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Learning abstract concepts through concrete examples may promote learning at the cost of inhibiting
transfer. The present study investigated one approach to solving this problem: systematically varying
superficial features of the examples. Participants learned to solve problems involving a mathematical
concept by studying either superficially similar or varied examples. In Experiment 1, less knowledge-
able participants learned better from similar examples, while more knowledgeable participants learned
better from varied examples. In Experiment 2, prior to learning how to solve the problems, some
participants received a pretraining aimed at increasing attention to the structural relations underlying
the target concept. These participants, like the more knowledgeable participants in Experiment 1,
learned better from varied examples. Thus, the utility of varied examples depends on prior knowledge
and, in particular, ability to attend to relevant structure. Increasing this ability can prepare learners to
learn more effectively from varied examples.

A large part of formal education is dedicated to abstract concepts—that is, concepts characterized
by underlying structure rather than surface features, such as conservation of energy in physics,
supply and demand in economics, or combinations and permutations in mathematics. Such
concepts are powerful because they capture regularities among situations that bear little superficial
resemblance to each other. For example, conservation of energy in physics applies equally well to
springs, bouncing balls, or pendulums. However, abstract concepts can be difficult to understand
when presented in abstract form without any concrete context (Cheng, Holyoak, Nisbett & Oliver,
1986; Nuñes, Schliemann & Carraher, 1993). Thus, educators often rely on concrete examples
to facilitate learning (Eiriksdottir & Catrambone, 2011; Nathan, 2012). Indeed, several studies
have shown facilitative effects of learning abstract concepts from concrete examples rather than
from abstract descriptions alone (De Bock, Johan, van Dooren, Roelens, & Verschaffel, 2011;
Gentner, Loewenstein & Thompson, 2004; Rawson, Thomas & Jacoby, 2015).
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However, it can be challenging for learners to focus on the underlying structure of concrete
examples and to distinguish between surface features that are relevant and irrelevant with respect
to this structure. Failure to do so can inhibit subsequent transfer to novel instances that share
the same structure but not the same surface features (Bassok, 1996; Bassok & Holyoak, 1989;
Belenky & Schalk, 2014; Harp & Mayer, 1998; Kaminski, Sloutsky, & Heckler, 2008, 2013;
LeFevre & Dixon, 1986; see also Mayer & Griffith, 2008; Son & Goldstone, 2009) or cause
inappropriate transfer to cases with similar surface features but different structure (e.g., Chang,
2006). How can learners enjoy the potential benefits of concrete examples while avoiding their
potential negative effects on transfer?

The present study explores the effectiveness of variation among examples as a solution to this
problem. Specifically, studying examples that are highly diverse with respect to their superficial
features but share the same underlying structure may lead to superior transfer of knowledge.
This approach relates to the selection of examples rather than the types of interventions in which
they are embedded and so may be viewed as complementary to approaches such as combining
examples with abstract descriptions (Cheng et al., 1986; Gentner et al., 2004; Rawson et al., 2014),
fading from examples to abstract descriptions (Braithwaite & Goldstone, 2013; Fyfe, McNeil, Son
& Goldstone, 2014; Goldstone & Son, 2005), or explicitly comparing examples (Catrambone
& Holyoak, 1989; Gentner, Loewenstein & Thompson, 2003; Gick & Holyoak, 1983; Rittle-
Johnson, Star & Durkin, 2009). As reviewed below, variation among examples offers potential
benefits but also potential drawbacks, and the tradeoff between these may depend on factors such
as prior knowledge. This study aims to clarify whether, and when, variation among examples can
effectively promote transfer of abstract concepts to novel instances.

PROMISE OF VARIATION

In considering the potential effects of variation on transfer, we make two key assumptions. The
first assumption is that transfer depends on the concept representations,1 if any, that learners
derive from the examples. Specifically, concept representations based on underlying structure
rather than superficial features are more likely to support transfer because such representations
capture what all instances of the target concept have in common (Belenky & Schalk, 2014; Day &
Goldstone, 2012; Gentner, 1983; Gick & Holyoak, 1983; for alternative perspectives, see Lobato,
2006; Wagner, 2010). The second assumption is that concept representations are derived from
examples in part by detecting commonalities among the examples. That is, learners are likely
to incorporate features shared by multiple examples rather than those idiosyncratic to individual
examples into their concept representations2 (Chen & Mo, 2004; Gick & Holyoak, 1983; Kuehne,

1Concept representations are sometimes referred to as “schemas,” and the process of deriving them from multiple
examples as “schema abstraction” (Bernardo, 2001; Elio & Anderson, 1981, 1984; Gick & Holyoak, 1983; Reed, 1989).
The term “concept representation” is preferred to schema here to avoid confusion with our somewhat different use of the
term schema to describe our experimental stimuli. See note 4.

