Information Systems Education: What’s missing?

Paul H. Rosenthal
California State University, Los Angeles
Los Angeles, CA 90032-8132 USA

Abstract: We are doing a good job of teaching IS technology and project management but are omitting implementation planning. We need to teach our users and professionals how to answer the following critical questions for our mission-critical transaction processing applications (TPS). (1) Why does it cost so much? (2) How long does it take—Why does it take so long? And (3) What makes our applications systems so complex? This presentation discusses pedagogical and presentation structures that will focus more attention on these planning-oriented questions.

Keywords: enterprise systems, transaction processing systems, physical systems design, justifying information systems, estimating information systems


This issue is on the Internet at http://isedj.org/8/37/
The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal published by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003. • Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Physical format: online. • Publishing frequency: irregular; as each article is approved, it is published immediately and constitutes a complete separate issue of the current volume. • Single issue price: free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access: http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2010 AITP Education Special Interest Group Board of Directors

Don Colton
Brigham Young Univ Hawaii
EDSIG President 2007-2008

Thomas N. Janicki
Univ NC Wilmington
EDSIG President 2009-2010

Alan R. Peslak
Penn State
Vice President 2010

Scott Hunsinger
Appalachian State
Membership 2010

Michael A. Smith
High Point Univ
Secretary 2010

Brenda McAleer
U Maine Augusta
Treasurer 2010

George S. Nezlek
Grand Valley State
Director 2009-2010

Patricia Sendall
Merrimack College
Director 2009-2010

Li-Jen Shannon
Sam Houston State
Director 2009-2010

Michael Battig
St Michael's College
Director 2010-2011

Mary Lind
North Carolina A&T
Director 2010-2011

Albert L. Harris
Appalachian St
JISE Editor ret.

S. E. Kruck
James Madison U
JISE Editor

Wendy Ceccucci
Quinnipiac University
Conferences Chair 2010

Kevin Jetton
Texas State
FITE Liaison 2010

Information Systems Education Journal Editors

Don Colton
Professor
BYU Hawaii
Editor

Thomas N. Janicki
Associate Professor
Univ NC Wilmington

Alan R. Peslak
Associate Professor
Penn State Univ

Scott Hunsinger
Assistant Professor
Appalachian State

Information Systems Education Journal 2009-2010 Editorial and Review Board

Samuel Abraham, Siena Heights
Alan Abrahams, Virginia Tech
Ronald Babin, Ryerson Univ
Michael Battig, St Michael’s C
Eric Breimer, Siena College
Gerald DeHondt II, Grand Valley
Janet Helwig, Dominican Univ
Mark Jones, Lock Haven Univ
Terri Lenox, Westminster Coll
Mary Lind, NC A&T University
Cynthia Martinic, St Vincent C

Brenda McAleer, U Maine Augusta
Fortune Mhlanga, Abilene Christian
George Nezlek, Grand Valley St U
Anene L. Nnolim, Lawrence Tech
Monica Parzinger, St Mary’s Univ
Don Petkov, E Conn State Univ
Steve Reames, American Univ BIH
Jack Russell, Northwestern St U
Sam Sambasivam, Azusa Pacific U
Bruce M. Saulnier, Quinnipiac

Mark Segall, Metropolitan S Denver
Patricia Sendall, Merrimack Coll
Li-Jen Shannon, Sam Houston St
Michael Smith, High Point Univ
Robert Sweeney, South Alabama
Karthikeyan Umapathy, U N Florida
Stuart Varden, Pace University
Laurie Werner, Miami University
Bruce A. White, Quinnipiac Univ
Charles Woratschek, Robert Morris
Peter Y. Wu, Robert Morris Univ

This paper was in the 2009 cohort from which the top 45% were accepted for journal publication. Acceptance is competitive based on at least three double-blind peer reviews plus additional single-blind reviews by the review board and editors to assess final manuscript quality including the importance of what was said and the clarity of presentation.

