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Article

Modeling students’ academic growth can be challenging, 
even in relatively ideal situations (Raudenbush, 2001; 
Rogosa, Brandt, & Zimowski, 1982). The challenges in 
modeling academic growth are amplified for students with 
significant cognitive disabilities (SWSCD) who are admin-
istered alternate assessments based on alternate achieve-
ment standards (AA-AAS; see Karvonen, Flowers, & 
Wakeman, 2013; Saven, Anderson, Nese, Farley, & Tindal, 
2016). These challenges can include missing data, test scal-
ing, small sample sizes, and group heterogeneity.

Missing data pose a serious challenge to modeling 
growth by introducing a potential source of systematic bias 
that threatens model-based inferences and generalizability 
(Allison, 2002; McKnight, McKnight, Sidani, & Figueredo, 
2007; Schafer & Graham, 2002). Missing data are perva-
sive in longitudinal AA-AAS data sets, with as much as 
75% attrition documented across Grades 3 to 8 (Saven 
et al., 2016; Tindal, Nese, Farley, Saven, & Elliott, 2016). 
The missingness can partially be attributed to students 
switching between the general and alternate assessments 
between years (Saven et al., 2016). When an established 
relationship between missingness and measured outcomes 
exists, namely, that students who performed very well on 
the AA-AAS took the general assessment the following 
year and were thus missing on the AA-AAS data, the out-
comes are missing not at random (MNAR; Allison, 2002; 
Schafer & Graham, 2002). In situations where data are 

MNAR, missingness must be accounted for statistically 
such that the data become missing at random conditional on 
the modeled covariates (MAR; Hedeker & Gibbons, 1997; 
Muthén & Muthén, 1998–2007). Note that missingness is 
ignorable when the data are missing completely at random 
(MCAR) or MAR conditional on the modeled covariates, 
while MNAR data bias model estimates to an unknown 
extent. However, while tests of MCAR exists (Little & 
Rubin, 2002), it is impossible to know whether the covari-
ates in a model sufficiently account for the missingness and 
result in MNAR data becoming MAR (Enders, 2011).

The degree of missing data in AA-AAS longitudinal data 
sets is severe at times. For example, Saven et al. (2016) found 
that of the 1,182 students who took a state’s AA-AAS in 
Grade 3, only 293 students were administered the measure 
annually through Grade 8. The authors also documented the 
extent to which students switched between the alternate and 
general assessment from year to year and found higher rates 
than would be expected by chance, with students performing 
in the top performance level in the AA-AAS or the bottom 
performance level on the general assessment generally more 
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likely to switch than their peers. These patterns suggested a 
non-random missing data mechanism, yet previous research 
on academic growth for SWSCD has not directly addressed 
the missing data problem.

Modeling growth reliably requires test scales that are 
sensitive to the academic growth of SWSCD and reflective 
of a comprehensive developmental continuum. A common 
scale is generally a prerequisite to meaningful interpretation 
of score changes over time, without which changes in stu-
dents’ performance are confounded by changes in the mea-
surement scale. Although it is possible to model change 
over time in a normative manner that is not scale dependent, 
a common scale is required to determine the magnitude of 
growth (Betebenner & Linn, 2009).

As a group, SWSCD exhibit tremendous heterogeneity 
in terms of communication levels, support needs, functional 
skills, academic abilities, and disability classifications 
(Towles-Reeves, Kearns, Kleinert, & Kleinert, 2009; 
Ysseldyke & Olsen, 1997). These intrapopulation differ-
ences make it difficult to establish reliable measurement 
scales. The functional skill and academic ability limitations 
of SWSCD can be confounded with the constructs assessed 
(Koretz & Hamilton, 2006). Furthermore, there is little evi-
dence on how Individualized Education Program (IEP) 
decision making affects AA-AAS test participation, which 
calls into question the constitution of the tested population 
(Cho & Kingston, 2013a, 2013b). Changes in disability 
classifications across grades also calls sample stability into 
question (Schulte & Stevens, 2013, 2015). In addition, 
small sample sizes present serious methodological limita-
tions that make it difficult to impossible to meaningfully 
include all SWSCD in growth modeling efforts (Buzick & 
Laitusis, 2010; Dunn, Roussos, Lonczak, & Sukin, 2012; 
Karvonen et al., 2013).

There are promising ways of addressing the challenges 
of modeling growth for SWSCD, but a number of hurdles 
remain. In the sections that follow, we briefly review the 
history of AA-AAS, summarize the available literature 
related to modeling academic growth for SWSCD, and 
describe the purpose and context of our study before intro-
ducing the methods of our study.

A Brief History of Alternate 
Assessments

Alternate assessments were first federally mandated in 
1997 for students whose disabilities precluded meaningful 
participation in statewide general assessments (Individuals 
With Disabilities Education Act Amendments [IDEA], 
1997). The No Child Left Behind Act of 2001 (NCLB) sub-
sequently defined technical adequacy requirements for 
AA-AAS, in which SWSCD were first identified (The No 
Child Left Behind Act of 2001 [NCLB], 2002). The U.S. 
Department of Education mandated implementation of 

AA-AAS to involve SWSCD in statewide academic 
accountability systems, with federal guidance clarifying the 
definition and technical requirements of AA-AAS multiple 
times (U.S. Department of Education, 2003, 2005). All 
states now include annually administered AA-AAS as part 
of their statewide accountability systems that are reviewed 
based on federal technical requirements. With adoption of 
The Every Student Succeeds Act (ESSA; 2015), only the 
participation-proficiency rates change; otherwise, testing 
with AA-AAS continues in form and substance as part of 
states’ broader accountability systems.

