Introduction of Digital Storytelling in Preschool Education: a Case Study from Croatia

Nives Mikelic Preradovic
nives.mikelic@gmail.com
University of Zagreb

Gordana Lesin
g.lesin.zg@gmail.com
University of Zagreb

Damir Boras
dboras@ffzg.hr
University of Zagreb

Abstract
Our case study from Croatia showed the benefits of digital storytelling in a preschool as a basis for the formal ICT education. The statistical analysis revealed significant differences between children aged 6 – 7 who learned mathematics by traditional storytelling compared to those learning through digital storytelling. The experimental group that used digital storytelling showed significant improvement in their abilities to solve computational and mathematical problems, which suggests that this method was age-appropriate and versatile. Also, the observations of educators from both the experimental and the control group showed that children were more motivated by digital storytelling, succeeding to complete all stories with an incredible amount of engagement and enthusiasm. These findings indicate that interactive multimedia storytelling, compared to the traditional one, can be used as an effective tool for improving child’s mathematical and computer literacy skills in the preschool context in which ICT is being introduced for the first time.

Key words
Digital Storytelling in Mathematics, Preschool Education, ICT-supported Learning, Formal Education
I. Introduction

Digital storytelling (DST) commonly refers to the process of developing a multimodal narrative (that includes pictures, video, sound effects, music or text), using digital tools. Although digital stories were primarily intended for self-expression (Hartley & McWilliam, 2009; King, 2008; Meadows, 2003b), their role in teaching and learning is becoming inevitable (Robin, 2008; Sadik, 2008).

The recent research shows that DST can facilitate both the storytelling and the integration of information and communication technology (ICT) in education, bringing many benefits for both teachers and students at all educational levels (Coutinho, 2010; Foley, 2013; Gyabak & Godina, 2011; Heo, 2009; Hung, Hwang, & Huang, 2012; Kearney, 2011; Mantei & Kervin, 2010; Verdugo & Belmonte, 2007; Yang & Wu, 2012).

Although the introduction of ICT in kindergartens is regarded as an out-of-date subject in many developed countries (and is a well-covered topic for over fifteen years), some Eastern European countries (like Croatia that recently joined EU, or other non-EU countries) are still struggling with the introduction of ICT into compulsory education, including preschools. Consequently, no existing research has examined the value of either ICT or DST in a preschool setting in Croatia.

Additionally, fears of preschool educators towards the use of ICT are currently a major topic of research (Hoffman, Park, & Lin, 2015; Kerckaert, Vanderlinde, & van Braak, 2015; Konca, Ozel, & Zelyrut, 2016; Liu, 2015; Masoumi, 2015; Nikolopoulos & Gialamas, 2015; Nolan & McBride, 2013; Turgut, Tunca, & Kişla, 2016). Unfortunately, as some authors point out (Jenkins, 2008, p. 15), "the focus is still on what media are doing to children, when the emphasis should be placed on what children are doing with media".

Therefore, the aim of this paper is to address the necessity of introducing ICT through digital storytelling in preschool education as a basis for the life in a digital age.

II. ICT integration in early childhood education: a literature review

The goal of preschool education is to support the child's development at all levels. During their early childhood, children explore their ability to create using different media and through creative movement. ICT-supported language learning programs (both first and second language programs), ICT-supported mathematics and the computer literacy learning program all represent the important aspect of education in a growing computerized world. On the other hand, knowledge gained in the kindergarten enables child's further education and understanding of the school material.

It is important to enable them to acquire basic skills through preschool programs that foster easier and better application of acquired skills in their everyday life. Digital technologies provide one more channel for them to demonstrate their creativity and learning (Mikelić Preradović, Unić, & Boras, 2014).

Eleven years ago, Council of Europe (2005) has emphasized the importance to "give special encouragement to training for children in media literacy, enabling them to benefit from the positive aspects of the new communication services and avoid exposure to harmful content" in the draft of the Resolution on human rights and regulation of the media and new communication services in the Information Society.

Since then, a growing number of researchers that explored the role of ICT in early childhood education (Marsh, 2010; Wohlwend, 2009; Yelland, 2010) are supporting the introduction of ICT into curriculum, emphasizing that young children are able to engage in digital practices in creative and innovative ways (Burnett, 2010).

Early research on the impact of ICT on children's learning and development already indicated positive effects on the cognitive and social development (Haugland & Shade, 1994). Early research also demonstrated that, when compared with traditional activities (such as assembling puzzles with
other children or building blocks on the floor), ICT caused different types of interactions, more social interaction and higher levels of language and cooperative-play activity (Clements, Nastasi, & Swaminathan, 1993). Children prefer working with their peers over working alone and, while on computer, they engage in more turn taking and high levels of spoken communication and cooperation.

