
Alessandra King
Holton-Arms School, USA
<alessandra.king@holton-arms.edu>

Introduction

Spatial reasoning and computer programming are precious skills in our highly technological

world. An activity that combines the two in an engaging way may be very valuable. As an

introduction to more formal geometry units, in my pre-algebra class we like to play games

with blocks and cards to hone spatial skills because, “Students’ skills in visualising and

reasoning about spatial relationships are fundamental in geometry” (NCTM, 2000, p.237).

Geometric reasoning is also identified as an important topic in the Measurement and

Geometry content strand of the Australian Curriculum: Mathematics (ACARA, 2014), and

appears one way or the other in all four proficiency standards of Understanding, Fluency,

Problem Solving and Reasoning.

Spatial reasoning—the ability to visualise and play with shapes in one’s mind—is essen-

tial in many fields, and crucial in any Science, Technology, Engineering, Mathematics [STEM]

discipline. It is, for example, the ability that the engineer needs to build bridges; the chemist

to see the three-dimensional structure of a molecule; the architect to design buildings; and,

the doctor to navigate the patient’s abdominal cavity with a laparoscope. Spatial thinking

is an important factor for achievement in areas of STEM. And while there is evidence of a

gender gap in this area, there is also evidence that these reasoning skills can be improved

with practice.

Instead of using manipulatives, I guided my students to work on these skills with a short

unit on coding. Such a unit is not intended to teach computer programming, or substitute

for curricular geometry units: it aims only to expose children to some coding (in order to

raise their interest in it for possible future studies), and to supplement the regular geometry

curriculum by engaging the students in some spatial reasoning exercises.

The demand to add or focus on STEM subjects in primary schools has grown world-wide

and in many countries, for example the United Kingdom, Germany, and Sweden. There is a

strong drive in these nations to introduce programming to all students. In Australia, consid-

eration has been given to a new digital technology curriculum that will expose students to

coding in Year 5 and require them to start programming in Year 7. The connection between

mathematics and technology is clearly stated in the Digital Technology curriculum (ACARA,

2014a) which is currently awaiting final endorsement. It states that, “The Technologies

curriculum provides contexts within which mathematics understanding, fluency, logical

reasoning, analytical thought and problem-solving skills can be applied and developed”,

and “Students use spatial understandings developed in mathematics to apply knowledge

of geometry, shapes and angles in Technologies”. In the United States news, reports indicate

that the country will continue to suffer a serious shortage of software professionals for the

foreseeable future, and in many other fields familiarity with computer programming and

Reflecting on classroom practice:
Spatial reasoning and simple coding

21amt 71(4) 2015

data manipulation will be increasingly in demand. In addition, females have long been

under-represented in computer science and not enough girls are choosing to study it. For

example, while girls are the majority of the students taking Advanced Placement Program ®

(AP) examinations, they were outnumbered 4 to 1 in the AP Computer Science examination

in 2014, according to the data released by the College Board (The College Board, 2014).

Although girls are interested in the STEM fields at a younger age, there is evidence that their

interest declines more substantially (University of Idaho, 2015); so they need to be encour-

aged to see that coding can actually be a lot of fun.

Since I teach in an all-girls school, I am addressing both the spatial reasoning and

coding gap with a brief unit I created. This unit was designed to simultaneously introduce

my students to a beginner level of computer programming, and assist them to develop and

practice their spatial skills.

Learning objectives

The primary learning objectives for this activity were to assist my students to practice spatial

thinking in a new and exciting way. In addition, I was looking to provide a gentle and fun

introduction to coding. Both objectives are highly valuable in themselves. “Facility with

geometric thinking is essential to success in the later study of mathematics and also in many

situations that arise outside of the mathematics classroom” (NCTM, 2000, p.210). Moreover,

giving students even a simple introduction to programming supports them in understanding

what happens inside a computer and how computers communicate, making technology more

approachable and less obscure. Finally, programming teaches other important skills like logi-

cal thinking, problem solving, and perseverance, as well as collaboration and communication.

Project design

Before starting the class activity, I looked at various tools. I had a few criteria: first, it had to

be a tool that worked on the iPad, as this is the device we use in our Middle School. Secondly,

it had to allow students to move at their own pace and to appreciate their own progress; and,

thirdly, it had to supply a set of interesting and progressively more challenging—although

not overwhelmingly difficult—projects. Furthermore, at least some of these projects had to

provide some introduction to geometry and spatial thinking. Finally, I was also looking for

a tool that would allow me to follow my students’ progress, check their activity, and review

their programs.

