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R E S E A R C H R E P O R T

Agent-Based Modeling of Collaborative Problem Solving

Yoav Bergner,1 Jessica J. Andrews,1 Mengxiao Zhu,1 & Joseph E. Gonzales2

1 Educational Testing Service, Princeton, NJ
2 University of California, Davis

Collaborative problem solving (CPS) is a critical competency in a variety of contexts, including the workplace, school, and home.
However, only recently have assessment and curriculum reformers begun to focus to a greater extent on the acquisition and development
of CPS skill. One of the major challenges in psychometric modeling of CPS is collecting large-scale data on teams and processes. In
this study, we explore the use of agent-based modeling (ABM) to model the CPS process, test the sensitivity of outcomes to different
population characteristics, and generate simulated data that can provide a novel means by which to refine and develop psychometric
models. Methods of adapting trait-based stochastic processes to a specific task are described, and preliminary results are presented.
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Collaborative problem solving (CPS) is a critical competency in a variety of contexts, including the workplace, school, and
home. In fact, competency in collaboration has been identified as one of the most important skills for the 21st century
workforce (Burrus, Jackson, Xi, & Steinberg, 2013). As students transition into the workforce, they will often be expected
to work in teams to solve complex problems, make decisions, and generate novel ideas, each of which requires cooperating
and communicating effectively with others and resolving potential conflicts. Despite the importance and relevance of this
21st century skill for the above-mentioned contexts, only recently has assessment and curriculum reform begun to focus
to a greater extent on the acquisition and development of CPS skill (Bennett & Gitomer, 2009; National Research Council,
2011).

One of the major challenges in CPS research is collecting large-scale data on teams and processes. Moreover, without
relatively large sample sizes and fine-grained interaction logs, it is almost impossible to develop quantitative psychometric
models of CPS ability. In conditions in which real data are difficult to come by, simulation can sometimes be a reasonable
direction forward. In this study, we explore the use of agent-based modeling (ABM) to simulate the CPS process. ABM
can be used to test the sensitivity of outcomes to different population characteristics and interaction rules. Additionally,
ABM can be used as a generative model for synthetic collaboration process data, which can provide a novel means by
which to refine and develop psychometric models.

The organization of this paper is as follows: We first review substantive issues in CPS. We consider the applicability of
ABM briefly in general and then focus on a specific simulated task. We then describe the operationalization of traits in
our simulation and present sample results, followed by a discussion of future work.

Background on Collaborative Problem Solving

Competency in CPS is defined as “the capacity of an individual to effectively engage in a process whereby two or more
agents attempt to solve a problem by sharing the understanding and effort required to come to a solution and pooling their
knowledge, skills, and efforts to reach that solution” (Organisation for Economic Co-operation and Development, 2013,
p. 6). This definition identifies the group processes necessary for effective CPS, including establishing and maintaining
a shared understanding, identifying and implementing effective problem-solving strategies, and organizing the group to
afford effective information sharing practices. Work across a variety of disciplines has explored how group processes such
as these can engender learning and optimal performance in group contexts (e.g., Andrews & Rapp, 2015; Dillenbourg
& Traum, 2006; Fawcett & Garton, 2005; Mesmer-Magnus & DeChurch, 2009; Stasser & Stewart, 1992). For example,
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educational research has investigated instructional methods that use collaborative activity across a variety of grade levels
and subject areas. Such research has demonstrated positive effects of collaboration for a number of outcomes associated
with learning and social, emotional, and psychological well-being (Gaudet, Ramer, Nakonechny, Cragg, & Ramer, 2010;
Gillies, 2004; Jeong & Chi, 2007; Slavin, 1983). D. W. Johnson, Maruyama, Johnson, Nelson, and Skon (1981) reviewed 122
studies comparing cooperative learning methods with individual and competitive learning methods. The results showed
that cooperation facilitated higher achievement better than did competitive and individual learning, with these results
consistent across all subject areas and age groups. More recent reviews have reported similar results, demonstrating the
robustness of collaboration as an effective method for promoting learning (Bowen, 2000; Goodyear, Jones, & Thompson,
2014; D. W. Johnson, Johnson, & Stanne, 2000).

Organizational research has also explored the effectiveness of collaboration as a means by which to improve perfor-
mance in organizational contexts, which often uses teams for a range of tasks such as decision-making and problem
solving. Much of this work has been guided by an input-process-outcome (I-P-O) theoretical model of teams (Hackman,
1987; McGrath, 1964). In this framework, inputs—preconditions such as member personalities, task structure, and envi-
ronmental complexity—lead to processes—communication and coordination—that in turn lead to outcomes—team
performance or viability. Specifically, there have been investigations into what makes some teams more effective than
others, emphasizing inputs that contribute to effective team outcomes as well as the mediating processes by which such
inputs impact team outcomes (e.g., Zhu, Huang, & Contractor, 2013). For example, Jehn, Northcraft, and Neale (1999)
have shown that informational diversity (i.e., differences in knowledge and perspectives) can positively impact team per-
formance, but this relationship is mediated by task conflict. Furthermore, research has demonstrated how diversity in
group-member personality can influence performance outcomes. Variability in agreeableness and neuroticism can nega-
tively affect performance (Mohammed & Angell, 2003); however, teams with higher average agreeableness tend to exhibit
better performance (Barrick, Stewart, Neubert, & Mount, 1998; Bell, 2007), perhaps because agreeable members are more
likely to engage in the positive interpersonal processes that have been shown to facilitate performance (LePine, Piccolo,
Jackson, Mathieu, & Saul, 2008). Diversity in extraversion (Mohammed & Angell, 2003; Neuman, Wagner, & Christiansen,
1999) and higher cognitive ability among team members can positively affect performance outcomes as well (Barrick et al.,
1998; Devine & Philips, 2001; Stewart, 2006).