Furthermore, results of the large study conducted by UNESCO’s Institute for Information Technologies in Education (UNESCO, 2010) showed that the use of ICT in early education curriculum (more precisely, in learning mathematical concepts) enhances logical and abstract thinking, development of mathematical reasoning and conduction of experiments as well as the problem solving skills.

Also, a number of researchers have noted the potential of ICT to facilitate children’s cognitive, social, and language development (Clements & Sarama, 2003a; McCarrick & Li, 2007). Furthermore, enhancement in problem solving, child’s concentration and motivation were found as evidence of engagement with ICT (O’Har, 2008 as cited in Garvis, 2016). Children playing computer games were motivated to learn in new and different ways (Yelland, 2002), while history computer games showed potential for the development of self-reflection and cultural analysis, since they encouraged children to draw on facts they learned in class and their own experiences (Jenkins, 2008).

Research also shows that appropriate use of ICT allows children to develop skills such as language development and literacy (Morrow, 2009).

Another study that explored web searching of young children in kindergarten (Spink, Danby, Mallan & Butler, 2010) showed that even children of this young age were able to formulate advanced search queries with keywords, browse the Web, make relevance judgments, perform successive searches and information multitasking.

Critics of ICT-supported education, such as Cordes and Miller (2000), have expressed concern that the ICT use might inhibit language, emotional, moral and social development and lead to social isolation. They also list risks to physical health, intellectual development, concentration and creativity. There is a fear among educators that, compared to the outdoor play, which is socially, culturally and developmentally beneficial for children, ICT might not be able to bring such a benefit (Frost, 2010).

Wolfe and Flewitt (2010, p. 391) confirm this fear in their study of ICT integration in early childhood education in UK, reporting that "educators feared that children's lives were being made toxic through increasing use of new technologies, inactivity and inability to critically evaluate competing sources of information". Also, researchers report about adult's concerns that ICT enables children to (accidentally or deliberately) access inappropriate content online and risk their personal safety engaging in online activities (Miller, 2005).

Due to these fears, educators' personal resistance to computer use (or computer anxiety) and several safety hazards linked with the use of ICT in early childhood that were cited in the literature, ICT still remains a marginal priority for many early childhood practitioners (Nolan and McBride, 2013).

Despite the critics of ICT-supported education, there is a growing understanding that, when used appropriately, ICT has the potential to increase child’s learning experience (Clements, 2002). There is also increased recognition that computer-based instruction can be effectively integrated into early childhood education curriculum (Plowman & Stephen, 2005), motivating the development of reading fluency and other development opportunities (Clements & Sarama, 2003b).

But, the introduction of ICT in early childhood and preschool education needs to be based on a careful selection of activities through which children will be able to adopt the targeted content. On the basis of their work on a guided enquiry, Plowman, Stephen and McPake (2010, p. 93) defined three main areas of learning that ICT can be used for: "extending knowledge of the world, acquiring operational skills, and developing dispositions to learn".

N. Mikelic Preradovic, G. Lesin, D. Boras

Digital Education Review - Number 30, December 2016- http://greav.ub.edu/der/
Regarding the results of the introduction of ICT in early childhood education, the positive impacts have been documented in many publications. Computer-animated stories are found useful and relevant for the language development (Verhallen, Bus & DeJong, 2006), while the process of writing photograph captions in the digital photography project resulted in significant progress in expressive vocabulary development (Labbo, Love & Ryan, 2007). With the help of ICT, reluctant and untidy little writers are encouraged to engage in writing activities using word-processing tools (Beck & Fetherston, 2003). Furthermore, a study by Weiss, Kramarski and Talis (2006) brings findings on ICT-supported mathematics education in kindergarten, where children who used ICT demonstrated greater achievement than those who learned mathematics with traditional tools.

Also, the study that investigated the impact of ICT on the psychomotor skills and school readiness, reported that children who used ICT outperformed the other group on the school readiness test (Li, Atkins & Stanton, 2006).

