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When a multisite randomized trial reveals between-site variation in program

impact, methods are needed for further investigating heterogeneous mediation

mechanisms across the sites. We conceptualize and identify a joint distribution

of site-specific direct and indirect effects under the potential outcomes frame-

work. A method-of-moments procedure incorporating ratio-of-mediator-

probability weighting (RMPW) consistently estimates the causal parameters.

This strategy conveniently relaxes the assumption of no Treatment � Mediator

interaction while greatly simplifying the outcome model specification without

invoking strong distributional assumptions. We derive asymptotic standard

errors that reflect the sampling variability of the estimated weight. We also offer

an easy-to-use R package, MultisiteMediation, that implements the

proposed method. It is freely available at the Comprehensive R Archive Network

(http://cran.r-project.org/web/packages/MultisiteMediation).

Keywords: asymptotic variance; direct effect; indirect effect; multilevel modeling; multi-

site randomized trials; method of moments; RMPW

1. Introduction

Intervention programs in economics, education, political science, public health,

and social welfare are usually delivered in organizations or communities. Each

local setting can be viewed as an experimental site within which individuals are

assigned to different treatment conditions. Multisite randomized trials and multi-

site natural experiments have been pervasive in these fields and often feature

longitudinal data collection (Bloom, Hill, & Riccio, 2005; Raudenbush & Bloom,

2015; Spybrook & Raudenbush, 2009). Different from clustered randomized trials

(also called “group randomized trials”), which only allow for the estimation of the

average treatment effect because individuals in the same cluster are assigned to the

same treatment condition, multisite randomized trials provide unique opportunities

for investigating how the treatment impact may vary across sites. Past research has

often reported a considerable amount of cross-site heterogeneity in the total treat-

ment effect possibly due to natural variations in organizational contexts, in
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participant composition, and in local implementation (Weiss, Bloom, & Brock,

2014). Assessing between-site variation in the causal mechanisms may generate

important information for unpacking and understanding the heterogeneity in the

total treatment effects. With the existing statistical methods and analytic tools,

however, program evaluators cannot take full advantage of such data.

In the basic mediation framework, the treatment affects a focal mediator,

which in turn affects the outcome. To determine the extent to which the focal

mediator transmits the treatment effect on the outcome in a single site, one may

decompose the total treatment effect into an indirect effect that channels the

treatment effect through the hypothesized mediator and a direct effect that works

directly or through other unspecified mechanisms. Additional important research

questions arise in a multisite study. We illustrate, with the National Job Corps

Study (NJCS), a multisite randomized evaluation of the nation’s largest job

training program for disadvantaged youth. The Job Corps program theory

emphasizes both educational attainment and risk reduction. Previous research

has suggested that educational attainment be a potential mediator of the Job

Corps impact on earnings (Flores & Flores-Lagunes, 2013). Yet it is unclear

whether the treatment mechanism mediated by educational attainment—shown

as an indirect effect—operates the same across all the sites; nor is it clear whether

the role of other program elements—summarized in a direct effect—is consistent

over the sites. Such evidence will be crucial for enriching theoretical understand-

ing and for informing the design and implementation of programs alike.

This study addresses the need for a flexible methodological solution for investigat-

ing heterogeneity of causal mediation mechanisms in multisite trials. We develop

concepts and methods for defining, identifying, and estimating (1) population average

indirect effect and direct effect that decompose a total treatment effect and (2)

between-site variance and covariance of indirect effect and direct effect. Unlike the

existing strategies for multisite mediation analysis, our extension of a weighting

method accommodates scenarios in which the treatment changes not only the med-

iator value but also the mediator–outcome relationship (Judd & Kenny, 1981).

Because the causal parameters are estimated through a two-step procedure, we derive

asymptotic variances that reflect the sampling variability of the estimated weight.

Applying the proposed analytic strategy to the Job Corps data, we generate new

empirical evidence about the program. Below, we explain why the new method

extends and supplements the existing literature on multisite causal mediation analysis.

Taking on the challenges of multisite data, researchers (Bauer, Preacher, &

Gil, 2006; Kenny, Korchmaros, & Bolger, 2003; Krull & MacKinnon, 2001;

Preacher, Zyphur, & Zhang, 2010; Zhang, Zyphur, & Preacher, 2009) have

proposed to embed the standard path analysis and structural equation modeling

(SEM) in multilevel modeling by including random intercepts and random slopes

in the mediator model and the outcome model. Bauer and colleagues have further

explored the possibility of quantifying not only the population average but also

the between-site variation of the direct effect and the indirect effect through
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specifying multivariate multilevel models. Path analysis and SEM rely on correct

specifications of the mediator model and the outcome model. Covariance adjust-

ment for confounding covariates is crucial for removing selection bias. However,

even when the treatment is randomized, results tend to be biased if one misspe-

cifies covariate–outcome relationships in the outcome model or fails to consider

possible Treatment � Mediator interaction, Mediator � Covariate interactions,

or Treatment � Mediator � Covariate interactions. In addition, because this

approach specifies the average indirect effect as a product of regression coeffi-

cients, it becomes particularly challenging to estimate the between-site variance

of the indirect effect and the covariance between the site-specific direct and

indirect effects. Finally, relying on maximum likelihood estimation (MLE), the

above strategy typically assumes that the mediator and the outcome are multi-

variate normal in distribution. As others have pointed out (Imai, Keele, & Ting-

ley, 2010; MacKinnon & Dwyer, 1993; VanderWeele & Vansteelandt, 2010),

applications of path analysis and SEM to discrete mediators and outcomes face

many constraints in both single-site and multisite studies.

Other researchers have specified multilevel path analysis models for analyzing

data from group randomized trials (VanderWeele, 2010b; Vanderweele, Hong,

Jones, & Brown, 2013) that are useful for evaluating treatments administered at the

group level but not for investigating between-site variation in mediation mechan-

isms in a multisite trial. The multisite instrumental variable (IV) method uses Treat-

ment� Site interactions as instruments for the mediators (Kling, Liebman, & Katz,

2007; Raudenbush, Reardon, & Nomi, 2012; Reardon & Raudenbush, 2013). With

its primary interest in identifying the average effect of each mediator on the out-

come, the IV method, when applied to multisite mediation analysis, does not esti-

mate the between-site distributions of the indirect effects. A study by Bind,

Vanderweele, Coull, and Schwartz (2016) examined time-varying treatments and

mediators nested within individuals. Even though one may view individuals in this

longitudinal study as analogous to sites, the researchers focused only on the popu-

lation average direct and indirect effects. No solution was provided for estimating

and testing the between-individual heterogeneity of these effects. To our knowl-

edge, other methods that allow for a Treatment �Mediator interaction (e.g., Imai,

Keele, & Tingley, 2010; Imai, Keele, & Yamamoto, 2010) have not been extended

to studies of between-site heterogeneity in mediation mechanisms.

Hong (2010, 2015) and others (Hong, Deutsch, & Hill, 2011, 2015; Hong &

Nomi, 2012; Huber, 2014; Lange, Rasmussen, & Thygesen, 2014; Lange, Van-

steelandt, & Bekaert, 2012; Tchetgen Tchetgen, 2013; Tchetgen Tchetgen &

Shpitser, 2012) have developed weighting strategies for single-site mediation

analysis. Defining direct and indirect effects in terms of potential outcomes

(Pearl, 2001; Robins & Greenland, 1992), a ratio-of-mediator-probability

weighting (RMPW) analysis identifies and estimates these causal effects each

as a mean contrast, along with their standard errors, while adjusting for pretreat-

ment confounding through propensity score–based weighting. The intuitive
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rationale is that, among individuals with the same pretreatment characteristics,

the distribution of the mediator in the experimental group and that in the control

group can be effectively equated through weighting under the assumption of

sequential ignorability. Unlike the regression-based strategies, these weighting

methods allow for Treatment � Mediator interaction without having to specify

the mediator–outcome relationship and the covariate–outcome relationship. The

greatly simplified outcome model minimizes the risk of model misspecification.

Simulations (Hong et al., 2015) have shown that, when the outcome model is

misspecified, RMPW clearly outperforms path analysis/SEM in bias correction.

By extending the RMPW method to data from a multisite trial, we aim to

reveal between-site differences in the causal mediation mechanism. In doing

so, this study provides a new statistical tool that can be applied broadly to

multisite studies in which not only the population average direct and indirect

effects but also the between-site variation of the direct and indirect effects are

of scientific interest. We have developed an easy-to-use R package, Multi-

siteMediation, that allows users to implement the proposed method.

In the next section, we define the causal parameters under the counterfactual

causal framework and clarify the identification assumptions based on which we

explain the rationale of RMPW-based multisite mediation analysis. After

delineating the method-of-moments (MOM) estimation procedure in Section

3, we assess the performance of this estimation approach through simulations in

Section 4. Section 5 applies the method to the Job Corps data. In Section 6, we

discuss the strengths and limitations of this new approach and raise issues for

future research.

