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The idea of facilitating learning by providing ways for students to make 
connections between different parts of mathematics and between 

mathematics and the rest of reality is widely acknowledged to be a good one.
A search of the Australian Curriculum (Australian Curriculum, Assessment 

and Reporting Authority [ACARA], n.d.) documents using the phrase “making 
connections” reveals several instances in the mathematics courses as well as 
in many of the other disciplines. The idea of ‘connectedness’ is one of four 
dimensions in Queensland’s Productive Pedagogies framework (Queensland 
Government Department of Education and Training, 2015). Further afield, 
the idea forms the basis of the long-running Connected Mathematics Project, 
a curriculum development and teacher support initiative from Michigan State 
University (n.d.).

In a paper presented at the 2008 Annual Conference of the Mathematics 
Education Research Group of Australasia, Abigail Sawyer makes the well-
supported claim that “there is broad consensus that in order to become 
numerate, students must become competent in perceiving the connections 
between mathematics and other forms of knowledge and between mathematics 
and their lived experience” (Sawyer, 2008, p. 429).

Sawyer goes on to explain that strategies to implement the overarching 
idea of making connections are not always straightforward and may work 
differently for different groups of students. 

Nevertheless, in the same vein, it seems reasonable to claim that learning 
has occurred if and only if a connection has been made in the mind of the 
learner between otherwise isolated concepts or between fragments of mental 
or physical action (as when we learn to play a musical instrument). Indeed, 
the frequently heard comment, “When are we ever going to use this?” can be 
read as an admission by the student that a connection has not yet been made 
and the mathematical facts that the teacher has been trying to impart remain 
a disconnected and hence irrelevant jumble.

This article aims to illustrate, via a moderately rich task, a process of 
making connections, not between mathematics and other activities, but 
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within mathematics itself, between diverse parts of the subject. In general, 
the connections between mathematical ideas appear to be the stuff of deep 
understanding. 

The following mathematics has been explored since the time of the ancient 
Greeks and results surrounding it have long been known, but novel connections 
are still possible when the material happens to be unfamiliar, as may be the 
case for a learner at any career stage. The geometrical configuration to be 
explored, now known as ‘Ford circles’ after Lester R. Ford Sr (1886–1967), is 
related to ideas about mutually tangent circles that were studied by, among 
others, Apollonius of Perga in the third century BC and by René Descartes in 
the 17th century (Wikipedia, 2015). 

This exposition, admittedly neither concise nor elegant, is intended rather 
to conjure the thoughts of a hypothetical mathematician attempting to find 
and explain some connections, in the process exploring some lines that turn 
out to be unproductive and making observations that are really non sequiturs, 
before eventually achieving some success. This approach contrasts with the 
manner of writing in typical mathematical research articles and in many 
text books, which tends to present only polished statements and proofs, the 
finished results of a hidden process of discovery.

Euclidean geometry

A line is drawn tangent to two circles. A third circle is to be drawn tangent 
to the line and tangent to each of the first two circles, as shown in Figure 1. 
How is the radius of the third circle related to the radius of the other two and 
where is its centre?

Figure 1. Three circles tangent to each other and to a line.

To proceed, decisions are needed about what prior knowledge in geometry 
can be brought to bear, what construction lines might be helpful and what 
reference point should be chosen by which to locate the centre of the third 
circle.

The reader may have considered adding the construction lines and labels 
as in the Figure 2. The point of tangency of the left-hand circle with the line 
has been chosen as a reference point. 
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Figure 2. Constructions for locating the centre of the middle circle.

Right-angled triangles have appeared because any radius meeting a point 
of tangency is perpendicular to the tangent. This looks correct but it is true 
because it is consistent with previously encountered fragments of knowledge 
about the angle in a semicircle and angles on the same arc and a limit process; 
or maybe we recall Euclid’s reductio ad absurdum proof (ProofWiki, 2014).

