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Abstract 

As members of a profession committed to the dissemination of rigorous research pertaining to 
agricultural education, authors publishing in the Journal of Agricultural Education (JAE) must 
seek methods to evaluate and, when necessary, improve their research methods. The purpose of 
this study was to describe how authors of manuscripts published in JAE between 2006 and 2015 
tested for nonresponse error. Results indicated that none of the studies’ tests had acceptable power 
to detect small effect sizes, 14.3% had acceptable power to detect medium effect sizes, and 43% of 
the studies’ tests did not have acceptable power to detect large effect sizes. These findings suggest 
that while authors frequently find no difference between respondents and others, the tests used to 
detect these differences are often not powerful enough to do so, leading to higher than acceptable 
risk for Type II error. Using the theory of planned behavior as a framework, we highlight these 
findings to spur change within the profession’s expectations of reporting statistical power when 
testing for nonresponse error and offer a primer to improve researchers’ perceived behavioral 
control over reporting power. We also offer specific suggestions for conducting and reporting the 
results of tests for nonresponse bias.  
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Introduction 

According to the Journal of Agricultural Education’s (JAE) philosophy and policies, the 
journal exists to provide a vehicle for the wide dissemination of “results of research…in agricultural 
education” (AAAE, n.d., para. 1). The journal’s policies related to article retraction suggest that 
research articles published within the journal are assumed to be of high rigor. This assumption is 
supported by the manuscript’s review process, which asks reviewers to evaluate manuscripts based 
on rigor, including the completeness and correctness of the study’s methods and procedures. The 
value of quality research has also been established by experienced reviewers, who stated, “Quality 
research contributes to the body of knowledge…Manuscripts that fail to adequately demonstrate 
these characteristics are not useful” (Roberts, Barrick, Dooley, Kelsey, Ravin, & Wingenbach, 
2011, p. 1-2).  

The American Association for Agricultural Education (AAAE), which is the parent 
organization for the JAE, has suggested the reporting of effect sizes for statistical significance in 
quantitative data analysis as an aspect of maintaining rigor (AAAE, 2016), as they “enable 
researchers to judge the practical significance of quantitative research results” (Kotrlik, Williams, 
& Jabor, 2011, p. 132). This requirement of AAAE research conference submissions echoes the 
APA’s value of effect sizes, as the 2009 guidelines note, “it’s almost always necessary to include 
some measure of effect size in the Results section” (p. 34). According to the Neyman-Person 
method of statistical inference, the effect size displays the degree to which an alternate hypothesis 
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(H1), which states there is a difference in the mean of a particular characteristic between two or 
more groups within a population, is different from the null hypothesis (H0), which states there is no 
difference in the mean of a particular characteristic between two or more groups within a population 
(Cohen, 1992). While effect sizes for each statistical test are reported on continuous scales that 
range upward from zero, with an effect size of zero being equal to the H0, Cohen (1988) proposed 
operational definitions of small, medium, and large effect sizes for each scale which allow 
researchers to compare effect sizes between studies using different statistical tests. According to 
Cohen (1992), these definitions were created so that: 

Medium [effect sizes] represent an effect likely to be visible to the naked eye of 
the careful observer. (It has since been noted in effect size surveys that it 
approximates the average size of observed effects in various fields.) I set small 
[effect size] to be noticeably smaller than medium but not so small as to be trivial, 
and I set large [effect size] to be the same distance above medium as small was 
below it. (p. 156) 

Cohen’s operational definitions of effect size have been widely adopted for general use across 
disciplines (Cohen, 1992), including within the discipline of agricultural education (Kotrlik et al., 
2011).  

