Information Systems Education Journal (ISEDJ)

9(3)
August 2011

System Testing of Desktop and Web Applications

James M. Slack
slack@mnsu.edu
Information Systems & Technology
Minnesota State University
Mankato, MN 56001, USA

Abstract

We want our students to experience system testing of both desktop and web applications, but the cost
of professional system-testing tools is far too high. We evaluate several free tools and find that Autolt

makes an ideal educational system-testing tool.

We show several examples of desktop and web

testing with Autolt, starting with simple record/playback and working up to a keyword-based testing
framework that stores test data in an Excel spreadsheet.

Keywords: system-testing tools, keyword-based tests, record/playback, Autolt

1. Introduction

In our software-testing course, we emphasize
testing from the quality assurance (QA)
perspective in the first half and from the
developer perspective in the second. In the
second half, students learn about unit testing
and write test cases in JUnit (JUnit.org, 2010)
and Java to reinforce concepts. This part of the
course has worked well for several years.

For the QA half of the course, students learn
about system testing and write test cases
directly from specifications. An example
specification might be that the application is
password protected. A system-level test case
could try to access a protected area of the
application without logging in first.

We needed a system-testing tool to reinforce
these concepts on desktop GUI and on web
applications. We wanted to use just one
system-testing tool that works with both
application types, so students spend less time
learning the tool and more time learning
concepts.

In the Spring 2010 semester, we found that
Autolt (Autolt, 2010) works well as an
educational system-testing tool.

2. Literature Review

System testing evaluates whether the complete
system meets its specification by observing the
behavior of that system (Pezzé & Young, 2008).
System testing involves checking functionality,
security, performance, usability, accessibility,
among other features. For this paper, we are
concerned primarily with functionality system
testing: ensuring that the system performs all of
its required functions correctly, primarily via the
system’s user interface.

A particular characteristic of system testing is
that it is largely independent of the system’s
development language (Pezzé & Young, 2008).
This means that the tester can use a different
programming language and even a different
programming paradigm when writing system
tests.

Garousi and Mathur state the need for student
experience with commercial tools: "“In order to
effectively teach software engineering students
how to solve real-world problems, the software
tools, exercises, projects and assignments
chosen by testing educators should be practical
and realistic. In the context of software testing
education, the above need implies the use of
realistic and relevant System Under Test (SUT),

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 68

Information Systems Education Journal (ISEDJ)

and making use of realistic commercial testing
tools. Otherwise, the skills that students acquire
in such courses will not enable them to be ready
to test large-scale industrial software systems
after graduation.” (2010, p.91)

Garousi & Mathur (2010) found that of seven
randomly-selected North America universities,
just two use any commercial testing software:
the University of Alberta, which uses IBM
Rational Functional Tester (IBM, 2010); and
Purdue, which uses Telcordia AETG Web Service
(Telcordia, 2010). (Both universities also use
open-source testing tools.) Of the seven
universities in the survey, five use JUnit, usually
along with other tools.

Buchmann, Arba, and Mocean (2009) used
Autolt to develop an elegant GUI test case
execution program that reads test case
information from a text file. For each test case,
the program executes a user-defined Autolt
function to manipulate the SUT, and then
compares the SUT with expected behavior. The
program can check standard Window GUI
controls and even images.

3. Evaluation

Evaluation Criteria

We try to give students a QA system-testing
experience that is as close to the “real thing” as
using JUnit is for unit testing. Ideally, we would
use a popular commercial-quality tool such as
HP QuickTest Pro (Hewlett-Packard Development
Company, 2010) for system testing, but the per-
student licensing costs are too high. (We briefly
considered licensing commercial software for a
lab, but nearly all our students have their own
computers and prefer to use them for their
assignments.) Therefore, we needed a free,
Windows-based tool with these features of
commercial-quality tools:

Record/playback: The tool should be able to
record keyboard and mouse activity into a script
for later playback, so students become familiar
with the advantages and disadvantages of this
simple technique.

Programmability: The tool should use an easy-
to-learn, high-level, interpreted language. This
capability allows students to move beyond
record/playback, building high-level functions for
interacting with the SUT, and to construct their
own test frameworks.

9(3)
August 2011

Desktop GUI and web application support: The
tool should be able to test both major
application areas: desktop applications
(Windows GUIs) and web-based applications.
External resource access: The tool should be
able to access files, databases, spreadsheets,
and other resources, so that students can store
test data in these places and so they can verify
application activity.

Control information: The tool should include the
ability to find input and output controls and
provide information about them. This capability
allows students to write higher-level functions to
test the SUT.

Integrated development environment (IDE): The
tool should include an easy-to-use environment
for building and running tests.

Support: The tool should include complete, well
written, and well-organized documentation.

Over the past few semesters, we have tried
JUnit, Badboy (Badboy Software, 2010), and
Selenium (Selenium Project, 2010) for system
testing. In Spring 2010, we decided to examine
Autolt and AutoHotKey (AutoHotKey, 2010).
This section compares the relative merits of each
of these tools.

JUnit

JUnit was originally designed for unit testing, so
it is unsuitable for system testing by itself.
However, several third-party utilities add
system-testing capabilities to JUnit. For
example, we have used HttpUnit (Gold, 2010)
and HtmlUnit (Gargoyle Software Inc., 2010) for
web testing with JUnit, and Abbot (Wall, 2008)
for GUI testing.

We have had some success with these third-
party tools, but we have found that both
HttpUnit and HtmlUnit execute slowly.
Furthermore, neither includes record/playback
capabilities. Although Abbot does include
record/playback for desktop GUIs, it works only
with Java Swing and AWT. These drawbacks
motivated us to consider other approaches.

Badboy

Figure 1 shows Badboy, a web-testing tool that
includes a script editor and an integrated web
browser. Of all the tools mentioned, Badboy is
by far the easiest to get started with, because it
installs easily and excels at record/playback.

