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Based on Steiner’s fascinating theorem for trapezium, a seven geometrical 
constructions using straightedge alone are described. These constructions 

provide an excellent base for teaching theorems and the properties of 
geometrical shapes, as well as challenging thought and inspiring deeper insight 
into the world of geometry. In particular, this article also mentions the orthic 
triangle and proves its special property, and shows some other interesting 
constructions, such as, for example, how to construct a circle’s diameter using 
straightedge alone and having only a segment with its midpoint. In addition, it 
is enhanced by aspects of the historical background of geometric constructions, 
including reference to “impossible constructions.” Application of the material 
presented in college or high school can enhance students’ appreciation of the 
elegance, beauty, and fascination of mathematics. Through such “adventures,” 
students will be encouraged to further pursue geometric problems and 
explore various methods of problem solving, especially those concerned with 
geometric constructions.

Introduction

The motivation for this article stems from the presentation of a geometrical 
problem (from a high school textbook) to pre-service mathematics teachers 
during a course in plane geometry given in an Israeli teacher’s college for 
prospective high school teachers. The purpose of the course was to deepen 
their knowledge in this topic, and included the construction of geometrical 
forms incorporated with the history of geometric constructions. 

The problem presented was the following: The sides of trapezium ABCD 
meet at point F. A line segment, FN, passes through the intersection of the 
diagonals, E (see Figure 1). Prove that AM = MB and that DN = NC.

Note: A trapezium is a quadrilateral with one pair of opposite sides parallel. 
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Figure 1. A trapezium ABCD with FN passes through the intersection point of the diagonals, E.

The problem is solved by building an auxiliary figure (which generally is 
the key to the solution)—passing a line parallel to the base of the trapezium 
ABCD through the meeting point of the diagonals, using similar triangles, 
and the intercept theorem, also known as Thales’ theorem (not to be confused with 
another theorem with that name). It is an important theorem in elementary 
geometry about the ratios of various line segments that are created if two 
intersecting lines are intercepted by a pair of parallels. It is equivalent to 
the theorem about ratios in similar triangles. However, the segment FN that 
passes through the midpoints of the trapezium’s bases, the meeting point of 
the diagonals and the meeting point of the trapezium’s continuations of the 
sides, immediately reminded the authors of Steiner’s theorem, which in fact 
states the results of the problem above. 

The Steiner Theorem for Trapezium  
(Jakob Steiner, 1796–1863)

For every trapezium ABCD, the following four points—the midpoints of each 
base, the point where the diagonals cross, and the point of meeting of the 
continuation of the sides—are on the same line. 

The students noted that Steiner’s proof was comparable to the solution of 
their problem (the proof of which is given below) and thus were stimulated to 
continue researching the use of the Steiner theorem for the trapezium, which 
ultimately led to an interest in general geometric constructions according to 
the rules of ancient Greek mathematics, and building geometric figures using 
a straightedge only. 

The aim of this article is to point out the value of developing pre-service 
teachers’, in-service teachers’, and students’ understanding of geometric 
constructions in general along with their ability to construct geometric figures 
using only a straightedge, along with giving them the historical perspective 
of the development of geometric constructions to increase their interest and 
fascination with mathematics. 
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The rules of ancient Greek mathematics allow geometric constructions using 
only a compass and straightedge. A straightedge is defined as infinite in length, 
without markings, and with only one edge. A compass can be used to inscribe 
circles, but cannot be used to transfer measurements.

There are several reasons why geometric constructions are considered 
important. First, geometric constructions are a part of the mathematical 
heritage and have been a popular part of mathematics throughout history. 
This popularity may possibly be attributed to the ancient Greeks’ introduction 
of the following four famous geometric constructions which have been proven 
impossible to construct many hundreds of years later (see, for example, Heath, 
1981): 
•	 Doubling the cube: Given any cube, find a geometric construction for a cube 

with twice the volume of the given cube.
•	 Trisecting the angle: Given any angle, find a geometric construction for an 

angle that is one-third the measure of the given angle.
•	 Squaring the circle: Given any circle, find a geometric construction for a 

square of equal area to the circle.
•	 Inscribing a regular heptagon in a circle: Construct a regular heptagon (seven-

