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Loglinear smoothing (LLS) estimates the latent trait distribution while making

fewer assumptions about its form and maintaining parsimony, thus leading to

more precise item response theory (IRT) item parameter estimates than stan-

dard marginal maximum likelihood (MML). This article provides the expectation-

maximization algorithm for MML estimation with LLS embedded and compares

LLS to other latent trait distribution specifications, a fixed normal distribution,

and the empirical histogram solution, in terms of IRT item parameter recovery.

Simulation study results using a 3-parameter logistic model reveal that LLS

models matching four or five moments are optimal in most cases. Examples with

empirical data compare LLS to these approaches as well as Ramsay-curve IRT.
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Unidimensional item response theory (IRT; Lord & Novick, 1968) models

play an important role in present-day educational measurement and testing. With

marginal maximum likelihood (MML) estimation of IRT item parameters (Bock

& Aitkin, 1981; Bock & Lieberman, 1970), the IRT model is expanded to include

a latent trait distribution, denoted here by gðyÞ: The latent trait is considered to be

a nuisance parameter in MML and can be eliminated from the likelihood by inte-

grating or marginalizing over it, a strategy that goes back to Neyman and Scott

(1948). Item parameter recovery studies have shown that there is item parameter

estimation error when the true gðyÞ is nonnormal and a normal distribution is

specified (Boulet, 1996; Stone, 1992; Swaminathan & Gifford, 1983; Woods

& Lin, 2009; Woods & Thissen, 2006; Yamamoto & Muraki, 1991). Many appli-

cations of IRT use item parameter estimates from a calibration sample in subse-

quent analyses, including trait estimation or equating. Given that there is a

relationship between the amount of systematic and random error in item para-

meter estimates and the amount of measurement error in estimates from these
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subsequent analyses (Casabianca, 2011; Casabianca & Lewis, 2011a; Tsutakawa

& Johnson, 1990; Zhang, 2011; Zhang, Xie, Song, & Lu, 2011), an interest of

psychometricians is to obtain the most accurate and precise item parameter esti-

mates possible by calibrating with large samples and the appropriate estimation

specifications.

Flexibility in model specification for gðyÞ is important. Specifically, the

model for gðyÞ should be able to accommodate nonnormality while also main-

taining a level of parsimony. Current practice for specifying the latent trait dis-

tribution assumes a normal distribution by default, and this is true in Parscale 4

(Muraki & Bock, 2003), Bilog-MG 3 (Zimowski, Muraki, Mislevy, & Bock,

2003), and more current software such as flexMIRT Version 2.0 (Cai, 2013).

Although it is not always apparent, there are many situations in educational and

psychological testing, where the population of test takers may have an approxi-

mately normal observed test score distribution but a nonnormal distribution for

the latent trait (Lord, 1953; Lord & Novick, 1968). An example in educational

testing where the latent trait may be inherently nonnormal is a group of exami-

nees with disabilities taking a K–12 alternate assessment. Measurement of con-

structs in the field of clinical and personality psychology often involve

nonnormal traits—for example, psychoticism, tends to be positively skewed

(Eysenck & Eysenck, 1991; Matthews, Deary, & Whiteman, 2003, p. 22).

Generally, parsimony is a major consideration in statistical modeling. It is

especially important in psychometrics with the usage of relatively more complex

models such as the unidimensional 3-parameter logistic (3PL) IRT model, multi-

dimensional IRT models, and cognitive diagnostic models. These models involve

many estimable parameters and are typically associated with identifiability

issues (Haberman, 2005). Therefore, flexible yet parsimonious options for esti-

mation should be considered in these cases, as the ideal model for gðyÞ sits at the

optimal point of the bias–variance trade-off.

The most common fixed specification for gðyÞ is a standard normal distribu-

tion. A discrete approximation to the normal distribution is used for the purposes

of numerical integration (Bock & Lieberman, 1970; Mislevy, 1984). The most

common parametric approach is to estimate the parameters of the normal distri-

bution (Andersen & Madsen, 1977; Mislevy, 1984; Rigdon & Tsutakawa, 1983;

Sanathanan & Blumenthal, 1978). The most common nonparametric approach to

model gðyÞ; often called the Bock–Aitkin or the empirical histogram (EH) solu-

tion (Bock & Aitkin, 1981; Mislevy & Bock, 1985; Rigdon & Tsutakawa, 1983),

estimates Q � 1 distributional parameters that characterize a discrete gðyÞ using

latent class probability estimation.

The focus of this article is a semiparametric model for gðyÞ via loglinear

smoothing (LLS; Holland & Thayer, 1987, 2000) in MML. LLS matches M

moments of the original distribution to create a smoothed distribution. Suppose

that an LLS model for gðyÞ is embedded within an expectation-maximization
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algorithm (EM; Dempster, Laird, & Rubin, 1977; Tsutakawa, 1985) for the

MML estimation of item parameters. Given a discretized gðyÞ on Q support or

quadrature points, an unsaturated LLS model (with fewer fitted moments than the

Q – 1 points of the distribution or M < Q – 1) smooths the discrete gðyÞ: Conver-

sely, a saturated loglinear model (fitting Q� 1 moments or M ¼ Q – 1) will

exactly reproduce the original discrete gðyÞ:
Other smoothing methods, including LLS, have been used for discrete latent

trait and mixture IRT models by Rost and von Davier (1992, 1995), von Davier

(2005), and Xu and von Davier (2008). Although these smoothing approaches

have been around for quite some time, they were implemented in the context

of complex multidimensional discrete latent trait modeling (see, e.g., mdltm soft-

ware; von Davier, 2005). Furthermore, the algorithms used for estimation of gðyÞ
with LLS via the EM algorithm are currently undocumented in the literature and

these methods have not been evaluated for use in the MML estimation of item

parameters. We believe that for these reasons, LLS algorithms for gðyÞ are also

unavailable in popular IRT software packages and are not being utilized. Conse-

quently, our goals for this article are to (i) provide the step-by-step algorithms for

LLS in the EM framework, (ii) evaluate LLS as a method for estimating gðyÞ in

MMLE of unidimensional IRT models with different values for M and Q, and

(iii) compare LLS to other popular approaches.

In the next sections, we review MML estimation of item parameters and provide

an overview of the various methods for characterizing gðyÞ. We then introduce

LLS as a general method for smoothing distributions and detail the specific algo-

rithmic steps to implement the EM algorithm with LLS as the method for estimat-

ing gðyÞ in IRT. We report results from an item parameter recovery simulation

study performed in the context of the 3PL unidimensional dichotomous IRT

model, focusing on item parameter recovery as a function of M and Q. We also

present two data examples: one using data from the Programme for International

Student Assessment (PISA) mathematics assessment and another from the Mauds-

ley Obsessional Compulsive Inventory (MOCI). Finally, we discuss implications

for item parameter estimation and suggestions for implementing LLS in practice.

