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Abstract 
One of the many roles of two year community colleges in the United States is to bridge the 
gap between secondary school and college for students who graduate from high school with 
weak mathematics skills that prevent them from enrolling in college level mathematics 
courses. At community colleges remedial or developmental mathematics courses review the 
pre-algebra and/or algebra skills required for college level mathematics. Fractions are often 
cited as the most difficult topic for students due to their abstract nature (Wilensky, 1991). This 
study with adult pre-algebra students is based upon a teaching research experiment in which 
the Kieren’s fraction sub-constructs of part-whole, ratio, operator, quotient, measure and the 
fractional equivalence were used as foundational concept knowledge during problem solving. 
In the first quantitative part of this study, students’ proficiency with Kieren's rational number 
sub-constructs are used as independent variables in a multiple linear regression model to 
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predict or explain students' competency in formal problem solving. This part of the study 
supplies hypothetical or statistical suggested pathways for students learning and transition 
from fraction concepts to proportional reasoning. Then in the second qualitative part of this 
study, transcripts from classroom lectures during the teaching research experiment are 
reviewed in order to understand how students used these rational number sub-constructs 
during problem solving with ratio, quotient, proportion, and percent. 
 

Keywords: Adult remedial mathematics, fractions, sub-construct, ratio, operator, quotient, 
measure, informal and formal proportional reasoning 

 

Introduction 
Proportional reasoning is often cited as a critical component in the transition from informal to 
formal mathematical thought. In the pre-algebra curriculum proportion typically come after 
fraction and ratio, however many educators believe it should be introduced earlier and the 
connections between these topics should be emphasized (Streefland, 1984). The claim that 
instruction in proportions should be based upon and connected to students’ understanding of 
fractions puts more emphasis on this important concept. Fractions represent a difficult concept 
for many students. Almost every instructor has heard a student proclaim, “I hate fractions.” In 
an effort to clarify the relationships between various fraction concepts the Kieren (1976) model 
of fraction and the extension of this model by Behr, Lesh, Post and  Silver (1983) was studied 
using quantitative analyses by Charalambous & Pitta-Pantazi (2007), with children, and Baker, 
Czarnocha, Dias, Doyle and Prabhu (2009) with adults. The Behr et al. (1985) extension of 
Kieren’s work was used as a theoretical foundation to study the relationship between procedural 
and conceptual knowledge for adult students reviewing fraction concepts in Baker, Czarnocha, 
Dias, Doyle, Kennis and  Prabhu (2012).  

The first objective of this study is to test an underlying hypothesis inherent in the Behr 
et al. (1983) extension that the rational number sub-constructs provide a foundation for problem 
solving in the realm of proportions. This is done by using student proficiency with these 
constructs and fractional equivalence as independent variables in an analysis of variation 
(ANOVA) linear regression model to predict student competency with problem solving. 

The second objective involves analyzing classroom transcripts during the teaching 
research project in order to determine how these rational number concepts are used during 
student informal reasoning with ratio, proportion and percent problems. 

 

Literature Review 

Problem-Solving 

Cognitive theorists suggest that all learning takes place in a problem solving or goal directed 
environment. A problem solver acquires methods and strategies to obtain a goal in one of three 
manners. The first is through direct instruction, the second is by discovery and the third is using 
analogy to previous solutions. Learning and increased proficiency in a domain is characterized 
by the ability to recognize chunks or patterns of elements which repeat over problems of a 
similar structure (Anderson, 1995). These chunks or patterns can be identified with problem 
solving schema which are triggered whenever “an individual tries to comprehend, understand, 
organize or make sense of a new situation” (Steele & Johanning, 2004, p. 67) The ability of a 
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student to recognize elementary schema that relates to previous situations is viewed by math 
educators as the first (recognition) stage in the development of problem solving (Cifareli, 1998).  

Direct instruction in problem solving in a mathematics classroom frequently takes place 
through modeling correct problem-solving behavior. Then students are given problems with 
similar structure to strengthen their skills at recognition and the use of analogy. That is 
educators employ repetition, recognition and generalization often by adapting problem solving 
sequences with increasing difficulty and generalization (Steele & Johanning, 2004). 
Unfortunately, weak problem solvers tend to employ strategies dominated by superficial aspects 
of a problem and in a classroom situation their ability to recognize a pattern and transfer 
knowledge is heavily influenced by what cognitive psychologist refer to as “temporal 
proximity,” that is whatever type of problem they are solving in class is what they expect to use 
(Anderson, 1995). Another frequently observed trait is referred to by Lamon (2007) as “non-
conservation of operation” this behavior is characterized by the choice of an operation that is 
easy to perform given the numerical values presented without consideration of problem 
structure. A student who replies that “when 3 lbs. are divided into 9 packages the result is 3,” 
would be exhibiting such problem solving behavior.  

The inability of many students to assimilate information about the problem structure 
into their choice of operation(s) makes an over reliance on modeling correct problem solving 
behavior ineffective. The insight that these students need to directly engage in the process has 
lead to reforms that emphasize student discovery during problem solving. For cognitive 
psychologist the discovery or formation of new methods and techniques for problem solving are 
built upon a “rich conceptual knowledge base” (Byrnes & Wasik, 1991, p. 778). 

Concept development and problem solving are frequently treated as separate branches 
of mathematics. However, several educational researchers suggest a dynamic interaction 
between them (Steele & Johanning, 2007; Lesh, R., Landau, M. & Hamilton, E., 1983). Tracy 
Goodson-Epsy (1998) uses both the stages of problem solving introduced by Cifareli based 
upon the ability to recognize and mentally represent solution strategies to a given problem and 
the stages of concept development based upon the work of Piaget. She concludes that students 
in the lower stages of problem solving, “recognition and re-presentation, typically held weak 
conceptions of variable and equality” (p.244). 

 

The Kieren Model and Behr et al. Extension 

Kieren proposed that the concept of a fraction can be viewed as the composition of five related 
but distinct sub-constructs, the primary sub-construct of part-whole knowledge and the four 
secondary sub-constructs of ratio, operator, quotient and measure. An extension of this model to 
corresponding fraction operations, equivalence and problem solving was developed by Behr et 
al. (1983). 

In Figure 1, the primary sub-construct of part-whole and the row of the secondary sub-
constructs: ratio, operator, quotient and measure can be viewed as conceptual knowledge. The 
bottom row, added by Behr et al. (1983), includes, problem solving which is the focus of this 
study, as well as the procedural knowledge of multiplication and addition, which were the focus 
of an earlier related study Baker et al. (2012).  

