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Introduction

Although the term is often used to denote electronic devices, the idea of a 
‘technology’, with its origins in the Greek techne (art or skill), refers in its 

most general sense to a way of doing things. The development and availability 
of various technologies for computation over the past forty years or so have 
influenced what we regard as important in mathematics, and what we teach to 
students, given the inevitable time pressures on our curriculum. In this note, 
we compare and contrast current approaches to two important mathematical 
ideas, those of square roots and of integrals, and how these have changed (or 
not) over time.

To locate this work in context, it is important to note that some technologies 
are made explicit in the Australian Curriculum, perhaps most obviously in the 
case of arithmetic computation in primary school. Thus, for the latest version 
of Year 4 (Australian Curriculum, Assessment and Reporting Authority (2016), 
we have the two statements:

Recall multiplication facts up to 10 × 10 and related division facts (ACMNA075)

Develop efficient mental and written strategies and use appropriate digital 

technologies for multiplication and for division where there is no remainder 

(ACMNA076)

These statements reflect an agreement over many years now in Australia 
that students need a variety of technologies for computation, including recall 
of some facts, mental arithmetic, written strategies and the use of ‘digital’ 
technologies, which in this case probably refer to calculators of some sort, 
including calculators embedded in other devices. (The Australian Curriculum 
documents consistently refer to ‘digital’ technologies, presumably to recognise 
that there are other kinds of technologies as well.)

For other aspects of mathematics, however, the curriculum is much less 
explicit regarding the technologies involved, due in part no doubt to its 
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deliberate brevity. Thus, considering the case of square roots, the single 
reference in the Australian Curriculum appears in Year 6:

Investigate and use square roots of perfect square numbers (ACMNA150)

Of course, students beyond Year 6, including certainly students in the 
senior secondary years, will need to understand and deal with square roots of 
other numbers as well, and thus employ a technology of some kind, but the 
curriculum documents leave this detail to teachers, recognising that it will be 
implicit in various tasks.

This paper suggests that a succession of technologies has been available 
over time for finding square roots, but there has not been a similar succession 
for finding indefinite integrals. In precisely the same way that a technological 
solution to finding square roots can save a lot of time spent on routine 
computation, it is argued that a technological solution to finding integrals can 
save a lot of time spent on routine symbolic manipulation. In each case, hand-
held technologies can support both conceptual development as well as finding 
answers to question. A balance between sufficient emphasis to understand the 
key ideas and excessive routine manipulation is needed.

Square roots

The idea of a square root is a useful and powerful one in mathematics, 
inextricably caught up with the idea of the square of a number. Indeed, the 
concepts are complementary, so that their understanding is intertwined. It is 
a practical idea, as some problems require us to find a square root as part of 
the solution, and to interpret it in some context. Not surprisingly, it has long 
been a part of our mathematics curriculum, once students get to a certain 
level of sophistication.

Square roots have always been a bit problematic, however, as some of them 
are easier to find than others. In some cases, we would expect that students 
evaluate square roots immediately and mentally, in part as evidence that they 
understand what the idea means:
	 49  = 7 (because 72 = 49).

When the numbers get beyond typical mental expectations, a more 
sophisticated technology is needed. Thus, to find the square root of 7056, it is 
helpful to first find the factors of the number:
	 7056 = 2 × 2 × 2 × 2 × 3 × 3 × 7 × 7.

Conveniently, in this case, factors are repeated, so taking just one of each 
repeated factor provides the square root (and reinforces the concept at the 
same time):
	 7056  = 2 × 2 × 3 × 7 = 84 (and 842 = 7056).

Unfortunately, the square roots of most numbers cannot be resolved by 
these technologies, so a more practical method is required. Even numbers 
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that are perfect squares (such as 29 929 and 17 397 241) do not yield easily to 
these primitive methods, while numbers that are not perfect squares, such as 
52, are more problematic, and negative numbers are even more problematic.

