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Abstract 

This study examines how closely the kernel equating (KE) method (von Davier, Holland, & 

Thayer, 2004a) approximates the results of other observed-score equating methods—

equipercentile and linear equatings. The study used pseudotests constructed of item responses 

from a real test to simulate three equating designs: an equivalent groups (EG) design and two 

non-equivalent groups with anchor test (NEAT) designs, one with an internal anchor and another 

with an external anchor. To compare results, the study sets the equating function in the EG 

design as the equating criterion. In these examples, the KE results were very close to the results 

from the other equating methods. Moreover, in almost all situations investigated, the KE results 

were closer to the equating criterion. 

Key words: Kernel equating, observed-score equating methods, non-equivalent groups with 

anchor test (NEAT) design, the equivalent groups (EG) design 
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Introduction 

Kernel equating (KE; Holland & Thayer, 1989; von Davier, Holland, & Thayer, 2004) is 

an equipercentile observed-score equating procedure in which the score distributions to be 

equated are converted from discrete distributions to continuous distributions by using a normal 

(Gaussian) kernel, as opposed to using linear interpolation as in the traditional equipercentile 

equating method. See Appendix A for a brief description of the KE method. 

KE holds the promise of approximating several commonly used observed-score equating 

methods while providing for the routine calculation of new and previously unavailable measures 

of statistical accuracy. KE can achieve the former because it is based on a flexible family of 

equipercentile-like equating functions that contains the linear equating function as a special case. 

This report describes a research study intended to answer two questions about KE: (a) 

Are the results of KE at least as close to an equating criterion as those of other methods? and (b) 

How closely do the results of KE approximate the results of other equating methods? 

The data for this study are item responses from real examinees taking a real test. The 

criterion equating against which we evaluate the accuracy of all the other equatings is an 

equivalent-groups (EG) classical equipercentile equating that makes use of all the examinees 

responses (the combined group). The equatings evaluated are equating functions from the EG 

design (which is based on the combined group and described in detail later in this report) and 

from two nonequivalent groups with anchor test (NEAT) data collection designs, one with an 

external anchor and one with an internal anchor. The equatings in the NEAT designs were 

computed from partial data sets, structured to create a situation in which two groups of 

examinees who are unequal in ability take different forms of a test that are unequal in difficulty. 

Hence, the goal of the study was to determine the degree to which KE can approximate the 

results of other observed-score equating methods (equipercentile and linear for the EG design 

and the Tucker, Levine observed-score, chained equipercentile, chained linear, and frequency 

estimation equating methods for the two NEAT designs). 

The body of the report focuses on the results for the NEAT design with an external 

anchor test. The results for the internal anchor are similar to those for the external anchor and are 

briefly reported in Appendix C.  
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A Previous Evaluation of Kernel Equating 

Some features of the present study have been adapted from a previous study that 

evaluated kernel equating (Livingston, 1993). In that study, pairs of equating samples of a 

specified size were randomly drawn from a group of more than 93,000 examinees who had taken 

a 100-item test. From the 100 items on that test, the investigator constructed two overlapping 58-

item test forms, similar in content but differing in difficulty. In order to simulate a NEAT design, 

the scores on one of the two forms was treated as unknown or missing, as if each examinee had a 

score on only one of the forms and an anchor test score. The criterion equating was the 

equipercentile equating of the two forms, using the responses of all examinees. For the KE and 

the chained equipercentile functions, loglinear models were fitted to the discrete score 

distributions prior to equating (i.e., the distributions were presmoothed; see Holland & Thayer, 

1989, 2000). The study compared the accuracy of five equating functions: three kernel equatings 

(using different bandwidth parameters), a chained equipercentile equating of the smoothed 

discrete score distributions, and a chained equipercentile equating of the observed (unsmoothed) 

score distributions. In Livingston’s study, the equated scores produced by kernel equating were 

slightly more accurate than those produced by the chained equipercentile equating of the 

smoothed discrete distributions and much more accurate than those produced by the chained 

equipercentile equating of the observed (unsmoothed) distributions. The kernel equating results 

differed only slightly across values of the bandwidth parameter, except near the ends of the score 

range, where the large bandwidth value produced biased results. 

The rest of this report is structured as follows: The next section introduces the notation 

and discusses the equating methods investigated; next, the report describes the equatings in the 

EG design and the NEAT design with an external anchor; and then the report compares the 

equating results across different functions. The last section presents the conclusions drawn by the 

study investigators. 

Notation 

There are two test forms to be equated, X and Y, and a target population, T, for which the 

scores on the two test forms are to be made equivalent (for the population as a whole, not 

necessarily for every individual in the population). In the EG design, the two operational tests to 

be equated, X and Y, are given to two samples of examinees from the same population, T. In the 

NEAT design, X and Y are given to two samples of examinees from different test populations or 
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administrations (denoted here by the populations P and Q). In addition, an anchor test, A, is 

given to both samples from P and Q. 

The target population, T, for the NEAT design is assumed here to be a mixture of P and Q 

in which P and Q are regarded as partitioning T. P and Q are given weights that sum to 1. This is 

denoted by 

T = wP + (1 – w)Q.  (1) 

See Kolen and Brennan (2004) and Livingston (2004) for a detailed discussion of the concept of 

the target population. 

It is always a good idea to be explicit as to what T is in an equating design. For example, 

in this study, where we are interested in evaluating the KE method in a NEAT design, we 

consider the target population to be as in (1). This implies that the criterion equating (i.e., the 

equating function to which we compare all the equating results) should be on the same 

population. Therefore, the criterion equating design, the EG design in this case, was computed by 

pooling the data from the two administrations, insuring that the target population is of the form 

(1), with the w determined by the relative size of the samples from P and Q (i.e., w = nP/(nP + 

nQ), where nP and nQ are the sample sizes of the samples from P and Q, respectively). The 

score distributions computed for P and Q separately are weighted by w and (1 - w) to obtain 

distributions of these same quantities for T. Two reviewers suggested that in order to define an 

equating criterion we should check if the criterion equating in the combined group is the same as 

the equatings inside each of the groups. While we provided the results of these additional 

equatings (see Appendix B), we consider that these analyses check a population invariance 

assumption and cannot influence the choice of the criterion. The choice of the equating criterion 

is based on a decision about the appropriate target population as described in (1) and the 

appropriate shape of the equating function. 

