
Listening.  Learning.  Leading.®

Jackknifing Techniques for 
Evaluation of Equating Accuracy

Shelby J. Haberman

Yi-Hsuan Lee

 Jiahe Qian 

December 2009

ETS RR-09-39

Research Report



December 2009 

Jackknifing Techniques for Evaluation of Equating Accuracy 

Shelby J. Haberman, Yi-Hsuan Lee, and Jiahe Qian 

ETS, Princeton, New Jersey 

 



 

Copyright © 2009 by Educational Testing Service. All rights reserved. 

ETS, the ETS logo, and LISTENING. LEARNING. 
LEADING. are registered trademarks of Educational Testing 

Service (ETS).

ADVANCED PLACEMENT PROGRAM and AP are 
registered trademarks of the College Board. 

As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance 

quality and equity in education and assessment for the benefit of ETS’s constituents and the field. 

To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 



Abstract

Grouped jackknifing may be used to evaluate the stability of equating procedures with respect to

sampling error and with respect to changes in anchor selection. Properties of grouped jackknifing

are reviewed for simple-random and stratified sampling, and its use is described for comparisons

of anchor sets. Application is made to examples of item response theory (IRT) true-score equating

in which two-parameter logistic and general partial credit models are employed.
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Equating of test forms involves sampling of examinees, so that random equating errors are

introduced through estimation of equating parameters. When anchor items are employed in

equating and when classical equating assumptions apply, the choice of anchor items should have

minimal effect on the equating process. In the real world, it is not necessarily true that choice

of anchor items has minimal effect. To evaluate variability in equating due to sampling error

and variability of equating due to selection of anchor items, jackknifing may be employed. This

report illustrates use of jackknifing in the case of IRT true score equating, but jackknifing may be

employed with other approaches as well.

Jackknifing is a commonly employed statistical technique for estimation of variances of sample

statistics (Quenouille, 1956; Tukey, 1958; Miller, 1964). It may be employed to obtain approximate

confidence intervals for population measures of interest. Applications of jackknifing commonly

involve cases in which it is difficult to apply the δ-method (Rao, 1973, p. 388) to estimate

variances. Given the large number of steps involved in IRT true-score equating, the δ-method is

challenging to apply; however, the grouped jackknifing approach (Miller, 1964) is readily used

to study sampling errors associated with conversions of test scores. Grouped jackknifing is an

example of a resampling method because it employs estimates based on selected subsamples of

the observed data. It requires much less computational labor than other resampling methods such

as bootstrapping methods (Efron, 1979, 1982), traditional jackknifing (Quenouille, 1956; Tukey,

1958), or delete-d versions of the jackknife in which d > 1 (Shao & Wu, 1989).

Jackknifing may also be employed to examine the stability of IRT true-score equating with

respect to the choice of anchor items. This stability can be examined in two distinct fashions.

In one case, the effect of a specified change in the anchor set can be studied by examination of

the estimated means and standard deviations of the differences between the resulting conversions.

In another case, anchor items can be regarded as a sample from a collection of possible anchor

items. One then examines both the variability of conversions due to sampling of examinees

and the variability of conversions due to selection of anchor items. This latter possibility has

been considered previously (Cohen, Johnson, & Angeles, 2001); however, this application of

jackknifing requires additional study to justify its use. In addition, within the context of equating,

consideration must also be given to the nature of sampling in the case of items. In typical cases,

testing programs do not randomly select items, so that inferences may be problematic beyond the

anchor items present in the forms under study. This issue will be discussed further in section 4.
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Section 1 provides necessary background concerning the grouped jackknife. Section 2 provides

background concerning IRT true-score equating. In section 3, jackknifing is applied to assess

variability of conversions in two cases in which two forms of a test are linked by IRT true-score

equating. Section 4 provides some general observations concerning application of jackknifing to

the study of equating.

1 The Traditional and the Grouped Jackknife

The grouped jackknife is an old example of a resampling method (Efron, 1979, 1982). It is

primarily of interest when computational cost is a major issue. To explain grouped jackknifing,

it is helpful to begin with elementary methods to estimate standard errors and obtain confidence

intervals for the population mean and population standard deviation. These examples lead

to some simple illustrations of traditional delete-1 jackknifing procedures in which a series of

estimates are computed by removing one observation from the sample. The analysis of traditional

delete-1 jackknifing then leads to grouped jackknifing in which the observations are divided into

groups and estimates are computed by leaving out one group from the sample.

In discussion of delete-1 jackknifing, the sample mean of independent and identically

distributed random variables has a fundamental role. One basic justification of delete-1 jackknifing

is the fact that it results in customary inferences concerning the population mean when the sample

mean is employed. General justification of delete-1 jackknifing involves a demonstration that the

parameter estimates under study are well approximated by sample means. Such approximations

are typically available when parameter estimates are differentiable functions of sample means.

To begin, consider the sample mean of the real observations Xi, 1 ≤ i ≤ n, n > 1, obtained by

random sampling with replacement. For example, the Xi might be raw scores of examinees for a

particular test administration, where the examinees are regarded as a sample from a hypothetical

infinite population of potential examinees. Let the Xi be random variables with common mean

µ and common variance τ2 > 0. The assumption of random sampling with replacement implies

that the Xi are independent and identically distributed. Consider the elementary problem of

estimation of the expectation µ by the sample mean

X̄ = n−1
n∑

i=1

Xi.

As is well known, X̄ has expectation µ and variance σ2(X̄) = τ2/n. Thus X̄ is an unbiased
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estimate of µ. In addition, the variance σ2(X̄) has a simple unbiased estimate, for the sample

variance

s2 = (n− 1)−1
n∑

i=1

(Xi − X̄)2

has expectation τ2, and σ̂2(X̄) = s2/n, the estimated variance of the sample mean, is an

unbiased estimate of σ2(X̄) = τ2/n, the variance of the sample mean. In addition, the ratio

σ̂2(X̄)/σ2(X̄) converges to 1 with probability 1 as the sample size n becomes large (Shao, 2003,

p. 133). The estimated standard error σ̂(X̄) of the sample mean is the square root of the

estimated variance σ̂2(X̄) of the sample mean. When the sample size n is large, (X̄ − µ)/σ̂(X̄)

has an approximate standard normal distribution, so that approximate confidence intervals for

µ are readily constructed (Scheffé, 1959, p. 355). For any real α such that 0 < α < 1 and any

positive integer ν, let tν,α be defined so that α is the probability that a random variable with a t

distribution on ν degrees of freedom has absolute value at least as large as tν,α. In addition, let zα

be defined so that α is the probability that a random variable with a standard normal distribution

has absolute value at least as large as tν,α. Then the customary approximate two-sided confidence

interval for µ of level 1− α has lower bound

µLα = X̄ − tn−1,ασ̂(X̄)

and upper bound

µUα = X̄ + tn−1,ασ̂(X̄).

As the sample size n increases, the probability approaches 1 − α that µLα ≤ µ ≤ µUα. In

the special case in which the Xi have a common normal distribution, (X̄ − µ)/σ̂(X̄) has a t

distribution on n− 1 degrees of freedom, and (n− 1)s2/τ2 has a chi-squared distribution on n− 1

degrees of freedom, so that 1− α is the exact probability that µLα ≤ µ ≤ µUα.

In the discussion of grouped jackknifing and traditional delete-1 jackknifing, comparison of

results is made with those obtained by traditional confidence intervals for the population mean.

One aspect of this comparison involves expected widths of confidence intervals. These expected

widths are not difficult to study in the case of the approximate confidence intervals for the

population mean. For a large sample size n, the multiplier tn−1,α is close to zα. Even for n = 120

and α = 0.05, tn−1,α = 1.9801 and zα = 1.9600. In general, tν,α is quite well approximated by

zα + (zα + z3
α)/(4ν) as ν increases (Abramowitz & Stegun, 1965, p. 949). For example, for ν = 119
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and α = 0.05,

zα + (zα + z3
α)/(4ν) = 1.9799

is quite close to tn−1,α = 1.9801. In the case of the Xi normally distributed, the expected

width E(µUα − µLα) of the confidence interval of level 1 − α is readily found. Because

E(s) = Γ(n/2)[2/(n− 1)]1/2τ/Γ((n− 1)/2)) (Cramér, 1946, p. 383), where Γ denotes the gamma

function,

E(µUα − µLα) = 2tn−1,αΓ(n/2)[2/n(n− 1)]1/2τ/Γ((n− 1)/2)).

This width is quite close to zατ/n1/2 even for n of moderate size. For example, if n = 120 and

α = 0.05, the width of 3.9519τ/n1/2 is quite close to 2zατ/n1/2 = 3.9199τ/n1/2.

These familiar results for the sample mean do not apply even for such simple summary

statistics as the sample standard deviation s, the square root of s2. The sample standard

deviation is commonly used to estimate the common standard deviation τ of the observations Xi.