Particular attention has been given to identifying and measuring the team processes necessary in facilitating perfor-
mance outcomes (Brannick, Prince, Prince, & Salas, 1995; Liu, Hao, von Davier, Kyllonen, & Zapata-Rivera, 2015; Morgan,
Salas, & Glickman, 1993; von Davier & Halpin, 2013). Some of this work has focused on ways to assess these processes in a
more time-efficient manner with the use of computer simulations (e.g., O’Neil, Chung, & Herl, 1999). For example, O’Neil,
Chung, and Brown (1995) designed a computer simulated negotiation task in which distributed three-person teams were
assessed according to their demonstration of teamwork skills associated with adaptability, coordination, decision-making,
communication, leadership, and interpersonal skills. Teamwork processes were assessed according to communication
among group members with the use of predetermined messages available in the computer simulation. Results showed
that teamwork processes could be measured reliably and efficiently as teams used the predetermined messages; however,
only decision-making was found to be significantly related to team performance outcomes.

Conceptions of the process component of the I-P-O model have been expanded to include not only members’ actions,
but other mediating mechanisms referred to as emergent states such as trust, team confidence, collective cognition, and
cohesion (Ilgen, Hollenbeck, Johnson, & Jundt, 2005). For example, González, Burke, Santuzzi, and Bradley (2003) have
shown that task cohesion mediates the relationship between team efficacy and team effectiveness. A direct positive rela-
tionship between multiple components of cohesion and performance have also been exhibited (Mullen & Copper, 1994;
Zaccaro & McCoy, 1988), and this positive relationship can be moderated by the extent to which a task requires back
and forth exchange between group members. Specifically, the relationship between cohesion and performance is stronger
when groups engage in more interdependent tasks (Beal, Cohen, Burke, & McLendon, 2003). Group cohesion can also aid
in the development of shared mental models which in turn facilitate group performance (Fiore & Salas, 2004; Mathieu,
Heffner, Goodwin, Salas, & Cannon-Bowers, 2000).

Concerning the outcome component of the I-P-O model, group performance has sometimes been conceptualized in
terms of whether synergy is achieved or whether performance at the group level is beyond what the individual group
members are capable of accomplishing separately, and this sort of gain in performance is attributed to group interaction
(Larson, 2010). Two forms of synergy are distinguished: Weak synergy, also referred to as gain (Szumal, 2000), includes
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instances in which group performance exceeds that of the average individual working independently, whereas strong
synergy refers to instances in which group performance exceeds the individual performance of the best group member
(Larson, 2007). There is relatively extensive empirical evidence demonstrating the existence of weak synergy (e.g., Laugh-
lin, Gonzalez, & Sommer, 2003; Sniezek, 1989; Tindale & Larson, 1992); fewer studies have demonstrated strong synergy
(but see Laughlin, Bonner, & Miner, 2002; Reagan-Cirincione, 1994; Tindale & Sheffey, 2002). Research has further exam-
ined factors that can facilitate the types of interactions that lead to synergy, including how much more capable the best
group member is relative to other group members (Meslec & Curşeu, 2013), the size of the group (Laughlin, Hatch, Silver,
& Boh, 2006), and the mode of communication utilized by group members (Credé & Sniezek, 2003).

Whether group performance is superior to that of individual constituents appears to depend on the outcome measure,
on the size of groups, and on the particular task. Prior to the adoption of a distinction between weak and strong synergy,
Hill (1982) noted that group performance, although typically superior to that of the average individual, was often inferior
to that of the best individual or to the potential achievable in a statistical pooling model. Laughlin et al. (2006) found that
groups tend to perform better than the best individual on letters-to-numbers problems, but this pattern did not emerge
for dyads. Quite a few studies have shown that groups recall less information than the pooled recall of individuals working
independently (e.g., Andersson & Rönnberg, 1995; Barber, Rajaram, & Aron, 2010; Basden, Basden, & Henry, 2000).

Agent-Based Modeling

Despite the abundance of research, as described above, examining how collaboration can facilitate learning and perfor-
mance, much of the research relies on observational and qualitative methods or experiments with small numbers of small
groups. Quantitative analysis, for example application of a temporal point process or hidden Markov models, is hampered
by a shortage of suitable data. An alternative is to use simulation models for individual behavioral studies (Bonabeau,
2002). ABM can be used to explore complex and dynamic relationships in groups (Gilbert, 2007). In an ABM, each agent
is an autonomous entity who makes decisions based on rules and parameters of the environment. This characteristic makes
ABM an appropriate tool to simulate the activities of individuals, the interactions between the agents, and the interactions
between agents and the environment. In particular, such simulations allow researchers to carefully control factors such as
problem-solving strategies or individual personality characteristics and study the effect of variations in these variables by
resetting different values through successive runs of the simulation (Holland & Miller, 1991). Thus, computer simulations
enable researchers to run thousands or millions of trials and quantify within these models (a) the process dynamics, given
the rules and initial conditions, and (b) the sensitivity of outcomes to different rules and/or initial conditions. Results from
such computer experiments may be useful in determining the conditions under which collaboration is most successful.

