The Use of Quality Control and Data Mining Techniques for Monitoring Scaled Scores: An Overview

Alina A. von Davier

October 2012
Since its 1947 founding, ETS has conducted and disseminated scientific research to support its products and services, and to advance the measurement and education fields. In keeping with these goals, ETS is committed to making its research freely available to the professional community and to the general public. Published accounts of ETS research, including papers in the ETS Research Report series, undergo a formal peer-review process by ETS staff to ensure that they meet established scientific and professional standards. All such ETS-conducted peer reviews are in addition to any reviews that outside organizations may provide as part of their own publication processes.

The Daniel Eignor Editorship is named in honor of Dr. Daniel R. Eignor, who from 2001 until 2011 served the Research and Development division as Editor for the ETS Research Report series. The Eignor Editorship has been created to recognize the pivotal leadership role that Dr. Eignor played in the research publication process at ETS.
The Use of Quality Control and Data Mining Techniques for Monitoring Scaled Scores: An Overview

Alina A. von Davier
ETS, Princeton, New Jersey

October 2012
Abstract
Maintaining comparability of test scores is a major challenge faced by testing programs that have almost continuous administrations. Among the potential problems are scale drift and rapid accumulation of errors. Many standard quality control techniques for testing programs, which can effectively detect and address scale drift for small numbers of administrations yearly, are not always adequate to detect changes in a complex, rapid flow of scores. To address this issue, Educational Testing Service has been conducting research into applying data mining and quality control tools from manufacturing, biology, and text analysis to scaled scores and other relevant assessment variables. Data mining tools can identify patterns in the data and quality control techniques can detect trends. This type of data analysis of scaled scores is relatively new, and this paper gives a brief overview of the theoretical and practical implications of the issues. More in-depth analyses to refine the approaches for matching the type of data from educational assessments are needed.

Key words: data mining, quality control, scale drift, scaled scores, time series, Shewhart control charts, CUSUM charts, change-point models, hidden Markov models
Acknowledgments

The author thanks Shelby Haberman, Peter van Rijn, and Yi-Hsuan Lee for their comments on the earlier versions of the paper. The author also thanks Kim Fryer for her help with editing and formatting this paper and Yi-Hsuan Lee, Zhiming Yang, and Long Luo for valuable input. The opinions expressed in this paper are those of the author and not necessarily of Educational Testing Service.
Maintaining comparability of test scores is a major challenge faced by testing programs that have almost continuous administrations. Among the potential problems are scale drift and rapid accumulation of errors, which can be exacerbated by a lack of time between these administrations. Traditional quality control (QC) techniques available to psychometricians have been developed for tests with only a small number of administrations per year, but while very valuable and necessary, these techniques are not sufficient for catching changes in a complex and rapid flow of scaled scores.

This paper gives a brief overview of several statistical tools used in other fields, such as manufacturing, biology, and text analysis, that are potential useful for monitoring the reported scores. Recent research conducted at Educational Testing Service (ETS) on these methodologies is reviewed. In the past, psychometricians focused on the quality of the results from one administration at a time, monitoring only a few variables. Nowadays, with the advances of technology, one can capture more data than the responses of a candidate (process data, for example). In addition, many assessments today have an almost continuous administration mode. Once practitioners decide to analyze a vector of variables that describe a testing administration as part of a system of test forms given at numerous administrations, they need to approach the data analysis differently than they did previously. The variables now contain information ranging from specific item-level statistics to test-level statistics and include process, background, and collateral information, all of which is collected for each administration. The size of the data matrix becomes too substantial for a simple visual inspection, and tools that can discover trends and patterns in the data are desirable. The data sets from educational testing are significantly smaller than those from text analysis and biology; nevertheless, they are large enough to be overwhelming for evaluation without additional automatic analyses and appropriate models. Therefore, in order to preserve the quality of measurement and the validity of the test over time, the review process needs to incorporate QC tools that look at the test score data as a time series (eventually a multivariate time-series) in addition to the traditional QC tools. Monitoring and maintaining the quality and stability of the scaled scores of a standardized assessment are perhaps the most important goals of psychometricians’ work on an assessment. A scale that is stable indicates that the meaning of the reported scores has been preserved over time. Consequently, this stability supports the validity of the test for the intended use over time. Often, the distribution of scaled scores might drift from the initial distribution due to socioeconomic and
other demographic factors that are not under the control of test developers and psychometricians. If a situation such as this occurs, then the potential causes of the shifts have to be investigated and addressed (see Dorans, 2002). If the test scores and the relevant demographic variables are continuously monitored, then a continuous and minimal adjustment can be implemented as part of the measurement process (see Duong & von Davier, 2012; Haberman & Yang, 2011; Qian, von Davier, & Jiang, 2012). In addition to the shifts due to demographics, operational mistakes, such as the computing or reporting of an incorrect score (one that is lower or higher than the correct score), may have serious implications on the test validity in the context of educational measurement. Operational mistakes might preclude a qualified candidate from being accepted to college, lead to incorrect course placement, cause a misguided educational intervention, or result in the granting of a professional license to a person who lacks the required qualifications. Moreover, mistakes that cause real damage of this kind can precipitate legal action against the testing company or the educational institution. “Finally, a high incidence of such mistakes will have an adverse impact on test reliability and validity of the test” (Allalouf, 2007, p. 36). Other causes of sudden changes in the test score distribution might be due to item exposure and breaches in test security. If these changes are not detected, then the validity of the test can break down. Allalouf (2007) discussed the definition of quality in the context of educational measurement:

W.E. Deming, one of the founders of the philosophy and application of statistical control of quality, defines it as follows: “Inspection with the aim of finding the bad ones and throwing them out is too late, ineffective, and costly. Quality comes not from inspection but from improvement of the process.” A relevant definition for the present purposes is as follows: Quality control is a formal systematic process designed to ensure that expected quality standards are achieved during scoring, equating, and reporting of test scores. (p. 37)

I would modify the definition of quality as follows: Quality control in educational measurement is a formal systematic process designed to ensure that expected quality standards are achieved during scoring, equating, and reporting of test scores at each administration and across administrations during the life of the test.

This paper reviews recent research that was conducted at ETS to enhance the use of data analysis, monitoring, classification, and prediction techniques in evaluating equating results. The
perspective is that quality control and data mining tools from manufacturing, biology, and text analysis can be successfully applied to scaled scores and other relevant variables of an assessment. The quality control techniques may help with detecting trends, while the data mining tools may help with identifying (useful) patterns in the data that accompany the scaled scores. This type of data analysis of scaled scores is relatively new and, as with any new application, is subject to the typical pitfalls: Are the appropriate variables included? Are the identified patterns meaningful?

Approaches to Monitoring and Maintaining the Stability of Scaled Scores

Equating is a statistical procedure that allows for scores from different test forms of the same standardized assessment to be used interchangeably. As with any statistical model, the equating procedure has to balance bias and error. Bias can be introduced by the equating model if the assumptions of the model are not well met and if the samples are not representative, and error is introduced by fluctuations in the sample sizes and representativeness of test takers from a target population and by fluctuations in the sample sizes and representativeness of items from a population of possible items that cover the construct(s) to be measured (see also Zumbo, 2007). The equating process is the primary tool for maintaining the stability of scaled scores. The equating design, the statistical procedure, the selection of the common items, and the composition of the equating sample all can contribute to the variance of the scores. As mentioned earlier, for assessments with a large number of administrations each year, all these errors may potentially cumulate over time.

Traditional Quality Control Approaches

In general, after each test administration, the results are evaluated at several levels. First, a team of psychometricians will conduct the standard item, test, and equating analysis and insure that no errors occurred at the administration level (Allalouf, 2007; Dorans, Moses, & Eignor, 2011). Then a second level of the evaluation will take place, where the results are considered as part of a series of administrations over time. The team will carefully monitor the changes in demographics over time, the seasonality of the test, the trends in the results, the results of subgroups of test takers, the consistency among the sections of the test over time, and so on. One can easily see that, without appropriate models, it is difficult in this situation to make sense of a
large amount of data in a short period of time (1 or 2 days) or to detect a perilous emerging pattern or trend.

In recent years at ETS, researchers considered monitoring the following variables: means and variances of the scaled and raw scores, means and variances of item parameters after they were placed on a common item response theory (IRT) scale, IRT linking parameters over time (the estimated slope and intercept of the linear relationship between the item/person parameters from the old and new administrations or from the item bank and the new administration), correlations among different sections of the tests, automatic and human scoring data, background variables, and so on.

New Approaches to Quality Control

Some of the variables mentioned above have been investigated by the team responsible for the quality of scores, but in the recent years, this investigation has focused more on patterns over a long chain of administrations. We attempted to address these inquiries by using Shewhart control charts to visually inspect the data over time; time series models to model the relationship of test difficulty and test scores means over time; harmonic regression to remove seasonality, cumulative sum (CUSUM) charts, change-point models, and hidden Markov models to detect sudden changes; and weighted mixed models and analysis of variance to detect patterns in the data.