As it sometimes happens with units that do not exactly fit in a neat curricular category,

I did not have much time to devote to this project and I wanted the students to be able to

enjoy it, have fun, experience some measure of success, and complete it with satisfaction in

a maximum of three class periods (plus the related homework). After some research I settled

on TouchDevelop, a free online tool designed at Microsoft Research. TouchDevelop is an inter-

active development environment that allows users to create, test, and run programs and to

develop Apps on mobile devices such as smartphones, tablets and laptops. It runs completely

in-browser and includes three skill levels (beginner, coder, expert) that provide a smooth

transition from drag-and-drop blocks to self-created text. My students found the fully-guided

tutorials for beginners easy to follow and the projects offered by the site appealing and

exciting. To learn more about TouchDevelop, I signed up for a free webinar for educators

—organised by SimpleK12 (2000 – 2015), an online teacher learning community—that

explained the most commonly used features, including how to set up a class.

22 amt 71(4) 2015

Class activity

Firstly, I asked my students to sign up with TouchDevelop with their school Google

credentials. After creating my ‘group’, I received a code that I passed on to my students

so that they could join my class. Once TouchDevelop is launched, it opens on a screen with

plenty of resources. I directed the students to go the ‘Learn’ tab and start with the first

beginner project, called First steps with Turtle. This project allows the students to create a

simple App that makes some fun, colourful geometric drawings —refer to Table 1 for samples

of student projects 1 and 2 that have been created using TouchDevelop.

Table 1: Samples of student projects using TouchDevelop.

Project Number Project Title Project URL
1 Unusual turtle http://tdev.ly/axrzc

2 Super-cool turtle http://tdev.ly/awbjg

The self-paced tutorials in TouchDevelop teach students how the code defines every

action the turtle (the cursor) completes, how the computer runs the code line by line, what

the effect of each instruction is, and even how the for loop allows to repeat code efficiently.

The students also learn how a small change of the turning angle (from 90 to 91 degrees)

applied recursively creates a very cool design. Students used the beginners’ tutorials—

with great success—to generate fractal (Koch’s) snowflakes (Projects 3 and 4), fractal trees

(Projects 5 and 6) and other types of fractals (Project 7). Figures 1 to 7 show a variety of

completed project screen shots, and indicate the variety of ways coding can and has been

used with spatial reasoning and geometric designs being a focus within the activity.

Table 2: Samples of student projects using TouchDevelop beginner tutorials.

Project Number Project Title Project URL

3 Exclusive Snowflakes http://tdev.ly/wmwla

4 Terrific Snowflakes http://tdev.ly/sqtcc

5 Tree http://tdev.ly/grsuc

6 Marvellous Tree http://tdev.ly/icmt

7 Mind-blowing Fractals http://tdev.ly/akuba

Figure 1: Project 3, an example of
coded turning angles and visual output.

Figure 2: Project 3, ‘Exclusive Snowflakes’.

23amt 71(4) 2015

 Figure 3: Project 5 ‘Tree’.

As they progress to exercises involving more written code and reasoning, students will find

that they have to work on their geometry skills. For example, they will need to calculate the

angles of rotation for the turtle’s path, and also figure out how they want to complete some

of the paths that the turtle will create. Table 3 summarises some of the sample App projects

that students developed, and which link spatial reasoning to geometric design.

Table 3: Samples of student app projects.

Project Number Project Title Project URL

8 Mind-boggling App http://tdev.ly/qrvda

9 Startling App http://tdev.ly/kquk

10 Magical App http://tdev.ly/uboxe

Graphing skills (refer to Table 4) were developed further through a series of different

exercises completed by students. A project assisting a bear to complete a quest was also a

project option selected by some students (refer to Table 5). Figure 6 shows screen shots of the

game interfaces coded by students for this quest.

Figure 4: Project 10 ‘Magical App’.

Table 4: Samples of Student Graphing projects.

Project Number Project Title Project URL

11 Weirdness http://tdev.ly/kwqh

12 Glorious Art http://tdev.ly/oople

13 Pixel Magic http://tdev.ly/yyusa

14 Awesome Art http://tdev.ly/uubh

24 amt 71(4) 2015

Figure 5: Project 13 ‘Pixel Magic’.
A completed graphing project.

 Table 5: Bear Quest projects.

Project Number Project Title Project URL

15 Fabulous Quest http://tdev.ly/autf

16 Bear-ing the Quest http://tdev.ly/cxofc

17 Unusual Quest http://tdev.ly/stcca

 Figure 6: Sample Bear Quest project interfaces

Simple coded games

Students demonstrated that they can also program a variety of simple games (projects

18 to 20), including a Pong type game (Projects 21 to 23). This last game type is more

challenging than others created, as it required students to build an object of the right

dimensions for the game to be enjoyable. Figure 7 shows an example of the game screen

that has been coded.

25amt 71(4) 2015

Some examples of the simple games created by students have been summarised in Table

6. Hint: For the simple game projects in Table 6, you need to click the space bar to make the

cat (or monkey) jump, and you need to hit it quickly as soon as the game starts.

Table 6: Example game projects.

Project Number Project Title Project URL

18 Astounding Bird http://tdev.ly/sdkdc

19 Phenomenal Bird http://tdev.ly/knuda

20 Flappy Bird: Fun Fish http://tdev.ly/idewa

21 Weird Pong http://tdev.ly/qwhha

22 BeachDay http://tdev.ly/aonlc

23 Marvellous Pong http://tdev.ly/klmca

Figure 7: Example game screen for project 19.