Historically, states have used data from AA-AAS within 
status-based accountability models. However, interest in 
assessing students’ longitudinal growth is increasing: 
“Including measures of student growth in accountability is 
important because it allows schools and teachers to be rec-
ognized for student learning not just for student perfor-
mance at a fixed point in time” (Buzick & Laitusis, 2010, p. 
537). As a consequence, state general education systems 
have been developing growth-based models to supplement 
NCLB-required status-based models (Blank, 2010; Carey 
& Manwaring, 2011; Jacobs et al., 2015; O’Malley, Murphy, 
McClarty, Murphy, & McBride, 2011; U.S. Department of 
Education, 2015).

In addition, teacher evaluation programs are intensifying 
the need for reliable growth measures. Thirty-five states 
currently incorporate measures of student academic growth 
as a preponderant criterion in such evaluations (Jacobs 
et al., 2015). ESSA (2015) also allowed for growth-based 
accountability models.

Academic Growth Literature for 
SWSCD

Although a number of studies have reviewed the academic 
growth for students with disabilities using various mea-
sures, relatively few have documented growth for SWSCD 
who participate in AA-AAS (Dunn et al., 2012; Karvonen 
et al., 2013; Tindal et al., 2016). Dunn et al. (2012) evalu-
ated six modeling approaches for alternate assessments 
using a transition matrix (TM) approach, comparing a stu-
dent’s performance level (e.g., above proficient, proficient, 
nearing proficient, well below proficient) to successive 
changes in annual classification. Dunn and colleagues stud-
ied students in Grades 3 to 8 in the below proficient range to 
determine the percentages of those who moved up, down, or 
remained the same in performance level. Dunn et al. deter-
mined that combining a 3-year TM model with a method to 
evaluate gains within a performance level was the most 
comprehensive of the six studied. Although Dunn and col-
leagues evaluated changes in the performance of SWSCD 
across grades, two main limitations constrained the infer-
ences they could draw. First, the authors assumed that the 
assessments given across Grades 3 to 8 were of comparable 
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difficulty, an assumption that is likely untenable. Second, 
the authors noted small sample sizes and yearly changes in 
the analytic sample but did not account for the presence of 
missing data, which limited their ability to evaluate growth.

Karvonen et al. (2013) applied TM, growth to standards 
(GTS), and ordinary least squares (OLS) regression  
models to 3 years of reading and mathematics data for 
SWSCD in three states. The TM approach appeared too 
insensitive, as approximately 40% of students never 
changed performance-level classifications. Karvonen and 
colleagues reported similar results for the OLS regression 
analyses. Overall, the researchers observed wide variations 
across states, due in part to differences in performance-level 
classifications. Similar to Dunn et al. (2012), small sample 
sizes and missing data clearly limited the ways in which 
Karvonen and colleagues could model growth. The 
researchers collapsed analyses across grades to address 
small sample size and acknowledged their inability to 
model growth beyond a 2-year span due to missing data.

Tindal et al. (2016) analyzed reading growth for SWSCD 
in Grades 3 to 5 over the 2008–2010 school years, compar-
ing a TM with a multi-level linear growth model (MLLGM). 
When applying the TM method, Tindal and colleagues found 
that the majority of students remained at the same perfor-
mance level annually. However, using the MLLGM, the 
researchers found that students’ scores increased in a mod-
est, but statistically significant manner from year to year, on 
average. They concluded that the MLLGM approach was 
more sensitive than TM approaches. Tindal and colleagues 
also reported large variance in intercept and growth esti-
mates, suggesting substantial differences between students 
in terms of initial achievement and rates of growth. The TM, 
OLS, and GTS approaches evaluated in previous research, 
while innovative in that they modeled changes in academic 
performance of SWSCD across grades, appear too insensi-
tive, whereas the MLLGM applied by Tindal et al. (2016), 
which was tied to a common scale, demonstrated growth 
that was small and incremental.

Current Study Context and Purpose

Similar to MLLGM, latent growth curve models (LGCM) 
make it feasible to estimate annual change across multiple 
grades, provided a common scale is in place. These models 
also account for the multivariate structure of the data with a 
residual error term modeled for each grade, provide statisti-
cal avenues for handling missing data, and allow for an 
examination of the variance around the average initial 
achievement and rates of growth. The purpose of this study 
is to present preliminary evidence of reading growth for 
SWSCD across Grades 3 to 5 in one state, while accounting 
for patterns of missing data. The study context is relatively 
unique, in that a common AA-AAS, mapped to a common 
scale, was administered over 3 consecutive years.

We fit a LGCM across Grades 3 to 5, collected during 
the 2010–2011, 2011–2012, and 2012–2013 school years. 
We tested both linear and nonlinear functional forms, using 
an estimated factor-loading approach (see Kamata, Nese, 
Patarapichayatham, & Lai, 2013). Similar to previous 
research on academic growth for SWSCD, we observed 
substantial missing data, and thus explicitly explored the 
extent to which modeling missingness improved model fit 
and changed the parameter estimates via a random-effects 
pattern-mixture model (Hedeker & Gibbons, 1997; Muthén 
& Muthén, 1998–2007). We addressed the following three 
research questions:

Research Question 1: What are typical growth trajecto-
ries for SWSCD?
Research Question 2: Do SWSCD with different dis-
ability classifications grow at significantly different 
rates?
Research Question 3: Does incorporating a model for 
missing data significantly improve model fit or change 
parameter estimates?