Nonetheless, the expectation E(s) of s is not τ , and the variance σ2(s) of s does not have an

unbiased estimate. The δ method can be used to study statistical properties of s when the variance

υ2 of Yi = [(Xi − µ)2 − τ2]/(2τ) is finite and positive (Cramér, 1946, p. 353). In this case, as the

sample size n increases, s is well approximated by τ + Ȳ , where Ȳ is the sample mean of the Yi,

1 ≤ i ≤ n. Let R = s− τ − Ȳ denote the approximation error. As the sample size n increases, the

mean squared error E(R2) is sufficiently small that E(R2)/σ2(Ȳ ) approaches 0. The mean E(s)

approaches τ sufficiently rapidly that [E(s)− τ ]/σ2(Ȳ ) converges to −υ2/(2τ). The variance σ2(s)

is well approximated by σ2(Ȳ ) in the sense that [σ2(Ȳ )− σ2(s)]/σ2(s) approaches 0 as the sample

size increases. The Yi are not observed, but one may approximate Yi by Ŷi = [(Xi− X̄)2− s2]/(2s)

and obtain an estimate σ̂2(s) for σ2(s) equal to the estimated variance of the sample mean for

observations Ŷi, 1 ≤ i ≤ n. An approximate confidence interval for τ is based on the observation

that (s − τ)/σ̂(s) has an approximate standard normal distribution if the sample size n is large.

In addition, the ratio σ̂2(s)/σ2(s) converges in probability to 1 as the sample size n becomes

large; that is, for any positive real number ε, as the sample size n increases, the probability that

σ̂2(s)/σ2(s) differs from 1 by more than ε approaches 0.

1.1 Weights

Resampling methods provide an alternative approach to variance estimation. These methods

can be described in terms of sampling weights (Efron, 1982, p. 37). For example, consider the
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sample mean X̄. For each observation i, let wi ≥ 0 be an integer weight assigned to sample

member i. The weight wi will represent the number of times sample member i is to be used in

computation of an estimate. Let w denote the n-dimensional weight vector with coordinate i

equal to wi, and let the sum n[w] =
∑n

i=1 wi of the weights be positive. Then one may consider

the weighted mean

X̄[w] = {n[w]}−1
n∑

i=1

wiXi.

Thus X̄ is X̄[1], where 1 is the vector with all coordinates 1. If w1 = 0 and wi = 1 for i > 1, then

X̄[w] = (n− 1)−1
n∑

i=2

Xi

is the sample mean for the observations X2 to Xn. In general, X̄[w] has expectation µ, just as in

the case of the original sample mean X̄.

Weights can also be used with the sample variance and sample standard deviation. Let

n[w] > 1, let

s2[w] = {n[w]− 1}−1
n∑

i=1

wi(Xi − X̄[w])2

and let s[w] be the square root of s2[w]. If all weights wi are 0 or 1, then s2[w] has expectation

τ2. Note that s2[1] is the sample variance s2 of the Xi, 1 ≤ i ≤ n, and s[1] is the corresponding

sample standard deviation s. If w1 = 0 and wi = 1 for i > 1, then s2[w] is the sample variance

deviation for the observations X2 to Xn, and s[w] is the corresponding sample standard deviation.

In general, estimates g[w] will be considered for a real parameter γ, where g[1] will be denoted

by g. For the weight vectors w under study, the essential requirements are that g[w] have finite

variance and that independent and identically distribution random variables Yi, 1 ≤ i ≤ n, with

mean 0 and variance υ2 > 0 exist such that the estimates g[w] are well approximated by γ + Ȳ [w],

where the weighted mean

Ȳ [w] = {n[w]}−1
n∑

i=1

wiYi

(Shao & Wu, 1989). In the case of X̄[w], Yi = Xi − µ. In the case of s[w], the requirement is met

with Yi = [(Xi − µ)2 − τ2]/τ . The approximation requirements involve the approximation error

R = g − γ − Ȳ (1)

for the complete sample and the approximation error

R[w] = g[w]− γ − Ȳ [w] (2)
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for the weight vector w with integer weight wi ≥ 0 assigned to sample member i.

1.2 Delete-1 Jackknifing

In traditional delete-1 jackknifing (Quenouille, 1956; Shao & Wu, 1989; Tukey, 1958), weight

vectors w(j), 1 ≤ j ≤ n, are employed to compute n sample statistics. These weight vectors

correspond to samples in which one member is omitted. Thus the weight vector w(j) provides

a weight wi(j) = 1 to each sample member i not equal to j, but the weight wj(j) for sample

member j is 0. For sample member j, the delete-1 estimate g[w(j)] corresponds to an estimate of

γ based on the observed Xi for all sample members i except j. For example, w(1) has coordinate

w1(1) equal to 0 and coordinates wi(1) = 1 for i ≥ 2, so that g[w(1)] is the estimate based on the

observations Xi, i > 1. The average delete-1 estimate is then

ḡ = n−1
n∑

j=1

g[w(j)].

The jackknife variance estimate for σ2(g) is

σ̂2
J(g) =

n− 1
n

n∑
j=1

{g[w(j)]− ḡ}2.

The delete-1 jackknife has desirable large-sample properties when two conditions both hold.

The first condition is that the mean squared approximation error E(R2) associated with the

complete sample is sufficiently small so that

E(R2)/σ2(Ȳ ) → 0 (3)

as the sample size n becomes large. The second condition requires that the difference R−R[w(j)]

between the approximation errors R for the complete sample and R[w(j)] for the sample with

member j omitted is sufficiently small so that

max
1≤j≤n

E({R−R[w(j)]}2)/[σ2(Ȳ )]2 → 0 (4)

as the sample size n increases (Shao & Wu, 1989). Under these conditions, the sample variance

σ2(g) is well approximated by σ2(Ȳ ) = υ2/n in the sense that σ2(g)/σ2(Ȳ ) converges to 1 as

the sample size n becomes large. The bias E(g) − γ is sufficiently small so that [E(g) − γ]/σ(g)

converges to 0 as the sample size n increases. The approximation σ̂2
J(g) to the sample variance
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σ2(g) is sufficiently accurate so that σ̂2
J(g)/σ2

J(g) converges in probability to 1 as the sample size

n increases, and the ratio (g − γ)/σ̂J(g) has an approximate standard normal distribution.

Approximate confidence intervals for γ are readily constructed. For consistency with practice

for the sample mean, for real α such that 0 < α < 1, let the lower bound of the approximate

confidence interval for γ of level 1− α be

γJLα = g − tn−1,ασ̂J(g),

and let the upper bound be

γJUα = g + tn−1,ασ̂J(g).

Then the probability that γJLα ≤ γ ≤ γJUα approaches 1− α as the sample size n increases.

In the case of the sample mean, (3) and (4) hold trivially if Yi = Xi − µ, γ = µ, υ2 = τ2, and

g = X̄, for R and R[w(j)] are 0. Delete-1 jackknifing leads to conventional inferences concerning

the population mean. The average of the X̄[w(j)], 1 ≤ j ≤ n, is the original sample mean X̄, and

σ̂2
J(X̄) =

n− 1
n

n∑
j=1

(X̄[w(j)]− X̄)2 = ŝ2(X̄)

(Efron, 1982, pp. 6, 13). Thus jackknifing simply leads to the conventional estimate of the

variance of the sample mean. In addition, the jackknife confidence bounds µJLα and µJUα satisfy

µJLα = µJLα and µJUα = µUα.

In the case of the sample standard deviation, (3) and (4) may be shown to hold if γ = τ ,

g = s, and Yi = [(Xi − µ)2 − τ2]/(2τ). Jackknifing yields a different estimate of the variance of s

than the one obtained previously by use of the δ method. Let n > 2. One has

s̄ = n−1
n∑

j=1

s[w(j)],

and

σ̂2
J(s) =

n− 1
n

n∑
j=1

(s[w(j)]− s̄)2.

The ratio σ̂2
J(s)/σ2(s) converges in probability to 1 as the sample size n becomes large,

(s− τ)/σ̂J(s) converges in distribution to a random variable with a standard normal distribution,

and, for real α such that 0 < α < 1, the approximate confidence interval for τ of level 1 − α has

lower bound

τJLα = s− tn−1,ασ̂J(s)
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and upper bound

τJUα = s + tn−1,ασ̂J(s).

Computations are somewhat easier than may at first appear to be the case, for

s2[w(j)] = (n− 2)−1[(n− 1)s2 − n(Xj − X̄)2/(n− 1)]

(Draper & Smith, 1998, p. 208). As the sample size n increases, the probability approaches 1− α

that τJLα ≤ τ ≤ τJUα.

It is possible to demonstrate that the requirements for delete-1 jackknifing are met for the

equating applications under study under some possible sampling models; however, computation

of this jackknife estimate of the variance is impractical in the equating examples considered.

Thousands of observations are involved, and the computer programs used in calculations do not

permit any simplification of calculations comparable to that achievable for the sample standard

deviation. As a consequence, other resampling approaches must be considered.

1.3 Grouped Jackknifing

The grouped jackknife (Miller, 1964) is a less computationally intensive resampling alternative

to the traditional jackknife. In this approach, the n observations are divided into k ≤ n disjoint

groups Gj , 1 ≤ j ≤ k, with approximately equal numbers of members. In the simplest case, the

sample size n is a multiple of k, so that each group Gj can be selected to have n(Gj) = n/k

members. For example, if n = 100 and k = 10, then one might have G1 contain observations 1 to

10, G2 contain observations 11 to 20, and G10 contain observation 91 to 100. More generally, the

groups can always be chosen so that |n(Gj)− n/k| is less than 1. For example, if n is 101 and k is

10, then G1 to G9 can be defined as in the case of k = 10 and n = 100; however, G10 may now

be defined so that G10 contains observations 91 to 101. The weight vectors wG(j), 1 ≤ j ≤ k, are

selected so that wG(j) has ith coordinate wiG(j) equal to 1 if observation i is not in group Gj .