2Of course, studying examples of different concepts may draw attention to features that distinguish concepts, instead of
or in addition to commonalities within each concept (Birnbaum, Kornell, Bjork, & Bjork, 2012; Chang, 2006; Goldstone,
1996; Kang & Pashler, 2012; Rosch & Mervis, 1975; Taylor & Rohrer, 2010; Vanderstoep & Seifert, 1993). Furthermore,
studying both examples and nonexamples of a concept may highlight criterial features that determine whether or not the
concept applies rather than highlighting commonalities among examples more generally (Chang, 2006; Gick & Paterson,
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Forbus, Gentner & Quinn, 2000; Medin & Ross, 1989; Rosch & Mervis, 1975; Skorstad, Gentner
& Medin, 1988).

Together, the above assumptions suggest a danger to studying superficially similar examples
of a concept. Superficial features shared by multiple examples may become part of learners’
concept representations, inhibiting transfer to novel instances that do not share the same features.
There is some empirical support for this conclusion (Ben-Zeev & Star, 2001; Chang, Koedinger,
& Lovett, 2003; see also Ross, 1984). In one study, after practicing using multiple mathematical
algorithms to solve example problems with different superficial features, undergraduate students
were tested on novel problems (Ben-Zeev & Star, 2001). Although the test problems could be
solved using any of the learned algorithms, students tended to use each algorithm mainly to solve
problems that superficially resembled the examples with which that algorithm had been practiced
and not to solve superficially dissimilar problems.

By contrast, studying varied examples, which by definition have fewer superficial features
in common, should help to highlight shared underlying structure, thereby promoting transfer.
Studies have supported this prediction in a wide range of learning domains, including mathematics
(Braithwaite & Goldstone, 2012; Chen & Mo, 2004; Paas & Van Merriënboer, 1994), statistics
(Chang et al., 2003; Chang, 2006; Quilici & Mayer, 1996, 2002), science (Corbalan, Kester, &
van Merriënboer, 2009; Day, Goldstone, & Hills, 2010), and language (Gómez, 2002; Onnis,
Monaghan, Christiansen, & Chater, 2004; Perry, Samuelson, Malloy and Schiffer, 2010; Rost
& McMurray, 2010). For example, Chen & Mo (2004, Experiment 3) trained participants to
solve arithmetic word problems sharing a common general principle. When semantic details of
the training examples were varied, participants were more able to transfer the principle to novel
problems with the same underlying structure but different semantic details. Similarly, in a study
of Chang et al. (2003), participants practiced using each of several types of statistical graphs to
solve multiple example problems. The examples for a given graph type were either similar or
varied with respect to superficial features, such as cover story and wording. Varied examples led
to more accurate selection of graph types for novel problems on a subsequent test.

PERILS OF VARIATION

Despite the potential facilitative effects of variation on transfer, a possible drawback is that
variation may make learning more difficult. First, deriving a concept representation from varied
examples depends on attending to and encoding their shared underlying structure in the absence
of shared superficial features. However, if the shared structure is not obvious or overt, the
examples may appear so different that learners fail to notice their shared structure at all, let
alone transfer it to novel instances (Gentner et al., 2003; Gick & Holyoak, 1983). Furthermore,
variation with respect to superficial features may increase cognitive load during learning (Paas &
Van Merriënboer, 1994; van Merriënboer & Sweller, 2005) or draw attention toward superficial
features and away from more important structural features (Hammer, Bar-Hillel, Hertz, Weinshall,
& Hochstein, 2008). Either of these effects might again inhibit concept learning. Consistent with

1992; Große & Renkl, 2007; Namy & Clepper, 2010). However, because the present study is concerned mainly with
effects of variation among examples of a single concept, we focus on extraction of commonalities rather than detection
of distinctive or criterial features.
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these considerations, variation among examples has failed to yield improved transfer in several
studies (Corbalan et al., 2009 system control condition; Gick & Holyoak, 1983, Experiment 4;
Reed, 1989; Renkl, Stark, Gruber, & Mandl, 1998) and in others has yielded slower learning or
poorer performance during study (Braithwaite & Goldstone, 2012; Chen & Mo, 2004; Posner &
Keele, 1968).

