A Note on the Choice of an Anchor Test in Equating

Sandip Sinharay
Shelby Haberman
Paul Holland
Charles Lewis

September 2012
Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research freely available to the professional community and to the general public. Published accounts of ETS research, including papers in the ETS Research Report series, undergo a formal peer-review process by ETS staff to ensure that they meet established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that outside organizations may provide as part of their own publication processes.

The Daniel Eignor Editorship is named in honor of Dr. Daniel R. Eignor, who from 2001 until 2011 served the Research and Development division as Editor for the ETS Research Report series. The Eignor Editorship has been created to recognize the pivotal leadership role that Dr. Eignor played in the research publication process at ETS.
A Note on the Choice of an Anchor Test in Equating

Sandip Sinharay, Shelby Haberman, Paul Holland, and Charles Lewis
ETS, Princeton, New Jersey

September 2012
As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance quality and equity in education and assessment for the benefit of ETS’s constituents and the field.

To obtain a PDF or a print copy of a report, please visit:

http://www.ets.org/research/contact.html

Associate Editors: James Carlson and Daniel Eignor

Reviewers: Neil Dorans and Anne Fitzpatrick

Copyright © 2012 by Educational Testing Service. All rights reserved.

ETS, the ETS logo, and LISTENING. LEARNING. LEADING., are registered trademarks of Educational Testing Service (ETS).

SAT is a trademark of the College Board.
Abstract

Anchor tests play a key role in test score equating. We attempt to find, through theoretical derivations, an anchor test with optimal item characteristics. The correlation between the scores on a total test and on an anchor test is maximized with respect to the item parameters for data satisfying several item response theory models. Results suggest that under these models, the minitest, the traditionally used anchor test, is not optimal with respect to anchor-test-to-total-test correlation; instead, an anchor test with items of medium difficulty, the miditest, seems to be the optimum anchor test. This finding agrees with the empirical findings of Sinharay and colleagues that the miditest mostly has higher anchor-test-to-total-test correlation compared to the minitest and mostly performs as well as the minitest in equating.

Key words: equating, minitest, Rasch model
Acknowledgments

The authors thank Alina von Davier, Neil Dorans, Dan Eignor, and Anne Fitzpatrick for their invaluable advice and Tim Moses for his help with the data sets. The authors gratefully acknowledge the editorial help of Holly Monteith. Any opinions expressed in this publication are those of the authors and not necessarily of ETS.
1 Introduction

It is a widely held belief that an anchor test used in test equating should be a representative or a miniature version (i.e., a minitest), with respect to both content and statistical characteristics, of the tests being equated (see, e.g., Kolen & Brennan, 2004, p. 19). To ensure statistical representativeness, the usual practice is to make sure that the mean and spread of the item difficulties of the anchor test are roughly equal to those of the tests being equated (see, e.g., Dorans, Kubiak, & Melican, 1998, p. 5).

The requirement that the anchor test be representative of the total tests (i.e., the tests being equated) with respect to content has been shown to be important by Klein and Jarjoura (1985) and Cook and Petersen (1987). Peterson, Marco, and Stewart (1982) demonstrated the importance of having the mean difficulty of the anchor tests close to that of the total tests. However, the literature does not offer any proof of the superiority of an anchor test for which the spread of the item difficulties is representative of the total tests. Furthermore, a minitest has to include very difficult or very easy items to ensure adequate spread of item difficulties, which can be problematic as such items are usually scarce (one reason being that such items often have poor statistical properties, such as low discrimination, and are thrown out of the item pool). An anchor test that relaxes the requirement on the spread of the item difficulties might be more operationally convenient, especially for testing programs using external anchor tests.

Motivated by the preceding, Sinharay and Holland (2006) focused on anchor tests that (a) are content representative, (b) have the same mean difficulty as the total tests, and (c) have spread of item difficulties less than that of the total tests. They defined a miditest as an anchor test with a very small spread of item difficulties and a semi-miditest as a test with a spread of item difficulty that lies between those of the miditest and the minitest. These anchor tests, especially the semi-miditest, will often be easier to construct operationally than minitests because there is no need to include very difficult or very easy items in them. Sinharay and Holland (2006) cited several works that suggest that the miditest, which has often been referred to as a test with equivalent items (e.g., Tucker, 1946), will be satisfactory with respect to psychometric properties like reliability.
and validity. Sinharay and Holland (2006), using a number of simulation studies and a real data example, showed that the miditests and semi-miditests have slightly higher anchor-test-to-total-test correlations than the minitests.