sided polygon) with compass and straightedge only.
Although the Greeks did believe that these constructions were impossible, 

they were not able to actually prove their impossibility, and these problems 
drew the attention of many famous mathematicians over the centuries, until 
they were finally proven to be impossible in the nineteenth century. The proofs 
of impossibility of two of the constructions came from Pierre Wantzel (1814–
1848) as indicated by Suzuki (2008). In 1837, Wantzel proved the impossibility 
of duplicating the cube or trisecting an arbitrary angle using his theorem that 
if r is a constructible number, it must be the root of an irreducible polynomial 
of degree 2n. In essence, this is the basis of the Galois Theory that was derived 
at that same time. Then, in 1882, Karl Ferdinand Von Lindemann (1852–
1939) proved the impossibility of the third problem by showing that since π is 
transcendental, no equation of any degree with rational coefficients can have 
π as a root (Berggren, Borwein & Borwein, 1997), and consequently, squaring 
the circle is impossible. 

The impossibility of constructing a regular heptagon was actually solved 
earlier, in 1790, by Carl Friedrich Gauss (Childs, 2009; Krizek, Luca & Somer, 
2001). His proof involved the Fermat primes (the only ones known are 3, 5, 
17, 257 and 65 537). Gauss proved that an n-sided regular polygon can be 
constructed by compass and straightedge if and only if n is equal to a power of 
2, and, possibly, multiplied by distinct Fermat primes. Obviously, the regular 
7-gon is not such a number, as well as 9-gon or 11-gon.

However, what is even more important to understand is that, through their 
investigations of these impossible geometric constructions, mathematicians 
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were able to achieve many remarkable feats that contributed much to the 
development of geometry. For example, the dead end to which the Greeks 
arrived trying to solve the above problems inspired them to attempt to invent 
more technologically advanced tools to enable them to perform the required 
constructions. Second, “geometric constructions can reinforce proof and 
lends visual clarity to many geometric relationships” (Sanders, 1998, p. 554). 
Third, geometric constructions “give the secondary school student, starved for 
a Piagetian concrete-operational experience, something tangible” (Robertson, 
1986, p. 380). Another reason is presented by Pandisico (2002) who claimed 
that “unless constructions simply ask students to mimic a given example, they 
promote true problem solving through the use of reasoning” (p. 36). 

The reason for exploring the history of geometric constructions is argued 
by Lamphier (2004) who said that “to fully understand a topic, whether it 
deals with science, social studies, or mathematics, its history should be 
explored. Specifically, to fully understand geometric constructions, the history 
is definitely important to learn” (p. 1). Swetz (1995) also believes that history 
can supply the why, where, and how for many concepts that are studied.

The authors of this manuscript believe that geometric constructions, 
through the various methods of their solution, encourage thought, creativity 
and originality, while presenting opportunities for integrating solutions and 
developing unique strategies. Indeed, when dealing with a construction 
problem, interesting solutions that emphasise the beauty of mathematics are 
often revealed. Complicated construction problems constitute a powerful 
challenge which contributes to thought development, and allows the student 
to implement the important properties of known geometric shapes in the 
Euclidean or projective plane, and thus diversify the process of studying 
geometry. Geometric constructions expand the student’s comprehension of 
mathematics. 

Incorporating geometric construction into the 
curriculum

The topic of geometry is always serving as one of the major topics across 
the school mathematics curriculum all over the world. Geometry is an 
inspirational part of mathematics tending to engender mathematical thinking, 
and geometry can be useful in developing ideas of ‘proofs’. In addition, 
inspecting the Australian Curriculum, Assessment and Reporting Authority 
(ACARA) documents, in each geometry program for high school grades, the 
topic of geometric constructions is included. Given the value of geometric 
constructions, their incorporation into geometry instruction is very important, 
especially for pre- and in-service mathematics teachers and for high-level 
students in the upper grades of secondary schools. In fact, trying to learn 
geometry without geometric construction is like trying to learn chemistry or 
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biology without laboratories. Presenting geometric constructions together 
with their historical contexts enlivens the topic. The basic knowledge and skills 
needed to perform geometric constructions encourage students to discover 
and explore geometric relationships and interpret geometric concepts and 
theorems. Geometric construction can also help teachers transform the 
static and confusing array of definitions and theorems typically found in 
geometry textbooks into an active and exploratory investigation of geometric 
relationships (Lamphier, 2004).