In Figure 1 neither procedural knowledge nor fractional equivalence is given a role in 
promoting problem solving. Educational researchers consider fractional equivalence and 
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equivalence schemes as “basic constructive mechanisms for rational number knowledge-
building” (Pitkethly & Hunting, 1996, p.8). The results of Baker et al. (2009) corroborate the 
idea that fractional equivalence is considered as conceptual knowledge and its role in 
determining student competency with problem solving is analyzed in this study.  

 

	
Figure 1 Model of Behr et al., 1983, p.100 

	

The arrows in Figure 1 from all four sub-constructs pointing to problem solving 
represent an underlying hypothesis that knowledge of these concepts lead to competency with 
problem solving. Lamon (2007) uses the Kieren sub-constructs as a foundation to promote 
proportional reasoning and thus agrees that solving proportion and related problems should be 
based upon these rational number concepts, in particular, she notes that students develop 
rational number sense through encounters with different representations of rational numbers.  

In the first quantitative component of this study, equivalence and the other rational 
number sub-constructs are used to investigate the hypothesis that competency with these sub-
constructs promotes proficiency with problem solving based upon ratio, rates and proportion. In 
the second qualitative component student use of these rational number concepts during the 
transition from informal to formal proportional reasoning in the math classroom is analyzed. 

 

Proportional Reasoning 

Proportional reasoning has been described as a foundation or core of algebra and higher 
mathematics (Berk, Taber, Gorowara & Poetzl, 2009; Lo & Watanabe, 1997). Despite the 
importance of proportional reasoning in subsequent math courses, educators point out that, 
many college students fail to manifest effective formal proportional reasoning (Adi & Pulos, 
1980). Lamon (2007) affirms that the lack of ability to reason proportionally is widespread 
when she notes, “a sense of urgency about the consistent failure of students and adults to reason 
proportionally… my own estimate is that more than 90% of adults do not reason 
proportionally…” (p.637) 

 

Informal Proportional Reasoning 

Fischbein (1999) noted that there is no commonly accepted definition for intuitive knowledge or 
informal reasoning. However, informal reasoning is frequently used in mathematics education 

Part Whole

Ratio Quotient

Figure 1

Operator Measure

equivalence Multiplication Problem 
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to refer to problem solving strategies demonstrated by children before formal instruction in 
mathematics. Carpenter (1986) found that children who used informal strategies were fairly 
successful at solving word problems. His characterization of children’s strategies as informal is 
reminiscent of Vygotksy’s (1997) notion of “spontaneous concepts” that children develop 
before instruction as opposed to the “scientific concepts” characterized by a hierarchy of 
connections which is the structure they learn during formal instruction. 

Many educators share the view that formal instruction in (proportional) reasoning 
should be based upon informal reasoning in real life situations and this has lead them to lament 
the lack of this connection in formal schooling, “…too often, we ignore the child’s experience 
with ratio and proportions outside of formal mathematics lessons and teach children algorithms, 
which utilize techniques that are alien to them….” (Singh, 2000, p.291)  

In this study informal reasoning strategies were presented during math instruction, 
therefore a characterization of informal reasoning based upon processes and elementary schema 
is more appropriate than one based upon spontaneous or pre instructional thought. 

 

Transition from informal to formal Proportional Reasoning 

Intuitive reasoning has been studied within the domain of proportions (Fernandez, Llinares, 
Modestou, Gagatsis, 2010) in particular during the transition from informal to formal 
proportional reasoning (Karplus, Pulos, & Stage, 1983). Nahors (2003) relates educational 
studies of children’s schema with rational number concepts to the work of educators who have 
mapped out the transition from informal to formal proportional reasoning and serves as an 
excellent framework to define and analyze the intuitive reasoning exemplified in the classroom 
transcripts.  

The example used by Fischbein (1999) to illustrate informal proportional reasoning is, 
“if one liter of juice costs 5 shekels then how much does 3 liters of juice cost?” (p. 15) Nahors 
(2003) outlines the steps an individual might use to solve this proportion problem at different 
levels of conceptual development. These steps include observing the two referents (liters and 
shekels), the rate or equivalence between them, and the understanding this equivalence is 
invariant under multiplication.  At the initial level an individual begins an additive process of 
counting or iterating by the given composite referent quantities. In this case 1 liter to 5 shekels, 
2 liters to 10 shekels…. Using the schema terminology of Steffe and Olive (1988) Nahors refers 
to this reasoning as a “coordinate unit-coordinating scheme.” (p.137)  In a second level of 
development an individual understands that the new amount of 3 liters is three times the original 
1 liter and then multiplies the cost times 3. Nahors refers to the process involved in this 
approach as “iterable composite units coordinating scheme.” (p.138) Nahors considers this a 
slightly more sophisticated and powerful version of the coordinate unit-coordinating scheme 
due to its multiplicative nature.  

The third level is an intermediate step in proportional reasoning and is often described 
by educational researchers as the unit rate approach (Karplus, Pulos & Stage, 1983; Nahors, 
2003). In a proportion problem, it involves first finding the unit rate between the given referents 
and then a multiplicative based iteration strategy as described in the iterable composite units 
coordinating scheme to solve the proportion. This level of concept development is considered 
by educators to begin formal proportional reasoning. 
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In the qualitative part of this study, the analysis of classroom transcripts is based upon 
the work of Nahor. The objective is identify the processes and elementary schemes students use 
when applying rational number concepts during informal reasoning with ratio, quotient, 
proportions and percent problems and the difficulties they experience. 

 

The Sub-constructs of Rational Number Sense 
The definitions of the fraction sub-constructs are taken as in Charalambous & Pitta-Panzini 
(2007). The part-whole sub-construct interprets the symbol notation p/q to represent the 
partitioning of a whole entity into q equal shares and then taking p out of the q shares. The part-
whole sub-construct is used as a foundation for developing rational number sense in the 
mathematics curricula. However the part-whole sub-construct is limited in that it does not 
readily illustrate the concept of an improper fraction. The measure sub-construct is frequently 
evaluated through placement of a fraction on the number line. Measure involves an application 
of the part-whole concept by determining the placement of p/q on an interval with a designated 
unit. The unit is partitioned into q equal parts and the resulting sub-unit 1/n is iterated p times.  

