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Abstract :  
This article reports on an analysis of episodes of invalid or controversial arguments that occurred while two different 
groups of students worked on similar fraction tasks and examine the role that these types of arguments played in the 
development of students' reasoning. One group consisted of suburban, middle-class, fourth graders who worked on 
these tasks during the regular school day. The other group was comprised of sixth-graders from an urban community 
working on similar tasks as part of an informal learning after-school project. The findings of this study indicate that 
allowing students to share and discuss incorrect arguments promoted rich mathematical discourse and argumentation. 
The invalid arguments triggered the use of varied reasoning by other students and cleared up previous 
[mis]understandings.  
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Introduction  
 
Researchers generally agree that reasoning and proof are the basis of mathematical understanding, 
and that learning to reason and justify is critical for growth in mathematical knowledge (Polya, 1981; 
Hanna, 2000; Maher, 2009).  Thompson (1996) defines mathematical reasoning as “purposeful 
inference, deduction, induction, and association in the areas of quantity and structure” (p.267).  
Yackel and Hanna (2003) extend this definition to recognize the social aspects of reasoning and 
describe it as a communal activity in which learners participate as they interact with one another to 
solve (resolve) mathematical problems (p.228).  According to the National Council of Teachers of 
Mathematics (2000), the ability to reason is “essential to understanding mathematics” (p. 56). 
Reasoning is a process that enables the revisiting of ideas and can trigger the re-construction of 
previous knowledge in order to build new arguments (Davis, 1992; Maher, 2009). Therefore, 
reasoning and justification of arguments are not only essential to learning new mathematics, but are 
necessary to relate mathematical knowledge to other circumstances. Furthermore, reasoning and 
justification are the foundation of problem solving. 
 
Unfortunately, students struggle with reasoning and justification.  One explanation is that they are 
often not afforded opportunities to engage in problem-solving activities that encourage the 
development of reasoning skills. Mathematics instruction often focuses on the learning of 
mathematics facts and procedures and on learning skills and procedures needed to solve routine 
problems (Silver, Alacaci, & Stylianou, 2000, p. 339).  This approach inhibits children’s building of 
natural, experience-based understandings and requires students to adapt their reasoning styles to fit 
those valued by schools (Malloy, 1999). Furthermore, the approach that ignores sense making often 
results in the building of cognitive obstacles or “improperly chosen assimilation paradigms that lead 
to incorrect ways of thinking or that are limited in their scope” (Davis, 1992, p. 226).  Often, teachers 
do not allow students to share their misunderstandings in group discussions and instead present only 
correct strategies and solutions.  (Santagata, 2005; Silver, Ghousseini, Gosen, Charalambous, & 
Strawhun, 2005). In this case, students’ misunderstandings may hinder their ability to reason and 
impede mathematical understanding.   
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More recent work has shown that when given opportunities to engage in problem solving 
investigations involving rich mathematical discussion, young children can make conjectures and 
justify their claims with sound arguments if they are supported in the classroom and afforded 
opportunities to reason collaboratively (Francisco, 2005; Francisco & Maher, 2005; Maher, 2002, 2009; 
Maher & Martino, 1996; Maher, 2009). Yackel and Hanna (2003) stress that given a supportive 
environment, all students, as early as elementary school, can and do make and refute claims and 
participate in inductive and deductive reasoning.  
 
Research suggests that allowing students to share and discuss errors can kindle students’ 
mathematical thinking about concepts and procedures and thus promote reasoning in the classroom 
(Borasi, 1994; Kazemi & Stipek, 2001). Mathematics education researchers contend that there is value 
in examining students’ fallacious arguments (Borasi, 1994;  Radatz, 1979).  These studies show that 
erroneous arguments are an unavoidable and vital part of learning and give insight into how learners, 
in dealing with each other’s arguments, can construct deeper understanding and build new 
knowledge (Barody & Ginsberg, 1990).  This study attempts to build on this research by examining 
how controversial reasoning or misunderstandings voiced by students in mathematics classrooms 
triggers discussions and how it affects the subsequent mathematical argumentation that take place. 
Importantly, this research traces the role of erroneous reasoning in the building and expansion of 
students’ mathematical understanding, their use of correct and varied forms of reasoning, their 
engagement in the doing of mathematics, and the co-construction of arguments. 
 
