INTRODUCTION

It’s never easy. This statement could not be truer than for the job of faculty members, who are often required to wear “many hats.” The general population may think that faculty members are just teachers, but this is a serious misconception. In most institutions of higher education, faculty members are required to teach, conduct scholarly research, and provide service to the university and the community at large. Though expectations of these three requirements will vary, they create an interesting dynamic where faculty performance outcomes can be influenced by a considerable number of external (and uncontrollable) variables. This study examines several of the factors that lead to stress and burnout of faculty. Specifically, we examine the role of incorporating and “keeping pace with” electronic and online technology as a potential stressor (Kim, 2012).

LITERATURE REVIEW

According to a 1995 edited book by Murphy, Hurrell, Sauter, & Keita (1995), “job stress in the US workforce is on the increase. Among the causes are downsizing, reorganization, the pressures of global competition, and constantly changing new technology.” The evidence continues to mount. For example, a Princeton research group’s study revealed that “three-quarters of the employees surveyed believe there is more on-the-job stress than a generation ago” (Williams, 2013). A Canadian stress specialist, David Posen, identified three problems that have created extra stress in the workplace: workload volume, workload pace (technology’s impact) and abuse (rude people and
Electronic technology is one factor that has affected the work environment both positively and negatively, and this also applies to the academic work environment. Electronic technology helps us manage and organize our work environments and can save time and energy (Hopson, 2013). However, it produces additional stress as workers feel that they are expected to do more with less time, adapt to changes in technology without training, allocate precious work time to training sessions when offered, interact less with each other, and fear being replaced by the technology (Herley, 2013; also see Schlenker and Men-delson, 2008). In fact, there's a term for this type of stress: technostress (Brod, 1984; Well & Rosen, 1998). For example, a study of humanities and social science faculty members found that the lack of time was a major stress factor for them (Metheney & Purvis, 2011; Tu, Wang, & Shu, 2005; B. Ragu-Nathan, T. Ragu-Nathan, Ti, & Tarafdar, 2004, Tarafdar, Ti, T. Ragu-Nathan, & B. Ragu-Nathan, 2011, and Rich, 2008). Professors in higher education can relate to these feelings as well.

Michie (2002) noted that the workplace offers multiple sources of stress as well as resources that can reduce stress (p. 68). She identified the five sources of stress as being intrinsic to the job (e.g., work overload), role in the firm (e.g., role ambiguity), career development (e.g., lack of job security), work relationships, and structure/ climate (e.g., financial difficulties) (Figure 1, p. 68). Workplace stress is also affecting family life. A Pew Research Center study recently found that “56% of working moms and 50% of working dads say they find it very or somewhat difficult to balance” work and family life (Park & Wang, 2013; also see “More Women Online,” 2008; “Setting Boundaries,” 2003).

Some researchers have focused on workplace stress in the academic setting. King (2002) created a “labeled list” of factors that contribute to faculty stress. Researchers found that the lack of time was the largest stress factor for MIT faculty (Stoever, 2004). Four years later, another study revealed a feeling of being overwhelmed by their workload, as they reported working an average of 63 hours in a typical week (Spring 2014 (Volume 10 Issue 1)) in a study of humanities and social science faculty members. Researchers used a major stressor factor for MIT faculty (Stoever, 2008). Four years later, another study revealed a feeling of being overwhelmed by their workload, as they reported working an average of 63 hours in a typical week (Spring 2014 (Volume 10 Issue 1)). The survey was sent to 159 faculty members, and 59 responses were received. The three retirement impact questions were subjected to the Kruskal-Wallis nonparametric test along with the FSI items (next section) and significant differences emerged. Full professors were more likely to indicate that both economic and the political environments have postponed their retirement decision (moved it further away) as compared to instructors and assistant professors. Most of the faculty members had earned Ph.D. degrees (50.78, 88.7%). Management (33.53, 24.5%), Marketing (12.53, 22.6%) and Accounting (18.53, 18.9%) professors primarily made up the respondents. Thirty-one respondents (54.9%) do not teach online classes. Of the 56 who do, the most frequently reported formats were hybrid (20) and fully online (17, multiple responses allowed). Exactly half of the respondents (37 respondents) said they were more than 10 years away from retirement. Twelve (21.4%) said they were six to ten years away. Faculty members were asked about the impact of economic and political environments and personal/professional stress at work on their retirement decision. The most frequent response to all three was “has not changed my decision” (60.7%, 66.1% and 80.4%, respectively).

Citations: The professor sent out the survey link and introductory email. The grad students provided another author with two lists of professors from a number of disciplines from all business schools in the USA as well as from five disciplines from all business schools in the USA. The random numbers were chosen by using generators from the AACSB schools from the AACSB website as well as from AACSB schools from the AACSB website. The estimated sample size was 795 (five times 159). The author sent out a second wave to the two batches on April 4th. This generated another 32 responses. A third wave went out April 17th and generated 11 responses, for a total sample of 83 faculty. However, the survey was a problem, creating many item omissions, and leaving under 60 useful responses. One major consequence of this was that the FSI items could not be subjected to factor analysis in order to be compared with Gmelch, Wilke and Lovrich’s (1986) factors. Another author analyzed the data set and created additional variables, including categorizing the waves and estimating the proportion of each respondent spent on each questionnaire using the recorded time stamps, categorizing each respondent’s state by e-mail address, and creating recorded variables for age, years of teaching and region (based on state, city, etc.). Role was calculated based on role frequencies, cross-tabulations/chi square analysis, t-tests, ANOVA, and Kruskal-Wallis nonparametric tests. The focus of this paper is on the FSI portion of the questionnaire.