Through this process the measure sub-construct extends the part-whole concept to 
include improper fractions. The quotient sub-construct interprets p/q as the amount obtained 
when p quantities are divided into q equal shares. The quotient sub-constructs supports a dual 
interpretation of p/q as the number of equal shares obtained when a quantity p is divided into q 
equal sized shares. The ratio sub-construct interpretation of p/q involves a comparison between 
two quantities p and q and thus it extends the part-whole interpretation to include part-part.  

Operator is synonymous with the process of taking a fraction of some quantity, thus the 
operator sub-construct interpretation of p/q involves multiplication by p and division by q. The 
operator concept is associated with the input-output box in which the output is a fractional 
amount of the input quantity. The exercises used to evaluate the part-whole and ratio sub-
constructs are mostly pictorial, measure is evaluated through the number line, operator through 
the input-output box and quotient through problem situations often involving sharing a pizza. 
Exercises used to evaluate the equivalence sub-construct are based primarily upon translation 
between part-whole pictorial representations i.e. identifying the fraction associated with a 
picture containing 2 out of 5 objects shaded and then shading the appropriate number of boxes 
out of 15 objects that corresponds to the equivalent fraction.  

Also included are solving missing value problems that can be solved through scalar 
multiplication i.e. the second level of intuitive reasoning an example would be, find x in the 
proportion 2/5 = x/20. The exercises used to evaluate the rational number sub-constructs are 
included in the appendix and are essentially identical to those of Charalambous & Pitta-Pantazi  
(2007). The results of factor analysis and reliability tests on the exercise sets used to evaluate 
these sub-constructs are given in this appendix as well. 

Research Questions 
Research question 1: To what extent do the Kieren’s rational number sub-constructs 

predict or explain students’ competency with formal problem solving based upon proportional 
reasoning? 

Research question 2: How do students use Kieren’s rational number concepts when 
reasoning informally during proportion and percent problem solving? Specifically what 
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schemes are observed during student use of this reasoning and what difficulties do students 
experience? 

Setting 
The quantitative data in this study came from the same source as Baker et al. (2012) and like 
this article involves student proficiency with fraction concepts.  However, unlike the earlier 
article is also includes data from these students with proportional reasoning. Thus, in both 
articles the data was collected over several semesters from 334 adult students enrolled in pre-
algebra courses taught by six professors of Mathematics at Hostos Community College (HCC) 
and Bronx Community College (BCC) both urban community colleges in the City University of 
New York (CUNY) system.  

The teaching research experiment (1) from which this data was collected was designed 
on an educational approach in which the rational number sub-constructs served as a basis to 
develop competency with problem solving involving ratio, rates, proportion and percent. The 
classroom sessions were focused on problem solving with an emphasis on guidance and 
encouragement rather than direct instruction. In this sense the common methodology of the 
instructors could be described as constructivist instruction i.e. based upon discovery learning.  
Classroom transcripts of several of these professors during this teaching research project are 
analyzed for student reasoning with the rational number concepts during informal proportional 
reasoning.  

The assessment of the original teaching research project contained a control group 
(n=34), and experimental group (n=46), using a pre-test and post-test that focused on problem 
solving with ratio, rates, proportions and percent. The same professors taught sections of each 
group. There was no significant difference between the mean scores of the pre-test between the 
groups but the experimental group significantly outperformed the control group on the post-test 
at the  p < 0.001 level.  

As noted in Baker et al. (2012), “the student body at these community colleges is 
predominately female (70%-80%) and minority (85%-95%) and is the mathematically weakest 
group of students applying to the CUNY system.  These students have failed both the algebra 
and pre-algebra placement exams in mathematics and are not eligible to take college level 
mathematics course until they pass these courses. At these community colleges the pre-algebra 
course lasts fifteen weeks, it covers real numbers such as decimals and fractions, proportions, 
percent and an introduction to algebra.” 

 

Methodology 
The exercises sets for these sub-constructs were adapted from those used by Charalambous & 
Pitta-Pantazi (2007) and except for problem solving are identical to those used in Baker et al. 
(2012). Problem solving was evaluated through application problems involving ratio, rates and 
proportions that were taken from the adult curriculum. Principal factor analysis and reliability 
tests were conducted on the exercise sets (Cramer, Post & dellMas, 2002) in order to determine 
the components within each set and the reliability of the set of exercises. All problem sets and 
the results of these analyses are listed in the appendix. 

																																																													
1 This study was partially funded by the grant. Problem Solving in Remedial Mathematics: A jump start to reform, 
CUNY College Collaborative Incentive Research Grant Program (2010), Czarnocha, Prabhu, Dias & Baker. 
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Results and Discussion 

Quantitative Analysis 

The quantitative analysis of correlations between variables used in this study is identical to that 
used in Baker et al. (2012) and is based upon the assumption that the mean scores of two 
variables are significantly different (T-test) and there is a positive and significant correlation 
between them. As noted in Baker et al. (2012) in such a situation, “the underlying premise is 
that students’ knowledge of the easier concept will precede and be used to acquire knowledge of 
the more difficult concept. Thus knowledge of easier concept X will imply knowledge of more 
difficult Y this will be written as, X ⇒Y. Furthermore, the square of the correlation coefficient 
r2 indicates the percent variation of Y explained by X. This will be written as X⇒Y, (r2%).” 
(p.47) For example, if X⇒Y, (40%) then, given a class of students proficient in X one can 
expect 40% to be competent with Y.  The first research question involves quantitative analysis 
of student competency with the rational number sub-constructs, fractional equivalence, and 
problem solving. The means and correlations between these sub-constructs are listed. 

 

Student Performance: Mean and Standard Deviation 

A two sided T-test confirms that the mean score of part-whole is significantly easier than the 
other sub-constructs. In a second tier are equivalence and ratio. The third tier is operator and 
quotient, then measure and finally problem solving or proportional reasoning. 

 

Table 1 Mean scores and standard deviations on sub-constructs   (n=334) 

 Sub-construct       𝑥* SD 
 1) Part-whole  0.74 0.18 
 2) Equivalence  0.68 0.28 
 3) Ratio 0.67 0.24 
 4) Operator 0.62 0.27 
 5) Quotient 0.55 0.25 
 6) Measure 0.49 0.28 
 7) Problem Solving  0.41 0.29 

 

Correlations between Sub-constructs  

The correlations in Table II confirm Lamon’s (2007) statement that the rational number sub-
constructs are very connected to one another and suggest the Behr et al. (1983) hypothesis that 
fraction concepts leads to problem solving is valid. In order to determine the extent to which the 
rational number sub-constructs predict proportional reasoning we employ multiple linear 
regression with Kieren’s rational number sub-constructs and equivalence used as independent 
variables and students’ competency with formal problem solving based on proportional 
reasoning as the dependent variable. 