However, the ability of a researcher to detect a small, medium, or large effect size, which 
is termed statistical power, depends on the sample sizes of the groups from which the statistical test 
was calculated. The power of a significance test can determine whether a researcher is able to find 
a small, medium, or large effect size that exists within a population, or whether that researcher is 
more likely than not to miss that effect and instead commit Type II error. Because population sizes 
in agricultural education vary, it is possible that some researchers fail to obtain sufficient power to 
detect differences between groups. While committing Type II error leads to more conservative 
findings and conclusions when determining the impact of treatments that could influence future 
practices, Type II error can lead to particularly concerning results with regard to nonresponse error. 
Nonresponse error, which results from failing to include in the sample participants whose responses 
are representative of all members of a population (Lindner, Murphy, & Briers, 2001), may occur 
when less than 100% of an appropriately acquired sample responds. If nonrespondents differ from 
respondents on variables relevant to the survey, generalizing the findings directly from the 
respondents to the population results in biased estimates of population parameters. According to 
Reio (2007), the extent of this nonresponse bias can be calculated as: 

Nonresponse bias = Proportion of Nonrespondents (M respondents - M nonrespondents) 

Two important insights can be derived from the formula for nonresponse bias. First, a high 
response rate is not an entirely adequate protection against nonresponse bias if large differences 
exist between respondents and nonrespondents (Martin, 2004). Second, a low response rate may 
provide an unbiased estimate of the population parameters if there is little or no difference between 
respondents and nonrespondents (Martin, 2004). For example, in a survey with an 80% response 
rate (proportion of nonrespondents = .20) and a mean of 4.50 (on a 1 to 5 scale) for respondents 
and a mean (although unknown) of 1.50 for nonrespondents, the nonresponse bias is equal to -0.60, 
resulting in an actual population mean of 3.90, not the biased estimate of 4.50. Conversely, in a 
survey with a 20% response rate (proportion of nonrespondents = .80) and a mean of 4.50 for 
respondents and a mean of 4.40 (although, again, unknown) for nonrespondents, the nonresponse 
bias is equal to -0.08, and the sample mean for respondents is a relatively unbiased estimate of the 
population mean of 4.42, despite the low response rate.  
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Methods to address potential nonresponse bias include comparing respondents to the 
population on appropriate characteristics, comparing respondents to nonrespondents on specific 
known characteristics, comparing early to late respondents, and gaining access to nonrespondents 
in a manner known as “double dipping” (Miller & Smith, 1983). Roberts et al. cited nonresponse 
as a common threat to research within JAE (2011), and because of the numerous methods available 
to address nonresponse error, stressed that authors “account for non-response error and…select 
methodologies based on best practices in the social sciences, not on perceived ease” (p. 3). Lindner 
et al. (2001) determined that of the 114 manuscripts that attempted to control for nonresponse error 
published in JAE between 1990 and 1999, 75.4% did not find any difference between respondents 
and nonrespondents (which could have been represented by late respondents).  

The AAAE membership has previously established the value of examining the procedures 
used in conducting research, with frequently cited publications recommending authors devote time 
to improving their knowledge and abilities within research methods (Lindner et al., 2001; Miller & 
Smith, 1983; Roberts et al., 2011). Cohen (1992) has identified power as a weak area within social 
science research and noted that while “there is no controversy among methodologists about the 
importance for power analysis…It is not at all clear why researchers continue to ignore power 
analysis” (p. 155). Because of the varied sample sizes used within agricultural education research 
and the frequency with which response rates total less than 100%, the ability for researchers to 
confidently and accurately report differences between respondents and nonrespondents with 
acceptable power must be established.  

Theoretical Framework 

This study examined the power of statistical methods used to test for nonresponse error 
within manuscripts published in JAE between 2005 and 2016 using the theory of planned behavior 
as a framework. The theory of planned behavior states that an individual’s behavior is a result of 
his or her intention to perform the behavior, which is influenced by his or her attitude toward the 
behavior, the subjective norm regarding the behavior, and the individual’s perceived control over 
the behavior (see Figure 1) (Ajzen, 1991).  