2. Definition and Identification of the Population Average and Variance of

Site-Specific Causal Mediation Effects

2.1 The Counterfactual Causal Framework

Applying the counterfactual framework of causal inference (Neyman &

Iwaszkiewicz, 1935; Rubin, 1978), we define the causal parameters of interest

in the context of the multisite Job Corps evaluation. The NJCS is based on a

national random sample of all eligible applicants to Job Corps in late 1994 and

1995. The sampled youths were assigned randomly either to an experimental

condition that allowed for immediate enrollment in one of the Job Corps centers

or to the control condition that forbade Job Corps enrollment for 3 years. Which

Job Corps center an individual would be assigned to had been determined prior to

the treatment randomization. An individual’s weekly earnings 48 months after

randomization measures the economic outcome. The focal mediator is whether

an individual obtained an education or training credential 30 months after

randomization.
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2.1.1 Individual-specific causal effects. We use Tij ¼ t to indicate the treatment

assignment of individual i at site j, where t ¼ 1 (or t ¼ 0) implies the individual was

(or was not) assigned to the Job Corps program. Let the mediator value be m ¼ 1 if the

individual obtained an education or training credential, and m ¼ 0 if not. The poten-

tial mediator value for individual i at site j is defined as MijðtÞ when the individual’s

treatment assignment is set to t for t ¼ 0; 1. Similarly, we use Yijðt;MijðtÞÞ to repre-

sent the potential outcome value for individual i at site j when Tij ¼ t. When

MijðtÞ ¼ m, the individual’s potential outcome value can be written as Yijðt;mÞ.
We have defined an individual’s potential educational attainment as a func-

tion of the treatment value and have defined his or her potential earnings as a

function of the treatment value and the mediator value under the Stable Unit

Treatment Value Assumption (SUTVA; Rubin, 1980, 1986, 1990). In the context

of a multisite mediation study, SUTVA implies that (a) there is no interference

between sites (Hong & Raudenbush, 2006; Hudgens & Halloran, 2008), that is,

the potential mediators of individual i at site j are independent of the treatment

assignments of individuals at site j0 for all j0 6¼ j and, additionally, the potential

outcomes of individual i at site j are independent of the treatment assignments

and mediator value assignments of individuals at site j0; and (b) there is no

interference between individuals within a site, that is, an individual’s potential

mediators are independent of the treatment assignments of other individuals at

the same site and, additionally, the individual’s potential outcomes are indepen-

dent of the treatment assignments and mediator value assignments of other

individuals at the same site. In the National Job Corps evaluation, an applicant

was usually assigned to a Job Corps center relatively close to his or her original

residence. Hence, it seems reasonable to invoke assumption (a). Assumption (b)

may be violated if a Job Corps student’s performance is affected by the behaviors

of other students at a center. Contaminations are also possible between individ-

uals in the treated group and those in the control group who share a social

network within a site.

Under SUTVA, for individual i at site j, the treatment effect on the

outcome (i.e., the intention-to-treat [ITT] effect) is defined as

bðTÞij � Yijð1;Mijð1ÞÞ � Yijð0;Mijð0ÞÞ. Decomposing the total treatment effect

into a direct effect and an indirect effect, however, involves a third potential

outcome Yijð1;Mijð0ÞÞ. This is the earnings the individual would counterfac-

tually have if assigned to a Job Corps program yet having the same educational

attainment as he or she would under the control condition.

The direct effect of the treatment on the outcome for individual i at site j is

bðDÞij � Yijð1;Mijð0ÞÞ � Yijð0;Mijð0ÞÞ: ð1Þ

The direct effect will be nonzero if the Job Corps program has an impact on

earnings even without changing an individual’s educational attainment. This is

possible because many Job Corps centers provide a range of supplemental
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services designed to reduce risks and improve participants’ overall well-being.

This is called “the natural direct effect” by Pearl (2001) and “the pure direct

effect” by Robins and Greenland (1992).

The indirect effect of the treatment on the outcome transmitted through the

mediator for individual i at site j is

bðIÞij � Yijð1;Mijð1ÞÞ � Yijð1;Mijð0ÞÞ: ð2Þ

The indirect effect represents the Job Corps impact on earnings to be attributed to

the program-induced change in educational attainment from Mijð0Þ to Mijð1Þ.
This is called “the natural indirect effect” by Pearl (2001) and “the total indirect

effect” by Robins and Greenland (1992). The total treatment effect is the sum of

the direct effect and the indirect effect: bðTÞij ¼ bðDÞij þ bðIÞij .

The above decomposition is not unique. Alternatively, one may decompose the

total treatment effect into a “total direct effect,” Yijð1;Mijð1ÞÞ � Yijð0;Mijð1ÞÞ,
and a “pure indirect effect,” Yijð0;Mijð1ÞÞ � Yijð0;Mijð0ÞÞ, in Robins and Green-

land’s terms. The current study is primarily interested in the impact on earnings

when an individual’s educational attainment changes from Mijð0Þ to Mijð1Þ
under the Job Corps program. This is the impact of educational attainment

on earnings when the individual has simultaneous access to a range of supple-

mentary services provided by Job Corps. We therefore focus on the causal

effects defined in Equations 1 and 2.

2.1.2 Site-specific causal effects. There was a Job Corps center at each experi-

mental site. At the time of the study, the 103 Job Corps centers served eligible

participants in almost the entire nation. Rather than viewing the 103 sites in

this study as a finite population of sites, we consider a theoretical population of

sites that could possibly be infinite in number. This is because the composition

of applicants, the composition of Job Corps staff, the center operator, and

various elements of the control condition tend to be fluid rather than static.

Let Sij ¼ j indicate the site membership of individual i. We define the site-

specific ITT effect bðTÞj ¼ EðbðTÞij jSij ¼ jÞ, direct effect bðDÞj ¼ EðbðDÞij jSij ¼ jÞ,
and indirect effect bðIÞj ¼ EðbðIÞij jSij ¼ jÞ.

Given our central interest in between-site heterogeneity, here we focus on the

population of sites rather than the population of individuals. We therefore define

the key parameters that characterize the distribution of the site-specific causal

effects. These include the average ITT effect gðTÞ ¼ EðbðTÞj Þ, the average direct

effect gðDÞ ¼ EðbðDÞj Þ, and the average indirect effect gðIÞ ¼ EðbðIÞj Þ in the pop-

ulation of sites. In addition, the variance of the distribution of the site-specific

ITT effect is quantified by s2
T ¼ varðbðTÞj Þ ¼ E½ðbðTÞj � gðTÞÞ2�. The between-site

heterogeneity in the ITT effect may be explained by differences between the sites
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in the direct effect, the indirect effect, or both. We therefore investigate the

between-site variance of the direct effect s2
D ¼ varðbðDÞj Þ ¼ E½ðbðDÞj � gðDÞÞ2�,

the between-site variance of the indirect effect s2
I ¼ varðbðIÞj Þ ¼ E½ðbðIÞj �

gðIÞÞ2�, and the covariance between the site-specific direct effect and indirect

effect sD;I ¼ covðbðDÞj ; bðIÞj Þ ¼ E½ðbðDÞj � gðDÞÞðbðIÞj � gðIÞÞ�. Clearly, s2
T ¼

varðbðTÞj Þ ¼ s2
D þ s2

I þ 2sD;I .

In summary, we will focus on identifying and estimating the joint distribution

of site-specific direct and indirect effects characterized by population means gðDÞ

and gðIÞ as well as by between-site variances s2
D, s2

I , and covariance sD;I .

2.2 Identification Assumptions

The joint distribution of site-specific direct and indirect effects can be

identified by observable data under the following two assumptions that constitute

the “sequential ignorability” (Imai, Keele, & Tingley, 2010; Imai, Keele, &

Yamamoto, 2010) at each site.

Identification Assumption 1. Ignorable treatment assignment: This assumption

states that, within levels of the observed pretreatment covariates, treatment

assignment in each site is independent of all the potential mediators and potential

outcomes. In other words, there is no unmeasured confounding of the treatment–

mediator relationship or the treatment–outcome relationship at site j. This is

assumed to be true for all the sites.

fMijðtÞ; Yijðt;mÞgv TijjXij ¼ x; Sij ¼ j 8j ð3Þ

for t ¼ 0; 1 and m ¼ 0; 1. Here, Xij ¼ x denotes a vector of observed pre-

treatment covariates. Additionally, it is assumed that 0 < PrðTij ¼ tjXij ¼
x; Sij ¼ jÞ < 1 for t ¼ 0; 1. That is, each individual has a nonzero probability

of being assigned to either treatment condition in a given site. The assumption of

ignorable treatment assignment is easy to satisfy in a multisite randomized trial

such as the Job Corps study.

Identification Assumption 2. Ignorable mediator value assignment: This

assumption states that, within levels of the observed pretreatment covariates,

mediator value assignment under either treatment condition in each site is inde-

pendent of all the potential outcomes. In other words, there is no unmeasured

confounding of the mediator–outcome relationship within a treatment or across

the treatment conditions in site j. This again is assumed to be true for all the sites.