Baker et al. (2012) worked with an underlying assumption for a linear regression or 
analysis of variance (ANOVA) model that, “each independent variable correlates significantly 
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with the dependent variable and there is a significant difference between the mean score of each 
independent and dependent variable”(p.47). Each of these assumptions has been demonstrated 
in either Table I or II. As noted in Baker et al. (2012), “In an ANOVA the F-value indicates the 
strength of the relationship between the independent variables and dependent variable and the p-
value determines whether the model is significant. When the p-value of the model indicates it is 
significant the relevant question becomes what is the interaction between the independent 
variables as they predict or explain the dependent variable.”(p.47)  As explained in Baker et al. 
(2012) the interaction between the independent and dependent variables is quantified by first the 
significance or p-value of each variable and second the beta value of each independent variable 
which determines how much of the dependent variable it explains in the given ANOVA model. 

 

Table 2 Correlations between Sub-constructs & Problem Solving 

 PW EQ Ratio Op Qu Mea PS 
Part-whole -PW 1.00 0.64 0.53 0.40 0.38 0.46 0.35 
Equivalence-EQ 1.00 0.53 0.54 0.38 0.41 0.50  
Ratio   1.00 0.54 0.46 0.51 0.51 
Operator-Op    1.00 0.46 0.37 0.55 
Quotient-Qu     1.00 0.47 0.49 
Measure-Mea      1.00 0.46 
Problem Solving-
PS 

      1.00 

      Correlations R-values listed are all significant at 0.01 level (2-sided), n=334 

 

Formal Proportional Reasoning 

A multiple regression analysis with the rational number sense sub-constructs and equivalence as 
independent variables to predict formal problem solving was conducted. The results, using 5 
independent variables and 334 students, F(5,334)=44.5, p < 0.001 with adjusted R-square value 
of 0.44, reveal a highly significant model which explains 44% of the variance in formal 
proportion problems. 

 

Table 3 Beta and significance values: Problem Solving 

Predictor Variable Beta p-value 
1) ratio 0.13 p<0.026 
2) operator 0.27 p<0.001 
3) quotient 0.18 p=0.001 
4) measure 0.14 p=0.001 
5)equivalence 0.17 p=0.002 

 

In response to the first research question, the foundational factor of part-whole is not 
significant in predicting problem solving. However, all the other rational number sub-constructs 
and equivalence are significant. The means in Table II and the beta values and p values in Table 
III indicate that the more difficult concepts of measure, quotient and operator are more 
influential in explaining student competency with problem solving than the easier concepts of 
ratio, equivalence and part whole.  
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This result, combined with the high correlations exhibited in Table II suggest that the 
rational number sub-constructs development in a hierarchical manner with the more difficult 
concepts built upon the foundation of earlier concepts in much the way Vygotsky (1997) would 
describe scientific concepts and schema theorist like Sfard (1991) would describe structured 
schema. Furthermore, the more developed an individual’s hierarchy of concepts the more 
competent they will be with problem solving. In this case 44% of student competency with 
proportional reasoning can be explained by their proficiency with the rational number sub-
constructs. This statistical analysis validates educators who stress a connection between concept 
development and problem solving.  

In the qualitative part of this study classroom transcripts are reviewed to understand 
how the rational number sub-constructs are used when engaged in informal reasoning during 
problem solving with ratio, rate, quotient, proportion and percent. 

 

Qualitative Data Review of Transcript  

A student asks to review the following problem given on an earlier test. Two students 
participated in the dialogue (GT & SP). 

 

6.2.1 A taxi charges $6.50 for the first quarter mile and $0.50 for each additional mile. What is the 
charge for 1 ¾ mile?  
The teacher (T) calls upon a struggling yet determined student who had the problem correct on the 
test (GT). 
 
GT: I made a line with quarters                                 0  ¼  ½  ¾  1  ¼  ½ ¾ 2         
T: (The teacher draws out the number line)             |---|---|---|---|---|---|--|--|--|à 
T: What next? 
GT: First is $6.50, then $7.00 she counts slowly and are carefully until she reaches 1¾ and 
proclaims the answer $9.50.  
T: Very good, did anyone do it differently? 
Silence 
T: Do we have to count out each $0.50 (Directs this question to the class—a second student SP 
answers) 
SP: No, we know there are 6 additional quarters so we can multiply 6($.50) = $3.00 and add this to 
the $6.50 to get the answer. 

 

This is one problem (other than percent) that students independently constructed and used 
the number line consistently to solve. GT understood the initial rate 1 quarter mile to $6.50, 
distinguished this from the subsequent rate 1 quarter mile to $0.50 and she successfully 
represented this rate on the number line. SP also distinguished between the rates 1 quarter mile 
to $6.50 and 1 quarter mile to $0.50 and she also represented these rates on the number line. 
However, SP iterated the quarter miles 6 times and then coordinated this with the appropriate 
dollar amount through multiplication. The reasoning of GT is an example of a “coordinate unit 
coordinating scheme” (Nahors, 2003) while the multiplicative reasoning of SP is a good 
example of an “iterable composite units coordinating scheme.” Example 6.2.1 shows that 
students can and will return to informal strategies effectively and independently when a problem 
situation is amenable (Nahors, 2003).  
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The teacher (T) presents the following quotient problem during a lecture on fractions after 
multiplication and addition of fractions had been discussed. Students who participated include 
(JM, YM, GT & JA). 

 

6.2.2 Each package of meat is to contain !
!
 lb. There are 8 lb. of meat to be made into packages. 

How many packages will there be? 
 
T: What do we do? 
JM: we multiply: !

!
× !
!
 

T:  Class, do we all agree? Can anyone explain why? 
JM: We divide. (JM changes his mind after the instructor-teacher questions his reasoning) 
T: Okay, why? (Asks the entire class to see if someone can supply an answer as to why division—
a second student answers) 
YM: Because we are taking the !

!
 lb as a part from the whole. 

