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Abstract

This mixed-methods study examines the conceptual understanding of limit 
among 22 undergraduate engineering students from two different sections 
of the same introductory differential equations course.  The participants’ 
concepts of limit (concept images and personal concept definitions) 
were examined using written tasks followed by one-on-one investigative 
interviews.  The findings suggest that, at the end of their mathematics 
coursework, many engineering students do not consider employing a formal 
definition of limit to solve limit-based mathematics problems.  Furthermore, 
the findings suggest that most participants’ personal concept definitions of 
limit are both inoperable for solving limit problems and inconsistent with 
the formal definition of limit.

Keywords: Definition of limit, concept definition, concept image, advanced non-
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  Calculus is a gateway course for studying the higher mathematics necessary 
for engineering, economics, statistics, and the natural sciences (Zollman, 
2014).  The concept of limit is the theoretical bedrock of calculus-based 
mathematics and is essential for advanced mathematical thinking, both in 
academic and in data-rich work environments.  It is, therefore, essential 
that student learning of limit concepts is researched in advanced courses of 
calculus-based mathematics.
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  Success in calculus-based mathematics is associated with a deep 
understanding of limit. Calculus students who possess a formal and 
operable concept definition at the center of their conceptual understanding 
of limit are more likely to be successful in solving limit-based calculus 
problems (Przenioslo, 2004).  Additionally, Roh (2010) states that without 
understanding the essential components of a formal limit definition, students 
will struggle with understanding limit-based mathematical concepts.
  Beyond an introductory calculus course, and prior to an advanced course in 
real analysis, limit-based concepts are often developed without a connection 
to the formal definition of limit.  For example, in a second semester calculus 
course, the standard definition for the volume of a solid of rotation is given as

Much attention is given to developing the sum on the left-hand side of the 
above statement, and rightfully so, but often less attention is given to the 
equality itself, using a formal δ-ε approach.  Without connecting limit-based 
concepts back to a formal definition of limit, many students of advanced 
mathematics may not have a deep conceptual definition of limit to study and 
utilize in advanced calculus-based subjects, such as differential equations. 
  In most introductory differential equations courses, there are topics that 
employ components of the formal definition of limit for their development.  
Such topics include the existence and uniqueness of solutions, and the stability 
of critical points.  Therefore, students of applied mathematics fields such as 
those majoring in engineering (referred to in this paper as advanced non-
mathematics students) would benefit from possessing a rigorous and operable 
understanding of limit at the end of their academic mathematical studies. 
  Advanced non-mathematics students seem to be an underrepresented 
population in the mathematics education literature.  When the learning of 
limit concepts is studied in undergraduate mathematics, prior to real analysis, 
participants are most often examined in an introductory (first or second 
semester) calculus class (Bezuidenhout, 2001; Cappetta & Zollman, 2009, 
2013; Dubinsky, Cottrill, Nichols, Schwingendorf, Thomas, & Vidakovic, 
1996; Juter, 2005; Oehrtman, 2009; Szydlik, 2000; Williams, 1991).  However, 
when studies of advanced mathematics (beyond introductory calculus) are 
conducted, they often involve learners pursuing a degree in pure mathematics 
or mathematics education (Cory & Garofalo, 2011; Dawkins, 2012; Moore, 
1994; Weber, 2005).  There are, however, reasons to be interested in the limit 
understanding of students, such as engineers, who are (a) not intending on 
taking an advanced real analysis course, (b) at the end of their mathematics 
coursework, and (c) specifically intending to use advanced mathematics in 
their fields of study.
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  A high level of mathematical competency is undoubtedly necessary among 
engineering students.  Alpers, Demlova, and Mustoe (2013) state, “the 
mathematical education of engineers is of paramount importance for high 
quality engineering education” (p. 49).  Specifically, engineers engage in 
cost-precision analysis (Kaddoura, King, & Helal, 2005) and measurement 
precision analysis (Westerwheel, 2000), both of which contain analogues 
to the δ-ε relationship found in the formal definition of limit.  A formal 
understanding of limit would deepen an understanding of such engineering 
topics to recognize, communicate, investigate, evaluate and use advanced 
mathematical reasoning in their applied fields. 
  How rigorous are engineering students’ understanding of limit at the end 
of their mathematics coursework?  The purpose of this study was to examine 
the personal concept definitions of limit among 22 engineering students in 
an introductory differential equations course – the declared terminal class in 
their mathematics coursework.  

