
VISUAL PROGRAMMING: A PROGRAMMING TOOL FOR
INCREASING MATHEMATICS ACHIVEMENT

By

ABSTRACT

This paper aims to address the need of increasing student achievement in mathematics using a visual programming

language such as Scratch. This visual programming language facilitates creating an environment where students in K-12

education can develop mathematical simulations while learning a visual programming language at the same time.

Furthermore, the study of visual programming tools as a means to increase student achievement in mathematics could

possibly generate interests within the computer-supported collaborative learning community.

Keywords : Achievement, Creativity, End User Programming, Mathematics Education, K-12, Learning, Scratch, Squeak,

Visual Programming

According to Jerome

Bruner in Children Learn By Doing, "knowing how something is put together is worth a thousand facts about it. It permits

you to go beyond it” (Bruner, 1984, p.183).

INTRODUCTION

Across the nation, math scores lag (Lewin, 2006). Students

are performing lower than ever. Lewin reports, for “the

second time in a generation, education officials are

rethinking the teaching of math in American schools”

(p.1). It is imperative that higher education, industry, and

K-12 collaborate to ascertain a viable solution to the

problem of low achievement in mathematics education.

One way to get students interested in math is to teach

them how to creatively code mathematical programs

using a visual programming language. Using a visual

programming language would allow the students to show

their creativity and possibly produce software that would

increase mathematics achievement. With the students'

involvement, they are able to not only create games and

other forms of media; they are also learning

mathematical concepts. Not only will the usage of these

applications benefit the designers of the software, but

also those students that will follow in their footsteps.

This paper gives a brief overview of the visual

programming language Scratch and describes a

prototype of an implementation of basic math tutorial

using Scratch. The prototype demonstrates a visual

programming language as a tool to create

mathematical tutorials. Additionally, this paper provides a

modicum of information as it relates to the educational

value of visual programming to mathematical

achievement. Peppler and Kafai (2007) indicate “game

players program their own games and learn about

software and interface design. Some efforts have

integrated the learning of subject matter, such as

mathematics and science” (Jenkins 2006, p.1). Jenkins

articulates “three issues that policymakers and educators

face as they attempt to bridge the gap between those

that contribute and those that do not: the participation

gap, the transparency problem, and the ethics

challenge. These three issues encompass the need to

ensure that every young person has access to the skills

and experience needed to become a full participant,

can articulate their understanding of how media shapes

perception, and is knowledgeable of emerging ethical

standards that shape their practices as media makers

and participants in online communities” (p.1). The work

presented in this paper belongs to a broader spectrum of

end user programming and learning that could possibly

facilitate achievement in mathematics.

* Associate Professor, Mathematics and Computer Science Department, Fort Valley State University
** Associate Professor, Computer Science and Software Engineering Department, Auburn University

*** Doctoral Student, Computer Science and Engineering Department, Arizona State University

CHERYL SWANIER *

li-manager’s Journal of Educational Technology, Vol. No. 2 2009l 6 July - September 1

CHERYL D. SEALS ** ELODIE BILLIONNIERE ***

ARTICLES

Background

Kay (2007) states “globally networked, easy-to-use

computers can enhance learning, but only within an

educational environment that encourages students to

question facts and seek challenges,” (p.3). “A visual

programming language (VPL) is any programming

language that lets users specify programs by

manipulating program elements graphically rather than

by specifying them textually. A VPL allows programming

with visual expressions, spatial arrangements of text and

graphic symbols. Most VPLs are based on the idea of

“boxes and arrows,” that is, boxes or circles or bubbles,

treated as screen objects, connected by arrows, lines or

arcs” (Wikipedia, p.1). According to the Microsoft Robotics

Studio (2008), although visual programming was initially

developed for novice programmers who had some

knowledge about variables and logic, VPL is also for the

more experienced programmers. For the purpose of this

paper, Scratch, an open-source visual programming

language, was chosen for our study as its environment

supports user creativity and software development.

Scratch

Scratch is a “new [emerging] programming language

that makes it easy to create interactive stories, games,

animations, [music, and art]” (MIT Media Lab, 2007, p.1).

The software does not require prior knowledge in

programming. While observing this programming

language, Scratch appeared to be user friendly and

encourages computational thinking and creativity when

developing learning games.

“Scratch is written in Squeak, an open-source

implementation of the smalltalk language” (OLPC, p.1).