A very helpful tool for encouraging and motivating teachers to incorporate 
geometric constructions within the framework of their mathematics curriculum 
is dynamic geometric software (DGS) such as The Geometer’s Sketchpad or Geogebra. 
The ACARA document, Shape of the Australian Curriculum: Mathematics (May 
2009) emphasises the role of digital technologies in teaching mathematics. 
It states that “digital technologies allow new approaches to explaining and 
presenting mathematics, as well as assisting in connecting representations 
and thus deepening understanding” (6.5.1). Then, continues to indicate that 

“digital technologies can make previously inaccessible mathematics accessible, 
and enhance the potential for teachers to make mathematics interesting to 
more students, including the use of realistic data and examples” (6.5.2). In fact, 
currently, the introduction of DGS and the rapid progress of the technology 
and its availability in education, produces an environment that enables both 
students and teachers to explore geometric relationships dynamically and 
to create very complex and yet very precise geometric constructions and 
diagrams. Obviously, static constructions lack the strong impact of dynamic 
constructions. However, one must be aware that while DGS helps to visualise 
a relationship, it does not provide formal proof (using appropriate geometry 
definition, postulates and theorems), and students who use DGS cannot be 
allowed to ignore learning and presenting formal proofs for the problems.

Three types of geometric constructions

There are three types of geometric constructions, based on the tools that are 
used to construct them: compass-and-straightedge (with or without relating to 
unit values), compass only, and straightedge only. The first type is the original, 
classic construction method using only a compass and straightedge, and 
without using any measurements, and is the construction method implied 
when one refers to building the basic structures.

All compass-and-straightedge constructions consist of repeated application 
of five basic construction methods using points, lines, and circles that have 
already been constructed. These methods are:
• creating a line through two existing points;
• creating a circle through one point with centre another point;
• creating a point which is the intersection of two existing, non-parallel lines;
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•	 creating one or two points at the intersection of a line and a circle (if they 
intersect); and

•	 creating one or two points at the intersection of two circles (if they intersect).
Another approach to basic constructions is by relating to the ‘numbers’ 

that the ancient Greeks were able to construct with compass and straightedge 
while actually doing arithmetic geometrically by lengths of segments. Knowing 
how to construct a parallel line to a given line, they were capable of making 
arithmetic constructions for two given segments, one of length x and the 
other length y, and a unit length of 1. Through basic geometry and algebra, 
other related lengths could be constructed. Five arithmetic constructions are 
possible: 

	
x + y, x − y, x ⋅ y,

x
y

and x .

The second type of geometric construction uses compass alone. According 
to the Mohr–Mascheroni theorem (Eves, 1968), any geometric construction 
that can be performed with a compass and straightedge can be done with a 
compass alone. In this case, a straight line is defined by any pair of points.

The third type of construction is with straightedge alone. In this case, the 
Poncelet–Steiner theorem (Eves, 1995) states that whatever can be constructed 
by compass and straightedge together can be constructed by straightedge 
alone provided one is given a single circle and its centre. Actually, this means 
one action with the compass to provide the circle and its centre. Steiner 
proved this theorem in the second volume of his writings: “Die geometrischen 
konstruktionen ausgeführt mittels der geraden linie, und eines festen kreises”. 

Geometric constructions with straightedge alone

This article focuses on the third type of geometric construction: that with 
straightedge alone, and most of the constructions presented are conducted 
without being given the centre of the circle. In particular, we shall focus on 
how to construct a perpendicular (and occasionally a parallel) to a straight 
line from a point either distant to or on a line using only a straightedge, and 
given a circle and a line passing through its centre. In other words, using a 
circle and a diameter, but without knowing the precise location of its centre. 

Geometric constructions using only a straightedge is a topic in plane 
geometry that is not directly expressed in the program of studies (which is 
unfortunate, given that it encourages thought, creativity and originality in 
the methods of solution, and presents opportunities for integrating solutions 
while developing unique strategies). Often, when dealing with a construction 
problem, especially with only a straightedge (or only a compass), interesting 
solutions are revealed that emphasise the beauty of mathematics. 