Many observed-score equating methods are based on the equipercentile equating 

function. It is defined on the target population, T, as: 

eXY;T(x) = GT
-1(FT(x)) (2) 

where FT(x) and GT(y) are the cumulative distribution functions (cdfs), of X and Y, respectively, 

on T.  

3 



Linear equating assumes that FT(x) and GT(y) are continuous and have the same shape while 

possibly differing in mean and variance. The linear equating function, LinY;T(x), is defined by 

LinY;T(x) = µYT + σYT((x – µXT)/σXT). (3) 

In Theorem 1 of von Davier, Holland, and Thayer (2004a, 2004b), it is shown that any 

equipercentile equating function can be decomposed into the corresponding linear equating 

function and a nonlinear part. The corresponding linear function is a function that relies on the 

same assumptions as the equipercentile function—for example, chained linear and chained 

equipercentile functions rely on the same assumptions.  

Equating Methods 

EG Design 

In an EG design, there are two categories of equating functions, equipercentile and linear. 

KE can approximate both functions by manipulating the bandwidth: KE with optimal bandwidths 

approximates the equipercentile equating function, and KE with large bandwidths approximates 

the linear equating (see Appendix A). Table 1 lists the equating methods computed in the EG 

design. The left column lists the equating methods that are not kernel equatings. The right 

column indicates, for each of these methods, the version of kernel equating that was expected to 

produce a close approximation to it. 

Table 1  

Equivalent Groups Design Equating Methods and Corresponding KE Procedures 

Equating method KE version 

Classical equipercentile KE, with optimal bandwidths 

Classical linear KE, with large bandwidths 

NEAT Design 

In an anchor equating design, there are three fundamentally different ways to use the 

information provided by the anchor in an observed-score equating setting. The anchor score can 

be used as a conditioning variable (i.e., a covariate) for estimating the score distributions or 

statistics on the tests to be equated. This approach is similar to poststratification in survey 
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research, and we will refer to equating methods based on this approach as poststratification 

equating (PSE). A second way to use the anchor information is to have the anchor score as the 

middle link in a chain of symmetric linking relationships. We will refer to equating methods 

based on this approach as chained equating (CE). The equating functions in these two categories 

can be linear or nonlinear in shape. The third way to use the anchor information leads to another 

method available in the NEAT design—the Levine observed-score linear equating method, 

which is based on estimated relationships between true scores on the test forms to be equated and 

on the anchor. Table 2 illustrates these three classes of equating methods for the NEAT design. 

Table 2 

Observed-Score Equating Functions for the NEAT Design 

 PSE CE Levine 

Linear  Tucker 
Braun and Holland  

CE linear Levine observed-
score equating 

Nonlinear Frequency 
estimation 

CE equipercentile None 

Poststratification equating methods. The linear poststratification methods used in this 

study include the Tucker method and the Braun and Holland method (see Braun & Holland, 

1982; Kolen & Brennan, 2004). 

The PSE linear or Braun and Holland linear method uses the poststratified score 

probabilities to compute the mean and variance of X and Y on T. These moments are then used to 

directly compute LinY;T(x), defined in (3). This approach makes different assumptions than does 

the Tucker linear method, though they are related. In Tucker linear equating, the assumptions 

regarding population invariance are weaker because they refer only to the first two moments of 

the conditional distributions of X and Y given A. However, the additional assumptions of the 

Tucker method (i.e., linear regression and constant conditional variance) are stronger in the sense 

that linear PSE can have nonlinear regressions of X and Y on A and nonconstant conditional 

variances as well. The form of these conditional moments depends on the form of the model used 

to presmooth the bivariate data tables that arise in the NEAT design (see Holland &Thayer, 

2000). Hence, the Tucker linear method and the PSE linear will agree well only in specific 
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circumstances, when the regressions of X and Y given A are approximately linear and the 

conditional variances are almost constant. 

A poststratification method that allows for a curvilinear equating relationship is 

frequency estimation equipercentile equating.  

The kernel version of poststratification equating provides approximations to frequency 

estimation equipercentile and to the Braun and Holland linear methods (see von Davier et al., 

2004b, for the theoretical proof). When optimal bandwidths are chosen to closely approximate 

the discrete distribution, then the kernel version of poststratification equating will approximate a 

frequency estimation equipercentile equating computed from the presmoothed bivariate 

distributions (the presmoothing is accomplished using loglinear models—see Holland & Thayer, 

2000). When large bandwidths are chosen, then the result will approximate the Braun and 

Holland linear method. 

Chained equating methods. The chained equating methods used in this study are the 

chained linear method and the chained equipercentile method. The formulas for these methods 

(except for the Braun-Holland method) are presented concisely in Angoff (1984) and explained, 

without formulas, in Livingston (2004). For a complete presentation, see Kolen and Brennan 

(2004). The chained equating represents a chain of linking from X to A and from A to Y. In 

general, if each of the two links is equipercentile, then the final equating is equipercentile as 

well. There are some other cases, but they are beyond the scope of this study. If each of the two 

links is linear, then the final equating is linear as well. The kernel version of chained equating 

will approximate the chained equipercentile method when the optimal bandwidths are used and 

will approximate the chained linear method when large bandwidths are used. 

Levine observed-score equating method. The Levine method does not yet have a 

curvilinear analogue, and there is no version of KE that approximates the Levine method. 

Nevertheless, we included the Levine observed-score equating method for comparison purposes, 

because under some circumstances it is more accurate than other linear equating methods (see 

Petersen, Marco, & Stewart, 1982).  

Table 3 lists the anchor equating methods included in this study. The left column lists the 

equating methods that are not kernel equatings. The right column indicates, for each of these 

methods, the version of kernel equating that was expected to produce a close approximation to it. 

As mentioned previously, the KE PSE approximates the Braun and Holland linear method, not the 
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Tucker method. The former two methods agree in most cases when the regressions of X and Y 

given A are approximately linear and the conditional variances are almost constant. 

