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Abstract The 0SeMOSYS project offers open-access
energy modeling to a wide audience. Its relative simplicity
makes it appealing for academic research and governmental
organizations to study the impacts of policy decisions on an
energy system in the context of possibly severe greenhouse
gases emissions limitations. OSeMOSYS is a tool that
enhances the potential for the training of highly qualified
professionals. Basic training is possible via the UTOPIA
model. This paper proposes an extended version of this
model to help non-expert individuals fully grasp its powerful
yet easy-to-use capabilities. The step-by-step presentation
shall be of great use for professors to embed this material in
class and for energy professionals new to the field of energy
modeling to learn how to use a techno-economic approach.

Keywords 0SeMOSYS, Energy Modelling, Greenhouse
Gases Emissions, Mathematical Modeling, Climate Change

1 Introduction

Energy models have been around for decades. Some mod-
els use a bottom-up techno-economic approach. This means
that the energy system of a particular region (or group of re-
gions) is represented by a list of end-use demands which must
be met using a typically extensive list of technologies. These
technologies and related energy fuels are highly detailed us-
ing technical and economic data.

The original MARKAL (MARKet ALlocation) linear pro-
gramming model is one type of such tools. Its first implemen-
tation was written in OMNI [1, 2] and the resulting linear pro-
gram representing the problem of satisfying all end-use de-
mands at minimal cost was solved using a commercial solver.
This work was a result of the oil crisis of the *70s. The ET-
SAP (Energy Technology Systems Analysis Programme) of
the IEA (International Energy Agency) has been established
in 1976 in order to “establish, maintain, and expand a consis-
tent multi-country energy/economy/environment/engineering
(4E) analytical capability” (see [3]).

Eventually, MARKAL has been rewritten using GAMS
[4] and has become an important tool to analyse the im-
pacts of policy decisions on technologies and fuels choices in
the context of severe greenhouse gases emissions limitations.
Its successor, the TIMES model (The Integrated MARKAL
EFOM System), has been used extensively in many parts of
the world to perform such studies. Its link with state-of-the-
art decision support systems (VEDA or ANSWER) makes
it a very powerful complex tool (see [5] for the impressive
TIMES documentation).

Another model using a similar approach is the OSe-
MOSYS (Open-Source energy MOdelling SYStem) opti-
mization model [6]. As mentioned on OSeMOSYS’ home-
page, it “potentially requires a less significant learning curve
and time commitment to build and operate. Additionally, by
not using proprietary software or commercial programming
languages and solvers, OSeMOSYS requires no upfront fi-
nancial investment. These two advantages extend the avail-
ability of energy modeling to the communities of students,
business analysts, government specialists, and developing
country energy researchers”.

This paper proposes an overview of OSeMOSYS and the
existing UTOPIA model as a basic example on how to use
0SeMOSYS. Minor discrepancies in UTOPIA’s data file will
be mentioned. An extended UTOPIA version will be pre-
sented. It will include a step-by-step description on how to
create a particular end-use demand and competing technolo-
gies to satisfy such a demand. Pareto-optimality will be pro-
posed to show how such a model can be used by decision
makers to develop coherent policies on meeting greenhouse
gases targets.

The goal of the paper is to help potential users to grasp
the powerful yet simplicity of the approach. It hopes to fill
in a gap between experts and non-experts to facilitate discus-
sion and gain insight on the climate change energy related
issues. In particular, university professors may decide to in-
clude OSeMOSYS in graduate class on the subject and help
develop highly trained professionals. This has been done
with great success at Polytechnique Montreal in its course
entitled ENE8230: Techno-Economic Energy Modeling. The
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paper shall result in professionals being ready to use more
complex models such as TIMES or develop real-life energy
models using OSeMOSYS.