Since most square roots (such as 52 ) are irrational, one possible solution 
is to represent them exactly. In the case of 52 , the two most likely choices 
are clearly equivalent:
	 52 = 2 13 .

For practical purposes in many contexts, a decimal approximation is 
preferred, however. So technologies for doing this were developed, used and 
taught in schools. As a young boy, I learned the following method to find 52 , 
 which will be familiar to many (older!) readers, in which three successive 
steps have been shown here to illustrate how they were conducted. Each step 
produces an additional digit in the decimal approximation.

7
7

5 2 . 0 0
4 9

3

7
7

5 2 . 0 0 0 0
4 9

3

.

0 01 4 2
2 8 4

1 6

7
7

5 2 . 0 0 0 0
4 9

3

.

0 01 4 2
2 8 4

1 6

2 2 1
0 0

0 0
1 4 4 1

1 5 9

1 4 4 1

First, the digits in the number are paired (both sides of the decimal point): 
in this case, there are only two of them (52), so no pairings are evident to the 
left of the decimal point. The largest integer whose square is less than 52 (the 
first two digits) is found as the first digit of the approximation (7, in this case). 
Then the approximation (only 7 so far) is multiplied by the divisor (also 7), 
and subtracted from 52 as in the long multiplication algorithm. 

In the second step, the approximate solution (7) is doubled (to get 14), 
the next two digits are ‘brought down’ (to produce 300, ignoring the decimal 
point) and a digit n to append to the 14 is chosen so that n × 14n is close to, 
but does not exceed the number 300. (Here, unusually, 14n does not have its 
normal meaning of 14 × n, but is a three digit number, the third digit of which 
is n.) In this case, n = 2 is found via some mental arithmetic, as 2 × 142 < 300. 
So the second digit of the approximation is a 2.

The third step continues this process, beginning with doubling 72 to get 
144 and looking for the digit n so that n × 144n is close to, but less than 1600. 
In this case, n = 1.

And so on, for as many steps as are desired. The process could continue 
indefinitely, of course, as the number is irrational, although the mental 
arithmetic quickly becomes tedious. It is interesting that the process does 
not produce successively better approximations, but rather produces 
successive digits in the decimal representation of 52 , so that if one sought 
an approximation correct to three decimal places, it would be necessary to go 
first to the fourth place. Furthermore, the process provides no insight into the 
idea of a square root; it is merely a procedure to follow.
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I do not recall anyone ever explaining to me why all these steps worked, even 
as an exercise. I am not sure that my teachers knew why it worked, anyway. It 
just did work, and was a solution to the problem, so students were expected to 
develop expertise at actually doing it. It was a tedious and error-prone process.

A little further into schooling, a superior computational method was 
introduced, relying on logarithms, which were especially helpful for this sort 
of task. Almost overnight from their invention by Napier and Briggs early in 
the 17th century, almost 400 hundred years ago, logarithms transformed the 
ability of people to calculate, and thus extended the effective working lives 
of mathematicians, astronomers, engineers and scientists. They were still an 
important tool for students of my generation to use from around the middle 
of secondary school in the 1960s. The properties of common logarithms (i.e., 
logarithms to base 10, often written without the base) helped us to see that, 
since

	 52 = 52 × 52

and so	 log 52 = log 52 + log 52 .

Then
	

log 52 = 1
2

of log 52 .

So to find 52 , it was necessary only to halve the log of 52 and then raise 
ten to the power of the result (which was called finding an antilogarithm, 
sometimes accessed in separate tables for convenience). An extract from a log 
table (Abelard, 2015) in this case is shown in Figure 1:

50 6990 6998 7007 7016

51 7076 7084 7093 7101

52 7160 7168 7177 7185

53 7243 7251 7259 7267

54 7324 7332 7340 7348

N 0 1 2 3

Figure 1. Extract from a table of four-figure logarithms to base 10 (Abelard, 2015).