T: But why is this division? I mean this could indicate subtraction or even perhaps some other 
operation why division? 
YM: Because we are dividing the 8lb. into parts  
T: Good, we are partitioning or dividing the 8lb into parts each !

!
 lb. So how do we divide? 

JM: !
!
÷ !

!
 

T: Okay let’s work this out: !
!
÷ !

!
= !

!
× !
!
= !

!"
= !

!"
 so what is the answer? (Asks entire class. It 

was not clear who called out the following two responses) 
Class: The answer is 12 
T: Okay but why did we get !

!"
?  

Class: It’s basically the same answer 
T: Well it’s not exactly the same and it can be confusing if you forget to reduce the !

!"
 to !

!"
 you 

would probably get this wrong on a test. Okay, guys we did something wrong can anyone tell me 
what is wrong? 
JM: We should have divided !

!
÷ !

!
  

T: Yes, we divide and the 8 goes first because it is the 8lb. that is being partitioned or divided up 
into groups. (Teacher works out the problem) 
T: I want to look at this same problem using a number line. Where does the fraction !

!
 go on the 

number line, between what two whole numbers? 
GT: between 2 and 3. 
T: No anyone else? 
YM: Between 0 and 1. 
T: good (draws a number line) Let’s count 1 package is ⅔lb. counting over two more thirds we 
have (points to 1⅓) 2 packages then counting over two more thirds we have 2 lbs. is 3 packages. 
 
0   ⅓  ⅔  1  ⅓       2 lbs. 
 |---|---|---|---|---|---| 
          1       2        3 packages 
 
T: Class if 2 lbs. is 3 packages then 8 lbs. requires how many? 
YM: 12 
GT: Why, I don’t see this? 
T: Okay, in proportion form: !!"

!!"#
= !!"

!
 what is the value of X? How do we find X? 

GT: Okay I get it. 
T: Class does everyone get this? How do we solve this problem? (Teacher works out the solution 
to this proportion) 
T: Did anyone do this problem differently? 
 
 
JA: I drew out 8 figures each 1 lb. and took ⅔ lb. 
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T: Wait let me draw this on the board (draws 8 rectangular pieces representing 1 lb. each and 
partitioned them into two-thirds for each package) 
  

                
 

                
 
T : Okay what did you do next?  
JA: There are 8 packages of ⅔ lb. each so I take these. Then there are 8 parts of ⅓ remaining. She 
counts these up in pairs (1,2,3,4) for a total of 12. 
GT: I don’t get it. What is she counting? 
T: After taking the ⅔lb. there is ⅓ lb. remaining (pointing to the un-shaded part) correct?  
GT: Yes I see it. 
T: We now count in pairs we do this because we need two of these parts to make a ⅔lb. package 
Correct? 
GT: Okay 
T: So we count by pairs, how many pairs are there? 
GT: Okay now I see it, there are 4 pairs. 
T: So we add these 4 to the original 8 to get 12. 

 

The student JM was guessing which operation and when he understood it was division he 
then had trouble setting up the division correctly, confusing the dividend with the divisor. This 
is an example of non-conservation of operation. After the 2/3 lb. to 1 package rate was placed 
on the number line, the students followed the additive iteration of this equivalence as the teacher 
counted up to, 2 lbs. to 3 packages. Then after understanding that 2/3 lbs per package is 
equivalent to 2 lbs per 3 packages the students followed the informal scalar multiplication to 
arrive at the solution.  

In this example the teacher used the number line or measure concept to coordinate the 
referents in much the same way as GT and SP had in the previous example 6.2.1. As indicated 
by the incorrect response of the student GT as to where the fraction 2/3 goes on the number line 
and the relatively low mean score of measure (0.49) in Table I the use of a number line- 
measure concept is difficult for students when a fractional referent in this case 2/3 lb. is 
involved. Thus, the measure concept, while very useful for students during informal reasoning 
can be an area of difficultly when fractions are involved. This provides a partial answer to 
research question 2. 

The quotative method used independently by the student JA employs the part-whole 
concept to take 2/3 of each 1 lb. iterating the result to 8 lbs. while coordinating this process with 
the remainder 1/3 lb. (un-shaded areas) and the referent number of packages. Thus it represents 
a slightly more sophisticated version of the “coordinate unit coordinating scheme.” (Nahors, 
2003) In this way it directly addresses the issue of non-conservation of division which is clearly 
a big problem for students as JM’s response indicated.  

The following example was presented during an introduction to percent lecture. The 
previous example was how to take a percent of a given number. It had been discussed using 
both informal iteration on the number line and formal reasoning with proportion. Typically after 
exposure to formal techniques students prefer to translate into an equation using the structural 
identification of the phase ‘% of’ as multiplication or they set up a proportion using the phrase 
‘% of’ to identify the base-whole, and the phrase “is” to identify the amount-part. The teacher 
uses the number line to clarify the amount and the base and expected the class to use a 
proportion to solve this problem.  Students involved in discussion are (AH, EZ & JA). 
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6.2.3 30% of some number is 900 find the number?  
T: Any ideas? 
AH: We can put this on the number line like the previous one. 
T:  Okay, draws the following line (The line was decomposed into 10% as familiar reference 
points, however these were not labeled) 
 0%                  30%       50%                             100%  
   |------|-----|-----|-----|-----|-----|-----|-----|-----|-----| 
  0        
T: Where does the 900 go? Is with the 100% or with the 30%? 
EZ: It goes with the 30% 
T:Why? 
EZ: Because, we have 30% of some number is 900, so 30% is 900 and X goes with the 100%. 
T: Okay, (places 900 on the number line as shown) 
 0%                 30%       50%                             100%  
   |------|-----|-----|-----|-----|-----|-----|-----|-----|-----| 
  0                    900                                               X 
AH: Why does the 900 go with the 30%? 
T: 30% of some number is 900. Thus, we take a 30% of an unknown number, this means we take a 
part of this number and get 900. The number is bigger than the 900 we take 30% of a bigger 
number that we don’t know. When we don’t know a number we label it X so this unknown X is 
100%. Do you understand?  
AH: I think so. 
T: How do we find 100% which is the X? (The expectation was that students would suggest a 
proportion as in the problem done before this one) 
JA: We can find 10% which is 300. 
(Teacher was surprised although in previous examples the number line had been used to give 
meaning to setting up a percent proportion and the informal iteration strategy had been used the 
decomposition with percent problems had not been shown in class). 
T: (Marks the equivalence 10% is 300 on the appropriate scale point) Does everyone see how she 
got this? (The class nods agreement, it is clear to them) 
0%    10%       30%        50%                             100%  
   |------|-----|-----|-----|-----|-----|-----|-----|-----|-----| 
  0      300        900                                               X 
T: Okay, what should we do next? 
JA: 100% is 3000. (The speed in which she answers indicates the use of scalar multiplication of 10 
on the equivalence of 10% is 300  
  