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 69

Information Systems Education Journal (ISEDJ)

Badboy’s integrated help file includes several
well-written tutorials.

Fle Ede View Tools Prefernces Hep
DFH: BRSO H PPN BH@wO ~ s =2
Q@ © vt 3 bt goode.cony -8

s [Web mages Videos Maps Mews Snosping Gonal mare v iGoogle | Ssacch senings | Sianin
st |
) TestSue]
i Tetl
La wepl

Tompeen GO O 8[@

A Google Search | I'm Feeing Lucky

= tawl Wallpaper the Gongle homepage

summary | Vcfbles | Graph | Yoot +]2

Aderising Programs B wions Aot Google

T WM e

1
Browser area

Test suite

Piaeg 2

Succeeded| 2 Wamings
Fased o

AgTime (mgf 1037 Max Time (ms)

Change background image

Script area

Figure 1: Badboy.

Although Badboy includes load testing, reports,
and other valuable features, it has limited
programmability and access to external
resources, and is useful only for web testing. It
cannot test desktop GUI applications, which
removes it from further consideration.

Selenium

(@) soltware testing - Google Search - Mazia firefos [
fie Edt Yiew History Bookmarks Tools Help

- - (M g google comiEhi- enfscurce: hpig- softwarestestingBlag 7 - | 0 -

] software testing - Google Search | = -
Web |mages Videos Maps Mews Shopping Gmail more v Wab History | Search setlings | Signin |2

GOUS[E‘ software testing Search £

About 53,500,000 resuls (.27 seconds)

=)

Agvanced search

@ Selenium IDE 107 *

File Edn Options Help

Base UL it/ www.gougle.com/

| 5m Elaw P = Im @

Tatle | Sowrce | pies - Testing

e lree

» |llnducted 1o
pout the quality

« 1 hour ago -
Command Target Value ur ag

{ |open !
| e q sultware testing
at evaluating an
rstem and

s .
[sw_testing -

s| Commend
urce Cender
QA and

of resources,
........... 1 bl

Target -

Valure

;
= zptaro & ER @155

Log FReference UlElement Robup Infe~ Clear

Browser
Selenium IDE

Figure 2: Selenium.

Figure 2 shows Selenium, which is similar to
Badboy because it includes a script editor, has
very good record/playback support, and only
does web testing. In contrast to Badboy,
Selenium is a Firefox add-on rather than an

9(3)
August 2011

integrated application. However, the process of
recording and executing scripts is nearly the
same as Badboy.

Selenium has a great deal of well-written
documentation and an active user community.
Selenium can convert its scripts to several
different formats, including Java (JUnit), Python,
Ruby, C#, Perl, and PHP. This capability makes
these scripts easy to customize with higher-level
functions and external resources.

Selenium has the same major drawback as
Badboy: it works only for web applications. We
needed a tool that works with both web and
desktop applications.

AutoHotKey and Autolt
AutoHotKey and Autolt are each automation
utilities for Windows that are very similar to
each other. This similarity is not surprising
because AutoHotKey started as a fork of Autolt
in 2003 (Wikipedia, 2010).

Neither utility was designed specifically for
testing, but they can be used that way because
each includes a simple scripting language,
record/playback capability, the ability to access
external resources, and a simple IDE built on the
SciTE editor (SciTE, 2010). They can each
generate GUI executables, which is convenient
for creating desktop SUTs. Each has a well-
written help file and an active user community.

Of the two, we have found Autolt to be generally
more robust and better documented. In
addition, Autolt has a much larger standard
library that includes functions for accessing and
controlling SQLite databases, Excel
spreadsheets, and the Internet Explorer
browser. AutoHotKey can do all this, too, but
requires installing third-party libraries. (Both

can access other external resources with
ActiveX.)
Finally, we have found that Autolt’s

programming language is easier for students to
learn, because it is similar to Visual Basic (VB).
In contrast, AutoHotKey’s programming
language is similar to MS-DOS batch language,
which most of our students are not familiar with,
in spite of using Windows.

We prefer a VB-like language, because HP
QuickTest Pro uses VB, and we want students to
get a feel for professional testing tools. Figure 3
shows the Autolt IDE with a test script at the

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 70

Information Systems Education Journal (ISEDJ)

top, results of the test at the bottom, and a
simple SUT created with Autolt's GUI facility.

Table 1 (in the appendix) summarizes the
author’s subjective evaluation of the testing
tools we considered. The rating scale goes
from zero (not present) to five (excellent
support). Autolt emerges as the clear winner in
this evaluation.

oC:\U;ers\J\m\DD(umenlS\resEarch\aulul'lfurlesting\juumaf\... = & =
File Edit Search View Tools Options Language Buffers Help
DR S| B || Qab

1 Const $TITLE =

2 Run()

3 WinWaitActive(STITLE)

4

5 ; Set item 1 to 10.

B ControlSetText(STITLE, 3 » 18)

7 ; Set item 2 to 2e.

8 ControlSetText (STITLE, s » 28)

L) ; Set item 3 to 3e.

1e ControlSetText(STITLE, M » 38)

11 ; Item 1 is taxoble.

12 ControlClick({STITLE, ",)

13 ; Item 3 is taxable.

14 ControlCLlick(STITLE, ¥ h)

15

16 ; Press Add button.

17 ControlCLick(STITLE, N))

18

19 ; Get total. = B

20 Stot - ControlGetText(] sF Sales Total =l

22 : Verify total.

23 f Stot <> Then kem1 g (V] Taxable?
24 ConsoleWriteError(
25 & Stot &
2% EndIf kem 2 2p [Taeable?
< —
kem3 3p V| Taxable?
>"C:\Pfogram Files\AutoIt3\5ciTE
:54 Starting AutoIt3Wrap,
>Runnfng AU3Check (1.54.19.8)

>Rungfing: (3.3.6.14):C:\Program Fil}| Pretax gp

m

1 7
Script Output SUT

Figure 3: Autolt.

