30, nj ¼ 30

Cov. Y1–Y2 .011 .012 �.007 �.011 �.030 �.030 �.034 �.007

Cov. Y1–X .000 .000 .002 .007 .008 .017 .003 .001

Cov. Y2–X �.010 �.017 �.001 �.003 .004 .006 �.009 �.003

Mean Y1 NA NA �.002 �.006 NA NA .000 .000

Mean Y2 NA NA .000 .001 NA NA .001 .001

J ¼ 100, nj ¼ 5 J ¼ 100, nj ¼ 5

Cov. Y1–Y2 �.033 �.024 .051 .076 �.057 �.041 �.077 �.027

Cov. Y1–X �.003 �.004 .007 .016 �.011 �.015 �.013 �.008

Cov. Y2–X �.017 �.020 .005 .012 .011 .011 �.017 �.009

Mean Y1 NA NA .000 .001 NA NA .000 .000

Mean Y2 NA NA .001 .005 NA NA �.003 �.005

J ¼ 100, nj ¼ 30 J ¼ 100, nj ¼ 30

Cov. Y1–Y2 .000 .000 �.011 �.033 �.006 �.012 �.014 �.006

Cov. Y1–X .003 .013 �.002 �.010 �.005 �.021 .000 .000

Cov. Y2–X .003 .010 �.002 �.009 �.002 �.005 �.002 �.001

Mean Y1 NA NA �.001 �.006 NA NA .001 .001

Mean Y2 NA NA .001 .007 NA NA .000 .000

Note. Values of .000 occur due to rounding; bias values are <.001 in absolute value. ICC ¼ intraclass

correlation; Std. ¼ standard; FCS-WCK ¼ fully conditional specification Ian White and Carpenter

and Kenward; Cov. ¼ covariance; NA ¼ not applicable.
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Next, consider the covariance between Y1 and Y2. For this relation, the analytic

work suggests that only FCS-VB should produce biased estimates. Given our

configuration of population values (see Table 1), the estimates should again be

ICC = .10 ICC = .50

L1 Covariance Y1−X
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FIGURE 1. Standardized bias means for the Level-1 and Level-2 covariances by imputa-

tion method, intraclass correlation, number of clusters, and number of observations per

cluster, averaging across other design cells.
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biased toward a common value, with negative bias at Level 1 and positive bias at

Level 2. Returning to Figure 1, FCS-VB consistently produced rather large bias

values. To better illustrate the bias, Figure 3 shows mean standardized bias for

the Level-1 covariance between Y1 and Y2 by imputation method, ICC, and

number of observations per cluster, averaging across the number of clusters.

As seen in the figure, the ICC had little impact on bias when the within-

cluster sample size was large (nj ¼ 30), but a large ICC and small cluster size

(ICC¼ .50, nj¼ 5) combined to produce substantial bias. As seen in Figure 4, the

same three-way effect appeared with the Level-2 association between Y1 and Y2,

although the bias was in the opposite direction and was more pronounced in the

low ICC and small cluster size conditions.

Finally, consider the differences between JM-AM and FCS-WCK. JM-AM

uses random effects to model between-cluster associations. In contrast, FCS-

WCK uses cluster means computed from the filled-in data, a method that is

known to produce bias in some situations due to measurement and/or sampling

error (Lüdke et al., 2011; Lüdke et al., 2008). Because the analysis model in
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FIGURE 2. Standardized bias means for the Level-2 covariance between Y2 and X by

imputation method and number of observations per cluster, averaging across other design

cells. It shows that Asparouhov and Muthén’s joint modeling approach (FCS-AM) and

White, Carpenter, and Kenward’s fully conditional specification approach (FCS-WCK)

estimates were relatively free of bias, whereas Schafer and Yucel’s joint modeling

approach (JM-SY) and van Buuren’s fully conditional specification approach (FCS-VB)

produced positively biased estimates. Additionally, cluster size moderated this bias, such

that nj ¼ 5 exacerbated bias relative to nj ¼ 30. Note that the symbols on the graph are

connected by lines to enhance readability, but these lines should not be interpreted as

continuous trends because the horizontal axis depicts nominal categories.
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FIGURE 3. Standardized bias means for the Level-1 covariance between Y1 and Y2 by