Review of the literature  
 
The study reported in this article involved students working collaboratively on open-ended problem 
solving tasks.  The students built models, created conjectures and defended these conjectures in an 
established mathematical community.  They were invited to share their reasoning and justifications in 
small groups and whole class discussions.  The established social norms were a necessary component 
of students feeling safe in sharing their own ideas and conjectures and in challenging the ideas of 
others. Following this is a brief discussion of current literature on problem solving tasks and 
mathematical communities that support reasoning, and the role of fallacious reasoning. 
 
Mathematical Communities that Support Reasoning.  
The current reform agenda focuses on engaging students in collaborative problem solving in 
discourse-rich learning communities in which students can engage in discussions and feel safe 
sharing and discussing their ideas, strategies and solutions with others (National Council of Teachers 
of Mathematics, 2000). Researchers contend that mathematical discussion within a learning 
community is an essential component in the development of mathematical reasoning and 
understanding (Forman, 2003; Lampert and Cobb, 2003; Yackel & Cobb, 1996). According to Goos 
(2004), communities of mathematical inquiry are established when students are given opportunities 
to participate in mathematical discussion, propose and defend arguments, and challenge the ideas of 
their classmates. 
 
According to Cobb, Yackel, and Wood (1995), established social norms, including those that are 
related to mathematical reasoning and argumentation, are crucial in creating an effective 
mathematical community. Furthermore, mathematical reasoning is advanced when these social 
norms are established and students are given opportunities to work together on open-ended tasks 
and  encouraged to take ownership of their ideas and conjectures (Francisco and Maher, 2005).  
Through the sharing of ideas and strategies students build on and extend the ideas of others and 
further thier own mathematical thinking and understanding.  
 
The social culture created in mathematical communities not only promotes diverse ideas and 
strategies but also celebrates errors and views them as learning opportunities (Stipek et al., 1998).  In 
such communities, students are arbitrators of right or wrong, rather than the textbook or the teacher.  
Studies have shown the importance of inviting students to explain and comment on each other’s 
strategies’ and compare them to their own in developing strategies (Stein, Engle, Smith, & Hughes, 
2008).  Research shows that the social norm of giving students opportunities to examine incorrect 
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solutions in whole class discussion promotes mathematical thinking and conceptual understanding 
(Kazemi & Stipek, 2001; Leinhardt & Steele, 2005). 
 
Collaborative Building of Ideas. 
Building on the concept of co-acting (Martin, Towers, and Pirie, 2006), Mueller (2009) differentiates 
co-construction from integration.  Co-construction occurs when learners collaboratively build an 
argument from conception, and integration occurs when an initial argument offered by one student is 
reinforced by input from another student as the student assimilates these ideas into his or her own 
schema. Mueller (2009) found that the process of integration of ideas greatly enhanced student 
reasoning and that in expanding on arguments offered by classmates, students offered varied forms 
of reasoning and strengthened individual arguments. Mueller, Yankelewitz, & Maher (2011) extend 
that framework to include modification, and show that different forms of collaboration played 
distinct roles in influencing the resulting mathematical reasoning and argumentation. 
 
Mueller, Yankelewitz, and Maher (2010a) suggest that when given opportunities to independently 
build their own schemas, through collaboration, students can resolve misconceptions without the 
assistance of a teacher.  Thus, by encouraging students to rely on their own reasoning skills and that 
of their classmates, errors can become stepping stones to increased understanding and sense making 
(Mueller, Yankelewitz, & Maher, 2010a). 
 
Problem Solving Tasks 
Mathematical  problem  solving  tasks  play  a  vital  role  task  in  sustaining  student  engagement  in 
problem  solving  and  promoting mathematical  reasoning  (Francisco  & Maher,  2005).    Presenting 
students  with  challenging  tasks  facilitates  mathematical  reasoning  and  leads  to  mathematical 
understanding.  This  reasoning  and  understanding  is  furthered  and  students’  problem  solving 
obstacles  are overcome when  tasks  are presented  as  strands of  related problems  that  are  revisited 
overtime and  in different contexts  (Francisco & Maher, 2005).   According to Koellner, Pittman, and 
Frykholm (2008), reasoning is furthered when students are given opportunities to work on open-
ended tasks with many entry points, encouraged to visualize and build concrete represenations of 
problem situations, and invited to work collaboratively. Doerr and English (2006) suggest that tasks 
be  designed  to  engage  students  in  important  mathematical  problem  situations  such  that  their 
representations  and  justifications  offer  insight  into  their mathematical  thinking.    In  addition,  they 
suggest that tasks should allow for students to self‐evaluate their solutions and reflect on their own 
reasoning. 
 