Careful reading of the (four-figure) table, taking account of the fact 
that 10 < 52 < 100 established that log1052 ≈ 1.7160, from which we get  
log10 52  ≈  0.8580. To complete the historical picture, note that in this 
formulation, the decimal part (in this case, 0.7160) was referred to as the 
‘mantissa’ and was always positive, while the integer part (in this case, 1) was 
referred to as the ‘characteristic’, and could sometimes be negative; as for the 
earlier algorithm, I do not recall any discussion in my schooling of why these 
particular terms were used. 

To raise 10 to this power, an equivalent antilogarithm table could be 
consulted, or the same table studied differently, as shown in Figure 2, to find 
the number whose logarithm is 0.8580 :

A
ustralian S

enior M
athem

atics Journal vol. 3
0

 no. 1

7



K
is

sa
ne

N 0 1 2 3 4 5 6 7 8 9
Proportional parts

1 2 3 4 5 6 7 8 9

71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 2 3 4 4 5 5

72 8573 8579 8579 8591 8597 8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 5

73 8633 8639 8639 8651 8657 8663 8669 8675 8681 8686 1 1 2 2 3 4 4 5 5

Figure 2. Interpreting a logarithm table to find an antilogarithm (Abelard, 2015)

The first three digits of the antilogarithm are found by noting that 8579 
is in the ‘1’ column of row 72. Adding a ‘proportional part’ of 1 gets 8580 
(as desired) and the fourth digit (1) of the result of 52  ≈ 7.211, after 
adjusting (mentally) the magnitude of the result. Some students understood 
this (especially if we did not use an antilogarithm table, which was rarely 
interpreted as related to finding powers of ten), but many did not, and just 
followed the steps. The steps got more complicated when small numbers were 
involved, too, such as finding 0.52 , since the logarithm of 0.52 was generally 
first written with a characteristic of “bar 1” to avoid dealing with some aspects 
of negative numbers, while leaving the mantissa positive:

	 log 0.52 = 1.7160

The number 1.7160  represents –1 + 0.7160 (preferred to –0.2840 in order to 
facilitate table use). The use of logarithms allowed square roots to be found 
fairly efficiently, provided one had a set of tables handy, and was a great deal 
easier than the division method. Although they were very useful devices, it 
was rare for students to be advised how the log tables were actually produced; 
instead, they were simply purchased or consulted in a textbook.

In senior secondary school, many students were permitted to use the 
wonderful technology of the slide rule to get approximate values for square 
roots in the senior secondary years. Although the approximations were 
quite poor, they were easily obtained (more easily at least than the previous 
methods), provided one had a slide rule handy. Figure 3 shows that reading 
a square root off a slide rule typically involved finding the number (in this 
case 52) on the A scale and using the cursor to find the result on the C scale, 
mentally adjusting appropriately for the magnitude of the numbers. 

Figure 3. Approximating 52  on a slide rule (Ross, 2015).
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In this case, it is very hard to do better than two-digit accuracy, 52  ≈ 7.2, 
although with great care, it is possible to see that 52  > 7.2. The connection 
between square roots and squares was nicely visible here. The connections 
of slide rules with logarithms (which might have explained how they actually 
worked) were very rarely highlighted, at least in my recollections of my own 
experience. 

And then came the calculator, around 40 years ago. Finding a square root 
became merely a matter of using a square root key, originally pressed after the 
number, but on modern calculators such as the one shown in the left screen in 
Figure 4, pressed before the number, as for the conventional representation. 
In addition, a quick and reassuring check that the result is what was expected 
can be obtained by squaring it immediately to see that the square is indeed 52, 
as shown in the right screen:

    

Figure 4. Approximating and checking 52  numerically  
on a Casio fx-100AU PLUS scientific calculator.

The effect of this new technology was that most of the previous technologies 
were quickly discarded. In some cases, the previous technologies were described, 
but students were not expected to develop substantial by-hand expertise with 
them. In a crowded curriculum, when time is short, the focus is on what a 
square root means, in what circumstances one might want to evaluate one, 
how they are related to squares, and how to use and interpret them. There was 
little enthusiasm for engaging students in lengthy, error-prone and frequently 
problematic by-hand computation, when a single keystroke produced the 
result in an instant.