Methods of statistical process control, widely used in industrial settings for quality assurance of mass production, were applied to the field of educational measurement in the last few decades. Van Krimpen-Stoop and Meijer (2001) employed CUSUM control charts to develop a person-fit index in a computer-adaptive testing environment. Armstrong and Shi (2009) further developed model-free CUSUM methods to detect person-fit problems. Meijer (2002) explored the statistical process control techniques to ensure quality in a measurement process in operational assessments. Veerkamp and Glas (2000) used CUSUM charts to detect drifts in item parameter estimates in a computer-adaptive testing environment. Omar (2010) used statistical process control charts for measuring and monitoring temporal consistency of ratings. However, the applications were different than those described here.

Next, three steps in analyzing the assessment data for quality control purposes are reviewed: (a) the inspection of the data and the use of the traditional analyses, (b) the use of control charts for detecting trends, and (c) the use of statistical models for detecting abrupt
changes and patterns in the data. These steps are defined by the chronological order in which the procedures mention here will be applied: First we apply the traditional analyses at each test administration; then we compare the results from this administration to the past administrations in look for trends; and later on, we research the data for abrupt changes and patterns.

Inspection of the Data

The first step in monitoring the test results over time is to learn as much as possible about the data matrix. How do different parts of the assessment relate to each other? Do they all tell the same story? Li (2011) identified correlations between IRT linking parameters and specific features of an administration, such as the difficulty of the test form, and proposed monitoring these correlations over time. If something looks like an outlier, then one can look further into the potential causes of these irregularities. Do the test results exhibit seasonality? How do the test results depend on subgroups of test takers and how do these group dependencies look when investigated over time? It is customary to have equating braidng plans in place for testing programs. A braiding plan is a design for equating new test forms back to multiple old test forms in order to avoid the accumulation of the seasonality effects over time and to reduce the potential bias introduced by the item selection, especially by the item selection in the anchor sets.

The means and variances of the test results are very visible to test users and are the first variables to consider in a long-term analysis. Let us assume that one is interested in monitoring the variable *means of scaled scores* for a test over time. Figure 1 displays four hypothetical distributions of means of equated scores. Let X_t denote the scaled mean score of administration t, $t=1,\ldots, T$. Let σ be the standard deviation of mean scores across time. The sample mean of X_1,\ldots, X_T is denoted by \bar{X}.

Figure 2 shows an obvious seasonality point in July. Some of the considerations for an equating design include the issue of similarity in ability of the test takers, the accumulation of a potential bias of equating over time, and the exposure of the test design that might lead to security breaches. In this example, one should avoid equating test forms from July to July each year because the seasonality effects might accumulate. This recommendation is contrary to the customary approach of equating a test form back to the test form administered in the same month of the previous year to insure a similar population of test takers. On the other hand, if one equates July to October, the equating results might be weak due to the large differences in ability
between the two groups. A possible braiding design for the example given in Figure 2 is one in which each test form administered in a given month of a year is equated back to three test forms from the previous year and then the scaled results are averaged. See Figure 3 for an example. One might also consider giving different weights to the three strands of equating. Note that if the test security is a concern, then this braiding plan might be too easy to detect. Consequently, in a real application, one might consider a variable braiding plan in which each of the two equating strands might change.

The SAT®, for example, has a braiding plan with four equating strands, each of them with different weights (Dorans & Liu, 2009). With this plan, any possible seasonality due to the differences in the ability of test takers at different times of the year is adjusted. Obviously, if a test has a braiding plan, then each of the parts of the braiding plan and their (weighted) sum have to be monitored.
Figure 2. An example of seasonality for a hypothetical test. In this example, the unit of the scale is 10 (for illustration purposes) and the peak is due to a particular timing of an administration. Other types of seasonality are also possible.

Figure 3. An example of one possible braiding plan for the hypothetical test in Figure 1. In this example, the form given in July this year will be equated back to three old forms, two from the previous year and one from earlier this year. The equating strands will have different weights.