Yijðt;mÞv fMijðtÞ;Mijðt0ÞgjTij ¼ t;Xij ¼ x; Sij ¼ j 8j ð4Þ
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for t unequal to t0, where t; t0 ¼ 0; 1 and m ¼ 0; 1. It is also assumed that 0 <

PrðMijðtÞ ¼ mjTij ¼ t;Xij ¼ x; Sij ¼ jÞ < 1 and 0 < PrðMijðt0Þ ¼ mjTij ¼ t;

Xij ¼ x; Sij ¼ jÞ < 1. That is, each individual has a nonzero probability of having

the mediator value that one would display under the actual or the counterfactual

treatment condition.

In a hypothetical experiment for causal mediation analysis, individuals

within each site would be randomized to the experimental or the control con-

dition; subsequently, individuals would be assigned at random to obtain an

education credential under each treatment condition. Alternatively, the treat-

ment assignment would be randomized within subgroups of individuals who

share the same observed pretreatment characteristics; and subsequently, the

randomization to obtain an education credential under each treatment condition

would be conducted within subgroups of individuals who share the same

observed pretreatment characteristics. These hypothetical sequential rando-

mized designs satisfy the sequential ignorability assumption.

However, in multisite studies such as NJCS, because individuals were not

randomized to receive a mediator value after the treatment randomization,

Identification Assumption 2 becomes particularly strong. The plausibility of

this assumption relies heavily on the richness of the observed pretreatment cov-

ariates. This assumption also requires that there is no posttreatment covariate that

confounds the mediator–outcome relationship (Avin, Shpitser, & Pearl, 2005;

VanderWeele, 2010b; Vanderweele et al., 2013). An example of a possible viola-

tion is that, if among individuals with the same baseline characteristics, those who

are more likely to obtain an education credential are also the ones who tend to

receive more counseling services, then the indirect effect mediated by educational

attainment would be confounded by the program benefit transmitted through

counseling services. The sequential ignorability assumption must hold in every

site. If the assumption is violated in one or more sites, the causal parameters will

likely be identified with bias. For this reason, the sequential ignorability assump-

tion in the multisite setting is seemingly stronger than that in the single-site setting.

Assessing the sensitivity of analytic results to possible violations of these identi-

fication assumptions is a necessary step in applications.

2.3 Identification Results

Under the sequential ignorability, the site-specific average of each potential

outcome is identifiable, which then enables the identification of the site-specific

direct and indirect effects. Here, we discuss the general case in which the treat-

ment assignment and the mediator value assignment under each treatment con-

dition are “ignorable” within each subgroup of individuals who share the same

observed pretreatment characteristics x.

In general, when Identification Assumption 1 holds within a site, the average

potential outcome associated with treatment condition t at site j,
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EðYijðt;MijðtÞÞjSij ¼ jÞ, can be identified by the weighted outcome of individuals

actually assigned to treatment t at site j:

EðW ðtÞ
ij YijjTij ¼ t; Sij ¼ jÞ;

where

W
ðtÞ
ij ¼

PrðTij ¼ tjSij ¼ jÞ
PrðTij ¼ tjXij ¼ x; Sij ¼ jÞ : ð5Þ

Here, W
ðtÞ
ij is the inverse-probability-of-treatment weight (IPTW) known from

past research (Horvitz & Thompson, 1952; Robins, 2000; Rosenbaum, 1987). This

weighting transforms the experimental group composition and the control group

composition such that the probability of treatment assignment in the weighted

sample would resemble that in a hypothetical randomized design with equal prob-

ability of treatment assignment for all individuals. In other words, applying W
ðtÞ
ij to

individuals with pretreatment characteristics x who have been assigned to treat-

ment t at site j removes bias due to treatment selection associated with X.

When Identification Assumptions 1 and 2 hold within a site,

EðYijð1;Mijð0ÞÞjSij ¼ jÞ can be identified by

EðWijYijjTij ¼ 1; Sij ¼ jÞ;

in which

Wij ¼
PrðTij ¼ 1jSij ¼ jÞ

PrðTij ¼ 1jXij ¼ x; Sij ¼ jÞ �
PrðMij ¼ mjTij ¼ 0;Xij ¼ x; Sij ¼ jÞ
PrðMij ¼ mjTij ¼ 1;Xij ¼ x; Sij ¼ jÞ ð6Þ

is the weight applied to individuals with pretreatment characteristics x who were

assigned to the experimental condition in site j and displayed mediator value m.

Within a single site, this weight is a product of IPTW and RMPW derived by

Hong (2010, 2015) and others (Hong et al., 2011, 2015; Hong & Nomi, 2012;

Tchetgen Tchetgen & Shpitser, 2012). The latter is a ratio of an experimental

individual’s conditional probability of displaying mediator value m under the

counterfactual control condition to that under the experimental condition. For

individuals within levels of the pretreatment characteristics x, RMPW transforms

the mediator distribution in the experimental group to resemble that in the control

group. The weighted experimental group mean outcome therefore identifies the

average counterfactual mean outcome associated with the experimental condi-

tion when the mediator counterfactually distributes the same as that under the

control condition. RMPW is mathematically equivalent to the inverse probability

weight (IPW) proposed by Huber (2014).

This identification result enables us to relate the observable data to the

average counterfactual outcome at a site. When the treatment assignment is

randomized within a site, PrðTij ¼ tjSij ¼ jÞ ¼ PrðTij ¼ tjXij ¼ x; Sij ¼ jÞ, we

simply have that
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W
ðtÞ
ij ¼ 1;

Wij ¼
PrðMij ¼ mjTij ¼ 0;Xij ¼ x; Sij ¼ jÞ
PrðMij ¼ mjTij ¼ 1;Xij ¼ x; Sij ¼ jÞ : ð7Þ

Below we use m0j, m1j, and m�j as shorthand for EðYijjTij ¼ 0; Sij ¼ jÞ,
EðYijjTij ¼ 1; Sij ¼ jÞ, and EðWijYijjTij ¼ 1; Sij ¼ jÞ, respectively. In a multisite

randomized trial, the average direct effect at site j, bðDÞj , can be identified by a

simple mean contrast:

bðDÞj ¼ m�j � m0j : ð8Þ

The average indirect effect at site j, bðIÞj , can be identified by

bðIÞj ¼ m1j � m�j : ð9Þ

Once the site-specific direct and indirect effects are identified, their joint

distribution in the population can be identified as well. The weighting method,

similar to the existing methods that rely on the sequential ignorability assump-

tion, cannot remove bias associated with omitted baseline covariates; nor can it

adjust for posttreatment covariates. We will show how to assess the conse-

quences of such potential bias through sensitivity analysis.

3. Estimation and Inference

The estimation involves two major steps. Step 1 estimates the weight for

each individual in the experimental group as a ratio of the conditional prob-

ability of mediator value under the experimental condition to that under the

control condition corresponding to Equation 7. Step 2 estimates the unweighted

mean outcome of the control group, the unweighted mean outcome of the

experimental group, the weighted mean outcome of the experimental group for

each site, and subsequently the site-specific direct effect and indirect effect

corresponding to Equations 8 and 9. Based on these site-specific estimates, we

estimate the population average and the between-site variance of the direct

effect and those of the indirect effect.

In Step 1, following the convention of propensity score estimation in multi-

level data, we fit multilevel mixed-effects logistic regression models to the

sample data in each treatment group pooled from all the sites and estimate the

coefficients through maximum likelihood. In Step 2, we employ an MOM

estimation procedure to estimate the site-specific direct and indirect effects and

the first and second moments of their joint distribution. This procedure estimates

the between-site variance of the direct and indirect effects by purging the average

sampling variance off the total between-site variance of these effects. However,

the analysis in Step 2 is complicated by the fact that the causal parameters must
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be estimated on the basis of the estimated weight rather than the true

weight. We propose asymptotic variance estimators for the population aver-

age direct effect and indirect effect estimators that incorporate the sampling

variability in the weight estimation. We also conduct a permutation test for

variance testing.

We choose MOM rather than MLE in Step 2 for two reasons. First, the like-

lihood in Step 2 is a function of the parameters, given both the observed outcome

and the estimated individual weight. The unknown distribution of the weight

adds difficulty to the specification of the likelihood function. Second, our pre-

liminary results suggest that the site-specific effects are not normally distributed.

MOM does not invoke assumptions about the distribution of the site-specific

effects and thus has a potential for broad applications.

This section starts by introducing the weighted MOM estimators of the causal

effects in a hypothetical scenario in which the weight is known. We then discuss

our strategy of obtaining the asymptotic sampling variance of the causal effect

estimates when the weight needs to be estimated. At the end, we explain the

estimation and hypothesis testing for the between-site variance of the direct and

indirect effects.