Table 3 

Anchor Equating Methods and Corresponding KE Procedures 

Equating method KE version 
Chained equipercentile KE chained, with optimal bandwidths 
Frequency estimation equipercentile KE poststratification, with optimal bandwidths 
Chained linear KE chained, with large bandwidths 
Tucker Not directly available (KE poststratification with 

large bandwidths under certain conditions) 
Braun and Holland linear 
(not available)  

KE poststratification with large bandwidths 

Levine observed-score (None) 

In this study, there are certain limitations to comparing the equating results due to the 

limitations of the software available—that is, GENASYS (ETS, 2004). We also used the newly 

created KE software (ETS, 2004) for computing the KE chained linear and equipercentile 

functions and a SAS macro (Moses, von Davier, & Casabianca, 2004) for the loglinear 

presmoothing in order to obtain the appropriate input for the KE software. The Braun and 

Holland linear method outside the KE framework is not available. 

The description of the equating results will include the continuization values of the KE 

functions (see Appendix A, Step 4), the diagnostic measures, the percentage of relative errors, 

which are available only in the KE framework (see also Appendix A, Step 4), and the standard 

errors of equating (SEE). 

Procedure for the Study 

The evaluation of any equating method requires an equating design, where the equating 

criterion in the target population is known (Harris & Crouse, 1993). In practice, it is very 

difficult to find a known criterion for equating. In this study, we used real responses from real 

people taking real tests as raw material to construct the tests, the equating design, and the 

criterion equating for the study.  
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Data 

The data for this study came from one form of a licensing test for prospective teachers of 

children in elementary school. The test included 119 multiple-choice items, about equally 

divided among four content areas: language arts, mathematics, social studies, and science. This 

form of the test was administered twice. The mean total scores of the examinees taking the test at 

these two administrations, P and Q, differed by approximately one fourth of a standard deviation, 

as can be seen in Table 4. 

Test Construction 

We used the items in the 119-item test form to create two smaller forms (each with 44 

items, 11 from each of the four content areas) parallel in content but differing in difficulty to be 

given with a representative set of 24 items in common (6 from each content area) to provide an 

(external) anchor for equating.  

The anchor test is treated as an external anchor in the body of the report and as an internal 

anchor in Appendix C. 

Table 4 

Comparison of the Examinees at the Two Administrations for the Initial Test 

Administration P Q 

Number of examinees 6,168 4,235 
Mean  82.33 86.16 
SD 16.04 14.19 

The anchor set was constructed to cover the content tested by the three tests, the 119-item 

test, and the two 44-items tests (to the extent possible) and to represent the content categories in 

the same proportions as in a full-length test. The anchor contains a set of items that has a mean 

difficulty approximately equal to the recommended mean for the long test and a difficulty range 

that is also approximately the same as that for the whole long test. 

The reliabilities of the new tests were about 0.8; the correlations of the tests with the 

external anchor were 0.78 in P and 0.76 in Q. See also Appendix D for details and for the 

internal anchor case. 
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The two 44-item test forms will be referred to in this report as Form X and Form Y. Form 

X will be considered the new form, and Form Y the old form in all the equatings. Form Y was the 

more difficult of the two forms; the difference between the mean scores of the combined group 

on Forms X and Y was approximately 1.4 standard deviations. Table 5 shows the means and 

standard deviations of the scores on Forms X and Y for the examinees in Q, the examinees in P, 

and the combined group. 

To summarize: Because everybody in P and in Q answered the 119 items, everybody in P 

and Q also answered the two 44-item tests, Form X and Form Y, that come from the 119-item 

tests. 

We then used the samples from each of the groups of examinees as equating samples to 

equate the two smaller forms in an anchor equating, as if each of the smaller forms had been 

given at only one of the administrations.  

Table 5 

Comparison of the Examinees at the Two Administrations for Both Forms 

Examinees  

P Q Combined group 

n 4,237 6,168 10,405 

Form X 36.4 35.1 35.6 
Mean 

Form Y 28.0 26.6 27.2 

Form X 4.8 5.7 5.4 
SD 

Form Y 6.3 6.7 6.6 

Equatings 

As explained earlier, the criterion equating design is an EG design obtained by pooling 

data from P and Q (the combined group). To provide a criterion for the correctness of the anchor 

equatings, we used the equipercentile equating method to equate the presmoothed distributions 

of scores on the two smaller forms in the EG design (i.e., the combined group of examinees from 

the two test administrations). We fit loglinear models to the discrete score probability 

distributions to presmooth the data (Holland & Thayer, 1989, 2000). We explained in a previous 

section how we chose the criterion for the equating methods by defining carefully the target 

population as being the same for both the NEAT design and the criterion-design, as in (1). We 
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computed the equatings in the EG design by the methods described in Table 1. We computed the 

equatings in the NEAT design by the anchor equating methods mentioned in Table 2. 

This research answers two questions posed earlier about KE: (a) Are the results of KE at 

least as close to an equating criterion as those of other methods? (b) How closely do the results 

of KE approximate the results of other equating methods? In order to answer the first question, 

we compared the results of all of the anchor equatings, both traditional and KE versions, with the 

results of the equating criterion (i.e., the equipercentile equating in the EG design). In order to 

answer the second question, we compared the results of the traditional equating methods and the 

KE versions of them both in the EG and NEAT designs. 

The Combined Group Equatings: Description  

The criterion equating is an EG equipercentile equating of smoothed distributions of each 

of the 44-item tests (Forms X and Y) as in (2) in the combined group (i.e., on a target population 

that is a weighted average of the two groups from P and Q). The smoothing technique, loglinear 

smoothing, allows the user to specify how many moments of the distribution are to be preserved. 

After investigating the fit of the smoothed distributions based on preserving three, four, and five 

moments of the observed distribution, we chose the loglinear model that preserved five moments 

for each of the two univariate distributions, of X and Y, respectively. The fit statistics that 

provided the basis for this decision included the likelihood ratio chi-square, Pearson chi-square, 

Freeman-Tukey residuals, Akaike information criterion, and the consistent Akaike information 

criterion (Bozdogan, 1987). 

The optimal continuization values for the KE are h(X) = 0.5592 and h(Y) = 0.6298. For 

the KE linear, the large bandwidths were h(X) = 53.70 and h(Y) = 65.60. 