A number of projects have indeed begun to demonstrate how ABM can afford such investigations. For example, Larson
(2007) modeled the performance of three-person groups engaging in a value-seeking problem in which the problem
solver has to choose between sets of solutions that vary in their underlying value. Problem-solving strategy and amount
of communication among group members were variables in the model. Results of the simulation showed that groups
often outperformed their average member, thus demonstrating weak synergy; however, groups heterogeneous in terms of
problem-solving strategy demonstrated strong synergy, particularly when agents communicated their solution alternatives
to group members.

Researchers in computational sociology used ABM to explore how network structures affect prosocial behavior (Macy
& Willer, 2002). Four properties of network structures were shown to either facilitate or inhibit cooperation among mem-
bers: relational stability, network density, homophily, and transitivity. Crowder, Robinson, Hughes, and Sim (2012) used
ABM to explore how individual level, team level, and task level variables influence team performance in an engineering
environment. Individual level variables included competency, motivation, availability, and response rate; team level vari-
ables included communication, shared mental models, and trust; and task level variables included difficulty and work flow.

Related studies include simulating the development of shared mental models in teams (Dionne, Sayama, Hao, & Bush,
2010), the process of collaborative product development and design in organizations (Zhang, Li, Zhang, & Schlick, 2013;
Zhang et al., 2009), and human-robot teaming structures for military operations (Giachetti, Marcelli, Cifuentes, & Rojas,
2013). Such work has taken into account a number of variables such as social network structure, heterogeneity of agents’
domain of expertise, mutual interest (Dionne et al., 2010), cultural differences (Horii, Jin, & Levitt, 2005), goals (Kraus,
Sycara, & Evenchik, 1998), and cognitive load (Fan & Yen, 2011).
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In building on prior ABM work, we describe first steps toward using an ABM simulation to model the effect of cognitive
and noncognitive traits of individual agents on team performance. In addition to testing the sensitivity of outcomes to
population characteristics, we would also like to use the simulation to generate simulated process data for development
and training of statistical process models. This is perhaps a novel use of ABM. Because we wish to use the process data
and not just the outcomes of our ABM, it is not sufficient to provide rules that lead to emergent complexity. Our rules
have to be clearly trait- and goal-driven such that logs of the agents’ actions are reasonably interpretable. Finally, a longer
term goal is also to optimize team composition using the emergent intelligence from the self-organizing process in ABM
(Holland, 1975; S. Johnson, 2002). For instance, rather than assign agents to teams, the simulation may allow agents to
negotiate their team membership according to affinity rules.

Simulation Methodology

To construct a suitable collaborative task in this study, we used as a template the Subarctic Survival Situation (2013; see
also the Desert Survival Situation in Human Synergistics International, 2012), which is a relatively widely used team
exercise (for example, at Harvard Business School) designed to illustrate team dynamics to participants. We modeled a
similar process, essentially a collective ranking task, using ABM simulation. The successful outcome of this task depends
on individual abilities as well as personality traits and team communication.

The Subarctic Survival Situation task is used here to maintain realism in our simulation design. We see the ABM
simulation more generally as a generative model of team dynamics that includes personality variables—rule-based repre-
sentations of talkativeness, agreeableness, and communication skill—as well as domain knowledge and critical thinking.
In the ABM, agent personality variables manifest themselves in rules that determine how agents adjust their own beliefs
(here, rank-order of list) based on interactions with other agents in the group (round by round of information sharing).
Our goal was to design a minimal set of rules that resulted in high variability of team performance. For example, a team
may equilibrate on a suboptimally ranked list because the best member lacked assertiveness or because the worst member
was assertive while the other members were unchallenging, or the team may not equilibrate at all. The outcome of the
agent-based generative model is both a sensitivity analysis of outcomes to the initial conditions and a set of simulated
process data logs recording the agents’ moves in each turn. The process data in turn might be used as training data for the
development of models that predict group outcomes.

The ABM simulation in this study was implemented using NetLogo (Wilensky, 1999), which is free and open source
software developed and maintained by the Center for Connected Learning and Computer-Based Modeling at North-
western University. NetLogo is flexible enough to permit programming any agent-based systems within its syntax. It also
provides an interactive graphical interface, making it easy to test different simulation settings quickly.

Traits and Rules

We chose to operationalize the following agent traits in the first instantiation of the simulation: talkativeness, an agent’s
willingness to show one’s own list for comparison; agreeableness, a willingness to consider changing one’s list order when
presented with an alternative; and critical thinking, an ability in evaluating a competing list ordering. In an ABM, traits
are encoded through rules that trigger actions taken during turns. Consider the following rule, which would apply to an
agent at the beginning of a given turn:

IF talkative THEN show list (1)

A deterministic rule such as (1) will not simulate our intuitive sense of human behavior, which is that talkativeness
increases the probability of showing rather than dividing agents into those who do or do not show on every turn. Moreover,
we tend to model traits in terms of parametric distributions. We considered two options for converting trait distributions
into action probabilities, which we describe below.