2 Overview of OSeMOSYS

2.1 Generalities

0OSeMOSYS is a linear programming optimization en-
ergy model. It is argued that OSeMOSYS avoids the costs
and complexity of TIMES while describing the energy sys-
tem of a particular region with sufficient details to be used
for real-world applications. Its full description is avail-
able in [7] and has been presented officially for the first
time at the 2010 International Energy Workshop in Stock-
holm. It has been created using GLPK (GNU Linear Pro-
gramming Toolkit [8]) which includes the mathematical pro-
gramming language GNU Mathprog and the glpsol solver
to find the optimal solution of linear programming prob-
lems. The GLPK version of the model is available at [9] (file
0SEM0OSYS_2016_08_01.TXT or the equivalent more compact
version O0SEMOSYS_2016_08_201_SHORT . TXT).

Note that OSeMOSYS is the generic mathematical repre-
sentation of all the parameters, decision variables and con-
straints imposed on any energy system whose objective is
to minimize the total discounted cost of satisfying all such
constraints. It contains no specific data of a particular re-
gion, all of which are included in a separate datafile. OS-
eMOSYS is thus accepted in the scientific community as a
standardized model which can be modified if needed (it is
open-access) but does not have to be modified in order to
work properly. OSeMOSYS regional models usually only
differ because of user-defined data files. The UTOPIA data
file illustrative example described in [9] is available at [9]
(file UTOPIA_2016_08_01.TXT).

2.2  Technical Issues
2.2.1 Divisions of the Year

A production capacity of 1 GW can generate 31.536 PJ (a
year at full capacity). This corresponds to a parameter called
CapacityToActivityUnit; it links capacity units (GW)
with production units (PJ). If the yearly electricity used in
a system (say 31.536 PJ) is broken down into two equal parts
of six months (15.768 PJ), then a 1 GW capacity is suffi-
cient to produce this quantity of electricity. But if the year
is divided into two equal parts for which the needed electric-
ity is not distributed similarly, the production capacity will
have to be adjusted accordingly. For example, a (1/4, 3/4)
need for electricity in a (1/2, 1/2) division of the year will
induce a necessary production capacity of 1,5 GW (which is
the Max(1/4 = 1/2, 3/4 + 1/2) = Max(1/2, 3/2)).

2.2.2 Demands

Demands are given by either the
AccumulatedAnnualDemand or the
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SpecifiedAnnualDemand parameters. The former
one is used when a user lets the solver choose as it pleases
the way to satisfy the demand through the year (without any
specified a priori time of the year demand profile). The latter
one is for demands that must be met in line with a precise
SpecifiedDemandProfile throughout the year.

2.2.3 Inputs and Outputs

The InputActivityRatio and OutputActivityRatio
parameters specify the level of fuel input that is needed to
produce some level of output (which is typically equal to
one).

2.2.4 Costs

OSeMOSYS is a techno-economic energy model. It in-
cludes the following economic parameters: FixedCost,
CapitalCost and VariableCost. The objective is to min-
imize the total discounted cost of the sum of all these costs
for all technologies and fuels (with a typical DiscountRate
equal to 5%).

2.2.5 Capacities

Solving the optimization problem will induce investments
decisions in competitive technologies under some scenario.
But some capacity currently exists and will continue to be
available until its end-of-life. This fact is represented using
the ResidualCapacity parameter. Life duration of new in-
vestment capacity is given via the Operationallife param-
eter.

2.2.6 Other parameters

Many other parameters exist to appropriately describe
a technolology. For example, AvailabilityFactor and
CapacityFactor are used to represent the fact that some
technology might not be available or used to full capacity
throughout the year. ReserveMargin may be used for risk
management. Emissions related to the consumption of fuels
are accounted via the EmissionActivityRatio parameter.

3 Overview of UTOPIA

UTOPIA is an illustrative example of an energy model. All
the data related to this specific occurrence of the OSeMOSYS
generic model must be included in a data file distinct from the
model file. Some data used in UTOPIA are now presented.