Squeak is a “media authoring tool” developed by a

community of people from Massachusetts Institute of

Technology (MIT). It can be used to create your own

media or share and play with others” (Kay, 2007, p.1). It

allows novice programmers to create tools for learning or

play in an environment that is non-threatening and fairly

intuitive. Kay believes that “education is a primary focus

for many Squeakers who are doing cutting edge research

on how computers can be used to enhance and amplify

learning” (p.1).

Scratch consists of a programming language made up of

different blocks and an easy to learn graphical

development environment that includes a paint

application for creating graphics and built-in sound

editing capabilities. Scratch blocks are snapped together

to create well- structured programs compose of color-

coded tags describing motion, looks, sound, pen,

control, sensing, operators, and variables. Scratch blocks

resemble puzzle pieces in the way that they snap together

as shown in Figure 1. Thus, Scratch enforces proper

programming syntax and ensures that novice

programmers learn the proper way to assemble and

formulate programming logic. Scratch projects consist of

sprites, costumes, blocks, and scripts. Even though

Scratch is a gentle approach to programming, it does not

have the advanced functionality of some programming

environments like Squeak and Alice 3D. This was observed

when trying to develop a math tutorial for an Algebra I

class. Despite the lack of advanced functionality, Ford

(2008) reports “Scratch provides robust support for

performing mathematical calculations” (p.159).

Some of the basic functionality of the tool Scratch

include:

? adding, subtracting, multiplying, and dividing;

?generating random numbers in any range;

?performing various types of numeric comparisons;

?performing a number of built-in operations. As such, a

simple math tutorial was implemented in Scratch to

assist students in learning basic math facts.

Figure 1. Scratch blocks

li-manager’s Journal of Educational Technology, Vol. No. 2 2009l 6 July - September 2

ARTICLES

The Scratch environment is separated into several task

panes as shown in Figure 2. The middle section contains

the scripts, i.e. the instructions controlling the actions. The

first section consists of blocks to create the scripts. The

Scratch blocks are organized as the following: Motion,

Looks, Sound, Pen, Control, Sensing, Operators, and

Variables. The last pane contains the area where the

results are populated as well as the objects, sprites,

costumes, and stages. Each sprite consists of three

distinct components: i) scripts; ii) costumes; and

iii) sounds.

Basic Math Facts Tutorial

Creating tools that facilitate student achievement in

math is critical. It is imperative that the authors find ways to

generate interest in mathematics and make it more

interesting. One way to do that is to develop software that

is culturally relevant such that the participants are

enthusiastic about learning, and engaged in the

learning; thus learning can be achieved.

Scratch implementation assists individual in learning their

basic math facts such as multiplication, division, addition,

and subtraction as shown in Figure 3. Participants are

given ten randomly chosen basic math facts problems.

The tutorial is culturally relevant as the tutor is represented

according to participants' preferences in terms of race,

gender, and clothing. For the purpose of this study, the

authors use Trevon, an African-American male as the

agent that guides the participant through the tutorial. This

feature enables participants to relate with their tutor and

therefore allows a safe learning environment. The system

immediately informs the participant whether the answer is

correct. If not, the system generates a message

indicating the answer is incorrect. Furthermore, another

math problem is generated when participants press the

spacebar. Upon completion of the short tutorial, the score

is generated and a message indicating the performance

level and instructions for resetting the tutorial are

displayed on the screen.

The layout of the basic math facts tutorial consists of

objects called sprites, costumes, a stage, and several

scripts shown in Figure 4. There are eight sprites and one

stage. Sprite1 as illustrated in Figure 3 depicts the agent

Trevon. To start a game, the green flag sign must be

clicked and to end a game, the red stop sign must be

clicked (Figure 2).

Figure 2. Scratch Environment

Figure 3. Basic Math Facts Tutorial

Figure 4. Objects, Sprites, Costumes, Stages, and Scripts

li-manager’s Journal of Educational Technology, Vol. No. 2 2009l 6 July - September 3

ARTICLES

Conclusion

According to Klopfer (2008), et al., “As technologies

become more and more advanced, we have

empowered students to magically create things

themselves on computers. They can manipulate media,

explore virtual worlds, and communicate across the

globe almost effortlessly. The day when students need to

program computers to do interesting things is far behind

us. So what is the role of computer programming for

students at this point in time? What are the advantages to

kids of understanding and controlling the science

behind the magic?” (P.1)

As such, it is imperative that government, educational

institutions, and industry convene to provide a solution to

this nation wide problem regarding mathematics

achievement. This community of stakeholders can

involve the students in their learning and teach them to

program in an environment that is less threatening while

promoting achievement in mathematics. This basic math

tutorial illustrated in this paper does not involved any

advanced mathematical problem solving; however, it

demonstrates that visual programming can be used as a

fun and easy tool to possibly increase mathematics

achievement.