 

Figure 1. Theory of Planned Behavior (Ajzen, 1991). 
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A person’s intention to perform a behavior indicates “how hard [her or she is] willing to 
try, how much of an effort they are planning to exert, in order to perform the behavior” (Ajzen, 
1991, p. 181). Intention is shaped by an individual’s perceptions regarding his or her ability to 
perform the behavior, namely “the ease or difficulty of performing the behavior” (Ajzen, 1991, p. 
183). Individuals who are confident in their ability to perform a behavior are likely to put more 
effort in to performing that behavior; similarly, improving a person’s perceived behavioral control 
and therefore their behavioral intentions regarding a particular behavior can be increased by 
increasing available resources or knowledge or reducing unfamiliar elements within the behavioral 
situation (Ajzen, 1991). Attitude toward a behavior “refers to the degree to which a person has a 
favorable or unfavorable evaluation or appraisal of the behavior in question (Ajzen, 1991, p. 188). 
This construct, along with the subjective norms regarding the behavior, which refer to the 
“perceived social pressure to perform or not perform the behavior” (Ajzen, 1991, p. 188) can 
combine with perceived behavioral control to determine an individual’s intention to perform a 
behavior.  

Within the context of this study, we use the theory of planned behavior to posit factors 
which would increase researchers’ likelihood to report power during analysis of differences 
between respondents and nonrespondents. Because of the previously established value AAAE 
members place on quality research, we assume researchers hold positive attitudes regarding 
performing statistical tests with appropriate effect sizes which accurately identify differences 
within the population (in other words, the researchers would rather not commit Type II error if their 
actions could reduce its likelihood in occurring). Cohen (1992) has noted an absence of establishing 
power in a variety of social science disciplines, and posits that reasons for its omission may be due 
to “the low level of consciousness about effect size” (p. 155) or perhaps “researchers find it too 
complicated, or do not have at hand…reference material for power analysis” (p. 156). These 
potential barriers reduce researchers’ perceived behavioral control in calculating and reporting 
power when testing for nonresponse error. And, as Cohen (1992) mentioned, because few 
researchers are reporting power calculations within their manuscripts, there is little expectation or 
pressure from the research society to do so. The theory of planned behavior suggests that by shifting 
the subjective norm to include an expectation of power reporting (as has occurred following the 
publication of previous manuscripts examining research procedures within the profession [Lindner 
et al., 2001]), and by improving researchers’ perceived behavioral control in reporting power 
calculations via reducing unfamiliar aspects of the concept, researchers’ intentions, and ultimately, 
their behaviors, regarding the reporting of power during tests for nonresponse error can be altered. 

Conceptual Framework 

To offer readers a framework for the concept of statistical power (Camp, 2001) and reduce 
any knowledge-related barriers (Ajzen, 1991) to considering power when reporting results of tests 
used to address nonresponse error, we offer a primer and example. When researchers attempt to 
determine the differences between two groups of people within a population via samples of 
individuals from those groups, they are attempting to extrapolate the results from those two samples 
to the larger population. Therefore, a group that is not representative of the population will be 
unable to produce results representative of the entire population, particularly if the variable of 
interest is linked to a characteristic within the group. We will explain this concept using an example 
wherein a researcher is comparing those that responded and those that did not respond to a survey 
inquiring about respondents’ heartrates. It is possible that nonrespondents were not as healthy as 
respondents, and were therefore unable to summon the energy to respond to the survey. Had they 
responded, their responses to the survey about their heartrates would have likely been different than 
responses from those that were healthy enough to respond. Without comparing respondents to 
nonrespondents in some way, the researcher would not be able to determine whether the responses 
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received were likely to be representative of the population. When comparing respondents to 
nonrespondents, the researcher certainly hopes to detect differences between the two groups, should 
a difference be present. Failing to determine a difference between the two groups would lead the 
researcher to commit Type II error and lead readers to believe the respondents were characteristic 
of the entire population when in fact they were not. Type II error in comparing respondents to 
nonrespondents leads to overgeneralization of findings to a population not represented by the 
sample. Cohen (1988, 1992) established that research with a 20% chance of committing Type II 
error is acceptable, which has been a widely adopted standard across disciplines (Field, 2009).  