© Copyright 2010 EDSIG. In the spirit of academic freedom, permission is granted to make and distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document is presented, and it is not modified in any substantial way.

Information Systems Education: What’s Missing?

Paul H. Rosenthal
prosent@calstatela.edu
Information Systems Department
California State University, Los Angeles
Los Angeles, California 90032-8132 USA

Abstract

We are doing a good job of teaching IS technology and project management but are omitting implementation planning. We need to teach our users and professionals how to answer the following critical questions for our mission-critical transaction processing applications (TPS).

1. Why does it cost so much?
2. How long does it take—Why does it take so long?
3. What makes our applications systems so complex?

This presentation discusses pedagogical and presentation structures that will focus more attention on these planning-oriented questions.

Keywords: enterprise systems, transaction processing systems, physical systems design, justifying information systems, estimating information systems

1. INTRODUCTION

Based on my fifty-six years of experience teaching IS, we are doing a good job of teaching IS technology and project management, while almost omitting implementation planning. We need to teach IS users and professionals how to answer the following critical implementation questions for our mission-critical transaction processing applications (TPS).

- Why does it cost so much?
- How long does it take—Why does it take so long?
- What makes our applications systems so complex?

The theme of this presentation is therefore— that we move away from our current obsession with personal productivity and entertainment systems (e.g. Web 2.0) and back to where we should be— improving the productivity of the US economy through teaching the planning of enterprise-level business productivity systems (e.g. operations and management-oriented TPS systems). This presentation discusses pedagogical and presentation structures that will focus attention on these implementation planning-oriented questions.

2. SCOPE OF ENTREPRISE SYSTEMS

Enterprise level operations-oriented applications are at the core of the information and technology systems’ (IS/IT) impact on organizations. In the typical medium sized to large business organization, they constitute the majority of IS/IT funding requirements, sometimes as much as 80%. A typical MIS text’s view of the structure of enterprise systems is illustrated by the Figure 1 diagram extracted from Laudon and Laudon’s 10th edition text (Laudon, 2007, pg. 60).

This view, while interesting, is not detailed enough for proper understanding of the types and relationships among operational, decision support and personal productivity applications as might be shown in Figure 2.

Most IS intellectual contributions are currently directed toward the managerial support applications (e.g., decision and people-oriented applications) since they are more interesting and involve smaller, more easily understood systems. But the big money and major productivity impact is with enterprise-
level transaction processing systems (operations oriented applications).

From an IS education oriented viewpoint, I believe that there are three major planning and design areas that are not being properly addressed, and will be stressed in this paper.

- Recognition of the Complexity and Importance of Transaction Processing Systems
- The Need for a Physical Systems Design Methodology understandable by all Stakeholders
- The Justification and Costing of IS/IT Projects

3. SCOPE OF TRANSACTION PROCESSING SYSTEMS

The initial step in answering the complexity question is to teach the true scope of TPS applications. The true scope and complexity of modern integrated transaction processing application systems is shown in Figure 3. The figure presents the overall scope of a typical administrative-oriented TPS application. It shows the interrelationships of core TPS online and batch processing with its dependent MIS, DSS, ESS, and interfacing systems.

“Today’s transaction processing systems no longer provide discretionary support to the enterprise—they are the enterprise. They enforce decisions, dictate workflow, and optimize profitability” (3i Infotech, 2009). For many organizations, such as banks, they are the product delivery system’s information resource. Their data controls and maintains the interfaces with customers and vendors.

Many enterprises spend well over half their development and operations budgets on their TPS applications. Their characteristics, design and implementation should be stressed in enterprise oriented IS/IT education. We need extensive research in the value, costs, and benefits of these multi-million dollar systems, and their impact on US productivity.

4. PHYSICAL SYSTEMS DESIGN METHODOLOGY

The complexity question’s answer is to expand our systems analysis and design curriculum to include physical-level design. This paper proposes a TPS physical design approach that is easily understood by all stakeholders, and easily used by programmer analysts during implementation. As shown in Figure 4: The Design Process, a physical design is created from a DFD based logical design, by separating processes and data stores

- by time (daily vs. monthly, day vs. night ...),
- by place (client or server, centralized vs. distributed...), and
- by online vs. batch, and manual vs. automated.