Characterization of the Latent Trait Distribution in MML Estimation

MML estimation provides estimates of item parameters by assuming that the

item response data are obtained from a random sample from a population of

latent traits with a certain distribution. With MML, the likelihood is expanded

to include gðyÞ and then integrated with respect to y: The marginal probability

of obtaining a specific response pattern xs via integration over gðyÞ is

PðxsÞ ¼
ðþ1
�1

PðxsjyÞgðyÞdy ¼
ðþ1
�1

∏
k

i¼1
Pðxisjy; ϕÞ

� �
gðyÞdy; ð1Þ
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where Pðxisjy; ϕÞ is an IRT model specifying the conditional probability of

obtaining a score xis for item i ði ¼ 1; . . . ; kÞ from response pattern s

ðs ¼ 1; . . . ; SÞ; given y and ϕ; a vector of item parameters. The log marginal

likelihood for a collection of S response patterns is given by:

ln L ¼
XS

s¼1

ns ln½PðxsÞ� ¼
XS

s¼1

ns ln

( ðþ1
�1

∏
k

i¼1
Pðxisjy; ϕÞ

� �
gðyÞdy

)
; ð2Þ

where ns is the number of test takers with response pattern s and
PS
s¼1

ns ¼ N :Note

that since each test taker has only one response pattern, the frequencies for each

response pattern have a multinomial distribution with parameters, N and

P ¼ ½P1; . . . ;PS �, where Ps ¼ PðxsÞ as defined by Equation 1. The MML item

parameter estimates are obtained by maximizing ln L in Equation 2. Numerical inte-

gration approximates the integral in Equation 1, as it is not solvable in closed form.

Bock and Lieberman (1970) introduced MML estimation using Gauss–Hermite

quadrature to approximate integrals involving the normal distribution (see Stroud

& Secrest, 1966). Quadrature utilizes values of a function at a finite set of discrete

points to approximate the full area under the curve. A quadrature weight, WðTqÞ;
refers to the height of the function (or in some cases the area of a rectangle) located

at quadrature point, Tq: There are several different forms of numerical quadrature,

but the standard quadrature in the latent trait context uses fixed points with equal

spacing and weights based on a rectangle approximation (i.e., the weight for each

point represents the area of a rectangle located at the point).

To approximate the integral in Equation 1, quadrature is used as given by,

PðxsÞ ≅
XQ

q¼1

PðxsjTqÞWðTqÞ ¼
XQ

q¼1

"
∏
k

i¼1
PðxisjTq; ϕÞ

#
WðTqÞ; ð3Þ

where Tq is the quadrature point location and WðTqÞ is the weight at quadrature

point Tq ðq ¼ 1; . . . ;QÞ: In this equation, the product of the probability of obser-

ving item response pattern xs at quadrature point Tq and the weight at quadrature

point Tq are summed across all Q quadrature points. Inserting the log of Equation

3 into Equation 2 gives the log-likelihood,

ln L ¼
XS

s¼1

ns ln½PðxsÞ� ≅
XS

s¼1

ns ln

(XQ

q¼1

"
∏
k

i¼1
PðxisjTq; ϕÞ

#
WðTqÞ

)
: ð4Þ

The EH Method for g(y)

Since y is unobserved and therefore considered missing, Bock and Aitkin

(1981) used the EM algorithm (Dempster, Laird, & Rubin, 1977) to implement
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MML estimation of item parameters. In the E-step, expectations of sufficient sta-

tistics Nq (the expected number of examinees at Tq) and Riq (the expected number

of examinees at Tq responding correctly to item i) are computed so that item para-

meters may be estimated in the M-step. In the M-step, estimates of the item para-

meters are computed that maximize the expected log likelihood from the E-step.

These estimates are then used as updated quantities to compute the expectations

in the next E-step, and so on, until convergence.

The EH method for gðyÞ introduced by Bock and Aitkin (1981) estimates

weights WðTqÞ iteratively, alongside item parameters, in the EM steps to gener-

ate a discrete gðyÞ: In the M-step, WðTqÞ are estimated with

W ðjþ1ÞðTqÞ ¼ 1

N

XS

s¼1

nsP
ðjÞðTqjxsÞ ¼ 1

N

XS

s¼1

ns

PðjÞðxsjTq; ϕÞW ðjÞðTqÞXQ

q¼1

PðjÞðxsjTq; ϕÞW ðjÞðTqÞ

2
664

3
775; ð5Þ

where PðjÞðTqjxsÞ is the posterior probability of Tq given response pattern s and is

based on item parameter estimates and estimated weights from the previous itera-

tion j (Mislevy & Bock, 1985).

These Q weights, denoted by λ ¼ W ðTÞ ¼ ½W ðT1Þ;WðT2Þ; . . . ;W ðTQÞ�; are

estimated with the item parameters in the M-step and then used in the next itera-

tion. Lewis (1985) provided a concise statement about the M-step in the EH char-

acterization of gðyÞ:

F
�

ϕðjþ1Þ; λðjþ1Þ
���ϕðjÞ; λðjÞ� ¼ E

n
log f

�
X; θ

���ϕðjþ1Þ; λðjþ1Þ
����X;ϕðjÞ; λðjÞo: ð6Þ

Equation 6 gives the quantity that is to be maximized with the EH method. It is

apparent from Equation 6 how the item parameters and the distributional parameters

are simultaneously estimated. The starting values, ϕð1Þ; λð1Þ; are used in the E-step to

compute the expected counts, N
ð1Þ
q and R

ð1Þ
iq needed to estimate item parameters. Then,

in the M-step, ϕð1Þ is updated to ϕð2Þ by fitting the logistics using ϕð1Þ and λð1Þ: Then,

λð1Þ is updated to λð2Þ; and both ϕð2Þ and λð2Þ are used in the next E-step and so on.

There are identifiability concerns when using the EH method for gðyÞ with the 3PL

IRT model (Haberman, 2005), as the number of estimated parameters may be very

large depending on test length and the number of quadrature points.

Other Approaches to Specify g(y)

There are a variety of alternative methods to specify a nonnormal latent trait

distribution, none of which have gained enough popularity to replace the EH

approach as the most widely used. Xu and Jia (2011) used a parametric approach

by estimating parameters of the skew-normal distribution in MML (mean, var-

iance, and skewness). Thissen’s Johnson curve approach estimates Johnson curve
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parameters (Johnson, 1949) along with item parameters in MML yielding curves

with different combinations of skewness and kurtosis (available in MULTILOG

7.0 software; Thissen, 2003; van den Oord, 2005).

Another approach to estimating gðyÞ involves Davidian curves (DCs), which

are characterized by the product of a squared polynomial of order k and the

standard normal density function. To improve estimation and numerical stabi-

lity, Zhang and Davidian (2001) reparameterized the coefficients of this model

using polar coordinates. Woods and Lin (2009) introduced Davidian curve IRT

(DC-IRT) with this reparameterized version of DCs. Under this approach, a

best fitting solution must be selected from a set of 10 possible DCs, each with

a different u value (with u ¼ 1 the normal model and higher values of u accom-

modating various shapes including skewness and multiple modes).