Coordinate wiG(j) is 0 if i is in group Gj . For example, the delete-n(Gj) sample mean X̄[wG(j)]

is the sample mean of the Xi for observations i not in group Gj . With grouped jackknifing, the

variance estimate

σ̂2
G(g) =

k − 1
k

k∑
j=1

(g[wG(j)]− ḡG)2,
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where the average of the delete-n(Gj) estimates g[w(j)], 1 ≤ j ≤ k, is

ḡG = k−1
k∑

j=1

g[wG(j)].

For 0 < α < 1, the approximate confidence interval of level 1− α for γ has lower bound

γGLα = g − tk−1,ασ̂G(g)

and upper bound

γGUα = g + tk−1,ασ̂G(g).

Traditional delete-1 jackknifing is obtained in the special case of k = n, for each G(j) contains

only one member of the sample, and wG(j) = w(j). When k < n, grouped jackknifing is different

from delete-1 jackknifing even in simple cases such as estimation of the variance of the sample

mean. In the applications under study, the number k is fixed by restrictions on computational

resources. For example, in the equating problems under study, k is 120 no matter how large the

sample size n may be. This restriction greatly reduces computational labor relative to alternatives.

Delete-1 jackknifing requires n subsamples. Delete-d jackknifing, 1 < d < n − 1, requires all

subsamples in which d members are omitted from the original sample (Shao & Wu, 1989), so

that even more subsamples are required than for delete-1 jackknifing. For the applications under

study, no obvious gain is achieved from use of k = 120 bootstrap samples rather than the grouped

jackknife.

The behavior of grouped jackknifing is easiest to examine if n/k is an integer and if g is the

sample mean X̄. In this case, results can be regarded as quite satisfactory, although there is some

loss in terms of width of confidence intervals if k < n. Nonetheless, this loss is small for k of

moderate size. To verify this claim, let vG(j) = 1−wG(j), so that vG(j) has coordinate viG = 1

for sample member i is in Gj and viG = 0 if sample member i is not in Gj . Thus X̄[wG(j)] is the

average of the Xi for sample members i not in group Gj , and X̄[vG(j)] is the average of the Xi for

sample members i in group Gj . Because each group Gj has n/k members, n[wG(j)] = n(k− 1)/k,

n[vG(j)] = n/k, and

(k − 1)X̄[wG(j)] + X̄[vG(j)] = X̄.

The sample mean X̄ is both the average of the delete-n/k sample means X̄[wG(j)], 1 ≤ j ≤ k,

and the average of the sample means X̄[vG(j)] for sample members in group Gj , 1 ≤ j ≤ k. As in
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the traditional jackknife, it is readily checked that

σ̂2
G(X̄) = [k(k − 1)]−1

k∑
j=1

{X̄[vG(j)]− X̄}2.

Because the Gj are disjoint groups and the Xi are independent and identically distributed, the

sample means X̄[vG(j)], 1 ≤ j ≤ k, are independent and identically distributed with common

mean µ and common variance τ2/(n/k). Thus σ̂2
G(X̄) has mean σ2

G(X̄), so that σ̂2
G(X̄) is an

unbiased estimate of the variance of X̄. For 0 < α < 1, the approximate confidence interval for µ

of level 1− α has lower bound

µGLα = X̄ − tk−1,ασ̂G(X̄)

and upper bound

µGUα = X̄ + tk−1,ασ̂G(X̄).

If the Xi are normally distributed, then the X̄[vG(j)] are also normally distributed, so that

(k−1)σ̂2
G(X̄)/σ2

G(X̄) has a chi-square distribution on k−1 degrees of freedom and (X̄−µ)/σ̂G(X̄)

has a t distribution on k− 1 degrees of freedom. This exact result is not available if bootstrapping

is used. For 0 < α < 1, 1− α is the probability that µGLα ≤ µ ≤ µGUα. Results are quite different

from the traditional jackknife to the extent that σ̂2
G(X̄)/σ2(X̄) does not converge in probability

to 1 as the sample size becomes large (Shao & Wu, 1989). Because a chi-square random variable

with k − 1 degrees of freedom has mean k − 1 and variance 2(k − 1), the ratio σ̂2
G(X̄)/σ2(X̄) has

mean 1, variance 2/(k − 1), and standard deviation [2/(k − 1)]1/2 for all sample sizes. In the case

of k = 120 considered in this report, the standard deviation [2/119]1/2 = 0.13 is certainly not

negligible, so that variability of σ̂2
G(X̄) cannot be ignored. Despite the variability of σ̂2

G(X̄), the

impact on confidence intervals for µ is relatively small if σ̂G(X̄) is used instead of σ̂(X̄). Recall

that in traditional jackknifing, the expected width of the confidence interval at level 1− α is

E(µJUα − µJLα) = E(µUα − µLα) = 2tn−1,αΓ(n/2)[2/n(n− 1)]1/2τ/Γ((n− 1)/2)).

A very similar argument may be employed to show that the expected width of the confidence

interval at level 1− α from grouped jackknifing is

E(µGUα − µGLα) = 2tk−1,αΓ(k/2)[2/n(k − 1)]1/2τ/Γ((k − 1)/2)).

As the sample size becomes large, the ratio

E(µGUα − µGLα)
E(µJUα − µJLα)

=
tk−1,αΓ(k/2)n1/2Γ((n− 1)/2)

tn−1,α/2Γ(n/2)(k − 1)1/2Γ(n/2)
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approaches
21/2t(k − 1, α)Γ(k/2)
(k − 1)1/2Γ((k − 1)/2)

.

For k = 120, this ratio is 1.0082, a value only slightly greater than 1.

To obtain more general results concerning grouped jackknifing for the sample mean, apply

the central limit theorem and the Mann-Wald theorem (Rao, 1973, p. 124). It follows that, as

the sample size n becomes large, the distribution of (k − 1)σ̂2
G(X̄)/σ2

G(X̄) has an approximate

chi-square distribution on k − 1 degrees of freedom, and (X̄ − µ)/σ̂G(X̄) has an approximate t

distribution on k − 1 degrees of freedom. Thus, even for large samples, it remains the case that

σ̂2
G(X̄) has limited accuracy as an estimate of σ2(X̄). Nonetheless, as the sample size n becomes

large, the probability approaches 1− α that µGLα ≤ µ ≤ µGUα. As long as τ + (Xi − µ)2/(2τ) has

finite variance, it remains the case that

E(µGUα − µGLα)
E(µJUα − µJLα)

approaches
21/2t(k − 1, α)Γ(k/2)

(k − 1)]1/2Γ((k − 1)/2)

as the sample size increases.

The basic results for the sample mean extend readily to more general estimates g. Define the

Yi as in the case of the traditional jackknife so that g[w] is approximated by γ + Ȳ , the Yi are

independent and identically distributed, and the Yi have common mean 0 and common variance

υ2 > 0. Conditions for large-sample approximations are a bit weaker than in the traditional

jackknife (Shao & Wu, 1989). It suffices to have (3) hold and to have

max
1≤j≤k

E({R−R[wG(j)]}2)/σ2(Ȳ ) → 0 (5)

hold as the sample size n increases (Shao & Wu, 1989). Under these conditions, it remains true

that the variance σ2(g) is well approximated by the variance σ2(Ȳ ) in the sense that σ2(g)/σ2(Ȳ )

converges to 1 as the sample size n becomes large. In addition, the bias E(g) − γ is sufficiently

small that [E(g) − γ]/σ(g) converges to 0 as n becomes large. As in the case of the grouped

jackknife of the sample mean, the ratio σ̂2
G(g)/σ2(g) does not converge in probability to 1 as

the sample size increases. Instead, the distribution of (k − 1)σ̂2
G(g)/σ2(g) has an approximate

chi-square distribution on k − 1 degrees of freedom, and (g − γ)/σ̂G(g) has an approximate t
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distribution on k − 1 degrees of freedom. It follows that, as the sample size n increases, the

probability approaches 1− α that γGLα ≤ γ ≤ γGUα.

Grouped jackknifing can be used for some equating designs to evaluate equating error;

however, in the cases under study in this report, it is probably appropriate to consider an

adaptation of grouped jackknifing to stratified random sampling.

1.4 Grouped Jackknifing for Stratified Random Samples

Jackknifing is often applied when sampling is much more complex than in the case of simple

random sampling (Wolter, 1985). A variety of possible approaches exist. In the analysis of

equating under study, grouped jackknifing is applied to statistics computed from data from two

independent stratified random samples. Similar studies can be performed on data from several

independent random samples. To illustrate the approach, consider the case of H ≥ 2 populations.

For each population h, consider nh ≥ 2 observations Xih, 1 ≤ i ≤ nh, derived by simple random

sampling with replacement. A basic requirement for grouped jackknifing for the stratified case

is that it works in a satisfactory manner when a linear combination of sample means is used to

estimate a corresponding linear combination of population means. As in the case of grouped

jackknifing or delete-1 jackknifing for simple random sampling, further use of jackknifing can then

be justified by consideration of parameter estimates well approximated by linear combinations of

sample means.