3.1 Divisions of the Year

Divisions of the year are specified via the TimeSlice set
which is made of six divisions of the year: summer day (SD),
summer night (SN), winter day (WD), winter night (WN), in-
termediate day (ID) and intermediate night (IN); intermedi-
ate refers to parts of the Spring and Fall seasons and are often
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supposed to have similar time-of-the-year demands. This be-
ing said, this description of the year may not be coherent with
the real durations of the seasons.

The YearSplit parameter specifies the fraction of the
year represented by a particular TimeSlice. First, a 24-hour
period can be broken down in two parts of unequal lenghts.
For example, the “day” part can represent 16 hours (from
06:00 to 22:00) and the “night” part only 8 hours (from 22:00
to 06:00). Second, one can define a 6-month “winter”, 3-
month summer and 3-month “intermediate” seasons. This
separation of the year leads to a YearSplit of 1/3 for WD,
1/6 for WN, 1/6 for SD and ID and finally 1/12 for SN and
IN. Such vales, like all other data, are under complete control
of the user.

3.2 Demands, Technologies and Fuels

The UTOPIA region contains 3 end-use demands: residen-
tial lighting (RL), residential heating (RH) and passengers
transportation (TX). Each individual demand can be met by
a set of competing technologies using similar or different fu-
els as inputs. For example, gasoline cars (TXG), diesel cars
(TXD) and electric cars (TXE) competes to satisfy the pas-
sengers transportation demand (TX). The optimal solution
will select one, two or even all three technologies; the model
is dynamic in the sense that a decision taken in a particular
year influences decisions to be taken for subsequent years. A
long-term policy on future severe limitations of greenhouse
gases emissions will also influence the mix of optimal tech-
nologies to be automatically selected by the solver. Note that
the time horizon of the UTOPIA model spans 21 years (from
1990 to 2010; see the YEAR parameter).

Note that all demand technologies (those who meet spe-
cific end-use demand such as RL, RH and TX) use some sort
of fuel as an input that makes the technology perform its duty
(for example gasoline (GSL) is used by TXG). These fuels
are in turn produced by competing production technologies.
For example, GSL can be produced by a refinery (SRE) that
uses crude oil as an input (IMPOIL1). GSL could also be
simply imported from an external source (IMPGSL1). All the
demands, demand technologies, production technologies and
fuels importations are well-defined in UTOPIA. The model
is “demand-driven”, meaning that the whole energy system
is pulled by demands that must be met. Since the complete
“food chain” from primary energy to end-use demands is rep-
resented, OSeMOSYS (and TIMES) is a fully integrated en-
ergy model.

3.3 Minor Discrepancies

All parameters of the UTOPIA model are presented in [9]
(see Table 1, page 5858). Some discrepancies have been
identified between these data and the ones contained in the
UTOPIA_2015_08_27.TXT data file, some of which are pre-
sented below.

e YearSplit in the text sums up to 0.75 (the data file is
valid and sums up to 1);
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e InputActivityRatio

TXD shall be 4.33 instead of 1
TXE shall be 1.21 instead of 1
TXG shall be 4.33 instead of 1
E21 shall be 2.50 instead of 1

e RL1’s CapitalCost shall be 100 instead of 0

e TXG’s ResidualCapacity shall be 4.6 and then decline
to 0 instead of O

Note that the EMISSION set is made of only two pollutants,
namely CO4 and NOy.

3.4 The “??u” Technologies

Each end-use demand has a corresponding “??u” technol-
ogy associated with it (RLu, RHu and TXu). These are
dummy technologies with extreme high-cost investment val-
ues. If the optimal solution proposes to use one or more of
these technologies, this means that its corresponding demand
can not be satisfied with “real” technologies and the problem
is then said to be infeasible.

