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i 

Abstract 

Differential item functioning (DIF) analysis is a key component in the evaluation of the fairness 

and validity of educational tests. The goal of this project was to review the status of ETS DIF 

analysis procedures, focusing on three aspects: (a) the nature and stringency of the statistical 

rules used to flag items, (b) the minimum sample size requirements that are currently in place for 

DIF analysis, and (c) the efficacy of criterion refinement. The main findings of the review are as 

follows: 

• The ETS C rule often displays low DIF detection rates even when samples are large. 

• With improved flagging rules in place, minimum sample size requirements could 

probably be relaxed. In addition, updated rules for combining data across 

administrations could allow DIF analyses to be performed in a broader range of 

situations. 

• Refinement of the matching criterion improves detection rates when DIF is primarily 

in one direction but can depress detection rates when DIF is balanced. If nothing is 

known about the likely pattern of DIF, refinement is advisable. 

Each of these findings is discussed in detail, focusing on the case of dichotomous items.  

Key words: differential item functioning (DIF), test fairness, refinement, Mantel-Haenszel DIF, 

empirical Bayes DIF 
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Differential item functioning (DIF) analysis is a key component in the evaluation of the 

fairness and validity of educational tests. As part of its standard operations, ETS conducts DIF 

analyses on thousands of items per year. It is therefore important that these analyses be 

conducted in such a way as to produce the most accurate and useful results. The goal of this 

project was to investigate the status of ETS DIF analysis procedures, focusing on three aspects: 

• the nature and stringency of the statistical rules used to flag items,  

• the minimum sample size requirements that are currently in place for DIF analysis,  

• and the efficacy of criterion refinement. 

It was suggested by ETS Research management that this project could serve as a first step 

in a more comprehensive multiyear review of the ETS DIF policies and procedures. Although 

the current system has served ETS well, it is worthwhile to reexamine its provisions. The project 

comprised several activities: a literature review, a series of simulations, and a survey of ETS 

staff. This report also draws on a study conducted by Zwick, Ye, and Isham (in press) as well as 

other past research.  

The main findings of the review are as follows: 

• The ETS C rule often displays low DIF detection rates even when samples are large. 

• With improved flagging rules in place, minimum sample size requirements could 

probably be relaxed. In addition, updated rules for combining data across 

administrations could allow DIF analyses to be performed in a broader range of 

situations. 

• Refinement of the matching criterion improves detection rates when DIF is 

unbalanced (i.e., primarily in one direction), but can depress detection rates when DIF 

is balanced. If nothing is known about the likely pattern of DIF, refinement is 

advisable. 

Each of these findings is discussed in detail below, focusing on the case of dichotomous items. 

The final section of the paper is a summary of recommendations and a discussion of other DIF 

issues that may merit further examination. The results of a 2011 survey of ETS staff are 

discussed in that context. 
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Nature and Stringency of Rules Used to Identify Differential Item Functioning   

Items at ETS 

The ETS system for DIF classification has been in place for nearly 25 years. As described 

by Zieky (1993, p. 342), statistical analyses are used to designate items as A (negligible or 

nonsignificant DIF), B (slight to moderate DIF), or C (moderate to large DIF). Over the years, 

minor changes have been made in the statistical formulae used to assign items to these 

categories, but the overall classification system has remained intact. The formulae, as well as the 

sample size requirements for DIF analysis, are currently documented in a series of memos, 

dating back to a 1987 memo by Nancy Petersen, who was then a senior psychometrician at ETS.  

As detailed below, the rules currently used at ETS classify items as A, B, or C items 

depending on the magnitude of the Mantel-Haenszel delta difference (MH D-DIF) statistic and 

its statistical significance.1

R1kN

 The Mantel-Haenszel (1959) approach to DIF analysis, developed by 

Holland and Thayer (1988), involves the creation of K two-by-two tables, where K is the number 

of score categories on the matching criterion. For the kth score level, the data can be summarized 

as follows:  and F1kN  denote the numbers of examinees in the reference and focal groups, 

respectively, who answered correctly; R0kN  and F0kN  are the numbers of examinees in the 

reference and focal groups who answered incorrectly. kN  is the total number of examinees. The 

Mantel-Haenszel estimate of the conditional odds ratio is defined as  

/
ˆ

/

R1k F 0k k
k

MH
R0k F 1k k

k

N N N

N N N
α =

∑
∑

. (1) 

The corresponding population parameter, MHα , is assumed to be constant over all levels of the 

matching criterion.  

The MH D-DIF index, which was developed by Holland and Thayer (1988), is defined as 

follows: 

MH D-DIF = ˆ2.35ln( )MHα− . (2) 

By convention, ˆMHα is formulated so that MH-D-DIF is negative when the focal group odds of 

correct response are less than the reference group odds, conditional on the matching variable. 
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In developing the MH D-DIF index, Holland and Thayer (1985) elected to express the 

statistic on the ETS delta scale of item difficulty. An MH D-DIF value of -1, for example, means 

that the item is estimated to be more difficult for the focal group than for the reference group by 

an average of one delta point, conditional on ability. Expressing the amount of DIF in this way 

was intended to make the MH D-DIF statistic more useful for ETS test developers.  

For those who prefer to think in terms of odds ratios, an MH D-DIF statistic of -1 implies 

that -2.35 ln ˆMHα  = -1, or ˆMHα  = 1.530.  This means that the odds of answering correctly for the 

reference group are more than 50% higher than the odds of answering correctly for comparable 

members of the focal group. (An MH D-DIF of +1 means that the odds of answering correctly 

for the reference group are 1/1.530 = .653 times the odds of answering correctly for comparable 

members of the focal group.) 

Detailed Analysis of A, B, and C Categories 

As noted earlier, ETS classifies DIF items into three categories: A, B, and C. Items 

labeled B and C are further distinguished by their signs: B+ and C+ items are those that show 

DIF in favor of the focal group; B- and C- items show DIF in favor of the reference group. For 

the purpose at hand, it is useful to first define an A item, then a C, and last, a B.  

An A item is one in which either the Mantel-Haenszel (MH) chi-square statistic is not 

significant at the 5% level or MH D-DIF is smaller than 1 in absolute value. The MH chi-square 

statistic, as implemented at ETS, is defined as follows: 

21(| ( ) | )
2 ,

( )

R1k R1k
k k

R1k
k

N E N
MH CHISQ

Var N

− −
=

∑ ∑
∑

 (3) 

where 1( ) /R1k Rk k kE N n m N= , 1 0
2( )
( 1)

Rk Fk k k
R1k

k k

n n m mVar N
N N

=
−

, nRk and nFk denote the numbers of 

examinees in the reference and focal groups, respectively, m1k represents the number of 

examinees who answered the item correctly, and m0k is the number who answered incorrectly. 

The statistic in Equation 3 has a chi-square distribution with one degree of freedom when the 

null hypothesis of a constant odds ratio equal to one is true. (The ½ that is subtracted in the 
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numerator is a continuity correction, designed to improve the approximation of a discrete 

distribution with a continuous distribution. It is discussed further in a later section.) 

In order to qualify as a C item, the MH D-DIF statistic must be significantly greater than 

1 in absolute value at the 5% level and must have an absolute value of 1.5 or more. The 

hypothesis testing procedure is complicated by the fact that there is a composite null 

hypothesis—that is, the null hypothesis corresponds to a region (between -1 and +1), not a point. 