Method

Sample

This study included all students who participated in the 
reading portion of the AA-AAS in one Pacific Northwest 
state in each of Grades 3, 4, and 5 (N = 1,612). All third-, 
fourth-, and fifth-grade students who took the third-, 
fourth-, and fifth-grade AA-AAS, respectively, from 2011–
2013 were included in the sample. This selection process 
did not include a small number of students who partici-
pated in the AA-AAS yet did not make typical grade-level 
progressions from Grade 3 to 4 (n = 7; .009%) and from 
Grade 4 to 5 (n = 2; .002%). Demographic variables were 
treated as fixed, with the subgroup status for the first test 
administration defining all subsequent grades for individ-
ual students. All disability subgroups were retained for 
analysis; however, subgroups with fewer than 20 cases per 
classification were combined into one heterogeneous cate-
gory, labeled Low-Incidence (LowInc), to preserve the sta-
bility of parameter estimates (Kline, 2016). We removed 
students with no Statewide Student Identification (SSID) 
number, as well as students with no recorded disability sta-
tus. These two exclusion criteria eliminated 32 students, 
for an analytic sample of 1,580. The overall sample means 
were virtually unchanged by the deletion.

Approximately 68% of students in the analytic sample 
were male and 81% were White. Approximately 29% of 
students were identified with a specific learning disability 
(SLD), 18% with a communication disorder (CD), which is 
defined federally as a speech–language impairment (SLI), 
17% with autism spectrum disorder (ASD), 15% with an 
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intellectual disability (ID), 14% with other health impair-
ments (OHI), 4% with emotional disturbance (ED), and 2% 
with an orthopedic impairment (OI). An additional 2% of 
students were classified as low-incidence, which included 
students with a hearing impairment (HI), visual impairment 
(VI), deaf-blindness (DB), and traumatic brain injury (TBI). 
These demographics were consistent with AA-AAS popu-
lation expectations in the state.

The high percentage of students with SLD and CD 
included in the AA-AAS is complicated by the fact that the 
state does not have a multiple disabilities category and 
because our data included only students’ primary disability 
category. It is likely that students labeled as either SLD or 
CD within the data set had more complex needs than a pri-
mary label might suggest, and, therefore, reflected students 
with multiple secondary disabilities. It is also possible that 
the assessment was administered to students who were mis-
classified as eligible for participation in the AA-AAS.

Measures

The reading portion of the AA-AAS was used for all analy-
ses. The measure was composed of two versions, Standard 
and Scaffold. The Scaffold version had the same item 
prompts as the Standard version, but included supportive 
directive statements and visual supports. Each version 
included Prerequisite Skills and Content tasks. The 
Prerequisite Skills task determined the level of support stu-
dents required during the administration of the Content 
tasks, which were designed to assess students’ academic 
knowledge and skills linked to the statewide content stan-
dards. Students’ scores on the Prerequisite Skills task did 
not count toward the students’ reported scores for account-
ability. A total of 40 Content task items were included.

Anderson, Farley, and Tindal (2013) determined that the 
Prerequisite Skills task functioned as a mediator of student 
disability on latent content knowledge; in addition, the 
researchers determined that the factor structures for the 
Standard and Scaffold versions were equivalent. Anderson 
and colleagues’ study provided empirical evidence that the 
test design was working as intended and provided compa-
rable results across versions. The internal consistency of the 
measures, reported by the statewide technical reports, was 
quite high, with coefficient alpha reported at .92, .95, and 
.96 for the Grades 3 to 5 test administrations, respectively.

From 2011 to 2013, the state’s AA-AAS was a paper/
pencil assessment distributed via a secure website. Trained 
district staff members served as qualified assessors and 
individually administered the reading portion of the 
AA-AAS annually each spring. Students were directed to 
select the most appropriate answer from three choices, with 
items scored as 0 = incorrect, 1 = partially correct, and 2 = 
correct. Alternate forms of the same test were administered 

over the 3 consecutive years, with scores calibrated to a 
common scale. Rasch Unit Scale scores were used for all 
analyses, estimated via a partial credit Rasch model 
(Masters, 1982), where RIT = Rasch Unit = ( *10) +100θ , 
with θ  representing the Rasch person ability estimates.

The scores ranged from approximately 43 to 159 RIT 
points, across grades. The means for Grades 3 to 5 were 
105.56 (n = 1,062, Mdn = 111.0, SD = 23.61), 110.74 (n = 
1,195, Mdn = 110.7, SD = 24.39), and 109.94 (n = 1,046, 
Mdn = 117.1, SD = 23.59), for Grades 3 to 5, respectively. 
When the scale was initially created with the partial credit 
Rasch model, it was scaled to have a mean of 100 and a 
standard deviation of 10. The item difficulty parameters for 
items included in the initial scale creation were anchored at 
the initial calibration values for future test administrations, 
making scores comparable across years. The mean scores 
for our sample exceeded the initial scale mean of 100 due to 
new cohorts of students performing at a higher level than 
the cohort used to establish the initial scale. Approximately 
33% of students were missing data from Grade 3, while 
24% and 34% of students were missing data in Grades 4 and 
5, respectively. The measures correlated at .62 between 
Grades 3 and 4, .61 between Grades 3 and 5, and .64 
between Grades 4 and 5.