Diagnosis of the KE Functions 

 It is important that an equating function, as the function of the discrete X, matches the 

discrete target-distribution, Y. In order to assess this match, we compare up to the 10th moments 

of the two distributions, eY(X) and Y, via the percent-relative error in the pth moment (PRE) 

formula (see Appendix A, Step 4). The results are given in Table 6. We have such diagnostic 

measures only for the KE functions and have calculated the PRE values for both KE functions 

with optimal bandwidths and with large bandwidths. 
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The PRE values for the KE with optimal bandwidths indicate a good match between the 

equated function computed at the discrete values of X and the targeted distribution of Y (see 

Table 6). There is up to 2.9% disagreement in the 10th moment. The PRE values for the KE with 

large bandwidths show that the linear equating function at the discrete values of X and the Y 

matches fewer moments than the KE with optimal bandwidths. With the third moments, the 

disagreement is already about 1%.  

Standard Errors of Equating 

The SEEs for the KE equipercentile (with optimal bandwidths) range from 1.49 (at Score 

0) to 0.10 (for Scores 40 and 41) following the typical shape of the KE SEE. As expected, the 

SEEs for the KE linear are U-shaped (i.e., they are relatively large at the ends of the score range 

and small in the middle), and they are smaller for the linear equating than for the KE 

equipercentile equating; the SEEs range from 0.50 (at Score 0) to 0.09 (from Score 40 to 42).  

Table 6 

The PRE Values for the KE Equipercentile (With Optimal Bandwidths) and KE Linear (With 

Large Bandwidths) for Equating X to Y in the Combined Group (EG Design) 

pth moment PRE (KE equip.) PRE (KE linear) 

  1 -0.0097 0.0002 

  2 –0.0560 –0.0013 

  3 –0.1566 –1.0403 

  4 –0.3217 –3.2003 

  5 –0.5577 –6.3477 

  6 –0.8695 –10.2664 

  7 –1.2612 –14.7432 

  8 –1.7376 –19.5860 

  9 –2.2998 –24.6351 

10 –2.9542 –29.7610 

The SEEs available for the classical linear equating method in the equivalent groups 

design are about the same size over the score range as those for the KE linear (with large 

bandwidths); the SEEs for the classical equipercentile equating method are not available. 
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Because we are ignoring the correlation between X and Y by treating the data from the combined 

group as an EG design because of software limitations, all SEEs are inflated. 

The Anchor Equatings: Description 

After investigating the fit of the smoothed distributions based on preserving five 

moments for each of the marginal distributions and one through four cross-moments of the 

observed bivariate distribution, we chose the loglinear model that preserved five moments for 

each of the two marginal distributions, of X and of A, and four cross-moments of the bivariate 

distribution of (X, A). Similarly, we chose the loglinear model that preserved five moments for 

each of the two marginal distributions, of Y and of A, and four cross-moments of the bivariate 

distribution of (Y, A). 

The optimal bandwidths, or continuization values, for the KE poststratification (KE PSE) 

are h(X) = 0.5574 and h(Y) = 0.6270. For the KE PSE linear (i.e., the KE poststratification with 

large bandwidths), the bandwidths were: h(X) = 56.90 and h(Y) = 62.90. 

The KE chained equating was computed using the stand-alone KE software (ETS, 

2004b). In the chained equating, the equipercentile equating function from (2) is a mathematical 

composition of two linking functions, from X to A on P and from A to Y on Q. Therefore, four 

distributions need to be continuized. The optimal continuization values are h(X) = 0.55971, h(AP) 

= 0.57845 and h(Y) = 0.62010, h(AQ) = 0.55818. For the KE CE linear (i.e., the KE chained with 

large bandwidths), the four bandwidths were all set to 120. 

Diagnosis of the KE Functions 

The PRE values for the KE PSE equipercentile (with optimal bandwidths) and KE PSE 

linear (with large bandwidths) are given in Table 7. The PRE values indicate a good match 

between the KE PSE equipercentile equating function computed at the discrete values of X and 

the targeted distribution of Y via the external anchor, A. The PRE values for the KE PSE linear 

are larger than those for the KE PSE equiperecentile, indicating a less optimal match between the 

two discrete distributions.  

The PRE values are not available for the KE chained equating. See von Davier et al. 

(2004) for a discussion about the chained equating. 
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Standard Error of Equating 

The SEEs for the KE PSE with optimal bandwidths range from 1.82 (at Score 0) to 0.10 

(at Score 39) following a typical shape of the KE SEE. The SEEs for the KE PSE linear (i.e., KE 

PSE with large bandwidths) are again U-shaped and smaller than those for the nonlinear 

equating; the SEEs range from 0.53 (at Score 0) to 0.08 (from Score 35 to 39).  

The SEEs available for the other linear equating methods (the Tucker and Levine 

observed-scores methods) are of similar size over the score range as those for the KE linear; the 

SEEs for frequency estimation are not available. The reported SEEs for the chain equipercentile 

have large values at the lower score range (5.88 at Score 4, 5.64 at Score 0) and 0 value at 

highest scores (Score 44). 

Given software limitations, the SEEs are presently not available for both chained methods. 

Table 7 

The PRE Values for the KE PSE Equipercentile (With Optimal Bandwidths) and KE PSE 

Linear (With Large Bandwidths) for Equating X to Y in the NEAT Design 

pth moment PRE (KE equip.) PRE (KE linear) 
  1 –0.0131 0.0001 
  2 –0.0619 –0.0009 
  3 –0.1632 –0.9146 
  4 –0.3277 –2.8481 
  5 –0.5629 –5.7027 
  6 –0.8748 –9.3034 
  7 –1.2689 –13.4687 
  8 –1.7503 –18.0300 
  9 –2.3236 –22.8419 
10 –2.9932 –27.7822 

Equating Results 

As mentioned before, this research focuses on two types of comparisons for the KE: the 

comparison of the results of all of the anchor equatings, both traditional and KE versions, with 

the results of the equating criterion (i.e., the equipercentile equating in the EG design) and the 
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comparison of the results of the traditional equating methods with the KE versions in both the 

EG and the NEAT designs.  

Tables 8 and 9 and Figures 1 and 2 address the first type of comparisons mentioned 

above: the comparison of the anchor equatings with the EG equipercentile criterion. Tables 10 

and 11 address the second type of comparison: how well KE approximates the methods it is 

supposed to approximate (with both sets of methods in the EG and NEAT designs). 