The right-angled triangles suggest Pythagoras and some algebra enters 
the discussion. There are connections between the radii and the horizontal 
distances of the centres of the three circles from the origin. To begin, 

 
r1 + r2( )2 − r1 − r2( )2 = a2

which simplifies to a = 2 r1 ⋅r2 . Similarly, b = 2 r1 ⋅r3  (which locates the 
centre of the small circle) and a − b = 2 r2 ⋅r3 . By substitution, we have 

r1 ⋅r2 − r1 ⋅r3 = r2 ⋅r3  and this is equivalent to the nice result,

 

1
r3

= 1
r1

+ 1
r2

One might mention parenthetically that Pythagoras and other Greek 
mathematicians catalogued several different means. In this case we have, after 
rearrangement,

 

r3 = 1
2

2
1
r1

+ 1
r2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

That is, r3  is half the harmonic mean of r1  and r2 . It remains to be seen 
whether this connection will turn out to be useful.

Now, suppose further circles are added to the diagram (see Figure 3). Each 
new circle is tangent to two parent circles and also to the line. As before, we 
might ask whether anything can be said about the sequence of locations of the 
centres of the circles, starting from the left-most circle.
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Figure 3. Further circles added, each tangent to two circles and the line.

Graphs

To keep track of the infinitely many circles, a possible strategy is to consider 
instead a representation consisting of vertices and edges. 

Figure 4. Representation of the circles by a graph.

Each vertex represents a circle. An edge between vertices indicates that the 
corresponding circles are tangent to one another. 

The graph partially drawn above represents four generations of circles 
after the original pair. Further generations can be appended but even with 
this somewhat simpler representation, the picture will soon become crowded 
or very large. In fact, by the nth generation there are 2n–1 children.

The vertices can be numbered in a systematic way. One way to do this is to 
go from left to right within each generation of vertices, as in Figure 5. The 
fact that a numbering exists confirms that the infinite set of circles is countable. 
Thus, we have a connection between Euclid and Cantor. 

Figure 5. Counting vertices.
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The graph shows the connections between parent and children circles but 
it does not yet have the numerical information about the radii of the circles or 
about the horizontal distances of each centre from the origin. 

The relation developed above

 

1
r3

= 1
r1

+ 1
r2

makes it possible to calculate recursively the radii. These quantities can then 
be assigned as weights to the vertices. Similarly, weights for the edges come 
from the fact that the distance di,j between adjacent vertices i and j, is given by 
di , j = 2 rir j , corresponding to the horizontal distance between the centres of 
the ith and jth adjacent circles.

Paths

By inspecting the graph of the first four generations of circles, it is not hard 
to find both Euler and Hamilton paths, where we take one of the two original 
parent vertices as the starting point. For each type of path, an induction 
argument is possible showing that such a path exists for every finite number 
of generations. 

There is an Euler path, for example, that sweeps alternately from left to 
right and from right to left through the edges belonging to each successive 
generation, as shown in Figure 6.
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Figure 6. Euler path.

For the inductive step, observe that if there is an Euler path for a graph 
with n generations and the nth row of edges sweeps from left to right (or right 
to left) then constructing another row of edges (and vertices) sweeping the 
opposite way will produce the graph with n + 1 generations.

The fact that there is always a Hamilton path that begins with the left-most 
original parent vertex and goes consistently from left to right, can be seen 
when the vertices are renumbered, as shown in Figure 7.

Formulated in terms of the graph, the goal is to find a pattern, if one exists, 
of distances from the first vertex to each of the vertices along this Hamilton 
path.
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Figure 7. Hamilton path.

Distance

As mentioned above, the distance di,j in the graph between adjacent vertices 
i and j is defined to be di , j = 2 rir j , where ri and rj are the weights of the 
vertices. It is clear that di,j = 0 is impossible because the vertex weights are 
always positive (although they can be as close to zero as we like). This is 
confirmed by considering the diagram with the circles: no two circles can be 
arranged one directly above the other.

As an aside, we note that the distance measures along the Hamilton path 
constitute a metric in the standard sense if we define di,i = 0 for every i. It is 
true that di,j = dj,i for any pair of distinct vertices i and j. Also, for any three 
vertices i, j and k, the triangle inequality di,k ≤ di,j + dj,k holds, with equality 
when vertex j is the child of vertices i and k. The requirement that di,i = 0 if 
and only if vertices i and j are identical is satisfied, the ‘if’ part holding by 
definition and the ‘only if’ part holding vacuously.