Ramsay-curve IRT (RC-IRT; Woods & Thissen, 2006) implements MML

estimation by using a splines-based approach to estimate a smooth gðyÞ. That

is, in addition to item parameters, RC-IRT estimates parameters which charac-

terize a RC for gðyÞ based on piecewise polynomial ‘‘B-spline’’ basis functions

of a specific order and number of breaks (the points where the B-splines join

together). The software used to implement RC-IRT provides the user 25 candi-

date RCs from which to choose the ‘‘best’’ solution based on a comparison of a

series of model fit indices from all possible models starting from the simplest 2-

2 normal model (‘‘2-2’’ for knot-order combination), which returns a normal

distribution, to the 6-6 model, which is order 6 with 6 knots. In addition to

selecting a model based on these two parameters, the user must use trial and

error to select the standard deviation (SD) for the multivariate normal prior

on the spline coefficients. For maximal flexibility in the shape of the distribu-

tion, this is typically set to a high value such as 500 and then reduced if there

exist estimation issues. Simulation study results show that RC-IRT produces

item parameter estimates superior to using a fixed parametric normal distribu-

tion, when the true latent trait distribution is nonnormal (Woods & Thissen,

2006). With recent attention on RC-IRT in the literature, we include this

approach in our empirical examples. In the next section, we first discuss LLS

in terms of observed score distributions and then LLS for the latent trait distri-

bution in the context of unidimensional IRT models.

Loglinear Smoothing

Holland and Thayer (1987, 2000) introduced LLS as a method for reducing

irregularities in discrete observed test score distributions. LLS estimates prob-

abilities for discrete distributions based on an unsaturated loglinear model, and

therefore, only some properties of the observed frequency distribution are pre-

served by fitting M moments. This section discusses LLS models for observed

and latent distributions.
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Model Features and Specification for Observed Distributions

Let y be a discrete random variable that can take on only the Q values

T1; T2; . . . ; TQ, with probabilities p1; p2; . . . ; pQ, respectively. LLS estimates

the probabilities pq from the contingency table of observations of each value

of y; T1; T2; . . . ;TQ, using the polynomial loglinear model

logeðpqÞ ¼ b0 þ
XM
m¼1

bmTm
q ; ð7Þ

where Tm
q is the mth power of Tq, and the coefficients βt ¼ ½b1; b2; . . . ;bM � and

intercept b0 are to be estimated from the observed counts n ¼ ½n1; . . . ; nQ�. Note

that b0 is a normalizing constant forcing the sum of the pq to be 1. The same

model can be used for the frequencies directly. That is, if pq satisfies a

loglinear model, then nq will satisfy the same model with b0 replaced by

b0 þ log N (Holland & Thayer, 2000). Therefore, note that N ¼
P

nq:

The main feature of LLS is that it matches sample moments of the observed

distribution. The maximum likelihood estimates from the model in Equation 7, β^ ;
force the estimated probabilities to satisfy moment-matching conditions put forth

by the model specification (M) and the observed distribution (Holland & Thayer,

2000). The maximum likelihood estimates b̂m satisfy the property thatX
q

Tm
q p̂q ¼

X
q

Tm
q ðnq=NÞ; ð8Þ

that is, the sample moments of y match the theoretical moments under the fitted

model. The degree of smoothness (or actually ‘‘roughness’’) in LLS is deter-

mined by the highest power M of Tq in Equation 7. For M ¼ 0 (i.e., not including

Tq in the model at all), LLS maximally smooths the pq
0s; estimating them as a

uniform distribution. For M sufficiently large, the loglinear model in Equation 7

is saturated and LLS estimates the pq as the natural method of moments estima-

tors nq=N . Indeed, for M ¼ Q� 1; the polynomial on the right-hand side of

Equation 7 will be an interpolating polynomial for the log pq
0s: Once the para-

meters are estimated, the estimated probabilities are computed to characterize the

smooth fitted distribution.

LLS for the Latent Trait Distribution

The LLS model for latent distributions is the same as Equation (7); however

the values of T1; T2; . . . ; TQ now represent values for quadrature points (or latent

trait levels) and the estimates of pq; quadrature weights, or W ðTqÞ:Under this for-

mulation, there are M parameters estimated for the latent distribution. Since the

expected frequencies of test takers at each Tq are unobserved, the EM algorithm

includes the LLS procedure to estimate β:
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Consider the number of parameters estimated for gðyÞ, and then compare the

M moments estimated with LLS to the Q� 1 quadrature weights estimated with

the EH method. That LLS can result in a substantial reduction in the number of

parameters estimated when used instead of the traditional EH method is a fact

that cannot be understated. This reduction occurs when M < Q. In terms of model

parsimony for any test form, LLS can be used with any value of Q and still only

M parameters are needed to characterize gðyÞ: Estimating gðyÞ with LLS permits

the user to estimate nonnormal latent trait distributions without assuming a func-

tional form and without estimating many additional parameters. In addition, LLS

allows the user flexibility to control under- and overfitting by manipulating M. In

this sense, a M-moment LLS model for gðyÞ provides a ‘‘sweet spot’’ for the

bias–variance trade-off, where the levels of bias and variance are optimized,

resulting in the least error.

Choosing M and Q

The more complex the distribution represented by the pq
0s; the more moments

may be needed. For example, a model that fits two moments can exactly capture a

discretized normal distribution. By increasing the number of fitted moments,

additional properties of discrete distributions will be captured (e.g., when

M ¼ 3; skewness is recovered, etc.). In the saturated case, where M ¼ Q� 1; the

distribution is perfectly fit. For this scenario, the model is not a smoothing model.

Univariate observed score distributions typically need four or more fitted

moments to be adequately characterized (Holland & Thayer, 2000); however,

there are some differences in the number of moments appropriate for fitting a

latent trait distribution (compared to an observed distribution). Cressie and Hol-

land (1983) showed that under a Rasch model with both points and weights of

g(y) estimated, the distribution of the latent trait is determined only up to its first

k moments. Specifically, when k, the number of items, is small, then the use of

many moments is not supported for latent trait distributions, as the amount of

information that can be used in determining probabilities from the distribution

is limited.

In terms of choosing Q, generally, the larger the value of Q, the finer the char-

acterized distribution, or the more closely the estimated distribution will approx-

imate a continuous distribution. It may be inferred that the more points specified

for the discrete distribution, the better the approximation to g(y) and thus better

MLEs for the item parameters. Therefore, it is desirable to have a large Q in order

to capture the complexities in the distribution, but the benefit may taper. The

maximal number of discrete points needed when estimating both points and

weights of g(y) has been discussed for the Rasch model—it was found that

approximately Q ¼ k/2 is sufficient (De Leeuw & Verhelst, 1986; Lindsay,

Clogg, & Grego, 1991). Tzamourani and Knott (2002) found in tests with k

ranging from 3 to 21 that the 2PL model needs fewer than Q ¼ k/2. Importantly,
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Tzamourani and Knott (2002) also showed in an empirical example that item

parameter estimates resulting from varying levels of Q do not differ by much, and

discrimination parameter estimates get smaller as Q decreased. They note that

this effect on the discrimination parameter estimates is likely a function of coar-

sening the scale upon which the slope can be appropriately estimated—it is more

challenging to discriminate examinees across fewer points or when they are cate-

gorized into fewer ability levels.

Note that with LLS, we estimate only M parameters in addition to item para-

meters, and therefore, the value of Q has no influence on parsimony. In other

words, we may choose a relatively larger value of Q to characterize a fine version

of gðyÞ and still only need to estimate M parameters.