Background

  It is well established that students of calculus struggle with the concept of 
limit (Tall & Vinner, 1981; Williams, 1991), and they often have a fragmented 
and incomplete understanding of the topic (Cornu, 1981).  This struggle 
persists for students who have advanced, in their mathematics coursework, 
beyond introductory calculus (Moore, 1994; Roh, 2010; Weber, 2005).
  In order to study the conceptual understanding of limit among students 
of calculus-based mathematics, a theoretical framework is required.  There 
are a number of frameworks that have been used to study calculus learning 
(Dubinsky, et al., 1996; Rasmussen & King, 2000; Tall & Vinner, 1981).  
Following several others (Cory & Garofalo, 2011; Juter, 2005; Moore, 1994; 
Przenioslo, 2004), this study makes use of Tall and Vinner’s (1981) notion of 
concept image and concept definition.  Tall and Vinner’s framework provides 
an efficient system for examining the use of definitions in solving advanced 
mathemematics problems.
    Tall and Vinner (1981) describe concept image as “the total cognitive 
structure…associated with a concept, which includes all mental pictures, 
properties, and processes” (p. 152).  With regard to the concept of limit, 
concept image refers to all associated theorems, examples, solution 
methods, metaphors, and processes involved with a student’s concept of 
limit.  Subsequently, the authors define a concept definition as a collection 
of words and symbols used to specify a concept.  With regard to limit, a 
student’s personal concept definition refers to the collection of words and 
symbols used by the student in one’s own explanation of limit, whereas a 
formal concept definition of limit refers to Cauchy’s (1821) original verbal 
description, now translated into symbols as the δ-ε definition.  
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  Additionally, Bills and Tall (1998) describe the notion of formally operable 
as follows: “a (mathematical) definition or theorem is said to be formally 
operable for a given individual if that individual is able to use it in creating 
or (meaningfully) reproducing a formal argument” (p. 104). For students of 
advanced mathematics to truly possess a formal definition within their concept 
image, they must be able to do more than simply recite the definition.  They 
must be able to employ the definition in order to consciously and formally 
construct valid mathematical arguments.
  Deep understanding of an advanced mathematical concept entails 
possessing a formal and operable definition of the concept (Edwards & 
Ward, 2008).  Hsu (2013) mentions that most engineering students, who have 
completed their mathematics coursework, can successfully implement various 
advanced mathematical procedures, such as solving second-order linear 
differential equations.  Yet, many of these same students struggle with solving 
advanced mathematics problems that require the employment of formal 
mathematical definitions.  Edwards & Ward (2008) note that their “research 
indicates that some undergraduates with advanced mathematical training 
and decent, sometimes excellent, grades do not completely understand the 
nature and role of mathematical definitions” (p. 227).  Thus, one might expect 
that the formal concept definition of limit has a role in limit-based problem 
solving for advanced non-mathematics students, and yet, there may be reason 
to suspect that it is not entirely operable for many, if not most.
  This paper describes a study of the conceptual understanding of limit 
among several differential equations students, who at the time of the study, 
had declared to be engineering majors and to be in their terminal mathematics 
course.  Specifically, the study seeks to investigate the following three 
research questions: 

1.	 To what extent are the participants’ personal concept definitions of 
limit consistent with the formal concept definition of limit?

2.	 What portions of the participants’ concept images of limit are evoked 
when describing the concept of limit and when solving limit-based 
problems?