One possibility is to model agent traits as random variables from a beta distribution. The motivation is that this distri-
bution has support on the interval (0,1), such that values of the trait draws can be interpreted directly as probabilities for
an agent’s actions. For example, consider the densities shown in Figure 1.

Both densities have a mode at 0.8, though the B(5,2) distribution (dashed line) is less sharply peaked (the means are of
course different: 0.714 compared to 0.765). If agent talkativeness is modeled as a random variable drawn from this broader
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Figure 1 Beta distributions with shape parameters (13,4), solid line, and (5,2), dashed line.

distribution, then most agents would have a probability of 0.6–0.9 of showing, but a minority of agents would indeed be
un-talkative, with a showing probability of 0.2–0.5 on a given turn. A team of four or five agents might thus, for example,
have one or two un-talkative members. Using the B(13,4) distribution instead, the range of talkativeness would be more
restrictive.

The probabilistic turn for an agent with talkativeness T would be programmed as follows: Draw a random number x
from U(0,1) and apply the rule

IF x < T THEN show list. (2)

The approach described above meets our needs, but it suffers from a lack of intuitiveness about the shape parameters of
the beta distribution. Simply put, the mean and variance are not trivial functions of the shape parameters. For a random
variable from B(𝛼, 𝛽), they are given by,

E [X] = 𝛼

𝛼 + 𝛽
, Var [X] = 𝛼𝛽

(𝛼 + 𝛽)2 (𝛼 + 𝛽 + 1)
.

In designing simulated experiments, use of beta distributions represents a conceptual difficulty for picturing the trait
distributions.

An alternative approach is to model traits using normal distributions N(𝜇,𝜎), so that the shape parameters are intuitive,
and convert trait values to probabilities using, say, a logistic link function,

p (x) = 1
1 + e−x .

For example, using logistic transforms of variables drawn from N(1.2,0.57) and N(0.94,0.92), the densities are qualita-
tively similar to those of Figure 1, though the shapes are slightly different (see Figure 2).
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LOGISTIC(N(1.2,0.57))
LOGISTIC(N(0.94,0.92))

Figure 2 Densities arising from logistic transforms of two normal distributions.
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Figure 3 Schematic of decision process for an agent when comparing lists to a shown (reference) list.

Because normally distributed traits are more intuitive, we chose the second approach described above. The action rule
on a given turn for an agent with trait amount T again involves drawing a random variable x from U(0,1) and then applying

IF x < p (T) THEN show list. (3)

This way it is more straightforward to simulate a uniform population by setting the variance (or standard deviation) to
zero. For example, if we want each agent to show a list each turn (or 99.9% of the time), we can set the talkative distribution
to N(7,0).

The worked example above in fact represents the simplest and first decision rule in our model, which is the turn-taking
rule with respect to showing one’s list. Turns are sampled randomly among the team members, and talkativeness dictates
whether or not an agent’s list will be considered by the others. If shown, then the remaining agents are prompted to decide
whether or not to make updates to their lists. The update rule as currently implemented is shown schematically in Figure 3.
The process is described below.

The first rule-based decision concerns whether the agent is agreeable to change on the current turn (as with talkative-
ness, a stochastic draw with threshold depending on the agent’s agreeableness). If so, the agent then checks whether the
list being shown is already identical to the agent’s list. If not, then a process of comparing the two lists begins pair by pair
in random order, searching for a discordant pair of items, that is two items whose relative ordering differs in the two lists.
We have included a global parameter called knowledge sharing to represent the idea that during this systematic search,
realistic agents might not exhaustively consider all possible pairs. (The intuition might be that two lists may not be dif-
ferent enough to overcome inertia.) When knowledge sharing is at its maximum value of 1, then the agent will inspect
all possible pairs until a discordant pair is identified or no pairs remain. If knowledge sharing is set to 0.5, then the agent
may stop after comparing only half of the pairs (again, in a random order). The proportion of pairs inspected exceeding
the knowledge sharing threshold defines the exhaustion criterion in Figure 3. If the agent identifies a discordant pair, then
the decision about whether to swap the order within the agent’s list depends on the agent’s critical thinking on this turn
(stochastic draw depending on critical-thinking trait). An uncritical decision will swap the order regardless of whether
the order is in fact better. For a critical decision, the agent recognizes the true order and will only swap if the shown list
presents the correct relative ordering.

This final decision rule is the “invisible hand” that guides the collaborating agents toward a better outcome. Note that
in the current instantiation, the showing agent does not have to make a strong argument (this communication skill is
planned for a next iteration). Rather, the other agents will simply know that a competing ordering is better if they use a
critical criterion on that turn. An agent who is consistently critical may thus exhaustively determine the competing list to
be inferior on all discordances. An uncritical agent will swap two items at the first discordant pair.
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Figure 4 Screenshot of NetLogo graphical interface at the end of a single run.