The EM Algorithm With LLS

To implement LLS for gðyÞ within the MML estimation of item parameters,

the loglinear model estimation must be embedded within an EM algorithm

(Tsutakawa, 1985; von Davier, 2005; Xu & von Davier, 2008). The E-step is

identical for the EH method and LLS, thus details on the E-step may be found

elsewhere (Mislevy & Bock, 1985). Therefore, for brevity, we present only the

M-step portion of the EM algorithm using LLS for the 3PL model, and the

1PL and 2PL IRT models may also be fitted using variations of this algorithm.

We provide the full EM algorithm with LLS in the Appendix.

M(aximization) Step: Stage 1

For each item separately, solve the maximum likelihood equations given in

Equations 9, 10, and 11, using the expected counts Nq and Riq computed in the

E-step. Note that gi is the item intercept, ai is the slope, and ci is the guessing

parameter for item i.

gi ¼ �aibi : 0 ¼
XQ

q¼1

ðRiq � PiqNqÞHiq; ð9Þ

ai : 0 ¼
XQ

q¼1

ðRiq � PiqNqÞHiqTq; ð10Þ

ci : 0 ¼ ð1� ciÞ�1
XQ

q¼1

ðRiq � PiqNqÞ=Piq: ð11Þ

Here, Hiq ¼
ð1�ciÞP�iqð1�P�iqÞ

P
iq
ð1�P

iq
Þ and P�iq ¼ cðaiTq þ giÞ; the logistic function evalu-

ated at aiTq þ gi: Note that Equations 9, 10, and 11 treat Riq and Nq as known

frequencies, but in fact, the posterior expected values are used instead.
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M(aximization) Step: Stage 2

Begin a Newton cycle either by using a set of starting values for βð1Þ for the

first iteration v ¼ 1 in a series of Newton cycles (as described by Holland and

Thayer, 1987, pp. 14–15) or by using βðvÞ estimated from the previous cycle if

v > 1: Note that there may be J iterations of the EM cycles, and within each

EM cycle, there may be V iterations of Newton cycles.

(a) Compute a vector of fitted frequencies defined by:

f ðjÞ
0
¼

N �exp

 XM
m¼1

bðvÞm Zm
1

!

XQ

q¼1

exp

 XM
m¼1

bðvÞm Zm
q

! ;
N�exp

 XM
m¼1

bðvÞm Zm
2

!

XQ

q¼1

exp

 XM
m¼1

bðvÞm Zm
q

! ; � � � ;

N �exp

 XM
m¼1

bðvÞm Zm
Q

!

XQ

q¼1

exp

 XM
m¼1

bðvÞm Zm
q

!
2
666664

3
777775;

ð12Þ

where elements of Z (a Q � M matrix) are standardized Tq values, taken to the

powers 1 through M.

(b) Compute an estimated variance–covariance matrix for this vector defined by

�
ðjÞ
f ¼ D

ðjÞ
f � 1

N
f ðjÞf ðjÞ

0
, where D

ðjÞ
f is a diagonal matrix with the elements of f ðjÞ

in the diagonal.

(c) Using a singular value decomposition, solve for δðvÞ in ðZ0�f ZÞδðvÞ ¼ Z0ðn� fÞ,
where Z has columns that are vectors of (standardized) Tq values, taken to the

powers 1 through M and n0 ¼ ½N1;N2; :::;NQ� is the vector of expected frequen-

cies computed in the E-step.

(d) Compute a new vector of coefficients βðvþ1Þ
by adding the vector of changes to

the vector of coefficients from the previous Newton cycle or the starting values if

in the first Newton cycle: βðvþ1Þ ¼ βðvÞþ δðvÞ.
(e) With the estimates βðvþ1Þ; and the predefined (and fixed) quadrature point values,

compute a vector fðjþ1Þ of new estimated counts at each quadrature point.

(f) Use the maximum absolute difference between the elements of the original f ðjÞ

and f ðjþ1Þ to determine convergence. If this difference is less than 0.0001 � N

(or some other preferred convergence criterion), then convergence for the esti-

mated frequencies has been reached. If convergence has been reached for the LLS

algorithm but not for item parameters in Stage 1, then continue the EM iterations

by returning to the E-step, using f ðjþ1Þ in the next E-step for quadrature weights,

such that WðTqÞ ¼ f
ðjþ1Þ

q =N : If convergence has not been reached within the

Newton cycles, use βðvþ1Þ
in Step (a) and repeat.

The final output of the M-step is an updated value for the fitted frequencies,

which appear as the final quadrature weights, WðTqÞ ¼ fq=N :
The software LLSEM 1.0 (LogLinear Smoothing Expectation Maximization)

implements these algorithms (Casabianca & Lewis, 2011b). LLSEM is capable

of item parameter estimation under the 1PL, 2PL, and 3PL dichotomous IRT
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models using the normal distribution assumption, the EH method, and LLS. In

our implementation of LLS, we keep the quadrature points equally spaced and

fixed throughout the entire estimation procedure to identify the scale (Lewis,

1985; see the Appendix for more information on this identification method).

Furthermore, there is no standardizing during the iterations, unlike what occurs

in many commercial software programs. Instead, we scale item parameter esti-

mates after convergence to the scale of the estimated latent trait distribution.

Thus, the mean and SD of the resulting distribution are not necessarily 0 and

1, respectively, as would be the result in many commercial software programs.

More information on LLSEM is available in the Appendix.

Simulation Study Design

To provide an evaluation of LLS’s utility for item parameter recovery, we

conducted a Monte Carlo simulation study for IRT item parameter estimation

and compared LLS to the fixed normal model and the EH method.1 We varied

skewness and number of modes of the true gðyÞ; number of moments fitted,

and number of quadrature points. Test length and sample size are popular fac-

tors included in item parameter recovery studies; however, they were not

included here because pilot study work on LLS for IRT has shown minimal

differences with different sample sizes (n ¼ 500, 1,000, and 2,000) and test

lengths (k ¼ 25 and 50; Casabianca, Xu, Jia, & Lewis, 2010). We chose to pres-

ent results from a simulation study using the 3PL IRT model because that is the

model with which there are the most identifiability issues and where parsimony

is of the utmost importance. 1PL simulation study results can be found in Casa-

bianca (2011) and the empirical examples found in the following sections use

the 2PL model.