None of these design decisions are fully illustrated in the systems analysis and MIS textbook in our IS user and IS professional’s courses. Additionally, proper separation of data flow vs. paper flows, and people’s actions vs. computer processes is almost never maintained.

Figure 5: A Physical Level Design Example presents an overall physical design approach of a country club restaurant using VISIO available symbols. The application is modularized across time and should allow programmers to produce a well structured program. Students presented with this type of chart have been easily able to create the four detailed program designs needed to implement the system. This level of physical charting is the step needed between logical designs and programming.

The key to the effectiveness of this methodology (as illustrated in Figure 5) is the inclusion in the design of both manual and automated procedures, and the separation of processes by time and place of actions.

5. JUSTIFICATION OF INFORMATION SYSTEMS

How do we answer the question on cost and scheduling? Our Systems Analysis and design, and MIS texts must stop ignoring the justification and cost/benefit analysis of enterprise information systems. For example, Martin’s text (popular for MBA courses), has no entry in its index for justification, pricing, scheduling, or cost estimating Brown, of information systems (Brown, 2009). A basic overview of both the managers’ role of system justification (including benefits, costs,
and risks) and the IS professionals role of infrastructure and software cost estimating and scheduling, must be extensively covered.

The following justification policy statement is extracted from OMB Directive M-97-02 (Raines, 1996)

“Demonstrate a projected return on the investment that is clearly equal to or better than alternative uses of available vendor resources. Return may include: improved mission performance; reduced cost; increased quality, speed, or flexibility; and increased customer and employee satisfaction. Return should be adjusted for such risk factors as the project's technical complexity, the organization's management capacity, the likelihood of cost overruns, and the consequences of under- or non-performance.”

A paper on IT investment strategy (Gunasekaram, 2001, pg. 354) presents A Model for Investment Justification in IT Projects that suggests the use of the following justification factors.

**Financial Tangibles**
- Budgets
- Priority of Investment
- ROI
- Product Cost
- Market Research
- Alternate Technology
- Profit Level
- Revenue

**Non-Financial Tangibles**
- Lead-time
- Inventory
- Labor Absence
- Defective rate of Products
- Set-up Time

**Intangibles**
- Competitive Advantage
- Service to Society
- Job Enrichment
- Quality Improvement
- Improve Customer Relationships
- Enhance Confidence
- Securing Future Business
- Risk of Not Investing in IT
- Teamwork
- Good Image

Our IS education must approach these ever-present user and CIO questions such as

- Why will it cost so much and take so long?
- How can I be sure this will be one of the 50% that succeed rather than the 50% that fail?

A special comment is needed on software estimating. The major increase in package usage has reduced the impact of the lack of our usage of the tools available in this area. Tools such as Function Point techniques are seldom taught or used.

Major work is needed in the justification of major enterprise applications, culminating in a monograph that can serve as a basis for chapters on 'Justification' in all of our relevant texts.

### 6. ESTIMATING

The process of estimating, while technically part of justification, deserves special consideration since it is the nemesis of IS planning and project management. Brooks in his classic *The Mythical Man Month* (1995) speaks to “gutless estimating” and recommends “stick to your estimates.”

“Observe that for the programmer, as for the chef, the urgency of the patron may govern the scheduled completion of the task, but it cannot govern the actual completion. An omelet, promised in two minutes, may appear to be progressing nicely. But when it has not set in two minutes, the customers have two choices—wait or eat it raw. Software customers have had the same choices.

The cook has another choice; he can turn up the heat. The result is often an omelet nothing can save—burned in one part, raw in another.
Now I do not think software managers have less inherent courage and firmness than chefs, nor than other engineering managers. But false scheduling to match the patron’s desired date is much more common in our discipline than elsewhere in engineering. It is very difficult to make a vigorous, plausible, and job-risking defense of an estimate that is derived by no quantitative method, supported by little data, and certified chiefly by the hunches of the managers.