To examine the estimation problem for sample means, let the independent random variables

Xih have mean µh and variance τ2
h > 0 for 1 ≤ i ≤ nh and 1 ≤ h ≤ H. Consider estimation of a

linear combination

γ =
H∑

h=1

chµh (6)

of the means µh, 1 ≤ h ≤ H, for some real numbers ch, 1 ≤ h ≤ H. For example, if ch = H−1 for

each population h, then γ is the average µ̄ of the population means µh. The conventional estimate

of γ is the linear combination

g =
H∑

h=1

chX̄h (7)

of the sample means

X̄h = n−1
h

nh∑
i=1

Xih.
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The mean of g is γ, so that g is unbiased, and the variance of g is

σ2(g) =
H∑

h=1

c2
hτ2

h/nh.

One may estimate the variance σ2(g) of γ by

σ̂2(g) =
H∑

h=1

c2
hs2

h/nh,

where the sample variance of the Xih, 1 ≤ i ≤ nh, is

s2
h = (nh − 1)−1

nh∑
i=1

(Xih − X̄h)2.

The ratio σ̂2(g)/σ2(g) converges in probability to 1 if each sample size nh becomes large, and

(g − γ)/σ̂(g) has an approximate standard normal distribution if all nh are large.

As in simple random samples, weights can be applied to stratified random samples. Let w

have nonnegative integer coordinates wih, 1 ≤ i ≤ nh, 1 ≤ h ≤ H, let nh[w] =
∑nh

i=1 wih > 0 be

the weight sum for sample h, and let

X̄h[w] = {nh[w]}−1
nh∑
i=1

wihXih

be the weighted sample mean for sample h. Corresponding to the linear combination g of (7) is

the linear combination

g[w] =
H∑

h=1

chX̄h[w]. (8)

Then g[w] has mean γ. Similarly, if nh[w] > 1, then one may let

s2
h[w] = {nh[w]} − 1)−1

nh∑
i=1

wih{Xih − X̄h[w]}2,

so that if each wih is 0 or 1, then s2
h[w] is the sample variance of the observations Xih for which

wih = 1. If the wih are all 0 or 1, then s2
h[w] has expectation τ2

h . If each wih is 1, then X̄h[w] = X̄h,

s2
h[w] = s2

h, and g[w] is g.

In the version of grouped jackknifing considered here, for a given positive integer k no greater

than the minimum of the sample sizes nh, 1 ≤ h ≤ H, the sample members drawn from population

h are divided into k groups Gjh, 1 ≤ j ≤ k, of approximately equal size. If nh/k is an integer,

then each group Gjh contains n(Gjh) = nh/k observations. In general, |n(Gjh) − nh/k| is less

13



than 1. For example, consider H = 2, let k = 10 groups be taken from for n1 = 100 members

of the first sample and n2 = 200 members of the second sample. In this case, G11 might be

observations 1 to 10 from the first sample, and G12 might be observations 1 to 20 from the second

sample. One might have G91 equal to observations 81 to 90 in the first sample and G92 equal to

observations 161 to 180 from the second sample. In grouped jackknifing, weight functions wGS(j),

1 ≤ j ≤ k, are considered such that wGS(j) has coordinates wihGS(j), 1 ≤ i ≤ nh, 1 ≤ h ≤ 2, such

that wihGS(j) is 1 if i is not in Gjh and 0 if i is in Gjh. For example, X1[wGS(1)] is the average

of the observations Xi1 for sample members i from the first sample that are not in group G11.

In applications, the standard estimate of a real parameter γ is g = g[1GS ]), where 1GS has all

coordinates 1ihGS = 1. In addition, the estimates g[wGS(j)] are used for variance estimation. It is

assumed that g and g[wGS(j)] have finite variances. At this point, calculations are essentially the

same as for the grouped jackknife for simple random sampling with replacement. The variance

σ2(g) is estimated by

σ̂2
GS(g) =

k − 1
k

k∑
j=1

(g[wGS(j)]− ḡGS)2,

where

ḡGS = k−1
k∑

j=1

g[wGS(j)].

For 0 < α < 1, one has an approximate confidence interval for γ of level 1− α with lower bound

γGSLα = g − tk−1,ασ̂GS(g)

and upper bound

γGSUα = g + tk−1,ασ̂GS(g).

Even in the elementary case of g defined as in (7) and γ defined by (6), the variance estimate

σ̂2
GS(g) is not the same as σ̂2(g). Nonetheless, it is not difficult to verify that σ̂2

GS(g) has

expectation σ2(g) if the nh/k are integers for each sample from population h. In addition, if the

Xih are normally distributed, then (k − 1)σ̂2
GS(g)/σ2(g) has a chi-squared distribution on k − 1

degrees of freedom, and (g − γ)/σ̂GS(g) has a t distribution on k− 1 degrees of freedom. Thus the

probability is exactly 1− α that γGSLα ≤ γ ≤ γGSUα.

In more complex applications under study, large-sample approximations are required similar

to those for grouped jackknifing with simple random sampling with replacement. In addition,
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computational constraints require that k not increase even if the sample sizes nh become large.

In this case, grouped jackknifing applies when independent random variables Yih, 1 ≤ i ≤ nh,

1 ≤ h ≤ H, are available such that, for each population h, the Yih are identically distributed with

common mean 0 and common finite variance υ2
h > 0. Let

Ȳh = n−1
h

nh∑
i=1

Yih,

Ȳh[w] = {nh[w]}−1
nh∑
i=1

wihYih,

f =
H∑

h=1

Ȳh,

and

f [w] =
H∑

h=1

Ȳh[w].

The Yih are selected so that g is well approximated by γ + f and g[w] is well approximated by

γ + f [w]. The approximation errors

RGS = g − γ − f (9)

and

RGS [wGS(j)] = g[wGS(j)]− γ − f [wGS(j)] (10)

must be small for large sample sizes nh, 1 ≤ h ≤ H. To be more specific, it is assumed that

E(R2
GS)/σ2(f) → 0 (11)

and

max
1≤j≤k

E({RGS −RGS [wGS(j)]}2)/σ2(f) → 0 (12)

as the sample sizes nh increase for all populations h. For g defined by (7) and γ defined by (6),

these conditions hold trivially for Yih = ch(Xih − µh) and υ2
h = c2

hτ2
h . Under these conditions,

the variance ration σ2(g)/σ2(f) converges to 1 as the sample sizes nh all become large, and the

bias E(g) − γ is sufficiently small so that [E(g) − γ]/σ(g) converges to 0 as the sample sizes nh

increase. In addition, for large sample sizes nh, (k−1)σ̂2
GS(g)/σ2(g) has an approximate chi-square

distribution on k− 1 degrees of freedom, and (g− γ)/σ̂GS(g) has an approximate t distribution on

k − 1 degrees of freedom. Thus, as the nh all become large, the probability approaches 1− α that

γGSLα ≤ γ ≤ γGSUα.
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In section 2, sample h corresponds to examinees in Administration h of an educational test.

In the specific example presented, only H = 2 administrations are examined. Equating is studied,

so the parameter γ in the application under study may be the score on Administration 1 of the

test that may be regarded as equivalent to a specified score s on Administration 2. The parameter

γ can be regarded as the equating result that would be obtained were the population distribution

of examinee responses known for each administration.

1.5 Jackknifing Comparisons

In applications in this report to linking of forms, a major issue involves comparison of

different linking functions based on different sets of anchor items. The basic analysis is readily

accomplished given the sampling procedure and grouping procedure in section 1.4. For some

integer D > 1, consider M different estimates gm, 1 ≤ m ≤ M , for the respective parameters γm.

In typical applications in this report, m will correspond to a particular set of anchor items that

might be employed in equating and gm will be the estimate for anchor set m of a specific equating

result γm that would be obtained were all data available on all population members. For example,

for a specific raw score point, there may be M different raw-to-raw conversions gm, 1 ≤ m ≤ M ,

from one form to another that have been produced from equating with M different sets of anchor

items. Of interest here is the variability of the parameters γm for 1 ≤ m ≤ M . It is assumed that

the gm have finite variances. Let the average of the γm, 1 ≤ m ≤ M , be

γ· = M−1
M∑

m=1

γm. (13)

One simple measure of the variability of the parameters γm, 1 ≤ m ≤ M , is their sample variance

σ2
γ = (M − 1)−1

M∑
m=1

(γm − γ·)2. (14)

One may estimate the average parameter value γ· by the corresponding average estimate

g· = M−1
M∑

m=1

gm, (15)

and the sample variance σ2
γ of the parameters γm, 1 ≤ m ≤ M , may be estimated by the

corresponding sample variance

σ̂2
γ = (M − 1)−1

M∑
m=1

(gm − g·)2 (16)
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of the estimates gm, 1 ≤ m ≤ M . The average g· has expectation

E(g·) = M−1
M∑

m=1

γm. (17)

If one recalls that E(Y 2) = [E(Y )]2 + σ2(Y ) if Y is a random variable with a finite variance, then

one finds that the expectation of the sample variance σ̂2
γ is

E(σ̂2
γ) = (M − 1)−1

M∑
m=1

[E(gm)− E(g·)]2 + (M − 1)−1
M∑

m=1

σ2(gm − g·). (18)

In typical cases, the variance estimate σ̂2
γ has a positive bias as an estimate of the sample

variance σ2
γ of the γm. This condition is readily observed in the elementary case in which one has

independent random vectors Xih with mean µh and positive-definite covariance matrix Ch > 0

for 1 ≤ i ≤ nh and 1 ≤ h ≤ H. Let coordinate m of Xih be Xmih, and let coordinate m of µ be

µm. For 1 ≤ m ≤ H, consider estimation of a linear combination

γm =
H∑

h=1

cmhµh (19)

of the means µmh, 1 ≤ h ≤ H, for some real numbers cmh, 1 ≤ h ≤ H. For example, if cmh = H−1

for each population h, then γm is the average µ̄m of the population means µmh. The conventional

estimate of γm is the linear combination

gm =
H∑

h=1

cmhX̄mh (20)

of the sample means

X̄mh = n−1
h

nh∑
i=1

Xmih.