In an internal ETS memo, Paul Holland (2004) showed that the correct critical value is the 95th 

percentile of the standard normal distribution, which is 1.645. Therefore, an item is classified as 

a C if 

(|MH D-DIF|-1)/SE(MH D-DIF) > 1.645, (4) 

where SE(MH D-DIF) is the estimated standard error of MH D-DIF, and if  

|MH D-DIF| ≥ 1.5. (5) 

It is worth noting that, if SE(MH D-DIF) ≤ .304, then the statistical significance criterion in  

Equation 4 is superfluous because any item that meets the criterion in Equation 5 will also meet 

the criterion in Equation 4. 

Items that do not meet the definition for either A or C items are considered B items. More 

explicitly, an item is declared a B item if it does not meet the qualifications for a C item and if 

the following two conditions hold:  

MH CHISQ > 3.84 (6) 

and 

|MH D-DIF| ≥ 1. (7) 

Holland (2004) noted that the rule in (6) is asymptotically equivalent to the rule, 

(|MH D-DIF|)/SE(MH D-DIF) > 1.96. (8) 

We can show that if SE(MH D-DIF)  < .510, then the statistical significance criterion in Equation 

8, which is roughly equivalent to the rule in Equation 6, will be satisfied by any MH-D-DIF 
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value that satisfies Equation 7. That is, if SE(MH D-DIF) is small enough, then any MH-D-DIF 

with an absolute value of 1 or more will satisfy Equation 8. 2

According to Dorans (personal communication, August 16, 2011), the reasoning behind 

the cutoffs of 1 and 1.5 embedded in these definitions was as follows: “A delta difference of 1 

point, while undesirable, can be tolerated. . . . A difference of 2 or more, however, should be 

avoided. An unrounded delta difference of 1.5 represents the lower limit of a delta of 2.0 (1.5 to 

2.5).”  

  

In the next section of this review, some simulation findings on the effectiveness of 

alternative flagging rules are presented, followed by some considerations for modifying the 

current ETS rules. 

Effectiveness of Three Rules for Flagging Differential Item Functioning Items 

Let us examine the effectiveness of several rules for identifying items with DIF, based on 

the results of simulation studies. Table 1 shows results for each item with DIF exceeding 1 in the 

MH D-DIF metric3

The last row of the table shows, for each DIF rule, the average rate of DIF identification 

for the 21 items in the simulation that had only negligible DIF (less than 1 in magnitude). If the 

 that were included in a simulation conducted by Zwick et al. (in press). The 

table includes conditions in which the reference and focal groups each had 500 members, well 

above ETS sample size criteria. Column 1 gives the magnitude of DIF in the MH D-DIF metric. 

Columns 2 and 3 give the DIF detection rates for the ETS C rule. The column labeled same 

pertains to results obtained when the reference and focal group have the same ability distribution 

(standard normal); the column labeled different pertains to results obtained when the focal group 

distribution is one standard deviation lower than the reference group distribution. In general, DIF 

methods that use observed-score matching perform more poorly when the groups have different 

ability distributions because matching tends to be less accurate (see Uttaro & Millsap, 1994; 

Zwick, 1990). The next pair of columns provides results for the rule that flags items that are at 

least a B (i.e., items that are B’s or C’s). The third pair of columns provides results of a flagging 

approach originally presented in Zwick, Thayer, and Lewis (2000) and applied in modified form 

by Zwick et al. (in press). This rule, along with the results in the last two columns, labeled 

revised ETS rule, is discussed further below. For each rule, the average detection rate for the 13 

items with DIF exceeding 1 in magnitude is given. 
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Table 1 

Flagging Rates for Differential Item Functioning Items in Simulated Data With 500 Members per Group 

Simulated DIF in MH D-DIF 
metric 

DIF flagging rule 
C rule B rule (Flag if B or C) EB loss function 

conservative rule 
Revised ETS rule 

Group ability distributions 
Same Different Same Different Same Different Same Different 

-2.64 96.6 99.8 100.0 100.0  99.8 100.0 100.0 100.0 
-1.85 82.0 59.2  99.8 97.0  95.4 82.8 97.2 90.4 
-1.36 35.6 15.2 88.6 72.6 69.8 37.8 77.2 52.6 
-1.23 12.6 31.0 68.2 87.4 37.8 60.8 49.6 73.2 
-1.10 10.2 4.6 69.4 45.8 33.2 18.8 42.8 25.8 
-1.04 7.4 3.0 58.0 42.4 25.2 12.6 31.8 21.2 
1.02 13.2 5.2 70.6 45.6 40.2 16.2 49.4 30.8 
1.18 12.0 2.4 64.6 37.4 36.0 13.4 42.6 20.2 
1.23 19.2 12.4 80.2 70.0 50.4 37.6 59.6 50.2 
1.80 82.4 37.2  99.6 88.0  95.0 68.2 97.0 77.8 
1.83 57.4 19.8  96.4 81.0  85.6 47.6 90.6 62.4 
2.03 43.2 11.4  86.2 63.0  79.4 36.6 85.6 51.4 
3.12 100.0 97.2 100.0 100.0 100.0 100.0 100.0 100.0 

Average flagging rate for above 
items (true B and C items)  44.0 30.6 83.2 71.6 65.2 48.6 71.0 58.2 

Average flagging rate for 21 
items (not shown) with simulated 
DIF < 1 (true A items) 

0.4 0.3 10.8 8.4 3.1 2.2 4.8 4.6 

Note. No refinement was used in these analyses. Individual item results are based on 500 replications. The average flagging rate 

for true A items is based on 21 items, with 500 replications per item. The C rule is identical to the ETS C rule. The B rule flags 

items that are B or C according to the ETS criteria. The EB loss function conservative rule is a variation on a rule developed by 

Zwick et al. (2000). Details on the rules and the simulation procedures are given in Zwick et al. (in press). DIF = differential item 

functioning, EB = empirical Bayes, MH D-DIF = Mantel-Haenszel delta difference. 
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null hypothesis is assumed to correspond to the region between -1 and +1 in the MH D-DIF 

metric, as described by Holland (2004), this is an average Type I error rate and will be referred to 

as such here.4

The rules in Table 1 differ substantially in terms of their Type I error rates. Consider the 

C and B rules. Under the C rule, it is very rare for an item with negligible DIF (an A item) to be 

mistakenly flagged: These false positives occur less than one half of one percent of the time. 

Under the B rule (which flags B and C items), the average flagging rate for A items is 8% to 

11%. The DIF identification rates parallel the Type I error rates: For the C rule, the average 

identification rate is 44% when ability distributions for the two groups are the same and 31% 

when they are different. The detection rate for most items is less than 50%. This includes some 

items with substantial DIF. For example, an item with DIF of 2.03 in the MH metric is flagged 

only 11% of the time when the reference and focal group distributions differ by one standard 

deviation. (The result for this item is a good illustration of the fact that flagging rates are not a 

simple function of the true DIF values; item difficulty and discrimination play a role as well.) 

For DIF values close to 1, the identification level falls as low as 2.4%. The B rule, by contrast, 

always has flagging rates of at least 58% when the two groups have the same ability distribution, 

with an average rate of 83%. When the groups have different ability distributions, the rates fall 

below 50% for four items, reaching a minimum of 37% for an item with DIF of 1.18. The 

average rate in this condition is 72%.  

 One would like this rate to be low. On the other hand, if one is willing to tolerate 

only a very low level of false identification, the power to detect existing DIF will also be low. 

This is the usual trade-off between Type I error (rejecting the null hypothesis when it is true) and 

Type II error (failing to reject the null hypothesis when it is false). In the DIF context, Type I 

error may be of less concern than in more conventional hypothesis testing situations: From the 

perspective of equity in assessment, the costs of falsely identifying an item as having DIF are 

low, while the costs of failing to identify a DIF item are high. (This is the rationale that has been 

given for not imposing a Bonferroni-type correction to control the overall Type I error rate in 

ETS DIF assessment.) 