4. Autolt Overview

Autolt is “a freeware BASIC-like scripting
language designed for automating the Windows
GUI and general scripting.”(Autolt, 2010) (When
downloading, make sure to install both the
“Autolt Full Installation” and the “Autolt Script
Editor.”)

The language is procedural but not object-
oriented. Figure 4 shows an example of an
Autolt function that adds line numbers to a text
string. Like PHP, Autolt requires a dollar sign
before each variable name. A comment starts
with a semicolon and continues to the end of the
line. A statement that continues to the next line
must use an underscore at the end of the line as
a continuation character. The functions

StringStripWS(), StringSplit(), UBound(),

9(3)
August 2011

StringFormat(), and ConsoleWrite() are from
Autolt’s standard library. String concatenation
uses the ampersand (&) symbol. The term
@CRLF is a “macro” that signifies an end-of-line
sequence of carriage return and line feed.

; Returns $text string with a Lline number
; at the beginning of each Lline.
Func NumberLines($text)

; Strip whitespace.
$text = StringStripWS($text, 3)

; Break into lines (array of strings).
$lines = StringSplit($text, @CRLF, 1)

; Build result string.
$out = ""
For $i = 1 To UBound($lines) - 1
$out &= StringFormat("%d. %s\n", _
$i, $lines[$i])
Next
Return $out

EndFunc

; Test the function.

$s = "first line" & @CRLF _
& "second line" & @CRLF

ConsoleWrite(NumberLines($s))

Figure 4: An Autolt function.

Autolt has four different looping statements,
including while, do-until, and two kinds of for
statements. It also has if-else, select-case, and
switch-case selection statements.

The extensive standard library includes many
functions for starting and manipulating Windows
programs. For example, the code in Figure 5
starts the Notepad text editor, waits for it to
finish loading, and then enters some text into
the text area.

Autolt recognizes integer, floating-point, string,
Boolean, binary, pointer, and variant types. The
only built-in collection type is arrays, but
because Autolt supports COM (Component
Object Model), it can also use collection types
from .NET and Windows Script. Figure 6 shows
an Autolt program that uses an ArrayList from
.NET.

Autolt’s support of COM also allows it to access
external resources such as database systems.
For example, Figure 7 shows how to query a
Firebird relational database with SQL.

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 71

Information Systems Education Journal (ISEDJ)

Run("notepad.exe")
WinWaitActive("Untitled - Notepad")
Send("This is some text.")

Figure 5: Start Notepad and enter text.

; Define a .NET Arraylist.
$class = "System.Collections.ArrayList"
$list = ObjCreate($class)

; Add elements.
$list.Add("Intel Corporation")
$list.Add("Hewlett-Packard")
$list.Add("General Motors")

; Iterate through the Llist.

For $company In $list
ConsoleWrite($company & @CRLF)

Next

Figure 6: Using .NET within AutolIt.
5. System Testing Examples

Figure 8 shows a simple SUT: a Sales Total
application that sums up to three items, each of
which may be subject to a 5% sales tax. For
student assignments, we typically include about
three deliberate errors in the SUT for students to
find.

We wrote the application in Autolt using its Koda
GUI utility and compiled it to an executable with
Autolt’s Aut2Exe utility. We also used Aut2Exe’s
obfuscation option to thwart decompilation, so
students cannot simply examine the source code
to look for errors.

; Create a connection object.
$conn = ObjCreate("ADODB.Connection™)

; Connect to the database.

$conn.Open(_
"DRIVER=Firebird/InterBase(r) driver;" _
& "DATABASE=C:\\sample.fdb;" _
& "USER=SYSDBA; PWD=masterkey; ")

; Query the database.
$rs = $conn.execute("SELECT Id, Name " _
& "FROM Person ORDER BY Name")

; Display the results.
While Not $rs.EOF
ConsoleWrite($rs.fields("Id").value _
& ", " & $rs.fields("Name").value _
& @CRLF)
$rs.MoveNext ()
WENnd

9 (3)

August 2011
=% Sales Total .
kem 1 g Taxable?
tem 2 2p [Taxable?
tem 3 1p Taxahle?
Clear]

Pretax g
Tax 2
Total g2

Figure 8: Sales Total desktop application.

Record/Playback Scripting

Students use Autolt’s record/playback utility for
their first system-testing assignment. By using
record/playback, students see that although
record/playback seems to make system testing
almost trivial, it has significant problems. (They
realize this by the second assignment, described
later.)

Students use Autolt’s AU3Recorder to record all
mouse and keyboard activity while using the
SUT. When the student finishes, AU3Recorder
generates Autolt code to reproduce the
student’s actions. The result is similar to code
shown in Figure 9.

The code in Figure 9 starts the SUT, waits for it
to load, enters test data into the fields, and
clicks the Add button. Students can manually
verify that the result is correct, but manual
verification is tedious and error prone,
particularly when running many test cases.

Run("SalesTotal")

WinWaitActive("Sales Total")
Send("10{TAB}{SPACE}{TAB}20{TAB}{TAB}30")
Send("{TAB}{SPACE}{TAB}{ENTER}")

Figure 7: Accessing a Firebird database.

Figure 9: Record/playback without
verification.

Therefore, students must add code to Figure 9
to verify that the displayed results are correct.
An easy way to capture the displayed result is to
tab to the Total field, then copy the value into
the clipboard by typing Control-C. The student

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 72

Information Systems Education Journal (ISEDJ)

runs AU3Recorder again, this time copying
the total into the clipboard. The student then
writes code to compare the contents of the
clipboard with the expected value, as shown in
Figure 10.

Run("SalesTotal")

WinWaitActive("Sales Total")
Send("10{TAB}{SPACE}{TAB}20{TAB}{TAB}30")
Send("{TAB}{SPACE}{TAB}{ENTER}")
Send("{TAB}{TAB}{TAB}{TAB}")
Send("{CTRLDOWN}c{CTRLUP}")

; Verify results (student-added code).