Henningsen and Stein  (1997) distinguish certain  task characteristics  that promote student reasoning 
and  understanding,  including  opportunities  for  multiple  representations,  multiple  solution 
approaches, and mathematical communication. In addition, they recommend that in order encourage 
high level mathematical thinking and engagement, certain classroom support factors must be present.  
These  factors  include  tasks  designed  to  build  on  students  prior  knowledge  and  experiences,  an 
appropraite  amount  of  time  for  discussion  and  the  development  of multiple  strategies,  and  the 
opportunity to share higher level thinking and solution strategies.   
 
Fallacious Reasoning.  
According to Skemp (1971) “…to understand something is to assimilate it into an appropriate 
schema” (p. 45). Thus, a student’s level of understanding is dependent upon the schema that they 
create. Understanding develops as students form connections between new and old knowledge and 
create appropriate schemas to make sense of new knowledge (Maher & Martino, 1996). However, 
students’ prior erroneous knowledge may impede this process (Mueller, Yankelewitz, & Maher, 
2010a). Students’ schemas develop over many years and are often difficult to change (Zeidler, 
Lederman, & Taylor, 1992).  Zeidler, Lederman, & Taylor (1992) define a fallacy (or fallacious 
reasoning) as “any argument that purports to be correct and is psychologically persuasive but that 
proves, upon scrutiny, to have violated some rule of logic which renders it incorrect” (p. 440).  They 
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contend that fallacious reasoning cannot be corrected using direct instruction as this most often leads 
to resistance or is simply ineffective. 
 
 Borasi (1996) suggests that students’ fallacious arguments can promote mathematical understanding, 
contending that errors motivate students to pursue open-ended explorations. He argues that teachers 
generally punish, ignore, or correct students’ faulty thinking and claims that some even consider 
paying attention to erroneous solutions as hazardous in that it could interfere with students 
understanding of the “correct” concepts.  Countering this notion, he suggests that errors (including 
contradictions, tentative hypothesis, contrasting results and unreasonable results) can invite open-
ended explorations and be used as “springboards for inquiry”.  Borasi asserts that purposely 
engaging students in activities that promote use of invalid arguments can facilitate learning 
opportunities including realizing doubt and conflict, pursuing exploration, engaging in challenging 
problem solving, monitoring and defending arguments, taking initiative and ownership, and 
communicating mathematically.   
 
In order to facilitate the use of invalid arguments to support deeper reasoning, it is important to 
identify common causes of students’ mathematics misunderstandings. One cause that may impede 
mathematical reasoning is negative transfer (Radatz, 1979).  Often, students use previously developed 
rules and procedures even when the structure or conditions of the task have changed (Mueller, 
Yankelewitz, & Maher, 2010a).  Radatz suggests that another origin of faulty reasoning is the 
application of irrelevant rules or strategies.  According to Ginsberg (1977), “often children think of 
mathematics as an isolated game with particular sets of rules and no evident relation to reality …at 
the same time, children’s faulty rules have sensitive origins” (p. 128). A case study of this 
phenomenon is described in Erlwanger (1973). In a study of sixth grade students, Mueller, 
Yankelewitz, and Maher (2010a) found that students had misconceptions about previously learned 
fraction rules and these misconceptions hindered their learning of fraction concepts and relationships. 
Kamii and Diminck (1998) argue that teaching rules and conventions can be harmful, because they 
cause children to relinquish their own ideas, which may also be mathematically sound, and 
disconnect the content from the concepts. When exposed to this kind of instruction, students often 
remember and later apply erroneous rules and procedures. 
 