However, in order for ICT to become an effective educational tool that would improve child’s cognitive skills, strong interpersonal ties between children and educators represent a necessity (Nir-Gal & Klein, 2004). Also, educators who decide to use ICT in early childhood education curriculum need to ensure that ICT "supports the development of positive dispositions towards learning" (Siraj-Blatchford & Siraj-Blatchford, 2006, p. 5) and that ICT is used in a developmentally appropriate manner (Fischer & Gillespie, 2003). Educators can provide guidance to young children that interact with ICT in several ways (Plowman & Stephen, 2005, p. 152): "explaining how to use software, demonstrating how to use a tool, suggesting alternative actions, moving children to an appropriate level of difficulty, offering remedial help when errors occur or sharing pleasure in features such as animation".

Finally, Espinosa, Laffey, Whittaker and Sheng (2006) suggest that enabling access to ICT for young children does not imply the benefit and improvement of child’s skills, pointing out that educators need to moderate the use of ICT for young children.

III. Research Methodology

Although traditional storytelling has been used in kindergartens in Croatia for many years, the use of ICT and digital storytelling represents a novel approach to teaching and learning.

The purpose of this study was to find out the impact of using digital storytelling (DST) on children’s achievement in a preschool mathematics curriculum as well as on their computer literacy skills. The additional goal was to compare the motivation, interaction and engagement of children aged 6 to 7 in DST activities (that included children’s short video narrative, animation and digital images) and storytelling activities that used only raw materials (paper, glue and printed picture cards).

The pre- and post-test surveys were developed by kindergarten educators and members of the professional kindergarten team.

At the start of their preschool year in Croatia, children are not required to possess reading or writing skills. Therefore, as a pre-test of the computer and mathematical literacy of each child, educators had to fill in two non-standardized tests in the form of an interview.

Regarding the computer literacy, educators estimated child’s independence in the following activities: turning computer on/off, mouse use, finding numbers and letters on the keyboard, typing letters on the keyboard, typing words, finding files on the desktop or using “search” option, using drop-down menus, using toolbars, using drawing tools, using CD/DVD ROM unit, creating and opening new folders and saving files on the computer.

The total score for each child is a simple linear combination of the results of the individual particles, with the theoretical range from 0 to 48 points. A higher total score indicates a higher level of computer literacy of the child. The internal consistency of the scale was also measured by the Cronbach’s alpha coefficient (α = 0.95), which indicates a very high reliability of the measuring instrument.
As a pre-test of the mathematical literacy of each child in the experimental group - Jingle Bells and the control group - Bunnies, a non-standardized test in the form of an interview was used with questions from the geometry (geometrical shapes and bodies), counting and number patterns (numbers 1 to 20), spatial sense (relations between objects), as well as addition and subtraction of one or two elements to a set of objects. The sample question (Figure 1) was: "Imagine you have 6 balloons, but 2 balloons got popped. How many balloons do you have now?"

The total score for each child is a simple linear combination of all scores, with the theoretical range from 0 to 20 points. A higher total score indicates a higher level of mathematical literacy. The Cronbach’s alpha coefficient was $\alpha = 0.70$.

Figure 1. How many balloons are left?
Source: Non-standardized test developed by educators and members of the professional team of the kindergarten Milan Sachs in Zagreb, Croatia

Analysis revealed no statistically significant difference in the mathematical literacy and computer literacy between the experimental and the control group in the pre-test.

Three times a week during one school year, children in both groups were learning mathematics through DST or traditional storytelling (as part of planned educational activities for the day). The independent variable was the teaching method, while the dependent variable was the children’s acquisition of mathematics.

Whereas the preschoolers in the experimental group created a digital story, the children in the control group created a story using picture cards. The narrative in both groups was the same. The main subjects of the stories were geometrical shapes and bodies, numbers, spatial relations, addition and subtraction operations, which resulted in four digital and four non-digital stories at the end of the year.

Both kindergarten educators and preschoolers actively participated in the creation and the production of stories. In the experimental group, they acted as storywriters, collecting the online available materials (images, music and animations), sequencing the elements, creating the short narrative videos (with children as narrators) and composing the final storyboard in Prezi. The university teacher experienced with DST assisted educators in the experimental group during the digital story production and design of the prezi using the Seven Elements of Digital Storytelling (Robin, 2006). He provided them with the guidance through all stages of the authoring process.

In the first stage, educators have chosen 4 stories that are worth to tell. These stories were the same in both the experimental and the control group. For example, they have created the storyboard for learning geometrical shapes and bodies based on the picture book for children about shapes. (In that book, mouse Sivko likes to sit on the top of the round cheese, while penguin Zimko prefers sitting on an ice cube. Bear Brundo could eat triangle pizza every day, while dog Fido likes to play with paper kites in the shape of a rhombus. Owl Zoe loves the crescent moon, while cat Franc adores stars.)