The mean of gm is γm, so that gm is unbiased, and the mean of g· is γ·. For a vector b, let b′

denote its transpose. Then the expectation of σ̂2
γ is

E(σ̂2
γ) = σ2

γ +
M∑

m=1

σ2(gm − g·),

where the variance of gm − g· is

σ2(gm − g·) =
H∑

h=1

b′
mhChbmh/nh
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and bmh is the M -dimensional vector with coordinate bm′mh, 1 ≤ m′ ≤ M , such that bm′mh is

cmh(M − 1)/M for m′ = d and bm′mh is −cm′h/M for m′ 6= d.

To investigate this bias in estimation of the sample variance σ2
γ of the parameters γm,

1 ≤ m ≤ M , grouped jackknifing for stratified random sampling may be employed. The basic

requirement is that each gm satisfy the requirements for grouped jackknifing described in

section 1.4 for the case of stratified random sampling. Consider the following conditions. Let 0 be

the M -dimensional vector with all coordinates 0. Let Yih, 1 ≤ i ≤ nh, 1 ≤ h ≤ H, be independent

M -dimensional vectors with coordinates Ymih , 1 ≤ m ≤ M , such that, for sample h, the Yih are

identically distributed with common mean 0 and common positive-definite covariance matrix Υh.

Let row m and column m′ of Υh be Υmm′h. Let

Ȳmh = n−1
h

nh∑
i=1

Ymhi, (21)

let the average of the Yimh over m be

Y·ih = M−1
M∑

m=1

Ymih, (22)

and let

Ȳ·h = n−1
h

nh∑
i=1

Y·hi, (23)

so that

Ȳ·h = M−1
M∑

m=1

Ȳmh.

Similarly, for the weight function w with integer coordinates wih ≥ 0, 1 ≤ i ≤ nh, 1 ≤ h ≤ H, let

Ȳmh[w] = {nh[w]}−1
nh∑
i=1

wihYmih (24)

and

Ȳ·h[w] = {nh[w]}−1
nh∑
i=1

wihY·ih (25)

whenever nh[w] > 0. Let

fm =
H∑

h=1

Ȳmh, (26)

and let

fm[w] =
H∑

h=1

Ȳmh[w]. (27)
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Note that fm has variance

σ2(fm) =
H∑

h=1

Υmmh/nh.

The Ymih are selected so that gm is well approximated by γm + fm and gm[w] is well approximated

by γm + fm[w]. The approximation errors

RmGS = gm − γm − fm (28)

and

RmGS [wGS(j)] = gm[wGS(j)]− γm − fm[wGS(j)] (29)

must be small for large sample sizes nh, 1 ≤ h ≤ H. To be more specific, it is assumed that

E(R2
mGS)/σ2(fm) → 0 (30)

and

max
1≤j≤k

E({RmGS −RmGS [wGS(j)]}2)/σ2(fm) → 0 (31)

as the sample sizes nh increase for all populations h.

Because the matrices Υm are positive definite for 1 ≤ m ≤ M , (30) and (31) imply that (11)

and (12) hold whenever cm, 1 ≤ m ≤ M , are real numbers, some cm is not 0,

g =
M∑

m=1

cmgm,

γ =
M∑

m=1

cmγm,

and

Yih =
M∑

m=1

cmYmih.

It follows that σ2(g)/σ2(f) converges to 1, the bias E(g)−γ is sufficiently small that [E(g)−γ]/σ(g)

approaches 0 as the sample sizes nh all become large, and the ratio (k − 1)σ̂2
GS(g)/σ2(g) has an

approximate chi-square distribution on k − 1 degrees of freedom. Consideration of the differences

gm − g· shows that the bias

∆ = E(σ̂2
γ)− σ2

γ (32)

is well approximated by

∆0 = (M − 1)−1
M∑

m=1

σ2(gm − g·) (33)
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in the sense that ∆/∆0 converges to 1 as the sample sizes nh all become large. If f· is the average

M−1
∑M

m=1 fm and if

∆1 = (M − 1)−1
M∑

m=1

σ2(fm − f·), (34)

then ∆/∆1 also converges to 1 as the sample sizes nh all become large.

One may approximate the bias ∆ with the grouped jackknife by use of

∆̂GS = (M − 1)−1
M∑

m=1

σ̂2
GS(gm − g·), (35)

so that a bias-corrected estimate of σ2
γ is

σ̂2
GSγ = σ̂2

γ − ∆̂GS . (36)

To understand this correction, consider a large-sample approximation in which the fraction

of observations from each population has a positive limit. For this purpose, let n+ =
∑H

h=1 nh

be the total sample size. Let n+ become large and, for each population h, let the ratio nh/n+

approach a positive constant ωh. Then the large-sample distribution of ∆̂GS/∆ may be studied

by use of general results concerning the distribution of quadratic functions of multivariate normal

random variables (Box, 1954). Let Q be the M by M matrix with row m and column m′ equal to

1−M−1 if m = m′ and equal to −M−1 if m 6= m′. Let

Ω = Q
H∑

h=1

ωhΥh. (37)

Let tr denote a trace of a square matrix. Then ∆̂GS/∆ converges in distribution to a positive

random variable Z with expectation 1 and with variance

E(Z) = 2(k − 1)−1 tr(ΩΩ)
[tr(Ω)]2

.

The trace tr(ΩΩ) is the sum of the squares of the M − 1 nonzero eigenvalues of Ω, while tr(Ω)

is the sum of the M − 1 nonzero eigenvalues of Ω (Box, 1954). The Cauchy-Schwarz inequality

may be used to demonstrate that Z has variance less than 2/(k − 1) but at least as large as

2/[(k − 1)(M − 1)]. Note that |∆ is well approximated by ∆1, and ∆1 is of order of magnitude

equal to the largest of the inverse sample sizes n−1
h for 1 ≤ h ≤ H. Thus the bias ∆ is small in

large samples, and the bias correction ∆̂GS is also small in such cases.
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An exact result is available in the special case of gm = γm + fm for 1 ≤ m ≤ M , γm constant

over m, nh/k an integer for 1 ≤ h ≤ H, and Ymhi independent normal random variables with

common variance for all m and i. Application of standard results from two-way analysis of variance

with one observation per cell shows that σ2
γ = 0, the bias ∆ is σ2(f1), and (k − 1)(M − 1)∆̂GS/∆

has a chi-squared distribution on (k − 1)(M − 1) degrees of freedom, so that ∆̂GS/∆ has mean

1 and variance 2/[(k − 1)(M − 1)]. The variance of ∆̂GS/∆ decreases as the number k of groups

increases and as the number M of estimates gm, 1 ≤ m ≤ M , increases. In addition, σ2(f1)

is approximately proportional to the total sample size n−1
+ , and the ratio σ̂2

γ/∆̂GS has an F

distribution with M − 1 and (k − 1)(M − 1) degrees of freedom. Note that in this case, there is a

substantial probability that bias-corrected estimate σ̂2
GSγ is negative, even though the estimated

quantity σ2
γ must be nonnegative.

1.6 Randomly Selected Estimates

The analysis in section 1.5 raises a rather basic issue in the context of equating. In many

cases, it is assumed implicitly in equating that different selections of anchor sets should lead to

the same basic equating results. For example, except for sampling error, conversions of scores on

a new form to an old form should be the same. In practice, errors are encountered both due to

the failure of equating assumptions and due to sampling error. One simple assessment considers

a randomly selected estimate gS , where S is uniformly distributed on the integers 1 to M and

independent of the gm. Thus gS is gm with probability 1. The estimate gS reflects results of

equating if the anchor set really is randomly selected. The expected value of gS is the average

E(gS) = E(g·) = M−1
M∑

m=1

gm (38)

of the expectations E(gm), 1 ≤ m ≤ M . The variance σ2(gS) of gS has two components, the

expected conditional variance of gS given S and the variance of the expected conditional mean of

gS given S (Rao, 1973, p. 97). It follows that

σ2(gS) =
M − 1

M
σ2

γ + M−1
M∑

m=1

σ2(gm). (39)

The bias E(gS)− γ· is sufficiently small that

E(gS)− γ·[
M−1

∑M
m=1 σ2(gm)

]1/2
→ 0
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as the sample sizes nh all become large.

In addition, the random difference gS − g· and the average estimate g· are uncorrelated. To

verify this claim, note that (38) implies that gS − g· has expectation 0. Thus the covariance of

gS − g· and g· is the expectation

E([gS − g·]g·) = M−1
M∑

m=1

E([gm − g·]g·) = E([g· − g·]g·) = 0. (40)

As in (39),

σ2(gS − g·) =
M − 1

M
σ2

γ + M−1
M∑

m=1

σ2(gm − g·). (41)

Combination of (39), (40), and (41) leads to

σ2(gS) =
M − 1

M
σ2

γ + σ2(g·) + M−1
M∑

m=1

σ2(gm − g·). (42)

With jackknifing, (35) implies that σ2(gS) may be estimated by

σ̂2
GS(gS) =

M − 1
M

σ̂2
γ + σ̂2

GS(g·). (43)

In (43), the first component on the right-hand side assesses variability in the estimates gm,

1 ≤ m ≤ M , and the second component measures the variability of the average estimate g·. As

the sample sizes nh increase for all populations h, σ2(gS) approaches [(M − 1)/M ]σ2
γ . If the γm

are not all the same, then σ2
γ > 0 and this limiting variance is positive. No matter how large are

the samples, accuracy is then limited by the inconsistency of parameters γm, 1 ≤ m ≤ M , for

different anchor choices. Interpretation is to some degree made more complicated because anchor

items are not really chosen at random. Nonetheless, the analysis can provide some measure of the

impact of anchor choice.