This article reports on an analysis of episodes of controversial arguments that occurred while two 
different groups of students were working on similar tasks involving fractions and examine the role 
that these controversial arguments played in the development of the students’ reasoning. One group 
consisted of suburban, middle-class, fourth graders during the regular school day. The other group 
consisted of sixth-graders from an urban community working on similar tasks as part of an informal 
learning after-school project. Previous research has documented that both groups used varied forms 
of reasoning to defend and counter claims proposed during the mathematical discussions that took 
place (Maher, 2009; Yankelewitz, Mueller, & Maher, 2010a; Mueller, Yankelewitz, & Maher, 2010b).  
More specifically, the purpose of this study is to examine the following:  What role, if any, do 
erroneous arguments/solutions play in students’ reasoning when collaboratively attending to open-
ended mathematical tasks?   
 
Methods and data source 
 
Participants. 
 
Research for this study draws on data from two sources.  The first is a researcher-conducted 
longitudinal study of students’ mathematical thinking in a fourth grade classroom in a 
suburban/rural school in New Jersey. The class was composed of twenty-five students, fourteen girls 
and eleven boys between the ages of nine and ten. The entire intervention occurred over fifty sessions 
during the school year.  During approximately half of the sessions students explored fraction ideas 
using manipulative materials, including Cuisenaire rods. 
 
The second data source is an informal after-school math program consisting of twenty-four sixth 
grade students between the ages of twelve to thirteen.  This study was conducted by researchers in a 
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low socioeconomic, urban community in New Jersey, drawn from a school consisting of 99% Latino 
and African American students . The study was part of a voluntary, after-school program that met 
twice week and engaged the students in working on strands of open-ended math tasks. During the 
first eight sessions of the after-school program, the students worked on fraction tasks and were 
invited to explore fraction relationships using Cuisenaire rods. 
 
Data Collection 
 
We report on data from the first seven 60 minute sessions of the first study and the first five 60-75 
minute sessions of the second.  In both studies, the students were seated in heterogeneous groups of 
four in the sixth grade study and pairs in the fourth grade study and invited to work collaboratively 
with their group.  In order to promote collaboration, students were posed open-ended tasks, 
encouraged to share their thinking with their group members, the researchers, and the class, invited 
to defend their arguments and challenge those of others, and given enough time to explore and create 
their solutions (Mueller, Yankelewitz, & Maher, 2010b).  
 
Both groups of students worked on similar tasks involving fraction as number, fraction equivalence, 
and fraction comparison. Cuisenaire® rods were available to the students during the sessions.  A set 
of Cuisenaire rods (see Figure 1) contains 10 colored wooden or plastic rods that increase in length by 
increments of one centimeter. For the activities presented in the intervention, the rods were given 
variable number names and permanent color names. Students quickly learned to create rods of 
different lengths by placing rods along side each other  and making a ‘train’. Figure 2 shows a ‘train’ 
of a purple and an orange rod. 
 

 
Figure 1. Staircase model of Cuisenaire rods. 

 

 
Figure 2. A train of an orange and purple rod. 

 
The tasks in both studies were from a strand on fractions.   These tasks were first used in the fourth 
grade longitudinal study and found to promote collaboration among students (Maher. 2002). In 
addition, the rich justifications that students developed while attending to the tasks generated varied 
forms of reasoning (Mueller and Maher, 2009).  Due to the richness in dialogue and reasoning found 
during student work on the tasks, the researchers began the after-school program sessions using a set 
of tasks from the fourth grade strand.  It is important to note that the students in the fourth grade 
investigated these tasks before being formally introduced to fractions in the school curriculum; 
conversely, the sixth grade students were introduced to fraction procedures and rules in the previous 
year during their regular math instruction.   However, the research team realized early in the sessions 
that the students lacked conceptual understanding of fraction ideas, relationships, and operations, 
and, as has been noted in the literature cited above, the students’ prior knowledge at times impeded 
their acquisition of the concepts introduced during the intervention. 
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The students were given tasks to investigate and asked to find relationships. For example, during one 
of the sessions the researcher asked, “What number name would you give to the dark green rod if the 
light green rod is called one? Discuss the answer with your group” (Maher, 2002).  Students were 
given time to work collaboratively, build models, and share their ideas/strategies in their small 
groups.  After each task was posed and worked on, students shared their models, strategies, and 
solutions with the entire class.  An overhead projector was used so that students could demonstrate 
their fraction models as they were explaining their findings. During the whole class discussions, 
students were encouraged to question the ideas of others and revisit and revise their own 
strategies/solutions. 
 
Data Analysis. 
 