Solving construction tasks using only a straightedge requires a wider and 
more profound knowledge of plane geometry than that required to solve 
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problems using a compass and straightedge. Such constructions allow one to 
apply the important properties of known geometric shapes in the Euclidean 
or projective plane, and thus to diversify the process of studying geometry.

Presentation of the task
A circle with diameter AB is drawn on a plane, as well as some random 
point denoted by the letter P. A straight line passing through point P and 
perpendicular to diameter AB is to be constructed, using a straightedge only. 

There are seven possible locations of point P (see Figure 2), and the 
complexity of the problem, and its solution, depends on the location of point 
P relative to line AB and to the given circle, and the full solution of the task 
requires solutions for all seven cases.

Figure 2. The seven possible locations for point P.

The seven possible locations are as follows:
• Case 1: Point P = P1 is located outside the circle, so that its projection on the

line AB lies on the diameter AB.
• Case 2: Point P = P2 is located outside the circle, and its projection on the

continuation of AB lies outside the circle.
• Case 3: Point P = P3 is an interior point of the circle, which does not lie on

the diameter.
• Case 4: Point P = P4 is located on the circular arc, and it does not coincide

with the ends of the diameter A and B.
• Case 5: Point P = P5 is an interior point on the diameter.
• Case 6: Point P = A = P6 is located at the end A of the diameter.
• Case 7: Point P = P7 is located on the continuation of the diameter AB,

outside the circle.
Because the solution of the task requires some knowledge of the material

learned in plane geometry as part of the high-school program of studies 
(including the ones presented in the Australian schools), when this problem 
is presented to students, it should be presented only after they have studied 
the circle and special segments in the triangle (altitudes, angle bisectors, etc.). 
In addition, the solution requires some knowledge of the following special 
properties of trapeziums (of which the students are usually not aware), such 
as the Steiner theorem for a trapezium, and which should be introduced to 
them during presentation of the problem.
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Special properties of the trapezium
Property A: The Steiner theorem for the trapezium. (Note: The Steiner theorem 
is stated in the introduction, above. While many other mathematicians have 
proven this theorem, in this article there is reference only to Steiner’s proof.)

Given that: AM = MB, DN = NC, it will be proven that the points E, M, F and 
N lie on the same straight line, as shown on Figure 1.

Steiner’s proof of the trapezium theorem: To prove the theorem, it will be 
proven that the line EF intersects the bases of the trapezium at the points M 
and N (Figure 3).

Figure 3. Line EF intersects the bases of the trapezium at the points M and N.

Draw segment KL through point E parallel to base AB. From the theorem 
“the point of intersection of the diagonals of a trapezium bisects the segment 
parallel to the base whose ends are on the sides of the trapezium and which 
passes through the point of intersection” (can be proven using Thales’ 
theorem), it is concluded that KE = EL, that is, EF is a median to the side KL 
in triangle ∆FKL.

Another theorem is also used: “In any triangle ∆FKL, the median to the 
side KL bisects any segment parallel to KL, whose ends are located on the 
sides of the angle ∠KFL”. (This theorem can also be proven using Thales’ 
theorem).

This theorem is applied for the two triangles ∆FKL and ∆FDC, and then 
obtaining that FE intersects the segment DC at the point N and the segment 
AB at the point M.

We use Steiner’s theorem to solve our task. At the end of the article is 
another example for a geometrical problem that can be solved simply using 
Steiner’s theorem for the trapezium, as well as an application of the presented 
constructions. 

Property B: Is a result of the Steiner theorem for the trapezium.
Let M and N denote the middles of the bases of trapezium ABCD.

The continuations of the sides of two trapeziums with same height, a 
common large base, and a small base with a similar length, intersect at points 
which are located on one line parallel to the bases of the trapeziums.

A
ustralian S

enior M
athem

atics Journal vol. 2
7

 no. 2

13



S
tp

el
 &

 B
en

-C
ha

im

Figure 4 shows two trapeziums: MBND and AMND, which have a common 
large base and equal small bases. Points G and F are on one straight line 
parallel to the bases of the trapeziums.

Figure 4. Two trapeziums: MBND and AMND, which have a common large base and equal small bases.