#include <ClipBoard.au3>

If _ClipBoard_GetData() <> "62" Then
ConsoleWriteError("Expected 62, got ")
ConsoleWriteError(_ClipBoard_GetData())
ConsoleWriteError(@CRLF)

EndIf

Figure 10: Record/playback with
verification.

Of course, one test case is not enough to test
this SUT adequately, so students will need to
repeat this process with combinations of taxable
and nontaxable items, missing items, invalid
entries, and so on. The result, which is typically
many lines long, is highly sensitive to the layout
of user interface controls. For example, if
positions of the Add and Clear buttons are
reversed, none of the tests will work correctly.
Another problem with record/playback is that
playback sends individual keystrokes and mouse
movements to the SUT, which can be time
consuming. After the student has added several
more test cases, running these tests takes an
inordinate amount of time.

For the second testing assignment, students use
the same SUT but with minor changes to the
user interface that break their record/playback
scripts. Students thus experience the major
disadvantage of using record/playback: test
cases are extremely sensitive to changes in the
user interface. We also fix some errors in the
first version of the SUT and add a couple new
ones.

We then show students how to access user
interface controls directly from Autolt, rather
than by simulated keyboard and mouse activity.
Our informal experiments show a speedup factor
of about fifteen with direct access. (Autolt’'s
direct access only works with standard Windows
controls, such as those found in Visual Studio.
It does not work with nonstandard controls, such

9(3)
August 2011

as those used in Delphi, QT, Java Swing, or
Motif.)

As an example of an Autolt direct access
function, ControlSetText() inserts a text value
directly into a text edit control. This standard
function takes three parameters: the name of
the SUT window, the Windows ID of the control,
and the value to insert. Autolt’s AU3Info utility
makes it easy to find the Windows ID of a
control: simply move the mouse over the control
to get its ID. For example, AU3Info reports that
the Windows ID of the “ltem 1” control in the
Sales Total application is “Edit1.”

Figure 11 shows how to use ControlSetText()
and ControlClick() to insert values directly into
the Sales Total application, then retrieve the
total with ControlGetText().

Building a System Testing Framework

The approach taken in Figure 11 is simple and
straightforward, but does not scale well. The
single test case sprinkles its test data over
several statements; when the code includes
several test cases, it is not apparent whether the
test cases are sufficient.

Const $TITLE = "Sales Total"

Run("SalesTotal")
WinWaitActive($TITLE)

; Set 1item 1 to 16.
ControlSetText($TITLE, "",
; Set item 2 to 2e.
ControlSetText($TITLE, "", "Edit2", 20)
; Set item 3 to 36@.
ControlSetText($TITLE, "", "Edit3", 30)
; Item 1 is taxable.

"Edit1", 10)

ControlClick($TITLE, "", "Buttoni")
; Item 3 1is taxable.
ControlClick($TITLE, "", "Button3")
; Press Add button.
ControlClick($TITLE, "", "Button4")

; Get total.
$tot = ControlGetText($TITLE, "", "Edite")

; Verify total.
If $tot <> "62" Then
ConsolelWriteError("Expected 62, got
& $tot & @CRLF)

EndIf

Figure 11: Direct access.

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 73

Information Systems Education Journal (ISEDJ)

Therefore, we build a system-testing framework
so that writing test cases becomes trivial and
the test data is obvious. We have found that
students enjoy developing a system-testing
framework collaboratively during in-class
discussion.

An organizational scheme that we have found
useful divides the framework into three files:

e A file of general system testing
functions, such as StartSuUT(),
AssertEquals(), and AssertError() that
apply to testing any desktop SUT (see
Listing 1 in the appendix),

e A file of support functions specific to a
particular desktop SUT, such as entering
values into the SUT and verifying results
(see Listing 2 in the appendix), and

e A file of test cases as function calls (see
Listing 3 in the appendix).

We produced the first eleven test cases in Listing
3 using the pairwise testing approach (Cohen,
Dalal, Parelius, & Patton, 1996) with the
following values:

e For each item: blank, a whole number,
and a number with a decimal point

e For each checkbox: True and False
(always False when the corresponding
item is blank)

The last three test cases insert an invalid value
into each item, which should cause the SUT to
generate errors.

Each test case is simply a function call, which
makes it easy to write and maintain test cases,
because testers can concentrate on test cases
and test data alone. The format of Listing 3
greatly simplifies verification that the tests cases
include all pairs.

Storing Test Data in a Spreadsheet

With a little more work, a spreadsheet can store
the test data in a clear and easy-to-use format,
as shown in Figure 12. Besides clarity, another
benefit of storing test data in a spreadsheet is
that students can use formulas to compute
expected results.

Figure 12 wuses the keyword-based format
(Nagle, 2010; Fewster & Graham, 1999). This
format uses a keyword, typically in the first
column, to indicate the kind of test to perform.
For example, the keyword “Test” in row 4
indicates a normal test, while the keyword

9(3)
August 2011

“Error” in row 17 indicates that the given test
data should produce an error.

Listing 4 in the appendix shows the
OpenSpreadsheet() function that opens an
existing spreadsheet for reading. Listing 5
shows the SUT-specific code to read each row of
the spreadsheet and call the appropriate SUT-
specific function from Listing 2.