In this report, we attempt to find a theoretical explanation for the preceding result regarding the correlation between a test and an anchor test. For a given total test, we attempt to find an anchor test that has the maximum anchor-test-to-total-test correlation. In section 2, we consider the anchor-test-to-total-test correlation when both tests consist of items that satisfy an item response model. An approximation for the correlation is derived that becomes increasingly accurate as the variance of the examinee proficiency, θ, decreases. For the Rasch model, the approximation suggests that the anchor-test-to-total-test correlation is largest if the item difficulties of the anchor test are all equal to the mean examinee proficiency, which happens for a miditest. The same phenomenon occurs for the two-parameter logistic (2PL) model under further restrictions on the item discrimination parameters. In that situation, then, the conventional minitest is not the optimum anchor test in terms of anchor-test-to-total-test correlation. In section 3, we provide a discussion and possibilities for future work.

2 A Theoretical Result

Let X denote the score of an individual on a total test with m items, and let Y denote the score on an external anchor test with n items. Let $X = \sum_{i=1}^{m} U_i$, where the item scores U_i, $1 \leq i \leq m$, are 0 or 1 and, as is customary in item response theory (IRT), are conditionally independent given a random ability parameter θ with mean μ and variance σ^2. As in standard IRT, the item characteristic function P_{Xi}, for U_i, $1 \leq i \leq m$, is defined so that the conditional probability that $U_i = 1$ given θ is $P_{Xi}(\theta)$, and P_{Xi} is a strictly increasing function that is infinitely differentiable. Let P'_{Xi} and P''_{Xi}, respectively, denote the first and second derivatives of P_{Xi}. It is assumed that P'_{Xi} and P''_{Xi} are uniformly bounded.

Similarly, $Y = \sum_{i=1}^{n} V_i$, where the item scores V_i, $1 \leq i \leq n$, are 0 or 1 and are conditionally independent given θ. The item characteristic function P_{Yi}, for V_i, $1 \leq i \leq n$, is also strictly increasing and infinitely differentiable, with the first two derivatives P'_{Yi} and
$P^n_{Y_i}$ uniformly bounded.

As in classical test theory, $X = t_X + e_X$, where t_X is the true score and e_X is the error. The true score t_X is $\tau_X(\theta)$, where the test characteristic curve $\tau_X = \sum_{i=1}^m P_{X_i}$ of X is infinitely differentiable and strictly increasing. The first and second derivatives of τ_X are $\tau'_X = \sum_{i=1}^m P'_{X_i}$ and $\tau''_X = \sum_{i=1}^m P''_{X_i}$, respectively. The error e_X has conditional expectations and conditional variance

$$V_X(\theta) = \sum_{i=1}^m P_{X_i}(\theta)[1 - P_{X_i}(\theta)].$$

The first derivative of V_X is

$$V'_X = \sum_{i=1}^m P'_{X_i}(1 - 2P_{X_i}),$$

and the second derivative of V_X is

$$V''_X = \sum_{i=1}^m [P''_{X_i}(1 - 2P_{X_i}) - 2(P'_{X_i})^2].$$

Similar results hold for Y. Given θ, the errors e_X and e_Y are conditionally independent.

The covariance of X and Y is then

$$\text{Cov}(X, Y) = \text{Cov}(t_X, t_Y)$$

$$= \text{Cov}[\tau_X(\theta) - \tau_X(\mu), \tau_Y(\theta) - \tau_Y(\mu)]$$

$$= E \{ [\tau_X(\theta) - \tau_X(\mu)][\tau_Y(\theta) - \tau_Y(\mu)] \}$$

$$- \{ E [\tau_X(\theta)] - \tau_X(\mu) \} \{ E [\tau_Y(\theta)] - \tau_Y(\mu) \}. \tag{1}$$

Because

$$\text{Var}(e_X) = E [\text{Var}(e_X|\theta)] + \text{Var}[E(e_X|\theta)] = E [V_X(\theta)] + \text{Var}(0) = E [V_X(\theta)],$$

the variance of X is given by

$$\text{Var}(X) = \text{Var}(t_X) + \text{Var}(e_X)$$

$$= \text{Var}[\tau_X(\theta) - \tau_X(\mu)] + \text{Var}(e_X)$$

$$= E[\tau_X(\theta) - \tau_X(\mu)]^2 - \{ E [\tau_X(\theta)] - \tau_X(\mu) \}^2 + E [V_X(\theta)]. \tag{2}$$
Let the variance σ^2 decrease to 0. The use of Taylor’s theorem leads to the approximation of $\tau_X(\theta)$ by

$$\tau_X(\mu) + (\theta - \mu)\tau'_X(\mu)$$

and of $V_X(\theta)$ by

$$V_X(\theta) = V_X(\mu) + (\theta - \mu)V'_X(\mu).$$

Results similar to Equations 2, 3, and 4 hold for $\text{Var}(Y)$, $\tau_Y(\theta)$, and $V_Y(\theta)$. Using the preceding approximations on Equations 1, 2, 3, and 4 and similar expressions for Y, we obtain

$$\text{Cov}(X, Y)/\sigma^2 \to \tau'_X(\mu)\tau'_Y(\mu),$$

$$\text{Var}(X) \to V_X(\mu),$$

$$\text{Var}(Y) \to V_X(\mu).$$

Thus the correlation of X and Y satisfies

$$\rho(X, Y)/\sigma^2 \to \frac{\tau'_X(\mu)}{[V_X(\mu)]^{1/2}} \frac{\tau'_Y(\mu)}{[V_Y(\mu)]^{1/2}}.$$ (5)

The striking feature here is that the maximization of the limit of $\rho(X, Y)/\sigma^2$ for the anchor test does not depend at all on item characteristics of the total test score X.