The proof employs the similarity of the triangles: ∆FNC ~ ∆FMB and the 
triangles: ∆GDN ~ ∆GMB, and the inverse of Thales’ theorem.

Constructing an application of the Steiner theorem for the trapezium (will be 
used below)
The application: To construct a straight line parallel to a given segment that 
passes through a given point, when the midpoint of the segment is given; i.e., 
given a point P and a segment AB with midpoint C, construct a straight line 
that is parallel to AB and that passes through point P.
Description of the construction: Draw a straight line through points A and P. 
On the continuation of the line, choose some point X1. Connect point X1 with 
points B and C (Figure 5). Connect point B with point P. The segments BP 
and CX1 intersect at point X2. Draw a straight line connecting points A and X2, 
whose continuation intersects BX1 at point X3. The line PX3 is the sought line.

Figure 5. Description of constructing a parallel line through  
a point P to a given segment AB and its midpoint C.

Proof of the construction: An indirect proof is given. Suppose that line PX3 

is not parallel to AB. Draw through the point P the straight line PQ, which is 
parallel to AB (Figure 6).
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Figure 6. Description of indirect proof to a construction of a parallel line 
through a point P to a given segment AB and its midpoint C.

Since points X3 and Q do not coincide, lines AX3 and AQ are different 
lines, and they intersect segment BP at different points X2 and R, respectively. 
Therefore, the lines X1X2 and X1R are also different lines, and they intersect 
segment AB at different points C and D, respectively, which means that the 
point D is not the middle of segment AB. On the other hand, from Steiner’s 
theorem, in trapezium ABPQ, the line X1R intersects base AB, which means 
that D must be the midpoint of AB. Hence, we have a contradiction! Therefore, 
the assumption is not correct, and PX3 || AB.

The description of this construction is the general process for constructing 
a line parallel to a given segment (with its midpoint). It is important to note 
that according to the Steiner theorem for the trapezium, the following two 
constructions with a straightedge alone are equivalent: 
• given a segment and its middle point, construct a parallel to the segment

through any point; and
• given a segment and a parallel line to the segment, bisect the segment.

A list of other geometrical properties which are relevant for the solution of the 
task: 
The properties of angles in a circle:
• An inscribed angle that rests on the diameter is a right angle (ACARA: An

angle in a semicircle is a right angle).
• Inscribed angles that rest on the same arc (or on equal arcs) are equal

(ACARA: Two angles at the circumference subtended by the same arc are
equal).

The properties of a diameter and a chord:
• A diameter that passes though the midpoint of a chord (or through the

midpoint of the arc that corresponds to the chord), is perpendicular to
the chord.

• A diameter that is perpendicular to a chord bisects it.
The properties of the heights in a triangle:
• The three heights (altitudes) of a triangle intersect at one point (are

concurrent at a point), called the orthocentre of the triangle.
• In a triangle ∆ABC, the three heights (altitudes) AA1, BB1, CC1 are also

the bisectors of the angles in the triangle ∆A1B1C1, as shown in Figure 7.
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Triangle ∆A1B1C1 is called the orthic triangle or altitude triangle of triangle 
∆ABC. 
It is interesting to indicate that the incentre (that is the centre for the 

inscribed circle) of the orthic triangle is the orthocentre of the original 
triangle (see Figure 8). Also, the orthic triangle provides the solution to 
Fagnano’s problem, posed in 1775, of finding for the minimum perimeter 
triangle inscribed in a given acute-angle triangle (Holand, 2007; Rademacher 
& Toeplitz, 1957). To prove the property of the orthic triangle, refer to Figure 9. 

Inscribe ΔBCB1 with a circle. Obviously, BC is the diameter of this circle and 
hence point C1 is on the circle. Therefore, quadrilateral BCB1C1 is inscribed 
in the circle to obtain, according to the sums of the opposite angles, ∠ABC 
= ∠AB1C1 = β. Similarly, circumscribe quadrilateral AB1A1B with a circle, to 
obtain ∠BAC = ∠CA1B1 = α. Finally, isolate A1C1AC to obtain ∠ACB = ∠AC1B1 
= γ.

Figure 7. The three heights AA1, BB1, CC1 of triangle ABC  
are also the bisectors of the angles in the triangle ∆A1B1C1.