The rule labeled EB loss function conservative rule in Table 1 does not use either 

statistical significance testing or minimum values for the magnitude of MH D-DIF. The rule is 

based on a Bayesian approach in which the distribution of a presumed DIF parameter is 

estimated. The decision about whether to flag an item is based on a loss function. The empirical 
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Bayes (EB) procedures were developed by Zwick, Thayer, and Lewis (1999, 2000) based on 

suggestions by Holland (1987a, 1987b) and others. In the EB approach, a prior distribution for 

the DIF parameter  is assumed. MH statistics and their standard errors from the current test 

administration are used as a basis for estimating the mean and variance of the prior. Because the 

prior distribution and the likelihood function are both assumed normal, the posterior distribution 

of  is also normal and its mean serves as the EB estimate of DIF. The EB approach was found 

to produce more stable DIF estimates than the ordinary MH method. Also, a loss-function-based 

DIF detection rule that made use of the EB results was often better able to identify DIF items 

than the ABC classification system. The particular rule in Table 1 is a modified version of the 

original rule developed by Zwick et al. (2000; see also Sinharay, Dorans, Grant, & Blew, 2009). 

The results of this modified rule (detailed in Zwick et al., in press) illustrate that approaches 

other than significance testing and effect size criteria can yield good results. Although the EB 

rule has Type I error rates higher than those of the C rule, its error rates of 2% to 3% are well 

below conventional levels. The EB rule has flagging rates much higher than the C rule. Consider 

the item with DIF of 2.03 in the condition where the reference and focal groups have the same 

distribution. The EB rule flags this item 79% of the time, compared to 43% for the C rule.  

Table 2 shows detection rates and Type I error rates for conditions in which the reference 

group had 200 members and the focal group had 50 members. These sample sizes do not meet 

ETS guidelines for DIF analysis. As expected, detection rates are much lower than for the large-

sample conditions of Table 1. Again, the C rule has very low Type I error rates but has detection 

rates averaging only 18% and 13% in the same and different conditions, respectively. The B rule 

does much better, with Type I error rates of around 5% and detection rates of 32% and 25% for 

the same and different conditions. Although the EB estimates themselves performed well in the 

small-sample conditions (i.e., they had substantially smaller average departures from their target 

values than the MH D-DIF statistics), the loss-function based rule was insufficiently stringent 

here, at least in the same condition, where the average Type I error rate was 16%. The average 

Type I error rate was 10% for the different condition. Detection rates averaged 48% and 30% in 

the same and different conditions, respectively. 

 

ω

 

ω
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Table 2 

Flagging Rates for Differential Item Functioning Items in Simulated Data With 200 Members 

in the Reference Group and 50 Members in the Focal Group 

Simulated DIF in 
MH D-DIF metric 

DIF flagging rule 

C rule B rule  
(Flag if B or C) 

EB loss function-
conservative rule 

Group ability distributions 
Same Different Same Different Same Different 

-2.64 40.4 53.2 51.8 71.2 70.0 66.2 
-1.85 28.6 16.0 54.6 33.6 62.0 40.8 
-1.36 11.2 8.2 31.0 19.0 44.8 24.4 
-1.23 7.0 9.8 12.0 22.6 32.2 31.4 
-1.10 7.6 3.4 21.4 11.6 34.4 17.8 
-1.04 6.6 3.8 18.8 12.4 30.4 18.2 
1.02 7.2 4.2 18.2 10.4 33.4 17.2 
1.18 4.6 3.0 13.4 7.6 30.6 14.8 
1.23 7.4 6.6 24.4 16.4 38.8 21.8 
 1.80 27.2 10.0 52.2 25.0 63.4 29.4 
 1.83 16.6 8.8 29.2 21.4 51.4 27.4 
 2.03 3.8 5.4 5.2 10.4 42.4 21.8 
 3.12 61.2 35.0 78.8 57.0 86.4 54.8 

Average flagging 
rate for above items 
(true B and C items) 

17.6 12.9 31.6 24.5 47.7 29.7 

Average flagging 
rate for 21 items  
(not shown) with 
simulated DIF < 1 
(true A items) 

1.6 1.4 5.2 4.5 15.9 10.0 

Note.  No refinement was used in these analyses. Individual item results are based on 500 

replications. The average flagging rate for true A Items is based on 21 items, with 500 

replications per item. The C rule is identical to the ETS C rule. The B rule flags items that are B 

or C according to the ETS criteria. The EB loss function conservative rule is a variation on a rule 

developed by Zwick et al. (2000). Details on the rules and the simulation procedures are given in 

Zwick et al. (in press). DIF = differential item functioning, EB = empirical Bayes, MH D-DIF = 

Mantel-Haenszel delta difference. 
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Recommendations—Developing More Effective Differential Item Functioning Flagging 

Rules 

To evaluate the adequacy of a decision rule, it is necessary to have a goal in mind. For 

example, the DIF rule should correctly detect DIF exceeding 1.5 in magnitude at least 50% of 

the time, with a Type I error rate averaging no more than 5% per item. Table 1 shows that with 

500 members per group, even this modest goal is not close to being attained by the C rule; it is 

closer to being met by the B rule and the EB rule. Clearly, the C rule optimizes Type I error 

control to the detriment of detection. (Tables 5 and 6, which are discussed in the section on 

refinement, provide further evidence of the C rule’s low detection rate.) 

Two possible directions for devising more effective DIF rules are (a) the development of 

a rule, similar in form to the current ETS rules, that is less stringent than the C rule but somewhat 

more stringent than the B rule and (b) the development of a loss function-based rule that results 

in smaller Type I error rates for conditions similar to those in Table 2. For either type of rule, the 

first step should be to reconsider the issue of minimal DIF magnitude that is of concern (and is 

therefore important to detect) as well as the level of false positives that can be tolerated. (As 

discussed further in the overall summary and discussion, this minimal DIF magnitude need not 

be expressed in the delta metric.) Then, a combination of theoretical findings and simulations can 

be used to develop a rule that is consistent with the goals that have been defined.  

As one example of a possible alternative flagging procedure, consider a rule that flags 

items if the MH CHISQ statistic is significant at the 5% level and the absolute value of the MH 

D-DIF statistic is at least 1.2. The results of this rule for DIF analyses with 500 members per 

group are given in the two right-most columns of Table 1, under the heading labeled revised ETS 

rule. For items with true DIF of 1.5 or more, the detection rates range from 51.4% to 100%. The 

average Type I error rates are slightly under 5%. When the reference group had 200 members 

and the focal group had 50 members, results were identical to those for the B rule in Table 2. 

(MH D-DIF values between 1 and 1.2 always led to nonsignificant chi-square values and 

therefore did not lead to DIF flagging under either the B rule or the revised ETS rule.) 

One question that merits further attention is whether it is useful to maintain three 

categories of DIF severity (A, B, and C). ETS guidelines for test development incorporate all 

three categories. A 1988 memorandum states that, in general, “Items from Category A should be 

selected in preference to items from Categories B or C. . . . For items in Category B, when there 
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is a choice among otherwise equally appropriate items, then items with smaller absolute MH D-

DIF values should be selected. . . . Items from Category C will NOT be used unless they are 

judged to be essential to meet test specifications” (Educational Testing Service, 1988, p. 8; 

emphasis in original). Although this guideline still plays a role in assessment development, it is 

the C rule that is typically used for purposes of identifying DIF items for review by committees 

or possible deletion. Only limited attention is paid to the B category in this context. Given the 

ambiguous status of the B category, it may be advisable to consider a binary classification 

system. 