Modern calculators might allow us to do better than this, however, helping 
students to explore for themselves some of the previous technologies, and 
hence possibly increasing their understanding of the idea of a square root, 
but without the burden of by-hand calculation, which made the previous 
technologies problematic. For example, the tedium of finding factors can 
be replaced by a factor command on a calculator, as shown in Figure 5, and 
attention can be focused on interpreting the array of factors to see how square 
roots can be determined from them:

    

Figure 5. Using a factor command to explore square roots on a Casio fx-100AU PLUS.

The connections between logarithms and square roots can also be 
explored using a scientific calculator to handle the arithmetic (or the table 
consultation), as suggested by Figure 6:
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Figure 6. Exploring logarithms and square roots on a Casio fx-100AU PLUS.

Explorations of this kind also provide a way for students to experience and 
appreciate the relationships between common logarithms and powers of ten, 
fundamental to understanding the concept of logarithms. Since logarithms 
are still important, even if they are not routinely required for computation any 
more, this would seem to be a good context for developing that understanding.

While a scientific calculator these days is essentially a black box for the 
computation of square roots, anecdotally this does not seem to be of concern 
to most mathematics teachers. However, a calculator might be used to explore 
ways in which computations to determine a square root can be undertaken by 
the calculator, at the very least to dispel any student notion that the calculator 
just somehow ‘remembers’ all the square roots. Although the mechanism 
probably involves power series for logarithms and exponentials, an iterative 
process to determine a square root can be used as well. After an initial guess 
g is made, an improved guess g' can be obtained by finding the average of the 
guess and the result of dividing the number (52, say) by the guess, as follows:

	
g ' =

g + 52
g

2

On a modern calculator, iterations of these kinds are readily set up, using 
the Ans variable to refer to the previous result (guess). In this case, after an 
initial (poor) guess of 7, shown in the first screen in Figure 7, later guesses 
rapidly converge to a good approximation to the result:

    

Figure 7. Setting up an iterative procedure to find 52  on a Casio fx-100AU PLUS.

After constructing the iterative step, each successive iteration requires only 
that the = key be pressed. Figure 8 shows that this procedure converges very 
rapidly after only two more steps, to an accurate approximation:

    

Figure 8. The next two iterations to approximate 52 .
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Figure 9 shows that the result can easily be checked by squaring the most 
recent iteration, demonstrating in this case, to the accuracy provided by the 
calculator, that 52  has been determined in only three steps, which might 
account for how rapidly the calculator produces the result. While this might 
be of interest in a school class, formal study of such procedures, including 
their convergence properties, might sensibly occur some time after students 
leave school, in more advanced mathematics courses, such as undergraduate 
numerical analysis. They might also be the subject of elementary algorithmic 
design and programming of calculators, computers or spreadsheets.

Figure 9. Checking the iterative result to approximate 52 .

Technology might be used in other ways to unpack the idea of a square 
root, without the need to spend so much time undertaking the calculations. 
Figure 10 shows two examples, firstly finding the square root of a negative 
number (which requires a complex result) on the Casio fx-100AU PLUS and 
secondly finding an exact square root (for which a different calculator has 
been used, the Casio fx-991ES PLUS):

    

Figure 10. Further opportunities to explore square roots on calculators.

In addition, this technology might be used to illuminate some important 
properties of logarithms, using the vehicle of square roots. Thus, in Figure 11, 
natural logarithms are used instead of common logarithms, while a calculator 
that provides logarithms to bases other than 10, such as Casio fx-991ES PLUS, 
is used to demonstrate that the idea of halving the logarithm to find a square 
root (previously illustrated in Figure 6) is a feature of logarithms in general, 
not only of common logarithms: the numerical square root of 52 can be found 
with logarithms to any base.

    

Figure 11. Using calculators to explore logarithms to other bases and square roots.