Charts and a Visual Inspection

The second step is to inspect Shewhart control charts for individual or average of the means of scaled scores (see Figure 4 for an example of a Shewhart control chart for average of the means of scaled scores). The Shewhart control chart has a baseline and upper and lower limits that are symmetric about the baseline. This particular method is described here in more detail because it is simpler to implement than others while being very useful for detecting trends.
Measurements are plotted on the chart versus a time line. The baseline is the process mean, which is estimated by using the average from historical data (mean of the means). Control limits are computed from the process standard deviation (the standard deviation of the means\(^4\)). The upper (UCL) and lower (LCL) control limits are

\[
UCL = \text{mean of means} + k \times \text{(process standard deviation)}
\]

and

\[
LCL = \text{mean of means} - k \times \text{(process standard deviation)},
\]

where \(k\) is the distance of the control limits from the baseline (mean of means), expressed in terms of standard deviations units. When \(k\) is set to 3, the charts are called 3-sigma control charts (see National Institute of Standards and Technology [NIST], n.d.; Western Electric Company, 1958).

One visually inspects the control charts and identifies outliers. Usually, the variability of the process is monitored as well. Measurements that are outside the limits are considered to be out of control according to various rules (see Lee & von Davier, in press; NIST, n.d.; or Western Electric Company, 1958). The challenge is that the chart leads to a multiple comparison. The simplest rule is to declare that an outlier is a point that is outside the 3 sigma band. Other rules are more stringent and might increase the probability of a false alarm. See, for example, the Western Electric Company rules (Western Electric Company, 1958). The chart properties are derived under the assumptions that the parameters of the process, the means and standard deviations, are known. When the estimates of these parameters are not computed based on a large amount of data, the chart might lead to false alarms. A major disadvantage of a Shewhart control chart is that the chart uses only the information contained in the last sample observation and it ignores any information given by the entire sequence of points. This feature makes Shewhart control charts relatively insensitive to small process shifts. Therefore, as recommended by Lee and von Davier (in press), CUSUM charts should be inspected next. See Montgomery (2009) for a definition of CUSUM charts. Note that the standard assumptions for control charts are that the data are normally and independently distributed (an assumption that might not always be met). The CUSUM chart might be able to detect the point at which a process change has occurred.
Control charts do not work well if the variable of interest exhibits even low levels of correlation over time (Montgomery, 2009). If seasonality is present in the data, then the observations might exhibit a higher degree of autocorrelation. In studies by Lee and Haberman (2011) and Lee and von Davier (in press), harmonic regression (e.g., Brockwell & Davis, 2002) is used to describe and account for seasonal patterns. Once the seasonality is accounted for, then the control charts can be applied on the residuals. An example of a seasonal pattern is described in Figure 2.

Closer Inspection

Time Series Models

The third step is applying time-series techniques. One might model the series of individual raw-to-scale conversions over many administrations using a regression model with autoregressive moving-average (ARMA) errors. See Box and Jenkins (1970) for theoretical details on the models. An ARMA model has two parts: the auto-regressive part (AR) and the
moving-average part (MA). The variability of the raw-to-scale conversions across score points could be an indicator of the variability of the scale (see Li, Li, & von Davier, 2011). For reliable parameter estimation in a time-series model, one should require a moderately long sequence of equating results (at least 50). As in Li et al. (2011), let a simple regression with ARMA errors be fitted to this series of mean of scaled scores X_t for $1 \leq t \leq T$ for T administrations, with $f(t)$ as an explanatory variable.\(^5\) (Form difficulty was used in Li et al., 2011; perhaps more appropriate variables are gender, native language, other group memberships, reason for taking the test, etc.)

This regression is equivalently written as

$$X_t = \beta_0 + \beta_1 f(t) + W_t.$$ \hspace{1cm} (2)

In Equation 2, W_t is an error sequence for $1 \leq t \leq T$; β_0 is the intercept; and β_1 is the effect of form difficulty on changes in the equated scores, X_t. If W_t are independently randomly distributed for all t, $W_t \sim WN(0, \sigma^2_w)$, Equation 2 becomes the ordinary regression, and $\beta_0, \beta_1,$ and σ^2_w can be obtained through the least squares estimation method. However, in equating contexts, where forms are linked to or chained from each other, the error sequence W_t may be time-correlated, and it is more appropriate to fit a suitable ARMA (p, q) model. For example, W_t in Equation 2 could follow an AR(1) model for every t (i.e., an autoregressive process with order $p = 1, q = 0$), or W_t could follow an MA(2) process for every t (i.e., a moving-average process with order $p = 0, q = 2$). Note that one may consider a multivariate ARMA model if more than one test will be investigated simultaneously.\(^6\) Li et al. (2011) investigated the MA(2) model for a set of simulated assessment data.