Infeasibility can be caused by an impossibility to meet a set
of well-defined constraints. An example of a well-defined set
of constraints can be a set of demands that can not be satisfied
under too severe emissions limitations scenario. In such a
case, infeasibility gives you an insight on how severe your
environmental policy can afford to be for your energy system
to keep on being coherent (although heavily impacted).

Infeasibility can also highlight a simple minor error in the
data file (we suppose the OSeMOSYS file to be valid and
thus not be the cause of the problem). Such modeling errors
may be difficult and time-consuming to deal with and an ex-
perience user may be of great help to discover and solve the
issue.

3.5 Solving the UTOPIA Model

Solving the UTOPIA model to optimality gives a result-
ing minimal total discounted cost of about 32,113 millions of
dollars. Emissions of CO; (excluding NOy) amounts to 206.2
tonnes. The optimal activities for the set of technologies that
satisfy the passengers transportation demand is presented in
Figure 1.

According to the optimal solution under a reference sce-
nario involving no limitations on CO; emissions, results
show that diesel cars shall gradually replace the gasoline cars
to meet the passengers transportation demand.

4 Extended UTOPIA Model

To enhance the knowledge of how a data file such as
UTOPIA is created, we will extend it by introducing a new
end-use demand and two competing technologies to satisfy
this demand. The TX passengers transportation demand is
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Figure 1. Optimal Technologies for Passengers Tranportation

already part of UTOPIA. We will create a completely dis-
tinct new passengers transportation demand (as if TX would
not exist). This new demand, called TZ, will simply be added
to the current UTOPIA data file.

The following step-by-step process will help the reader to
eventually build his/her own particular model.

4.1 New Demand and Technology

The new TZ demand is for passengers transportation by
cars. Units used for passengers transportation in an en-
ergy model such as OSeMOSYS (or TIMES) are Passengers-
Kilometers (pkm). We suppose that the number of cars in the
first year of the reference scenario, namely 1990, is known
to be 120,000 which are all gasoline cars called TZ1 cars.
We also suppose that the average yearly distance travelled
by such gasoline cars in the UTOPIA region is 20,000 km
with an average of 1.25 passengers per car. A capacity of
one gasoline car thus corresponds to a total of an annual ac-
tivity of 20,000 km/car x 1.25 passengers = 25,000 pkm/car.
The total annual demand for all the passengers transporta-
tion by cars amounts to 120,000 cars x 25,000 pkm/car =
3,000,000,000 pkm = 3 x10° pkm = 3 Gpkm. Due to the
size of the data, we propose to use the following units:

e capacity is in millions of cars (Mcars);
e activity is in Giga passengers-kilometers (Gpkm);

e demand is in Giga passengers-kilometers (Gpkm; de-
mand and activity always share the same units);

e monetary units are in millions of dollars ($M);

e energy units are in PJ.

Using these units, the demand in the first year is 3 Gpkm.
We suppose that it will grow at an annual rate of 1% (because
of an increase in the number of cars). We will specify this an-
nual demand via the AccumulatedAnnualDemand parame-
ter, thus letting the optimal solution decide how it chooses to
meet this demand throughout the year.
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The TZ1 ResidualCapacity in the first year is equal to
0.12 Mcars. The end-of-life of these gasoline cars is rep-
resented by a linearly declining residual capacity. TZ1’s
CapacityToActivityUnit parameter linking a unit of ca-
pacity with a unit of activity is computed as follows: 20
Gkm/Mcars x 1.25 passengers = 25 Gpkm/Mcars.

The effiency of gasoline cars (TZ1) is supposed equal to
10 km per litre of the gasoline fuel (GSL). According to [10],
a litre of motor gasoline is equivalent to 34.66 MJ so 12.5
pkm is equivalent to 34.66 MJ which means that TZ1’s effi-
ciency is equal to 1 Gpkm per 2.7728 PJ. Thus for 1 unit of
OutputActivityRatio we have an InputActivityRatio
of 2.7728.