Sample Size Requirements for ETS Differential Item Functioning Analysis 

The sample size requirements for ETS DIF analysis are currently documented in a series 

of memos, dating back to Petersen’s 1987 memo. Currently, ETS programs that do not meet 

sample size requirements for certain pairs of groups are exempt from the requirement to perform 

DIF analysis for those pairs of groups. According to a 2001 memo from senior ETS research 

directors Tim Davey and Cathy Wendler, at least 200 members in the smaller group and at least 

500 in total are needed for DIF analyses performed at the test assembly phase. For DIF analyses 

performed at the preliminary item analysis phase (after a test has been administered but before 

scores are reported), the minimum sample size requirements are 300 members in the smaller 

group and 700 in total. The rationale for the sample size requirements is that analysis results are 

likely to be unstable with smaller samples.  

Among the approaches that have been proposed in the research literature to enhance the 

utility of MH DIF detection methods in small samples are (a) exact, jackknife, bootstrap, or 

randomization-based versions of the MH method; (b) Bayesian modifications of the MH 

procedures; (c) the use of large nominal Type I error rates with the MH chi-square test; (d) 

elimination of the continuity correction in the MH chi-square test; and (e) aggregation of DIF 

information across multiple administrations (or administration windows). Each of these 

proposals is discussed below. 

The MH CHISQ statistic is approximately distributed as chi-square with one degree of 

freedom under the null hypothesis. Because of a concern that the approximation may be inadequate 

in small samples, some DIF researchers have proposed analogues to the MH chi-square test that do 

not rely on large-sample approximations. Camilli and Smith (1990) applied a randomization-based 

approximation to the exact permutation test corresponding to the MH test, as well as a procedure in 
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which the log of the MH odds ratio estimate is divided by a jackknife estimate of its standard error. 

Their analyses were based on real and simulated data with a reference group sample size of 1,085 

and a focal group sample size of 300. They found that the alternative statistical approaches led to 

essentially the same results as “the unadorned [continuity-corrected] MH chi square” (Camilli & 

Smith, p. 63). Parshall and Miller (1995) compared the MH chi-square (without continuity 

correction) to a procedure based on the exact permutation test. The reference group sample size 

was 500 and the focal group sample size ranged from 25 to 200. The authors concluded that the 

“exact methods offered no particular advantage over the asymptotic approach under small-sample 

conditions” (p. 311). Similarly, Lu and Dunbar (1996) found that a bootstrap version of the MH 

yielded results that were very similar to those of the standard procedure even when the focal group 

sample size was less than 100. 

Bayesian elaborations of MH DIF analysis were developed by Zwick et al. (1999, 2000; 

see also Zwick & Thayer, 2002); modified versions of these procedures were studied by 

Sinharay et al. (2009) and Zwick et al. (in press).5

In an investigation that included the EB procedures developed by Zwick et al. (1999, 

2000), Fidalgo, Hashimoto, Bartram, and Muñiz (2007) found that on average, the EB estimates 

had smaller RMSRs than MH D-DIF in each of 10 simulation conditions. The difference in 

average RMSRs was largest when the reference and focal groups both had 50 members. In this 

case, the average RMSR for the EB estimates was .85 in the MH metric, compared to 1.35 for 

MH D-DIF (p. 310). Nevertheless, Fidalgo et al. came to a negative conclusion regarding the EB 

procedures, stating that the greater stability of the EB estimator was “limited by its considerable 

bias” (p. 309). Fidalgo et al. also critiqued the loss-function-based approach used by Zwick et al. 

(2000), apparently not recognizing the fact that, like any flagging procedure, it can be made more 

or less stringent (e.g., see Zwick et al., in press). 

 These researchers found that, in general, 

Bayesian DIF statistics were more stable than the MH D-DIF statistic in small samples. For 

example, Zwick et al. (1999) examined root mean square residuals (RMSRs) that compared EB 

DIF statistics and MH D-DIF statistics to their true values in a simulation study. They found that 

for “samples of 200 reference group members and 50 focal group members, the behavior of the 

EB point estimates was substantially superior to that of MH D-DIF. On the average, the values of 

MH D-DIF differed from the true DIF values by about 1 in the MH metric; the median RMSR for 

the EB estimates was .65” (p. 18).  
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Fidalgo and his colleagues have advocated using a nominal Type I error rate of .20 when 

performing a MH chi-square test in small samples. It is, of course, more likely that DIF will be 

detected with α = .20 than with a more conventional alpha level, but high Type I error rates will 

be an inevitable result as well. In their simulation study, Fidalgo, Ferreres, and Muñiz (2004, p. 

932) found that the empirical Type I error rate ranged from .13 to .17 for this procedure for 

combined sample sizes ranging from 100 to 250. When both groups had 500 members, Fidalgo 

et al. (2007, p. 308) found Type I error rates as high as .27. 

Paek (2010), noting the conservative nature of the MH chi-square with continuity 

correction (see Equation 3), suggested that the continuity correction be abandoned. His 

simulation, which confirms earlier investigations, shows that the rejection rate for the continuity-

corrected chi-square is less than the nominal value in the null case. The chi-square without 

continuity correction produces Type I error rates closer to the nominal value and has a lower 

Type II error rate. The difference between the two versions of the MH chi-square is particularly 

notable when samples are small. For example, when both groups had 100 members, the corrected 

chi-square, performed at α = .05, had an error rate of approximately .03, while the uncorrected 

chi-square had an error rate essentially equal to the nominal level.  

However, in arguing for the use of the continuity correction in the MH chi-square, 

Holland and Thayer (1988) noted that the “effect of the continuity correction is to improve the 

calculation of the observed significance levels using the chi-square table rather than to make the 

size of the test equal to the nominal value. Hence simulation studies routinely find that the actual 

size of a test based on [the corrected version] is smaller than the nominal value. . . . The 

continuity correction is simply to improve the approximation of a discrete distribution . . . by a 

continuous distribution” (p. 135).6

Another way to address the problem of small sample sizes in DIF analysis is to combine data 

from multiple administrations. A 2001 memo from research directors Tim Davey and Cathy Wendler 

provided the following advice: “If necessary, pool data from two consecutive administrations within 

the same 12-month period in order to meet the minimum sample size requirements.” This approach 

 Also, as regards ETS DIF procedures, it is important to 

recognize that the continuity correction has no bearing on the identification of C items, because 

this identification is based on Equations 4 and 5, rather than on MH CHISQ. The decision about 

whether to incorporate the continuity correction does affect the determination of whether an item 

is an A or a B item (see Equation 6). 
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(pooling the data and then performing the usual analyses) was formally investigated by Zwick et al. 

(in press), who labeled it the combined-data MH method. They compared it to another approach, 

which has apparently never been applied in practice, the average MH method. For each item, this 

approach uses the weighted average of MH D-DIF statistics from multiple administrations, as well 

as the standard error of that average, to classify the item into the three ETS categories. As a third 

approach to combining MH results, Zwick et al. (in press) introduced the Bayesian updating (BU) 

method, which is a multiple-administration version of the EB method described above. In the BU 

method, the item’s DIF history, as well as its current MH results, is used in determining whether the 

item should be flagged. The flagging rules are based on loss functions, as in the EB method. All 

three methods of combining MH results appear to hold promise. The combined-data MH and 

average MH approaches performed very similarly. The BU approach usually performed similarly to 

or somewhat better than the other two approaches (Zwick et al., in press, Table 7). 