Table 8 

Equated Scores Corresponding to Selected Raw Scores by Each Equating Method 

Raw score on Form X 25 30 35 40 

Percentile rank (examinees in P) 6th 16th 38th 76th 
Corresponding score on Form Y, as determined by  

Chained linear 14.21 20.23 26.24 32.25 
Kernel, chained, large bandwidth 14.52 20.42 26.31 32.22 
Tucker 15.01 20.82 26.63 32.44 
Kernel, poststratfication, large bandwidth 14.78 20.70 26.62 32.54 
Levine observed-score 14.00 20.07 26.14 32.22 
Chained equipercentile 15.92 19.78 24.92 32.60 
Kernel, chained, optimal bandwidth 15.90 19.78 24.92 32.61 
Frequency estimation equipercentile 16.47 20.24 25.34 32.86 
Kernel, poststratfication, optimal bandwidth 16.44 20.25 25.35 32.86 
Criterion equating 16.09 19.81 24.98 32.93 

Table 8 presents a comparison of the equated scores produced by each of the anchor 

equating methods investigated and by the equating criterion for each of four selected raw scores 

on Form X. The rows of the table have been ordered so that each version of KE appears 

immediately below the (nonkernel) equating method that its results were expected to 

approximate closely. As expected from the theory and from the previous discussion, the kernel 

equating results were very close to those of the corresponding nonkernel equating methods—

close enough that the difference would not be perceptible on a graph. 

Table 9 compares the accuracy of the anchor equating methods investigated—the 

difference between the equated score as determined by each anchor equating and by the criterion 
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equating—at the four selected raw scores on Form X. The curvilinearity of the criterion equating 

limits the accuracy of the linear equating methods. Even with this limitation, the Levine method 

performed well. This is not surprising given that the tests and the anchor were carefully 

constructed and the tests had the same length/reliability (see Petersen et al., 1982). The same 

information given in Table 9 is plotted in Figure 1. 

Table 9 

Difference Between Each Anchor Equating and Criterion Equating for Selected Raw Scores 

Raw score on Form X 25 30 35 40 

Difference from criterion equating 
Chained linear –1.88 0.42 1.26 –0.68 
Kernel, chained, large bandwidth –1.57 0.61 1.33 –0.71 
Tucker –1.08 1.01 1.65 –0.49 
Kernel, poststratfication, large bandwidth –1.31 0.89 1.64 –0.39 
Levine observed-score –2.09 0.26 1.16 –0.71 
Chained equipercentile –0.17 –0.03 –0.06 –0.33 
Kernel, chained, optimal bandwidth –0.19 –0.03 –0.06 –0.32 
Frequency estimation equipercentile 0.38 0.43 0.36 –0.07 
Kernel, poststratfication, optimal bandwidth 0.35 0.44 0.37 –0.07 

Figure 2 reflects a more detailed comparison of the nonlinear anchor equatings with the 

equating criterion. Figure 2 plots the equating differences between the anchor equatings available 

and the equating criterion; Figure 2 also gives information about the differences among the 

equating results at the extreme score ranges, while Table 9 and Figure 1 focus on the score 

ranges where the data are. Again, one can see that, both in the PSE and in the CE case, KE is 

doing better than or similar to the methods it is supposed to approximate. In all instances, the 

differences between the equating in question and the criterion equating are less than a half point, 

which means the differences are smaller than a difference that matters (DTM; Dorans & 

Feigenbaum, 1994); the DTM depends on the reporting scale and style, and in most cases it is 

considered to be a half point on the raw scale. 
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Figure 1. Differences from criterion equating. 
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Figure 2. Equating comparisons with the criterion. 
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In the rest of this section, we discuss comparisons between the KE methods and those 

traditional methods that the KE supposedly approximates. In order to compare the results across 

methods in the NEAT design and with the equating criterion from the EG design, we also 

computed (a) differences between the equating functions at each corresponding score, (b) the 

maximum, minimum, and averages of these differences, and (c) the root mean expected error of 

these differences (reported in Tables 10 and 11). The root mean square difference (RMSE), or 

error, is 

2RMSE = dd sd+ 2 , (4) 

where d  is the mean of the differences of the equated scores (d = ai - bi, where ai and bi denote 

the equated scores of the score xi by two different methods, respectively) and sd is the standard 

deviations of these differences.  

Table 10 shows the comparisons of the KE results with the criterion equating in the 

combined group, as well with the two other nonlinear traditional equatings in the NEAT design.  

Table 11 shows the comparisons of the KE linear results with the linear equating method 

in the combined group and with the Tucker and chained linear methods in the NEAT design. 

Tables 8, 9, and 10, which show the equating results, indicate that the KE with optimal 

bandwidths gives indeed almost identical results to the classical equipercentile equating in the 

EG design. There are tiny differences at the lowest scores. Also, in the score range where most of 

the examinees scored, the linear and nonlinear methods are close. As expected, given the large 

differences in the difficulty of the two test forms, the linear methods provide equated raw scores 

outside the score range (below zero, on a test where zero is the lowest possible score and a 

person can expect to get a score of 11 without even reading the questions—that is, by random 

guessing when the items are all multiple-choice with five options). The KE linear is very close to 

the classical linear equating in the EG (see the first column in Table 11). 

Tables 8, 9, and 10 and Figures 1 and 2 show that the KE PSE with optimal bandwidths 

gives very similar results to frequency estimation. These tables and figures also show that in the 

score range where most of the examinees scored, all the methods seem to agree; the nonlinear 

methods show the same trend at the lower and higher score range. KE PSE linear is, as expected, 

the closest to the Tucker equating; however, it is not identical with it (see the second column in 

Table 11). The Levine and Tucker functions seem to differ the most; chained linear is 
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somewhere between the Tucker and Levine functions. Note that the Braun and Holland linear 

method is not available outside the KE framework (see also Table 2). 

Table 10 

Summary Measures of Differences Between Nonlinear KE and Its Target Approximations 

Summary (EG) 
Crit—KE 

(NEAT) 
FE—KE PSE 

(NEAT) 
CE-KE CE 

Mean diff. 0.035 0.034 0.049 
SD diff. 0.053 0.060 0.065 
Max diff. 0.264 0.333 0.318 
Min diff. –0.016 –0.022 0.016 
RMSE  0.062 0.069 0.106 

Tables 8, 9, and 10 and Figures 2 and 3 show that the KE CE with optimal bandwidths 

gives similar results to chained equipercentile equating. Also, in the score range where most of 

the examinees scored, all the methods seem to agree; the nonlinear methods show the same trend 

at the lower and higher score range. KE CE linear is close to the classical chained linear equating 

(see the third column in Table 11). 