Three  data  sources were  used  for  this  study:  video  recordings  of  each  session,  copies  of  student 
written work, and researcher field notes. For both classes, the series of sessions were videotaped with 
at least two cameras. Video recordings and transcripts were analysed by means of a modified ground 
theory approach using the analytical model adapted from Powell, Francisco, and Maher (2003). The 
video data were viewed, described at frequent intervals, transcribed, and critical events (episodes of 
reasoning and collaboration) were identified. The analytical model is used to study the development 
of mathematical thinking and contains the following seven interacting, non‐linear phases: viewing the 
video data, describing the video data, identifying critical events, transcribing, coding, constructing a 
story line, and composing a narrative (Powell, Francisco and Maher, 2003; 2004).  The video data were 
viewed, described at  frequent  intervals,  transcribed, and  critical events  (episodes of  reasoning and 
collaboration) were identified. 
 
Based on the critical events, codes were developed for flagging for solutions offered by students and 
the justifications given to support these solutions. Arguments and justifications were coded according 
to the type of argument (whether it supported a claim or was a counterargument), and the form of 
reasoning being used (contradiction, cases, upper and lower bounds, recursive, or direct).  Sub-codes 
were developed for incomplete arguments and to identify arguments as valid or invalid, based on 
whether or not the argument started with appropriate premises and the deductions within the 
argument were a valid consequence of previous assertions. The latter two data sources were used to 
triangulate the data and to provide further evidence and detail to the critical events noted in the video 
data. 
 
Students’ construction of solutions and their subsequent justifications were traced across the data in 
an effort to document and analyse their journey to mathematical understanding. In both groups, 
students worked collaboratively on problem solving tasks. As a result, we also traced the joint 
construction of arguments in an attempt to analyse the ways in which students integrated the ideas of 
others into their justifications and solutions.  Codes for the co-construction of ideas emerging from the 
analysis of the data were organized into the following categories:  building on other’s ideas, 
questioning others, and correcting others. In the initial analysis of both data sets, we found that 
students often corrected and/or challenged each other’s solutions and/or arguments while working 
on the tasks. These corrections often took the form of counter-arguments. As can be expected, we 
noticed that a large percentage of these counter-arguments were posed after a faulty argument was 
made. Interestingly, whereas the majority of arguments posed took the form of direct reasoning, 
much of the varied reasoning that was noted resulted in discussions that followed a faulty argument. 
After noting these trends, we began a more systematic study of the effect of the faulty arguments on 
the subsequent forms of reasoning that were elicited. Below, we trace the kinds and variety of 
reasoning that resulted during a conversation powered by a faulty argument offered in the classroom. 
 
Results 
 
While attending to the fraction tasks, students built arguments and counterarguments taking the form 
of direct reasoning, indirect reasoning, cases, upper and lower bounds, and recursion. While working 
on most tasks, students used direct arguments to justify their solutions. We identified sessions and 
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tasks during which students used multiple forms of reasoning, or during which students built 
arguments following several iterations and in response to the comments of other students. These 
occurrences highlighted instances of varied and complex argumentation, respectively. Analysis of 
both data sets highlighted that these situations were more often than not triggered by a fallacious or 
controversial arguments that led to varied argumentation and student engagement. In the following 
section we share episodes of erroneous reasoning that promoted mathematical discourse, cleared up 
previous [mis]understandings, and led to the co-construction of arguments. 
 
Episode 1 Grade 6, Session 5, Naming Fractions. 
 
The students were asked to name the white rod when the orange rod was named one. Herman used a 
model of ten white rods lined up next to the orange rod to incorrectly name the white rod ten (figure 
3). Using direct (though faulty) reasoning, he explained that the orange rod is equivalent to ten white 
rods and therefore the white rod would be named ten.  The teacher/researcher asked the class if they 
agreed.  Dante said that he disagreed with Herman and compared the task to a previous task to the 
task of naming the rods when the blue rod was named one. He explained that when the blue rod was 
named one, the white rod was named one-ninth (because the length of nine white rods is equivalent 
to the length of a blue rod). He then explained that when the orange rod was named one the white 
rod would be named one-tenth:   “We used to say that the blue was one so I thought that if we called 
the white rod one-ninth, why can’t we still call it with the orange rod one-tenth though cuz even 
though the orange rod is one white one bigger than it …..so like this is nine …this is ten ..that’s why I 
think it should be called one-tenth, I think it should be called one-tenth”. Thus, Dante used a counter-
argument and indirect reasoning to name the white rod one-tenth. He built his argument on a 
previous task of naming the white rod one-ninth when the blue rod was named one. 
 