Furthermore, according to the theory of progressive alignment, superficially similar examples
can actually facilitate transfer in some circumstances (Gentner, 2010; Gentner, Anggoro, &
Klibanoff, 2011; Gentner, Loewenstein, & Hung, 2007; Kotovsky & Gentner, 1996). This theory
states that learners may initially attend to superficial similarities between examples, but discovery
of superficial correspondences may draw attention to deeper structural correspondences, leading
to the discovery of shared structure that would have gone unnoticed in the absence of the
superficial similarities. Kotovsky and Gentner (1996) found that 4-year-old children were unable
to match pairs of visual arrays with shared underlying structure (e.g., symmetry) but different
superficial features (e.g., one array symmetric with respect to sizes of its elements, the other
symmetric with respect to color of its elements). However, after practicing matching arrays that
shared both structural and superficial features (e.g., both arrays symmetric with respect to size,
or both symmetric with respect to color), children subsequently succeeded in matching arrays
that shared structure alone. Apparently, practice with examples sharing both superficial features
and underlying structure enabled subsequent recognition of the same underlying structure even
across pairs of superficially dissimilar instances.

Several other studies have found suggestive evidence that initial study of similar examples can
promote subsequent transfer (Elio & Anderson, 1984; Guo & Pang, 2011; Guo, Yang, & Ding,
2013; Rau, Aleven, & Rummel, 2010). For example, in a study of Rau et al., 2010, fifth and sixth
grade students studied a variety of fractions problems using several graphical representations
(e.g., pie charts, number lines). The problems were either blocked by representation type (e.g.,
several pie chart problems followed by several number line problems) or interleaved (e.g., switch-
ing frequently between pie chart and number line problems). Blocked sequencing led to superior
performance on a subsequent assessment involving identification and ordering of fractions using
novel graphical representations. Although Rau et al., 2010) manipulation strictly relates to exam-
ple sequencing rather than variation per se, their results are consistent with the idea that studying
several superficially similar examples (i.e., problems involving the same representational type)
at a time can improve concept learning and transfer.

In summary, evidence is inconsistent regarding the benefits of learning from varied examples,
with some studies showing such benefits, others failing to do so, and some even finding advantages
for similar over varied examples. These results suggest that any simple prescription regarding
variation may be problematic and point to the importance of specifying conditions under which
variation is most likely to benefit learners.

VARIATION AND PRIOR KNOWLEDGE

One factor that may affect the relative benefits of varied and similar examples is learners’ prior
knowledge. Relative to learners with less domain knowledge, more knowledgeable learners are
more sensitive to structural features relevant to the domain (Chi, Feltovich, & Glaser, 1981;
Chi & VanLehn, 2012; see also Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Novick &
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Holyoak, 1991). For example, compared to novices, physics experts are more likely to attend
to and encode structural features (e.g., equivalence of total energy before and after a change in
a physical system) in addition to superficial features (e.g., that fact that the system involves a
spring) and to use structural features to categorize problems and draw inferences about them
(Chi et al., 1981). Greater sensitivity to structure could enable more knowledgeable learners
to detect underlying structure shared by multiple examples, even in the absence of superficial
similarities. Thus, prior knowledge could alleviate the potential drawbacks of variation while
reducing the potential benefits of similarity. Conversely, less knowledgeable learners might be
less able to detect shared structure in the absence of superficial similarities, thus increasing the
detrimental effects of variation and the potential benefits of similarity, as predicted by the theory
of progressive alignment. In short, the relative benefits of varied examples may be greater for more
knowledgeable learners and those of similar examples greater for less knowledgeable learners.

Several studies investigating dimensions of instructional design analogous to variation support
the above predictions (Große & Renkl, 2007; Rau et al., 2010; Rittle-Johnson et al., 2009). More
knowledgeable learners benefited more from studying both correct and incorrect problem-solving
procedures (Große & Renkl, 2007) or comparing multiple procedures (Rittle-Johnson et al.,
2009), while less knowledgeable learners benefited more from studying only correct procedures
(Große & Renkl, 2007), individual examples without comparison (Rittle-Johnson et al., 2009), or
examples blocked rather than interleaved by representational format (Rau et al., 2010). Similarly,
sixth but not eighth graders benefited from initially low variation when studying examples of
geometry concepts (Guo & Pang, 2011; Guo et al., 2013). Finally and most directly relevant, using
a paradigm similar to that of the present study, Braithwaite and Goldstone (2012) found suggestive
evidence of greater benefits of variation among more knowledgeable learners for transfer of a
mathematical concept. However, interpretation of their results was rendered problematic because
the interaction of variation and prior knowledge was only marginally significant, and because
more knowledgeable learners showed little evidence of learning due to training. The present study
is an attempt to replicate and extend these findings using an improved experimental paradigm.