In summary, the idea of a square root is an important one, previously 
problematic in practice, as a lot of time was needed to use standard procedures 
to evaluate it. When an easy alternative technology became available, it was 
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seized upon, and the previous methods mostly discarded, although they 
might have helped offer some insight. While the computation of square roots 
is practically important, their understanding was often not much helped by 
their means of computation; yet the use of a calculator might permit some 
insights to be developed about square roots, as the burden of computation is 
lifted.

With these observations in mind, it is of interest now to turn to the second 
example of a similar kind, concerning integration of functions.

Integrals

The idea of an integral is a useful and powerful one in mathematics, 
inextricably caught up with the idea of a derivative. Each of them offers 
powerful ways of measuring aspects of change, and hence provide the 
essential machinery for mathematical models of a changing world. In the case 
of integrals, accumulation is measured (such as the distance travelled over a 
period of time by a moving object, probably represented as an area), while the 
derivative measures the rate at which one quantity is changing in relationship 
with another. The concepts are complementary, so that their understanding 
is intertwined, through the fundamental theorem of calculus. Integration is a 
practical idea, as some problems require us to find an integral as part of the 
solution, and to interpret it in some context. Not surprisingly, it has long been 
a part of our mathematics curriculum, once students get to a certain level of 
sophistication and undertake some study of the calculus.

Integrals have always been a bit problematic, however, as some of them are 
easier to find than are others. In some cases, we would expect that students 
evaluate integrals immediately and mentally, in part as evidence that they 
understand what the idea means and how it is associated with derivatives:

	
(2x +7)dx = x 2 +7x +C∫

since
	

d
dx

x 2 +7x +C( ) = 2x +7

In this case, a constant C is included; however, in the following cases it will 
be omitted, on the assumption that readers are aware that indefinite integrals 
should always include a constant.

When the antiderivatives involved exceed typical mental expectations, a 
more sophisticated method is needed, however. Thus, to find the following 
integral, it is helpful to recognise its form:

	
(2x + 5)e x2+5x−1∫ dx

If the chain rule is recognised to be relevant here, some students might see 
immediately how this has occurred and so be able to write down the integral, 
while for others a suitable substitution such as u = x2 + 5x – 1 will facilitate 
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the integration process. Although this is a relatively straightforward example, 
significant—although routine—algebraic manipulations are involved after 
deciding on the substitution. These manipulations are essentially algebraic 
manipulations, and are not an intrinsic part of the calculus. If we are not 
careful, students can spend a great deal of time devoted to learning about 
calculus to developing by-hand expertise with symbolic manipulation—which 
of course is something different from the calculus; while it is sometimes a 
means to an end, it is important to not confuse it with the ends. While it is 
a good practice after obtaining a definite integral to find its derivative as a 
check that the manipulations were carried out correctly, and a nice reminder 
of the relationship between the functions concerned, this can sometimes be 
tedious and at other times can be extremely tedious, so is frequently not done 
by time-poor or symbolic manipulation-averse students.

In recent years, students and others have begun to use computer algebra 
systems (CAS) on calculators and computers, which handle the routine work 
of integration, analogous to the way in which the scientific calculator handles 
the routine work of finding a square root. In this paper, we use one example of 
a hand-held CAS, on Casio’s Classpad II, a popular example of this technology. 

Figure 12. Evaluating and checking an indefinite integral on Casio’s Classpad II.

Figure 12 shows the (indefinite) integral just mentioned (again, shown 
without the constant, as the calculator does not routinely provide it), as well as 
a quick and reassuring check that the derivative of the result reproduces the 
original integrand. As the screen suggests, this particular device represents an 
indefinite integral by leaving blanks where the limits of a definite integral might 
appear. Expressions are entered with a keyboard and a stylus is used for drag-
and-drop movements of expressions to limit the need for typing. Although it 
concerns a different aspect of mathematics, there are clear similarities here 
with the use of the scientific calculator to find and understand square roots, 
as shown in Figure 4.