The CapitalCost of a caris set to $20,000. With the units
being as mentioned above, this parameter is 20,000 million
dollars for 1 million cars so the value 20,000 is used as TZ1’s
CapitalCost.

The FixedCost of a car is set to $250 per car. This amount
is spent independently of the number of kilometres driven us-
ing this car. Using the proper units, TZ1’s FixedCost value
is set to 250.

The VariableCost value is dependent of the activity
of the car (which is measured in Gpkm). If a value of
$1,000/year per car, the variable cost is computed as follows:

$1,000  $0.04  $40M
25,000 pkm

pkm  Gpkm

TZ1’s last parameter is its life duration. If set to 12 years,
the extended UTOPIA date file will have OperationalLife
equal to 12. Table 1 is a summary of all TZI’s techno-
economic parameters for the first year of the horizon (which
is 1990 in UTOPIA). Note that TZ’s demand parameter
AccumulatedAnnualDemand is not in the table.

Table 1. TZ1’s Techno-Economic Parameters

Name Units Value
ResidualCapacity Mcars 0.120
CapacityToActivityUnit | Gpkm/Mcars 25
InputActivityRatio PJ 2.7728
OutputActivityRatio Gpkm 1
CapitalCost $M/Mcars 20,000
FixedCost $M/Mcars 250
VariableCost $M/Gpkm 40
OperationalLife Years 12
4.2 New Competing Technology: Electric

Cars

Without any competition, TZ’s demand must be met us-
ing TZ1 gasoline cars. We introduce a competing demand
technology: electric cars (TZ2). Suppose that they have the
following characteristics:

o they are not available before year 2000;

o they travel 10,000 km per year;
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e there is an average of 1.5 persons per car (suppose peo-
ple buying such cars are also more inclined to share
transportation with others);

e energy efficiency is 10 km per 20 MJ
of electricity;

e capital cost is $25,000 per car;

e annual fixed cost is $400 per car;

e variable cost is $1,000 per 15,000 pkm;
e residual capacity is obviously zero;

e life duration is 12 years.

Using these values, we find the corresponding values pre-
sented in Table 2. Parameter TotalAnnualMaxCapacity
must also be set equal to zero from 1990 to 1999.

Table 2. TZ2’s Techno-Economic Parameters

Name Units Value
ResidualCapacity Mcars 0
CapacityToActivityUnit | Gpkm/Mcars 15
InputActivityRatio PJ 1.3333
OutputActivityRatio Gpkm 1
CapitalCost $M/Mcars 25,000
FixedCost $M/Mcars 400
VariableCost $M/Gpkm 66.667
OperationalLife Years 12

4.3 Solving the Extended UTOPIA Model

Since a new demand has to be satisfied, the optimal ob-
jective value grew from $32,113M for the original UTOPIA
model to $38,397M for the Extended UTOPIA model, in-
creasing the total CO2 emissions from 206.2 tonnes to 220.7
tonnes. Demand TZ is uniquely met with TZ1. This is due
to the fact that the combination TZ2/ELC (where ELC rep-
resents electricity) is not economically competitive with the
TZ1/GSL duo.

Analyses using techno-economic energy models fre-
quently involves the study of the impact of some greenhouse
gas emissions limitation on technological choices that must
be made to meet the policy’s target at minimal cost. Sup-
pose that it is decided that the total CO2 emissions over the
horizon (i.e. the sum of all emissions over the 1990-2010 21-
year horizon) must be smaller or equal to 200 tonnes. This
can be specified by the ModelPeriodEmissionLimit pa-
rameter. In order to respect this target, less polluting more
costly choices will have to be made and optimality shows an
objective value of $38,527M.

4.4 Pareto Optimality

Pareto optimality is a way to analyse a problem involving
two conflictive objectives. In energy modeling, minimizing
the total cost to satisfy all end-use demands conflicts with
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minimizing COy emissions. Solving the model for various
CO; emissions limitations allows one to gain insight on a re-
gion’s capability to meet such targets. Optimal technological
and fuels choices have to be made according to the severity of
the CO; emission constraint and induce a particular marginal
cost which is related to a particular emissions limit.