The Simulation Environment

A screenshot of the NetLogo graphical user interface (GUI) for our simulation is shown in Figure 4. Use of the GUI is not
required to run the simulation, but the GUI provides some visualization features. Simulation parameters can be entered
via the teal sliders and fields in the upper left of the screenshot. These include global parameters such as the team size,
game size (length of list), and distribution parameters for the random traits of the agents. With the simulation running
in real time, the updating procedure may be visualized in the NetLogo “world” (black region) on the right side of the
screenshot. There, the particular agent trait values (fixed once drawn at the beginning of each run) and current rank lists
(dynamically changing) are shown.

Some measure of distance between each agent’s rank list and the ground-truth list (i.e., a score) is desired in order to
track the evolution of rankings over time and compare final scores to initial scores. (The ground-truth list of size N is
always 1, 2, … , N). In the Subarctic Survival Situation, Szumal (2000) summed over absolute differences between the
individual and the expert rank for each item to determine an individual score. This formula has undesirable properties in
a simulation study, because the range of the score depends on the number of items in the list, as does its expected value
for two random orderings. We used Kendall’s 𝜏 rank-correlation coefficient, which is the normalized difference between
the number of concordant pairs and the number of discordant pairs in two rank orderings. The value of 𝜏 ranges from 1
(if the rank orderings are the same) to −1 (if one rank ordering is the exact reverse of the other), and its expected value
for two random rank orderings is 0.

A running plot of the following team-level statistics is shown in the beige region on the bottom left of the screenshot
in Figure 4: the average individual score (red line), the best individual score (green line), and an indicator of whether
consensus has been reached (blue line). If consensus is reached, then the following quantities are also computed (shown
inset in the beige region): team_score = score of consensus list, gain_score = team_score – initial average score, and
synergy_score = team_score – initial best individual score. These quantities are analogous to those described in Szumal
(2000) for the Subarctic Survival Situation with the difference that we use a rank-correlation coefficient (𝜏) rather than an
item-level sum over absolute differences.

In addition to the GUI output, each run of the simulation produces a process data file containing the input parameters,
the agent traits, and a sequence of observable actions. An example process log is excerpted in Figure 5, where agents have
been given names from the letters of the Hebrew alphabet (Aleph, Bet, Gimmel, Daled, Hay, … ):

In the excerpt shown in Figure 5, Agents Aleph and Bet are highly talkative (T = 4.37 and 5.24, respectively); hence, in
the first few turns, they dominate the observed debate by alternatively showing lists, while the other agents do not show.
Agents Bet and Hay are highly agreeable and not very critical, thus both are observed changing their ordering often, even
when the result is an inferior list.
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Figure 5 Excerpt of simulated process log.

Results From a Sample Experiment

We ran a simulation study using a fixed team size of five agents, a game size of eight, and three values for each of four
parameters in a Talkativeness (3) × Agreeableness (3) × Critical_Thinking (3) × Knowledge_Sharing (3) design with 500
replications for each parameter setting (the 40,500 total runs took about 9 hours to complete on a 2.9 GHz Intel Core
i5-4570 T CPU with 4 GB RAM using a 32-bit Windows 7 OS). Overall results are shown in Tables 1–3, with these tables
split according to the three knowledge sharing conditions that were implemented. Marginal summaries for each of the
four variables are shown in Table 4. Outcomes recorded include the percentage of teams that reached consensus, the
average number of rounds to consensus (where applicable), and the average (and standard deviation) of the gain and
synergy scores. To clarify, a full round is defined as one turn through each of the agents. A turn has two parts: the agent
either shows or elects not to show; if the agent does show, then each of the other agents goes through the decision process
of Figure 3. Note that the number of rounds, defined this way, is not recoverable from the log files, because it requires
knowing the inner state of the agent (i.e., choosing not to show). One design difference between our simulation and the
template human task is the existence of a stopping criterion other than consensus. For our simulation, 200 total rounds
(i.e., timeout) or three rounds in which no changes occurred (i.e., stall) were stopping criteria.

The parameter values in the tables were selected based on initial exploration with the principal goal of tuning to plau-
sible outcome regions. For example, we wanted to avoid agents moving totally randomly, on one extreme, or lock-step
toward perfect orderings, on the other extreme. Three values were used for the population means of each of the three
agent-level trait variables: talkativeness, agreeableness and critical_thinking (variances were fixed in each case). The global
variable, knowledge_sharing, which governs how exhaustively agents search through shown lists, was also varied.

Results across Tables 1–3 show that as values for knowledge sharing increased (i.e., as agents more exhaustively
searched through shown lists for discordant pairs), instances of moderate to high gain and synergy scores also increased.
Additionally, across each condition of knowledge sharing, there were higher gain scores when moderate to high talkative-
ness and agreeableness values were present. Gain scores were less sensitive to critical thinking values. Critical thinking
values did, however, seem to influence synergy scores. In particular, low critical thinking values often had low synergy
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Table 1 Overall Summary for Experiment With Varied Agent-Level Trait Values and Knowledge_Sharing= 0.2

mu_talk
(SD = 2)

mu_agree
(SD = 2)

mu_crit
(SD = 2) Rounds (SD) Gain score (SD) Synergy score (SD) Consensus % Stall % Timeout %