Discussion

Students worked on the programs individually and at their own pace, but they could, and

did, discuss and collaborate to overcome the various difficulties and frustrations that arise

when writing code. Most girls in my class had no previous experience with programming and

at first they were cautious, concerned that coding was going to be too difficult, was not for

them and/or was not interesting. Certainly, there were many questions during the first half

hour of the initial practical lesson, as the students set up their accounts and started playing

with the first coding project. However, this quickly subsided when the students realised that

they could answer their own questions by simply trying again, following directions more

carefully, problem solving and discussing strategies with their classmates. The hands-on

approach and novel, fun projects encouraged a remarkable persistence in solving the

numerous problems that the students encountered. This determination in problem solving

was possibly one of the most important by-products of this unit and will hopefully transfer

to problem solving in other areas of the curriculum.

My students ended up loving this project. They enjoyed working at their own pace and

appreciated that it was such a hands-on activity. They liked the collaborative aspect of

problem solving together when an obstacle presented itself, while at the same time they could

work individually on their projects and produce their own creation. As a tool, TouchDevelop is

very user-friendly for this age group and it is an easy and engaging way to introduce students

to programming concepts. The projects presented were motivating and the students enjoyed

being able to create fun Apps and games quickly, regardless of their skill level.

26 amt 71(4) 2015

Evaluation and assessment of the activity
and student application

I did not write a formal assessment for this lesson, although this could be easily done with

a rubric. Teachers could develop an assessment rubric using the electronic tool RubiStar

(2000-2008) or alternatively create their own. Using a rubric, as a quick assessment tool,

would provide constructive feedback to students about their coding project. It would also

assist in providing a summary of an individual student’s spatial reasoning and application

of selected geometry skills. However, as this was the first time I ran this project and the

students were completely new to coding, I preferred to look at their experience holistically.

Therefore, I graded their portfolio (that I could access online through the group I had created)

simply on completion, and then assessed the students’ performance (in class work and home

work) on their problem solving skills, their ability to collaborate with others and communi-

cate mathematical concepts and ideas, their resilience, their determination, their capacity to

overcome frustration and tolerate failure, and their work ethic – the so called 'soft skills' that

are just as important for success. To support my observations and record keeping, I kept a

tool (a clipboard, a notebook, or an iPad) with me at all times to take quick notes about each

student’s attitude, mindset, and contributions. These progress notes were taken into consid-

eration when writing the report cards, as I included a short written paragraph qualitatively

assessing student accomplishments in this activity.

Conclusion

This coding project was valued by the students, who gave it high marks and have been

demanding more ever since. It was clear that they had fun and they learned a considerable

amount. The students also appreciated the change of pace provided by working inde-

pendently at their own pace, whilst at the same time having the opportunity to collaborate

with their classmates, given that this can be quite rare in a mathematics class. As beginner

coding students, the girls particularly enjoyed being able to create Apps and games. They

found the various projects accessible and fun, which greatly motivated and engaged them.

The students’ enthusiastic response and upbeat attitude, together with the positive learning

outcome leads me to conclude that this is a valuable activity that provides an intuitive and

logical introduction to basic concepts of coding while practicing spatial reasoning and the

application of some geometry skills.

References
Australian Curriculum, Assessment and Reporting Authority (ACARA). (2014). Australian Curriculum:

Mathematics. Retrieved 10 October, 2015 from http://www.australiancurriculum.edu.au/mathematics
/curriculum/f-10?layout=1

Australian Curriculum, Assessment and Reporting Authority (ACARA). (2014a). Australian Curriculum:
Technologies. Retrieved 10 October, 2015 from http://www.australiancurriculum.edu.au/technologies
/introduction

Microsoft TouchDevelop. (2015). TouchDevelop Launch Editor. Retrieved 12 October 2015 from
https://www.touchdevelop.com

National Council of Teachers of Mathematics (NCTM). (2000). Principles and Standards for School
Mathematics. Reston, VA: National Council of Teachers of Mathematics. Retrieved 12 October 2015
from http://www.nctm.org/standards/

Rubistar. (2000–2008). Rubistar: Create Rubrics for your Project-Based Learning Activities. Retrieved 12
October 2015 from http://rubistar.4teachers.org/index.php

SimpleK12. (2000–2015). SimpleK12: Professional Development in Your Pajamas. Retrieved 12 October 2015
from http://www.simplek12.com

The College Board. (2015). AP Data—Archived Data 2014—Research. Retrieved 12 October 2015 from
http://research.collegeboard.org/programs/ap/data/archived/ap-2014

University of Idaho. (2015). Investigating Influences in Idaho STEM Education: Project Reports & Data.

Retrieved 12 October 2015 from http://www.uidaho.edu/research/STEM/stem-micron/micronstemed
/project-reports

27amt 71(4) 2015