Recommendations—Sample Size Requirements  

Two useful directions for improving DIF detection in small samples are (a) the 

investigation of whether revised flagging rules could yield acceptable results in samples smaller 

than the current ETS minimums and (b) the reconsideration of rules and analysis procedures for 

combining data across multiple administrations (or administration windows). Each of these 

options is discussed below. 

Further research could be conducted to explore the range of sample sizes for which 

certain DIF rules are likely to be effective. Theoretical research on this topic is possible, but 

given the many variables that could be manipulated (group distributions, number of test items, 

prevalence, size of DIF, etc.), some simulation research is inevitable. It seems likely that 

adjusting the flagging rules would allow the current minimum sample size rules to be relaxed. As 

one example, consider Table 3, which gives the results of applying the revised ETS rule in Table 

1 to a data set in which nR = 500, nF = 100. Although the sample sizes do not meet ETS 

guidelines, the detection rates (an average of 59% for the same-distribution case and 46% for the 

different-distribution case) are far higher than those obtained using the ETS C rule when nR = nF 

= 500. The Type I error rates are also much higher (averaging roughly 9% and 7%, respectively 

for the same- and different-distribution cases), but might be considered acceptable. (Again, note 

that the definition of Type I error used here differs from the conventional definition. 

Conventional Type I error rates would be lower.) 
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Table 3 

Flagging Rates for Differential Item Functioning Items in Simulated Data  

With 500 Members in the Reference Group and 100 Members in the Focal Group 

Simulated DIF in  
MH D-DIF metric 

Revised ETS rule 
Ability distributions 
Same Different 

-2.64 90.6 97.0 
-1.85 88.8 70.2 
-1.36 59.2 39.0 
-1.23 33.8 44.8 
-1.10 48.4 29.8 
-1.04 39.2 27.4 
1.02 41.0 20.6 
1.18 36.0 18.2 
1.23 55.0 39.4 
 1.80 83.4 52.0 
 1.83 60.6 44.8 
 2.03 31.0 24.2 
 3.12 98.8 91.2 

Average flagging  
rate for above items  
(true B and C items) 

58.9 46.0 

Average flagging  
rate for 21 items  
(not shown) with 
simulated DIF < 1 
(true A items) 9.3 6.7 

Note. No refinement was used in these analyses. Individual item results are based on 500 

replications. The average flagging rate for true A items is based on 21 items, with 500 

replications per item. DIF = differential item functioning, EB = empirical Bayes,  

MH D-DIF = Mantel-Haenszel delta difference.  

Further research on the aggregation approaches would also be useful, as well as some 

reconsideration of the current guidelines about combining data for DIF analyses. For example, 

allowing data to be pooled over a 24-month interval, rather than a 12-month interval, could be 

considered. Also, provisional DIF results based on small samples could be obtained and then 

aggregated later to obtain more stable results. 
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Criterion Refinement in Differential Item Functioning Analyses 

Many ETS testing programs make use of criterion refinement procedures in conducting 

DIF analyses. Refinement is intended to improve the quality of the matching variable by 

removing items identified as having DIF in a preliminary round of analysis. As implemented at 

ETS (in GENASYS and, for NAEP, in the NDIF program), refinement involves the performance 

of two rounds of DIF analysis. In the second round, items that were classified as C items in the 

first round are deleted from the matching criterion. (An exception to this is that the studied item 

itself is always included.)  

In an informal report (Lord, 1976) that later appeared as a book chapter (Lord, 1977), 

Frederic Lord made what is perhaps the first published reference to criterion refinement (though 

he did not use either that term or purification, a term used in much of the early literature in this 

area). Lord incorporated a refinement procedure, an idea he later attributed to Gary Marco (Lord, 

1980, p. 220), as part of an item-response-theory-based study of item bias on the SAT. The 

recommendation to use criterion refinement when applying the MH DIF procedure was made by 

Holland and Thayer (1986a, 1986b, 1988, p. 42). Holland and Thayer stated that the 

recommendation was based on a conjecture. They cited a similar suggestion made by Kok, 

Mellenbergh, and van der Flier (1985) in connection with a logit-based DIF procedure. The 

recommendation to use refinement appeared in ETS DIF policy memos as early as 1987 

(Petersen, 1987) and was repeated by Dorans and Holland (1993, pp. 60–61). 

Some recent findings, however, did not support the use of refinement. In the course of a 

larger study, Zwick et al. (in press) compared refined and unrefined MH results for some 

simulated item response data and found a slight advantage for the unrefined results. This finding 

was in contrast to much of the existing literature. For example, Clauser, Mazor, and Hambleton 

(1993) conducted a simulation study that led them to conclude that refined results were “equal or 

superior” (p. 269). to unrefined results both in terms of Type I and Type II error. Recent reviews 

of the refinement literature (Colvin & Randall, 2011; French & Maller, 2007) concluded that 

refinement was typically found to have a favorable effect on the accuracy of DIF procedures. 

The Zwick et al. (in press) refinement analyses were in some ways similar to those of 

Clauser et al. (1993). As in their study, we simulated three-parameter logistic (3PL) data and 

modeled DIF as a difference between reference and focal group difficulty parameters. In 

addition, our surprising refinement results were based on a simulation condition similar to one 
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included in Clauser et al. There are many possible reasons for the discrepancy in conclusions. 

For example, Clauser et al. were not investigating the ETS DIF criteria but were looking only at 

whether the MH chi-square statistic was statistically significant at the .01 level. This was also the 

criterion for deleting items from the matching variable at the second stage, so the refinement 

process itself differed from the ETS procedure. One difference between the analyses that seems 

especially relevant is the pattern of the DIF that was modeled. In the Zwick et al. simulation, the 

differences in reference and focal group difficulties had an average near zero across the 34 items: 

That is, in a rough sense, positive and negative DIF were balanced. In the Clauser et al. study, all 

DIF was in one direction—against the focal group. If DIF is balanced, the “contaminated” 

matching variable that is used in an unrefined analysis may nevertheless be an adequate measure 

of proficiency. (Wang & Su, 2004, made a similar speculation.) Applying refinement may serve 

mainly to reduce the precision of the matching variable, degrading the results. In the Clauser et 

al. study, however, the unrefined matching variable had a systematic bias against the focal group 

members that was reduced by refinement. The disparity in results between the Clauser et al. 

study and our own analysis prompted us to carry out a comprehensive simulation study 

comparing refined and unrefined DIF results.  

Unlike previous simulation studies of refinement, our study examined the accuracy of 

DIF flagging rules that involve both effect size and statistical significance—the rules used at 

ETS. Also, in evaluating the simulation outcomes, we examined the properties of the unrefined 

and refined MH estimates (variance, bias, root mean square residual) in addition to the Type I 

rate and power associated with the unrefined and refined flagging procedures. A brief description 

of our analyses and key results appear here. Further detail appears in Zwick, Ye, and Isham 

(2012). 

Method 

Our simulation consisted of 40 conditions that varied in terms of the following factors:  

• Length of test (20 or 80 items) 

• Percentage of items on the test with DIF (0%, 10%, or 20%); the remaining items had 

true DIF values of 0 
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• Pattern of DIF: balanced DIF (i.e. DIF in both directions, constructed so that the sum 

of the true DIF values was approximately 0) or unbalanced DIF (all DIF in one 

direction—against the focal group) 

• Reference and focal group sample sizes (nR = nF = 500 or nR = 200, nF = 50) 

• Focal group distribution: The focal group ability distribution was either standard 

normal (N(0,1)) or normal with a mean of -1 and a variance of 1 (N(-1,1)). The 

reference group distribution was always N(0,1).  