Analyses

Our baseline model included a linear LGCM with reading 
scores from Grade 3, 4, and 5, modeled by latent Intercept 
and Slope variables. Factor loadings for the Intercept vari-
able were fixed at 1.0, while the factor loadings for Slope 
were initially fixed at 0, 1, and 2, for Grades 3 to 5, respec-
tively. The baseline model also included estimation of the 
variance around the mean intercept and slope, and the cova-
riance between the two. This model was compared with a 
nonlinear model, with the factor loading for Grade 5 freely 
estimated for the latent Slope variable (0, 1, and λ; see 
Kamata et al., 2013). The nonlinear model did not converge 
without errors. However, given the apparent nonlinearity in 
the data, we explored a more parsimonious model with 
slope variance fixed at 0 (implying all students progressed, 
statistically, at the same rate) for both linear and nonlinear 
models. Information criteria (described below) indicated 
the nonlinear model with fixed slope variance fit the data 
best (see Figure 1), among the parameterizations of the 
unconditional model. The nonlinear model therefore 
became our new baseline model, from which all subsequent 
models were built and compared. Given the non-normality 
of the score distributions, we used maximum likelihood 
with robust standard errors (MLR) estimation within the 
Mplus 7.3 software for all LGCM analyses (Muthén & 
Muthén, 1998–2007), which is robust to deviations from 
multivariate normality.
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Model building. Following estimation of the baseline model, 
we specified sex (male/female) and race/ethnicity (White/
non-White) as predictors of students’ initial achievement 
(Model 2) and then as predictors of student initial achieve-
ment and rate of growth (Model 3). These variables did not 
improve the fit of the model over the unconditional model 
and were not variables of theoretical interest; they were 
therefore removed from subsequent models. We next 
included disability as a predictor of students’ initial achieve-
ment (Model 4), followed by disability as a predictor of stu-
dents’ initial achievement and rate of growth (Model 5). 
Disability status was entered with a set of dummy-coded 
vectors, representing whether the student was identified as 
CD, ASD, OHI, SLD, OI, ED, or as part of the LowInc cat-
egory. Students’ with ID represented the reference group.

Missing data were analyzed with Little’s MCAR test, 
using the MissMech R software package (Jamshidian, 
Jalal, & Jansen, 2014). The test was rejected (p < .05), 
indicating probable divergence from MCAR, and a possi-
ble bias around estimation (Little & Rubin, 2002). 
Following Model 5, we fit random-effects pattern-mixture 
models to account for missingness. Pattern-mixture mod-
els represent one method of accounting for data that are 

potentially MNAR by including patterns of missing data 
as predictors of the estimated parameters. Pattern-mixture 
models separate the analysis into strata by the observed 
missingness patterns, and growth models are fit within 
each stratum (Hedeker & Gibbons, 1997; Muthén & 
Muthén, 1998–2007). The difference in parameter esti-
mates between missing data patterns can then be evaluated 
with the main effects (i.e., average initial achievement and 
rate of growth). In other words, the data become MAR, 
conditional on the observed covariates (see Little & Rubin, 
2002). Observed missing data patterns and percentages are 
displayed in Table 1.

Model fit evaluation. When evaluating model fit, we used cut 
off criteria recommended by Hu and Bentler (1999) a priori, 
targeting a comparative fit index (CFI) ≥ 0.95, standardized 
root mean square residual (SRMR) ≤ 0.08, and root mean 
square error of approximation (RMSEA) ≤ 0.06. When 
comparing competing models, we used multimodel infer-
ence (Burnham & Anderson, 2004), with Akaike informa-
tion criterion (AIC; Akaike, 1973) and Bayesian information 
criterion (BIC; also referred to as Schwartz criterion; 
Schwartz, 1978). AIC and BIC are transformations of the 
log likelihood that balance model fit with parsimony (i.e., 
both fit indices include penalties for the number of esti-
mated parameters), in which lower values indicate better 
fitting models. We also calculated Akaike weights (using 
both AIC and BIC; see Burnham & Anderson, 2004), which 
transform raw AIC and BIC values into conditional proba-
bilities. The weights can be interpreted as the evidence in 
favor of one model over others in a set of models.

Magnitude of growth. To facilitate interpretation of the mag-
nitude of observed growth with test results that are likely on 

Figure 1. Model 6: Our best-fitting model of reading 
achievement and growth conditional on students’ disability 
status and patterns of missing data (with fixed slope variance).
Note. CD = communication disorder; ASD = autism spectrum disorder; 
OHI = other health impairment; SLD = specific learning disability; OI = 
orthopedic impairment; ED = emotional disturbance; LowInc = hearing 
impairment, visual impairment, deaf-blindness, or traumatic brain injury; 
Missing = the missing data patterns, with students with no missing data 
as the reference group.

Table 1. Missing Data Patterns, Population Sizes, and 
Percentages.

Grade level

Pattern Grade 3 Grade 4 Grade 5 n %

Missing G34 0 0 1 135 8.54
Missing G35 0 1 0 142 8.99
Missing G45 1 0 0 213 13.48
Missing G3 0 1 1 241 15.25
Missing G4 1 0 1 37 2.34
Missing G5 1 1 0 179 11.33
No missing data 1 1 1 633 40.06

Note. A zero indicates missing data, while a one indicates a valid score. 
Missing G3 = missing data in third grade only; Missing G4 = missing 
data in fourth grade only; Missing G5 = missing data in fifth grade only; 
Missing G34 = missing data in third and fourth grade; Missing G45 = 
missing data in fourth and fifth grade. Missing G35 = missing data in third 
and fifth grade. No missing data = student had complete data over the 
3-year period.



200 Remedial and Special Education 38(4) 

Table 2. Model Parameter Estimates: Reference Group Is Students With ID and No Missing Data.