−2 −2 −2 33.75 (39.57) 0 (0) 0 (0.02) 0.2 98 1.8
0 −2 −2 79.01 (58.42) 0.01 (0.06) −0.01 (0.08) 4.2 87 8.8
2 −2 −2 109.81 (61.62) 0.03 (0.13) −0.01 (0.11) 12.2 68.4 19.4

−2 0 −2 40.96 (31.63) 0.01 (0.08) −0.01 (0.08) 6.2 93 0.8
0 0 −2 55.31 (34.03) 0.07 (0.2) −0.02 (0.18) 26.8 72.4 0.8
2 0 −2 58.05 (36.08) 0.15 (0.28) −0.04 (0.27) 56.4 42.4 1.2

−2 2 −2 30.14 (16.39) 0.04 (0.15) −0.02 (0.16) 19.6 80.4 0
0 2 −2 33.25 (18.43) 0.18 (0.29) −0.03 (0.27) 61 38.6 0.4
2 2 −2 27.28 (12.1) 0.33 (0.33) 0.03 (0.32) 89 11 0

−2 −2 0 27.48 (31.82) 0 (0) 0 (0) 0 99.2 0.8
0 −2 0 66.7 (55.86) 0.01 (0.1) 0.01 (0.06) 1.8 91.8 6.4
2 −2 0 93.99 (60.03) 0.02 (0.12) 0.01 (0.08) 4 82.4 13.6

−2 0 0 38.68 (31.76) 0.01 (0.05) 0 (0.03) 1.6 97.4 1
0 0 0 58.88 (41.55) 0.09 (0.24) 0.04 (0.15) 17 80.6 2.4
2 0 0 64 (45.53) 0.24 (0.37) 0.13 (0.26) 35.8 60.8 3.4

−2 2 0 31.41 (19.65) 0.06 (0.2) 0.03 (0.13) 11.2 88.8 0
0 2 0 35.77 (23.69) 0.31 (0.38) 0.15 (0.26) 47.4 52.4 0.2
2 2 0 29 (19) 0.54 (0.38) 0.29 (0.3) 76.8 22.6 0.6

−2 −2 2 21.29 (26.74) 0 (0) 0 (0) 0 99 1
0 −2 2 45.02 (40.65) 0.01 (0.07) 0 (0.05) 0.6 97.2 2.2
2 −2 2 62.96 (50.69) 0.01 (0.08) 0 (0.04) 1 93 6

−2 0 2 28.96 (23.34) 0.01 (0.07) 0 (0.05) 0.6 98.8 0.6
0 0 2 46.69 (31.69) 0.1 (0.28) 0.06 (0.18) 12 87 1
2 0 2 47.64 (35.06) 0.23 (0.41) 0.15 (0.28) 25.4 73 1.6

−2 2 2 28.24 (20.5) 0.06 (0.23) 0.04 (0.14) 7.4 92.4 0.2
0 2 2 30.51 (17.56) 0.36 (0.45) 0.23 (0.31) 41.6 58 0.4
2 2 2 25.06 (17.36) 0.63 (0.44) 0.40 (0.32) 69 30.8 0.2

Note. mu_talk= talkativeness; mu_agree= agreeableness; mu_crit= critical_thinking.

scores, even when the values for other agent-level trait variables were high. Unsurprisingly, low talkativeness and low
agreeableness values resulted in low consensus rates.

Note that while gain and synergy scores can be quite different at the team level, on aggregate these measures do not
provide complementary information. The correlation between the average gain and average synergy for the 81 different
parameter settings in Tables 1–3 is 0.81. It is too early to say whether this observation is a consequence of information
loss, due to averaging of nonlinear performance effects or whether it is an indicator that the only difference between weak
and strong synergy in our simulation is a matter of scale.

We look at Table 4 for a sensitivity analysis of outcomes to each of the four parameters that were varied. Similar to what
was noted from the Tables 1–3, higher values for agreeableness and talkativeness increased gain scores and contributed to
modest increases in synergy scores. This finding is consistent with prior work (Barrick et al., 1998; Bell, 2007; LePine et al.,
2008). High values for these traits also contributed to higher consensus rates. Agreeableness and talkativeness differentially
impacted the number of rounds, however. In particular, higher values for agreeableness decreased the duration of the task
whereas higher values for talkativeness increased the duration of the task. Higher values for critical thinking showed
modest increases in gain and synergy scores, as with prior work (Barrick et al., 1998; Devine & Philips, 2001; Stewart,
2006), and critical thinking was the only variable to reduce consensus rates, a result that perhaps deserves more attention.
Increased knowledge_sharing also contributed to modest increases in gain and synergy scores, as discussed from the
tables above, but knowledge_sharing had little impact on consensus rates and the duration of the task.