method, intraclass correlation (ICC), and number of observations per cluster, averaging

across the number of clusters. It shows that joint model Schafer and Yucel (JM-SY), joint

model Asparouhov and Muthén, and fully conditional specification Ian White and Car-

penter and Kenward estimates were relatively free of bias, whereas JM-SY produced

negatively biased estimates. Additionally, the graph shows that the negative impact of a

small cluster size (nj¼ 5) was exacerbated by a large ICC of .50. Note that the symbols on

the graph are connected by lines to enhance readability, but these lines should not be

interpreted as continuous trends because the horizontal axis depicts nominal categories.
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FIGURE 4. Standardized bias means for the Level-2 covariance between Y1 and Y2 by

method, intraclass correlation (ICC), and number of observations per cluster, averaging

across the number of clusters. It shows that joint model Schafer and Yucel (JM-SY), joint

model Asparouhov and Muthén, and fully conditional specification Ian White and Car-

penter and Kenward estimates were relatively free of bias, whereas JM-SY produced

negatively biased estimates. Additionally, the graph shows that the negative impact of a

small cluster size (nj¼ 5) was exacerbated by a large ICC of .50. Note that the symbols on

the graph are connected by lines to enhance readability, but these lines should not be

interpreted as continuous trends because the horizontal axis depicts nominal categories.
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Equation 15 is identical to the JM-AM imputation model, we can confidently

attribute any differences between JM-AM and FCS-WCK to the latter method’s

use of (potentially fallible) estimates of the cluster means. Interestingly, the bias

values in Tables 3 and 5 are virtually identical, suggesting that the use of cluster

means has no detrimental effect on estimates, at least in the conditions that we

examined here.

Data Analysis Example

To illustrate the application of the four imputation approaches, we fit a con-

textual effects analysis model to the high school and beyond data. The analysis

example is similar to that of Raudenbush and Bryk (2002), where the influence of

SES on math achievement differed at Level 1 and Level 2. The analysis model is

as follows:

MathAchij ¼ b0 þ b1ðFemaleijÞ þ b2ðSESijÞ þ b3ðMeanSESjÞ þ bj þ eij: ð28Þ

This analysis is useful because the influence of cluster-average SES is a

stronger predictor of achievement than individual SES (i.e., b3 is a larger positive

value than b2). The previous analytic work and simulation results suggest that the

four imputation methods differ in their capacity to partition unique relations at

Level 1 and Level 2. To demonstrate this effect, we deleted achievement and SES

scores according to an MAR mechanism. Specifically, females had a 25% and

15% probability of missing SES and achievement scores, respectively, whereas

males had a 15% and 25% probability of missing these two variables. The gender

dummy code was complete.

We used the Mplus software package (Muthén & Muthén, 1998–2012) to

implement JM-AM and JM-SY, and we used the Blimp application (Enders,

Keller, & Levy, 2016) to implement FCS-VB and FCS-WCK. As noted previ-

ously, the version of JM-SY that we present in Equation 6 can be modified to

include the means of complete predictor variables such as gender. Although the

analysis model in Equation 28 does not partition the gender influence into unique

within- and between-cluster components, we nevertheless include this variant of

JM-SY in the example, as it should be equivalent to JM-AM and FCS-WCK.

Consistent with current recommendations from the literature, we generated 20

imputations (Graham et al., 2007), and we did so by specifying a thinning inter-

val of 1,000 iterations (i.e., we saved a data set for analysis after every 1,000

MCMC cycles). Finally, we used Mplus to estimate the model and pool para-

meter estimates and standard errors. The Appendix, available in the online ver-

sion of the journal, gives the imputation and analysis scripts for the analysis

example,1 and all files are available from the second author upon request.