3.	 To what extent are the participants’ personal concept definitions of 
limit operable in solving limit problems?

Method

  This study took place during the last four weeks of a standard 16-
week semester with participants from two different sections of the same 
introductory differential equations course.  Participation in the study was 
voluntary.  Assessments, both quantitative and qualitative, for the study were 
performed individually for each participant.



- 51 -

  There were a total of 22 participants in the study, all of whom were 
enrolled at a medium-sized suburban community college in the United States.  
All participants were pursuing degrees in engineering, and all participants 
declared differential equations — the course in which they were currently 
enrolled — to be their last mathematics course.  At the time of the study, 
course grades of the participants ranged from low C to high A using the 
traditional grading scale.  Three of the participants were female, and the 
other 19 were male.
  For each participant, assessment consisted of two components taking place 
successively in one sitting.  The first component was written and comprised 
of three test items, two of which were short answer format and one of which 
was multiple choice.  Participants were given 45 minutes for the written 
component.  The second component of the assessment immediately followed 
the first and consisted of a one-on-one follow-up interview for approximately 
one hour.  Participants were allowed to use TI-84 graphing calculators for 
both components.  
  The written component of the assessment for this study consisted of three 
test items (see Appendix A).  In accordance with the purpose of this study, 
these items were selected with the intent of analyzing the participants’ 
personal concept definition of limit.  The items gave the participants an 
opportunity to employ their personal concept definitions both procedurally 
and conceptually.  The second component (see Appendix B) was a follow-up 
of the students’ answers of the first component. It was developed to probe 
deeper into a student’s responses and give the student an opportunity to 
elaborate on one’s thinking.  If a student’s first component response to a 
question was incomplete or incorrect, a counter-example was presented for 
the student to evaluate.
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Appendix A  

Written Test Items and Follow Up Questions 

Answer each item to the best of your ability.  Afterwards, I will follow-up with questions to 

better understand your thinking on the problems you just worked.  There are no wrong answers.  

You will not be graded.  I am only interested in how you think about the concepts. 

 

1. In your own words describe the mathematical meaning of limit.  Use any means, including 

symbols, tables, graphs, and/or a verbal explanation. 

 

2. Suppose  is a function.  Circle each statement below that must be true if .  If 

none of the statements must be true, then circle (e.).  No justification is required. 

a.  is continuous at . 

b.  is defined at . 

c. . 

d. For every positive integer , there exists a positive number  such that if , 

then . 

e. None of these must be true. 

 

3. Consider the function .  Determine the value of , or state that it does 

not exist.  Thoroughly justify your answer using any means, including symbols, tables, 

graphs, and/or a verbal explanation. 

Appendix A
Written Test Items and Follow Up Questions
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  Item 1 asked the participants to describe the meaning of limit.  This item 
was specifically asked first so the participants could reflect on the concept 
without being influenced by the other test items.  This item was designed 
to examine elements of each participant’s concept image of limit, including 
metaphors, representations of functions, specific examples, and any traces 
of the formal definition.  This item also was included to examine the extent 
to which students’ personal concept definitions of limit were consistent with 
their responses to the other two test items.
  Item 2 was a multiple-choice question adapted from a study (Bezuidenhout, 
2001) on introductory calculus students’ conceptions of limits and continuity. 
This item examined how the participants’ definitions of limit are related 
to other portions of their concept images, such the concepts of continuity, 
domain, function value, and the formal concept definition of limit.  
  Item 3 asked the participants to determine a specific limit value, or its 
lack of existence.  This item contains a standard introductory example of a 
function whose limit fails to exist at a point. Correctly answering this item 
requires referencing components of the formal definition of limit.  This item 
examined the extent to which the participants’ personal concept definitions 
of limit are operable in solving limit problems. It was included to examine 
the portions of the participants’ concept images of limit that are evoked when 
solving limit problems.
  Additionally, item 2 was scored as either correct or incorrect. Item 3 was 
scored with a 2-point scale as follows: completely correct response with 
correct work (2 points), partially correct but incomplete response (1 point), 
and incorrect or no response (0 points).  For item 3, a coherent graphical or 
numerical interpretation – one that is logically consistent with the formal 
concept definition of limit – was accepted as correct work. Rubrics for all three 
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assessment items had a qualitative component, whereby solution methods and 
explicitly evoked portions of participants’ concept images were documented.
  The principal author of this study conducted all interviews.  During the 
interview, each participant was encouraged to explain one’s answers from 
the written component.  Upon completion, the participants were asked one 
of several follow-up questions (see Appendix B) or may have been shown 
an example, followed by prompts for further explanation.