Using a CAS calculator as in Figure 12 does not require students to deploy 
the symbolic procedure of integration by substitution, including choosing 
what to substitute, and completing all the associated manipulations. However, 
a suitable discussion, with the help of the teacher, might be expected to help 
them to see how the chain rule is related to the results. 

As for the case of square roots which can be recalled from memory or 
readily seen when factors are sufficient, some integrals can be handled easily 
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without recourse to technology. Similarly to the case of square roots, a number 
of methods for evaluating indefinite integrals have been developed for more 
difficult situations. Unlike the case of square roots however, the methods 
rely on the structure of the integrand, and the corresponding differentiation 
processes, or on helpful relationships between mathematical expressions, such 
as double angle formulas in trigonometry or other trigonometric identities. A 
current example of the suite of possibilities is listed in Topic 1 of Unit 4 of 
the senior secondary Mathematics syllabus, Specialist Mathematics, developed 
by the Australian Curriculum, Assessment and Reporting Authority (ACARA) 
(2015), concerned with integration techniques. The suite includes several 
methods of integration, such as:

Integrate using the trigonometric identities (ACMSM116)

Use substitution u = g(x) to integrate expressions of the form f(g(x))g'(x) 

(ACMSM117)

Integrate expressions of the form 
±1

a2 −x 2  and 
a

a2 +x 2  (ACMSM121)

Find and use the derivative of the inverse trigonometric functions: arcsine, 

arccosine and arctangent (ACMSM120)

Use partial fractions where necessary for integration in simple cases 

(ACMSM122)

Integrate by parts (ACMSM123)

These various methods in some cases involve clever adaptations of algebraic 
and trigonometric relationships (almost in the form of symbolic tricks). 
In other cases, the methods are derived from properties of differentiation 
(such as substitution, from the chain rule, or integration by parts from 
the product rule) and in still other cases are developed from complicated 
symbolic transformations (such as the use of partial fractions). They are 
all essentially algorithmic and symbolic, although at times needing various 
levels of ingenuity to decide which to use. However, they do not contribute 
significantly to learning about integration as an important mathematical idea. 
Indeed, the time spent devoted to developing by-hand expertise with them 
seems luxurious in a crowded curriculum, at least when there are efficient 
alternatives.

CAS calculators certainly provide alternatives. When a CAS calculator 
is used to obtain integrals, the mechanism used to do so is not shown; in 
parallel, this is also the case for the scientific calculator finding square roots. A 
difficult (by hand) example is shown in Figure 13; as previously, the calculator 
is also used to verify that the derivative of the result reproduces the original 
integrand.

Similarly, Figure 14 shows an example (on the left) involving integration by 
partial fractions and another example (on the right) involving integration by 
parts, together with the associated verifications of the results by differentiation.

A
us

tr
al

ia
n 

S
en

io
r 

M
at

he
m

at
ic

s 
Jo

ur
na

l v
ol

. 
3

0
 n

o.
 1

14



Integrating technologies into m
athem

atics

Figure 13. Integrating using trigonometric identities on Casio’s Classpad II.

    

Figure 14. Integrating by partial fractions and by parts on Casio’s Classpad II.

Figure 14 also illustrates that it is sometimes necessary for students to 
rearrange calculator results in order to see equivalences; although the final 
result obtained in the first case is equivalent to the integrand, the denominator 
has been factorised and the numerator written differently from the original. 
CAS calculators often present challenges of these kinds, ideally stimulating 
students to look to see simplifications for themselves, as shown in the two 
examples in Figure 15, which also illustrate the handling of one of the methods 
of integration suggested by the ACARA curriculum. In this case, the calculator 
provides results that are easier to see in relation to the original integrand in 
the case of a particular value of a being chosen.

    

Figure 15. Interpreting the form of results for standard integrals on Casio’s Classpad II.