Figure 8. The centre of the inscribed circle of the orthic triangle ∆A1B1C1,  
is the orthocentre of the original triangle.

The result shows that the three triangles, ∆A1BC1, ∆AB1C1 and ∆A1B1C, are 
similar to each other and to the original triangle, ∆ABC. At each vertex of 
triangle ∆A1B1C1 are two equal angles of 90° – α, 90° – β and 90° – γ, and 
therefore the heights of the original triangle ∆ABC are the bisectors of the 
orthic triangle ∆A1B1C1.
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Figure 9. Proof of the property of the orthic triangle ∆A1B1C1.

This property of the orthic triangle (see Figure 7) also has a physical 
significance: any ray of light that penetrates through point C1 in direction C1B1 
continues to travel indefinitely along route C1B1A1, since the angle of impact 
of the light on each side (assuming it is coated with a mirror surface from the 
inside), is equal to the angle of return. The sides of the orthic triangle form 
an ‘optical’ or ‘billiard’ path reflecting off the sides of ΔABC.

It is interesting to note that in high school geometry studies, students learn 
about the special points related to the points of intersection of the three mid-
perpendiculars, the three angle bisectors, the three medians, and the three 
heights in a triangle. They learn that the first intersection point is the centre 
of the circle circumscribed around the triangle, the second is the centre of 
the inscribed circle, and the third is the centre of gravity. However, they are 
not given any special property for the fourth one, the orthocentre. From here, 
though, one can see that the point of intersection of the heights is the centre 
of the inscribed circle in the orthic triangle. 

Now that we have presented all the geometric statements required for 
the completion of the task, that is, to find the perpendicular to diameter AB 
passing through given point P using a straightedge only (see Figure 2), it is 
possible to proceed. 

Solution of the task
There are seven different solutions, depending on the location of point P 
(see Figure 2), plus another option using the Steiner theorem in a more 
straightforward manner. 

Case 1: P is located at point P1.
Description of the construction: As shown in Figure 10, point P1 is connected 
to points A and B (the ends of the diameter). These lines intersect the 
circumference of the circle at points X1 and X2. Connect point A with point X2, 
and connect point B with point X1. The two segments AX2 and BX1 intersect at 
point X3. The line P1X3, whose continuation intersects the diameter at point 
M, is the requested perpendicular. 
Proof of the construction: Segments AX2 and BX1 are heights in the triangle 
∆AP1B (inscribed angles resting on the diameter), and X3 is the point of 
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intersection of the heights in the triangle, therefore P1M is the third height 
in the triangle.

Figure 10. Construction of a perpendicular from point P1 to the diameter AB.

Case 2: P is located at point P2.
Description of the construction: The stages of the construction are as in the 
first case, and as shown in Figure 11.

Figure 11. Construction of a perpendicular from point P2 to the diameter AB or its continuation.

Proof of the construction: In this case, triangle ∆AP2B is obtuse-angled. 
Therefore, the point of intersection of the heights is X3, where BX1 is the 
height to the side AP2 and AX2 is the height to the side BP2. Point X3 is outside 
the triangle ∆AP2B. The segment P2X3 is the third height to the side AB.

Case 3: P is located at point P3. 
Description of the construction: The stages of the construction are as in the 
first case, and as shown in Figure 12.

Figure 12. Construction of a perpendicular from point P3 to the diameter AB.
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Proof of the construction: AX1 and BX2 are heights in the triangle ∆AX3B, 
and therefore X3M is the third height that intersects the diameter at point M.

Case 4: P is located at the point P4.
Description of the construction: Point A is connected with point P4, and a 
point, X1, is selected on the continuation of line AP4. Point B is connected 
with point X1. The segment BX1 intersects the circle at point X2 (Figure 13). 
Point A is connected with X2, and point B with P4, resulting in the point of 
intersection X3. A straight line is drawn through point X1 and point X3, and 
the continuation of the line intersects diameter AB at point X4. Point X2 is 
connected with point X4, and the continuation of the line intersects the circle 
at the point X5. The line P4X5 is the perpendicular to the diameter.
Proof of the construction: As in the previous cases, segments AX2, BP4 and 
X1X4 are three heights in the triangle ∆ABX1. Therefore, from property 3b, 
we also obtain that they are the bisectors of the angles in the orthic triangle 
∆P4X2X4. Ray AX2 bisects angle P4X2X4. This means that point A is the middle 
of arc P4X5, and therefore, from property 2a, chord P4X5 is perpendicular to 
diameter AB.