Unconditional (1)
Disability on 
intercept (4)

Disability on intercept 
and slope (5)

Disability and missing 
data on intercept (6)

Fully conditional 
(7)

Parameter β SE β SE β SE β SE β SE

Intercept 106.83** 0.62 94.77** 1.48 94.89** 1.62 92.30** 1.53 92.97** 1.68
 CD 19.69** 1.60 19.45** 1.82 17.50** 1.59 16.91** 1.83
 ASD −2.66 2.19 −2.27 2.40 −3.46 2.17 −3.44 2.37
 OHI 14.44** 2.05 14.55** 2.32 12.65** 1.54 12.43** 2.30
 SLD 24.43** 1.51 23.77** 1.75 21.31** 1.54 20.09** 1.79
 OI −24.25** 6.04 −26.45** 6.32 −25.34** 6.14 −28.33** 6.56
 ED 19.54** 1.99 19.03** 2.39 16.65** 1.99 15.36** 2.42
 LowInc 3.47 4.89 4.47 5.34 2.39 4.67 3.37 4.87
 MissG34 3.68* 1.78 3.10 1.79
 MissG35 8.52** 1.59 9.17** 1.63
 MissG45 12.38** 1.47 12.40** 1.48
 MissG3 3.61* 1.46 8.27** 2.50
 MissG4 −1.11 3.66 0.23 3.85
 MissG5 8.19** 1.47 7.00** 1.58
Slope 5.49** 0.47 5.33** 0.47 5.12 0.92 5.67** 0.51 4.29** 0.89
G5 factor loading 1.27 0.10 1.30 0.10 1.32 0.11 1.35 0.10 1.64 0.19
 CD 0.32 1.16 0.60 0.96
 ASD −0.54 1.37 −0.12 1.14
 OHI −0.15 1.23 0.18 1.02
 SLD 0.86 1.05 1.34 0.89
 OI 2.72 3.40 3.22 2.88
 ED 0.67 1.87 1.43 1.64
 LowInc −1.35 2.74 −1.28 2.37
 MissG3 −3.43* 1.58
 MissG4 −1.99 1.98
 MissG5 3.17* 1.28

Note. ID = intellectual disability; CD = communication disorder; ASD = autism spectrum disorder; OHI = other health impairment; SLD = specific 
learning disability; OI = orthopedic impairment; ED = emotional disturbance; LowInc = hearing impairment, visual impairment, deaf-blind, and traumatic 
brain injury. MissG3, G4, G5 = missing data in third, fourth, or fifth grade. MissG34 = missing data in third and fourth grade, and so on.
*p < .05. **p < .001.

an unfamiliar scale and to provide a comparative source for 
future studies of SWSCD academic growth, we calculated 
effect sizes between Grades 3, 4, and 5 for each disability 
group. These effect size calculations convey the mean dif-
ferences between each grade divided by the pooled standard 
deviation and provide a normative expectation of annual 
reading growth for SWSCD. We also calculated between-
group effect size gaps for each grade level. Although it is 
not feasible at present to compare these effect size gaps with 
other studies with SWSCD, they may nonetheless provide a 
relevant benchmark for researchers and statewide account-
ability system policy makers interested in performance gaps 
when defining appropriate growth expectations for SWSCD 
(Hill, Bloom, Black, & Lipsey, 2008).

Results

Parameter estimates are displayed for Models 1, 4, 5, 6, and 
7 in Table 2. These models were most relevant to our 

research questions and also conveyed the best model fit sta-
tistics. Intercept and residual variances, as well as model fit 
statistics, are provided in Table 3. The baseline model, 
Model 1, indicated that students scored, on average, 106.83 
RIT points in Grade 3. The estimated factor loading for 
Grade 5 was 1.27, while the estimated slope was 5.49. 
These results imply that students gained, on average, 5.49 
RIT points from Grades 3 to 4 and 5.49 × 1.27 = 6.97 points 
from Grades 3 to 5, without accounting for student disabil-
ity or controlling for missing data patterns. The average dif-
ference in gains from Grades 3 to 4 (5.49) to Grades 4 to 5 
(1.48) was substantial and nonlinear.

Student disability covariates were added (Model 4) to 
determine the relationship among the disability groups in 
terms of initial status. The addition of disability covariates 
resulted in a substantial drop in AIC and BIC relative to 
Model 1 (ΔAIC = −517.66, ΔBIC = −480.11), suggesting 
improved model fit to the data. Student disability subgroups 
performed in the following ranked order (highest to 
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lowest): SLD, CD, ED, OHI, LowInc, ID, ASD, and OI. 
Disability covariates were included as predictors of the 
slope in Model 5, but model fit was not improved compared 
with Model 4 (ΔAIC = +10.76, ΔBIC = +48.32). None of 
the individual parameter estimates indicated that students 
identified in any disability category progressed at a signifi-
cantly different rate, on average, compared with students 
with ID.

Missing data patterns were included as predictors of stu-
dents’ initial achievement in Model 6, along with the previ-
ously included disability covariates. The inclusion of 
missing data patterns resulted in another drop in model AIC 
and BIC compared with Model 4, the best-fitting prior 
model (ΔAIC = −50.76, ΔBIC = −18.56). The Model 6 
intercept values for each disability decreased compared 
with Model 5 after accounting for missing data patterns. 
However, the ranked-order pattern of initial student achieve-
ment by disability grouping from Models 5 to 6 remained 
consistent. Finally, we fit our fully conditional model, with 
disability and missing data patterns entered as predictors of 
students’ initial achievement and rate of growth (Model 7; 
Note: We were not able to include all missing data patterns 
as predictors of the slope in Model 7, as three of the patterns 
had only 1 year of data). This did not result in improvement 
for AIC or BIC compared with our best-fitting prior model, 
Model 6 (ΔAIC = +4.04, ΔBIC = +57.69). Akaike weights 
for Model 6 show that it is our best-fitting model, rounding 
to 1.0 for BIC and 0.88 for AIC.