 
Figure 3. Ten white rods lined up against the orange rod. 

 
When Herman still disagreed, Dante said that he could “prove it” and used Herman’s model and 
direct reasoning to explain, “See you need ten of these [white] to equal one orange rod.  If we take 
nine of them away which will leave you with one-tenth and then if you add another one it will be 
two-tenths, three-tenths all the way up to ten, which is a whole”.  Herman agreed and was able to 
explain in his own words, “Each one of these [white rods] equals one-tenth if this [orange rod] is one 
whole”.  In order to further check Herman’s understanding, the teacher/researcher extended the task 
and asked students to name the orange rod if the white rod was given the number name of ten. Dante 
replied one-hundred and Herman explained, “Because there will be ten and ten times ten equals 100”.  
 
The teacher/researcher asked if the class was convinced that the white rod would have the number 
name one-tenth if the orange rod was called one.  Lorrin agreed and explained using direct reasoning 
that when the blue rod is named one, the white rod is named one-ninth because the length of nine 
white rods is equivalent to the length of a blue rod.  She said that the blue rod is “one size smaller” 
than the orange rod.  During that session, three more students shared similar justifications of the 
solution. 
 
Episode 2: Grade 6, Session 5, Finding Equivalent Fractions. 
 
During the sixth session of the after-school program, the orange rod was called the number name one 
and students named the red rod one-fifth.  A student noted that the length of the white rod is one-half 
the length of the red rod.  He said that members of his group claimed that another name for the red 
rod is two-tenths.  The teacher/researcher asked the class if they thought all, some, or none of these 
statements were true.  
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Using direct reasoning, Chris said, “It’s true because if ten white ones [rods] equal an orange one 
[rod], five red ones equal an orange one and the red one is one-fifth”.  Chanel agreed with the part 
about the white and red rods, explaining that the length of two white rods is equivalent to the length 
of a red rod. She then stated that if one of the white rods is taken away, the other white rod would be 
half of the red rod.  She concluded, using faulty reasoning, that the red rod would be called one half.  
 
The teacher/researcher asked for the class’s opinion about Chanel calling the red rod one-half (when 
the orange rod is called one) and Dante disagreed.  He used a direct counterargument to explain that 
the length of the red rod could not be half the length of the orange rod because the length of the 
yellow rod is half of the length of the orange rod.  He asked, “How could red be a half of orange if it 
takes five of them instead of two?”  Dante stated that he thought the red rod would be two-tenths and 
asked the class to pretend that the orange rod was named one-hundred.  He said that the red rod 
would then be named twenty. He explained that, since the orange rod is equivalent to five red rods, 
“it would be twenty times five which would equal a hundred”.  He concluded that the red rod would 
be named two-tenths, explaining,  “I think that red would be two–tenths because two times, cuz you 
need five reds to make the orange one, so two times five would equal ten so that’s why I think it 
would be two-tenths”. 
 
The teacher/researcher asked if the class agreed and multiple students voiced agreement.  
Addressing Chanel’s error, she then asked what number name the red rod would have in order for 
the white rod to be named one-half.  Shanae said one and explained, “Because two white rods equal a 
red rod.” 
 
Episode 3: Grade 4, Session 6, Comparing Fractions. 
 
During the sixth session in the fourth grade class, the teacher/researcher asked the students to 
compare one half and one fourth. Amy, Jacquelyn, and James built the model at the OHP (Figure 4) 
and Amy explained that in their model, the brown rod was called one, the purple rods were one half, 
the red rods were one quarter, and the white rods were one eighth. James then said, using faulty 
reasoning, that one half was larger than one quarter by one eighth. 
 

 
Figure 4. A model to show the difference between one half and one fourth 

 
Meredith countered the team’s argument. She asked them if they were calling the white rod one 
eighth, and they answered that they were. She then built a model of one purple rod and a train of one 
red and one white rod (Figure 5). Using indirect reasoning, she explained that the group’s solution 
could not be correct, “because there is still negative space” on the model. Adding a second white rod 
onto her model to fill that space, she called the difference two eighths and then substituted a red rod 
for the two white rods and renamed that length one quarter. 
 