A|lB| C D E F G | H 1 1| K
Test Data for "Sales Total" Application

1

2

3 Input Values Expected results
4 Key Num|lteml 1Tax Iltem2 2Tax Item3 3Tax|Pretax Tax Total
5 | Test 1| 10.25 TRUE FALSE 30.45 FALSE| 40.7 0.51 41.21
6 | Test 2 10 FALSE 20 TRUE FALSE 30 1 31
7 | Test 3 10 FALSE FALSE 30 TRUE 40 1.5 415
8 | Test 4 10 TRUE 20.75 FALSE FALSE| 30.75 0.5 31.25
9 | Test 5 FALSE 20.75 TRUE 30 FALSE| 50.75 1.04 51.79
10| Test 6| 10.25 TRUE 20 TRUE FALSE| 30.25 1.51 31.76
11| Test 7| 10.25 TRUE 20 FALSE 30 TRUE| 60.25 2.01 62.26
12 | Test 8 FALSE 20 TRUE 30.45 TRUE| 50.45 2.52 52.57
13 | Test 9 FALSE FALSE FALSE 0 0 0
14 | Test 10 10 TRUE 20.75 FALSE 30.45 TRUE| 61.2 2.02 63.22
15 | Test 11| 10.25 FALSE 20.75 FALSE 30 TRUE 61 1.5 625

16
17 Input Values

13 Key Num|lteml Item2 ltem3
19 Error 12 XyzZ 20 30
20| Error 13 10 xyz a0
21 Error 14 10 20 xyz

Figure 12: Test data in a spreadsheet.

Expected results
Error message

Item 1 must be blank or a number
Item 2 must be blank or a number
Item 3 must be blank or a number

Web Application Testing

Testing web applications is conceptually the
same as testing desktop applications, but can
require more setup on the instructor’s part.
More setup is necessary because students need
access to a web application they can install on
their own computers (so students do not bog
down a shared SUT with tests). Furthermore,
the SUT source code must be inaccessible (so
students look for errors by testing, not by
examining the SUT source). Instructors need to
develop web SUTs that either compile to
executables or sufficiently obfuscate source
code. The resulting web SUT must also be easy
to distribute to students and easy for students to
install on their computers.

Many approaches meet these requirements for
developing web SUTs, and the best choice for a
particular instructor depends on the instructor’s
familiarity with the programming language and
tools used by that approach. For example, we
teach Python and Java in our introductory
programming courses, so we develop our web
SUTs in those languages.

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 74

Information Systems Education Journal (ISEDJ)

Figure 13 shows the Sales Total application
converted to a web application using the
CherryPy web framework (cherrypy.org, 2010),
which uses Python. CherryPy is relatively easy
to install and includes its own web server. We
distribute CherryPy web applications as compiled
Python bytecode to deter students from referring
to the SUT source code.

Autolt’'s standard library has an extensive
collection of functions for accessing and
manipulating the Internet Explorer web browser.
It includes functions to read and write text on a
web page, enter and read form controls, submit
forms, follow links, and more. For example, the
_IEFormElementCheckBoxSelect() function puts
a checkmark in a checkbox.

r© ™

‘& Sales Total - Windows Internet Ex.. E@g

@O = |.: http://127.0.0.1:3080/ v\] | 4’-¢| b4 |
File Edit View Favorites Tools Help

5.7 Favorites & Sales Total {
Sales Total I
Tteml 10 [¥] Taxable?
Ttem?2 20 [[] Taxable?
Ttem3 30 [Taxable? |5
Pretax 60
Tax 2.0 1
Total 62.0

#100% -

&) Internet | Protected Mede: { #3 ~

Figure 13: Sales Total web application.

Listing 6 in the appendix shows an example of a
single test case for the Sales Total web SUT.
Listing 6 is conceptually the same as the code in
Figure 11 for the desktop version of Sales Total,
and like Figure 11, it does not scale well. We
follow the same approach for building a web
system-testing framework as we did for desktop
applications. That is, we create a file of
functions for testing any web application, and
another file of support functions for testing a
specific SUT. We then put the actual test cases
in either a third source file or a spreadsheet.

9(3)
August 2011

6. Conclusion

We have been pleased with our selection of
Autolt for system testing. Its VB-like
programming language, its ability to test
desktop and web applications, its excellent
documentation and support, its IDE, and its
large standard library make it an excellent, free
stand-in for a professional testing tool. Using
Autolt gives students an experience similar to
that of professional QA practitioners.

Students experience both the appeal and
significant disadvantages of record/playback.
They learn how to write higher-level testing
functions, organize those functions into a
system-testing framework using a keyword-
based format that stores test data separately.
Finally, they see how using a custom testing
framework simplifies the design and
implementation of test cases for both desktop
and web applications.

Although Autolt may not be suitable for
industrial use (because it cannot access
nonstandard desktop GUI controls), it provides
an experience similar to using professional tools,
and thus makes an ideal educational system-
testing tool.

7. References

AutoHotKey. (2010). AutoHotKey. Retrieved
from http://www.autohotkey.com/
Autolt. (2010). Autolt. Retrieved from

http://www.autoitscript.com/autoit3/index.s
html

Badboy Software. (2010). Badboy. Retrieved
from http://www.badboy.com.au/

Beizer, B. (1995). Black-Box
Techniques for Functional
Software and Systems. Wiley.

Buchmann, R. A., Arba, R., & Mocean, L. (2009).
Black Box Software Testing Console
Implemented with AutolT. Proceedings of
the International Conference on Knowledge
Engineering, Principles and Techniques,
KEPT2009. Cluj-Napoca (Romania).

Testing:
Testing of

cherrypy.org. (2010). CherryPy. Retrieved from
http://www.cherrypy.org

Cohen, D. M., Dalal, S. R., Parelius, J., & Patton,
G. C. (1996). The Combinatorial Design

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 75

Information Systems Education Journal (ISEDJ)

Approach to Automatic Test Generation.
IEEE Software , 13 (5), 83-88.

Fewster, M., & Graham, D. (1999). Software test
automation: effective use of test execution
tools. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co.

Gargoyle Software Inc. (2010). Retrieved from
HtmlUnit: http://htmlunit.sourceforge.net/

Garousi, V., & Mathur, A. (2010). Current State
of the Software Testing Education in North
American Academia and Some
Recommendations for the New Educators.
23rd IEEE Conference on Software
Engineering Education and Training (pp. 89-
96). IEEE.