Differences between groups can occur at different levels of magnitude. In our example, the 
difference between heartrates of healthy respondents and those that did not respond because they 
were ailing in health would be much smaller than the difference between heartrates of healthy 
respondents and those that did not respond because they were dead. Further, the difference between 
respondents and those that did not respond because they were busy doing physical activities would 
likely be even smaller. The magnitude of the difference on a variable within the population is the 
effect size, and as Cohen (1988, 1992) has established, the effect size can be small (healthy 
respondents to physically active nonrespondents), medium (healthy respondents to unwell 
nonrespondents) and large (healthy respondents to dead nonrespondents). A statistical test’s ability 
to detect these effect sizes is known as power, and is the opposite of Type II error. Because an 
acceptable Type II error risk is .20, the minimum acceptable power is 1 - .20, or .80 (Cohen, 1998; 
1992; Field, 2009).  

While researchers hope to have at least an 80% chance of detecting a difference present 
between respondents and nonrespondents and only a 20% chance of missing that difference, their 
ability to do so depends on the sample sizes they use to compare groups. Smaller effect sizes are 
less apparent than larger effect sizes, and therefore require larger sample sizes for detection. 
Smaller sample sizes reduce the researcher’s ability to detect a difference, thus reducing power and 
increasing the risk of Type II error. Power also depends on the statistical test used, as effect size 
calculations differ by test, and on the significance criterion ( [alpha level]). While the standard 
alpha level for social science research is .05, .10 can be used in “circumstances in which a less 
rigorous standard for rejection is desired” (Cohen, 1992, p. 156). Cohen has established appropriate 
sample sizes required in order to have an 80% chance of detecting effect sizes of each magnitude 
and at each alpha level and for each statistical test. Table 1 displays Cohen’s recommended sample 
sizes per group for tests comparing two means, as two-tailed t-tests are most commonly used when 
comparing respondents to nonrespondents or early respondents to late respondents (see Table 1). 

Table 1 

N per group for small, medium, and large effect sizes for two-tailed t-tests at power = .80 for  = 
.01, .05, and .10 (Cohen, 1992, p. 158) 

 

.01  .05  .10 

Sm Med Lg  Sm Med Lg  Sm Med Lg 

586 95 38  393 64 26  310 50 20 
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To illustrate the importance of sample size in the power of tests of significance, we will 
refer back to our example. To determine the heartrate differences between respondents and 
nonrespondents, a researcher may use a two-tailed independent samples t-test. If, among the 
population, the researcher anticipates a medium effect size (in our example, a medium effect size 
was representative of nonrespondents being those in poor health), he or she must have data from 
64 respondents and 64 nonrespondents in order to have an 80% chance of finding a difference at 
the .05 level. If, with 64 cases per group, t is not significant, either the actual population effect size 
is smaller than .50 (a medium effect size for t-tests, [Cohen, 1992]), or a Type II error has been 
committed (of which there is a 20% chance). Illustrating the extreme, we will point out the case if 
the researcher had fewer than 26 cases per group, at which point he or she would have a less than 
80% chance of even detecting the difference in heartrate between the living and deceased (a large 
effect size, > .80).  

The risk for committing a Type II error in tests of nonresponse error within agricultural 
education research may be higher than the accepted 20%, as sample sizes used to address 
nonresponse error can be as small as 10% of the responding sample (Miller & Smith, 1983). 
Lindner, et al. (2001) found that response rates for studies within JAE between 1990 and 1999 
ranged from 28% to 100%, with the average being 81.6%. Nearly 70% of studies had a response 
rate of less than 100%, establishing the need to test for nonresponse error (Lindner et al., 2001). In 
the Lindner et al. (2001) study, nonresponse error was addressed by comparing early to late 
respondents in 31.3% of the studies, by double dipping with a sample of nonrespondents in 18.7% 
of the studies, by comparing respondents and nonrespondents on characteristics known a priori in 
2.3% of the studies, and by comparison between respondents and the population on characteristics 
known a priori in 0.9% of the studies. Nearly 47% of the studies with less than a 100% response 
rate did not attempt to test for nonresponse error.  