A few studies appear to contradict the above pattern by finding greater benefits of variation
among less, rather than more, knowledgeable learners (Day et al., 2010; Quilici & Mayer, 1996).
The apparent discrepancies among the above studies may relate to the diversity of measures used
to assess prior knowledge, which include self-reported domain knowledge (Große & Renkl, 2007),
pretest score (Braithwaite & Goldstone, 2012; Große & Renkl, 2007; Rau et al., 2010), pretest
strategy use (Rittle-Johnson et al., 2009), scores on standardized tests of mathematical ability
(Quilici & Mayer, 1996), grade level (Guo & Pang, 2011; Guo et al., 2013), and membership in
regular or accelerated classes (Day et al., 2010). On the other hand, as we argue in the General
Discussion, it is possible for a single underlying mechanism to produce all of the above, apparently
contradictory results even absent any influence from such methodological differences. For the
moment, we note that while the evidence is mixed, the majority of studies point to greater benefits
of variation among more knowledgeable learners.

TASK ANALYSIS

The present study investigated effects of variation and prior knowledge on learning to solve math-
ematics story problems involving the concept of “sampling with replacement” (SWR; Table 1).
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TABLE 1
Sampling with Replacement (SWR) Problems

Schema Example Options Selections Solution

People Choosing
Objects (PCO)

A group of friends is eating at a
restaurant. Each person chooses a
meal from the menu. (It is possible
for multiple people to choose the
same meal.) In how many different
ways can the friends choose their
meals, if there are 5 friends and 6
meals?

Meals Friends 65

Objects Selected in
Sequence (OSS)

A piano student, when bored, plays
random melodies on the piano.
Each melody is the same number
of notes long, and uses only keys
from a fixed set of keys. (It is
possible to play the same key more
than once in a sequence.) How
many different melodies are
possible, if there are 4 keys in the
set and 7 notes in each melody?

Keys in the set Notes in each
melody

47

Objects Assigned to
Places (OAPlc)

A homeowner is going to repaint
several rooms in her house. She
chooses one color of paint for the
living room, one for the dining
room, one for the family room, and
so on. (It is possible for multiple
rooms to be painted the same
color.) In how many different ways
can she paint the rooms, if there
are 8 rooms and 3 colors?

Colors Rooms 38

Categories Assigned
to Events (CAE)

An FBI agent is investigating several
paranormal events. She must write
a report classifying each event into
a category such as Possession,
Haunting, Werewolf, etc. In how
many different ways can she write
her report, if there are 9 categories
and 4 paranormal events?

Categories Paranormal
events

94

Objects Assigned to
People (OAPpl)

An aging king plans to divide his
lands among his heirs. Each
province of the kingdom will be
assigned to one of his many
children. (It is possible for
multiple provinces to be assigned
to the same child.) In how many
different ways can the provinces be
assigned, if there are 5 provinces
and 7 children?

Children Provinces 75

Note. Text is abbreviated from the actual text used in the experiments. For problems whose text differs between
Experiments 1 and 2, the Experiment 2 version is shown here.
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Each problem describes a situation in which a certain number of selections is made from a fixed
set of options and asks how many distinct outcomes are possible in this situation. The answers
are given by a simple formula: (options)(selections), that is, the number of options raised to the
power of the number of selections. Using this formula requires instantiating the structural roles
of options and selections with specific elements from the problems and then filling in the formula
with the numbers of options and selections. Several SWR problems, together with the correct
instantiations of structural roles with problem elements and the resulting correct answers, are
shown in Table 1.

The relationship between the problem elements determines which problem element fills the
role of options and which that of selections. Specifically, if exactly one of element A is chosen
for each of element B, then element A fills the role of options and element B that of selections.
Multiple surface features of the problems can be used to infer this underlying relationship. For
example, in the first problem in Table 1, the phrase “each person chooses a meal from the menu”
implies that exactly one meal is chosen for each friend, even though the words “exactly one” are
not used. Similarly, the statement that multiple people may choose the same meal implies that
the number of people matched to a single meal is not necessarily exactly one. Importantly, the
features available to support the mapping of elements to roles vary from problem to problem,
making the instantiation of roles a “variable to constant” mapping task (Koedinger, Corbett, &
Perfetti, 2012). For instance, one might guess from the first example in Table 1 that the direct
object of the verb “choose” always fills the role of options, while a noun modified by the adjective
“multiple” fills the role of selections, but neither of these words (or their near synonyms) appears
consistently across all of the problems in Table 1. Thus, it is impossible consistently to solve the
problems correctly by reliance on a few specific words or phrases.