A Pareto curve typically have two end-points: one who
only takes into account one of the two objectives without
worrying about the other conflicting objective, which is fol-
lowed by the other one doing the same thing the other way
around. In the current situation, we know from the previ-
ous section that the minimal cost of $38,397M has a related
220.7 tonnes of CO, emissions. This is the first end-point of
the Pareto curve.

To find the other end-point, one must not minimize the
total cost but rather minimize CO5 emissions. It is done
by modifying the 0SEMOSYS_2015_08_27.txt model file.
The original objective function must be modified to be
recognized as a simple comment (using the # symbol) as
shown below:
#minimize cost: sum{r in REGION, y in YEAR}
TotalDiscountedCost [r,y];

it must then be temporarily replaced by the following
objective function:

minimize CO2Emissions: sum{r in REGION}
ModelPeriodEmissions[r,"C02"];

Prior to launch the optimization process, the ”??u” fictive
technologies have to be temporarily seen as comments in the
data file. If not, even at extreme costs, these fictive technolo-
gies would be selected and the results would be incoherent.

Once these modificatins are in place, the optimal objective
value is 64.25 tonnes of CO» emissions with a corresponding
total cost of $60,191M, which is a huge increase in cost (as
is typically the case) compared to the other Pareto end-point.

Once both end-points are identified, the original total cost
objective function is put back in place and the model is solved
for various values of CO; emissions limitations. In this
Extended UTOPIA example, we vary this limit from 220.7
tonnes to 64.25 tonnes using steps of 25 tonnes between 200
tonnes and 75 tonnes, resulting in the finding of 6 points.
Adding these 6 points to both end-points gives us the 8-point
Pareto curve shown in Figure 2.

Pareto optimality visually presents the marginal cost of
CO; emissions limitations. In Figure 2, we notice that this
marginal value remains low for quite an aggressive reduc-
tion on CO, emissions. More reductions induce much higher
marginal values with the steepest slope obviously occurring
in the last line segment of the curve (from right to left).

All the points under the Pareto curve are infeasible. It
means that they can not be achieved. For example, for a fixed
target of 150 tonnes of CO5 emissions, the lowest possible
total cost is $40,144M. All points above the curve are feasi-
ble but non-optimal situations where, for example, one would
pay more than $40,144M to reach a 150 tonnes level of emis-
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sions.

Decision-makers must decide where they want to be on the
Pareto curve. The identification of such a desired point on the
curve is a problem faced by negotiating governmental orga-
nizations from diverse regions of the world. Energy model-
ing tools such as OSeMOSYS can help leaders make coher-
ent and well-thought techno-economic decisions. Moreover,
sharing a common energy modeling framework can enhance
the transparent process involved in such intense moments as
the preparations of the Conference Of Parties (COP) annual
meetings.

As an example of the impacts of the chosen point on the
Pareto curve, Figures 3 and 4 show the optimal mixes of tech-
nologies to meet the TZ demand (TZ1: gasoline cars; TZ2:
electric cars). It is of no surprise that more intense emissions
reductions induce an increase in TZ2 activity (note that elec-
tric cars are not supposed to be available before 2000).
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Figure 3. Optimal Mix: 75 tonnes of CO2

Many detailed results are obtained using techno-economic
energy modeling and are indeed frequently published. An
example for Canada is given in [11].
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4.5 Extension for Freight Transport

Similar work can be accomplished for freight transport
by trucks using the million tonnes-kilometers units (Mtkm).
The new demand for freight transport is called TF. Suppose
the only technology currently used to meet this demand is
TFD which represents the diesel trucks. Here is the techno-
economic description of TF and TFD:

e the number of diesel trucks in the first year of the time
horizon (1990) is 1,000;

e cach truck travels an average of 50,000 km per year;
e there is an average load of 20 tonnes per truck;

e energy efficiency is 100 km per 20 litres of diesel (note
from [10]: 1 litre of diesel corresponds to 38,68 MJ);

e capital cost is $100,000 per truck;
e annual fixed cost is $1,000 per truck;
e variable cost is $5,000 per 1,000,000 tkm;

e residual capacity is declining linearly to O in line with
the life duration of the technology;

o life duration is 7 years.