Gold, R. (2010). Retrieved from HttpUnit:
http://httpunit.sourceforge.net/

Hewlett-Packard Development Company.
(2010). HP QuickTest Professional software.
Retrieved from HP.com:
https://h10078.www1.hp.com/cda/hpms/dis
play/main/hpms_content.jsp?zn=bto&cp=1-
11-127-2471352_4000_100__

IBM. (2010). Rational Functional Tester.
Retrieved from http://www-
01.ibm.com/software/awdtools/tester/functi
onal/

JUnit.org. (2010). Retrieved from JUnit.org:
http://www.junit.org

Minnesota Revenue. (2009, a). 2009 K-12

9(3)
August 2011

http://www.taxes.state.mn.us/forms/mled.
pdf

Minnesota Revenue. (2009, b). 2009 Minnesota
Individual Income Tax Forms and
Instructions. Retrieved from
http://www.taxes.state.mn.us/taxes/individ/
instructions/m1_inst.pdf

Nagle, C. (2010). Test Automation Frameworks.
Retrieved from SAS Institute:
http://safsdev.sourceforge.net/FRAMESData
DrivenTestAutomationFrameworks.htm

Pezze, M., & Young, M. (2008). Software Testing
and Analysis: Process, Principles, and
Techniques. Hoboken, NJ: John Wiley &
Sons, Inc.

SciTE. (2010). Retrieved from
http://www.scintilla.org/SciTE.html

Selenium Project. (2010). Selenium web
application testing system. Retrieved from
http://seleniumhq.org/

SciTE:

Telcordia. (2010). Applied Research at Telcordia.
Retrieved from AR Greenhouse:
http://aetgweb.argreenhouse.com/

Wall, T. (2008). Retrieved from Abbot Java GUI

Test Framework:
http://abbot.sourceforge.net/doc/overview.s
html

Wikipedia. (2010). AutoHotKey. Retrieved from
http://en.wikipedia.org/wiki/Autohotkey

Education Credit. Retrieved from
APPENDIX

Table 1: System-testing tool evaluation summary.

Feature JUnit | Badboy | Selenium | AutoHotKey | Autolt
Programmability 1 1 5 2 4
Record/playback 0 5 5 4 4
External resource access 5 2 5 3 4
Desktop GUI and web testing 3 0 0 4 4
Control information 0 4 4 4 4
Includes IDE 0 5 5 5 5
Creates GUI executables 2 0 0 4 4
Support 5 5 5 3 4
TOTAL 16 22 29 29 33

Listing 1: Testing.au3 (General system testing functions)

AutoItSetOption("MustDeclareVars", 1)

; Start the system under test (SUT) if not already running.

2

; $windowTitle: The window title of the SUT.
; $exeName: The name of the executable file.
2

; $windowText: Additional text that must appear in the SUT window (optional).

©2011 EDSIG (Education Special Interest Group of the AITP)

www.aitp-edsig.org /www.isedj.org

Page 76

Information Systems Education Journal (ISEDJ) 9 (3)
August 2011

Func StartSUT($windowTitle, $exeName, $windowText = "")
If Not WinExists($windowTitle, $windowText) Then
Run($exeName)
EndIf
WinWait($windowTitle, $windowText)
If Not WinActive($windowTitle, $windowText) Then
WinActivate($windowTitle, $windowText)
EndIf
WinWaitActive($windowTitle, $windowText)
EndFunc ;==>StartSuT

; Ensure that the given condition 1is true, otherwise log an error.
; $testName: The name of the current test case.
; $condition: The Boolean condition that should be true.
; $message: Optional, additional information to appear with the error.
Func Assert($testName, $condition, $message = "")

If Not $condition Then

LogError($testName, $message)

EndIf

EndFunc ;==>Assert

; Ensure that the expected value equals the actual, otherwise lLog an error.
; $testName: The name of the current test case.

; $expected: The expected value.

5 $actual: The actcual value.

; $message: Optional, additional information to appear with the error.

Func AssertEquals($testName, $expected, $actual, $message = "")
If $message <> "" Then
$message = ": " & $message
EndIf

If $expected <> $actual Then
Assert($testName, $expected == $actual, "Expected " & $expected _
& ", but found " & $actual & $message)
EndIf
EndFunc ;==>AssertEquals

; Ensure that a new error message box appears.
; $testName: The name of the current test case.
; $errorWindowTitle: The window title of the error message box.
; $ackButtonName: The name of the button control used to acknowledge the error.
; $errorMessage: The expected error message to appear in the message box (optional).
Func AssertError($testName, $errorWindowTitle, $ackButtonName, $errorMessage = "")
WinWait($errorWindowTitle, "", 1)
If Not WinActive($errorWindowTitle, "") Then WinActivate($errorWindowTitle, "")
WinWaitActive($errorWindowTitle, "", 1)
If WinExists($errorWindowTitle) Then
If Not WinExists($errorWindowTitle, $errorMessage) Then
LogError($testName, "Wrong error message, expected '" & $errorMessage _
& "', but found '" & ToOneLine(WinGetText($errorWindowTitle)) & "'")

EndIf

ControlClick($errorWindowTitle, "", $ackButtonName)
Else

LogError($testName, "Did not get any error, expected '" & $errorMessage & "'")
EndIf

EndFunc ,==>AssertError

©2011 EDSIG (Education Special Interest Group of the AITP) Page 77
www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 9 (3)
August 2011

; Report an an error (internal function).

; $testName: The name of the test case that failed.
; $message: The error message to log.