The distances along the Hamilton path between pairs of vertices, adjacent 
or otherwise, are just the sums of the intervening edge weights. These total 
distances are of interest because they correspond to the total horizontal 
distance of each circle from the origin. By reference to the Ford circle 
diagrams or to the expressions for edge weights in the graph, it is clear that 
the distance of a vertex from the origin is independent of the actual route 
taken so long as progress is consistently from left to right in the graph. To 
obtain these distances, the vertex weights seem to be needed. 

With the relation 

 

1
rk

= 1
ri

+ 1
r j

where vertices i and j are parents to vertex k, the weight of each vertex can 
be written in terms of the weights of its parents, whose weights can then be 
expressed in terms of the grandparent weights. Eventually, the weight of any 
vertex can be written as a linear combination of the weights of the initial and 
final vertices. 

This rapidly becomes tedious and cumbersome. A simplification is called 
for.
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Matrices

Suppose that by dogged persistence a large number of vertex weights has been 
calculated. The sums of the intervening edge weights that give the distance of a 
vertex along the Hamilton path can be expressed in matrix form. Numbering 
the weights according to their consecutive positions in the Hamilton path we 
have, in this very small example:

2

w2 0 0

w2 w3 0

w2 w3 w4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1

w2

w3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 2

w1w2

w1w2 + w2w3

w1w2 + w2w3 + w3w4

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

While this makes the calculations systematic, it does nothing to advance 
the project. Again, we try another approach.

Numbers

From the relation 
1
rk

= 1
ri

+ 1
r j

concerning adjacent circles, or equivalently 

rk =
rir j

ri + r j( )2

it is apparent that rk is a rational number either if ri and rj are both squares of 
rational numbers or if ri = rj. 

In the special case of the original parent circles having equal radii, r1 say, 
the child circle must have radius

r1

4

Then, the two circles in the next generation will each have radius 
r1

9

A pattern emerges. The relation between parent and child radii shows that if 
parent circles have radii 

r1

a2 and
r1

b2

where a and b are integers, then the child radius is 
r1

a + b( )2

Moreover, the grandchildren will have respective radii 
r1

2a + b( )2
and

r1

a + 2b( )2
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The denominators will always contain a squared factor.
For convenience, we could put r1 = 1

2
. This choice sets the distance to 1 

between the original parent centres. All other cases with equal sized original 
parents would involve only a rescaling. Thus, the radii of the circles are in the 
set 

 

1
2

,
1
8

,
1

18
,

1
32

,…{ }
That is,

  
rn = 1

2n2 for n ∈!

Suppose two of the circles, with radii 

 

1
2n2 and

1
2m2

are touching. Then the horizontal distance between their centres is 

 
dn ,m = 2

1
2n2 ⋅

1
2m2 = 1

nm

Suppose further that the two circles are located at distances p
q  and r

s
 along 

the line, with r
s
 > p

q . Then, r
s
 – p

q  = 1
nm

 or equivalently,

 

rq − sp
sq

= 1
nm

This will certainly be possible if n = s and m = q, or n = q and m = s. That this is 
also a necessary condition is not immediately obvious. 

If the fraction rq−sp
sq  is written in lowest terms, we must have rq – sp = 1 and 

sq = mn. 
Now, if rq – sp = 1, then s and q are coprime. Otherwise, a common factor 

would divide the 1 on the right, which is impossible. Then, since s and q are 
coprime we only need only show that m and n are also coprime, and then 
the fundamental theorem of arithmetic would compel the conclusion that 
in order for sq = mn, we must have s = m and q = n, or, paired the other way, 
s = n and q = m. (This is because there is essentially only one way to factorise 
numbers sq and mn into primes.)

The previously abandoned idea of the graph with the Hamilton path turns 
out to be useful after all. The vertices have now been labelled with the number 
that is squared in the denominator of the weight fraction as shown in Figure 8.

Figure 8. Hamilton path with vertices relabelled.