Future Work

The results described above are preliminary, but they represent a promising foray into the use of ABM for psychometric
considerations of CPS. There are still features of the simulation and experimental designs that we intend to pursue in
follow-up work. We would like to add new traits such as communication skill and consensus orientation. For example, the
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Table 2 Overall Summary for Experiment With Varied Agent-Level Trait Values and Knowledge_Sharing= 0.5

mu_talk
(SD = 2)

mu_agree
(SD = 2)

mu_crit
(SD = 2) Rounds (SD) Gain score (SD) Synergy score (SD) Consensus % Stall % Timeout %

−2 −2 −2 35.64 (41.83) 0 (0.03) 0 (0.04) 0.4 97.6 2
0 −2 −2 89.07 (62.55) 0.04 (0.15) 0 (0.12) 14.8 73.4 11.8
2 −2 −2 104.74 (62.37) 0.1 (0.23) −0.02 (0.21) 34.6 48.2 17.2

−2 0 −2 36 (28.62) 0.02 (0.13) −0.02 (0.14) 14.4 85 0.6
0 0 −2 51.8 (36.19) 0.15 (0.28) −0.04 (0.26) 56 43 1
2 0 −2 47.05 (36.44) 0.3 (0.33) 0.01 (0.34) 83.4 15.4 1.2

−2 2 −2 26.11 (14.14) 0.12 (0.24) −0.01 (0.22) 39.4 60.6 0
0 2 −2 23.98 (13.44) 0.27 (0.33) −0.02 (0.35) 86.8 13.2 0
2 2 −2 20.43 (14.13) 0.37 (0.34) 0.05 (0.36) 95.6 4.2 0.2

−2 −2 0 32.16 (37.67) 0.01 (0.06) 0 (0.02) 1 97.6 1.4
0 −2 0 76.46 (54.76) 0.04 (0.18) 0.01 (0.13) 8.2 84.2 7.6
2 −2 0 102.91 (64.18) 0.1 (0.25) 0.04 (0.17) 16.6 64.2 19.2

−2 0 0 37.01 (31.93) 0.04 (0.16) 0.01 (0.11) 8.6 90.2 1.2
0 0 0 52.87 (38.34) 0.29 (0.38) 0.14 (0.27) 46 52.2 1.8
2 0 0 50.66 (42.92) 0.5 (0.41) 0.27 (0.31) 69.2 28.2 2.6

−2 2 0 26.87 (15.97) 0.14 (0.3) 0.05 (0.22) 28.2 71.8 0
0 2 0 26.45 (16.41) 0.46 (0.39) 0.23 (0.32) 71.4 28.6 0
2 2 0 20.39 (14.15) 0.70 (0.32) 0.38 (0.31) 93.4 6.4 0.2

−2 −2 2 25.52 (26.01) 0 (0.01) 0 (0) 0.2 99.8 0
0 −2 2 49.44 (43.61) 0.02 (0.13) 0.01 (0.09) 2.6 95 2.4
2 −2 2 62.53 (48.16) 0.07 (0.24) 0.04 (0.16) 7.4 87.8 4.8

−2 0 2 31.88 (25.87) 0.04 (0.17) 0.02 (0.11) 5.2 94.4 0.4
0 0 2 43.11 (34.44) 0.24 (0.41) 0.15 (0.28) 26 72 2
2 0 2 43.49 (36.45) 0.48 (0.47) 0.30 (0.32) 53.2 45.2 1.6

−2 2 2 24.85 (14.33) 0.17 (0.36) 0.1 (0.23) 20 80 0
0 2 2 25.88 (19.42) 0.57 (0.46) 0.36 (0.33) 63.6 36.2 0.2
2 2 2 19.35 (17.84) 0.8 (0.35) 0.51 (0.28) 86.4 13.4 0.2

Note. mu_talk= talkativeness; mu_agree= agreeableness; mu_crit= critical_thinking.

decision process in Figure 3 could include a conjunctive or disjunctive relationship between critical thinking on the part of
the listening agent and communication skill on the part of the showing agent. If this is a between-agent trait interaction,
within-agent trait interactions might also be added. For example, high talkativeness combined with low agreeableness
can translate into not only passively choosing not to update, but also into actively interrupting a debate round. So far,
traits in our agents have been completely uncorrelated random variables. For increased realism, we could use multivariate
distributions for domain ability, critical thinking, and communication skill, for example.

In the current ABM, the traits have many times been conceptualized as too black and white or good and bad (e.g.,
high agreeability vs. low agreeability or high critical thinking vs. low critical thinking). Results of the sample experiment
described here show that this conceptualization may not have allowed for the kind of variation that could lead to inter-
esting heterogeneity. Therefore, in a new version of the ABM, we are also incorporating trait scales that differ along more
qualitative dimensions. As one example, we are including consensus orientation as an agent-level trait. This trait corre-
sponds with an agent’s desire or interest in seeking information from others about their solutions as opposed to an agent’s
interest in informing others of the agent’s own solution. As a result, agents with a high consensus orientation should
be more willing to solicit information from others while agents with a low consensus orientation are more interested in
presenting their own answers to the group.

The sample experiment also involved groups of agents sampled from unimodal population distributions, but the team
optimization problem is one of deliberate design. Team optimization may be explored via conditional distributions from
the full population. An alternative experiment with respect to team optimization would be to discretize traits and combine
archetypal team members in different combinations.