Analysis of model fit statistics suggested that our models 
fit the data quite well, given our a priori criteria. The CFI 
ranged from 0.988 to 1.000 (Model 6 = .988), the SRMR 

ranged from 0.016 to 0.044 (Model 6 = 0.033), and the 
RMSEA ranged from 0.000 to 0.033 (Model 6 = 0.025). 
Our best-fitting model, Model 6, indicated that the initial 
achievement of the reference group (ID) was 92.30 RIT 
scale points, and that they gained 5.67 RIT points between 
Grades 3 and 4 and 1.98 RIT points between Grades 4 and 
5 (λ = 1.35).

We observed broad mean differences across models in 
students’ initial achievement, depending on disability and 
patterns of missing data (see Table 2). Model 6, for instance, 
which displayed the best evidence of fit, indicated that, on 
average, students with SLD scored 21.31 points higher ini-
tially than ID students with no missing data, while students 
with CD, ED, and OHI scored 17.50, 16.65, and 12.65 
points higher, respectively. Students with ASD or in the 
LowInc category did not have an initial achievement sig-
nificantly different from students with ID. All model 
observed means and nonlinear growth trajectories by dis-
ability are presented in Figure 2.

Tables 4 and 5 convey effect sizes for the average growth 
between grades and effect size gaps among the disability 
groups, respectively. Overall, patterns of growth are in 
accord with our models, where greater average growth 
occurred between Grades 3 and 4 than between Grades 4 
and 5. Students with SLD, OI, and ED outperformed their 
peers in this cohort, with effect sizes ranging from 0.56 to 
0.65 over the studied grades. The lowest performing group 
in terms of growth was LowInc (i.e., VI, HI, DB, and TBI), 
which appeared to marginally regress, on average. The 
effect size gaps between disability subgroups, reported in 
Table 5, indicated that the size of the achievement gaps 

Table 3. Variances and Model Fit Statistics.

Statistic
Unconditional 

Model 1

Disability on 
intercept  
Model 4

Disability on 
intercept and slope 

Model 5

Disability and missing 
pattern on intercept 

Model 6
Fully conditional 

Model 7

Variance Variance SD Variance SD Variance SD Variance SD Variance SD

 Intercept 444.34** 21.08 302.42** 17.39 301.88** 17.37 286.17** 16.92 285.42** 16.89
 Residual 2011 104.00** 10.20 104.12** 10.20 104.38** 10.22 102.45* 10.12 102.37** 10.12
 Residual 2012 123.98** 11.13 122.37** 11.06 122.49** 11.07 121.16** 11.01 120.44** 10.97
 Residual 2013 101.08** 10.05 100.60** 110.03 100.09** 10.00 102.28* 10.11 101.06* 10.05

 AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Information 
criteria

28,345.25 28,382.81 27,827.59 27,902.70 27,838.35 27,951.02 27,776.83 27,884.14 27,780.87 27,941.83

Akaike weights 0.0 0.0 0.0 0.0 0.0 0.0 0.88 1.0 0.12 0.0
Fit indices
 CFI 0.999 1.000 0.998 0.988 0.988
 SRMR 0.044 0.017 0.016 0.033 0.034
 RMSEA 0.014 0.000 0.014 0.025 0.033

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion. CFI = comparative fit index; SRMR = standardized root mean square 
residual; and, RMSEA = root mean square error of approximation.
*p < .01. **p < .001.
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Figure 2. Observed means are displayed with two standard errors around each mean.
Note. Observed means are jittered to match the hierarchical order presented in the legend, from highest performing to lowest performing. Nonlinear 
reading growth trajectories for each of the eight disability groups included in our study resultant from Model 6, our best-fitting model, are also 
presented. RIT = Rasch unit; SLD = specific learning disability; CD = communication disorder; ED = emotional disturbance; OHI = other health 
impairment; LowInc = hearing impairment, visual impairment, deaf-blindness, or traumatic brain injury; ID = intellectual disability (reference group); 
ASD = autism spectrum disorder; OI = orthopedic impairment.

Table 4. Effect Size by Disability.

Variable Grade 3 to 4 Δ Grade 4 to 5 Δ Grade 3 to 5 Δ

ID 0.22 0.02 0.26
CD 0.45 −0.07 0.37
ASD 0.09 0.02 0.11
OHI 0.19 0.06 0.27
SLD 0.45 0.02 0.56
OI 0.27 0.25 0.56
ED 0.54 0.20 0.65
LowInc 0.21 −0.31 −0.09
Total 0.22 −0.03 0.19

Note. Δ = change in effect size between grades. ID = intellectual 
disability; CD = communication disorder; ASD = autism spectrum 
disorder; OHI = other health impairment; SLD = specific learning 
disability; OI = orthopedic impairment; ED = emotional disturbance; 
and LowInc = hearing impairment, visual impairment, deaf-blind, and 
traumatic brain injury as one combined category.

between student disability groups remained stable across 
grades. This is consistent with our modeling results, sug-
gesting that students exhibit significant intercept differ-
ences, but progressed at similar average rates.

Discussion

Little previous research has modeled the academic growth 
of SWSCD using AA-AAS, which inherently presents com-
plex challenges. The results of this study add to the growing 
body of literature (Dunn et al., 2012; Karvonen et al., 2013; 
Tindal et al., 2016), using a sophisticated LGCM approach 
while accounting for the presence of missing data patterns. 
Our research attempted to answer three primary questions.