 
Figure 5. Meredith’s model 
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The teacher/researcher asked the three students what they thought of Meredith’s argument. 
Jacquelyn said, “Well, I think we meant that all these put all together are one eighth”. Meredith asked 
if they meant that two white rods were one eighth. Jacquelyn clarified, “We thought, uh, all of these 
whites put together were one eighth”. Although Jacquelyn used faulty reasoning to revise the 
argument, she made its flaws more explicit. In response, Meredith moved the train of eight white rods 
onto her original model. She asked rhetorically, “You think it’s bigger than one eighth and all these 
are one eighth? So that’s how much you think it’s bigger by?” Jacquelyn laughed. Here, too, Meredith 
used indirect reasoning to show that their claim could not be true. 
 
Jacquelyn then revised her argument, saying that one half was larger than one quarter by two eighths 
or one quarter. The teacher/researcher questioned how she knew that it could be one quarter, and 
Jacquelyn responded that the red rods were each one quarter. Since the two white rods were the same 
length, they could also be named one quarter. 
 
Discussion 
 
The results of this study indicate that affording students opportunities to share and discuss incorrect 
arguments promoted mathematical discourse and argumentation (Stein, Engle, Smith, & Hughes, 
2008).  As suggested by Borasi (1996), when the students presented controversial arguments, the other 
members of the community were engaged in correcting their arguments through counterarguments 
and thus further pursued their open ended exploration.  These counterarguments led to sophisticated 
reasoning and cleared up [mis]understandings.  Furthermore, while responding to invalid arguments 
students were engaged in monitoring and defending arguments, taking initiative and ownership, and 
communicating mathematically (Borasi, 1996).    In addition, erroneous arguments afforded 
individual students the opportunity to make their reasoning explicit, and thereby correct their own 
reasoning. The data show that as students worked to convince their classmates of the error of an 
argument, they persistently refined and strengthened their counterarguments. In these ways, both the 
originators of the faulty arguments and their classmates refined their reasoning during the 
discussions.  This supports the notion that the process of integration and modification of ideas leads 
to enhanced student reasoning and stronger arguments (Mueller, 2009; Mueller, Yankelewitz, & 
Maher, 2011) and adds a third element of alteration of ideas to the framework.  
 
The social norms that were created in the mathematical community supported the sharing of ideas 
and strategies (Stipek et al., 1998). By attending to classmates’ faulty reasoning through 
counterarguments, the students explained their justifications more explicitly and offered clearer 
arguments.  In addition, they often extended their reasoning and/or used varied arguments to 
support the correct solution. In episode 1, Dante had correctly named the white rod one-tenth.  When 
Herman countered with an incorrect solution, Dante used indirect reasoning to explain his 
justification in order to help Herman understand his position.  When Herman was still not convinced, 
Dante made use of Herman’s model and used direct recursive reasoning and Herman’s model to 
finally convince him. During this process, and as a result of Herman’s misconception, Dante 
strengthened his original argument, used varied forms of reasoning to support his solution, and 
utilized multiple representations during his justification. In addition, Dante’s argumentation moved 
away from simply responding to the task with the solution to considering the ideas of others while 
fortifying his justification. At the same time, Herman was able to build a correct schema and revise 
his own misconception. At the end of the session, Herman evidenced that he understood the solution 
and used sound reasoning to explain why the white rod was named one-tenth. In addition, Herman 
extended his reasoning and applied it to another example.  Likewise, other classmates integrated and 
modified the arguments offered in the discussion and created their own varied justifications for the 
correct solution. As Mueller (2009) asserts, this integration led to diverse forms of  reasoning. Thus by 
inviting students to attend to and discuss incorrect solutions, Herman’s and other classmates’ 
mathematical thinking and understanding was advanced (Kazemi & Stipek, 2001; Leinhardt & Steele, 
2005). 
 
In episode 2, Chris offered an incomplete direct argument to name the red rod one-fifth (when the 
orange rod was named one).  When Chanel disagreed and incorrectly named the red rod one half, he 
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then presented a detailed, direct counterargument using whole numbers in an attempt to convince 
Chanel. Dante extended Chris’ argument, modified it, and used two kinds of reasoning, direct and 
indirect, to support his argument. The establishment of a mathematical community allowed for the 
sharing of errors and misconceptions and considered them as opportunities to further understanding 
(Stipek et al., 1998). 
 