Func LogError($testName, $message)

If $message <> "" Then
$message = ": " & $message
EndIf

ConsoleWriteError("ERROR in test " & $testName & $message & @CRLF)
EndFunc ;==>LogError

; Convert a multiline string to a single Lline.
; $string: The multiline string.
; Returns: The same string but all on one Lline.
Func ToOneLine($string)
Return StringStripWS(StringReplace(StringReplace($string, Chr(10), " ") _
» Chr(13), " "), 7)
EndFunc ;==>ToOnelL1ine

Listing 2: SalesTotalTesting.au3 (Support Functions for testing the “Sales Total” application)

#include "Testing.au3"
AutoItSetOption("MustDeclareVars", 1)

Dim Const $WINDOW_TITLE = "Sales Total"
Dim Const $ERROR_WINDOW_TITLE = "Sales Total Error"

; Clicks the Clear button.

Func ClickClearButton()
ControlClick($WINDOW_TITLE, "", "Button5")

EndFunc ;==>ClickClearButton

; Clicks the Add button.
Func ClickAddButton()

ControlClick ($WINDOW_TITLE, "", "Buttond")
EndFunc ;==>ClicRkAddButton

; Enters values into the application, without pressing a button.

; $iteml: The cost of the first item.

; $itemiTaxable: If true, item 1 is taxable.

; $item2: The cost of the second item.

; $item2Taxable: If true, item 2 is taxable.

; $item3: The cost of the third item.

; $item3Taxable: If true, item 3 is taxable.

Func EnterValues($iteml, $itemlTaxable, $item2, $item2Taxable, $item3, $item3Taxable)
ControlSetText($WINDOW_TITLE, "", "Editl", $iteml)
ControlSetText($WINDOW_TITLE, "", "Edit2", $item2)
ControlSetText($WINDOW_TITLE, "", "Edit3", $item3)
If $itemlTaxable Then

ControlClick($WINDOW _TITLE, "", "Buttonl")
EndIf
If $item2Taxable Then
ControlClick($WINDOW _TITLE, "", "Button2")
EndIf
If $item3Taxable Then
ControlClick($WINDOW_TITLE, "", "Button3")
EndIf
EndFunc ;==>EnterValues

; Ensures that the results are as expected.

©2011 EDSIG (Education Special Interest Group of the AITP) Page 78
www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ)

9 (3)

August 2011

; $testName: The name of the currently running test case.
; $pretax: The expected pretax value.

; $tax: The expected tax value.

; $total: The expected total value.

Func VerifyResults($testName, $pretax, $tax, $total)

AssertEquals($testName, $pretax, ControlGetText($WINDOW_TITLE, "", "Edit4"), "Pretax")

AssertEquals($testName, $tax, ControlGetText($WINDOW_TITLE, "", "Edit5"), "Tax")

AssertEquals($testName, $total, ControlGetText($WINDOW TITLE, "", "Edite"), "Total")

EndFunc ;==>VerifyResults

; Runs a testcase by entering the given values, pressing the Add button, and
; ensuring that the results equal the given expected values.
; $testName: The name of the currently running test case.
; $iteml: The cost of the first item.
; $itemiTaxable: If true, item 1 is taxable.
; $item2: The cost of the second item.
; $item2Taxable: If true, item 2 is taxable.
; $item3: The cost of the third item.
; $item3Taxable: If true, item 3 is taxable.
; $pretax: The expected pretax value.
; $tax: The expected tax value.
; $total: The expected total value.
Func RunTest($testName, $iteml, $itemlTaxable, $item2, $item2Taxable, $item3,
$item3Taxable, $pretax, $tax, $total)
ClickClearButton()
EnterValues($iteml, $itemlTaxable, $item2, $item2Taxable, $item3, $item3Taxable)
ClickAddButton()
VerifyResults($testName, $pretax, $tax, $total)
EndFunc ;==>RunTest

; Runs a testcase by entering the given values, pressing the Add button, and
; ensuring that an error message box appears with the given message.
$testName: The name of the currently running test case.
$itemi: The cost of the first item.
$itemiTaxable: If true, item 1 is taxable.
$item2: The cost of the second 1item.
$item2Taxable: If true, item 2 1is taxable.
$item3: The cost of the third item.
$item3Taxable: If true, item 3 1is taxable.
$expectedMessage: The error message that should appear.
unc RunTestError($testName, $iteml, $item2, $item3, $expectedMessage)
ClickClearButton()
EnterValues($iteml, False, $item2, False, $item3, False)
ClickAddButton()
AssertError($testName, $ERROR_WINDOW_TITLE, "Buttonl", $expectedMessage)
EndFunc ;==>RunTestError

TN Nl Nl N e, e e,

; Starts the Sales Total application if it 1is not already running.
Func StartSalesTotal()

StartSUT($WINDOW_TITLE, "SalesTotal")
EndFunc ;==>StartSalesTotal

Listing 3: SalesTotalTestCases.au3 (Test cases for the “Sales Total” desktop application)

#include "SalesTotalTesting.au3"
AutoItSetOption("MustDeclarevars", 1)
StartSalesTotal()

, Tests: Iteml 1Tax Item2 2Tax Item3 3Tax Pretax Tax Total
RunTest(1, 10.25, True, "", False, 30.45, False, 40.7, ©.51, 41.21)

©2011 EDSIG (Education Special Interest Group of the AITP)
www.aitp-edsig.org /www.isedj.org

Page 79

Information Systems Education Journal (ISEDJ) 9 (3)
August 2011

RunTest(2, 10, False, 20, True, "", False, 30, 1.00, 31.00)
RunTest(3, 10, False, "", False, 30, True, 40, 1.50, 41.50)
RunTest(4, 10, True, 20.75, False, "", False, 30.75, 0.50, 31.25)
RunTest(5, "", False, 20.75, True, 30, False, 50.75, 1.04, 51.79)
RunTest(6, 10.25, True, 20, True, "", False, 30.25, 1.51, 31.76)
RunTest(7, 10.25, True, 20, False, 30, True, 60.25, 2.01, 62.26)
RunTest(8, "", False, 20, True, 30.45, True, 50.45, 2.52, 52.97)
RunTest(9, "", False, "" False, "" False, © (%] 0.00)