RESULTS

Respondent Profile

Respondents took an average of 8.65 minutes (S.D. = 1.81, n=52) to take our survey. Twenty-three spent three minutes or less on the survey, which was reflected in our item omissions. Seven took six minutes, six spent 10 minutes, and one spent 96 minutes on the instrument. Faculty were located primarily in New York (9 participants), Texas (6), Florida (6) and Illinois (5). Given the small sample size, states were recoded into regions. Most of the respondents were from the Southern (24/83, 28.9%) and Midwest (24/83, 28.9%) regions of the USA. Over half (45/70, 50.3%) reported using a computer 6-10 hours during an average work week, and a similar percentage (31/53, 58.5%) reported using a computer 2-5 hours during a typical non-work day.

Most of the faculty members (48/56, 85.7%) were tenured or on tenure track. Almost three-quarters (52/70, 74.3%) of those who responded were either full (23/70, 32.9%) or associate professors (29/70, 41.4%). Roughly a fourth of the members were tenured (27/70, 38.6%). Most of the faculty members had earned Ph.D. degrees (50.78, 88.7%). Management (33.53, 24.5%), Marketing (12.53, 22.6%) and Accounting (18.53, 18.9%) professors primarily made up the respondents. Thirty-one respondents (54.9%) do not teach online classes. Of the 56 who do, the most frequently reported formats were hybrid (20) and fully online (17, multiple responses allowed). Exactly half of the respondents (37 respondents) said they were more than 10 years away from retirement. Twelve (21.4%) said they were six to ten years away. Faculty members were asked about the impact of economic and political environments and personal/professional stress at work on their retirement decision. The most frequent response to all three was “has not changed my decision” (60.7%, 66.1% and 80.4%, respectively).

Crosstabulations and chi square analysis were conducted first on demographic variables to see if any significant differences existed. Female faculty tended to be younger (ages 51 to 60) whereas males tended to be older (ages 61+). (χ2 = 12.27, p < .01, cell size problem = 50%). Respondents who were tenured or on tenure track tended to have been teaching for more than 10 years while those not on tenure track tended to have been teaching only a year or two (χ2 = 13.17, p < .01, cell size problem = 70%). Respondents from the Northeast region were closer to retirement (6 years or less) than those from the Midwest and Southern regions who were further away (six or more years away). Most of the faculty members (48/56, 85.7%) were tenured or on tenure track. Almost three-quarters of those who responded were either full (23/70, 32.9%) or associate professors (29/70, 41.4%). Roughly a fourth of the members (14/57, 24.6%) were between the ages of 51 and 55, while 10 (17.5%) were between the ages of 56 and 68. The younger age categories were merged together for purposes of analysis, resulting in a size of 17 respondents (20.8%). Over 70 (48/56) have been teaching at least 16 years or more. The three lower categories were recoded into one (15 years or less) for purposes of analysis. Approximately 60% of those responding (34/57) were male and over 85% (47/55) were married.

For the FSI scale items, a score of “1” indicated “slight stress” while a score of “5” indicated “extreme pressure.” Respondents could also choose “Not applicable.” The FSI scale was scored so that a score of 1 indicated “no stress” for two items: “Making class presentations” (mean = 1.5, SD = 0.86, n=52) and “Not having clear criteria for evaluation” (mean = 1.5, SD = 0.86, n=52).
CONCLUSION

This study highlights a few areas where faculty members encounter stress. Findings of this survey should be no surprise to those who have worked in and observed trends and changes in higher education. In summary, faculty are significant users of computer technology. Computer use is involved in a large portion of our daily work. While the use of (and concerns about) online courses remains a topic of discussion throughout higher education, fewer than half of those responding acknowledged teaching in online courses. Of those who do teach online, many of the courses are taught in a hybrid format which leaves considerable responsibility on the part of the faculty to vary the amount of face-time vs. the amount of “online time” spent in each course. In total, stress related to adapting to electronic technology seems to be declining over time. Stress related to changes in economic and political environments shows that those who have been teaching for 20 or more years report being affected by the economic environment, postponing their retirement decision. For the Faculty Stress Index scale items, faculty indicate the least stress regarding class presentations and criteria for evaluating research. However, one form of too heavy a workload generated the highest level of stress.

Comparing those who teach online versus those who don’t, those who teach online felt more pressure regarding evaluation of student performance and presenting at professional meetings. Online teachers also felt they have inadequate time for course preparation, communicating with others and resolving differences with students and department chairs. These findings create questions about the need for interpersonal communication to help us better deal with peer-to-peer stress that develops in a work environment.

In general, junior faculty tend to feel more stress regarding scholarly research (it is assumed they are aspiring for tenure) and senior faculty tend to feel more stress regarding political/economic changes and their time to retire. All indicate some amount of stress regarding faculty workloads and what is likely an ever-changing environment in higher education. Most faculty seem well equipped in the use of electronic technology and most appear to have adapted to expectations of using computer and online technology for course instruction. There are issues, however, in the ability to effectively communicate when we depart from face-to-face interpersonal communication. Departing from the “information rich” environment of face-to-face communication does increase stress for faculty, likely from an increase in uncertainty regarding communication effectiveness.

For Future Study

Future research can continue to examine specific stressors to gain knowledge of how universities and colleges can help alleviate some of the factors that create work related stress. Already popular genres typically include training for new technologies as well as wellness programs to help deal with stress and avoid burnout. Future research should also focus on the impact of political/economic change as a source for faculty stress and alternatives for rich communication among faculty and between faculty and students in an otherwise electronic environment.

This study suffers from several weaknesses, the most important being a limited sample size. Part of this sampling problem may be due to the length of the instrument. Future research may attempt to use multiple samples each with a smaller and more focused measurement instrument. It is hoped the authors plan on discussing findings from the remainder of the questionnaire in a future manuscript, detailing communication effectiveness.

REFERENCES