3.1 Method-of-Moments Estimators of the Causal Effects When the Weight

Is Known

To estimate the population average effects, we first estimate the direct and

indirect effects site-by-site and then aggregate the site-specific direct and indirect

effect estimates (e.g., Diggle, Heagerty, Liang, & Zeger, 2002; Raudenbush &

Bloom, 2015). Suppose that, for sampled individual i in site j with pretreatment

characteristics Xij ¼ x, the probability of obtaining an education credential is

p1ij ¼ PrðMij ¼ 1jTij ¼ 1;Xij ¼ x; Sij ¼ jÞ under the experimental condition and

is p0ij ¼ PrðMij ¼ 1jTij ¼ 0;Xij ¼ x; Sij ¼ jÞ under the control condition. To

estimate m�j ¼ EðWijYijjTij ¼ 1; Sij ¼ jÞ, we simply obtain a weighted sample

mean outcome of those assigned to the experimental condition at site j,

bm�j ¼
Xnj

i¼1
YijWijTijXnj

i¼1
WijTij

; ð10Þ

where nj is the sample size at site j. The weight is Wij ¼ p0ij=p1ij when Mij ¼ 1

and Wij ¼ ð1� p0ijÞ=ð1� p1ijÞ when Mij ¼ 0.

The control mean outcome m0j and the experimental mean outcome m1j can be

estimated simply by the corresponding sample mean outcomes at each site:

bm0j ¼

Xnj

i¼1
Yijð1� TijÞXnj

i¼1
ð1� TijÞ

;
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bm1j ¼

Xnj

i¼1
YijTijXnj

i¼1
Tij

: ð11Þ

The MOM estimators of the site-specific direct and indirect effect at site j are

bbðDÞj ¼ bm�j � bm0j;

bbðIÞj ¼ bm1j � bm�j : ð12Þ

We then estimate the parameters that characterize the distribution of site-

specific causal effects for the population of sites. When the sites have been

sampled with equal probability from the population of sites, by taking a simple

average of the above unbiased estimates of the site-specific direct and indirect

effects across all the J sites in the sample, we obtain unbiased estimators of the

average direct and indirect effects for the population of sites,

b� ¼ 1

J

XJ

j¼1

b�j; ð13Þ

in which b�j ¼ ðbbðDÞj ; bbðIÞj Þ
0
and b� ¼ ðbgðDÞ;bgðIÞÞ0. Equivalently, it can be written as

b� ¼ ðC0CÞ�1C0b�; ð14Þ

where b� ¼ ðb�1

0
; . . . ; b�J

0
Þ0 and C ¼ 1J ⊗ I2, in which 1J is a J � 1 vector of 10s

and I2 is a 2� 2 identity matrix.

An alternative precision-weighted estimator would use the inverse of the

covariance matrix of the site-specific effect estimates as the weight. Even

though precision weighting is expected to improve efficiency, it may introduce

bias and inconsistency if the precision weight is correlated with the effect

size of the site-specific direct or indirect effect. We do not opt for precision

weighting in this study.

3.2 Asymptotic Sampling Variance of Causal Effect Estimates When Weight

Is Unknown

In a typical multisite randomized experiment, even though the treatment

assignment is randomized, the mediator value assignment is not. Hence, the

weight is unknown and needs to be estimated from the sample data in Step 1

prior to the estimation of the causal effects in Step 2. In the analytic procedure

that we delineate below, a multilevel logistic regression analysis is employed in

Step 1 to estimate the weight while Step 2 involves site-by-site MOM analysis.

3.2.1 Two-step estimation procedures. In Step 1, we fit two logistic regression

models, one to the sampled individuals in the experimental group and the other to
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those in the control group. (This is equivalent to fitting one logistic regression

model to a combination of these two groups with a submodel for each group.) To

maximize the precision of estimation, we pool data from all the sites and include

a site-specific random intercept in each model. If a covariate predicts the med-

iator differently across the sites, a site-specific random slope can be included as

well. The models take the following form:

log
ptij

1� ptij

� �
¼ Xtij

0�t þ Ctij
0rtj; rtj*Nð0;ΣtÞ; ð15Þ

for t ¼ 0; 1. Here, Xtij is a vector of covariates including the intercept, �t is the

corresponding vector of coefficients, and Ctij is a vector of covariates with

random effects rtj. For computational simplicity, following Hedeker and Gibbons

(2006), we standardize the random effects rtj by representing them as Ftθtj. Here

FtFt
0 ¼ Σt is the Cholesky factorization of Σt, the variance–covariance matrix of

the random effects, Ft is a lower triangular matrix, and θtj follows a standardized

multivariate normal distribution. The analysis can be conducted through MLE

using iterative generalized last squares. In addition to the sequential ignorability,

the multilevel logistic regression model comes with its model-based assumptions

with regard to the relationships between Xtij and ptij and the distribution of the

random effects.

We predict p1ij for each individual in the experimental group directly based on

the propensity score model fitted to the experimental group data. To predict p0ij

for the same individuals, we apply the propensity score model that has been fitted

to the control group data. In these two propensity score models, random effects

are each estimated through an empirical Bayes procedure. Because the treatment

assignment was independent of the potential mediators within each site, the

independence also holds within levels of the pretreatment covariates. Hence

among those with the same pretreatment characteristics, the observed mediator

distribution of those assigned to the control condition, in expectation, provides

counterfactual information of the mediator distribution that the Job Corps parti-

cipants would likely have displayed should they have been assigned to the

control condition instead. Based on the predicted propensity scores, we obtain

the estimated weight bW ij ¼ bp0ij=bp1ij for a Job Corps participant who successfully

attained an education credential and bW ij ¼ ð1� bp0ijÞ=ð1� bp1ijÞ for one who did

not. bW ij is a consistent estimator of Wij because, as the number of sites and the

sample size at each site increase, bp0ij and bp1ij converge in probability to the

corresponding true propensities p0ij and p1ij. The estimated weight converges

in probability to the true weight accordingly.

The Step-2 estimation is similar to that described in Section 3.1 except that we

need to replace Wij with bW ij. In the existing literature on propensity score–based

weighting in multilevel settings (e.g., Leite et al., 2015), propensity score
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estimation and causal effect estimation are conducted separately. In this way,

however, the sampling variability of the estimated weight obtained in Step 1 will

not be represented in the standard errors of the causal effect estimates obtained in

Step 2. Moreover, because we analyze the propensity score models by pooling

data from all the sites, the predicted propensity scores and correspondingly the

estimated weights are inevitably correlated between sites. Separating the two

steps in analysis would lead to bias in estimating the standard errors for the

estimated population average direct and indirect effects. As shown later in the

simulation study, the problem becomes salient especially when the site size is

small. To deal with this challenge, we extend the strategy that Newey (1984)

proposed under the single-level setting. Specifically, we stack the estimating

equations from the two steps and solve them simultaneously. By doing so, the

second-order conditions for the site-specific direct effect and indirect effect

estimators are considered with respect to the parameters that must be estimated

in Step 1. Intuitively, the stacking allows the Step 1 estimation to be configured

into the Step 2 estimation. The two-step estimators can be fit into the generalized

method of moments (GMM) framework (Hansen, 1982). This idea has been

applied in causal inference in single-level settings. For example, Hirano and

Imbens (2001) utilized it in the estimation of the total treatment impact using

propensity score weighting. Bein et al. (2015) applied the strategy to RMPW-

based single-site causal mediation analysis. Here we adapt the estimation pro-

cedure to multisite causal mediation analysis.

3.2.2 Asymptotic sampling variance of the causal effect estimates. Let h
ð1Þ
ij denote

the moment functions for the Step-1 parameter estimators b�. Here b� includes the

estimators of the coefficients in the multilevel logistic regression models as well

as the elements on or below the diagonal of bFt. Let h
ð2Þ
ij denote the moment

functions for the Step-2 parameter estimators b�. Here b� includes the estimators

of all the site-specific potential outcome means. Appendix A, available in the

online version of the journal, provides details of these moment functions. Stack-

ing the moment functions from both steps, we have that

hij ¼
h
ð1Þ
ij

h
ð2Þ
ij

" #
: ð16Þ

Now, the estimators in the two steps can be rewritten as a one-step estimatorb� ¼ ðb�0; b�0Þ0, which jointly solves 1
N

PJ
j¼1

Pnj

i¼1hij ¼ 0. Under the standard reg-

ularity conditions, b� is a consistent estimator of � ¼ ð�0;�0Þ0 with the asymp-

totic sampling distribution (Hansen, 1982):ffiffiffiffi
N
p
ðb�� �Þ!d Nð0; fvarðb�� �ÞÞ: ð17Þ
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The asymptotic normal distribution enables computation of sensible

confidence intervals and tests when the site-specific effects or the outcome are

not normally distributed. Details on the consistent estimator of fvarðb�� �Þ can

be found in Appendix A.