3 3 3 J
RunTest(10, 10, True, 20.75, False, 30.45, True, 61.2, 2.02, 63.22)
RunTest(11, 10.25, False, 20.75, False, 30, True, 61, 1.50, 62.50)

;5 Errors: Iteml Item2 Item3 Expected message

RunTestError(12, "xyz", 20, 30, "Item 1 must be blank or a number")
RunTestError(13, 10, "xyz", 30, "Item 2 must be blank or a number")
RunTestError(14, 10, 20, "xyz", "Item 3 must be blank or a number")

Listing 4: SpreadsheetTest.au3 (Support functions for storing test data in a spreadsheet)

#tinclude<Excel.au3>

; Returns an Excel spreadsheet with the given title and path. If the spreadsheet 1is
; already open in Excel, it returns that spreadsheet, otherwise, it opens the
; Spreadsheet.
; $title: The title of the spreadsheet.
; $path: The absolute path (file location) of the spreadsheet.
; Returns: The spreadsheet with the given title and path.
Func OpenSpreadsheet($title, $path)
Local $oExcel
If WinExists($title, "") Then
$oExcel = _ExcelBookAttach($path)
Else
$0Excel = _ExcelBookOpen($path)
EndIf
If @error <> © Then
MsgBox(®, "Error!", "Unable to open the Excel spreadsheet " & $path)
Exit
EndIf
Return $oExcel
EndFunc ;==>0penSpreadsheet

Listing 5: SalesTotalExcel.au3 (Run “Sales Total” test cases from an Excel spreadsheet)

AutoItSetOption("MustDeclareVars", 1)

#include "SpreadsheetTesting.au3"
#include "SalesTotalTesting.au3"

Global Const $EXCEL_PATH = @WorkingDir & "\SalesTotalTestData.xlsx"
Global Const $EXCEL_TITLE = "Microsoft Excel - SalesTotalTestData.xlsx"

Func RunTests($testData)
For $row = 1 To $testData[@][@] ; row count
Local $keyword = $testData[$row][1]
Switch $keyword
Case "Test"
Local $testName = $testData[$row][2]
Local $itemlvalue = $testData[$row][3]
Local $itemlTaxable = $testData[$row][4]
Local $item2value = $testData[$row][5]
Local $item2Taxable = $testData[$row][6]
Local $item3value = $testData[$row][7]
Local $item3Taxable = $testData[$row][8]
Local $pretax = $testData[$row][9]

©2011 EDSIG (Education Special Interest Group of the AITP) Page 80
www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 9 (3)
August 2011

Local $tax = $testData[$row][10]

Local $total = $testData[$row][11]

RunTest($testName, $itemlValue, $itemlTaxable, $item2Value, _
$item2Taxable, $item3Value, $item3Taxable, $pretax, $tax, $total)

Case "Error"

Local $testName = $testData[$row][2]

Local $itemlvalue = $testData[$row][3]

Local $item2value = $testData[$row][4]

Local $item3value = $testData[$row][6]

Local $expectedMessage = $testData[$row][7]

RunTestError($testName, $itemlvalue, $item2value, $item3Value, _
$expectedMessage)

EndSwitch
Next
EndFunc ;==>RunTests

Global $oExcel = OpenSpreadsheet($EXCEL_TITLE, $EXCEL_PATH)
Global $testData = _ExcelReadSheetToArray($oExcel)
StartSalesTotal()

RunTests($testData)

Listing 6: SalesTotalWebTest.au3 (Simple example of single web test case)

#include <IE.au3>

; Open the site.
$browser = _IECreate("http://127.0.0.1:8080")

; Get the form.
$form = _IEFormGetObjByName($browser, "salesform")

; Set item 1 to 1e.

$itemlString = _IEFormElementGetObjByName($form, "itemlString")
_IEFormElementSetValue($itemiString, "10")

; Item 1 is taxable.

_IEFormElementCheckBoxSelect($form, "itemlTaxable")

; Set 1item 2 to 20.

$item2String = _IEFormElementGetObjByName($form, "item2String")
_IEFormElementSetValue($item2String, "20")

; Set item 3 to 36@.

$item3String = _IEFormElementGetObjByName($form, "item3String")
_IEFormElementSetValue($item3String, "30")

; Item 3 1is taxable.

_IEFormElementCheckBoxSelect($form, "item3Taxable")

; Get the Add button (0 = first button).

$addButton = _IEFormElementGetObjByName($form, "button", @)

; Submit the form.
_IEAction($addButton, "click")

; Verify results.
$pretaxSumObject = _IEGetObjById($browser, "pretaxSum")
$pretaxSum = _IEPropertyGet($pretaxSumObject, "innertext")
If $pretaxSum <> "60" Then
ConsoleWriteError('Error: pretax sum expected 60, got: ' & $pretaxSum & @CRLF)
EndIf
$taxSumObject = _IEGetObjById($browser, "taxSum")
$taxSum = _IEPropertyGet($taxSumObject, "innertext")
If $taxSum <> "2.0" Then
ConsoleWriteError('Error: tax sum expected 2.0, got: ' & $taxSum & @CRLF)
EndIf

©2011 EDSIG (Education Special Interest Group of the AITP) Page 81
www.aitp-edsig.org /www.isedj.org

Information Systems Education Journal (ISEDJ) 9 (3)
August 2011

$totalSumObject = _IEGetObjById($browser, "totalSum")
$totalSum = _IEPropertyGet($totalSumObject, "innertext")
If $totalSum <> "62.0" Then
ConsoleWriteError('Error: total sum expected 62.0, got: ' & $totalSum & @CRLF)
EndIf

©2011 EDSIG (Education Special Interest Group of the AITP) Page 82
www.aitp-edsig.org /www.isedj.org