Item responses were generated using the 3PL model, with 500 replications per item per 

condition. As a starting point, we used a subset of the items (i.e., the triples of item parameters) 

used by Clauser et al. (1993). To induce DIF, we added or subtracted .6 from the focal group 

difficulty parameter. The true DIF, expressed in the MH metric (see Note 3), ranged from 0 to 

2.4 in magnitude across the conditions in our study. Items with true DIF of at least 1.5 in 

magnitude were considered true C items. 

DIF analyses were conducted with and without refinement. Our refinement procedure 

was identical to that used operationally at ETS: An initial DIF run was conducted, after which 

items identified as C items were deleted from the matching criterion. (An exception to this is that 

the studied item itself is always included in the matching criterion.) A second DIF run was 

conducted to obtain the final results.  

Results 

Our key findings are listed below. Further details follow. 

1.   Type I error rates were extremely low and were generally similar for refined and 

unrefined MH methods. 

2.   DIF detection rates for refined and unrefined methods were generally similar in the 

small-n condition (nR = 200, nF = 50). Because of low statistical power, items were 

unlikely to be excluded from the matching variable in the preliminary DIF run, 

resulting in refined analyses that were similar to the unrefined analyses. 

3.   Differences in detection rates between refined and unrefined methods were small in 

the 80-item tests, even when 20% of the items had DIF, apparently because the 
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number of non-DIF items (always at least 64) was sufficient to allow for reasonably 

accurate matching. 

4.   For the large-n conditions (nR = nF = 500) and a test length of 20, the refined DIF 

method had a higher detection rate than the unrefined with unbalanced DIF; the 

unrefined method performed better with balanced DIF. This finding was consistent 

with our initial conjecture. 

5.   In the 20-item tests, some anomalous situations occurred in which refined methods 

produced a lower detection rate with large samples than with small samples.  

Tables 4 and 5 provide some results for the conditions that revealed the greatest 

differences between the refined and unrefined methods: 20-item tests with four DIF items each 

and large sample size (nR = nF = 500). There were four conditions with these characteristics. 

They varied in terms of DIF pattern and focal group distribution. In the tables, results for 

balanced conditions are compared to results for unbalanced conditions. Results are combined 

across the two focal group distributions. The true MH values for the four DIF items in the 

balanced conditions were 1.62, -1.63, 1.75, and -1.75. For the unbalanced conditions, they were -

1.58, -1.63, -1.72, and -1.75. The amount of DIF for the balanced and unbalanced conditions is 

roughly equivalent in terms of the absolute magnitude of the true MH values. 

Table 4 

Average Squared Bias, Variance, and Root Mean Square Residuals of Mantel-Haenszel 

Statistics Under Balanced and Unbalanced Patterns of Differential Item Functioning 

Statistic Balanced Unbalanced 
Refined Unrefined Refined Unrefined 

Average squared bias .0510 .0281 .0539 .0900 
Average variance .1412 .1398 .1413 .1397 
Average RMSR .4224 .4018 .4369 .4738 

Note. Tests had 20 items with four DIF items, nR = nF = 500. Each entry is an average  

over 20 items, with a total of 1,000 replications per item. DIF = differential item functioning, 

RMSR = root mean square residuals. 
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Table 5 

Differential Item Functioning Detection Rate With ETS C Rule Underbalanced and 

Unbalanced Patterns of Differential Item Functioning 

DIF procedure Balanced  Unbalanced  Average  
Refined  44.7 (0.8)  33.5 (0.7)  39.1 (0.5)  
Unrefined  49.2 (0.8)  25.4 (0.7)  37.3 (0.5)  
Average  46.9 (0.6)  29.5 (0.5)   

Note. Tests had 20 items with four DIF items, nR = nF = 500. Each entry in the balanced and 

unbalanced columns is an average over 4 items and each entry in the average column is an 

average over 8 items, with a total of 1,000 replications per item. Average Type I error rates were 

near zero for both DIF procedures. Standard errors of percentages are shown in parentheses.  

DIF = differential item functioning. 

Table 4 shows the average squared bias ( ), variance ( ), and root mean 

square residual ( ) of the MH statistics under balanced and unbalanced patterns of DIF. 

These quantities are defined as follows for each item (with item subscripts omitted for 

simplicity): 

, (9) 

 = ,  (10) 

 and 

= = , (11) 

where  represents the MH D-DIF statistic for replication r,  is the average of  

across replications,  is the true DIF value, and R is the number of replications. To construct 

Table 4, averages were then taken across the 20 items in a test and across the conditions 

corresponding to the two focal group distributions.  
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The average variances  of the MH D-DIF statistics do not differ much across the 

conditions and DIF methods (refined versus unrefined), but the average squared biases  
do. The refined method has an average  of about .05 in both the balanced and unbalanced 

conditions. The unrefined method, however, is somewhat less biased than the refined method in 

the balanced conditions (average  of .03) and more biased than the refined method in the 

unbalanced conditions (average  of .09). The  values follow a similar pattern. 

Table 5 shows the average DIF detection rate for each method and condition. (In these 

conditions, both the refined and unrefined methods had Type I error rates of zero or near-zero for 

the 16 non-DIF items that were included in each simulated test.) All the items included in the 

table were true C items. The detection rate for these items was defined as the number of 

replications in which the item was identified as a C using the ETS criteria, divided by the total 

number of replications (1,000 per item, since two conditions are combined in Table 5). The table 

shows that in the balanced conditions, the unrefined method has a somewhat higher detection 

rate (49.2% versus 44.7%), while in the unbalanced conditions, the refined method has a higher 

detection rate (33.5% versus 25.4%). In both the balanced and unbalanced cases, the method 

with the higher detection rate is the one with the lower average bias. 

Another notable finding is that regardless of whether refined or unrefined DIF methods 

are used, detection rates are much lower in the unbalanced than in the balanced conditions 

(29.5% versus 46.9%). This finding is probably the result of inadequate matching in the 

unbalanced conditions, even after refinement is applied.7

Examination of individual item results led to some interesting discoveries. For example, 

we found that for a particular item with a true DIF value of 1.62, the detection rate for the refined 

method was lower in one of the large-sample conditions (6.0%) than in a condition that was 

identical except for smaller sample size (8.4%). These detection rates, as well as the 

corresponding results for unrefined methods, are shown in Table 6. Although a lower detection 

rate in a larger sample seems impossible at first glance, the finding proved to be correct. Whereas 

unrefined analysis led to correct identification in 77 of 500 replications (a detection rate of 

15.4%) for nR = nF = 500, refinement produced an unbalanced matching variable—and a 

correspondingly lower detection rate—in 70 of these replications. Specifically, the refined 

analysis tended to exclude two items with large negative DIF from the matching criterion, while 

an item with large positive DIF (like the studied item) tended not to be excluded. Thus, the 
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matching variable was systematically distorted after refinement even though the DIF on the test 

was balanced prior to refinement. (There were no replications in which the refined analysis led to 

a correct identification, but unrefined analysis did not.) In the condition with nR = 200, nF = 50, 

there were few deletions due to refinement, so the DIF in the matching criterion tended to be 

balanced. These analyses provide an illustration of why refinement methods generally work more 

poorly than unrefined methods when DIF is balanced: They can disrupt the existing balance in 

the matching criterion.  