1.7 Overlapping Anchor Sets

In many common cases, including the examples to be presented in section 3, one anchor

set was actually employed in equating. For instance, in one case, an anchor set consisted of 28

items. Alternate anchor sets are obtained by deletion of single items of groups of items. Thus the

possible anchor sets used are very similar. For example, one might consider 28 anchor sets derived

from the original 28 items by deletion of one item. One would expect that this similarity of anchor

sets would result in less variability related to choice of anchor sets than would be encountered
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were completely different anchor items employed. It is possible to try to estimate the effects of

more thorough changes in anchor sets from the limited selections available, but some reasonable

assumptions must be made. These assumptions can be similar to those used in jackknifing. They

are relevant when anchor items or anchor blocks are selected at random from a large enough finite

population so that corrections for finite populations can be ignored. The extent to which this

model is realistic can be debated, for anchor items are not chosen at random in typical cases.

Nonetheless, the analysis may still provide insight into reasonable expectations for variability. Let

there be M anchor items (or anchor blocks) Im, 1 ≤ m ≤ M , selected at random and used in an

assessment.

For a specific choice of anchor items Im, 1 ≤ m ≤ M , let gIm, 1 ≤ m ≤ M , represent an

equating result based on use of the anchor items Im′ for m′ 6= m, and let gI0 be an equating result

based on use of all the anchor items Im, 1 ≤ m ≤ M , and let gIm estimate γIm. Let

γI· = M−1
M∑

m=1

γIm. (44)

and let

σ2
Iγ = (M − 1)−1

M∑
m=1

(γIm − γI·)2. (45)

Define the estimates

gI· = M−1
M∑

m=1

gIm (46)

and

σ̂2
Iγ = (M − 1)−1

M∑
m=1

(gIm − gI·)2. (47)

Assume that each gIm has a finite mean and a finite variance.

To treat randomly selected estimates, for 0 ≤ m ≤ M , let gm be the random estimate with

value gIm if anchor items Im′ , 1 ≤ m′ ≤ M , are selected. Similarly, let γm be the random variable

with value γIm if the anchor items Im′ , 1 ≤ m′ ≤ M , are selected. Let γ· denote the random

variable with value γI· if Im, 1 ≤ m ≤ M , is selected, and let σ2
γ denote the random variable with

value σ2
Iγ if Im, 1 ≤ m ≤ M , is selected. The estimated equating result in practice is g0. The

estimate g0 in effect estimates the expectation E(γ0) of γ0. The variance of σ2(g0) is the sum of

two components. The first component is the expected value σ2
1(g0) of the random variable σ2(g0)

with value equal to σ2(gI0) if Im′ , 1 ≤ m′ ≤ M , is selected. The second component is the variance
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σ2
2(g0) of the random variable with value E(gI0) if Im′ , 1 ≤ m′ ≤ M , is selected (Rao, 1973, p. 97).

In this section, conditions are developed under which both components can be approximated. The

first set of conditions permits use of jackknifing to approximate σ2(gIm) for any possible selection

of anchor items Im′ , 1 ≤ m′ ≤ M . This set of conditions is essentially the same as in section 1.5.

Additional conditions are then imposed to permit approximation of σ2
2(g0). These conditions are

somewhat related to those developed in section 1 for jackknifing for simple random sampling, but

they apply to items rather than to examinees.

It is assumed that, for any selection of anchor items Im′ , 1 ≤ m′ ≤ M , the gIm satisfy the

basic conditions for grouped jackknifing in stratified random samples that were described in

section 1.5. Thus one has independent pairs (YI0ih,YIih), 1 ≤ i ≤ nh, 1 ≤ h ≤ H, where YIih

has coordinates YImih , 1 ≤ m ≤ M . For population h, the pairs (YI0ih,YIih) are identically

distributed for 1 ≤ i ≤ nh, YI0ih has mean 0 and finite and positive variance ΥI00h, and YIih has

mean 0 and finite positive-definite covariance matrix ΥIh. For 0 ≤ m ≤ M , define

ȲImh = n−1
h

nh∑
i=1

YImhi, (48)

let

ȲI·h = M−1
M∑

m=1

ȲImh, (49)

and let

ȲImh[w] = {nh[w]}−1
nh∑
i=1

wihYImih (50)

whenever nh[w] > 0. Let

fIm =
H∑

h=1

ȲImh, (51)

and let

fIm[w] =
H∑

h=1

ȲImh[w]. (52)

Let

fI· =
H∑

h=1

ȲI·h, (53)

Let the approximation errors

RImGS = gIm − γIm − fIm (54)

and

RImGS [wGS(j)] = gIm[wGS(j)]− γIm − fIm[wGS(j)] (55)
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satisfy the conditions that

E(R2
ImGS)/σ2(fIm) → 0 (56)

and

max
1≤j≤k

E({RImGS −RImGS [wGS(j)]}2)/σ2(fIm) → 0 (57)

as the sample sizes nh increase for all populations h.

Under these conditions, as the sample sizes nh approach ∞, the following limiting relationships

hold:
σ2(gI0)
σ2(fI0)

→ 1, (58)

E(gI0)− γI0

σ(gI0)
→ 0, (59)

and the ratio (k − 1)σ̂2
GS(gI0)/σ2(gI0) converges in distribution to a random variable with a

chi-square distribution on k − 1 degrees of freedom. If σ̂2
GS(g0) denotes the random variable

with value σ̂2
GS(gI0) if the anchor items Im, 1 ≤ m ≤ M , are selected, then one can certainly

approximate σ2
1(g0) by use of σ̂2

GS(g0).

To estimate σ2
2(g0) requires some assumptions concerning the parameters γIm and the random

variables YImih for 0 ≤ m ≤ M . The assumption made here is that the parameter γIm has a

decomposition

γIm =

 β + (M − 1)−1
∑

m′ 6=m ν(Im′) + ζIm, 1 ≤ m ≤ M,

β + M−1
∑M

m′=1

∑M
m′=1 ν(Im′) + ζI0, m = 0,

(60)

where the constants ζIm are remainder terms, and the random variable YImih has the decomposition

YImih =

 Zih + (M − 1)−1
∑

m′ 6=m Uih(Im′) + eIm, 1 ≤ m ≤ D,

Zi0 + M−1
∑M

m′=1

∑M
m′=1 ν(Im′) + eImih, m = 0.

(61)

where the random variables eImih are remainder terms. In (60), 0 is the average of the ν(A) over

all possible anchor items A, and σ2
ν is the variance of a random variable νm with value ν(Im) if I

is randomly selected. In (61), the components Zih and Uih(Im′) are all independently distributed.

For each sample h, the Zih are identically distributed with mean 0 and finite variance σ2
Zh and the

Uih(Im′) are identically distributed for each anchor item Im and have mean 0 and finite variance

σ2
Uh(Im′) > 0. The parameter σ2

Um denotes the mean of the random variable with value σ2
Uh(Im′)

if the Im′ are selected at random for 1 ≤ m′ ≤ M .
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In (60),

γI· = β + M−1
M∑

m=1

ν(Im) + ζI·,

where

ζI· = M−1
M∑

m=1

ζIm.

In (61),

YI·ih = M−1
M∑

m=1

YImih = Zih + M−1
M∑

m=1

Uih(Im) + eI·ih,

where

eIm·ih = M−1
M∑

m=1

eImih.

Thus

δI = γI0 − γI· = ζI0 − ζI·

and

VIih = YI0ih − YI·ih = eI0ih − eI·ih.

Let ζ· be the random variable with value ζI· if Im′ , 1 ≤ m′ ≤ M , is selected, let WY h be the

random variable with value E(e2
I·ih) if Im′ , 1 ≤ m′ ≤ M , is selected, let δ be the random variable

with value δI if Im′ , 1 ≤ m′ ≤ M , is selected, and let WV h be the random variable with value

E(V 2
Iih) if Im′ , 1 ≤ m′ ≤ M , is selected. The approximate methods used in this section require that

ζ·, δ, E(WY h), and E(WV h) all be small relative to σ2
ν/M . To examine this claim, consider the

simplified case in which ζI·, ζI0, eI·ih, and eI0ih are all 0 for any anchor items Im′ , 1 ≤ m′ ≤ M . In

this case, comparison with delete-1 jackknifing for sample means shows that σ2
2(g0) is σ2

ν/M and

σ2
γ = (M − 1)−3

M∑
m=1

(νm − ν·)2,

where ν· is the average M−1
∑M

m=1 νm of the νm, 1 ≤ m ≤ M . The expectation of σ2
γ is then

(M − 1)−2σ2
ν , so that M−1(M − 1)2σ2

γ has expectation σ2
2(g0). In addition, g0 and g· are equal. If

σ̂2
GS(g·) denotes the random variable with value σ̂2

GS(gI·) if the anchor items Im, 1 ≤ m ≤ M , are

selected, then σ2
1(g0) may be approximated by σ̂2

GS(g·) as well as by σ̂2
GS(g0). If

∆̂IGS = (M − 1)−1
M∑

m=1

σ̂2
GS(gIm − gI·) (62)
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for anchor items Im′ , 1 ≤ m′ ≤ M , and if ∆̂GS is the random estimate with value ∆̂IGS if the

Im′ , 1 ≤ m′ ≤ M , are selected, then σ2
2(g0) may be approximated by (M − 1)2[σ̂2

γ − ∆̂GS ].