It is easy to check from the diagram that in the Hamilton paths when 
there are one, two, three or four generations of circles, the squared parts of 
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adjacent vertices have no common factors. Assume for the moment that in all 
generations up to the kth, the squared parts of adjacent vertices are coprime. 
A new generation and a new Hamilton path is produced by appending child 
vertices between each pair of adjacent vertices in the Hamilton path. Thus, in 
each case the parents have radii 

 

1
2a2 and

1
2b2

and the child has radius 

 

1
2 a + b( )2

where a and b have no common factors. It follows that the children have no 
factors in common with either parent. Thus, again in the (k + 1)th Hamilton 
path the squared parts of the weights of adjacent vertices have no common 
factors. 

By induction, we see that the squared numbers in the denominators of 
adjacent circle radii are always coprime. That is, referring to the discussion 
above, m and n are coprime. 

We conclude that if two of the circles, with radii 

 

1
2n2 and

1
2m2

are tangent, then the difference in their locations is given by 

 

r
n
− p

m
= 1

nm

for some choice(s) of r and p. 
Do r and p exist and how can they be found? Using arguments similar to 

those above it is clear that r and p must have no common factors, and neither 
do the pairs (r, n) and (p, m). 

The Euclidean algorithm

Tangency requires that rm – pn = 1. The Euclidean algorithm for finding the 
greatest common divisor is applicable. It guarantees that given two integers 
m and n that have 1 as their greatest common divisor, the integer coefficients 
r and p exist and can be found by working through the algorithm in reverse.

Thus, circles with radii 

 

1
2m2 and

1
2n2

with m and n coprime, are tangent when located at rational points 
r
n  and 

p
m  

along the line for choices of p and r such that mr – np = 1. 
The mathematician Lester R. Ford Sr after whom the configuration of 

circles is named reached a conclusion along these lines (Ford, 1938).
There is more. The relation mr – np = 1 calls to mind a property of Farey 

sequences, named after but not first discovered by a geologist, John Farey.
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Farey sequence

Suppose two adjacent circles along the Hamilton path are located at points 
measured from the origin 

r
n  and 

p
m  respectively. The child of these parents 

is located at 
x
y . Then we have ry – nx = 1 and also, mx – py = 1. Thus, from 

ry – nx = mx – py we obtain

 

x
y
= r + p

n +m

The location of the child is the mediant of the fractions 
r
n  and 

p
m  that 

locate the parents. In this way, the same process that produces generations of 
circles makes Farey sequences. 

Figure 9. Graph showing vertices located by the mediants

Area

If one were to ask what area the Ford circles cover, one would need to think 
about whether every rational number is in a Farey sequence and how many 
fractions there are that have each possible denominator. For example, in the 
generations of circles displayed above, the area would be something like:

 

π
4

2× 1
12

⎛
⎝

⎞
⎠

2

+1× 1
22

⎛
⎝⎜

⎞
⎠⎟

2

+ 2× 1
32

⎛
⎝

⎞
⎠

2

+ 2× 1
42

⎛
⎝

⎞
⎠

2

+ 4 × 1
52

⎛
⎝

⎞
⎠

2

+…
⎡

⎣
⎢

⎤

⎦
⎥

And we might observe that the coefficients of the fractions, after the first, 
are given by the Euler ϕ function of each denominator—another curious and 
fascinating connection between geometry and number. 

The topic is not exhausted, although the hypothetical mathematician may 
well be, at least temporarily, and may wish at this stage to run the findings past 
a colleague to check for omissions, lapses in clarity and logical errors.

The conclusion I wish to suggest is that seemingly innocent mathematical 
fragments can have connections to many related ideas. If a teacher is in 
possession of a broad subject knowledge then the likelihood seems high 
that it will be possible to draw out useful connections in the classroom or 
in well-designed projects and assignments. For this reason I claim that an 
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ever-widening subject knowledge is of utmost importance in a teacher’s 
program of professional development. 

The connected ideas in this illustration may not all be particularly suitable 
for the secondary classroom. Better and more appropriate examples can be 
substituted. Thus, creativity too is a plank in the edifice of good teaching.

Finally, the illustration makes the point that doing mathematics is not in 
the first instance a tidy and precise activity. Learners should always be free to 
make mistakes and to try strategies that may not in the end be productive. In 
reality, the tidying-up and polishing comes after a possibly arduous process of 
individual and collaborative exploration.
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