Units used are the following:

capacity is in thousands of cars (Ttrucks);

activity is in Giga tons-kilometers (Gtkm);

demand is in Giga tons-kilometers (Gtkm; demand and
activity always share the same units);

monetary units are in millions of dollars ($M);

e energy units are in PJ.
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Table 3. TFD’s Techno-Economic Parameters

Name Units Value
ResidualCapacity Ttrucks 1
CapacityToActivityUnit | Gtkm/Ttrucks 1
InputActivityRatio PJ 0.3868
OutputActivityRatio Gtkm 1
CapitalCost $M/Ttrucks 100
FixedCost $M/Ttrucks 1
VariableCost $M/Gtkm 40
OperationalLife Years 12

The base-year (1990) demand is 1 Gtkm (1,000 trucks x
50,000 km/truck x 20 tonnes). All other information pre-
viously listed can be summarized in the Table 3.

Computation of the values shown in Table 3 is simi-
lar to what has been presented in section 4.1. Details for
the CapacityToActivityUnit and InputActivityRatio
parameters are given below.

4.5.1 CapacityToActivityUnit Parameter

Remember that the CapacityToActivityUnit parame-
ter establishes the relationship between the capacity and the
activity of a technology, and that units of activity is in line
with with the units of its related end-use demand which is
Gtkm for freight transport (TF). For the TFD technology, a
capacity of 1 truck travels a distance of 50,000 km per year,
which is equivalent to 50 Mkm for 1,000 trucks. Since it
is supposed that the average load per truck is 20 tonnes, the
activity amounts to 50 Mkm x 20 tonnes = 1 Gtkm/Ttrucks.

4.5.2 InputActivityRatio Parameter

The InputActivityRatio determines the quantity of
fuel, which is diesel (DSL) for TFD, needed by the tech-
nology to produce some level of output specified by the
OutputActivityRatio parameter (which is 1 unit in Table
3,i.e. 1 Gtkm). Itis supposed that the technology’s efficiency
is 100 km per 20 litres of diesel. This means that 5 km are
travelled per litre of fuel. According to [10], this is equiva-
Ient to 100 tkm per 38.68 MJ, or 1 tkm / 0.3868 MJ, i.e. 1
Gtkm / 0.3868 PJ.

These two additional examples of data computations shall
be sufficient for professionals, professors and students to cre-
ate their own data representing their particular reference en-
ergy system.

S Energy Toolbox and Community

The development of an open-access energy modeling tool
such as OSeMOSYS was welcomed with great success at
Stockholm’s International Energy Workshop in 2010. OS-
eMOSYS’ original team members stated that it was designed
“to fill a gap in the analytical toolbox available to the en-
ergy research community and energy planners in develop-
ing countries. At present there exists a useful, but limited
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set of accessible energy system models. These tools often
require significant investment in terms of human resources,
training and software purchases in order to apply or further
develop them. In addition, their structure is often such that
integration with other tools, when possible, can be difficult.”
It turned out that “less than 10% of participants were from
developing countries” (both citations are from [6]).

Many researchers are interested in a transparent, power-
ful yet easy-to-use energy modeling toolbox. Growing in-
terest for OSeMOSYS has arisen since 2010: publications,
international conferences, applications and user interface de-
velopments, the future of OSeMOSYS is quite compelling.
Professionals, professors and graduate students interested in
energy shall take a moment to learn about it. It is argued that
this paper is a useful introduction for talented and passion-
ate individuals from the energy sector with an engineering,
economic, managerial, social, and/or environmental point of
view.