Table 6 gives the pooled parameter estimates and standard errors from each

imputation approach. As seen in the table, four of the imputation approaches

produced nearly identical estimates: FCS-WCK, JM-AM, and the two variants of
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JM-SY. The analytic and simulation results predict this result, as these methods

partition the SES achievement relation into unique within- and between-cluster

components. It is interesting to note that JM-AM treats the gender dummy code

as a normally distributed variable, whereas FCS-WCK and JM-SY do not apply

distributional assumptions to this complete variable. This seemingly egregious

violation of normality appeared to have no impact on the analysis results, how-

ever. Recall from the analytic work and simulation results that FCS-VB gener-

ates imputations from a parsimonious model that does not partition associations

into within- and between-cluster components. In the context of the high school

and beyond example, FCS-VB assumes that the b3 coefficient in Equation 28

equals 0, such that the SES cluster means have no predictive power above and

beyond the individual scores. The effect of applying a restrictive imputation

model is clearly evident in Table 6, where the within-cluster regression is too

large and the between-cluster regression is too small (i.e., the two regressions are

biased toward a common slope). To put the bias in practical terms, the FCS-VB

estimate of b3 (cluster-level mean SES) differs from the other methods by

roughly two thirds of a standard error unit, and the estimate of b2 (individual

SES) differs by about one half of a standard error. The magnitude of these

differences is probably large enough to distort inferences and confidence interval

coverage in many applied settings.

Discussion

In the single-level context, JM and FCS have been shown to be equivalent

with multivariate normal data (Hughes et al., 2014), but less is known about the

TABLE 6.

Pooled Parameter Estimates and Standard Errors (SEs) From the Real Data Analysis

Example

FCS-VB FCS-WCK JM-AM JM-SYa JM-SYb

Parameter Est. SE Est. SE Est. SE Est. SE Est. SE

Intercept 13.34 0.18 13.35 0.19 13.35 0.19 13.39 0.19 13.37 0.18

Female �1.21 0.18 �1.19 0.19 �1.18 0.19 �1.23 0.18 �1.21 0.19

SES 2.09 0.14 2.02 0.14 2.04 0.14 2.03 0.14 2.02 0.14

SES Means 3.53 0.37 3.79 0.36 3.75 0.38 3.75 0.37 3.78 0.36

Intercept Var. 2.72 0.46 2.41 0.43 2.55 0.46 2.44 0.44 2.40 0.43

Residual Var. 37.00 0.74 37.30 0.75 37.13 0.76 37.16 0.75 37.15 0.74

Note. JM-SYa is the standard approach outlined in the article. JM-SYb adds the cluster means of the

complete gender variable to the model, following the logic of FCS-WCK. SES ¼ socioeconomic

status; FCS-WCK ¼ fully conditional specification Ian White and Carpenter and Kenward; FCS-VB

¼ fully conditional specification van Buuren; JM-SY ¼ joint model Schafer and Yucel; JM-AM ¼
joint model Asparouhov and Muthén.
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similarities and differences of these two approaches with multilevel data. Thus,

the purpose of this study was to examine the situations under which JM and

FCS reproduce (or preserve) the mean and covariance structure of a popu-

lation random intercept model with multivariate normal data. Our analytic

work showed that JM-AM and FCS-WCK were the only methods that repro-

duced the covariance structure of the population model, and the results also

suggested that these methods are asymptotically equivalent. In contrast, JM-

SY imposes implicit restrictions on covariance parameters involving pairs

of incomplete and complete variables, and FCS-VB imposes implicit

restrictions on all covariance parameters involving the incomplete variables.

Computer simulation results verified the analytic work, further revealing that

differences among the methods were most evident with small within-cluster

sample sizes (e.g., nj ¼ 5).

It is important to emphasize that the biases predicted by the analytic work

(and subsequently confirmed by the simulation studies) can occur under any

mechanism. Although multiple imputation is usually described as an MAR-

based approach, it is widely known that multiple imputation estimates are

biased when the imputation model is more restrictive than a particular analysis

model, in which case the two models are said to be uncongenial (Meng, 1994;

Schafer, 2003). Our results show that JM-AM and FCS-WCK employ unrest-

rictive imputation models where the Level-1 and Level-2 covariance matrices

are saturated, whereas the JM-SY and FCS-VB models place implicit con-

straints on the within- and between-cluster covariance matrices. When these

constraints are incompatible with the analysis model, imputation can introduce

bias, even under a benign MCAR mechanism. The data analysis example sug-

gests that this bias will also be evident with an MAR mechanism, as would be

expected.