Purpose and Objectives 

The purpose of this study was to describe how authors of manuscripts published in JAE 
between 2006 and 2015 tested for nonresponse error. To achieve this purpose, we developed the 
following objectives: 

1. to describe methods used to test for nonresponse error in manuscripts published in JAE; 
2. to describe references cited in support of authors’ method of testing for nonresponse 

bias; 
3. to describe the frequency with which manuscripts included data and methodological 

details required to allow readers to conduct post hoc power analyses of the authors’ 
statistical tests for testing for nonresponse bias; and 

4. to determine the power of tests used in testing for nonresponse error within manuscripts 
published in JAE.  

Methods 

Articles were identified by manually examining all 526 articles published in the JAE 
between 2006 and 2015. This descriptive study examined 127 articles out of the 526 total articles 
published in the JAE between 2006 and 2015, inclusive, where authors reported an attempt to test 
for nonresponse error. In four articles, the researchers reported unsuccessful attempts to follow-up 
with nonrespondents and cautioned readers not to generalize beyond the respondents; these articles 
were included only in the analyses of the methods used to test for nonresponse bias and references 
cited (objectives 1 and 2). Four articles reported surveys conducted with two populations where 
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efforts were made to test for nonresponse error with each population. For objectives 3 and 4, each 
test for nonresponse bias was considered as a unit of analysis (N = 127). 

A standardized coding sheet was developed and used to guide data collection from each 
article, with the following information collected: (a) article identification number, (b) response 
rate(s), (c) method(s) of testing for nonresponse bias (as described by Lindner et al., 2001), (d) 
reference(s) cited in support of method(s) used, (e) variable(s) used in statistical comparison(s), (f) 
statistical test(s) used, (g) test alpha level, (h) expected effect size, (i) sample size for each group, 
(j) obtained test statistic or p-value, (k) whether or not a statistically significant difference was 
found, and (l) whether statistical power was reported. The title page and the methods section of 
each identified manuscript were printed and keyed to the identification number on the coding sheet 
to allow verification of all data. All article coding was completed by one researcher. The second 
researcher used the same coding sheet to examine a random sample of 13 (10.2%) articles and a 
100% agreement was achieved for all items coded, providing evidence of the consistency and 
reliability of the data coding process.  

In order for a reader to calculate statistical power post hoc, the author must report specific 
statistical data in the article: (a) the statistical test(s) used, (b) the number of subjects in each 
comparison group, (c) the alpha level of the statistical test(s), and (d) the effect size of the difference 
anticipated in the population (Faul, Erdfelder, Lang, & Buchner, 2007). For this study, in cases 
where the authors reported the statistical tests(s) used and the number of subjects in each 
comparison group but did not report the alpha level, the customary alpha level of .05 was assumed. 
Additionally, in cases where the authors did not report the anticipated effect size, the standard 
small, medium, and large values offered by Cohen (1992) were assumed in order to allow for any 
possible researcher effect size expectations to be examined. This resulted in 35 (27.6%) tests of 
nonresponse bias where statistical power could be calculated post hoc. G*Power Version 3.1.9.2 
(Faul et al., 2007) software was used to calculate statistical power and results were confirmed by 
comparison with Cohen’s (1988) power tables.  

Findings 

In order to ensure an investigation into the study's objectives was warranted, we first 
examined the response rates of studies reported in JAE manuscripts between 2006 and 2015. The 
mean response rate for the 131 instances where researchers attempted to test for nonresponse error 
was 56.3% (SD = 18.0); the median response rate was 57.0% with an interquartile range of 28.0% 
(Q1 = 43.3% and Q3 = 71.3%).  