It is desirable to test whether or not W_t is independently distributed and homoscedastic for all t. Two procedures are often employed to test whether autocorrelations exist in errors W_t. One is the Durbin-Watson test (e.g., Chatfield, 2003, p. 69) and the other is the Ljung-Box test (Ljung & Box, 1978). The null hypothesis for the Durbin-Watson test is that the errors are uncorrelated, with the alternative hypothesis that the errors satisfy an AR(1) model. Rejecting the test suggests that autocorrelations exist in W_t and that W_t may not be independently distributed, for all t, $1 \leq t \leq T$. The null hypothesis for the Ljung-Box test is similar; that is, the errors are independent. Rejecting the test suggests W_t may not be independent.
Models for Detecting Abrupt Changes

Next, one may consider applying a change-point model (Hawkins, Qiu, & Kang, 2003) or a hidden Markov model (HMM; Visser, Raijmakers, & van der Maas, 2009) to detect a point in time when the test results might contain a significant change (see Lee & von Davier, in press). The main tasks of change-point detection are first to decide whether there has been a change, and if so, to estimate the time at which it occurred. Hidden Markov models have to be applied to long (univariate) time series. The models consist of a measurement model that relates the state to an observation—(in our case, the observations are means of scaled scores assumed to come from a normal distribution) and transition states (the state space is finite and the states are associated with transition probabilities of moving from one state to another). Note that hidden Markov models are extensions of latent class models with repeated measurements that are applied to shorter multivariate time series. Figure 5 shows an example of a two-state Markov system. For example, one can assume that the two states are (a) a series of the mean scores that is unchanged and (b) a series of the mean scores that is changed. Lee and von Davier (in press) investigated one-, two-, and three-state Markov systems. The Markov model with one state is equivalent to a time series or a regression model.

For this example, we assume the system has only two states, denoted by \(s_1 \) and \(s_2 \). There are discrete time steps, \(t = 1, 2, \ldots \) (administrations). On the \(t \text{th} \) time step, the system is in exactly one of the available states. Call this state \(q_t \), with \(q_t \in \{ s_1, s_2 \} \). Denote the transition matrix by \(A = (a_{ij})_{i,j=1,2} \), with the transition probability \(a_{ij} \). Then the Markov model for this example is defined by the following formulas for the transition probabilities:

\[
\begin{align*}
 a_{11} &= p(q_t = s_1 | q_{t-1} = s_1) \\
 a_{21} &= p(q_t = s_1 | q_{t-1} = s_2),
\end{align*}
\]

and then the transition matrix is

\[
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}_{2 \times 2}.
\]

Applications of the statistical quality control tools, change point models, and hidden Markov models seem to be valuable in detecting trends and change points. Lee and von Davier (in press) illustrated the usefulness of these methodologies for detecting trends and abrupt
changes. These models supplement the developed time-series models for monitoring stability of other variables, including the standard deviations of scale scores, linking parameters, and so on.

Figure 5. Example of a two-state Markov system applied to a hypothetical mean scores series with a change-point.

Models for Detecting Patterns in the Data

One might be interested in mining the data further by identifying patterns of test scores per subgroups of test takers. Luo, Lee, and von Davier (2011) investigated a multivariate weighted mixed model in which the means of scaled scores are predicted by several background variables and the Test Administration variable, which is defined by specific sample compositions at each administration. Luo et al. applied this model to two test sections from a subset of operational data from an international language assessment. The background factors (which in this study were Country, Language, and Reason for Taking the Test) and their interactions are assumed to have fixed effects on the mean of scaled score vectors. A factor is said to have a fixed effect if it only influences the mean of the scaled score vectors. Two or more factors are said to have an interaction if the effect of one factor on the mean of scaled score vectors depends on the level of other factors. The factor Test Administration is assumed to have a random effect on the mean of scaled score vectors, but to have no interactions with the background factors. A factor is said to have a random effect if it influences the variances of the means of scaled score
vectors but not the mean of the means of scaled score vectors. The random effect accounts for the variability in the sample composition across test administrations. The response of the model is the mean of scaled scores of each cross-class group for each administration. Given the composition of a test administration, the variances of the mean of scaled-score vectors for each group are inversely proportional to their group sizes, and therefore, the weight used in the weighted mixed model is the group size. Luo et al. concluded that the interaction of Language and Reason has fixed effects on the mean of scaled scores of one of the test sections and that the interaction of Country and Language has fixed effects on the mean of scaled scores of the other test section. In addition, Luo et al.’s study seemed to indicate that the random effect of Test Administration has a significant effect on the mean of scaled scores of the two test sections separately. They hypothesized that the variability of the composition of the sample across administrations is the source of this significant effect.