Approximations are most satisfactory if the number k of groups and the number M of anchor

items is large.

If σ2
ν is 0 and if, for each population h and the Uih(Im′) all have the same variance, then

σ2
γ = 0 and

FGS = (M − 1)2σ̂2
γ/∆̂GS (63)

has an approximate F distribution on M − 1 and (M − 1)(k− 1) degrees of freedom. The result is

exact if each ratio nh/k is an integer and if the Uih(Im′) have normal distributions.

The suggested estimate of σ2
GS(g0) based on the case of no remainder errors is

σ̂2
GS(g0) = σ̂2

GS(g0) + M−1(M − 1)2[σ̂2
γ − ∆̂GS ]. (64)

A slight modification σ̄2
GS(g0) of this estimate has the attraction that it can be computed from

a two-way array of estimates gm[wGS(j)], 1 ≤ j ≤ k, 1 ≤ m ≤ M . Let gm[wGS(j)] be the

random estimate with value gIm[wGS(j)] if items Im′ , 1 ≤ m′ ≤ M , are selected. The average of

the gm[wGS(j)], 1 ≤ m ≤ M , can be denoted by ḡ·[wGS(j)], and the average of the g·[wGS(j)],

1 ≤ j ≤ k, can be denoted by g·. This modified estimate σ̄2
GS(g0) is the same as σ̂2

GS(g0) if ζI·, ζI0,

eI·ih, and eI0ih are all 0. To define the modified estimate, let gm[wGS(j)] be the random estimate

with value gIm[wGS(j)] if items Im′ , 1 ≤ m′ ≤ M , are selected. The average of the gm[wGS(j)],

1 ≤ m ≤ M , can be denoted by g·[wGS(j)], and the average of the g·[wGS(j)], 1 ≤ j ≤ k, can be

denoted by ḡ·. For each item Im, the average of the gm[wGS(j)], 1 ≤ j ≤ k, may be denoted by

ḡm. One has

σ̄2
GS(g0) =

k − 1
k

k∑
j=1

{g·[wGS(j)]− ḡ·}2,

σ̄2
γ = (M − 1)−1

M∑
m=1

(ḡm − ḡ·)2,

and

∆̄GS =
k − 1

k
(M − 1)−1

M∑
m=1

{gm[wGS(j)]− g·[wGS(j)]− ḡm + ḡ·}2.

It follows that

σ̄2
GS(g0) = σ̄2

GS(g0) + M−1(M − 1)2[σ̄2
γ − ∆̄GS ]. (65)
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The approximations used in this section are less precise in practice than approximations used

in earlier sections, for the number of anchor items is typically somewhat smaller than the number

of groups and is much smaller than the actual sample sizes. Nonetheless, the basic issue remains

that, as in section 1.6, the variance of g0 does not approach 0 even for large sample sizes nh unless

the parameter γ0 is the same for all possible anchor items Im, 1 ≤ m ≤ M .

2 IRT True-Score Equating

In the examples under study, IRT true-score equating is used for equating of two

administrations, Administration 1 and Administration 2, by use of a collection of common external

anchor items Im, 1 ≤ m ≤ M . The approach of Stocking and Lord (Stocking & Lord, 1983) is

used with a generalized partial credit model (Muraki, 1997). This approach reflects practices of

the particular testing program under study. Numerous alternatives are available (Hambleton,

Swaminathan, & Rogers, 1991, ch.9). The number of examinees in Administration h is denoted

by nh. In Administration 1, each examinee receives items Im for M + 1 ≤ m ≤ M1 where

M1 > M + 1, and these items are used to score the examinee performance. In Administration 2,

each examinee receives items Im, M1 + 1 ≤ m ≤ M2, where M2 > M1 + 1, and these items

are used to score the examinee. In addition, some examinees from each administration receive

the common anchor items Im, 1 ≤ m ≤ M . It suffices to assume that whether an examinee in

Administration h receives the external anchor items Im, 1 ≤ m ≤ M , is a random event not

related to any characteristics or responses of any of the examinees.

Estimation is performed with an item-response model in which the proficiency distribution of

the population of examinees for Administration 1 is a standard normal proficiency distribution,

while examinees who receive Administration 2 are assumed to have a proficiency distribution that

is normal with mean B and standard deviation A > 0. Conditional on the proficiency θ of an

examinee, it is assumed that item scores for each item presented are conditionally independent.

Item scores for an item Im have possible values from 0 to rm − 1, where rm is an integer greater

than 1. The conditional probability Pm(k|θ) that an examinee with proficiency θ receiving either

form has response score k on a presented item Im is assumed to satisfy the logit relationship

log[Pm(k|θ)/Pm(k − 1|θ)] = Dam(θ − bm + dmk),

where item discrimination am is an unknown positive real number, item difficulty bm is an
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unknown real number, and the category coefficients dmk, 1 ≤ k ≤ rm − 1, are real numbers

unknown save for the constraint that their sum is 0 (Muraki, 1997). Thus duk = 0 if rm = 2. The

constant D is fixed. It may be chosen to be 1, 1.7, or 1.702. The last choice is made here for

consistency with the Parscale software used in computations at ETS.

In the case of Administration 2, the scaled examinee proficiency θ′ = (θ − B)/A has a

standard normal distribution. With respect to the scaled proficiency θ′, the conditional probability

P ′
m(k|θ′) that an examinee with scaled proficiency θ′ in Administration 2 has response score k on

a presented item Im satisfies the logit relationship

log[P ′
m(k|θ)/P ′

m(k − 1|θ)] = Da′m(θ′ − b′m + d′mk),

where a′m = Aam, b′m = (bm −B)/A, and d′m = dm/A. Marginal maximum likelihood, conditional

on the items presented to each examinee, is separately employed for each Form h (Bock & Aitkin,

1981). Administration 1 yields maximum-likelihood estimates âm for am, b̂m for bm, and d̂uk for

duk for 1 ≤ m ≤ m1 and 1 ≤ M1. Administration 2 yields maximum-likelihood estimates â′m for

a′m, b̂′m for b′m, and d̂′uk for m′
uk, 1 ≤ k ≤ rj − 1, for 1 ≤ m ≤ M and for M1 + 1 ≤ m ≤ M2.

To estimate A and B, the Stocking-Lord method is used (Stocking & Lord, 1983). Here

the estimated test characteristic curves for the items used in scoring is computed for the two

administrations. For Administration 1,

T̂ (θ) =
M∑

m=1

rm−1∑
k=1

kP̂m(k|θ),

where the estimated conditional probabilities P̂m(k|θ) are determined by the equations

log[P̂m(k|θ)/P̂m(k − 1|θ)] = Dâm(θ − b̂m + d̂uk)

for 1 ≤ k ≤ rm − 1 and by the constraint that
∑rm−1

k=0 P̂m(k|θ) = 1. In like manner, for

Administration 2,

T̂ ′(θ′) =
M∑

m=1

rm−1∑
k=1

kP̂ ′
m(k|θ),

where the estimated conditional probabilities P̂ ′
m(k|θ) are determined by the equations

log[P̂ ′
m(k|θ)/P̂ ′

m(k − 1|θ)] = Dâ′m(θ − b̂′m + d̂′mk)
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for 1 ≤ k ≤ rm − 1 and by the constraint that
∑rm−1

k=0 P̂ ′
m(k|θ) = 1. Estimates Â for A and B̂ for

B are then obtained by minimizing the integral∫
[T̂ (θ)− T̂ ′(Aθ + B)]2φ(θ)dθ,

where φ is the density function of the standard normal distribution. The integral must be

evaluated by some numerical quadrature method. In the analysis performed in this report, the

ETS convention was followed that the integral was approximated by use of 201 equally spaced

quadrature points from −3 to 3.

Given Â and B̂, parameter estimates are obtained for Administration 2. Thus am is estimated

by âu2 = â′m/Â, bm is estimated by b̂m2 = Âb̂′m + B̂, and dmk is estimated by d̂mk2 = Âd̂′mk. For

the items used in reporting scores, test characteristic curves

T̂1(θ) =
M1∑

m=M+1

rm−1∑
k=1

kP̂m(k|θ)

and

T̂2(θ) =
M2∑

m=M1+1

rm−1∑
k=1

kP̂m2(k|θ)

are obtained. Here

log[P̂m2(k|θ)/P̂m2(k − 1|θ)] = Dâm2(θ − b̂m2 + d̂mk2)

for 1 ≤ k ≤ rm− 1 and
∑rm−1

k=0 P̂m2(k|θ) = 1. In Administration 1, total scores for items numbered

from M + 1 to M1 can range from 0 to

S1 =
M1∑

m=M+1

(rm − 1).

In Administration 2, total scores for items numbered from M1 + 1 to M2 can range from 0 to

S2 =
M2∑

m=M1+1

(rm − 1).