Our first research question addressed the typical aca-
demic reading growth trajectory for SWSCD in Grades 3 to 
5. The model that displayed the best fit to the data, Model 
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6, indicated that SWSCD involved in our study grew 5.67 
RIT scale points between Grades 3 and 4 and 1.98 RIT 
scale points between Grades 4 and 5 (λ = 1.35). Growth 
was nonlinear, with more growth occurring between 
Grades 3 and 4 than between Grades 4 and 5, which under-
scores the importance of first determining functional form 
in growth modeling.

We present effect sizes in Table 4 to provide scale-inde-
pendent analyses of our findings. Effect sizes indicated that 
some disability subgroups demonstrated moderate growth 
over the 2-year period (ED, SLD, and OI), while others dis-
played moderate to small (CD) or small growth (ID, ASD, 
OHI) based on Cohen’s (1988) thresholds. However, Hill 
et al. (2008) argued that effect sizes should be interpreted in 
context and cannot be aptly understood with effect size 
rules of thumb. Although not a perfect comparison due to 
the fact that their meta-analyses included general education 
students, Hill et al. conducted a comprehensive literature 
review and found that annual reading effect sizes gains 
were 0.36 from Grades 3 to 4 and 0.40 from Grades 4 to 5 
(0.76 across Grades 3–5). Averaging across disabilities, the 
effect size gain from Grades 3 to 5 in our study was 0.19, 
more than .5 standard deviations lower than that reported by 
Hill et al. for general education students. Performance dif-
ferences, perhaps expectedly dissimilar between general 
education peers and SWSCD, provide a comparative 

context for future research involving AA-AAS. They are 
also important for statewide accountability policy makers to 
consider, particularly for those systems that incorporate 
growth expectations across diverse student populations. 
Additional research should help hone growth expectations 
for SWSCD.

Our second research question considered whether stu-
dents with different disability classifications progressed at 
significantly different rates. In our best-fitting model, we 
found that students with different disability classifications 
differed in initial average achievement, but did not grow at 
significantly different rates (see Figure 2). Our finding was 
in contrast to Tindal et al. (2015) who found substantial 
differences in the rates of growth among SWSCD and mer-
its further study. Overall, our results indicated that disabil-
ity category was not a significant predictor of slope. 
However, it is important to recognize that this finding 
might have been due to limitations in the areas of power or 
scale sensitivity. For example, Model 7 showed growth dif-
ferences between student subgroups that are of theoretical 
interest and deserve further study (see Figure 2). Students 
with SLD, CD, ED, and OHI began with higher initial sta-
tus and grew at faster rates, while students classified as 
LowInc, ID, and ASD began with lower initial status and 
grew at slower rates. Students with OI, by contrast, began 
with a low initial status, yet grew at a substantial rate. 

Table 5. Effect Size Gaps Between Disability Subgroups.

Variable Grade ID CD ASD OHI SLD OI ED LowInc

CD 3 0.81 — — — — — — —
 4 0.78  
 5 0.75  
ASD 3 −0.06 −0.87 — — — — — —
 4 −0.19 −0.97  
 5 −0.19 −0.95  
OHI 3 0.56 −0.25 0.62 — — — — —
 4 0.49 −0.29 0.68  
 5 0.54 −0.20 0.74  
SLD 3 1.02 0.21 1.08 0.47 — — — —
 4 0.97 0.19 1.16 0.48  
 5 0.99 0.24 1.18 0.44  
OI 3 −1.26 −2.07 −1.19 −1.81 −2.28 — — —
 4 −1.05 −1.84 −0.87 −1.55 −2.03  
 5 −0.74 1.49 −0.54 −1.29 −1.73  
ED 3 0.78 −0.03 0.84 0.22 −0.24 2.03 — —
 4 0.75 −0.03 0.94 0.26 −0.22 1.82  
 5 0.85 0.10 1.04 0.30 −0.14 1.59  
LowInc 3 0.14 −0.67 0.21 −0.41 −0.88 1.40 −0.63 —
 4 0.15 −0.63 0.34 −0.34 −0.82 1.21 −0.60  
 5 −0.24 −0.99 −0.05 −0.79 −1.23 0.50 −1.09  

Note. Effect size gaps are listed by year: 2011, 2012, and 2013. The column variables were subtracted from the row variables; therefore, positive values 
mean that the row variable had a higher mean, where negative values mean that the column variable had a higher mean. For example, students with 
CD outperformed students with ID across all 3 years, but performance gaps remained consistent (0.81, 0.78, and 0.75). ID = intellectual disability; 
CD = communication disorder; ASD = autism spectrum disorder; OHI = other health impairment; SLD = specific learning disability; OI = orthopedic 
impairment; ED = emotional disturbance; LowInc = hearing impairment, visual impairment, deaf-blind, and traumatic brain injury.
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These findings, however, should be interpreted cautiously, 
given that the inclusion of the disability subgroup parame-
ters reduced model fit and parallel slopes fit the data 
better.

Our final research question addressed whether including 
missing data patterns improved model fit and/or affected 
parameter estimates. We found that incorporating missing 
data patterns improved model fit (see Table 2). The observed 
missing data patterns are consistent with those found by 
Saven et al. (2016) and suggest that some students switched 
between the general and alternate assessment. Saven and 
colleagues (2016) found that approximately 25% of stu-
dents switched between the general assessment and the 
AA-AAS in the state reviewed over a 3-year period. Our 
annual missingness rates varied from 24% to 34%. It is fea-
sible, therefore, that the missing data mechanism in our 
models may be largely accounted for by test switching. 
Determining the reasons for observed patterns of missing-
ness in AA-AAS is an important avenue of future study, as 
it may afford inclusion of additional meaningful predictors 
of growth.