The results from the multivariate weighted mixed model can be further applied to identify unusual results at a specific administration. A target population of all test takers has to be defined. If the population is known and the samples at each administration are drawn from it, then a prediction interval can be calculated. If for any of the analyzed tests, an observed mean of scaled score is outside the prediction interval, this indicates that there might be some other factors that might impact the mean of the scaled scores but are not accounted for in the model. Hence, the Luo et al. study (2009) suggested that building a target population with a specific composition provides a way to detect unusual test administrations. Specifying a target population is a challenging undertaking for most educational assessments that do not have a sampling scheme underlying the data collection. Survey assessments, on the other hand, do have a clear target population, and various subgroups can be assigned weights appropriately. Defining a target population for complex educational assessments and creating appropriate weights for its subgroups is an area that needs further research. The studies conducted by Qian et al. (2012) and Duong and von Davier (2012) are preliminary attempts to address these questions.

The study by Haberman, Guo, Liu, and Dorans (2008) examined trends in the SAT means and consistency of SAT raw-to-scale conversions for about 54 SAT administrations across 9 years. Descriptive statistics and analysis of variance were used. This method suggested a reasonable upper bound on errors and provided information concerning the stability of test construction, among other sources of variation.
Conclusions

This paper presents a new perspective on quality control in assessments that is appropriate for the new generation of tests that have a continuous or almost continuous administration mode and that are delivered on the computer (and therefore, allow for the collection of additional information, such as response time). These types of assessments include linear tests but also computer adaptive tests, multistage adaptive tests, and linear on-the-fly tests. Moreover, the tools described here can be applied to other assessment variables of interest.

The perspective I take on scale maintenance is that equating designs, samples, and common items should be monitored, tightly controlled, and regularly adjusted as needed to ensure the preservation of the meaning of the test scores. This perspective follows the recommendations of Dorans (2002), who described the scale of the reported scores as an infrastructure of the test, which as with any infrastructure, needs careful and regular maintenance. Consequently, the need to monitor and maintain the stability of the scale score leads to new approaches for control and adjustment, such as tightening the control of the linking parameters, adjusting the samples to match a target distribution, and investigating relevant equating subgroups in order to obtain a better equating procedure (for details, see the papers of Duong & von Davier, 2012; Haberman & Yang, 2011; Qian et al., 2012).

As with all new applications, the approaches described here require more in-depth analyses to refine them for matching the type of data from educational assessments. Other promising research investigates the usefulness of dynamic linear models applied to the consistency of linked IRT parameters (Wanjoji, van Rijn, & von Davier, 2012) or the application of linear mixed effects models applied to individual scores (Liu, Lee, & von Davier, 2012). Future research might use explorative data mining techniques on the response data and background variables and process data from many test administration over several years. Yao, von Davier, and Haberman (2012) are working on such an application. The theoretical and practical implications of the issues discussed in this paper are crucial for all standardized assessments with nontraditional equating designs and features.
References

Notes

1. Note that the discussion provided in this paper is appropriate for tests for which the distribution of the ability of the test takers is assumed to be unchanged over time (except for seasonality effects that are discussed later in the paper). This assumption insures that the stochastic process (resulted after the seasonality was accounted for) is stationary, which in turn, is a required assumption for the time-series models. Therefore, this type of analysis is not appropriate for longitudinal data or vertical scaling data.

2. Individual security breaches are also detrimental to test validity. Different procedures are used additionally to detect those situations.

3. In most operational programs, equating is done under the assumption of similar ability distributions across administrations.

4. The sample standard deviation might be biased. See the National Institute of Standards and Technology (n.d.) for the appropriate formulas for the expected value of the sample standard deviation and for the standard deviation of the sample standard deviation.

5. Item parameter estimates need to be put on the same IRT scale before score equating so that the average form difficulty can be compared from one test form to another.

6. Equation 2 shows the use of a time-series model as a data mining tool; that is, as a tool for detecting significant effects of factors of interests. The model in Equation 2 is also called an ARMA with an exogenous input model or an ARMAX model. One could apply the time-series model directly to X_t, as is the case with the harmonic regression and with the hidden Markov systems (with one state).