Objective 1 sought to describe methods used to test for nonresponse error in manuscripts 
published in JAE (see Table 2). The majority compared early to late respondents (74%, n = 97), 
while double-dipping with nonrespondents was the second-most frequent method. Comparing 
respondents to a known population, regressing days to respond, and using multiple methods were 
each employed to a lesser degree.  

The use of these methods was supported with literature from within and outside of the 
discipline (see Table 3). Lindner et al.’s 2001 manuscript, which was published in JAE and 
proposed three protocols for handling nonresponse issues, was cited most frequently. A manuscript 
by Miller and Smith (1983), which outlines nonresponse methods and was cited by Lindner et al., 
was cited in approximately one-third of the manuscripts. Various editions of Introduction to 
Research in Education, by Ary, et al. (1996, 2014) were also cited with some frequency. Almost 
10% of articles did not cite any reference in support of their methods for testing nonresponse bias.  
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Table 2 

Methods used to Test for Nonresponse Bias in Articles Published in the Journal of Agricultural 
Education, 2006 - 2015 

Method f % 

Compared early to late respondents 97 74.0 

Followed up with a sample of nonrespondents 20a 15.3 

Compared respondents to population on characteristics known a 
priori 

8 6.1 

Regressed days-to-respond on selected variables 3 2.3 

Compared early to late respondents AND followed up with a 
sample of nonrespondents 

4 3.0 

Note. Based on 131 tests reported in 127 articles. aIncludes four (4) cases where attempts to follow 
up with nonrespondents were unsuccessful. 

Table 3 

References Cited to Support Methods used to Test for Nonresponse Bias in Articles Published in 
the Journal of Agricultural Education, 2006 - 2015 

Reference Cited f %a 

Lindner, Murphey, & Briers, 2001 76 58.0 

Miller & Smith, 1983 45 34.4 

Ary, et al. (various editions and co-authors) 13 9.9 

Other 10 7.6 

None 13 9.9 

a Percentages total more than 100% because some authors cited multiple source 

Authors included in their manuscripts various degrees of detail regarding how those 
methods of testing for nonresponse bias were carried out (see Table 4). Less than half of the 
manuscripts detailed the specific variables on which groups were compared. Slightly more than 
half of the manuscripts included which statistical test was used in comparing groups, while slightly 
less than half listed the number of respondents within each comparison group. Less than 20% of 
manuscripts reported the alpha level of the statistical test or the obtained test statistic or its 
associated probability. None of the articles stated the statistical power of the test or the expected 
effect size. Nearly 92% (n = 113) of the statistical tests found no difference between groups when 
testing for nonresponse bias.  

Table 4 
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Details of Analysis in Tests for Nonresponse Bias Reported in Articles Published in the Journal of 
Agricultural Education, 2006 - 2015 

 Reported in Article 

Detail of Analysis f %a 

1. Specific variable(s) used for comparison 57 44.9 

2. Statistical test used in comparison 66 52.0 

3. Alpha level of test(s)b 25 19.7 

4. Number of respondents in comparison group 1 61 48.0 

5. Number of respondents in comparison group 2 59 48.5 

6. Expected effect size 0 0.0 

7. Test statistic or associated probability 22 17.3 

8. Statistical power of test 0c 0.0 

a Percentages are based on 127 tests for nonresponse bias reported in 123 articles. bWhere alpha 
levels and effect sizes were not reported, we assumed the customary alpha level of .05 and analyzed 
data for effect sizes of small, medium, and large values (Cohen, 1992) in order to allow for any 
possible researcher expectations to be examined. cIn four analyses, authors reported a concern about 
the statistical power of their test, but did not provide the actual power coefficient. 