Results

  There were several notable patterns in the participants’ thinking on limit.  
What follows is an examination of both the quantitative and qualitative results 
of the assessment.  This includes a distribution of participants’ scores for 
items 2 and 3 of the written assessment, statistics, general observations of 
participant responses, and an examination of specific participant responses.  
Regarding the statistics, it should be noted that, due to small sample sizes 
and distribution issues, any statistical inferences from the data would be 
inappropriate.

Quantitative Results
  Below is the distribution of answers to the test items 2 and 3 for the written 
component of the assessment.  Item 1 was not scored quantitatively, and 
item 2 was scored as either correct or incorrect.  Note that the majority of 
participants were unable to provide a correct answer for either item 2 or 3.  

Table 1. Results of Test Items 2 and 3

	 Test Item	 Correct	 Incomplete	 Incorrect	 Total
	 Item 2	 6	 N/A	 16	 22
	 Item 3	 4	 6	 12	 22

  Many participants reasoned (incorrectly) that the limit in item 3 did not 
exist because the function was discontinuous at x = 0.  Many of those same 
participants made logically consistent (though also incorrect) choices for 
their answers to item 2.  Using a proportion comparison, 100% (12 of 12)
who gave incorrect responses to item 3, chose option (a) for item 2, if 
                    then f must be continuous at x = 2; but only 40% (4 of 10) who 
gave correct responses to item 3, chose option (a) for item 2.
  Again, when using examples almost all participants relied heavily on 
continuous functions to describe the meaning of limit.  This observation 
appears to be related to the participants’ responses to item 2.  Using a 
proportion comparison, 86% (12 of 14) who used a continuous function 
to describe limit for item 1 chose option (a) for item 2, but only 50% (4 of 
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8) who did not use a continuous function to describe limit for item 1 chose 
option (a) for item 2.  
  Almost all of the participants attempted standard graphing and tabular 
procedures in their approach to answering item 3, and these approaches 
continued in their explanations in the interview.  Those who seemed to have 
difficulty were dependent on standard graphing calculator procedures and 
gave explanations using a finite set of specific values.  Participants who scored 
correct or partially correct but incomplete in their response to item 3 were less 
or not at all dependent on their graphing calculators and were able to refer to 
their personal concept definition of limit in their responses.  Using a mean 
comparison, the mean score for item 3, was 1.1 for those who did not restrict 
themselves to graphical/tabular approach, but only 0.2 for those who did.

Qualitative Results
  Few participants were able to use their personal concept definitions 
to describe specific limit concepts or to solve the assessment items. One 
participant said that “[definite] integrals must be related to limits since...you 
know...there are the limits of integration.”  Many participants could recite a 
definition or theorem relating to limit, yet few were able to correctly apply 
them in their solutions.  When they used discontinuous functions in their 
examples, such functions only contained a single discontinuity that was either 
removable, a jump, or a vertical asymptote.  

Appendix B
Interview Protocol
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Appendix B  

Interview Protocol 

 

1. In your own words describe the mathematical meaning of limit.  Use any means, including 

symbols, tables, graphs, and/or a verbal explanation. 

a. Can you think of any metaphors or everyday uses of limit that would help you 

describe this concept?  

b. Have you found it necessary to have a formal definition of limit to excel in calculus?  