Figure 13. Construction of a perpendicular from point P4 to the diameter AB.

Cases 5, 6, and 7: P is located at point P5, P6 or P7.
Description of the constructions: (The description is similar for all three 
cases): Draw perpendiculars X1X2 and X3X4 to diameter AB in the following 
manner: Choose a point, X1, on the circle (as the location of P4), and draw 
from it a perpendicular to the diameter to point X2 (the construction is 
carried out as in case 4). In the same manner, choose a point, X3, and draw 
a perpendicular to point X4. Points M and N are, respectively, the points of 
intersection of perpendiculars X1 X2 and X3 X4 with diameter AB (Figure 14).
Proofs of the constructions: Point P5 is connected with point X1 and point X2. 
The segments intersect X3X4 at points X5 and X6, so that trapezium X1X2X6X5 
is obtained, where points M and N are the midpoints of its bases. Point X2 is 
connected with point N, and point M with point X5. The continuations of the 
straight lines intersect at point X7. From property B, which stems from the 
Steiner theorem for a trapezium, line P5X7 is perpendicular to diameter AB.
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Figure 14. Construction of a perpendicular to the diameter AB at point P5.

Straightforward application of the Steiner theorem: Another option is to 
apply the Steiner theorem for trapezium (see Figure 15). With respect to 
case 1, from an arbitrary point C, a perpendicular to AB is constructed. It 
intersects the given diameter at point M, and the circle at points X1 and X2. 
Then, construct a parallel line to X1X2 that passes through point P5 according 
to the assignment described earlier in this paper.

Figure 15. Straightforward application of the Steiner theorem for 
constructing a perpendicular to the diameter AB at point P5.

It is interesting to note that for the proofs of cases 1–4 (to construct a 
perpendicular to a line through an external point), one needs only to apply 
the theorem about the intersection of the three altitudes of a triangle at a 
single point. However, for cases 5–7 (to construct a perpendicular at a point 
on the segment AB or its continuation), one must apply the Steiner theorem.

Extension of the task
An interesting question is: What extra given condition is needed to be able to 
locate the centre of the circle with only a straightedge?

First, given a segment and its centre point, it is possible to construct a 
diameter of a given circle (see Figure 16).

Through points H1 and H2 on the circle, it is possible to construct parallel 
lines to the given segment CD (shown in section 5.3 above). Then, using the 
Steiner theorem for trapezium H1K1K2H2, it is possible to bisect each of the 
chords H1K1 and H2K2 (points L and N). The chord through L and N is a 
diameter. 

Equivalently, given a circle and two parallel lines, it is possible to construct 
a diameter of the circle (see Figure 17).

Choose two points on l and two points on k and draw the trapezium 
F1F2G2G1, then, using the Steiner theorem, find the midpoints of the bases of 
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the trapezium (one midpoint is sufficient) and apply the previous construction 
of a diameter of the circle.

Figure 16. Constructing a diameter of a given circle by given a segment CD and its midpoint M.

Therefore, to construct the centre of a given circle, we need two nonparallel 
segments with their midpoints, or equivalently a parallelogram, or a triangle 
and its centre of gravity (the intersection point of its medians). In this case, 
we are able to construct two diameters whose intersection is the centre of the 
circle, which means that it is possible to construct with straightedge alone 
every construction that can be constructed with compass and straightedge. 
Obviously, it is possible to create many more conditions for finding the centre 
of a given circle by construction with a straightedge alone.

Figure 17. Constructing a diameter of a given circle by given two parallel lines

Application of the task
In order to demonstrate the applicability of the Steiner theorem for the 
trapezium in problem solving, we present another problem that can be easily 
proven using this theorem.

Problem: Given is a trapezium with lengths of bases a and b, and where the 
sum of the angles of the lower base is 90°. That is, the following is given: AB = 
a; DC = b; α + β = 90°; AE = EB, DF = FC. Using a and b, express the length of 
the segment connecting the midpoints of the bases (Figure 18). 
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Figure 18. Application of Steiner’s theorem to express the length of FE.