The student EZ successfully identified the amount and the base with the assistance of the 
number line and yet could not immediately set up a proportion when the teacher asked. Perhaps 
this is because the base was unknown. Despite having been exposed to formal proportions JA 
continue to effectively use decomposition into an appropriate rate (10% is 300) represent this on 
the number line and then used scalar multiplication to solve this percent problem. The sequence 
of first decomposition of 30%—900 to the equivalent 10%—300 followed by scalar 
multiplication by JA contains the essence of the unit rate approach and thus documents a student 
transitioning between informal and formal reasoning independent of the teacher’s guidance.  

In general, representation of percent through measure is easier for students than for 
fraction and the instructors frequently observed students independently using the measure sub-
construct as for reasoning proportionally when solving percent problems during this project. 

The following example was done near the end of a percent lecture after students had been 
exposed to formal proportion and percent equations. It mixes the fraction operator concept with 
percent. The student involved in the class dialogue was (RG, JM & EZ). 
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6.2.4 Find 60% of !
!
 of 600. 

T: How should we do this? (Silence) Okay how about we find !
!
 of 600 first.(Silence) 

T: If you had to describe the fraction !
!
 how would you do this? (Silence) Suppose you wanted to 

explain !
!
 to a child who did not know what it meant how would you do this? 

RG: I would draw it. (Teacher draws a circle.) 
RG: Then make a peace sign.  
T: (After drawing the circle divides it into 3 parts with a peace sign).  
     What would you do next? How do you represent the 2? 
RG: Take 2 of these parts.  
(Teacher shades in two of the three parts.) 
T: How would you relate this picture of !

!
 to the 600? 

RG: The 600 is the total. 
T: So how much is the !

!
? 

RG: It is 400. 
T: Class how did he get the 400? 
JM: Each part is 200 so two of them are 400. 
T: Good, does everyone see this? Can anyone tell me how to do this mathematically or formally in 
a faster way without pictures? 
JM: !

!
 ÷600 

T: !
!
÷ !""

!
 = !

!
× !
!""

 = !
!""

 is this correct? 
JM: No  
T: When taking a fraction of something the word ‘of’ indicates multiplication.  
(Writes out !

!
 × 600/1 and works it out to obtain 400) 

T: What is the next step? 
JM: We find 60% of 400 
T: How do we do this? 
JM: We set up a proportion !"

!""
= !

!""
 

T: good. (Solves the proportion) Did anyone else do it differently? What operation is indicated by 
the word “of”? 
EZ: Multiplication 
T: Good (Writes out 60% × 400 => 0.60 × 400 and solves) 

 

The responses of JM are an example of non conservation of operation. JM had forgotten 
how to take a fraction of a quantity and even after the teacher demonstrated an informal solution 
to the problem he appeared to be guessing which operation corresponded to this informal 
reasoning process. The teacher employed the part-whole sub-construct to represent 2/3 as a 
visual picture. The students RG & JM were able to relate the 600 to the total and decompose 
this to find the unit rate or equivalence of 200 to a 1/3 part before taking twice this as the 
answer. These processes make up an elementary schema that corresponds to the operator 
concept.  The operator concept is closely related to adult students’ part-whole knowledge and 
proficiency with multiplication, Baker et al. (2012).   

In answer to research question 2, the reasoning schemes used effectively in these 
examples were basically of two types, one that corresponds to the operator concept supported by 
part-whole and the other involving iteration and decomposition into equivalent rates supported 
by the measure concept. The informal strategy based upon the elementary schemes of iteration 
and decomposition were those presented by Nahors (2003). The students (GT & SP) used such 
iterative reasoning supported by measure in 6.2.1 to solve the taxi problem. The teacher also 
used iterative reasoning supported by the number line during the quotient problem (6.2.2) when 
2/3 lb. per package was iterated to 2 lb. per 3 packages.  
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The elementary schema associated with the operator concept of taking a fraction or 
percent of a quantity involves the processes of identify and distinguishing between the base-
whole and partial-amount. The visual for this schema was represented by a circle-fraction or 
number line—percent and the student related problem information to the corresponding visual 
concept. This elementary schema supported by part-whole pictures was used by the teacher to 
help students understand the process of taking 2/3 of 600 (6.2.4). Example 6.2.3 demonstrates 
the coordination of these schemes. First, EZ used the operator/amount-base schema to represent 
30% to 900 on the number line. Then JA applied decomposition to an equivalent rate of 10% to 
300 and finally she iterated to find the solution.  

These examples demonstrate how concepts in visual form stimulate student engagement 
in problem solving through the process of relating problem information to a relevant picture 
whether a circle, rectangular bar or number line. These concepts also help shape and formulate 
the reasoning process. For example, RG and JM intuitively know to divide the 600 by three and 
double the result after relating it the whole circle in 6.2.4. In like manner JA intuitively 
decomposed the 30% to 900 to its equivalent 10% to 300 and iterated to solve after EZ had 
correctly represented it on the number line.  

 

Conclusion 

In the first part of this research study it was demonstrated that the rational number sub-
constructs explain about 44% of a students’ problem solving based upon proportional reasoning. 
This validates the Behr et al. (1983) extension of the Kieren sub-constructs to competency with 
problem solving and verifies Lamon’s (2007) assertion that the rational number sub-constructs 
provide a foundation for proportional reasoning. The generalization of this result connects two 
areas of mathematical research, concept development and problem solving and suggests the 
interaction should be of significant interest to mathematics education. 

In the second part of this study transcript of classroom lectures in which the rational 
number sub-constructs serve as a foundation for informal reasoning are analyzed for evidence of 
how these concepts were used. An analysis of student reasoning shows the concepts of part-
whole-circles and number line-measure when represented in visual form acted as a catalyst for 
students reasoning. That is students became engaged in the reasoning process when they related 
problem information to these pictures. These picture-concepts also supported informal 
reasoning as students formulated strategies and applied processes based upon how problem 
information was represented.  