Consider the 2PL model. Let the item discrimination parameters a_{Xi}, $1 \leq i \leq m$, and a_{Yi}, $1 \leq i \leq n$, be positive real numbers, and let the item difficulties b_{Xi}, $1 \leq i \leq m$, and b_{Yi}, $1 \leq i \leq n$, be real. Denote the logistic distribution function at x real by $L(x) = 1/(1 + e^{-x})$. Then $P_{Xi}(\theta) = L(a_{Xi}(\theta - b_{Xi}))$, $1 \leq i \leq m$, and $P_{Yi}(\theta) = L(a_{Yi}(\theta - b_{Yi}))$, $1 \leq i \leq n$, so that $P'_{Xi} = a_{Xi}P_{Xi}(1 - P_{Xi})$, $1 \leq i \leq m$, and $P'_{Yi} = a_{Yi}P_{Yi}(1 - P_{Yi})$, $1 \leq i \leq n$.

In the special case of the Rasch model with $P_{Xi}(\theta) = L(a(\theta - b_{Xi}))$,

$$\tau'_X(\mu) = a \sum_{i=1}^{n} P_{Xi}(\mu)[1 - P_{Xi}(\mu)] = aV_X(\mu),$$

and similarly, $\tau'_Y(\mu) = aV_Y(\mu)$. Thus, for the Rasch model, Equation 5 suggests that the limit of $\rho(X, Y)/\sigma^2$ is $a^2[V_X(\mu)V_Y(\mu)]^{1/2}$. The maximum value of $V_Y(\mu)$, and hence the
maximum value of $\rho(X, Y)$, is achieved if the item difficulty b_{Y_i} is μ for each anchor item i, $1 \leq i \leq n$, which happens only when the anchor test is a miditest. That is because $V_Y(\mu)$ is the sum of the terms $P_{Y_i}(\mu)[1 - P_{Y_i}(\mu)]$, each of which is maximized when $P_{Y_i}(\mu) = 0.5$, which happens only when $b_{Y_i} = \mu$. In this case, $a[V_Y(\mu)]^{1/2}$ is $an^{1/2}/2$.

The general case of a 2PL model is a bit more complicated; however, it can be shown, using the property that the first derivative of a function is zero at its maximum, that $\tau'_Y(\mu)/[V_Y(\mu)]^{1/2}$ and hence that $\rho(X, Y)$ is maximized for fixed a_{Y_i} if each b_{Y_i} is μ, which, again, happens only for a miditest. The ratio $\tau'_Y(\mu)/[V_Y(\mu)]^{1/2}$ is then $(2n^{1/2})^{-1} \sum_{i=1}^{n} a_{Y_i}$.

The challenge in this analysis is that nothing necessarily follows for the case in which the variance of the examinee proficiency θ is not small. Nonetheless, the analysis does suffice to indicate that it may not always be desirable to have a minitest as an anchor test.

3 Discussion and Future Work

In this report, we demonstrate theoretically that the minitest, the most widely used anchor test, may not be the optimum anchor test with respect to the anchor-test-to-total-test correlation. Instead, the results favor a miditest, an anchor test with all items of medium difficulty. Because medium-difficulty items are more easily available than items with extreme difficulty, this result promises to provide test developers with more flexibility when constructing anchor tests.

The suggestion of a number of experts (e.g., Angoff, 1971; Petersen, Kolen, & Hoover, 1989; von Davier, Holland, & Thayer, 2004) that higher anchor-test-to-total-test correlation leads to better equating then implies that an anchor test with items of medium difficulty may lead to better equating. Sinharay and Holland (2007), using analysis of simulated and real data sets, demonstrated that the miditest indeed leads to better equating compared to the minitest under most practical situations. Similar findings were reported by Liu, Sinharay, Holland, Curley, and Feigenbaum (2011) and Liu, Sinharay, Holland, Feigenbaum, and Curley (2011), who compared the equating performances of miditests and minitests using SAT® data sets.

Our results were derived under the assumption that the variance of the examinee
proficiency is small; the proof for the general case (i.e., when the variance is not assumed small) could be a topic for future research. In addition, we assumed that the data follow an IRT model in our derivations. It is possible to extend the result to the case in which one does not make any assumption about the data.
References

Notes

1Dr. Sinharay conducted this study and wrote this report while on staff at ETS. He is currently at CTB/McGraw-Hill.