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Abstract

Latent-class item response models with small numbers of latent classes are quite competitive in

terms of model fit to corresponding item-response models, at least for one- and two-parameter

logistic (1PL and 2PL) models. Provided that care is taken in terms of computational procedures

and in terms of use of only limited numbers of latent classes, computations are relatively simple in

the case of latent classes.
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Latent-class item response models have been available for some time (Heinen, 1996); however,

problems of computation and parameter stability have been major obstacles to their use. These

problems appear not to be serious if latent-class item response models are employed with tests of

substantial length, if the number of latent classes is small, and if a stabilized Newton-Raphson

algorithm is employed for maximum-likelihood estimation (Haberman, 1988). Under these

conditions, results are quite competitive to those obtained with item response models in which

a normal ability distribution is assumed. These claims are explored in this paper in two cases.

The one-parameter logistic (1PL) model is studied in Section 1, and the two-parameter logistic

(2PL) model is considered in Section 2. Results are illustrated by use of data from the Praxis
TM

series of examinations. The criterion of model quality employed is that of estimated expected log

penalty per item (Gilula & Haberman, 1994, 1995; Haberman, 2004). Implications of results for

psychometric practice are considered in Section 3.

Throughout this report, n ≥ 1 examinees each take a test with q ≥ 3 items, a random variable

Xij is 1 if item j is answered correctly by examinee i, and Xij is 0 if item j is not answered

correctly. Each vector Xi of responses Xij , 1 ≤ j ≤ q, is independent and identically distributed.

The set Γ of possible values of Xi consists of all q-dimensional vectors such that each coordinate

is 0 or 1. The distribution of X is characterized by the array p of probabilities

p(x) = P (Xi = x)

for x in Γ, so that p is in the simplex T of arrays r with nonnegative elements r(x), x in Γ, with

sum 1. The log likelihood function at r in T is then

`(r) =
n∑

i=1

log r(Xi),

and

Ĥ(r) = −(nq)−1`(r)

estimates the expected log penalty per item

H(r) = −q−1E(log r(X1))

from probability prediction of X1 by use of r. For a nonempty subset S of T , the maximum log

likelihood `(S) of `(r) for r in S then leads to the minimum estimated expected log penalty per
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item Ĥ(S) = −(nq)−1`(S) of Ĥ(r) for r in S. Here Ĥ(S) is an estimate of the minimum expected

log penalty per item H(S) of H(r) for r in S.

In all models under study, a random ability variable θi is associated with each examinee i, and

the Xij , 1 ≤ j ≤ q, are conditionally independent given θi. The pairs (θi,Xi) are independent and

identically distributed, and the distribution function of θi is D. For each item j, the conditional

probability Pj(θ) that Xij = 1 given θi = θ is positive and less than 1, so that Qj(θ) = 1− Pj(θ)

is also positive and less than 1. The function Pj is the item characteristic curve, and

λj = log(Pj/Qj)

is the item logit function (Holland, 1990), so that

Pj =
exp(λj)

1 + exp(λj)
(1)

and

Qj =
1

1 + exp(λj)
. (2)

Let λ have coordinates λj for 1 ≤ j ≤ q, and let

u′v =
q∑

j=1

ujvj

for q-dimensional vectors u and v with respective coordinates uj and vj for 1 ≤ j ≤ q. For

V =
q∏

j=1

Qj =
q∏

j=1

1
1 + exp(λj)

, (3)

a variation on the Dutch identity yields

p(x) =
∫

V exp(X′
iλ)dD (4)

(Holland, 1990).

For the data under study, q = 45 and n = 8, 686. It is helpful in the analysis that both the

number of items q and the number of examinees n are both relatively large. The relatively large

sample size contributes to stability of estimates. The relatively large number of items appears

to permit more latent categories to be used (Haberman, 2005). In the latent-class item response

models considered in this report, a fixed finite set of possible values τk, 1 ≤ k ≤ K, of θi is given

for some integer K ≥ 2. The probability that θi = τk is

exp(νk)∑K
k′=1 exp(νk′)

2



for 1 ≤ k ≤ K, where the constraint
∑K

k=1 νk = 0 is used to identify parameters. Thus

p(x) =
∑K

k=1 V (τk) exp(X′
iλ(τk) + νk)∑K

k=1 exp(νk)
(5)

for all x in Γ.

The stabilized Newton-Raphson algorithm (Haberman, 1988) can be employed with little

difficulty in cases in which, conditional on θ, λj is a linear function of a vector of unknown

parameters independent of the νk. The algorithm employed here is slightly modified from the

previously reported version due to the presence of inequality restraints and due to the ease with

which the Hessian matrix can be computed relative to the ease with which the information

matrix can be computed (Haberman, 1988). The changes render the algorithm rather similar to

a variant on the Newton-Raphson algorithm used earlier for log-linear models (Haberman, 1974,

ch. 3). Use of the stabilized Newton-Raphson algorithm provides estimated asymptotic standard

deviations of parameter estimates as a direct result of the computations, so that it permits a quite

straightforward analysis of data relative to that provided by the EM algorithm. In addition, very

large estimated asymptotic standard deviations provide evidence of estimation problems.