Subsequently, we derive the sampling variance of the estimators for the

direct and indirect effects. Based on Equations 8, 9, and 12, it is easy to show

that b�� � ¼ Φðb�� �Þ, and thus

varðb�� �Þ ¼ Φvarðb�� �ÞΦ0; ð18Þ

where Φ ¼ IJ ⊗ �1 1 0

0 �1 1

� �
, in which IJ is a J � J identity matrix,

varðb�� �Þ is a 2J � 2J matrix with varð�j � �jÞ as the jth 2� 2 submatrix

along the diagonal. The off-diagonal elements covðb�j � �j; b�j0 � �j0 Þ, where

j 6¼ j0, are nonzero due to the use of pooled data from all the sites in estimating

the weights in Step 1. Relying on the consistent estimator of varðb�� �Þ, we

obtain the consistent estimator of varðb�� �Þ. The estimator is composed ofcvarðb�j � �jÞ and dcovðb�j � �j; b�j0 � �j0 Þ.
Correspondingly, for the population average direct effect and indirect effect

estimators given in Equation 14, the sampling variance is

varðb�Þ ¼ ðC0CÞ�1C0varðb�ÞCðC0CÞ�1; ð19Þ

in which

varðb�Þ ¼ varðb�� �þ �Þ ¼ varðb�� �Þ þ varð�Þ; ð20Þ

where varð�Þ ¼ IJ ⊗ varð�jÞ. The between-site variance of the direct effect and

indirect effect varð�jÞ is of key scientific interest. We discuss its estimation in the

next subsection. varðb�� �Þ has been defined in Equation 18. After obtaining the

consistent estimators of varðb�� �Þ and varð�jÞ, we will be able to consistently

estimate the asymptotic standard errors for the estimators of the population

average direct and indirect effects.

3.3 Estimation and Inference of Between-Site Variance and Covariance of

Causal Effects

We estimate the between-site variance and covariance of the direct and

indirect effects again through the method of moments. The total between-site

variance of the site-specific effect estimator varðb�jÞ is equal to the sum of

the within-site sampling variance varðb�j � �jÞ and the between-site variance

of the site-specific effect varð�jÞ:
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varðb�jÞ ¼ varðb�j � �j þ �jÞ ¼ varðb�j � �jÞ þ varð�jÞ: ð21Þ

Hence, by subtracting the average within-site sampling variance estimator

from the average total variance estimator, we obtain a consistent estimator

of the between-site variance of �j. As shown in Appendix B, available in the

online version of the journal, this estimator is

cvarð�jÞ ¼
1

J � 1

XJ

j¼1

ðb�j � b�Þðb�j � b�Þ0 þ 1

JðJ � 1Þ
X

j

X
j0 6¼j

dcovðb�j � �j; b�j0 � �j0 Þ

� 1

J

XJ

j¼1

cvarðb�j � �jÞ:
ð22Þ

In the above equation, the sum of the first two components estimates the

average total variance of b�j. Here the second component provides additional

adjustment for the covariance among the sampling errors of b�j’s between sites.

The covariances are nonzero due to the pooling of data from all the sites in Step-1

estimation. The third component estimates the average within-site sampling

variance of b�j. The subtraction removes the sampling variance from the total

variance. In practice, if a negative variance estimate is obtained, which is known

as a Heywood case, both the variance estimate itself and the related covariance

estimate will be set to 0.

Previous researchers of multilevel mediation analysis (e.g., Bauer et al., 2006)

have not discussed how to conduct hypothesis testing for the between-site

variance of the direct and indirect effects. Taking the direct effect as an example,

we prove in Appendix C, available in the online version of the journal, that under

H0 : s2
D ¼ 0,

XJ

j¼1

ðbbðDÞj � bgðDÞÞ2
varðbbðDÞj � bðDÞj Þ

!d w2ðJ � 1Þ:

Replacing varðbbðDÞj � bðDÞj Þ with cvarðbbðDÞj � bðDÞj Þ, the test statistic is

QðDÞ ¼
XJ

j¼1

ðbbðDÞj � bgðDÞÞ2
cvarðbbðDÞj � bðDÞj Þ

: ð23Þ

As discussed in Section 3.2, as N increases, cvarðbbðDÞj � bðDÞj Þ converges to

varðbbðDÞj � bðDÞj Þ. However, when N is small, the distribution of the sample test

statistic may deviate from w2ðJ � 1Þ. The same is true with the between-site

variance of the indirect effect. We thus employ a permutation test proposed by

Fitzmaurice, Lipsitz, and Ibrahim (2007). The test randomly permutes the site
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indices based on the idea that all permutations of the site indices are equally

likely under the null. The details about the algorithm of the permutation test can

be found in Appendix C.

4. Simulation Study

We conduct a series of Monte Carlo simulations to assess the finite-sample

performance of the multilevel RMPW procedure in estimating the population

average and between-site variance and covariance of the direct effect and indirect

effect. We focus on the case of a binary randomized treatment, a binary mediator,

and a continuous outcome, although the estimation procedure can be easily

extended to multicategory mediators and binary outcomes. We implement the

estimation in R, using the lme4 package (Bates, Maechler, Bolker, & Walker,

2014) to fit the multilevel logistic regression models.

We specify three sets of population causal parameters listed in Table 1. The

standardized parameter values are similar in magnitude to those used in the

previous simulation studies of multilevel mediational models (Bauer et al.,

2006; Krull & MacKinnon, 2001) and reflect a range of plausible values in real

applications. Both the population average and the variance and covariance of the

site-specific direct and indirect effects are specified to be 0 in the first scenario,

which is designed for examining the Type I error rates in hypothesis testing. All

the parameter values increase from Set 2 to Set 3. Appendix D, available in the

online version of the journal, explains how we generate the simulation data.

The number of sampled sites, J , the number of sampled individuals per site,

nj, and the probability of treatment assignment at a site, PrðTij ¼ 1jSij ¼ jÞ, are

manipulated to represent the range observed in past multisite studies. For exam-

ple, the Job Corps study had over 100 sites with an average of about 150 indi-

viduals per site in the full sample. The multisite sample analyzed by Seltzer

(1994) had 20 sites with an average of about 29 individuals per site. Therefore,

TABLE 1.

Population Causal Parameter Specification

Population Average Between-Site Variation

Parameters gðDÞ gðIÞ s2
D s2

I sD;I

Parameter Set 1 0 0 0 0 0

Parameter Set 2 .08 .08 .04 .04 .02

Parameter Set 3 .19 .19 .06 .06 .01

Note. To enable comparisons between the different scenarios, the population average effects have

been standardized by the average within-site standard deviation of the outcome in the control group;

the between-site variances and covariances have been standardized by the average within-site

variance of the outcome in the control group.
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we generate balanced data sets comprised of 100 or 20 sites of either a small site

size (nj ¼ 20Þ or a moderate site size (nj ¼ 150Þ, while PrðTij ¼ 1jSij ¼ jÞ is

specified to be 0.5 across all the sites. In addition, we generate an imbalanced

data set similar to the Job Corps data with varying site size and varying site-

specific probability of treatment assignment.

We make 1,000 replications for each of these scenarios and then fit analytic

models to each data set. We focus on assessing the amount of bias in the causal

parameter estimates when implementing the proposed procedure. Table 2 reports

the simulation results for the estimation of the population average effects and the

between-site variances with the proposed method under 15 different scenarios

(three sets of population causal parameters by five sets of sample sizes). As

shown in Table 2, the sample estimates of the population average direct effect

and indirect effect contain minimal bias. The variance and covariance estimates

appear to be unbiased when N is relatively large and show a slight increase in

positive bias when N is small. The latter apparently has to do with the increase of

Heywood cases in small samples. The Type I error rate for variance testing is

always close to the nominal rate.

In addition, we compare the estimated standard errors for the population

average direct effect and indirect effect estimates between the proposed estima-

tion procedure, the procedure that ignores the sampling variability of the weight

estimates, and the fully nonparametric bootstrap procedure (Goldstein, 2011).

For the latter, we generate a bootstrap sample through a simple random resam-

pling with replacement of the sites, estimate propensity scores and population

average direct and indirect effects based on this sample, and repeat this procedure

1,000 times. The standard deviation of the bootstrapped estimates provides an

estimate of the standard error of each population average causal effect estimate.

We construct 95% confidence intervals bounded by the 2.5th and 97.5th percen-

tiles of the bootstrapped estimates.

Tables 3 and 4 present, respectively, for the population average direct effect

estimator and the population average indirect effect estimator, the simulation

results for the standard error estimates and confidence interval coverage rates.

For the population average direct effect estimator, all the three approaches to

standard error estimation seem to provide acceptable results. For the population

average indirect effect estimator, the standard error estimated through the pro-

posed estimation procedure always closely approximates the standard deviation

of the sampling distribution. In contrast, the standard error tends to be under-

estimated by the procedure ignoring the estimation uncertainty in weight when

the site size is relatively small and when the between-site variances are nonzero.