Table 11 

Summary Measures of Differences Between Linear KE and Its Target Approximations 

Summary (EG) 
Lin–KE lin. 

(NEAT) 
Tuck–KE PSE 

(NEAT) 
CE lin.–KE CE  

Mean diff. –0.013 0.284 –0.35649 
SD diff. 0.016 0.277     0.284116 
Max diff. 0.001 0.738   0.11921 
Min diff. –0.052 –0.189         –0.8214 
RMSE  0.020 0.397   0.45586 

The differences reported in Tables 10 and 11 indicate a very good match among the 

methods. Moreover, given the information about the SEES described above (which, for the KE, 

optimally range between 2.0 and 0.8 for most of the cases), the observed differences are all at 

(about) the noise level (i.e., the level of uncertainty reflected by the SEEs). 
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Conclusions 

This study evaluates the kernel method of test equating (Holland & Thayer, 1989; von 

Davier et al., 2004a) in special settings where an equating criterion is available. The evaluation 

consists of two aspects: the KE results are compared with those equating results obtained using 

classical equating methods that the KE functions claim to approximate and the comparisons of 

the equating results with the equating criterion (which was defined to be the equipercentile 

equating function in the combined group). 

This analysis takes place in a NEAT design with external and internal anchors (the results 

for the internal anchor are provided in Appendix C) and in an EG design (the combined group in 

this case). To obtain the data for the NEAT design and for the equating criterion, we constructed 

pseudotests with real data. 

The KE functions agree well with those anchor equating functions that it is supposed to 

approximate (and that were available for comparisons). The results for the internal anchor are 

similar to those for the external anchor. Similarly, the results indicate that the KE (both linear 

and nonlinear) and the equating functions (linear and nonlinear) from the EG design (combined 

group) agree very well over the whole score range.  

Moreover, the comparisons among equating functions versus the equating criterion 

indicate that the KE results are in most cases closer to the criterion than the other equating 

functions. 

In addition, the KE method provides accuracy measures that are not available for other 

equating methods. For instance, the percent relative error has already been implemented in the 

software available for the KE PSE. The other important accuracy measures, such as the standard 

error of equating difference, will be available in the newly developed KE software. 

Based on these results, we recommend that KE be used operationally together with the 

other equating methods that are usually computed. In addition, careful comparisons of the KE 

method with other methods and various testing steps of the software in various operational 

settings should be continued. 

The research on the KE method should extend to the investigation of equating trends. 

This can be done by applying the KE method on data sets that span several years and come from 

assessment programs that have done equating on a regular basis using classical observed-score 

methods and then comparing the KE results with the results from the other methods. 
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Appendix A 

An Outline of Kernel Equating 

This appendix gives a brief outline of the kernel method of observed score test equating 

or KE (see also von Davier, Holland, & Thayer, 2004a, Appendix B). The KE method is 

discussed in detail in von Davier, Holland, and Thayer (2004a) for all of the standard equating 

designs. As mentioned before, the KE method has five basic steps. 

Step I: Presmoothing  

In this step, the data that are collected in an equating design are presmoothed using 

standard statistical procedures designed to estimate the actual score distributions that arise in the 

equating design. Presmoothing, using various techniques, has become a standard tool in various 

approaches to equipercentile equating. 

We advocate using loglinear models for univariate and bivariate score distributions, as 

discussed in Holland and Thayer (2000), because of their extreme flexibility and ability to 

accommodate the many unusual features of score distributions that arise in practice. The results 

of this presmoothing process are twofold. First, the smoothed score distributions that are needed 

for the rest of the equating process are obtained, and second, a matrix that can be used to 

calculate the standard error of equating later on in the process is computed. Every presmoothing 

method has such a matrix, but the loglinear methods have a standard way of finding it in an 

efficient manner. This is discussed in detail in Holland and Thayer (2000). 

Step 2: Estimating Score Distributions for the Target Population 

Once the presmoothing has been done and depending on the equating design, formulas 

are employed that use the smoothed score distribution estimates to produce estimates of the score 

probability distributions on T, which we call r and s, where 

rj = P{X = xj|T}, sk = P{Y = yk|T} (A1) 

and the vectors r and s are given by 

r = (r1, . . . , rJ), and s = (s1, . . . , sK). (A2) 

The score probabilities for X are associated with the X-raw scores, {xj}, and those for Y are 

associated with the Y-raw scores, {yk}. Depending on the equating design the score probabilities, 
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r and s, are computed through the design function, which ranges from the simple identity 

function to the complexities implicit in anchor test methods. 

Step 3:Continuizing the Discrete Score Distributions 

This step is often overlooked in discussions of equipercentile equating methods, but it 

occurs in all of them. We start with discrete score distributions for X and Y on T and turn these 

into continuous score distributions over the whole real line. It is similar to approximating the 

probabilities from the discrete binomial distribution by probabilities from the continuous normal 

distribution. Thus, it is a step that looks like an everyday statistical method, but it is actually 

unusual because the entire discrete distribution is changed into a continuous one that is close to 

the original in a sense that is often left vague. Our approach is to make this step explicit and to 

make the sense of the approximation clear. Other equipercentile equating methods replace the 

discrete score distributions by piecewise linear cdfs based on percentile ranks. The (Gaussian) 

kernel method of continuizing r uses the formula 

FT(x; hX) = 
- - (1- )jX X

j
j X X

x a x a
r

h a
⎛ ⎞
⎜⎜
⎝ ⎠

µ
Φ∑ XT ⎟⎟ , (A3) 

where, µXT = j j
j

x r∑ , 2
XTσ  = 2( - )j jXT

j
x rµ∑ , and aX = 2 2 2/( )XT XT Xhσ σ + . 

Φ(z) denotes the standard N(0, 1) cdf, x ranges over (−∞,+∞), and hX > 0. FT(x; hX) is the 

continuized cdf based on the discrete score distribution determined by r and {xj}. µXT and 2
XTσ , 

given above are the moments of X on T. 