None of the articles contained all the information necessary for a reader to calculate the 
statistical power of tests of nonresponse bias. However, again, by assuming an alpha level of .05 
and using the small, medium, and large effect sizes specified by Cohen (1988), post hoc power 
analysis could be conducted for 35 (27.6%) tests. None of these tests achieved the acceptable power 
of .80 at the small effect size, five (14.3%) achieved power of .80 at the medium effect size, and 
20 (57%) achieved power of .80 at the large effect size. The average likelihood these tests would 
detect a small effect size was 15% (see Table 5). Manuscripts had a mean power of .57 at the 
medium effect size, meaning that, on average, the odds of a manuscript accurately detecting a 
medium effect size was slightly greater than 50/50. The average manuscript power at the large 
effect size was .86, which exceeds the minimum acceptable threshold of .80. 
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Table 5 

Post Hoc Analyses of the Statistical Power for Tests of Nonresponse Bias (n = 35) Reported in the 
Journal of Agricultural Education, 2006 - 2015 

 Statistical Power 

Effect Sizea M SD Median IQrange 

Small (d = 0.20) .15 .07 .13 .05 

Medium (d = 0.50) .57 .21 .56 .23 

Large (d = 0.80) .86 .15 .92 .15 

a Descriptors based on Cohen (1988). 

Conclusions/Implications/Recommendations 

Fifteen years after Lindner et al. (2001) published results that stated 46% of JAE 
manuscripts did not attempt to test for nonresponse error and provided recommendations for doing 
so, the state of professional practice in agricultural education research has improved to the point 
where controlling for nonresponse error is an essential component of manuscript quality (Roberts 
et al., 2011). As Ajzen (1991) posited, by altering the social norms to include an expectation of 
testing for nonresponse error and offering familiar methods for doing so, researchers began 
including tests for nonresponse error in their manuscript writing behaviors more frequently. 
However, as Cohen (1992) lamented with regard to the work of social scientists in general, authors 
publishing within JAE omitted the subject of power from their statistical calculations. None of the 
articles published between 2006 and 2015 stated the statistical power of their tests, although 92% 
of them stated no difference was found (a statement that can only be made with 80% accuracy if 
the power ≥ .80). Less than one-third of the manuscripts included sufficient detail for the reader to 
calculate the power of the test used even when assuming the test alpha level and using standard 
effect sizes.  

When power was calculated and compared to the minimum acceptable threshold of .80 
suggested by Cohen (1988), we found that none of the statistical tests of nonresponse bias were 
adequate to detect small effect sizes, which were those that are smaller than medium, but not trivial 
(Cohen, 1992). Eighty-five percent of the tests were not adequate to detect medium effect sizes, 
which are those that are observable to the trained eye (Cohen, 1992); in our previously used 
example, medium effect size was likened to that of the heartrates between healthy individuals and 
physically unwell individuals. Close to half of the tests were not adequate to detect even large effect 
sizes (such as the difference in heartrate between alive and deceased individuals), leading to a very 
likely chance that the lack of differences found between respondents and others could have actually 
been the result of Type II error. The dissemination of these findings offer a catalyst to alter the 
profession’s subjective norm regarding the reporting of power when testing for nonresponse error 
(Ajzen, 1991), as researchers seek to fulfill the expectations of their peers by minimizing their risk 
for committing Type II error. In order to increase researchers’ perceived behavioral control in 
calculating and reporting power, and in reducing Type II error, we propose several recommended 
practices when testing for nonresponse error (Ajzen, 1991). 
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When conducting tests for nonresponse bias, researchers should prioritize statistical power 
over the employment of previously used methods as they determine appropriate sample sizes for 
groups of nonrespondents or late respondents. While Miller and Smith (1983) recommended 
sampling 10-20% of nonrespondents, indiscriminate use of this method without consideration of 
the number of nonrespondents provides no guarantee with regard to power, and therefore with 
regard to protecting against Type II error.  