In those scenarios, we observe a relatively high correlation among the site-

specific indirect effect estimates. As shown in Equation 19, the asymptotic

variance of the population average effect estimators is a linear combination of

the elements in varðb�Þ including covariances among the site-specific effect
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TABLE 2.

Simulation Results for the Estimation of the Population Average Effects and Between-Site

Variances

J ¼ 100 J ¼ 20

Parameter Set nj ¼ 20 nj ¼ 150

Job Corps

Site Size nj ¼ 20 nj ¼ 150

Parameter Set 1

Direct effect

Bias of ĝðDÞa �0.002 0.000 0.000 �0.007 0.002

Bias of ŝ2
D

b 0.030 0.002 0.004 0.041 0.003

Type I error (%) for H0 : s2
D ¼ 0 5.90 5.70 4.90 5.30 4.60

Indirect effect

Bias of ĝðIÞ 0.002 0.000 0.000 0.001 0.000

Bias of ŝ2
I 0.002 0.000 0.000 0.003 0.000

Type I error (%)c for H0 : s2
I ¼ 0 5.10 6.00 4.90 5.30 5.40

Bias of ŝD;I �0.004 0.000 0.000 �0.007 0.000

Parameter Set 2

Direct effect

Bias of ĝðDÞ 0.004 0.000 0.001 0.001 �0.001

Bias of ŝ2
D 0.022 0.000 0.001 0.027 �0.002

Indirect effect

Bias of ĝðIÞ �0.004 0.000 �0.001 �0.004 �0.003

Bias of ŝ2
I �0.002 0.001 0.001 �0.004 0.000

Bias of ŝD;I 0.001 0.000 0.000 0.000 �0.001

Parameter Set 3

Direct effect

Bias of ĝðDÞ 0.011 �0.001 0.001 0.003 �0.004

Bias of ŝ2
D 0.017 �0.003 �0.002 0.013 �0.003

Indirect effect

Bias of ĝðIÞ �0.010 0.000 �0.001 �0.004 0.001

Bias of ŝ2
I �0.005 0.002 0.001 �0.005 0.001

Bias of ŝD;I 0.007 0.000 0.000 0.007 0.001

aTo enable comparisons between the different scenarios, bias in the population average effect estimate

is computed as the difference between the average of the estimates across the 1,000 replications and

the true value, standardized by the average within-site standard deviation of the outcome in the control

group. bTo make different scenarios comparable, bias in the variance estimate is computed as the

difference between the average of the variance estimates across the 1,000 replications and the true

value, standardized by the average within-site variance of the outcome in the control group. cThe Type

I error rate is computed for the null hypothesis test of the between-site variance of the direct effect and

that of the indirect effect when the nominal level is set to .05.
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TABLE 3.

Simulation Results for the Standard Error Estimate and Confidence Interval Coverage

Rate of the Population Average Direct Effect Estimate ðĝðDÞÞ

J ¼ 100 J ¼ 20

Parameter Set nj ¼ 20 nj ¼ 150

Job Corps

Site Size nj ¼ 20 nj ¼ 150

Parameter Set 1

Empirical SEa 0.045 0.016 0.020 0.101 0.037

Relative bias of SE (%)b

Proposed method �1.90 1.10 1.60 �3.50 �3.00

Ignore uncertainty in Ŵ ij �1.80 1.30 1.70 �3.40 �2.90

Bootstrap 3.40 3.30 3.40 �1.60 �5.00

95% CI coverage (%)c

Proposed method 94.30 94.50 94.70 92.50 94.10

Ignore uncertainty in Ŵ ij 94.20 94.70 94.70 92.60 94.10

Bootstrap 94.00 95.10 95.00 93.50 93.30

Parameter Set 2

Empirical SE 0.047 0.025 0.026 0.104 0.056

Relative bias of SE (%)

Proposed method �1.10 �1.30 6.40 �0.10 �2.80

Ignore uncertainty in Ŵ ij �0.30 �0.80 6.90 0.90 �2.20

Bootstrap �1.90 �0.40 �4.50 �1.80 �5.70

95% CI coverage (%)

Proposed method 94.50 94.80 96.10 93.80 92.80

Ignore uncertainty in Ŵ ij 94.70 94.90 96.10 94.20 92.90

Bootstrap 94.20 94.80 93.10 94.60 92.20

Parameter Set 3

Empirical SE 0.047 0.029 0.033 0.104 0.063

Relative bias of SE (%)

Proposed method 1.40 �0.70 �4.50 �0.10 0.20

Ignore uncertainty in Ŵ ij 6.50 1.70 �2.30 5.60 2.90

Bootstrap �6.70 0.10 �2.90 �1.80 �2.80

95% CI coverage (%)

Proposed method 94.40 95.00 93.70 93.50 92.80

Ignore uncertainty in Ŵ ij 95.90 95.60 94.10 95.20 93.80

Bootstrap 94.40 96.10 95.20 93.70 92.30

a“Empirical SE,” SEðbgðDÞÞ, is the standard deviation of the sample estimates of direct effects over the

1,000 replications and is standardized. It approximates the standard deviation of the sampling

distribution of the average direct effect estimates. b“Relative bias of SE” is the relative bias in the

estimated standard error, computed as E½cSEðbgðDÞÞ�=SEðbgðDÞÞ � 1. c“95% CI coverage rate” is

the coverage probability of the 95% confidence interval estimate of the direct effect. We construct

the bootstrap CIs nonparametrically from the 2.5th and 97.5th percentiles of the set of empirical

bootstrap values.
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estimates. However, these covariances are overlooked in the procedure ignoring

the uncertainty in weight. We also observe that, when the between-site variance

of the indirect effect increases, the magnitude of the covariance between the site-

specific indirect effect estimates tends to increase accordingly, which then aggra-

vates the bias in the standard error estimates. In the simulated scenarios, the

TABLE 4.

Simulation Results for the Standard Error (SE) Estimate and Confidence Interval (CI)

Coverage Rate of the Population Average Indirect Effect Estimate ðĝðIÞÞ

J ¼ 100 J ¼ 20

Parameter Set nj ¼ 20 nj ¼ 150

Job Corps

Site Size nj ¼ 20 nj ¼ 150

Parameter Set 1

Empirical SE 0.011 0.004 0.005 0.029 0.009

Relative bias of SE (%)

Proposed method �2.30 �2.20 �1.10 �3.80 �0.50

Ignore uncertainty in Ŵ ij �1.00 0.60 0.90 �2.10 2.50

Bootstrap 43.5 6.60 5.40 38.10 6.40

95% CI coverage (%)

Proposed method 94.40 94.80 94.70 94.50 93.70

Ignore uncertainty in Ŵ ij 94.40 95.10 94.80 93.90 94.70

Bootstrap 97.60 95.00 95.00 99.40 95.80

Parameter Set 2

Empirical SE 0.022 0.020 0.021 0.056 0.045

Relative bias of SE (%)

Proposed method 2.40 2.70 �0.90 �3.90 �0.20

Ignore uncertainty in Ŵ ij �5.00 1.30 �2.40 �9.80 �1.10

Bootstrap 29.50 5.80 3.80 21.30 0.90

95% CI coverage (%)

Proposed method 92.90 96.60 94.40 92.10 93.10

Ignore uncertainty in Ŵ ij 91.90 96.10 93.80 90.40 92.80

Bootstrap 95.30 95.90 94.00 97.20 93.50

Parameter Set 3

Empirical 0.033 0.027 0.028 0.078 0.063

Relative bias of SE (%)

Proposed method 1.40 �0.40 �1.70 1.10 �3.50

Ignore uncertainty in Ŵ ij �21.60 �5.30 �7.20 �18.90 �8.10

Bootstrap 18.30 4.40 1.60 17.00 �3.10

95% CI coverage (%)

Proposed method 93.10 95.40 94.50 92.10 93.70

Ignore uncertainty in Ŵ ij 82.70 93.80 92.10 84.40 91.90

Bootstrap 96.20 95.30 94.10 96.00 93.50
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standard error tends to be overestimated by bootstrap when the site size is

relatively small.

We also note that the proposed estimation procedure generates acceptable

confidence interval coverage rates. This is generally true for the bootstrapping

procedure as well except for one case in which the bootstrapped standard error is

a severe overestimate. The procedure ignoring the uncertainty in weight, how-

ever, generates coverage rates for the population average indirect effect that

deviate notably from the nominal rate when the number of sites and the site size

are relatively small. In general, for all three estimation approaches, the confi-

dence interval coverage rates tend to converge to the nominal rate with the

increase of the number of sites and of the site size.

Finally, we need to highlight that, with its closed-form expression for the

standard error estimator, the proposed method requires much less computation

than the bootstrap. For example, it takes less than 1 min to run one replication for

the scenario of J ¼ 100 and nj ¼ 150 with the proposed procedure, while it takes

5.5 hr with the bootstrap.