Statistically addressing observed missingness has not 
been part of previous research on the estimation of growth 
for SWSCD, despite being a prevalent and substantial hur-
dle. Had we included only students with complete data, the 
analytic sample would have included only 633 students—a 
loss of about 60% of the overall sample. The pattern-mixture 
model represents one method for accounting for meaningful 
patterns of missing data, and future research should explore 
the sensitivity of this and alternative methods. The pattern of 
results suggests that missingness affected parameter esti-
mates and should be accounted for when modeling growth.

Beyond evaluating the academic growth of SWSCD for 
substantive reasons (e.g., exploring typical rates of improve-
ment for select disability subgroups), the educational policy 
environment has placed considerable emphasis on evaluat-
ing students’ growth as part of accountability frameworks. 
This might be a difficult goal to achieve for SWSCD, given 
(a) missing data are pervasive and often make up a substan-
tial proportion of testing samples, (b) common scales are 
generally not available even within AA-AAS testing frame-
works, (c) the population of students has high variability in 
performance (even within subgroups), and (d) subgroup 
sample sizes are often very small (even at the state level). 
Furthermore, to date, content domains have generally not 
been constructed to define a developmental continuum that 
supports meaningful interpretations of score changes across 
grades with respect to actual student learning. Drawing 
valid inferences about growth requires a set of academic 
content standards and achievement-level descriptors 
(ALDs) that map vertically and outline expected gains in 
knowledge and skills as assessment scores increase 
(Karvonen et al., 2013). We used a common scale for our 
study, but our ALDs were not mapped vertically by design.

Limitations

The purpose of this study was to document the academic 
reading growth of SWSCD in Grades 3 to 5, while account-
ing for disability and missingness. Our results must be qual-
ified in light of their limitations. First, we assumed that 
students’ disability classifications were singular in nature 
and that they did not change over the course of the study. 
However, classification can be multifaceted (e.g., a student 
might be identified as having multiple disabilities) and 
change from grade to grade. Evidence suggests that measur-
ing and accounting for this variability may improve model 
fit and affect study results (Schulte & Stevens, 2013).

Second, as noted in our discussion of the sample, high 
percentages of students with SLD and CD were included in 
this state’s AA-AAS. Although it is likely that students 
labeled as either SLD or CD had more complex needs than 
a primary label might suggest, we expect that their inclu-
sion may have inflated grand mean and slope estimates, 
though these were accounted for in subsequent models. 
These findings suggest that some students might have been 
misclassified as eligible for participation in this state’s 
AA-AAS. The state should thus reconsider the rigor of its 
AA-AAS eligibility criteria.

Third, although we attempted to account for the 
observed patterns of missing data with a pattern-mixture 
model, in which data can be considered MAR conditional 
on the observed covariates (Little & Rubin, 2002), it is 
clear that missing data in our study were MNAR. 
Unfortunately, it is impossible to know whether the  
pattern-mixture model adequately accounted for the bias 
introduced by the MNAR process (Enders, 2011). We 
simply argue that missing data are a consistent complex-
ity in AA-AAS modeling contexts and that the effect of 
missing data on growth estimates cannot be ignored. We 
also recommend further exploration of the systematic fac-
tors that are generating missing data, such as test switch-
ing (Saven et al., 2016) and IEP team eligibility decision 
making (Cho & Kingston, 2013a, 2013b).

Finally, our growth modeling assumed that the com-
mon assessment scale was sufficient, including an assump-
tion that it aptly quantified growth across the identified 
achievement continuum. These assumptions are question-
able and worthy of substantiation (Betebenner & Linn, 
2009). Having a common scale, while a prerequisite for 
modeling progress across grades, may be insufficient to 
model growth if it is not matched to a developmental 
scope and coherent sequence of academic content and per-
formance expectations (Karvonen et al., 2013). An impor-
tant design component of the AA-AAS used for this study 
was that the content standards were initially vertically 
aligned and then all items linked to them; however, the 
standards and ALDs have not yet been evaluated through 
the lens of modeling growth.
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Conclusions and Future Directions

Although progress is being made in efforts to estimate read-
ing growth for SWSCD taking AA-AAS, the process gives 
rise to many unanswered questions. We found that most 
SWSCD demonstrated growth when the assessment results 
were anchored to a common scale; yet, there were no statis-
tically significant differences in growth rates between stu-
dent disability subgroups. We also found that growth is 
quite gradual and decreases over time, on average, for many 
students.

The impact of missing data for AA-AAS growth model-
ing cannot be ignored, given its degree and ostensible per-
vasiveness. Missing data impact growth estimates by 
potentially limiting the types of available analyses and 
threatening the validity of interpretations by introducing 
additional sources of bias. Including missing data patterns 
within growth models is one promising way of handling this 
issue, yet further study is needed. Our study accounted for 
missing data patterns in estimates of intercept and growth, 
but investigation into the contextual factors that contribute 
to the missing data could lead to more advanced methods 
(i.e., embedding models for the missing data mechanisms 
within growth models). Irrespective of the methods used, 
procedures should account for missing data when the rates 
are as high as we and others have observed (Karvonen et al., 
2013; Saven et al., 2016).

AA-AAS growth modeling efforts are contingent on the 
development of common scales that are sensitive to detect-
ing changes in students’ ability. To improve the approach 
taken to model growth further, thoughtful and sequential 
design of academic standards and ALDs that link vertically 
should also be effected, which would help make changes in 
students’ scores across grades more interpretable. The focus 
of assessment development could then aptly shift to creat-
ing a range of items reflecting performance that is tied to an 
interpretable vertical scale, to allow for more reliable 
growth estimation and comparisons across grades, and the 
academic profiles of students taking the AA-AAS to be bet-
ter understood longitudinally.
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