The differences between JM and FCS approaches are particularly salient for

multilevel data sets where relations among lower level variables differ at Level 1

and Level 2. One such example is the classic contextual effects model that

partitions the association between a pair of Level 1 variables into between- and

within-cluster components (Longford, 1989; Lüdke et al., 2011; Lüdke et al.,

2008; Raudenbush & Bryk, 2002; Shin & Raudenbush, 2010), and multilevel

structural equation models that place different restrictions on the within- and

between-cluster covariance matrices (e.g., a multilevel factor analysis with dif-

ferent latent variables at Level 1 and Level 2) are a second common example

(Dunn et al., 2015; Huang & Cornell, 2015; Muthén, 1991; Reise et al., 2005;

Toland & De Ayala, 2005). In applied settings, researchers may not have strong a

priori predictions about the structure of the within- and between-cluster covar-

iance matrices. For example, a researcher using multilevel factor analysis may

examine a number of different factor structures at Level 1 and Level 2 and choose

the solution that best fits the data (e.g., Dedrick & Greenbaum, 2011; Roesch

et al., 2010). Taken as a whole, results suggest that researchers should use
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JM-AM or FCS-WCK because both employ very general models that are capable

of preserving complicated multilevel data structures. Other than personal pre-

ference and software access, the current study provides no reason to prefer JM-

AM to FCS-WCK (or vice versa) for random intercept analyses, but it is worth

noting that JM-AM cannot preserve random slope variation, whereas FCS-WCK

can readily accommodate random associations (Enders, Keller, & Levy, 2016;

Enders, Mistler, & Keller, 2016). Although not examined in this article, FCS-

WCK may provide better estimates of Level 2 variances in some conditions. If

this is the case, JM-AM could also provide better results for some models (e.g.,

multilevel confirmatory factor analysis). We also point out that the original JM

formulation was restricted to multivariate normal data, but the approach has since

been extended to handle incomplete categorical variables2 via a probit regression

formulation (e.g., Asparouhov & Muthén, 2010; Goldstein et al., 2009; Enders,

Keller, & Levy, 2016; Enders, Mistler, & Keller, 2016). The FCS-WCK method

in the Blimp application accommodates categorical variables using the same

procedure (Enders, Keller, & Levy, 2016).

Finally, our study has a number of limitations that raise possibilities for future

research. First, the simulation study examined a relatively limited set of design

factors. Our goal for the simulation was to demonstrate and verify the analytic

work, but future research could examine a wider set of conditions, including

different cluster sizes, ICCs, covariance structures, and missing data mechan-

isms, to name a few. Note that the size of the contextual effect examined in this

study was larger than would commonly be encountered. A smaller contextual

effect would better reflect situations likely to be encountered in the real world

and would lead to a smaller gap between the two methods that performed poorly

in this study (JM-SY and FCS-VB) and the two methods that performed well in

this study (JM-AM and FCS-WCK). Second, we focused exclusively on popu-

lation and imputation models that contained random intercepts but no random

slopes. Multilevel imputation routines differ in their ability to include random

slopes (Enders, Mistler, & Keller, 2016); JM-AM does not allow for random

slopes, JM-SY restricts random slopes to the complete covariates, and both FCS

approaches can accommodate random slopes for any pair of variables. Future

studies should extend our analytic and simulation work by examining population

models where Level-1 associations vary across clusters. Third, we made no

attempt to examine data structures with three or more levels. Data sets with three

or more levels are fairly common (e.g., longitudinal studies where repeated mea-

sures are nested within individuals, and individuals are nested within groups), yet

very little work exists on three-level imputation. Yucel (2008) proposed a JM

approach to three-level imputation, and extending our analytic work to this context

could facilitate the development of a three-level FCS imputation model. Finally, it

might be useful to rerun the simulation study using an alternative analysis model

(e.g., multilevel SEM), as this might make show differences between the imputa-

tion methods that were not anticipated by the current authors.
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Notes

1. The same analysis was fit to each set of imputations, but the Mplus analysis

scripts varied slightly to accommodate the fact that variable order differed

across methods. For brevity, we include only the joint model Asparouhov and

Muthén (JM-AM) analysis script in the Appendix, available in the online

version of the journal.

2. Categorical missing data handling via the probit model varies across software

platform. For example, Mplus (JM-AM) can accommodate binary and ordinal

variables, whereas Blimp (fully conditional specification-WCK) and MLwiN

(joint model Schafer and Yucel [JM-SY]) can additionally handle incomplete

nominal variables.
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