Item Response Generation Conditions

Fifty item responses were generated for 1,000 simulated examinees from each

of the following true latent trait distributions, each with mean and variance equal

to 0 and 1, respectively: (a) standard Normal density, N(0,1); (b) negatively

skewed continuous distribution with a skewness of�1.5, created using a mixture

of two normal distributions (m1 ¼ �1.259, s2
1 ¼ 1.791, m2 ¼ 0.315, s2

2 ¼ 0.307,

mixing probabilities m ¼ 0.2, and 1 – m ¼ 0.8); and (c) bimodal continuous dis-

tribution, also created as a mixture of two normal distributions (m1 ¼ �0.705,

s2
1 ¼ 0.254, m2 ¼ 1.058, s2

2 ¼ 0.254, and m ¼ 0.6). One hundred (100) replica-

tions of 50,000 item responses (50 items for 1,000 examinees) were generated for

each of these three gðyÞ conditions. Figure 1 plots the densities for the three popu-

lation latent trait distributions. Based on sample estimates from the 100 replications

of 1,000 ys, the skewness and kurtosis of the negatively skewed gðyÞwere�1.5 and

3.2, respectively. For the bimodal gðyÞ; estimates of these moments were 0.3 and
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�1.0. The negatively skewed gðyÞ was comparable in terms of the magnitude of

skewness to other simulation studies (Casabianca, Xu, Jia, & Lewis, 2010;

Woods, 2008; Woods & Lin, 2009; Woods & Thissen, 2006). The mixture

Normal g(θ)

-4 -2 0 2 4

Negatively Skewed g(θ)

-4 -2 0 2 4

Bimodal g(θ)

-4 -2 0 2 4

θ

θ

θ

FIGURE 1. True population latent trait distributions.
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distribution parameters for the bimodal gðyÞwere chosen to be consistent with pre-

vious literature that also examined item parameter recovery for a bimodal g(y)

(Woods & Lin, 2009).

Item responses were simulated using calibrated 3PL items from a 2008

National Mathematics Assessment (Item parameters were provided by ETS;

Copyright (C) 2011 ETS. www.ets.org). The distribution of the difficulty para-

meters was approximately normal (symmetric) but centered around .2. The mean

a parameter was 1.13 (SD ¼ 0.25), mean b parameter was 0.21 (SD ¼ 0.51), and

mean c parameter was 0.16 (SD ¼ 0.05).

Calibration Conditions

Each data set was calibrated in LLSEM with the following specifications

for gðyÞ: fixed normal distribution (Mislevy & Bock, 1985), EH method (Mis-

levy & Bock, 1985), and LLS (Casabianca, Xu, Jia, & Lewis, 2010; Holland &

Thayer, 1987, 2000; von Davier, 2005; Xu & von Davier, 2008). There were

three levels of the number of quadrature points: Q ¼ 11, 31, and 61. Eleven

quadrature points were chosen to be close to the default in BILOG-MG, which

is 10 (Zimowski et al., 2003). In addition, we chose a higher number not

exceeding the test length (31) and a higher number exceeding the test length

(61). The last level of Q was selected to support a comparison to other studies

that used very large Q (e.g., Q ¼ 121; Woods & Lin, 2009; Woods & Thissen,

2006).

The levels of M were specified in a nesting structure according to Q. For all

levels of Q, LLS models matching M ¼ 2, 3, 4, and 5 moments were fit. These

levels were chosen for two reasons. First, what the first few moments can capture

can be hypothesized and conceptualized, higher moments probably cannot. Sec-

ond, based on work with observed test score distributions, it has been noted that

at least four or five moments are typically needed to adequately characterize a uni-

variate distribution (Holland & Thayer, 2000). Beyond the five-moment model, M

varied with Q in such a way that there was not an excessive number of conditions,

but to include enough levels that questions regarding the effect of moment match-

ing on item parameter recovery could be addressed. We aimed to find the optimal

point in the bias–variance trade-off. We fitted the 10-moment model for Q ¼ 31

and the 10- and 15-moment models for Q ¼ 61: Hereinafter, we will refer to LLS

models using their M value—for example, LLS5 is the five-moment LLS model. In

total, we report results for 63 conditions or 21 conditions per type of true latent trait

distribution (normal, negatively skewed, and bimodal).

Outcome Measures

Item parameters are the sole focus of this simulation study. We compared item

parameter estimates to the true item parameters using bias and root mean square
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error (RMSE) criteria. We computed the average RMSE using the square root of

the average mean square error across the 50 items. We also used a multivariate

measure of error to assess overall recovery of item parameters called the mxD as

used by Woods (2008). Specifically, this measure is the absolute difference

between the item characteristic curve (ICC) using estimated item parameters and

the ICC using the true item parameters, computed for each item across the Q

quadrature points. Within condition, item, and replication, the maximum of these

absolute differences (over the Q quadrature points) was determined. The mean of

the absolute maximum difference was taken across the 50 items, and the mean

was also taken across replications.

Simulation Study Results

Normal g(y)

There was very little error in the normal case to start with! The mxD values for

the LLS models (0.044–0.046) were the same as the EH results (0.045–0.046; see

Table 1 for these mxD values). Differences between LLS models (across values

of M) were negligible, and there was no pattern of increasing or decreasing as a

function of the number of moments. There was no difference between Q ¼ 31

and Q ¼ 61, since virtually all model specifications yielded the same amount

of error, on average. However, for Q¼ 11, the average RMSE with the fixed nor-

mal distribution specification was 0.01 higher than all other conditions. This

difference appeared when examining differences in average RMSEs for the indi-

vidual item parameters. That is, compared to the Q ¼ 31 and Q ¼ 61 conditions,

the Q ¼ 11 condition yielded about 0.03 higher average RMSE for the a and

b parameters when using a fixed normal distribution for gðyÞ:

Negatively Skewed g(y)

For the negatively skewed gðyÞ; mxD was always smallest (for all Q) under

LLS4 (0.046–0.047). The EH mxDs were about 0.003–0.007 greater than the

optimal LLS4 model.

Figure 2 provides profile plots per parameter estimate and for the true nega-

tively skewed (left column of plots) and bimodal (right column of plots) latent

trait distributions. These plots show the trajectory for error for the three different

Q levels, as we increase in model complexity. Here, � is Q ¼ 11, � is Q ¼ 31,

and � is Q ¼ 61. We excluded the profile plots for the true normal gðyÞ because

there were very few differences between models. Of the LLS models, Figure 2

shows that the average RMSEs were largest for LLS2, decrease from LLS3 and

LLS4, and then showed either a slight increasing trend or tapered off as M

increased. The a parameter was recovered best with LLS4 with Q¼ 11. The low-

est average RMSEs were found with LLS4 for Q ¼ 11 and the LLS5 for Q ¼ 31

and 61. For the b parameters, LLS4 was the best model (for all values of Q).
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Finally, there was no trend for the c parameter. Figure 2 shows no distinction

between specifications, although there was a slight dip in error in LLS10 and

LLS15.
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FIGURE 2. Average root mean square error plots for a, b, and c item parameter estimates

for negatively skewed and bimodal g(y) conditions. The left column of plots is for

the negatively skewed conditions and the right column for the bimodal conditions.

LLSM = M-moment LLS model; EH = empirical histogram; Normal = fixed normal

distribution assumption.
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FIGURE 3. Item bias plotted as a function of true item parameters for 50 items in simula-

tion study under the normal, EH method, and four-moment loglinear smoothing (LLS)

models when Q ¼ 31. The top, middle, and bottom rows show the bias for the a, b, and

c parameters, respectively. The left column of plots is for the negatively skewed conditions

and the right column for the bimodal conditions. LLS4 ¼ four-moment LLS model;

EH ¼ empirical histogram; Normal ¼ fixed normal distribution assumption.
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There was no difference between Q ¼ 31 and 61. However, when Q ¼ 11,

the fixed normal distribution assumption yielded a mxD of 0.089, which is

higher than mxD ¼ 0.046 yielded by LLS4. This difference is reflected in

Figure 2 in the a and b parameters. Under LLS3, the Q ¼ 31/61 conditions

yielded larger average RMSEs than Q¼ 11 for a parameters. For both the a and

b parameters, the average RMSEs were slightly larger for the Q ¼ 11 condition

under LLS5.