When? 

c. Can you recall other topics in Calculus directly related to limit? 

2. Suppose  is a function such that .  Is it necessary that  is continuous at   

Explain why or why not. 

a. Can you recall the definition of continuity as it relates to limit? 

b. Can you think of any metaphors or everyday uses of continuity that would help you 

describe it?  

c. Is it required that the number  be in the domain of ? 

d. Explain how you would use a graph to support your conclusions. 

e. Explain how you would use table values to support your conclusions. 

f. Explain how you would use the definition of limit to support your conclusions. 

g. Can you describe the meaning of part (d.)? 
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3. Consider the function .  Determine the value of , or state that it does 

not exist.  Thoroughly justify your answer using any means, including symbols, tables, 

graphs, and/or a verbal explanation. 

a. How did you answer to Item 1 play a role in your answer to this item? 

b. Is it sufficient to check that  is undefined to know that  does not exist? 

c. Explain how you would use a graph to support your conclusions. 

d. Explain how you would use table values to support your conclusions. 

e. Explain how you would use the definition of limit to support your conclusions. 
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  The general observations above are here further investigated through an 
analysis of particular responses given by participants.  Three participants, 
called Mac, Moby, and Layla, represent prevalent trends among all the 
participants. These three participants were identified through their work 
as being low achieving, middle achieving, and high achieving students, 
respectively.  
  Mac – Low Achieving Student. Mac’s responses to the written items and 
in the interview revealed his difficulty with the subject.  His description of 
limit relied on graphs and evoked the notion of continuity.  The following 
excerpt from his written response to item 1 illustrates this point:

Limit is usually a convergence to points in space.  This is not 
necessarily true in cases where the limit goes to infinity.  If the 
limit is established as finite and  f (x) is continuous, then for 
example, at some point  on a graph, which is inclusive on an 
interval (a, b), there should be the same limits as we approach  
from both sides of the line.

It is evident that Mac could recall portions of key topics from introductory 
calculus, but his description was fragmented.  From the first two sentences 
of the passage, it seems Mac held the view of limit as a dynamic process.  
In the last sentence, he attempted to describe limit by recalling parts of a 
theorem on one-sided limits.  Mac used words such as graph, line, point, 

(d)?
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and visually frequently throughout the interview, which implied a preference 
for a graphical description of limit.  Mac’s personal concept definition of 
limit is incoherent and largely inoperable, as he was not able to apply it in 
answering items 2 and 3.
  Moby – Middle Achieving Student. Moby’s personal concept definition of 
limit is, at least, partly operable and less dependent on algebraic examples.  
His reliance on metaphor was evident, and this reliance created potential 
conflicting factors within his concept image.  For example, Moby firmly 
believed that a limit is unreachable, and he reaffirmed this belief with a 
metaphor in the opening statement of his written response to the first test item:

A limit is a mathematical concept that allows someone to get 
close to a given number or point but never reaching that point.  
An example of this is the idea of taking an object and placing 
it some distance away from a wall.  You move the object half 
the distance to the wall and then half it again.  You can do this 
as many times as you want, and each time you will get closer 
but you will never reach the wall.

All of Moby’s examples relied on continuous functions.  He carefully 
illustrated his description by using a table and graph of f (x) = x2 to discuss the 
limit              When presented with an example of a limit involving a constant
function, he said, “Maybe limits are reachable, but most of the time they’re 
not.”  Regarding item 2 on the written component, he chose statements 
(a), (b), and (c) as logically following from the statement             .Even
though Moby’s concept image possessed Tall and Vinner’s (1981) potential 
conflict factor of limit as unreachable, his personal concept definition of limit 
was not entirely inoperable, as he referred to portions of it, consistently at 
times, during the interview.  
  Layla – High Achieving Student. Layla’s concept image of limit seemed 
to contain the most operable and closest to the formal definition among all 
the participants.  Layla had a diverse example space.  She was not dependent 
on tables or graphs, although she did use them in some of her explanations.  
Layla had a personal concept definition of limit that was closely aligned with 
the formal concept definition, and her personal concept definition of limit 
was directly referenced in her problem solving.  In the written component, 
she described limit in terms of arbitrary closeness as follows:

A limit is a number to which values of the dependent variable 
can be made to stay arbitrarily close based on choices of the 
independent variable.