Clearly two solutions are needed. We need to develop and publicize productivity figures, bug-incidence figures, estimating rules, and so on. The whole profession can only profit from sharing such data. Until estimating is on a sounder basis, individual managers will need to stiffen their backbones and defend their estimates with the assurance that their poor hunches are better than wish-derived estimates.”

A widely available concise coverage of software project estimation can be found in Pressman’s Software Engineering text (2005, Ch. 23). The core of the Function Point technique illustrated in the book involves the estimation of an application’s software development cost using the type chart shown in Figure 6.

7. CONCLUSION

We need to raise the level of content of IS curriculums so that our graduates will be able to specify, estimate, evaluate, design, and implement high quality and successful systems, and continue to reduce our industry’s project failure rate (Rosenthal & Park, 2009).

It is also worth mentioning that the Information Systems field needs extensive publicity. For example, most personnel departments still do not know the difference between Information Systems and Computer Science, and incorrectly believe that CS graduates are qualified to specify, design and implement business-oriented information systems.

8. REFERENCES


APPENDIX

Figure 1: Enterprise Application Architecture

FUNCTIONAL AREAS

- Suppliers, Business Partners
- Enterprise Systems
- Supply Chain Management Systems
- Processes
- Processes
- Knowledge Management Systems
- Customer Relationship Management Systems
- Customers, Distributors
- Sales and Marketing
- Manufacturing and Production
- Finance and Accounting
- Human Resources
FIGURE 2: ENTERPRISE APPLICATIONS CLASSIFICATION CHART

Executive Level

Management Level

Product/Service Delivery Level

EIS Systems

Policy Support Systems

Knowledge Management Systems

MIS Systems

Decision Support Systems

Group Support Systems

TPS Systems

Expert Systems

Personal Productivity Systems

Operations Oriented

Decision Oriented

People Oriented
FIGURE 3: STRUCTURE OF TRANSACTION PROCESSING SYSTEMS

Figure 3: Structure of Transaction Processing Systems
FIGURE 4: THE DESIGN PROCESS

Analysts

Define the Business Problem

Logical Designers

Define the Systems Logic

Physical Designers

Define What needs to be done and How

Schedule

Costs
FIGURE 5: A PHYSICAL LEVEL DESIGN EXAMPLE (RESTAURANT)

Module 1 Entry
- Member
  - Membership Card
  - Receptionist
  - Scan Card
  - Process
  - New Tab Record
  - Order Slip
  - to Table

Module 2 Ordering
- Server
  - at Table
  - Order Slip
  - Process
  - Order Entry Process
  - Insert Orders into Tab Record
  - Tab Record
  - Food Items
  - Bar Items
  - Kitchen Order
  - Bar Order

Module 3 Exiting
- Member
  - Sign
  - Receptionist
  - Scan
  - Priced Tab
  - Billing Process
  - to Monthly Billing System
  - File

© 2010 EDSIG
http://isedj.org/8/37/
June 25, 2010
FIGURE 6: SOFTWARE COSTING WORKSHEET: ANALYZING THE INFORMATION DOMAIN

<table>
<thead>
<tr>
<th>measurement parameter</th>
<th>count</th>
<th>weighting factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of user inputs</td>
<td>□</td>
<td>X 3 4 6</td>
</tr>
<tr>
<td>number of user outputs</td>
<td>□</td>
<td>X 4 5 7</td>
</tr>
<tr>
<td>number of user inquiries</td>
<td>□</td>
<td>X 3 4 6</td>
</tr>
<tr>
<td>number of files</td>
<td>□</td>
<td>X 7 10 15</td>
</tr>
<tr>
<td>number of ext.interfaces</td>
<td>□</td>
<td>X 5 7 10</td>
</tr>
<tr>
<td>count-total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>complexity multiplier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>function points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>