1. The 1PL Model

In the case of the 1PL model,

λj = aθ − γj (6)

for unknown parameters a > 0 and γj . The set S1K for this model consists of members p in T

such that (5) holds for all x in Γ, (6) holds for some a > 0 and γj for 1 ≤ j ≤ q, and (3) holds. The

common item discrimination is a and the item difficulty is βj = γj/a. For this case, evenly spaced

values of τk were considered for each K tried. To simplify comparisons, the τk were arranged so

that θi would have mean 0 and variance 1 if θi were uniformly distributed on the τk. Values of K

from 2 to 5 were examined. Results are summarized in Table 1 for the Praxis example. It should

be noted that use of a less restricted conditional Rasch model in which no assumptions are made

concerning D yields an estimated expected log penalty per item of 0.59611 (Haberman, 2004).

This estimate for the case of D unrestricted implies that no latent-class 1PL model can yield an

estimated expected penalty less than 0.59611, so that it is clearly not possible to improve much

upon the latent-class 1PL model with five classes.
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Table 1.
Estimated Expected Log Penalties for Observations for IRT Models

Number of Estimated expected
Model type classes log penalty per item
Normal 1PL 0.59639
Latent-class 1PL 2 0.60075
Latent-class 1PL 3 0.59716
Latent-class 1PL 4 0.59641
Latent-class 1PL 5 0.59621
Normal 2PL 0.59157
Latent-class 2PL 2 0.59708
Latent-class 2PL 3 0.59269
Latent-class 2PL 4 0.59164
Latent-class 2PL 5 0.59124

Table 2.
Maximum Differences Between Empirical and Estimated Distribution

Functions of the Score Sum for IRT Models

Number of Maximum
Model type classes difference
Normal 1PL 0.0302
Latent-class 1PL 2 0.0635
Latent-class 1PL 3 0.0313
Latent-class 1PL 4 0.0154
Latent-class 1PL 5 0.0071
Normal 2PL 0.0410
Latent-class 2PL 2 0.0575
Latent-class 2PL 3 0.0371
Latent-class 2PL 4 0.0195
Latent-class 2PL 5 0.0105

Note that four or five latent classes yields a model quite comparable to the normal 1PL model

in terms of estimated expected log penalty per observation. More than five latent classes leads to

poor identification of parameters and only limited model improvement, a result not unexpected

given known problems with latent-class models (Haberman, 2005). Bias in estimation of expected

log penalty per observation is a rather small problem given the large sample size, so corrections

for bias are not considered in this report. Corrections are available for smaller sample sizes (Gilula

& Haberman, 2001).
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It is of some interest to look at the estimated and observed marginal distributions of the

score sum Xi+ =
∑q

j=1 Xij to consider how well the various models approximate this distribution.

Results are summarized in Table 2. The measure employed is the maximum difference D(S)

between the sample and estimated distribution functions of Xi+ for model S. By this criterion,

the models with four or five latent classes are somewhat more effective than is the customary

normal 1PL model. Nonetheless none of the discrepancies of distribution functions is especially

large. To understand observed differences in cumulative distribution functions, observe that two

normal distributions, each with a standard deviation of 1, have distribution functions that differ

by as much as 0.08 if the means differ by 0.2, while the distribution functions differ by as much as

0.03 if the means differ by 0.04.

2. The 2PL Model

In the case of the 2PL model,

λj = ajθ − γj (7)

for unknown parameters aj > 0 and γj . The set S2K for this model consists of members p in T

such that (5) holds for all x in Γ, (7) holds for some aj > 0 and γj for 1 ≤ j ≤ q, and (3) holds.

The item discrimination is aj and the item difficulty is βj = γj/aj . The same choice of τk was

made as it was for the 1PL case for K from 2 to 5. Again the Praxis data were used to obtain the

results summarized in Table 1. The situation is quite similar to that observed for the 1PL case.

Four to five latent classes yield results quite comparable to those for the normal 2PL model. Once

again, more latent classes do not help appreciably. Note that even a 2PL model with only three

latent classes is more successful than any 1PL model in terms of estimated expected log penalty

per item. Note that the comparison of empirical and estimated distribution functions of Xi+ in

Table 2 favors latent-class models with four or five latent classes over the normal 2PL model.

3. Conclusions

The results in this report can be interpreted in two directions. On the one hand, latent-class

1PL and 2PL models do not appear to offer much improvement over normal 1PL and 2PL models,

at least for the example under study. On the other hand, it is possible to obtain results quite

competitive with a normal 1PL or 2PL model with remarkably few latent classes. This result may

reasonably be regarded as disturbing. A standard normal distribution is not well-approximated by
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a discrete distribution with four or five values. Nonetheless, the observations are described about

equally well by use of a normal ability distribution or by use of an ability distribution confined to

four or five equally spaced points. It follows that little empirical evidence exists concerning the

nature of the ability distribution even if one believes that the 2PL model or 1PL model really

holds. This lack of evidence concerning the nature of the ability distribution in turn implies that

estimation of an ability parameter for an individual examinee is rather problematic. The posterior

distribution of the ability variable θi given the observed response vector Xi is quite different if

the ability distribution is normal than if the ability distribution is confined to five equally spaced

points. This problem is not an immediate issue within the Praxis program, for scoring does not

employ item response theory, but no obvious reason exists for the issues addressed here not to

arise in other examinations as well.
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