During episode 3 when comparing one-half to one-fourth Jacquelyn and James erroneously found the 
difference to be one-eighth. Meredith offered indirect reasoning and a direct counterargument in an 
attempt to show them their misunderstanding.  When Jacquelyn again offered a faulty argument, 
Meredith used indirect reasoning with an extended model to convince her that her claim was 
impossible. As was seen in the first two episodes, the voicing of an incorrect solution allowed 
students to build on their own or other solutions, extend them, and use varied forms of reasoning in 
their argumentation.  Thus, the students in these episodes relied on their own reasoning skills and 
that of their classmates and resolved misunderstandings without the assistance of a teacher (Mueller, 
Yankelewitz, and Maher, 2010a).  
 
Significance 
 
Teachers often attempt to avoid making erroneous solutions and arguments public, believing that 
others will be influenced by these arguments and, in turn, reason incorrectly (Borasi, 1996).  The data 
from the study of fourth and sixth grade classrooms shows that the opposite occurred. The 
community was not “corrupted” by the incorrect ascertains, rather they used valid and substantiated 
reasoning to correct their classmates invalid claims. Furthermore, the errors were ultimately corrected 
in the whole class discussion, and the justification of the reasoning was articulated clearly for the 
benefit of all students. In addition, students extended and varied their arguments using complex 
forms of reasoning and alternate representations to make their understanding of the task accessible to 
their peers. In most cases, as has been evidenced, the originators of the faulty arguments and their 
classmates ably defended the correct solution after the discussion. In this way, the argumentation 
process enabled all the students to understand why the correct answer made sense.  
 
The errors made by both groups are common errors that students consistently make in attempting to 
manipulate fractions.  In the first episode, the student reverted to whole number schema, rather than 
fractional ones. In episodes 2 and 3 the students switched the unit, comparing a fraction length to 
another fraction length, rather than the original length of the unit. As stated in the literature review, 
these schemas develop over time are often difficult to adjust (Zeidler, Lederman, & Taylor, 1992). The 
data suggests that making these arguments public leads to student-to-student questioning and 
correction and ultimately to the co-construction of arguments. Such co-construction is only possible 
when students listen carefully to the solutions of others. Although the students in the two studies 
were different ages, from different communities, and different settings, the mathematics environment 
in which they were engaged was very similar. The students were given open-ended tasks and 
afforded opportunities to build models, make claims, and support these claims. Throughout, they 
were the arbiters of what made sense.  Knowing that the teachers/researchers would not correct 
erroneous solutions, they took the initiative. In addition, as described in the methodology, a 
community of learners was formed from the start, and the students were invested in each other’s 
mathematical understanding.  
 
As Borasi (1996), Kazemi and Stipek (2001), and Barody and Ginsberg (1990) contend, this study 
supports the notion that encouraging students to discuss misconceptions results in the construction of 
deep understanding and the development of mathematical reasoning. This current study has 
extended the research by uncovering its value in promoting the development of varied forms of 
reasoning, complex classroom argumentation, and the refinement of mathematical arguments and 
justifications. As students take on the challenge of defending a correct solution in the face of 
disagreement, they are forced to find novel approaches and multiple ways of representing their 
original understanding. During this process, all students benefit and, in most cases, emerge with a 
better understanding of the mathematical task. 
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The  implications  of  this  study  suggest  that  a  learning  environment  that  promotes  the  sharing  of 
arguments, regardless of their mathematical validity, engenders student engagement in one another’s 
ideas and results in the co‐construction of sound arguments using varied forms of reasoning.  Thus to 
facilitate mathematical reasoning teachers could consider allowing students to grapple with difficult 
tasks and share misunderstandings  in a supportive environment. By allowing students to challenge 
and defend solution strategies, reasoning and sound justifications emerge.  Consequently, to support 
students in building models, reasoning, and conjecturing, the role of the teacher shifts from being  the 
arbitrator of right and wrong to facilitating students in defending and challenging arguments. Based 
on  this  study,  if  students  are  afforded  the  opportunity  to  build  and  defend  their  own  models, 
solutions  and  strategies with minimal  interventions  and  learn  from  their  errors  and  the  errors  of 
others, they will make their own sense of the mathematics and develop understanding.   
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