We also recommend that researchers determine and report the power of their test(s) of 
nonresponse bias in order to inform the reader of the risk of Type II error. Researchers should 
include necessary components for the reader to calculate power on his or her own, including the 
statistical test used, the number of respondents in each group, the alpha level used, and the 
anticipated effect size. While no published rule exists on the methods for anticipating effect sizes 
within a population, we recommend researchers cite justification from the existing literature base 
for their estimates whenever available. The following may serve as an example for reporting the 
results of tests for nonresponse bias: 

To test for nonresponse bias, early respondents (those responding prior to the third mailing, 
n = 102) were compared to late respondents (n = 59), on the variable ‘commitment to teaching as 
a career’, using a two-tailed independent t-test at the .10 alpha level; the power of the test was .92 
for a medium effect (Cohen’s d = 0.50 [Cohen, 1988]). There was no significant difference between 
early (M = 4.43, SD = 0.82) and late (M = 4.34, SD = 0.87) respondents, t(157) = 0.65; p = .52. 
Thus, the findings were generalized to the population (Miller & Smith, 1983; Linder et al., 2001). 

We believe researchers should be more open to the possibility that respondents and 
nonrespondents are different in meaningful ways and that nonresponse bias is a threat to 
generalizability until we have sufficient evidence to the contrary. Subjects who do not respond to 
a survey (or respond late) already differ from those who do respond (or respond early) in at least 
one dimension. Despite this difference, we traditionally assume respondents and nonrespondents 
are not different and then require overwhelming evidence (p < .05) of this difference before we are 
willing to acknowledge the possibility of nonresponse bias. Researchers are accustomed to 
assuming no difference exists between groups until proven otherwise (H0) when hypothesis testing 
in order to yield conservative results and avoid mistakenly generalizing results beyond the sample. 
However, this same assumption, when testing nonresponse bias, actually yields less conservative 
results (finding no difference where there is one yields to overgeneralization of the study’s results). 
Therefore, we recommend researchers not reflexively use the .05 alpha level in testing for 
nonresponse bias. When selecting an alpha level, researchers directly control the probability of 
committing a Type I error and indirectly the probability of committing a Type II error (Mitchell & 
Jolley, 2010). In introductory research methods courses, many of us were taught that, instead of 
blindly following convention, we should base our alpha level on the relative consequences of 
committing a Type I versus a Type II error. In testing for nonresponse bias, a Type I error 
incorrectly leads researchers to limit their findings, conclusion, and recommendations to the 
respondents. Conversely, a Type II error incorrectly leads researchers to generalize from the 
respondents to the population when this generalization is not appropriate.  We argue that, given the 
state of the science in agricultural education research, Type I errors are generally less consequential 
than Type II errors in this specific instance and recommend use of less conservative alpha levels 
(.10 or .15) in tests of nonresponse bias (Cohen, 1988).   

Finally, when tests with acceptable power yield statistically significant differences between 
groups or when acceptable power is not attainable, researchers should caution readers against 
generalizing results beyond the sample of respondents to prevent overgeneralizating the findings. 
Studies yielding valid results of interest to the profession from a specific groups of respondents, 
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regardless of their generalizability, can add to the body of knowledge and assist researchers as they 
design and conduct research. Stated differently, researchers within agricultural education should 
accept the proposition that meaningful results appropriately limited to only the respondents are 
more valuable than results inappropriately generalized to the population.  

The results of this study confirm Cohen’s (1992) concerns about omitting consideration of 
power when employing statistical tests. While the recommendations made align with those made 
by Cohen (1988, 1992), change in the societal norms regarding testing for nonresponse error and 
the inclusion of power calculations within JAE is in the hands of the profession’s members. As 
Lindner, et al. (2001) stated, “the profession will verify or refute the utility of the methods proposed 
here” (p. 52). Regardless of the behavioral change produced, any examination into the utility of 
these recommendations will continue to further the profession’s commitment to improvement in 
research methods (Lindner et al., 2001; Miller & Smith, 1983; Roberts at al., 2011).  
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