Students used an elementary operator schema that involved identifying the partial-
amount and base-whole with problem information and representing this on a diagram. They also 
used these picture-concepts especially measure to support the processes of iteration and 
decomposition. These results support educational research on the benefits of concept-pictures or 
visuals during problem solving (Goodson-Epsy, 1998; Steele & Johanning, 2004; Caddle & 
Brizuela, 2011).  

The application of the processes of iteration and decomposition to rates on the number 
line-measure concept supported student transition to formal proportional reasoning. However, 
the measure concept was difficult for many students to grasp especially when a fractional 
quantity was involved. One exception was the use of whole number percent. The adult students 
independently applied their part-whole knowledge to represent given percent amount and base 
information on the number line and then applied the processes of iteration and decomposition.  
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Most adult textbooks and curriculum are based upon the same sequence of topics as that 
presented for children. Thus, percent is introduced after proportion and rates which are 
introduced after decimals and fractions. An effort to arrange the topics for adults according to 
the informal reasoning observed in this study would suggest the integration of whole number 
percent earlier in the adult curriculum with fraction, rate and proportion. 

 

Reflection upon Learning Theories 
In mathematics education there are separate branches for and corresponding models of concept 
development and problem solving. In the APOS (action-process-object-schema) model, concept 
development begins with an individual’s actions upon existing concepts and then with reflection 
upon these actions they become internalized processes that eventually lead to new concepts-
objects and ultimately schema (Czarnocha, Dubinsky, Prabu & Viadokovic, 1999). On the other 
hand, the development of a problem solving schema for Cifareli (1998) focuses on recognition 
of strategies from problems with similar structure and reflection upon the processes involved.  

The informal reasoning processes described in this study are dictated by the problem 
structure and reflection upon such structure is an essential component in the development of 
problem solving (Cifareli, 1998). On the other hand, these processes can be viewed as actions 
upon conceptual knowledge of part-whole and measure and in the APOS model reflection upon 
such processes leads to concept development. This suggests that such reflection is a point of 
commonality between these models of learning. Although an analysis of how these models are 
connected is beyond the scope of this study, cognitive theories that situate learning, including 
concept development within the framework of problem solving remind us that such a link exists. 
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Appendix 
Principal factor analysis and reliability tests were conducted on the exercise sets (Cramer, Post 
& dellMas, 2002). The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.6 or more for 
all sets of exercises, thus indicates the factor analysis was appropriate. The exercises sets are 
listed by the factor-component they fall in. The Cronbach’s alpha value of sampling reliability 
was 0.6 or more for all sets of exercises except quotient thus, all exercises sets are considered 
reliable except quotient.  
 
Ratio  
Component 1 
1) In a History class there are 2 male to every 3 female students, use fraction notation to write 
the ratio of male to female students in the class.(*) 
2) In a History class there are 2 male to every 3 female students, use fraction notation to write 
the ratio of female to male students in the History class. (*) 
3) Use fraction notation to write the ratio of female to total students in the History class. (*) 
 
Component 2 
4) Write the ratio 4 to 36 in simplest terms. (*)(†) 
5) Write the ratio 48 to 16 in simplest terms. (*)(†) 
 
Component 3 
Juan and María are making lemonade. Given the following recipes whose lemonade is going to 
be sweeter?  
6) Juan uses 2 spoons of sugar for every 5 glasses of lemonade  
      María uses 1 spoon of sugar for every 7 glasses of lemonade (*) 
7) Juan uses 2 spoons of sugar for every 5 glasses of lemonade 
      María uses 4 spoon of sugar for every 8 glasses of lemonade (*) 
 
Component 4 
Jose jogs each morning before work. Determine which of the following days he jogged at a 
faster rate. Please answer a) Monday b) Tuesday or c) Not able to determine from information 
given. 
8) On Tuesday he jogged a longer distance than he did on Monday. On both days he jogged 
exactly the same amount of time. (*) 
9) On Tuesday he jogged a shorter distance than he did on Monday. On both days he jogged 
exactly the same amount of time. (*) 
The Kaiser-Meyer-Olkin measure of sampling adequacy for these 9 questions was 0.64. 
These 4 components explained 76% of the variation of the exercise set.  
The Cronbach’s alpha value for this exercise set was 0.67 and thus it is reliable.  
(*) commonality with other exercises in this set is more than 0.5 
(†) Added by present authors and not found in Charalambous and Pitta-Pantazi (2007). 
 
Operator 
Component 1 
There were two exercises that evaluated the operator concept through functional input-output 
boxes. 
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1) The following diagram represents a 
machine that outputs  !

!
 of the input number. 

If the input number is 200 then what is the 
output number? (*) 
 

 

2) An input-output machine has outputs that is !
!
 of the input. If the input number is 480 then 

that is the output number? (*) 
3) Find half of 1 !

!
 hours (*) 

4) Find !
!
  of  !

!
  of 40,000 (†) 

5) Find !
!
 of  !

!
 of 4000 (†) 

 
Component 2 
6) Taking !

!
 of a number is the same as dividing the number by 5 and multiplying this result by 

2, True/False? (*) 
7) If we divide a number by six and multiply by twenty-four this the same as multiplying by the 
fraction !

!
  True/False? (*) 

 
Component 3 
8) A recipe calls for 1 ½ cup of flour. Which of the following expresses the amount of flour 
required for !

!
 of this recipe? (*)(†) 

a)  !
!
÷ !

!
        b)  !

!
÷ !

!
       c)  !

!
× !
!
              d) 1 !

!
− !

!
                 e) not given  

 
9) Find !

!
 of !

!
 (*) 

The Kaiser-Meyer-Okin measure of sampling adequacy was 0.69 with 58% of the variation 
explained by these three components. 
The Chronbach’s alpha was 0.69 and thus operator is a reliable set of exercises.  
(*) Commonality was at least 0.5 
(†) Added by present authors and not found in Charalambous and Pitta-Pantazi (2007). 
 
Measure 
Component 1  
Locate the following numbers on this number line:  
#1) !

!
  #2)  !

!
  #3) !

!
 