The left column of plots in Figure 3 depict item-level bias for the negatively

skewed condition for the a, b, and c parameters (going down the column) under

the fixed normal assumption, EH, and LLS4 with Q¼ 31. For brevity, only LLS4

was shown here (in filled circles) because it has been shown throughout the

results to be the top performer. LLS4 yielded consistent positive bias across the

a parameter scale with fluctuations around 0. EH and especially the fixed normal

model showed a downward bias as a increased. Bias in the b parameters was usu-

ally smaller with LLS4 than the other models—this was especially true at the

ends of the scale. In a couple of instances, the LLS4 model yielded approxi-

mately 0 bias, while EH yielded about 0.1 (in both the positive and negative

directions). All three models had similar levels and trends for bias for the c para-

meter: positive bias for lower c parameters and negative bias for higher c para-

meters. LLS4 had relatively smaller biases with higher c parameters, although

the highest true c in this simulation was only .25.

Bimodal g(y)

For the bimodal condition, the mxD ranged from 0.045 to 0.078 when Q ¼ 11

and 0.050 to 0.072 when Q ¼ 31/61. The absolute least error was obtained with

Q ¼ 11 under LLS4 (mxD ¼ 0.045). All LLS models performed similar to EH

except for LLS2 and LLS3, which yielded more error. Although differences

between the models were minimal, the mxD and the average RMSEs for LLS4

were always smaller (mxD difference ¼ 0.003) than the EH results.

All three types of item parameters also showed the smallest average RMSEs

under LLS4 (see Figure 2). There was an increase in error between LLS2 and

LLS3 and then a large decrease in error between LLS3 and LLS4. After

M ¼ 4; the mxD and the average RMSEs increased, but only slightly.

Differences between levels of Q were not straightforward. The two higher lev-

els of Q were identical and there were inconsistent differences between Q ¼ 11

and Q ¼ 31/61. For example, for all models but the LLS3 model, mxD was

smaller when Q¼ 11. Conversely, for LLS3, mxD was larger when Q¼ 11. This

is also shown on the profile plots (Figure 2) for each of the item parameters.

The right column of Figure 3 shows item-level bias plots for the bimodal con-

dition. In the top plot, the bias for the a parameters increases with the true a value

for the fixed normal distribution assumption and EH, but this trend was not true

for LLS4. Instead, bias tended to be smaller under LLS4. For the lower b
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parameters (between�0.7 and 0), the LLS4 model yielded smaller (positive) bias

than the other models. Toward the center of the b scale, the three models con-

verged. Larger positive bias was found for the smaller c parameters (0.07 to

0.18), and LLS4 yielded the smallest of these biases. As c increased, bias for all

models converged around 0.

Empirical Illustration Using the PISA Mathematics

Assessment—Shanghai Sample

The PISA is an international study conducted by the Organization for Eco-

nomic Cooperation and Development that assesses 15-year-old students in

mathematics, reading, and science. Shanghai-China outperformed all other

countries in all three PISA subject assessments in 2012. We analyzed 11

dichotomously scored mathematics items from a subset (n ¼ 1,623) of the

Shanghai-China sample (n ¼ 5,177) to demonstrate the 2PL EM algorithm

with LLS for gðyÞ and compare it to other methods.2 Four calibration meth-

ods (fixed normal assumption, EH, LLS, and RC-IRT) were compared using

LLSEM 1.0 and RCLOG v.2 (Woods, 2006b). We set the bounds of the dis-

tribution to (�4, 4), used 61 quadrature points, and fitted LLS models with

M ¼ 4 and 5.

In our RCLOG specifications, we set the SD for the multivariate normal prior

on the spline coefficients to 500 for maximal flexibility in the shape of the

LLS4
LLS5
EH
RC 3-2
Normal

FIGURE 4. Estimated latent trait distributions with Q = 61 from Programme for

International Student Assessment mathematics data (Shanghai-China sample). LLS4 ¼
four-moment LLS model; LLS5 ¼ five-moment loglinear smoothing (LLS) model;

EH ¼ empirical histogram method; RC 3-2 ¼ 3-2 Ramsay-curve item response theory

solution; Normal ¼ fixed normal distribution assumption.
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distribution. We fitted all possible RC-IRT models with order up to 6 and number

of breaks up to 6 and selected the best fitting model based on the consideration of

several criteria as described in Woods (2006a). The criteria are the log-likelihood

LogL, the Akaike information criterion (AIC; Akaike, 1973), the Bayesian infor-

mation criterion (BIC; Schwarz, 1978), the Hannan–Quinn criterion (HQ; Han-

nan, 1987), and the Kolmogorov–Smirnov test for normality (KS; Kolmogorov,

1933; Smirnov, 1939). The models with the smallest values of the LogL, AIC,

BIC, and HQ signal the best fit. Woods (2006a) notes that it is common for these

various criteria to yield different models; however, the current analysis revealed

consistency across three of these four indices. That is, the 3-2 model was selected

by BIC, HQ, and AIC. The LogL selected the 6-6 model. Both of these models

are significantly different from normal model by the KS test. We proceed with

the comparison of models using results from 3-2 RC-IRT model solution.

Figure 4 provides the latent trait distributions from the MML estimation of

item parameters for the PISA items.3 The thicker solid curve is the discretized

normal distribution. The thinner curves are distributions from EH, LLS, and

RC-IRT, all of which should capture varying degrees of nonnormality, if any

nonnormality should exist. Indeed, the estimated latent distributions all exhibit

moderate positive kurtosis and moderate negative skewness. (For reference,

consider statistics for the 3-2 RC: M ¼ 0.000, SD ¼ 1.001, skewness ¼
�.884, kurtosis ¼ 4.004.) While they all share similar shapes, the RC 3-2 and

EH distributions are more leptokurtic than the LLS distributions. These distribu-

tions indicate a population of examinees that tend to perform relatively higher on

the latent trait scale, which is expected from the Shanghai-China sample.

The profile plots of the a and b item parameter estimates from the PISA anal-

ysis in Figure 5 provide a visual depiction of the differences between estimates

by method for g(y). The x-axes on these plots arrange items sorted ascending by

the normal parameter estimate. When examining the top plot of Figure 5, we

see that all methods with the exception of the normal model yield very similar

a parameter estimates. Only with the most discriminating item (#5) was there a

difference between RC-IRT and the other methods. In this case, RC-IRT

yielded a marginally higher estimate (2.28 vs. *2.16 for the other methods).

Note that although we observed a slight difference in the distributions for

EH/RC-IRT and LLS solutions, the item parameters here are basically equiva-

lent. There were inconsistent differences between the normal model estimates

(black line and diamond symbol) and the other methods, in that for some items,

the normal estimate was higher and for other items lower. This may be related

to the corresponding difficulty estimates for these items (see the bottom plot of

Figure 5). For easy items, the normal model yielded larger b estimates com-

pared to the other methods.