Finally, an important direction of future work is to consider the information value of output logs from our simulation
as data for process models. We hope to be able to inform the simulation design by practical considerations for process
data analysis. Furthermore, it will not be clear whether we have achieved the nonlinear, complex, emergent dynamic that
is the promise of ABM unless we can show that indeed the outcomes transcend description by summary statistics.
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Table 3 Overall Summary for Experiment With Varied Agent-Level Trait Values and Knowledge_Sharing= 0.8

mu_talk
(SD = 2)

mu_agree
(SD = 2)

mu_crit
(SD = 2) Rounds (SD) Gain score (SD) Synergy score (SD) Consensus % Stall % Timeout %

−2 −2 −2 36.65 (41.48) 0 (0.06) −0.01 (0.06) 2.8 95.8 1.4
0 −2 −2 86.85 (58.41) 0.06 (0.17) 0 (0.12) 19.6 68.4 12
2 −2 −2 110.46 (63.84) 0.14 (0.27) −0.01 (0.24) 44 34.4 21.6

−2 0 −2 36.27 (27.53) 0.04 (0.16) −0.02 (0.15) 20 79.8 0.2
0 0 −2 47.26 (37.29) 0.19 (0.31) −0.03 (0.29) 63.6 34.2 2.2
2 0 −2 42.46 (34.21) 0.31 (0.34) 0.01 (0.36) 89.2 9.8 1

−2 2 −2 23.97 (14.51) 0.11 (0.25) −0.04 (0.23) 47.6 52.4 0
0 2 −2 21.52 (10.17) 0.3 (0.32) 0.01 (0.34) 89.4 10.6 0
2 2 −2 17.84 (9.71) 0.39 (0.34) 0.07 (0.36) 97.4 2.6 0

−2 −2 0 33.09 (40.38) 0 (0.07) 0 (0.05) 1.2 97.4 1.4
0 −2 0 73.95 (57.52) 0.07 (0.23) 0.03 (0.15) 13 79.2 7.8
2 −2 0 99.58 (61.53) 0.17 (0.32) 0.08 (0.21) 25.2 59.4 15.4

−2 0 0 38.27 (30.9) 0.06 (0.22) 0.02 (0.17) 14.8 84.4 0.8
0 0 0 52.72 (39.52) 0.33 (0.4) 0.17 (0.29) 49.6 48.6 1.8
2 0 0 48.43 (42.21) 0.58 (0.38) 0.31 (0.31) 80.2 17 2.8

−2 2 0 24.94 (14.01) 0.19 (0.32) 0.07 (0.23) 35 65 0
0 2 0 23.46 (13.82) 0.54 (0.37) 0.27 (0.32) 81.4 18.6 0
2 2 0 18.01 (15.19) 0.73 (0.28) 0.40 (0.28) 96.2 3.6 0.2

−2 −2 2 24.53 (27.39) 0 (0.06) 0 (0.03) 0.6 99 0.4
0 −2 2 51.93 (45.74) 0.05 (0.2) 0.03 (0.13) 5.6 91.2 3.2
2 −2 2 64.93 (51.67) 0.1 (0.28) 0.06 (0.18) 11 83.4 5.6

−2 0 2 28.21 (19.85) 0.07 (0.23) 0.04 (0.16) 8.4 91.6 0
0 0 2 41.4 (33.28) 0.33 (0.44) 0.19 (0.28) 37.6 60.8 1.6
2 0 2 36.57 (32.67) 0.55 (0.47) 0.35 (0.34) 59.8 38.8 1.4

−2 2 2 23.33 (16.47) 0.22 (0.38) 0.13 (0.25) 27.6 72.4 0
0 2 2 21.91 (13.82) 0.65 (0.42) 0.40 (0.3) 73.4 26.6 0
2 2 2 16.88 (12.23) 0.86 (0.29) 0.54 (0.26) 92 8 0

Note. mu_talk= talkativeness; mu_agree= agreeableness; mu_crit= critical_thinking.

Table 4 Marginalized Mean Outcomes for the Four Varied Parameters

Parameter Value Rounds (SD) Gain score (SD) Synergy score (SD) Consensus % Stall % Timeout %

mu_Crit −2 49.1 (47.33) 0.14 (0.27) −0.01 (0.24) 44 53 4
0 47.56 (45.84) 0.23 (0.36) 0.12 (0.25) 35 62 3
2 36.00 (34.19) 0.25 (0.41) 0.15 (0.27) 27 71 1

mu_Talk −2 30.60 (28.26) 0.05 (0.2) 0.01 (0.14) 12 88 1
0 48.56 (43.32) 0.21 (0.36) 0.09 (0.27) 38 59 3
2 53.50 (51.46) 0.35 (0.41) 0.16 (0.32) 56 39 5

mu_Agree −2 62.98 (57.84) 0.04 (0.17) 0.01 (0.12) 9 84 7
0 44.62 (35.66) 0.20 (0.35) 0.08 (0.27) 36 63 1
2 25.07 (16.68) 0.38 (0.41) 0.17 (0.33) 61 39 0.1

Knowledge sharing 0.2 46.29 (42.28) 0.13 (0.3) 0.05 (0.21) 23 75 3
0.5 43.95 (43.66) 0.22 (0.37) 0.10 (0.28) 38 59 3
0.8 42.42 (43.73) 0.26 (0.39) 0.11 (0.29) 44 53 3

Note. mu_Talk= talkativeness; mu_Agree= agreeableness; mu_Crit= critical_thinking.
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