The continuized GT(y, hY) is computed in a similar way using the score probabilities from 

s, and the Y-scores, {yk}. 

An essential feature of Gaussian kernel continuization is the choice of the bandwidths, hX 

and hY. We recommend using a penalty function to select the bandwidths automatically to make 

the density functions, fT(x; hX) and gT(y, hY), derived from FT(x; hX) and GT(y, hY) both smooth 

and able to track the essential features of the smoothed discrete score probabilities. We have 

found the following penalty functions to give good results: 

PENALTY1(h) = 
j

∑ [(rj/dj) – fT(xj; h)]2, (A4) 
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where dj is the width of the interval associated with the score xj (often these widths are all set 

equal to 1). 

PENALTY2(h) = (1- )j j
j

A B∑ , (A5) 

where Aj = 1 if the derivative of fT(x; h) with respect to x, u(x; h), is less than 0 a little to the left 

of xj, and Bj = 0 if u(x; h) > 0 a little to the right of xj. Thus, we get a penalty of 1 for every score 

point where the density fT(x; h) is U-shape around it. What near means is a parameter of 

PENALTY2(h), and we can combine the two penalties with a weight, that is, 

PENALTY1(h) + K*PENALTY2(h). (A6) 

We have found K = 1 to be useful in several applications where there are teeth or gaps in the 

distribution that need to be smoothed out. Standard derivative-free methods can be used to 

minimize these penalty functions in order to choose h. Separate continuizations of the two 

discrete score distributions are carried out, resulting in FT(x; hX) and GT(y; hY). 

Step 4: Computing and Diagnosing the Equating Function 

Once all the above work is done, the KE equipercentile equating function can be 

computed directly as the function composition: 

eXY(x) = GT
-1(FT(x; hX); hY) (A7) 

where GT
-1(p; hY) denotes the inverse of p = GT(y; hY). eXY(x) is designed to exactly match the two 

continuized distributions, but we really want to know how well it does for the discrete 

distributions. What is important about an equating function is how well eXY(X)—as the function 

of the discrete X—matches the discrete target-distribution, Y. In order to assess this match, we 

compare up to the 10th moment of the two distributions, eXY(X) and Y, via the percent relative 

error in the pth moment (PRE) formula: Let 

µp(Y) = Σk (yk)psk, and µp(eY(X)) = Σj (eY(xj))prj , then 

PRE(p) = 100x[µp(eXY(X)) − µp(Y)]/ µp(Y). (A8) 
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Step 5: Computing the Standard Error of Equating and Related Accuracy Measures 

The standard error of equating (SEE) for eXY(x) depends on three factors that correspond 

to the above four steps—presmoothing, computing r and s from the smoothed data, and the 

combination of continuization and the mathematical form of the equating function from Step 4. 

Being based on analytical formulas, KE allows us to use the Taylor expansion or delta method to 

compute the SEE for a variety of equating designs. The main difference between the various 

equating designs, as far as computing the SEE for KE is concerned, is Step 2. Each design 

requires a different formula (a design function) for mapping the presmoothed data to the score 

probabilities, r and s, but the contributions of the other steps to the SEE are the same for all 

designs. This observation allows a general computing formula for the SEE to be devised for KE 

that reflects presmoothing, the equating design, and the use of Gaussian kernel smoothing for 

continuizing the discrete cdfs. The standard error of equating difference (SEED) discussed in von 

Davier et al. (2004) is a new tool, unique to KE, for evaluating the degree to which KE and linear 

equating agree. Moreover, the SEED can be used to assess if the difference between two 

equating functions that share the same parameters are statistically significant. 
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Appendix B 

Equated Scores Corresponding to Selected Raw Scores 

Raw score on Form X 25 30 35 40 

Percentile rank (examinees in P) 6th 16th 38th 76th 
Corresponding score on Form Y, as determined by 

Criterion equating  
(equating X to Y in the combined group) 16.09 19.81 24.98 32.93 

Equating X to Y in P 16.33 19.98 24.96 32.92 
Equating X to Y in Q 15.54 19.46 25.00 33.05 

Note. The traditional equipercentile equating method was used for equating X to Y in the 

combined group (the criterion equating) and in each of the separate groups, P and Q. 

The differences reported here are small for those score points where we have data and 

seem to be at the noise level (given the SEE). The difference between the equating results at the 

lower score points seems to be significant. 

As mentioned before, this check of the invariance of the equating criterion is not for the 

purpose of validating the choice of the criterion. 
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Appendix C 

Brief Description of the Results for the NEAT Design With an Internal Anchor 

As in the case of the external anchor, the research on the NEAT design with an internal 

anchor focuses on two types of comparisons for the KE: the comparison of the results of all of 

the anchor equatings, both traditional and KE versions, with the results of the equating criterion 

(i.e., the equipercentile equating in the EG design) and the comparison of the results of the 

traditional equating methods with the KE versions in both the EG and the NEAT designs.  

This appendix presents three tables that contain the comparison results among the anchor 

equatings and kernel equating for the internal anchor case. Tables C1 and C2 address the first 

type of comparisons mentioned above: Compare the anchor equatings with the EG equipercentile 

criterion. Table C3 addresses the second type of comparison, that is, how well KE approximates 

the methods it is supposed to approximate (both sets of methods in the EG and NEAT designs). 

Table C1 shows the comparisons of the KE results with the criterion equating in the combined 

group, as well comparisons of the criterion equating with the two other nonlinear traditional 

equatings in the NEAT design. Table C2 shows the comparisons of the traditional nonlinear 

equating methods with the KE versions in both the EG and the NEAT designs. Table C3 shows 

the comparisons of the KE linear results with the linear equating method in the combined group 

and with the Tucker and chained linear methods in the NEAT design.  

Test Construction and Procedure 

The anchor has 24 items and is the same as described in the body of the report. The tests 

to be equated are X + A and Y + A, both in the NEAT design with the internal anchor A and in 

the combined group. This decision was made to allow the scale comparability across the two 

designs. The unique tests, X and Y, have 44 items each and are the same as in the body of the 

report. The summary statistics for the internal case, both in each of the populations and in the 

combined group, are given in Appendix D.  