Her personal concept definition missed a few key components, such as logical 
quantifiers, and it contained words whose meanings are not well defined, yet 
her definition contained elements of the formal definition.  When asked to 
elaborate on her personal concept definition in the interview, she sketched δ-ε 
strips without actually referring to the δ-ε terminology.  She used the arbitrary 
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closeness language from her written response, showing consistency with her 
concept definition of limit across test items.  Regarding Item 3, when asked 
to elaborate on her justification, Layla referred back to her personal concept 
definition several times, saying “the values of f can be made to stay … to be 
–1 or 1 for certain choices of x.  They don’t stay close to a number.”  This 
showed that her personal concept definition was not simply an inoperable 
collection of words or symbols that she memorized.  Layla possessed an 
operable concept definition of limit.  Her personal concept definitions of 
limit, and its role within her concept image, were an exception among the 
participants’ understanding of limit in this study.

Discussion

  This study found participants employed metaphors and continuous functions 
as examples when describing the concept of limit, and they relied heavily 
on graphical and tabular methods for solving limit problems.  The findings 
of this study may suggest that, at the end of their mathematics coursework, 
many engineering students do not employ a formal concept definition of limit 
for solving limit-based mathematics problems.  Furthermore, the findings 
suggest that most participants’ personal concept definitions of limit are 
both inoperable for solving limit problems and inconsistent with the formal 
definition of limit.  These findings may have implications for the advanced 
mathematical thinking such students will use in their fields of study.
  With one exception, all participants of this study appeared not to possess 
both an operable and formal concept definition of limit within their concept 
images of limit. This conclusion is consistent with several other studies on 
limit understanding, such as those by Williams (1991) and Roh (2010), which 
indicate that students have difficulty adopting and using a formal concept 
of limit.  
  This study indicates that the participants relied on many of the common 
metaphors characterized in several studies, such as by Oehrtman (2009), 
to describe their concepts of limit.  It is not clear whether such metaphors 
helped or hindered the participants’ ability to solve the limit problems used 
for this study.
  This study also found that, when prompted to describe limit or to solve 
limit problems, the participants evoked examples of continuous functions.  
Continuous functions tend to be more easily accessible both conceptually 
and procedurally for describing limits, than discontinuous functions.  This 
may be because engineering students encounter discontinuous functions less 
frequently in practice than in a theoretical mathematics classes.  When they 
do encounter such functions, discontinuities may likely be isolated, finite 
in number, and either removable, a jump, or a vertical asymptote.  Thus, 
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advanced non-mathematics students may approach limit tasks by appealing 
to concepts of continuity, without appealing to the formal concept definition 
of limit.  
  However, Layla’s responses provide evidence that engineering students can 
have a personal concept definition of limit that is operable in solving limit 
problems and that shows emerging elements of the formal concept definition.  
Her approaches may offer a model for how engineering students can approach 
limit-based problem solving in their fields, and how to understand limit 
concepts in general.  