          0    !!          1 
ß-----|----|----|----|----|---------------à 
 
Component 2 
#4) Locate the number one “1” on the number line below:  
       0              !! 
ß---|------------|----------------------------à 
 
 

INPUT
�

�
OUTPUT

INPUT/OUTPUT 
MACHINE

⅖

200

?
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#5) Locate the number one “1” on the number line below:  
       0                                 2¼  
ß---|---------------------------|-------------à 
 
The Kaiser-Meyer-Okin measure of sampling adequacy was 0.63 with 72% of the variation 
explained by these two components. 
Chronbach’s alpha 0.69 thus measure is a reliable set of exercises.  
Commonality was at least 0.5 or above for all exercises. 
All exercises were used in Charalambous and Pitta-Pantazi (2007). 
 
Quotient 
Component 1 
1) Three pizzas are shared equally among four students what fraction of a pizza will each 
receive? (*) 
2) It takes ¾ kg of apples to make one pie. How many pies can be made using 20 kg? (*) 
 
Component 2 
3) A beach !

!
 miles long is divided into 6 equal parts. How long is each part? (*) 

4) Two pizzas were shared equally among a group of students. If each student received !
!
 of a 

pizza then how many students were there?  
5) If 3 pizzas are shared evenly among seven girls while 1 pizza is shared evenly among three 
boys. Who gets more pizza, a girl or boy? (*) 
(*) Commonality was 0.5 or above  
All exercises were used in Charalambous and Pitta-Pantazi (2007). 
The Kaiser-Meyer-Okin measure of sampling adequacy was 0.621 and 52% of the variation was 
explained by these two components. 
The Chronbach’s alpha was 0.49 thus quotient was not a reliable set of exercises.  
 
Equivalence  
Component 1 
1) A 2x3 rectangular array of equal squares is given with 1 square shaded. Next to this are 24 
un-shaded identical objects the student is asked to shade in the appropriate number of objects to 
represent an equivalent fraction. 
2) Four identical objects are presented with 1 circled. Next to this is a 2x8 rectangular array of 
equal squares the student is asked to shade in the appropriate number of objects to represent an 
equivalent fraction. 
3) A 2x3 rectangular array of equal squares is given with 4 squares shaded. Next to this are 24 
un-shaded identical objects the student is asked to shade in the appropriate number of objects to 
represent an equivalent fraction. 
4) Four identical objects are given with 3 circled. Next to this is a 4x4 rectangular array of equal 
squares the student is asked to shade in the appropriate number of objects to represent an 
equivalent fraction. 
5) 16 un-shaded identical objects are presented. Next to this is a 2x2 rectangular array of equal 
squares the student is asked to shade in the appropriate number of objects to represent an 
equivalent fraction. 
6) A 2x16 rectangular array of equal squares is given with 4 squares shaded. Next to this are 6 
un-shaded identical objects the student is asked to shade in the appropriate number of objects to 
represent an equivalent fraction 
 
Component 2 
7)  !

!
= ?

!"
                      8) !"

!"
= !

?
                  9) !

!
= !"

?
 

 
All exercises were used in Charalambous and Pitta-Pantazi (2007). 
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The Commonality was 0.5 or above for all exercises. 
The Kaiser-Meyer-Okin measure of sampling adequacy was 0.86 and 67% of the variation was 
explained by these two components. 
The Chronbach’s alpha was 0.85 thus equivalence was a reliable set of exercises.  
 
Part-Whole 
Component 1 
1a) Given a picture of four triangles and five circles; the question is what fraction of the objects 
are triangles? (*) 
1b) Given two triangles; what fraction of the total triangles do these represent? (*) 
 
Component 2 
2) Given a picture of a circle with 2 out of 5 equal parts shaded; the question is what fraction of 
the circle is shaded? (*) 
3) Given figure composed of seven squares, three of which are shaded; the question is what 
fraction of the squares are shaded? (*) 
4) Given five equivalent objects three of which are circled; the question is what fraction of the 
objects are circled? (*) 
 
Component 3  
5) Given a rectangle array composed of six equal squares one of which is shaded; the question is 
what fraction of the squares are shaded? (*) 
6) Given four identical objects one of which are circled; the question is what fraction of the 
objects are circled? (*) 
7) Given a figure composed four equivalent objects three of which are circled: the question is 
what fraction of the objects is circled? (*) 
 
Component 4 
8) The fraction !

!
  corresponds to taking a chocolate bar, dividing it into three equal parts and 

taking two of these parts. T/F? (*) 
9) The fraction !

!
  corresponds to taking a set of objects dividing it into three equal parts and 

taking two of them. T/F? (*) 
 
Component 5 
10) Given a 3x2 rectangle array composed of six equal rectangles four of which is shaded; the 
question is, does the shaded region corresponds to the fraction !

!
? (*) 

11) Does the shaded part of this rectangle correspond to the fraction ⅔? (*) 
 
     
 
12) Given a 2x6 array of circles 8 of which are shaded; the question is does the shaded objects 
represent the fraction ⅔? (*) 
13) Given a 1x5 rectangular array of equal squares with 2 shaded; the question is does the 
shaded part of the rectangle correspond to the faction ⅔? 
All exercises were used in Charalambous and Pitta-Pantazi (2007). 
(*) The commonality value was at least 0.5 
The Kaiser-Meyer-Okin measure of sampling adequacy was 0.72 and 60% of the variation was 
explained by these three components.  
The Chronbach’s alpha value was 0.7 thus part-whole is a very reliable set of exercises.  
 
Formal Proportional Reasoning 
Component 1 
1) Hank drove 500 miles in 8 !

!
 miles, what was his average speed or rate in miles per hour? (*) 
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2) If ¾ cup of coleslaw contains 120 calories. How many calories are there in !
!
 cup? (*) 

3) If the ratio of a:b is 2:3 and b is 4200 then find the value of a. (*) 
4) If !

!
 of 4000 is equal to !

!
 of some number then find the number. (*) 

5) If 0.5 ml of medicine are mixed with 2 ml of water to form a solution then what is the ratio of 
drug to water in simplest terms?(*) 
Component 2 
6) Which of the following fractions is closest to 1? (*) 
   a) !

!
           b) !

!
             c) !

!
              d)   !

!
 

7) Circle the smallest fraction: (*) 
   a) !

!!
            b) !

!"
        c) !

!"
           d) !

!
 

All exercises were taken from end of year departmental exit exam.  
 (*) The commonality value was at least 0.5 
The Kaiser-Meyer-Okin measure of sampling adequacy was 0.75 and 51.3% of the variation 
was explained by these two components.  
The Chronbach’s alpha value was 0.70 thus the formal proportional reasoning exercises formed 
a very reliable set of exercises.  

 