We also run simulations when the site-specific direct effect and indirect effect are

not normal or when the outcome follows other distributions. In all these cases, we

obtain similar findings as above. Applying the proposed procedure, we have found

that the estimates of the causal parameters contain minimal bias and the estimated

standard errors always closely approximate the empirical standard errors. These

additional results suggest that our estimation procedure is not restricted to normally

distributed outcomes or normally distributed site-specific effects.

5. Empirical Application

In this section, we apply the above estimation procedure to the Job Corps data.

Our substantive research questions for the population of sites represented in this

study are (a) What is the average indirect effect of the treatment assignment on

earnings transmitted through educational attainment? (b) What is the direct effect

of the treatment assignment on earnings? (c) To what extent did the indirect

effect vary across the experimental sites? (d) To what extent did the direct effect

vary across the sites? and (e) Was there an association between the site-specific

indirect effect and direct effect?

The analytic sample includes 8,659 individuals with nonmissing outcome and

nonmissing mediator in the 48-month follow-up interview. There are 100 total

experimental sites with one Job Corps center at each site. The sample size at each

site ranges from 24 to 417. Of all, 5,202 applicants were randomly assigned to the

experimental group and 3,457 to the control group. The application that we

present here has not incorporated the NJCS sample weight. Therefore, the ana-

lytic results are only illustrative. We select 26 pretreatment covariates that are

theoretically associated with the mediator and the outcome, including age, gen-

der, race, education, criminal involvement, drug use, employment, and earnings
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at the baseline. Table 5 lists the sample means and standard deviations of the

outcome and some pretreatment covariates across the combinations of treatment

and mediator levels.

Analyzing the data from each treatment group through a multilevel logistic

regression as described in Section 3.2, we predict a Job Corps participant’s

propensity score for obtaining an education or training credential 30 months after

being assigned to Job Corps as a function of the individual’s observed pretreat-

ment characteristics and site membership. Applying the coefficient estimates

obtained from analyzing the control group data, we predict a Job Corps partici-

pant’s propensity score for having educational attainment under the counterfac-

tual control condition. We then construct the weight as defined in Equation 7.

Subsequently, we estimate the population average direct and indirect effects by

aggregating the estimated site-specific effects over all the sites. Finally, we

estimate the between-site variance and covariance of these causal effects and

conduct hypothesis testing as described in Section 3.3.

5.1 Total Program Impact

The results indicate that, 30 months after randomization, about 40% of the

individuals assigned to Job Corps obtained an education or training credential;

only about 22% of those assigned to the control condition obtained a creden-

tial. This stark contrast (coefficient ¼ .18, standard error [SE] ¼ 0.01, t ¼
18.27, p < .001) did not vary significantly across sites. Job Corps programs

had a significant positive impact on earnings on average; this impact, however,

varied considerably across the sites. The estimated population average ITT

effect is US$16.41 ðSE ¼ 5:30; t ¼ 3:10; p ¼ :002Þ, which amounts to about

8.75% of a standard deviation of the outcome. The between-site standard devia-

tion of the ITT effect is estimated to be US$24.81 ðp ¼ 0:03Þ. Therefore, if we

assume that the site-specific ITT effect is approximately normally distributed,

in 95% of the sites, the ITT effect may range from �US$32.22 to US$65.04.

Apparently, the Job Corps centers were not equally effective in improving

earnings.

5.2 Population Average Direct and Indirect Effects

We decompose the total ITT effect on earnings into an indirect effect

mediated through educational attainment and a direct effect that channels the

Job Corps impact through other services. The estimated population average

indirect effect is US$8.68 ðSE ¼ 1:61; t ¼ 5:39; p < :001Þ, about 4.63% of a

standard deviation of the outcome. The estimated population average direct

effect is US$7.74 ðSE ¼ 5:38; t ¼ 1:44; p ¼ :15Þ, about 4.13% of a standard

deviation of the outcome. According to these results, on average, the change in

educational attainment induced by the program significantly increased earnings,
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while other supplemental services available to the Job Corps participants in

contrast with services available to those under the control condition also seemed

to play a crucial role in explaining the program mechanisms.

TABLE 5.

Sample Statistics by Treatment and Mediator

Education Attainment

Treatment Group Control Group

Yes No Yes No

Outcome (in 1995 dollars), mean (standard deviation)

Weekly earnings 245.41

(214.33)

192.84

(189.31)

227.83

(189.44)

187.09

(182.63)

Pretreatment covariatesa (proportions)

Gender

Female .46 (.50) .47 (.50) .42 (.49) .38 (.49)

Male .54 (.50) .53 (.50) .58 (.49) .62 (.49)

Age

16–17 .43 (.49) .38 (.48) .50 (.50) .41 (.49)

18–19 .33 (.47) .31 (.46) .32 (.47) .31 (.46)

20–24 .24 (.43) .31 (.46) .19 (.39) .28 (.45)

Race

Hispanic .18 (.38) .16 (.37) .19 (.39) .17 (.37)

Black .46 (.50) .52 (.50) .46 (.50) .50 (.50)

White .30 (.46) .25 (.43) .28 (.45) .26 (.44)

Other .07 (.26) .07 (.26) .07 (.26) .07 (.26)

Arrest

Serious .04 (.20) .04 (.21) .05 (.22) .04 (.20)

Nonserious .18 (.38) .17 (.38) .20 (.40) .18 (.38)

Never arrested .74 (.44) .75 (.43) .71 (.45) .75 (.44)

Baseline earnings

No earnings .33 (.47) .36 (.48) .33 (.47) .36 (.48)

0–1,000 .10 (.30) .11 (.31) .13 (.33) .10 (.31)

1,000–5,000 .29 (.46) .27 (.44) .29 (.45) .27 (.44)

5,000–10,000 .16 (.37) .13 (.33) .13 (.33) .13 (.34)

�10,000 .06 (.23) .07 (.25) .07 (.25) .06 (.25)

Baseline education

Had HSb diploma .14 (.35) .24 (.43) .10 (.30) .21 (.41)

Had GEDc .03 (.17) .05 (.23) .03 (.17) .06 (.23)

Vocational degree .01 (.12) .02 (.15) .02 (.12) .02 (.14)

Other degree .01 (.07) .01 (.09) .00 (.05) .01 (.09)

None .81 (.39) .69 (.46) .85 (.35) .72 (.45)

Sample size 2,081 3,121 779 2,678

aDue to the page limit, here we display an incomplete list of the pretreatment covariates. Additional

information about other covariates is available from the authors. bHS stands for High School. cGED

stands for General Educational Development.
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5.3 Between-Site Variance of Direct and Indirect Effects

To explain why some sites seemed to be more effective than others, we

further investigate between-site heterogeneity in the causal mediation mechan-

ism. The between-site standard deviation of the indirect effect is estimated to be

only US$7.12 ðp ¼ :06Þ, while the estimated between-site standard deviation of

the direct effect is as large as US$23.76 ðp ¼ :055Þ. We have additionally found

that the estimated covariance between the site-specific direct and indirect

effects is �48.38, which corresponds to a correlation of �0.29. Based on these

estimates, we can infer that the mediating role of educational attainment was

similar over all the sites. Yet the site-specific direct effect may range widely

from negative to positive, suggesting that some sites were much more effective

than others in promoting economic independence through services above and

beyond increasing educational attainment. Hence, the variation in the Job

Corps impact across the sites is mainly explained by the heterogeneity in the

direct effect. Indeed, the National Job Corps office and regional offices cen-

trally standardized the provision of education and strictly regulated vocational

training programs for all the Job Corps centers, which might greatly limit

between-site variation in education and training. In contrast, the management

of other services was left largely to the discretion of each local center. As

revealed in a qualitative process analysis (Johnson et al., 1999), the quantity

and quality of supplemental services varied by a great amount across the Job

Corps centers. Our results corroborate the previous qualitative findings and

suggest a need to improve the quantity and quality of supplementary services

especially in the Job Corps centers in which the estimated direct effect is

relatively small or even negative.

5.4 Sensitivity Analysis

As discussed in Section 2.2, the proposed procedure identifies the causal

parameters only when the sequential ignorability assumption holds. In a multisite

randomized trial, the assumption of ignorable treatment assignment within each

site may be easy to satisfy. However, the assumption of ignorable mediator value

assignment under each treatment condition within levels of the observed pre-

treatment covariates is particularly strong. This assumption becomes implausible

if posttreatment or unmeasured pretreatment covariates imply hidden bias that

could alter the conclusion. If a pretreatment covariate that affects both the med-

iator and the outcome is unobserved, sensitivity analysis could be employed

(Imai, Keele, & Tingley, 2010; Imai, Keele, & Yamamoto, 2010; VanderWeele,

2010a) to assess the extent to which the omission might invalidate inference

about the direct and indirect effects. We extend the bias formulas proposed by

VanderWeele (2010a) to multisite mediation analysis. In addition to assessing

the potential bias in the estimated population average direct effect and indirect
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effect, we assess the potential bias in the between-site variance of the direct effect

and indirect effect.