In the second stage, educators have drafted the initial four scenarios, while the third stage consisted of the development of storyboards. In the experimental (Jinglebells) group, all elements of the structure were collected by educators and preschoolers using ICT: images retrieved from the web and digital text that will be placed on Prezi canvas. In the control group, educators and preschoolers were using raw materials (picture cards cut with scissors and colored with crayons) to create the same storyboards, without ICT resources.
In both groups, as part of the fourth stage, educators discussed the scenarios with kindergarteners to ensure that they all understand the concepts, the flow of the narrative, the use of the appropriate words and that they stay focused on the story.

In the next stage, educators and children in the Jinglebells group have set the path in Prezi to present and connect the elements (images, text and frames) and to be able to pan, zoom, and rotate while moving through the prezi in an order that they planned in the previous steps, creating a narrative that will carry them through the prezi. After that, educators recorded the voice of the narrators (children in the group who were willing to participate) and added children’s voices in prezis. Finally, they added the transitions: canvas rotation and fade-in animations to make their stories more appealing. In the same time, educators and children in the control group (Bunnies) used picture cards that they colored themselves and cut-out texts that they glued together to create a narrative in the form of a picture book. Children were encouraged to tell the stories out loud as they flipped through the pages of the picture books they have created.

Finally, children in both groups were engaged in discussions, collaboration and critical thinking at all stages of the project.

The observations of educators from both groups showed that children were more motivated by DST, succeeding to complete all four stories with an incredible amount of engagement and enthusiasm. On the other hand, children in the control group were more restless, sometimes even unready to contribute and were asking if they could do something else.

The post-test surveys used at the end of the school year were similar to pre-test surveys, with some additional facts about the narratives. The sample question (Figure 2) was: "Below or above: which fish is below the line?"

![Figure 2. Below or above: which fish is below the line? Source: Non-standardized test developed by educators and members of the professional team of the kindergarten Milan Sachs in Zagreb, Croatia](image)

a. Participants

The experiment was conducted in Milan Sachs public kindergarten in Croatia with the experimental group Jingle Bells (N = 29) and the control group Bunnies (N = 26). These groups were randomly assigned their roles in the experiment which lasted for a whole school year. Children were aged 6-7 years. ICT resources used in the experimental group were: digital camera, cell phone / smartphone, computer, tablet and different computer (text, video and image editing) software. Since educators worked with small children who cannot withstand the long-term testing, they decided not to give the computer literacy test and mathematical literacy tests to children in the same day. Consequently, not all children were present in both tests, which yielded a difference in the number of participants (N) in each test.
c. Results

Computer Literacy – Differences between the experimental group (Jingle Bells) and the control groups (Bunnies)

At the end of the school year, t-test was conducted to determine whether there is a statistically significant difference in computer literacy of children who learned through DST and children who were taught using traditional storytelling.

<table>
<thead>
<tr>
<th>Group</th>
<th>Experimental</th>
<th>Control</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer literacy</td>
<td>34.64</td>
<td>22.35</td>
<td>5.80*</td>
<td>43</td>
</tr>
</tbody>
</table>

Table 1. Descriptive results of educators’ evaluation of children’s computer literacy in experimental and control groups
Source: Compiled by author

It is evident from Table 1 that children who used DST in kindergarten (M = 34.64, Sd = 7.38) achieved higher scores in computer literacy than children who participated in the traditional storytelling (M = 22.35, Sd = 6.63). However, it was necessary to check the statistical significance of the difference obtained.

Table 2 shows the results of t-test, which aimed to test the degree of difference in computer literacy between the control and the experimental group. Prior to the implementation of t-test, Levene’s test of homogeneity of variance was conducted (F(1,43) = 1.04, p = 0.31) which showed the homogeneous variances at the 5% level of significance.

T-test with 95% confidence interval (CI) of difference in means (t(43) = 5.80, p = 0.00) showed that the experimental group has achieved statistically significantly better results in computer literacy than the control group. The mean difference was 12.29 (95% CI, 8.02 do 16.56). Cohen’s d was 1.75, indicating a large effect size, i.e., a shift of one and a half standard deviations. It means that around 96% of participants in the experimental group achieved a higher score than the arithmetic mean of the control group, while only 40% of results of the two groups overlap. Consequently, there is around 89% chance that a randomly selected child from the experimental group achieved higher scores in the computer literacy than a randomly selected child from the control group.