Although the LLS4 and EH models were very similar in parameter recovery as

per the simulation results, it was technically the LLS4 model that yielded the

most accurate ICC, when g(y) was nonnormal (shown via the MxD statistic in
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FIGURE 5. Item response theory (IRT) parameter estimates plotted in profiles by method

for g(y) for 11 mathematics items from the 2012 Programme for International Student

Assessment, Shanghai-China sample. The a and b estimates appear in the top and bottom

plots, respectively. Items are sorted in ascending order by the normal parameter estimate.

LLS4 ¼ four-moment loglinear smoothing (LLS) model; LLS5 ¼ five-moment LLS model;

EH ¼ empirical histogram method; RC 3-2 ¼ 3-2 Ramsay-curve IRT solution; Normal ¼
fixed normal distribution assumption.
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Table 1). The EH MxDs were always larger but by a very small order. It is rea-

sonable to cautiously consider the LLS4 estimates here the best of the normal,

EH, and LLS models. However, we must remind you that the distributions in

the simulations and in this example differ, and the IRT models differ, making

a direct correspondence between this example and the simulations less than

straightforward.

Empirical Illustration Using the MOCI

We used data from an administration of the MOCI (Hodgson & Rachman,

1977) to a sample of undergraduates enrolled in an introductory psychology class

at the University of North Carolina (n ¼ 1,080) to provide an additional demon-

stration of LLS. The MOCI is a multidimensional true/false measure of obses-

sive–compulsive symptoms. In this illustration, we use 9 items from the MOCI

which together are unidimensional and comprise the ‘‘wash’’ subscale (Woods,

2002). The subscale includes items such as ‘‘My hands do not feel dirty after

touching money.’’ True responses to these items indicate a lack of obsession/

compulsion with washing, and therefore, respondents with negative latent trait

values have higher levels of obsession and compulsion and the opposite is true

as y increases. We calibrated the items with the 2PL IRT model under the normal,

EH, LLS4, LLS5, and RC-IRT with Q¼ 61 and the bounds of the distribution set

to (�4, 4). We fitted all possible RC-IRT models yielding 25 candidate RCs

using a SD equal to 500 for the multivariate normal prior on the spline

LLS4
LLS5
EH
RC 3-2
RC 2-4
Normal

FIGURE 6. Estimated latent trait distributions with Q = 61 from Maudsley Obsessional

Compulsive Inventory wash item data. LLS4 ¼ four-moment LLS model; LLS5 ¼ five-

moment LLS model; EH¼ empirical histogram method; RC 3-2¼ 3-2 Ramsay-curve item

response theory (IRT) solution; RC 2-4¼ 2-4 Ramsay-curve IRT solution; Normal¼ fixed

normal distribution assumption.
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FIGURE 7. Item response theory (IRT) parameter estimates plotted in profiles by method

for g(y) for 9 wash items from Maudsley Obsessional Compulsive Inventory. The a and b

estimates appear in the top and bottom plots, respectively. Items are sorted in ascending

order by normal parameter estimate. LLS4 ¼ four-moment LLS model; LLS5 ¼ five-

moment LLS model; EH ¼ empirical histogram method; RC 3-2 ¼ 3-2 Ramsay-curve IRT

solution; RC 2-4 ¼ 2-4 Ramsay-curve IRT solution; Normal ¼ fixed normal distribution

assumption.

Casabianca and Lewis

569



coefficients. The best fitting model according to the BIC and HQ was the 3-2

model. The AIC selected the 2-4 model and LogL selected the 4-3 model. We

continued with the 3-2 and 2-4 models in our analysis because the AIC, HQ, and

BIC are preferred, as they are penalized likelihood criteria.

Figure 6 shows the series of distributions all with some degree of positive

skew and kurtosis (3-2 RC: M ¼ 0.000, SD ¼ 1.002, skewness ¼ 0.729, kurtosis

¼ 3.801). The deviations from normality are clear when comparing these to the

normal distribution. Interestingly, the EH distribution exhibits a very small sec-

ondary mode on the right side—the other methods did not reveal this. It is true

that at some point, LLS would also show this same mode, but it is unknown with

what value of M. Aside from that difference found in the EH distribution, all

other estimated distributions share the same shape.

Figure 7 reveals only small differences between item parameters yielded by

the models estimating gðyÞ. The RC 3-2 and EH a estimates were almost always

larger than as from LLS and RC 2-4. The normal a estimates were always larger,

and substantially. This difference between the normal model and the other meth-

ods increased as the a value increased. The b parameter estimates based on the

normal model ranged from 0.75 to 2.3. There were basically no differences

between b estimates for the easier items; however, the normal estimates were

always smallest and RC 3-2 bs were also always just slightly smaller than LLS

and EH bs. As items become more difficult, the difference between the normal

bs and the other bs increased. Slight differences between the methods estimating

gðyÞ also appear as b increases.

Differences between the normal model item parameter estimates and esti-

mates from the other methods for gðyÞ are consistent with the item parameter

recovery results found in the simulations. We know that the normal model does

not perform well when gðyÞ is nonnormal. Therefore, the differences observed

here point toward using a nonparametric or semiparametric approach for gðyÞ.

Discussion

Our goals were to provide the LLS/EM algorithm for IRT item parameter esti-

mation, evaluate its effectiveness when gðyÞ is nonnormal and with different val-

ues for M and Q, and compare it to other methods. This research investigated IRT

item parameter recovery using various methods for specifying gðyÞwhen the true

gðyÞ was normal, negatively skewed, and bimodal. For the negatively skewed

and bimodal gðyÞ conditions, LLS models matching four or more moments

slightly outperformed or matched the performance of the EH method. In most

cases, the differences in these average errors were small; however, we observed

substantial differences in bias at the item level. For example, Figure 3 shows that

when gðyÞ was negatively skewed, an item with true b ¼ 1.1 had 0 bias under

LLS4 but bias of 0.1 under EH. Similar differences are observable in Figure 3

for both nonnormal gðyÞ conditions. Differences of this order are substantial,
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especially considering the subsequent uses of parameter estimates (e.g., test score

equating) and the need for the values entered into these analyses to be precise.

It was generally true that somewhere along the M scale, the amount of error

from item parameter estimation came to a stable minimum. In other words,

there was a point at which additional moments did not contribute to the char-

acterization of gðyÞ and thus did not contribute to the estimation of item para-

meters. Furthermore, in some instances, additional moments actually led to

poorer quality item parameter estimates, most likely due to overfitting. These

asymptotic points occurred at different levels of M for each true gðyÞ: For the

normal gðyÞ; there was a very small dip in error at the two-moment mark, and

from the three-moment model on, error was consistently larger (though not by

much). However, for both nonnormal distributions, this minimum certainly did

not occur at two moments! For the particular negatively skewed gðyÞ examined

in this study (skewness ¼ �1.5), the four-moment model yielded the least

error. Similarly, for the bimodal gðyÞ modeled in this study, the two- and

three-moment models yielded more error, and then error dipped to a mini-

mum at four moments. After four moments, increasing the number of

moments produced a gradually increasing trend in error. The dip in error rep-

resents the optimal point, where bias and variance together lead to the least

error. These optimal points are inherently specific to the distributions mod-

eled in this study.