Table 6 

Detection Rates for an Item With True  

Differential Item Functioning of 1.62  

Sample sizes Refined Unrefined 
nR = 200, nF = 50 8.4  9.2 
nR = nF = 500 6.0 15.4 

Note. The test had 20 items with four DIF items, balanced DIF, and N (-1,1) focal group ability 

distribution. DIF = differential item functioning. 

Recommendations—Criterion Refinement 

Although it is often assumed that refinement always provides superior results, the actual 

situation proves to be more complex. If previous research or theoretical considerations suggest 

that DIF is likely to be balanced, then the unrefined approach is likely to produce better results, 

whereas if unbalanced DIF is expected, the opposite is true. In the absence of information, it is 

probably best to choose the refined method because on average, it is only slightly 

disadvantageous in balanced conditions, whereas the unrefined method tends to have 

substantially lower detection rates in unbalanced conditions. 

Overall Summary and Discussion 

DIF analysis is an essential element in the evaluation of the fairness and validity of 

educational tests. It is important that these analyses produce accurate and useful results. This 

project reviewed three aspects of ETS DIF procedures, focusing on the case of dichotomous 

items: the nature and stringency of the statistical rules used to flag items, the minimum sample 
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size requirements that are currently in place for DIF analysis, and the efficacy of criterion 

refinement. 

One conclusion of the review was that the ETS C rule often displays low DIF detection 

rates even when samples are large. A review of some possible alternative rules suggests that 

higher detection rates can be achieved without incurring excessive Type I error. Therefore, a 

reconsideration of the current flagging rules is recommended. A review of this kind should start 

with a reevaluation of the minimal size of DIF that is important to detect and the degree of false 

positives that can be tolerated. Because the utility of the B category is questionable, it may be 

advantageous to explore the possibility of establishing a two-category DIF classification system 

instead of the current three-category system. It is worth noting that determination of the smallest 

DIF that is important to detect need not be in terms of the delta metric, which is unlikely to be 

well understood outside ETS. The odds-ratio metric, discussed earlier in the paper, and the 

proportion-correct metric, as embodied in the STD P-DIF statistic of Dorans and Kulick (1986), 

are candidates for consideration.  

In his review of this paper, Neil Dorans made the further suggestion that future DIF 

flagging criteria could perhaps take into account the potential impact on test-takers of the 

presence of DIF in the situation at hand. Thus, the flagging criteria could take into account the 

number of items on the test, the way the test is scored, and the way the scores are used. 

A second finding of this review, which is related to the stringency of flagging criteria, is 

the conclusion that an improvement of the flagging rules could allow minimum sample size 

requirements to be relaxed. The determination of minimum sample sizes can also be guided by 

the decisions that are made about the minimal size of DIF that is important to detect and the 

amount of Type I error that is tolerable. In addition, there appear to be several satisfactory ways 

of aggregating DIF information across multiple administrations or administration windows (the 

simplest of which is to combine the data and perform the standard analyses). Therefore, it might 

be useful to relax the guidelines for doing so rather than simply exempting programs from 

performing DIF analyses for small groups.  

A third conclusion is that refinement of the matching criterion is helpful when DIF is 

unbalanced (i.e., primarily in one direction) but can be detrimental when DIF is balanced. If 

nothing is known in advance about the likely pattern of DIF, the MH procedure with refinement 

is advisable since its overall accuracy rate is higher than that of the unrefined procedure. 
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In addition to the analyses of flagging rules, minimum sample size, and criterion 

refinement, this DIF review also included a web-based survey of individuals involved in DIF 

analysis, review, or research at ETS. The goal of the survey, which was conducted in May 2011, 

was to help identify DIF issues perceived as being “most in need of further clarification, 

examination or reconsideration at ETS.” The respondents were asked to select these issues from 

a checklist of 17 possible responses.   

The items that were checked by at least 10 respondents were the following (in order of 

popularity): DIF analysis procedures for small samples, minimum sample size requirements, DIF 

analysis procedures for polytomous items, DIF analysis procedures for complex performance 

tasks, DIF analysis procedures for computerized adaptive tests, inclusion/exclusion of non-U.S. 

citizens and those for whom English is not the best language, and interpretability of DIF results 

by staff and review panels. The two most-endorsed items, then, concern sample size, the next 

three involve DIF analyses for specialized types of assessment, the sixth involves group 

composition, and the last is the key issue of interpretability. It is hoped that the findings of the 

DIF survey will be helpful in designing DIF analyses and DIF review processes and in crafting 

agendas for future research.  

Sample size issues were considered in the present study, and two other issues identified 

in the survey, DIF procedures for polytomous items and DIF procedures for performance tasks, 

are being addressed in a related ETS project: Tim Moses, Jinghua Liu, Adele Tan, Weiling 

Deng, and Neil Dorans have been conducting research on DIF analyses of constructed-response 

items as they are conducted at ETS (Tim Moses, personal communication, July 22, 2011). This 

project has been evaluating the various ways of defining matching variables for mixed format 

tests. These matching variables can be based on scores on the constructed-response items, scores 

on the multiple-choice items, or a sum or bivariate combination of the constructed-response and 

multiple-choice scores. The Moses et al. project has also considered the issues of inclusion of the 

studied item in the matching variable and the use of observed-score versus model-based 

matching variables. 

Other technical issues that could be considered in a more comprehensive review of ETS 

DIF procedures are the definition of appropriate groups for DIF analysis, the possibility of 

conducting multiple-group rather than pairwise DIF analyses, and the optimal DIF analysis 

procedures for formula-scored tests, tests scored using item response theory scales, and 
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computerized adaptive tests. A further review could also comprise a consideration of policy 

issues, such as the rules for establishing DIF committees and determining what information to 

present them. 

Much has changed since ETS began implementing operational DIF procedures 25 years 

ago. New forms of assessment have been developed, test scoring has become more sophisticated, 

and definitions of racial and ethnic categories have been modified. The time is ripe for a 

reconsideration of ETS DIF policies and procedures. 



 

26 

References 

Camilli, G., & Smith, J. K. (1990). Comparison of the Mantel-Haenszel test with a randomized 

and a jackknife test for detecting biased items. Journal of Educational Statistics, 15, 

53–67.  

Clauser, B., Mazor, K., & Hambleton, R. (1993). The effects of purification of the matching 

criterion on the identification of DIF using the Mantel-Haenszel procedure. Applied 

Measurement in Education, 6, 269–279. 

Colvin, K. F., & Randall, J. (2011). A review of recent findings on DIF analysis techniques 

(Center for Educational Assessment Research Report No. 795). Amherst: University of 

Massachusetts, Amherst, Center for Educational Assessment. 

Davey, T., & Wendler, C. (2001, April 3). DIF best practices in statistical analysis [ETS internal 

memorandum].  

Dorans, N. J., & Kulick, E. (1986). Demonstrating the utility of the standardization approach to 

assessing unexpected differential item performance on the Scholastic Aptitude Test. 

Journal of Educational Measurement, 23, 355–368. 

Dorans, N. J., & Holland, P. W. (1993). DIF detection and description: Mantel-Haenszel and 

standardization. In P. W. Holland & H. Wainer (Eds.), Differential item functioning (pp. 

35–66). Hillsdale, NJ: Erlbaum. 

Dorans, N. J., Schmitt, A. P., & Bleistein, C. A. (1992). The standardization approach to 

assessing comprehensive differential item functioning. Journal of Educational 

Measurement, 29, 309–319. 

Educational Testing Service. (1988, November). Procedures for use of differential item difficulty 

statistics in test development [ETS internal memorandum]. 