Proof using Steiner’s theorem: Extend the sides up to their point of intersection, 
and obtain a right-angled triangle ∆GAB. From Steiner’s theorem for a 
trapezium, points G, E, and F are on one straight line.

GF and GE are medians to the hypotenuse in right-angled triangles, which 
are equal to half the hypotenuse, and therefore:

FE =GE –GF =
a −b

2

Note: Other proofs of this problem can be given, but they are longer and 
either requires auxiliary constructions and the use of algebraic formulas for 
the trapezium, or the use of trigonometric tools.

Additional applications
Another application of the constructions presented above is to create some 
shapes that can be used either in art or in tessellation. For example, given a 
rhombus, construct using straightedge alone a rectangle with its sides equal to 
the diagonals of the given rhombus (see Figure 19).

Now, it is obvious that, given the segment DB and its midpoint, it is possible 
to construct a parallel to it through point A, as well as through point C and 
the same is applied for segment AC and points D and B. Repeating this shape 
again and again creates a nice tessellation pattern. Another possibility is to 
start with a parallelogram rather than a rhombus.

Figure 19. Constructing a rectangle with its sides equal to the diagonals of a given rhombus

Another example of application is the following task: Given parallelogram 
ABCD with sides AB = a and BC = b, construct lengths m⋅a and n⋅b, m, n∈N 
using straightedge alone (see Figure 20).

Here too, use the method of constructing a parallel line to a given segment 
with its midpoint (the diagonals of the given parallelogram) to obtain another 
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parallelogram, and then repeat this procedure as needed. In this case too, 
one can adapt this work to art and tessellations.

Figure 20. Constructing lengths of m and n times the  
corresponding sides a and b of a given parallelogram.

Conclusion

Inspiring students to love and be excited by mathematics is one of the goals of 
the good teacher. The geometric constructions topic is remarkable and can be 
used for implementing knowledge, theorems, and properties of geometrical 
shapes, as well as challenging thought. An important branch in this field 
is geometric construction with restrictions on the types of tools used. Such 
geometric construction requires the ability to differentiate between possible 
and impossible constructions based on rudimentary construction methods 
that, with their application, allow the performance of more complicated ones. 

In addition, several studies have pointed out that introducing historical 
background to mathematical topics plays a vital role in making mathematics 
more interesting and accessible (see for example Heiedi, 1996) and “it 
demythologises mathematics by showing that it is the creation of human 
beings” (Marshal & Rich, 2000, p. 706). Hence, investigating the development 
of geometric construction through the history of mathematics enriches it 
significantly. 

To this purpose, this article presents examples of geometric constructions to 
construct a perpendicular on the diameter of a circle using only a straightedge. 
(The centre was not given, and in some cases, the centre of the circle was also 
sought.) Steiner’s theorem, a mathematical pearl that indicates the minimal 
conditions required for classical geometric constructions, is presented as a 
tool for the constructions. 

This article is enhanced, the authors believe, by a brief history of geometric 
constructions, and by focusing specifically on constructions with aid of a 
straightedge (without markings) alone. Indeed, Steiner claimed that every 
construction that can be conducted using a compass and straightedge can be 
done using only a straightedge, given a circle and its centre (equivalent to one 
use of a compass). In addition, several mathematicians who lived in different 
ages are mentioned, with a description of how they coped with geometric 
construction problems, some of which involved proving that some specific 

A
ustralian S

enior M
athem

atics Journal vol. 2
7

 no. 2

23



constructions were actually impossible, and which required the creation of 
new mathematical theories and proofs to finally prove them.

Mention is made of the use of the dynamic geometry software as a helpful, 
powerful tool for teaching geometry, especially for enhancing the technical 
part of geometric constructions. 

The authors believe that the geometric constructions presented in this 
article can make a significant contribution to the education of both pre- and in-
service mathematics teacher as well as to the high school geometry curriculum. 
Through such geometric constructions, including emphasising their place 
in the history of mathematics, the learner can expand their conception of 
mathematics and, hopefully, appreciate the fascination that is in mathematics. 
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