Moreover, there is a link between the Long range Energy
Alternatives Planning system (LEAP) (see [12]) simulation
software and the OSeMOSY S optimization framework. This
duo offers interesting possibilities for powerful analyses of
energy systems.

6 Conclusion

This paper provides a hands-on example on how to use
energy modeling in order to develop coherent and insightful
policies in a context of greenhouse gases emissions limita-
tions. It presents the OSeMOSYS open-source energy mod-
eling system which is similar in nature to the well-known
MARMAK-family techno-economic energy models (TIMES
being the current version used worldwide). The UTOPIA ex-
ample is presented to provide a good understanding of such
material.

An extended version of the original UTOPIA model is pro-
posed. The technical step-by-step approach of creating this
extension involves many topics which are part of the every-
day life of an energy modeller. The reader gains by learning
the full process on how to build a brand new end-use demand
and the competing technologies to satisfy such demand.

Pareto optimality is proposed as an example of powerful
results which are of great value to decision makers. Leaders
understand that negotiations on policies limiting greenhouse
gases emissions have profound impacts on optimal and nec-
essary energy fuels and technologies to reach severe targets
and shall be interested in such models.

OSeMOSYS has a growing audience and this paper offers
a good introduction for professionals, professors and students
involved in such complex issues. Moreover, the public now
asks for government representatives to use a transparent and
scientific approach on climate change. Open-access techno-
economic energy modeling is a tool that will help current and
future leaders accomplish this task.



Universal Journal of Educational Research 5(1): 162-169, 2017

Acknowledgements

This work was supported in part by the Canadian Defense
Academy Research Program (CDARP) funding of the Royal
Military College of Canada.

REFERENCES

(1]

(2]

(3]

(4]

(]

(6]

(7]

OMNI Model Management System available from
https://www.haverly.com/main-products/13-products/15-
omni

Fishbone, L.G. and Abilock, H., Markal, a linear program-
ming model for energy systems analysis: Technical descrip-
tion of the bnl version, International Journal of Energy Re-
search, Volume 5, Issue 4, 353-375, 1981

ETSAP, Online available from
http://www.iea-etsap.org/web/index.asp

GAMS, Online available from
https://www.gams.com/

TIMES, Online available from
http://www.iea-etsap.org/web/Times.asp

0OSeMOSYS, Online available from
http://www.osemosys.org/

M. Howells, H. Rogner, N. Strachan, C. Heaps, H. Hunting-
ton, S. Kypreos, A. Hughes, S. Silveira, J. DeCarolis, and M.

[8]

[9]

[10]

[11]

[12]

[13]

(14]

169

Bazillian, OSeMOSY S: the open source energy modeling sys-
tem: an introduction to its ethos, structure and development,
Energy Policy, Vol. 39, No. 10, 5850-5870

GLPK, Online available from
https://www.gnu.org/software/glpk/

0OSeMOSYS Model and Data, Online available from
http://www.osemosys.org/getting-started.html

Units Conversion, Online available from
https://www.neb-one.gc.ca/nrg/tl/cnvrsntbl/cnvrsntbl-
eng.html

Trottier Energy Futures Project, Canada’s Challenge & Op-
portunity, Transformations for major reductions in GHG
emissions, Full Technical Report and Modelling Results,
April 2016

An Introduction to LEAP, Online available from
http://www.energycommunity.org/
default.asp?action=47

Heaps, C.G., 2012. Long-range Energy Alternatives Planning
(LEAP) system. [Software version 2015.0.19] Stockholm En-
vironment Institute.

Somerville, MA, USA. www.energycommunity.org

Stockholm Environment Institute, LEAP, Long-range Energy
Alternatives Planning System, Training Exercices, February
2016, Updated for LEAP 2015.