Fidalgo, A. A., Ferreres, D., & Muñiz, J. E. (2004). Utility of the Mantel-Haenszel procedure for 

detecting differential item functioning in small samples. Educational and Psychological 

Measurement, 64, 925–936 

Fidalgo, A. M., Hashimoto, K., Bartram, D., & Muñiz, J. (2007). Empirical Bayes versus 

standard Mantel-Haenszel statistics for detecting differential item functioning under 

small sample conditions. Journal of Experimental Education, 75, 293–314. 



 

27 

French, B., & Maller, S. (2007). Iterative purification and effect size use with logistic regression 

for differential item functioning detection. Educational and Psychological Measurement, 

67, 373–393. 

Holland, P. W. (1987a, January 27). Expansion and comments on Marco’s rational approach to 

flagging items for DIF [ETS internal memorandum]. 

Holland, P. W. (1987b, February 11). More on rational approach item flagging [ETS internal 

memorandum]. 

Holland, P. W. (2004, February 9). Comments on the definitions of A, B, and C items in DIF 

[ETS internal memorandum]. 

Holland, P. W., & Thayer, D. T. (1985). An alternate definition of the ETS delta scale of item 

difficulty (ETS Program Statistics Research Technical Report No. 85-64). Princeton, NJ: 

ETS.  

Holland, P. W., & Thayer, D. T. (1986a, April). Differential item performance and the Mantel-

Haenszel procedure. Paper presented at the annual meeting of the American Educational 

Research Association, San Francisco, CA. Retrieved from the ERIC database. 

(ED272577).  

Holland, P. W., & Thayer, D. T. 1986b). Differential item functioning and the Mantel-Haenszel 

procedure (ETS Research Report No. RR-86-31). Princeton, NJ: ETS. 

Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel-Haenszel 

procedure. In H. Wainer & H. I. Braun (Eds.), Test validity (pp. 129–145). Hillsdale, NJ: 

Erlbaum. 

Kok, F. G., Mellenbergh, G. J., & van der Flier, H. (1985). Detecting experimentally induced 

item bias using the iterative logit method. Journal of Educational Measurement, 22, 295–

303. 

Longford, N. T., Holland, P. W., & Thayer, D. T. (1993). Stability of the MH D-DIF statistics 

across populations. In P. W. Holland & H. Wainer (Eds.), Differential item functioning 

(pp. 171–196). Hillsdale, NJ: Erlbaum. 

Lord, F. M. (1976, July). A study of item bias using characteristic curve theory. Retrieved from 

the ERIC database. (ED137486) 



 

28 

Lord, F. M. (1977). A study of item bias using characteristic curve theory. In Y. H. Poortinga 

(Ed.), Basic problems in cross-cultural psychology (pp. 19–29). Amsterdam, 

Netherlands: Swets & Zeitlinger. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, 

N.J: Erlbaum. 

Lu, S.-M., & Dunbar, S. B. (1996, April).  Assessing the accuracy of the Mantel-Haenszel DIF 

statistic using bootstrap method.  Presented at the annual meeting of the American 

Educational Research Association, New York. 

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective 

studies of disease. Journal of the National Cancer Institute, 22, 719–748.  

Paek, I. (2010). Conservativeness in rejection of the null hypothesis when using the continuity 

correction in the MH chi-square test in DIF applications. Applied Psychological 

Measurement, 34, 539–548. 

Parshall, C. G., & Miller, T. R. (1995). Exact versus asymptotic Mantel-Haenszel DIF statistics: 

A comparison of performance under small-sample conditions. Journal of Educational 

Measurement, 32, 302–316.  

Petersen, N. S. (1987, September 25). DIF procedures for use in statistical analysis [ETS 

internal memorandum]. 

Sinharay, S., Dorans, N. J., Grant, M. C., & Blew, E. O. (2009). Using past data to enhance small 

sample DIF estimation: A Bayesian approach. Journal of Educational and Behavioral 

Statistics, 34, 74–96. 

Uttaro, T., & Millsap, R. E. (1994). Factors influencing the Mantel-Haenszel procedure in the 

detection of differential item functioning. Applied Psychological Measurement, 18, 15–

25. 

Wang, W.-C., & Su, Y.-H. (2004). Effects of average signed area between two item 

characteristic curves and test purification procedures on the DIF detection via the Mantel-

Haenszel method. Applied Measurement in Education, 17, 113–144. 

Zieky, M. (1993). DIF statistics in test development. In P. W. Holland & H. Wainer (Eds.), 

Differential item functioning (pp. 337–347). Hillsdale, NJ: Erlbaum. 

Zwick, R. (1990). When do item response function and Mantel-Haenszel definitions of 

differential item functioning coincide? Journal of Educational Statistics, 15, 185–197. 



 

29 

Zwick, R., & Thayer, D. T. (2002). Application of an empirical Bayes enhancement of Mantel-

Haenszel DIF analysis to a computerized adaptive test. Applied Psychological 

Measurement, 26, 57–76.  

Zwick, R., Thayer, D. T., & Lewis, C. (1999). An empirical Bayes approach to Mantel- Haenszel 

DIF analysis. Journal of Educational Measurement, 36, 1–28. 

Zwick, R., Thayer, D. T., & Lewis, C. (2000). Using loss functions for DIF detection: An 

empirical Bayes approach. Journal of Educational and Behavioral Statistics, 25, 225–

247. 

Zwick, R., Ye, L., & Isham, S. (in press). Improving Mantel-Haenszel DIF estimation through 

Bayesian updating. Journal of Educational and Behavioral Statistics. 

Zwick, R., Ye, L., & Isham, S. (2012, April). Investigation of the efficacy of DIF refinement 

procedures. Paper presented at the annual meeting of the American Educational Research 

Association, Vancouver, Canada. 



 

30 

Notes 
 

1 The standardized proportion difference (STD P-DIF) statistic of Dorans and Kulick (1986) is 

used descriptively to supplement the Mantel-Haenszel results. In addition, standardized 

distractor analysis (Dorans, Schmitt, & Bleistein, 1992) is used to examine the answer choices 

made by the reference and focal groups, conditional on the matching criterion. 
2 In recent DIF analyses of actual data with approximately 2,000 members per group, roughly 

two-thirds of the items had standard errors small enough to render irrelevant the statistical 

significance criterion in Equation 4. About 90% of the items had standard errors small enough 

to render irrelevant the criterion in Equation 8. 
3 Item responses were simulated using the three-parameter logistic (3PL) model, and DIF was 

induced by introducing a difference between the reference and focal group difficulties. 

Translating the DIF into the MH metric to obtain the true DIF values was accomplished using a 

formula given in Zwick et al. (in press). For theoretical reasons, the MH DIF procedure is 

expected to perform optimally under the Rasch model and less well under the 3PL (see Holland & 

Thayer, 1988; Zwick, 1990). However, the 3PL model produces data much more similar to those 

that result from actual administration of multiple-choice tests and was therefore used in this study. 
4If a more conventional definition of Type I error had been used, Type I error rates would be 

lower than the tabled rates. 
5 Longford, Holland, and Thayer (1993, p. 182) proposed similar DIF estimates, although they 

did not use a Bayesian framework. Their approach was based on a random effects model for 

DIF. Maximum likelihood estimates of the model parameters were obtained through an 

iterative procedure. 
6 It is useful to note as well that continuity corrections are intended to ensure conservative 

inferences (Shelby Haberman, personal communication, November 15, 2011). 
7 See Zwick et al. (in press) for a discussion of the reasons for biases in MH D-DIF statistics in 

unbalanced conditions. See Table 4 in the present paper for an example of bias results. 