Consider a total score s for Administration 2. In true-score equating, an s2 of 0 in Administration 2

is linked to s1 = 0 in Administration 1, while s2 = S2 in Administration 2 is linked to s1 = S1

in Administration 1. If 0 < s2 < S2, then s2 in Administration 2 is linked to T̂1(θ2), where

T̂2(θ2) = s2.

30



If the model assumptions employed all hold, it is readily shown that all estimates developed

in this section have suitable properties for application of the jackknife. Thus the example is

appropriate for the jackknifing methods developed in section 1.7. As previously noted, there is

some complication to the extent that items are not, in practice, selected at random in typical

educational tests. Thus some care will be needed in discussing the effect of selection of anchor

items.

It should be noted that the standard errors determined by jackknifing apply whether the

model assumptions used in linking are true or not. Parameters still have asymptotic means, but

their interpretation is more complex (Haberman, 2007).

3 Example

To illustrate methodology, data from two sections of an assessment are considered for two

administrations. In the first section, to be termed section 1, 42 items are used to score examinees,

and 28 anchor items are employed, so that M = 28, M1 = 70, and M2 = 112. In the second

section, to be termed section 2, 34 items are used to score examinees, and 17 anchor items

are used, so that M = 17, M1 = 51, and M2 = 85. Total sample sizes are about 6,000 for

Administration 1 and 8,000 for Administration 2. About 1,600 examinees in each administration

receive the anchor items for section 2. In the case of section 1, about 3,100 examinees receive the

anchor items for Administration 2, and about 1,600 receive the anchor items for Administration 1.

As previously noted, for jackknifing of examinees, 120 disjoint subsets are employed.

Table 1 provides estimates and standard errors for parameters A and B for the two sections.

In these computations, the common items are assumed to be given. Results for a model in which

the common items are randomly drawn differ for the two sections. The effects of item selection

are examined by removal of one anchor item at a time. In section 1, the ratio FGS = σ̂2
γ/∆̂GS of

(63) is 2.44 for estimates of A and 4.01 for estimates of B. Given that M is 28 and k is 120, both

F statistics are very highly significant, so that σ2
ν and σ2

γ appear to be positive, and the effect of

anchor selection is a concern. With anchor sets regarded as random, the estimated asymptotic

standard deviation of A is increased to 0.0323, and the estimated asymptotic standard deviation

of B is increased to 0.0330. These estimates are considerably larger than the customary estimated

asymptotic standard errors, so there is cause for concern about the effects of item selection. In

section 2, the respective FGS statistics are 0.81 and 1.18, and M is now 17, so that no clear
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evidence is present that selection of anchor items has an effect.

Table 1

Estimated A and B Parameters and Estimated Asymptotic Standard Errors

Parameter Section Estimate Standard error

A 1 0.989 0.024

B 1 -0.093 0.022

A 2 0.956 0.029

B 2 -0.086 0.029

Table 2 provides results for conversions of total item scores from Administration 2 to total

item scores from Administration 1 for section 1. Table 3 provides the corresponding result for

section 2. For section 1, there is an appreciable effect of anchor selection, but the basic result

remains that standard errors can be as large as about a third of a raw score point. In section 2,

selection of anchor items does not have an obvious effect, so only the conventional results are

provided for the grouped jackknife. The standard errors are roughly comparable to those for

section 1. Impact of the standard errors in practice depends on the choice of raw-to-scale

conversion used in the testing program, on the standard deviation of scaled test scores, and on

whether the assessment is applied to individual examinees or to groups of examinees. Reasons

for the variability of results due to the specific anchor items selected in section 1 require further

investigation. The general issue raised is that it is possible in practice for the selection of anchor

items to have an appreciable effect on the variability of equating results.

4 Conclusions

The analysis in this report indicates that jackknifing may be employed both to examine

sampling variability in equating and to analyze sensitivity of equating results to anchor selection.

The approach used is very widely applicable to equating studies. It would also apply were

alternative linking procedures applied such as concurrent calibration or mean and sigma methods

(Hambleton et al., 1991). The approach may also be used when the general partial credit model is

replaced by the partial credit model with am constant for all m (Muraki, 1997). It is also quite

possible to apply the approach to observed-score equating methods such as kernel equating (von
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Table 2

Estimated Conversions of Total Item Score for Section 1

Stand. err. for anchor Stand. err. for anchor

Score Estimate Fixed Random Score Estimate Fixed Random

0 0.000 0.000 0.000 23 20.868 0.221 0.279

1 1.255 0.113 0.135 24 21.792 0.213 0.277

2 2.338 0.165 0.200 25 22.729 0.205 0.276

3 3.343 0.202 0.246 26 23.680 0.197 0.277

4 4.300 0.230 0.280 27 24.645 0.192 0.280

5 5.226 0.251 0.304 28 25.625 0.188 0.285

6 6.130 0.269 0.323 29 26.621 0.186 0.292

7 7.015 0.283 0.338 30 27.633 0.185 0.300

8 7.888 0.292 0.348 31 28.663 0.186 0.308

9 8.752 0.301 0.355 32 29.712 0.190 0.317

10 9.608 0.304 0.357 33 30.781 0.193 0.326

11 10.458 0.305 0.358 34 31.871 0.198 0.333

12 11.306 0.305 0.356 35 32.985 0.202 0.339

13 12.152 0.302 0.352 36 34.123 0.205 0.343

14 12.999 0.301 0.347 37 35.287 0.206 0.342

15 13.847 0.293 0.340 38 36.476 0.206 0.338

16 14.699 0.288 0.333 39 37.690 0.202 0.326

17 15.555 0.281 0.325 40 38.924 0.194 0.307

18 16.418 0.271 0.315 41 40.168 0.180 0.279

19 17.289 0.262 0.307 42 41.406 0.157 0.238

20 18.168 0.252 0.298 43 42.612 0.126 0.185

21 19.057 0.243 0.292 44 43.760 0.085 0.117

22 19.957 0.232 0.285 45 45.000 0.000 0.000

Davier, Holland, & Thayer, 2004). The example, as is common in textbook discussions, considers

a simple linking of one form to another; however, the methodology is also suitable for examination
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Table 3

Estimated Conversions of Total Item Score for Section 2

Stand. err. for Stand. err. for

Score Estimate anchor fixed Score Estimate anchor fixed

0 0.000 0.000 18 15.360 0.228

1 0.821 0.118 19 16.250 0.215

2 1.617 0.178 20 17.153 0.204

3 2.418 0.222 21 18.068 0.195

4 3.240 0.259 22 18.997 0.189

5 4.082 0.288 23 19.942 0.184

6 4.940 0.310 24 20.904 0.183

7 5.807 0.324 25 21.886 0.183

8 6.678 0.331 26 22.894 0.187

9 7.551 0.333 27 23.935 0.193

10 8.421 0.330 28 25.016 0.199

11 9.288 0.323 29 26.148 0.205

12 10.152 0.313 30 27.341 0.209

13 11.014 0.300 31 28.602 0.208

14 11.876 0.287 32 29.939 0.199

15 12.739 0.271 33 31.348 0.175

16 13.606 0.257 34 32.803 0.122

17 14.479 0.242 35 34.000 0.000

of a much more complex sequence of test forms that are linked through many different sets of

anchor items.

Consideration of both the sampling variability and the variability of equating results with

respect to anchor selection is important in any assessment of the effectiveness of equating for a

testing program. It is clearly important for the variability of equating results to be small relative

to the measurement error for individual examinees. For example, consider the following case.

With the conversion associated with an arbitrarily large sample of examinees and an arbitrarily
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large selection of different anchor sets, the standard deviation of an examinee’s equated score on a

form has a standard deviation of 5, and 0.84 is the form reliability of this score. Thus the standard

error of measurement is 2. Suppose that use of finite samples to compute equating functions and

use of one of many possible anchor sets results in a random scoring error for the examinee with

mean 0 and standard deviation 1, and suppose that the random scoring error is uncorrelated with

the examinee’s error of measurement based on the ideal conversion. Then the effective standard

error of measurement is (22 + 12)1/2 = 2.236 rather than 2. The effective standard deviation is

(52 + 12)1/2 = 5.099, and the effective reliability is reduced to 1− (22 + 12)/(52 + 12) = 0.808. The

equating error impact can be far more important when a group of examinees is studied. Consider

a sample of 100 randomly selected examinees for the form under study. For these examinees, the

standard deviation of the mean equated scores for the ideal conversion is 0.5, and the standard

deviation of the mean error of measurement is 0.2, so the reliability of the estimated mean score

remains 0.84. On the other hand, it is quite possible that the mean random scoring error has

essentially the same distribution as the random scoring error for a single examinee, so that 1

remains the standard deviation of the mean random scoring error. Thus the effective reliability of

the mean equated score is now only 1− (0.22 + 12)/(0.52 + 12) = 0.168.

The sensitivity of equating to the selection of anchor items is particularly important, for this

problem does not become unimportant even when sample sizes are very large. As a consequence,

it is of great importance that equating procedures be investigated for robustness to selection of

anchor items. The approach in this report provides an appropriate method of investigation for

both sampling errors and errors due to selection of anchor items. A general appreciation of the

stability of equating results with respect to sample size and anchor selection requires a more

comprehensive investigation of equating results from a substantial number of test administrations

for a variety of testing programs. Such data can indicate the magnitude of variability commonly

encountered and can suggest circumstances which lead to higher or lower variability.
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