The criterion equating was chosen to be the equipercentile equating of smoothed 

distributions of each of the 68-item tests (Form X + A and Form Y + A) as in (2) in the combined 

group (EG design), that is, on a target population that is a weighted average of the two groups 

from P and Q.  
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The KE Results in the Combined Group for the Internal Anchor Case 

The continuization values for the KE are h(X + A) = 0.6040 and h(Y + A) = 0.6484. For 

the KE linear, the large bandwidths were: h(X + A) = 100.70 and h(Y + A) = 89.00. 

The KE Results in the NEAT Design for the Internal Anchor Case 

The continuization values for the KE PSE are h(X + A)= 0.6007 and h(Y + A) = 0.6477. For 

the KE PSE linear, the large bandwidths were  h(X + A) = 93.40 and h(Y + A) = 95.50.  

The KE chained equating was computing using the stand-alone KE software (ETS, 

2004b). The optimal continuization values are h(X) = 0.611, h(AP) = 0.58 and h(Y) = 0.64, h(AQ) 

= 0.56. For the KE chained linear, the large bandwidths were all set to 120.  

The SEEs for the KE PSE with optimal bandwidths range from 2.52 (at Score 1) to 0.11 

(from Score 54 to 61) following a typical shape of the KE SEE.  

Table C1 

Summary Measures of Differences Between Nonlinear KE, Frequency Estimation, Chained 

Equipercentile, and Criterion Equating, Internal Anchor Case 

Summary (NEAT)  
KE PSE—Crit. 

(NEAT)  
FE—Crit. 

(NEAT)  
CE—Crit. 

(NEAT)  
KE CE—Crit. 

Mean diff. 0.053 0.083 –0.053 –0.059 
SD diff. 0.835 0.805 0.742 0.705 
Max diff. 0.838 0.869 0.836 0.747 
Min diff. –2.647 –2.477 –2.447 –2.422 
RMSD diff. 0.837 0.809 0.744 0.707 

Tables C1 to C3 indicate that the KE with optimal bandwidths gives indeed almost 

identical results to equipercentile equating. There are small differences at the lowest scores. 

Also, in the score range where most of the examinees scored, the linear and nonlinear methods 

are close. KE linear is, as expected, very close to the linear equating for the whole score range. 

The diagnostic values indicate a good match between the KE optimal and the target distribution 

of Y + A and are omitted. As expected, the SEEs for the KE linear are U-shaped and smaller for 

the linear equating; the SEEs range from 0.64 (at Score 0) to 0.13 (from Score 54 to 60). 
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Table C2 

Summary Measures of Differences Between Nonlinear KE and Its Target  

Approximations, Internal Anchor Case 

Summary (EG) 
EP—KE 

(NEAT) 
FE—KE PSE 

(NEAT) 
CE-KE CE  

Mean diff. 0.021 0.031 0.006 
SD diff. 0.038 0.048 0.229 
Max diff. 0.224 0.174 0.030 
Min diff. –0.030 –0.010 –1.660 
RMSD diff. 0.043 0.057 0.229 

As seen in Tables C1 to C3, the KE PSE with optimal bandwidths gives very similar 

results to frequency estimation. Also, in the score range where most of the examinees scored, all 

the methods seem to agree; the nonlinear methods show the same trend at the lower and higher 

score range. KE PSE linear is, as expected, the closest to the Tucker equating; however it is not 

identical to it. The Levine and Tucker functions seem to differ the most; chained linear is 

somewhere between the Tucker and Levine functions. 

As seen in the tables, the results from the internal anchor are very similar to those for the 

external anchor presented in the report. The differences reported in Tables C1 to C3 reflect a 

very good match among the methods. Moreover, given the information about the standard error 

of equatings (SEEs for the KE optimal range between 2.0 and 0.8 for most of the cases) 

described above, the observed differences are all at (about) the noise level. 

Table C3 

Summary Measures of Differences Between Linear KE and Its Target Approximations, 

Internal Anchor Case 

Summary (EG) 
Lin—KE lin. 

(NEAT) 
T—KE PSE 

(NEAT) 
CE—KE CE* 

Mean diff. –0.004 0.165 –0.39 
SD diff. 0.005 0.185 0.27 
Max diff. 0.000 0.471 0.28 
Min diff. –0.017 –0.156 –0.83 
RMSD diff. 0.006 0.248 0.471 
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Appendix D 

Summary Statistics  

This appendix contains the summary statistics for the internal anchor case. It also 

contains the information about the correlation of the test and the anchor in both situations, 

internal and external cases. 

Table D1 

Summary Statistics for the Observed Frequencies of X (P), Y (Q), and A (P, Q), Internal Anchor 

Sample P (N = 6,168) Q (N = 4,237) 

Form X + A1 Y + A1 A1 A1 Y + A1 X + A1 

Mean 51.16 42.62 16.03 17.00 44.98 53.38 

SD 9.34 10.31 4.19 3.85 9.55 8.04 

Skewness –0.71 –0.19 –0.37 –0.53 –0.37 –0.86 

Kurtosis 3.16 2.44 2.59 2.82 2.64 3.66 

Obs. min 12 12 2 2 14 20 

Obs. max 68 67 24 24 67 68 

Alpha reliability 0.8799 0.8775 0.7510 0.7254 0.8651 0.8543 

Note. Total test length = 68. Anchor test length = 24.  

Table D2 

Summary Statistics for the Observed Frequencies of X (P + Q), Y (P + Q), and A (P + Q), 

Internal Anchor 

Sample P + Q (N = 10,405) 

Form X + A1 A1 Y + A1 

Mean 52.06 16.43 43.58 

SD 8.90 4.09 10.07 

Skewness –0.80 –0.45 –0.27 

Kurtosis 3.39 2.68 2.50 

Obs. min 12 2 12 

Obs. max 68 24 67 

Alpha reliability 0.8278 0.7446 0.8743 

Note. Total test length = 68. Anchor test length = 24.  
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Table D3 

Correlations Between the Anchor and the Tests 

 P + Q P Q 

(X, A1) 0.768 0.782 0.735 

(X+A1, A1) 0.922 0.925 0.916 

(Y, A1) 0.779 0.788 0.759 

(Y+A1, A1) 0.913 0.917 0.903 
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