Generalizability of Study and Future Research

  This study was observational and investigative in nature, and so there are 
a number of limitations.  The results are based on a small sample of students 
from two sections of a differential equations course, all at the same college, 
and so the results do not generalize to other students or institutions.  The 
assessment instrument had only three items and was thus very limited in 
scope. Additionally, sample sizes and distribution issues render any statistical 
inferences from the data as impractical. Much of the data collected was 
qualitative and gathered through interviews, and thus categorizing this data 
was a subjective endeavor. The wording of the interview questions may have 
lead some students away from the formal concept definition.  Finally, while 
Layla’s gender did not play a role in the decision to include her individual 
responses, it should be noted that her gender might potentially be a conflating 
factor for the results.  
  A controlled longitudinal study across several semesters, involving more 
participants and a broader assessment instrument is necessary to draw more 
definitive conclusions on limit concept understanding among the stated 
population.  An experimental study might include examining the effect of 
regular treatments (of δ-ε lessons) on limit concept understanding imposed on 
randomly selected engineering students, compared against a control group of 
engineering students, as they complete their mathematics sequences.  Previous 
research suggests these lessons could be designed to complement the topics 
that the participants are currently studying, and could be implemented with 
specified pedagogical practices (Cappetta & Zollman, 2009, 2013; Cory & 
Garofalo, 2011; Dubinsky, et al., 1996; Oehrtman, 2008).  Such practices 
have been successful in developing an operable personal concept definition 
of limit that is consistent with the formal concept definition.
  Participant responses to assessment item 3 seem to indicate that students 
who have difficulty with continuity are dependent on standard graphing 
calculator procedures.  This observation would be an area to research in 
more detail.
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  Lastly, this study was not designed to draw conclusions on how the 
participants’ beliefs are related to their responses to the test items.  However, 
research by Szydlik (2000) and Williams (1991) indicate that beliefs play 
a role in students’ conceptual understanding of limit.  Many advanced non-
mathematics students may view the formal concept definition of limit as 
superfluous.  Following Szydlik (2002) a similarly constructed study might 
reveal the extent to which advanced non-mathematics students’ beliefs about 
themselves (that they are users of mathematical procedure and not developers 
of mathematical theory) play a role in their willingness to adopt an operable 
and formal concept definition of limit.

Conclusion
	
  The purpose of this study was to investigate if students’ personal concept 
definitions of limit were operable and consistent with the formal concept 
definition while solving limit problems. The students were presented both 
formal and informal representation of limits. This study was looking for 
traces of formal thinking in students’ personal concept definitions. It should 
be noted that traces of formal thinking can occur in graphical, numeric, 
algebraic, or oral descriptions, but ultimately, these traces need to be directly 
connected to the formal δ-ε definition. While this study was only meant to 
provide a cursory glimpse into students’ concepts, it stills identifies a unique 
and fertile area of mathematics education research that instructors of higher-
level mathematics need to consider. 
  It is imperative that students of applied mathematics fields, including 
those who are advanced non-mathematics majors, possess a conceptual 
understanding of key calculus topics. This understanding needs to go beyond 
purely procedural and metaphorical. Students that have a formal and operable 
understanding of limit concepts will be able to recognize, communicate, 
investigate, evaluate, apply, and create advanced mathematical reasoning 
in their applied fields.
  As other researchers have found (Cappetta, 2007; Castillo-Garsow, 
2012; Cipra, 1988; Peterson, 1986; Tall, 1990; Vinner, 1983), students in 
university mathematics courses have a fairly strong procedural knowledge 
and a fairly weak conceptual understanding of mathematics concepts. Most 
students use only their strengths, not their weaknesses.  They keep a mindset 
of mathematics that hinders their deeper learning of mathematics. High-
ability students, on the other hand, have openness to working with formal 
mathematical concepts. While these students also begin with their strengths, 
they venture into less comfortable areas while studying and reflecting on the 
mathematics. High-ability students have a repertoire of representations they 
used depending on the context of the mathematics. They can move more easily 
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between numerical, algebraic, graphical, and application representations 
(Patel, McCombs, & Zollman, 2014).
  To address this problem, there are several recommendations that can 
occur in the introduction of the limit concept and that should be reinforced 
in subsequent courses. Students need a learning environment that connects 
the graphical and numerical representation of the limit concept to the formal 
concept. This can be done by utilizing such learning activities as the ε-strip 
(Roh, 2010) or a δ-ε table. Further, students’ common metaphors need to be 
openly addressed in mathematics classes. Students need to see their metaphors 
as a bridge to formal concepts, not as an endpoint itself. 
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