To assess the consequence of omitting an unmeasured pretreatment covari-

ate denoted by U in each experimental site, we quantify the potential bias in the

estimated site-specific direct and indirect effects attributable to U . In the Job

Corps study, conceivably, the potential bias associated with U is perhaps

comparable to the confounding impact of any of the observed pretreatment

covariates. We use Biasj to denote the potential confounding impact of U on

the site-specific direct effect estimate at site j. Under a series of simplifying

assumptions specified in Appendix E, available in the online version of the

journal, Biasj can be represented as a product of two terms: The first is the

association between U and Y conditioning on the treatment condition t, the

mediator value m, and the values of other pretreatment covariates x at a given

site; the second is the association between U and the treatment indicator T

conditioning on m and x at a given site. Due to the randomization of the

treatment assignment at each site, U does not bias the site-specific ITT effect

estimate. Hence, the potential confounding impact of U on the site-specific

indirect effect estimate at site j is simply �Biasj. Extending this result to the

multisite mediation analysis, we assess the potential impact of U on the pop-

ulation average direct effect estimate Bias ¼ E½Biasj� and that on the popula-

tion average indirect effect estimate �Bias ¼ E½�Biasj�. Appendix E

additionally derives the respective bias in the estimated between-site variance

of the direct effect, in the estimated between-site variance of the indirect

effect, and in the estimated covariance of the site-specific direct effect and

indirect effect.

We have found that gender, race, age, and baseline earnings are among the

observed pretreatment covariates that display the greatest confounding impact.

We speculate that an omitted pretreatment confounder such as academic achieve-

ment or self-regulation skills might have a comparable confounding impact.

After an additional removal of the potential bias of such an omitted confounder,

the statistical inference conclusions about the population average direct effect

and indirect effect would remain unchanged. The same would be true with the

estimated between-site standard deviation of the direct effect and that of the

indirect effect. Hence, we tentatively conclude that our results are insensitive

to the existence of unmeasured pretreatment confounders. We do not rule out the

possibility of alternative conclusions should the simplifying assumptions

invoked in the bias formula be unwarranted.

Posttreatment covariates may be viewed as additional mediators that pre-

cede or are concurrent with the current focal mediator. For example, we have

found that Job Corps programs reduced victimization and criminal involvement

and in the meantime increased access to drug and alcohol treatment during the

12 months after randomization. These intermediate experiences, in theory,
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might remove barriers to educational attainment and to future earnings. When

the research interest is focused on a single mediator such as educational attain-

ment, the omission of other mediators seems inevitable and can be potentially

consequential. Extending the RMPW strategy to an analysis of multiple med-

iators (Hong, 2015; Huber, 2014; Lange et al., 2014) in multisite trials is an

immediate topic on the research agenda. Sensitivity analysis for unobserved

posttreatment confounders is another topic of emerging interest (e.g., Albert &

Nelson, 2011; Imai & Yamamoto, 2013; Tchetgen Tchetgen & Shpitser, 2012;

VanderWeele & Chiba, 2014).

6. Discussion

This article has shown that, aided by methodological development in

multisite causal mediation analysis, researchers can generate new empirical

evidence important for advancing social scientific knowledge. Interventions

such as Job Corps must be delivered by local agents who differ in their pro-

fessional capacity for engaging participants in critical elements of the program.

The composition of the client population and their needs may not be identical

across the sites. Moreover, the job market and alternative programs available to

the client population may differ across the localities as well. A multisite ran-

domized trial offers unique opportunities to empirically examine the program

theory across these different contexts.

Estimating and testing the between-site variance of the indirect effect in

addition to that of the direct effect and quantifying the correlation between the

two have been a major challenge in multisite causal mediation analysis. This is

because, in the standard regression-based approach, the indirect effect is repre-

sented as a product of multiple regression coefficients that may vary and covary

between the sites. The complexity increases exponentially in the presence of

Treatment �Mediator interaction as well as Treatment � Covariate or Mediator

� Covariate interactions. The standard regression approach tends to be con-

strained, with few exceptions, to mediators and outcomes that are multivariate

normal. A computationally intensive bootstrap procedure has been typically

recommended for assessing the standard error of each causal effect estimate.

In this study, we have extended the RMPW strategy to multisite causal

mediation analysis. The simplicity of this weighting strategy brings multiple

benefits. It does not require any assumption about the functional form of the

outcome model; nor does it invoke any distributional assumption about site-

specific direct and indirect effects. Therefore, the method can be applied to

outcomes measured on various scales as long as each causal effect can be

defined as a mean contrast between two potential outcomes. An MOM

procedure applied to the weighted data generates estimates of all the causal

parameters that define the first two moments of the joint distribution of the

site-specific direct effect and indirect effect. In addition, there is virtually no
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constraint on the mediator distribution because RMPW is suitable for any

discrete mediators (Hong, 2015; Hong et al., 2011, 2015) and because a math-

ematical equivalent of RMPW (Huber, 2014) easily handles continuous med-

iators. Hence, we conclude that the proposed strategy has considerably greater

applicability than the existing methods.

We have additionally made several improvements to the estimation and

hypothesis testing. The propensity score–based weights must be estimated

from the sample data pooled over all the sites in the first step before the causal

parameters can be estimated in the second step. To fully account for the

sampling variability in the two-step estimation, we have derived a consistent

estimator of the asymptotic standard error for each causal effect estimator. This

solution may be applied generally to other propensity score–based two-step

estimation problems in analyses of multilevel data. The results of our simulation

comparisons suggest that, for the population average indirect effect estimator in

particular, the estimated asymptotic standard errors often outperform not only

the standard error estimators that ignore the Step-1 estimation but also the boot-

strapped standard errors. Finally, given that the test statistic for the between-site

variance of the direct effect and that for the indirect effect do not follow a theore-

tical w2 distribution, we have implemented a permutation test that produces valid

statistical inference.

We acknowledge several potential limitations of the proposed procedure.

First, past research has shown that misspecifying the functional form of a pro-

pensity score model will bias the RMPW results in single-site mediation analysis

(Hong, 2015; Hong et al., 2015). This is because an omission of nonlinear or

nonadditive terms in the propensity score model can be viewed as an omission of

potential confounders. Multisite RMPW analysis is subjected to a similar

requirement that the multilevel logistic regression model must be correctly spec-

ified. This includes correct specifications of the functional form and the distri-

bution form of random effects. We will investigate in future research the extent to

which results are sensitive to possible deviations from these model-based

assumptions and whether the sensitivity depends on the number of sites and the

number of individuals per site in a sample. We will also explore alternative

nonparametric strategies for propensity score estimation and weight estimation.

Second, although our simulations have shown satisfactory results under a

number of common scenarios represented by past multisite trials, we anticipate

that the current procedure may not be optimal when site sizes are extremely

small. As indicated by the simulation results, a bias seems to arise, albeit small

in magnitude, in the between-site variance of direct effect when the number of

individuals per site is as small as 20. Moreover, when selection mechanisms vary

across sites each of a relatively small sample size, propensity score models may

become overfitted. In such scenarios, the lack of precision of the site-specific

causal effect estimates would likely destabilize the estimation of the between-site

variance–covariance matrix. In general, a reduction in site size reduces the
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amount of information and hence minimizes the statistical power for detecting

meaningful between-site differences regardless of what analytic strategy one

employs. This has direct implications for the design of a multisite trial.

Third, in causal mediation analysis in general, without a randomization of

mediator value assignment in addition to the randomization of treatment

assignment, the causal validity of analytic conclusions relies entirely on the

statistical adjustment for observed pretreatment covariates. Even in the

absence of omitted pretreatment covariates, the results will be invalid if the

focal mediator is not independent of other mediators that constitute additional

pathways. This is likely the case when an intervention program has multiple

complementary components and when the focal mediator singles out only one

of these components. For example, there are concerns that the indirect effect

transmitted through educational attainment might be confounded by an unspe-

cified indirect effect transmitted through individual counseling. This would

be the case if, among individuals sharing the same pretreatment characteris-

tics at a site, those who are more likely to obtain an education credential are

also more likely to seek counseling. Identifying and estimating indirect

effects transmitted by correlated mediators remains a major methodological

challenge.

As we discussed at the beginning of Section 3, the proposed MOM procedure

produces robust results when the site-specific direct effect and indirect effect are

not normally distributed, though at the cost of losing efficiency. In contrast, MLE

improves efficiency by relying on stronger assumptions. In future research, we

will investigate the feasibility of employing MLE in Step 2 and derive the

asymptotic standard error estimator accordingly. We will also explore an alter-

native estimation procedure based on Bayesian methods. The Bayesian perspec-

tive views parameters as random and naturally accounts for uncertainty in the

propensity score weighting through the specification of prior distributions of

propensity score model parameters. Compared to the proposed MOM approach,

the Bayesian method is likely unconstrained by a small sample size per site and is

expected to be more flexible for investigating complex mediation mechanisms

and their between-site heterogeneity.
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