In terms of future work, more research is required to

implement advanced topics in mathematic. Visual

programming via Scratch can “provide a rich context for

learning programming, how to collaborate with others,

becoming a member of an affinity group, developing

sustained engagement,” and a community of learners

(Peppler & Kafai, p.7).

References

[1]. Bruner, J. S. (1983). The New Curriculum: IN THE END. In

Search of Mind: Essays in Autobiography (pp.177-200).

New York: HarperCollins.

TM[2]. Ford, J. L. (2008). Scratch Programming for Teens.

Boston, MA: Course Technology PTR.

[3]. Jenkins, H., Clinton, K., Purushotma, R., Robison, A., &

Weigel, M. (2006). Confronting the challenges of

participation culture: Media education for the 21st

century. Chicago, IL: The John D. and Catherine T.

MacArthur Foundation.

[5]. Kay, A. (2007). Computer, networks and education.

Retrieved July 29, 2009, from Squeakland Home of

Squeak Etoys Web site: http://www.squeakland.org/

school/HTML/sci_amer_article/sci_amer_01.html.

[6]. Klopfer, E., Resnick, M., Malone, J. Silverman, B.,

diSessa, A., Gegel, A., & Hancock, C. (2008).

Programming Revisited The Educational Value of

Computer Programming. Retrieved June 23, 2009, from

Microsoft Research Web site: http://research. Microsoft.

Com/~abegel/papers/icls04.pdf.

[7]. Lewin, T. (2006). As Math Scores Lag, a New Push for

the Basics. The New York Times, p. A22.

[8]. Microsoft Robotics Developer Center. (n.d.). VPL

Introduction. Retrieved on July 23, 2009, from Microsoft

Robotics Developer Center site: http://msdn.microsoft.

Com/en-us/library/bb483088.aspx.

[9]. MIT Media Lab. (2007). Scratch reference guide.

Retrieved on July 29, 2009, from Scratch Web site: http:

//info.scratch.mit.edu/Support/Reference_Guide_1.4.

[10]. OLPC News.(2007). Learning Squeak from Scratch.

Retrieved on June 20, 2009, from OLPC News Web site:

http://www.olpcnews.com/software/applications/learnin

g_squeak_scratch.html.

[11]. Peppler, K., & Kafai, Y. B. (2007). What Videogame

Making can teach us about literacy and learning:

Alternative pathways into participatory culture. In

Proceedings of DiGRA, p. 369-376.

[12]. Scratch. (N.d.). Help Screens for Scratch. Retrieved

on July 29, 2009, from Scratch Web site: http://info.

scratch. Mit.edu/Support/Help_Screens.

[13]. Wikipedia. (n.d.). Visual Programming language.

Retrieved on July 23, 2009, from Wikipedia Web site: http :

//en.wikipedia.org/wiki/Visual_programming_language

li-manager’s Journal of Educational Technology, Vol. No. 2 2009l 6 July - September 4

ARTICLES

Cheryl A. Swanier, Ed.D., is an Associate Professor of Computer Science at Fort Valley State University. She is also a Ph.D. student in
the Computer Science and Software Engineering Department at Auburn University. She conducts research in Human Computer
Interaction, Learning Technologies, Visual Programming, and STEM Education.

Cheryl D. Seals, Ph. D. is an Associate Professor in the Computer Science & Software Engineering Department at Auburn
University. She conducts research in Human Computer Interaction with an emphasis on Visual Programming of Educational
Simulations with End User Programming, Intelligent Agent, Usability Evaluations, Computer Supported Collaborative Work, and
Minimalism. She is additionally involved in software engineering projects.

Elodie V. Billionniere, M.Ed is a Ph.D. Student in the Computer Science and Engineering Department at Arizona State University.
She conducts research in Human Centered Interaction, Learning Technologies, Service Computing, and STEM Education.

ABOUT THE AUTHORS

li-manager’s Journal of Educational Technology, Vol. No. 2 2009l 6 July - September 5

ARTICLES

	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