These examples do not exhaust the list of integration methods proposed by 
ACARA (2015), but hopefully serve to illustrate two main points: that detailed 
knowledge of the symbolic manipulation mechanisms associated with various 
methods are not necessary, if one has access to a modern CAS calculator, and 
that the calculator might be used to explore some relationships evident in the 
results, probably relying on the teacher to stimulate that process.
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The ways in which technology is typically used for these two concepts of square 
roots and integration are clearly different. Integration is a central component 
in introductory calculus. Students need to learn what it is, decide when to 
use it, know how to use an integral to represent a relationship of interest, be 
able to evaluate the integral and finally interpret what the result means (in 
some context, often). The CAS calculator addresses only one of these five 
aspects (that concerned with evaluation), but it seems not unreasonable that 
more time might be spent on the other four aspects, which are frequently 
neglected, if less time needs to be spent labouring on extensive by-hand 
symbolic manipulation. While the case of the integral is perhaps different 
in significance, it is not fundamentally different in kind from the case of the 
square root on the scientific calculator, where we seem collectively more 
comfortable with leaving the details of the process to a machine.

The challenge in the case of integrals is to get an appropriate balance 
between by-hand and by-machine methods; this is not usually regarded as a 
challenge in the case of square roots. One way of ‘resolving’ this challenge is 
not to use CAS calculators at all, which of course runs the risk that students 
will continue to regard calculus as heavily reliant on symbolic manipulation. 
Furthermore, some by-hand manipulation is necessary: few (if any) would 
argue that a CAS calculator alone is sufficient to help students develop an 
understanding of integrals. In addition, most teachers would expect students 
to evaluate some integrals mentally, just as they would expect students 
to evaluate some square roots mentally. When CAS calculators are used in 
Australian schools, typically some assessment permits use of the devices and 
other assessment prohibits its use; while this seems a good idea, care is needed 
with the calculator-free assessment that we do not continue to have essentially 
the same expectations as previously for by-hand symbolic manipulation, lest 
nothing is gained, and a new burden for students created.

If less time is spent in school developing extensive by-hand symbolic 
manipulation, those who are either interested in doing so, or who need to do 
so for some purpose (such as studying the actual algorithms used) can devote 
time and energy to doing so at the appropriate time—after they leave school 

—when the need is apparent to them. In the same way, those who would like 
to, or who need to, know the finer details of how the scientific calculator finds 
square roots can do so at a later time and in more depth.

Although this paper has not explored the detail, technologies such 
as calculators offer teachers and students opportunities to explore many 
mathematical concepts more deeply. Some possibilities were outlined for the 
case of square roots, while for the case of integrals, CAS calculators can provide 
a means of representing integrals as areas under curves, or as limits of Riemann 
sums, as well as symbolic expressions, providing access to richer meanings.
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Conclusion

Technologies have the potential both to save time and to improve students’ 
understanding of mathematical ideas. Two examples have been used in this 
paper, contrasting the acceptance of one example (finding a square root on 
a calculator) with our reservations about the other (evaluating indefinite 
integrals on a CAS calculator). A balance between sufficient mental, by-hand 
work and use of digital technologies is needed to help students understand 
the key ideas, while avoiding excessive routine manipulation. While teachers 
working with curricula that prohibit the use of CAS to students have no 
alternative to devoting a lot of time to symbolic manipulation to evaluate 
integrals, those working in curricula that permit its use need to seek a 
reasonable balance.

Two decades ago, in an award-winning paper, Dan Kennedy (1995) likened 
learning mathematics to climbing a tree, for which there was only one way to 
climb: up a large and solid trunk. In the limited time that is available, many 
students give up the climb, impede others, fall off the trunk or fail to climb 
the tree sufficiently well. In the case of integration, the solid trunk seems to be 
heavily laden with algebraic manipulation. Kennedy suggested that technology 
might provide help in the form of ladders to climb the tree in other ways. Just 
as the use of technology allowed us to bypass the numerical requirements to 
calculate square roots (and other aspects of basic mathematics), it now seems 
time to look carefully at the use of computer algebra to reconsider how much 
of the algebraic trunk is really needed to help students climb the tree, look 
around and start to explore the branches of the tree that look interesting to 
them. 
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