While there was virtually no difference in item parameter recovery for Q¼ 31

and Q ¼ 61, there were some effects to the discrimination parameter between

Q ¼ 11 and the higher Q conditions. Using more points to represent the distribu-

tion (keeping the range of the distribution fixed) should impact the estimation of

the slope. That is, more points characterize a finer gðyÞ; and keeping all else con-

stant, estimates of the slope should increase as Q increases (see Casabianca, 2011

or Tzamourani & Knott, 2002). This was in fact true with the normal gðyÞ con-

dition. There was negative bias when Q ¼ 11, which disappeared when Q ¼ 31/

61. Finally, the fixed normal distribution assumption yielded differences in error

between levels of Q. Specifically, there was a difference between the higher lev-

els, Q ¼ 31/61 and Q ¼ 11. With the fixed normal distribution assumption, error

was larger in Q¼ 11 for the negatively skewed condition and error was smaller in

Q ¼ 11 for the bimodal condition. Inconsistencies in the results are likely attri-

butable to the conflation between the true gðyÞ, Q, and M and their interactions.

Additional factors including the range of the distribution and the spacing between

quadrature points would also affect recovery of the latent trait distribution and

item parameters.

The data examples provide a comparison of item parameters and latent distri-

butions generated by a series of methods including RC-IRT for two data sets

which both involved distributions with moderate skewness and kurtosis. The

simulation and real data results were consistent: with the exception of the normal
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model, differences between models for g(y) were mostly minor. We did observe

many similarities between LLS and EH in both data sets, but we know from

simulations that smoothing results in more accurate item parameter estimates.

LLS Versus Other Methods for g(y)

It is obvious why any nonparametric or semiparametric approach for g(y) may

be preferred over the fixed normal model—these models will properly model

deviations from normality in the characterization of g(y) thereby yielding more

precise item parameter estimates. The problematic part about the flexibility of

the most popular nonparametric approach, the EH approach, is that it involves

an estimation procedure requiring possibly many additional parameters. For long

tests and for complex models, where many item parameters are being estimated,

this may lead to estimation and identifiability issues (Haberman, 2005). LLS

offers a unique advantage over the EH method by estimating only the M moments

necessary to capture nonnormality, making the LLS solution more parsimonious.

We showed in our simulations that in addition to improvements in parsimony,

LLS actually yields better item parameter estimates in terms of RMSEs and

MxDs. However, we must remind the reader that this result is strictly applicable

to the data under study.

The payoff for using LLS is potentially great. For example, suppose we have a

50-item test to be calibrated with the 3PL with Q ¼ 61. Under the normal model,

only 150 parameters are estimated. However, under EH, we estimate 150þ 60¼ 210

parameters. With a five-moment LLS model, we can obtain the same or bet-

ter item parameter estimates with 150 þ 5 ¼ 155 parameters estimated. The

number of additional parameters involved with RC-IRT is equal to the sum

of the order and number of breaks minus two. Therefore, for the 3-2 model

that was selected for our two empirical examples, we estimated an additional

3 þ 2 – 2 ¼ 3 spline coefficients. For the most complex RC-IRT model, we

would estimate 6 þ 6 – 2 ¼ 10 spline coefficients.

RC-IRT is a very flexible option. The RCs estimated and selected for analysis

in our empirical examples appear almost identical to the curves from the EH and

LLS methods and the resulting item parameter estimates were very similar to

these methods as well. The major difference between RC-IRT and LLS is in the

implementation. With RC-IRT, the analyst considers a variety of candidate RC

curves based on spline functions with different combinations of order and num-

ber of breaks and selects a model based on a series of model fit indices. There is

also a decision to be made in regard to the SD of the multivariate prior distribu-

tion. Consequently, there are many possible solutions depending on the final SD

chosen as well as the model selected based on the multiple fit indices, which

often select different models. In our opinion, the wide range of options makes

RC-IRT less straightforward than LLS.
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Further, because it is a splines-based approach, RC-IRT has the potential for

indeterminacy. The estimation procedure depends on the number and location of

breaks in the RC used to characterize g(y). There is an upper limit on the number

of breaks available in RCLOG (2–6 breaks). This dependency may result in estima-

tion issues if there are insufficient breaks or if the breaks appear in inopportune loca-

tions. For example, Woods and Thissen (2006) reported issues with convergence

because the estimated curve required more quadrature range than was available.

LLS provides smoothed solutions based on a moment-matching procedure

that relaxes the potentially overfitted g(y) generated by EH. It does this all while

yielding the same or better item parameters with less of an expense in terms of

the number of estimated parameters. The EH is a special case of the LLS frame-

work (when M¼Q – 1). The mathematics/statistics underlying LLS is accessible

to researchers and analysts and the approach to implementing LLS is straightfor-

ward with minimal consideration of anything but moments. Considering that as

little as four moments can recover adequately a bimodal distribution, using LLS

is very simple with minimal decisions to be made that would otherwise generate

inconsistencies in model selection. LLS would not present many indeterminacy

issues like RC-IRT because it can easily be implemented with very large Q val-

ues to characterize g(y).

Suggestions for Use and Final Remarks

One model that kept reappearing as the best in terms of yielding smaller

average RMSEs is the four-moment LLS model. Clearly, the two- and three-

moment models are generally insufficient. We suggest the four- or even the

five-moment models for the future use of LLS to estimate gðyÞ in the 3PL

unidimensional IRT context. A more exhaustive approach to model selection

would be to first calibrate the items with EH and observe the recovered latent

trait distribution. The item responses could then be recalibrated with LLS

using an M selected based on the estimated distribution in the first

calibration.

There are some caveats that should be noted in the interpretation of the simu-

lation results. First, there is limited generalizability because we explored only

two distinct nonnormal latent trait distributions. Further, the different item para-

meters in the 3PL IRT model will have different levels of robustness to poor

characterizations of the latent trait distribution. For example, if the scale is not

wide enough (range restriction) or if there is improper representation of the dis-

tribution, then there may be problems estimating the a parameter. Also, it is

known that there are issues estimating c parameters, and the estimation of the

a and c parameters are interdependent as the c defines the lower asymptote for

the ICC. Future research will implement LLS in other contexts such as multiple

group gðyÞ estimation, where the characterization of the distributions is the pri-

mary outcome. The benefits of using LLS may be more apparent when using LLS
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in more complex models, such as multidimensional IRT models, where addi-

tional research with nonnormal latent variable distributions is needed (Cai,

2010).
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Notes

1. Unfortunately, we were unable to include Davidian curve-item response the-

ory in our simulations and empirical examples because the software is not cur-

rently functional. Our empirical data examples compare Ramsay-curve item

response theory (RC-IRT) to loglinear smoothing; however, this method is

excluded from the simulation study, as the software to implement RC-IRT

cannot be batched processed and the source code is unavailable.

2. We selected a subset of the Shanghai-China sample that was administered

booklet numbers 3, 7, 9, and 10, yielding responses to 11 dichotomous items.

3. To facilitate the comparison of distributions, we rescaled the quadrature

points for the LLSEM–based distributions (LLS4, LLS5, empirical histogram

[EH], and Normal) to ensure a mean of 0 and variance of 1.0. However,

because each latent distribution has a different mean and variance at the end

of the estimation procedure, the points do not perfectly align. This may be

resolved by interpolation.
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