Mathematical Literacy – Differences between the experimental group (Jingle Bells) and the control groups (Bunnies)

T-test was also conducted to determine whether there is a statistically significant difference in mathematical literacy of children who learned through DST and children who were taught using traditional storytelling.
Table 3 shows that children who were taught mathematical skills through DST achieved slightly higher results ($M = 17.10$, $Sd = 3.14$) in the mathematical literacy test than children who were taught in a traditional way ($M = 14.90$, $Sd = 2.63$). However, it was necessary to check the statistical significance of the difference obtained.

<table>
<thead>
<tr>
<th>Mathematical literacy</th>
<th>N</th>
<th>M</th>
<th>Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental group</td>
<td>20</td>
<td>17.10</td>
<td>3.14</td>
</tr>
<tr>
<td>(Jingle Bells)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group</td>
<td>21</td>
<td>14.90</td>
<td>2.63</td>
</tr>
<tr>
<td>(Bunnies)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Descriptive results of educators’ evaluation of children’s mathematical literacy in experimental and control groups
Source: Compiled by author

Table 4 shows the results of t-test, which aimed to test the degree of difference in mathematical literacy between the control and the experimental group. Prior to the implementation of t-test, Levene’s test of homogeneity of variance was conducted ($F (1.39) = 0.21$, $p = 0.65$), which showed the homogeneous variances at the 5% level of significance.

T-test with 95% confidence interval (CI) of difference in means (where $t (39) = 2.43$, $p=0.02$) showed that the experimental group has achieved statistically significantly better results in mathematical literacy than the control group. The mean difference was 2.195 (95% CI, 0.37 to 4.02). Cohen’s d was 0.76, indicating a middle to high effect size.

<table>
<thead>
<tr>
<th>Group</th>
<th>Experimental</th>
<th>Control</th>
<th>t</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical literacy</td>
<td>17.10</td>
<td>14.90</td>
<td>2.43*</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(3.14)</td>
<td>(2.63)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p <0.05$; standard deviations are shown in parentheses below the arithmetic means

Table 4. T-test of mathematical literacy in experimental and control groups
Source: Compiled by author

IV. Conclusion

The statistical analysis conducted at the end of the school year confirmed our hypothesis that digital storytelling in early childhood education contributes to the development of both mathematical and computer literacy skills.

We have obtained statistically significant differences in the performance of children who were taught in a traditional manner and those who participated in DST. At the end of the school year, the experimental group that used DST showed significant improvement in their abilities to solve computational and mathematical problems, which suggests that this method was age-appropriate and versatile.

Additionally, the observations of educators from both groups showed that children were more motivated by DST, succeeding to complete all four stories with an incredible amount of engagement and enthusiasm. These observations are in line with findings of some other researchers who claim that the enhancement of children’s concentration, collaboration and motivation are distinguishable advantages of DST over traditional storytelling (Robin, 2008; Sadik, 2008).

The basic limitation of this study was the small number of participants, restricting the ability to generalize our results.
In conclusion, it would be advisable to repeat the study in other early childhood education settings, to provide a larger sample size that would allow further generalizations. It would also be interesting to examine the contribution of digital storytelling to other areas of early childhood development and to the skill development of school-aged children.

In this case study, digital storytelling proved to be a better methodological resource for teaching preschool children. Our findings indicate that interactive multimedia storytelling, compared to the traditional one, can be used as an effective tool for improving child’s mathematical and computer literacy skills in the preschool context in which ICT is being introduced for the first time, which is in line with results of some studies mentioned in this paper (Garvis, 2016; Weiss, Kramarski & Talis, 2006).

The results also indicate the need for the introduction of ICT in the system of early education in the form of systematic learning support for the youngest children, with the aim of furthering their success in various areas of development.

References

Beck, N., & Fetherston, T. (2003). The effects of incorporating a word processor into a year three writing program. Information technology in childhood education annual, 1, 139-161.

Mantei, J., & Kervin, L. K. (2010). This Is Me! Empowering children to talk about their learning through digital story. In A. Kanganas (Eds.), *aWAY with Words* (pp. 1-15). Adelaide, South Australia: ALEA/AATE.

Copyright
The texts published in Digital Education Review are under a license Attribution-Noncommercial-No Derivative Works 2,5 Spain, of Creative Commons. All the conditions of use in: http://creativecommons.org/licenses/by-nc-nd/2.5/es/deed.en_US
In order to mention the works, you must give credit to the authors and to this Journal. Also, Digital Education Review does not accept any responsibility for the points of view and statements made by the authors in their work.

Subscribe & Contact DER
In order to subscribe to DER, please fill the form at http://greav.ub.edu/der