An important challenge in assigning elements to roles is the need to focus on surface features
that are relevant to the relationship just described, while ignoring irrelevant surface features. For
example, the specific numbers involved, the relative sizes of these numbers, and the order in which
the elements appear in the problem statement are all irrelevant to solving the problems. These
features were randomized across problems to avoid potentially misleading correlations between
them and the structural roles (Ben-Zeev & Star, 2001; Chang et al., 2003). Critically, semantic
features of the problem elements, such as animacy, are also irrelevant. Thus, such features are at
best unreliable, at worst misleading, cues for matching elements to roles (Markman & Stilwell,
2001). For instance, the first problem in Table 1 might suggest the intuition that options (“meals”)
are inanimate and selections (“friends”) animate. However, this intuition would be unhelpful for
the second, third, and fourth problems, in which both problem elements (e.g., “colors,” “rooms”)
are inanimate, and misleading for the last problem, in which the options (“children”) are animate
and the selections (“provinces”) inanimate.3 Semantic features such as animacy strongly influence
how people map between concrete situations and mathematical models (Bassok, Chase, & Martin,
1998; Bassok, Wu, & Olseth, 1995; Blessing & Ross, 1996; Fisher, Borchert, & Bassok, 2011;
Martin & Bassok, 2005; Ross & Kilbane, 1997; Ross, 1987, 1989). Thus, participants were

3The common perception that a province will be chosen for each child, so that the provinces fill the role of options
and the children that of selections, is incorrect because it rules out the possibility of individual children receiving multiple
provinces, which is expressly allowed, and allows the possibility of some provinces remaining unassigned, which is
expressly ruled out.
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expected to rely on such features despite their formal irrelevance, and this reliance was expected
to be a source of difficulty in solving the problems.

As illustrated above, solving an SWR problem using the formula requires instantiating the
concept of SWR—that is, matching specific elements of the problem to general structure roles
in the concept. More generally, using an abstract, structured concept to draw inferences about a
concrete situation often requires not only identifying the relevant concept but also instantiating the
structure of that concept. For example, applying knowledge about the formula relating distance,
rate, and time requires identifying which quantities correspond to each of these roles (Nathan,
Kintsch, & Young, 1992). Similarly, analyzing a situation using the concepts of Signal Detection
Theory requires instantiating the roles of “signal” and “noise” with specific elements of the
situation (Bassok & Holyoak,1989; Ross, 1987, 1989 for other examples, see Son & Goldstone,
2009). Many studies regarding variation, however, have focused mainly on effects of variation on
ability to identify relevant concepts (Ben-Zeev, & Star, 2001; Chang et al., 2003; Chang, 2006;
Day et al., 2010; Elio & Anderson, 1984; Kotovsky & Gentner, 1996; Posner & Keele, 1968;
Quilici & Mayer, 1996, 2002), while few have examined the issue of instantiation. An important
contribution of the present study is to investigate effects of variation specifically on subsequent
instantiation of an abstract concept. SWR was deemed to be an appropriate basic case for such an
investigation because it is minimally complex, in the sense of involving only a single relationship
with only two roles.

HYPOTHESES AND EXPERIMENTS

The experiments described below were designed to test two hypotheses. First, based on the
theoretical considerations and empirical evidence detailed above, in particular the findings of
Braithwaite and Goldstone (2012), studying varied rather than similar examples was expected to
yield greater benefits for learners with more prior knowledge of the target concept (SWR). Thus, an
interaction between prior knowledge and variation among studied examples was predicted, such
that more knowledgeable learners would show superior transfer after studying varied examples,
while less knowledgeable learners would show no such benefit, or even a benefit of similar
examples. This hypothesis was tested in Experiment 1.

The second hypothesis relates to a possible explanation for the results predicted by the first
hypothesis. Specifically, more knowledgeable learners might be more able to learn from varied
examples because they are more able to notice shared structural features between examples
even in the absence of superficial similarity. If this explanation is correct, then directly training
learners to attend to and encode relevant structural features should increase the relative benefits
of subsequently studying varied examples, yielding effects analogous to those of greater prior
knowledge. This hypothesis was tested in Experiment 2.

EXPERIMENT 1

Experiment 1 was designed to test whether participants’ prior knowledge of SWR would affect the
relative benefits of variation among examples on transfer of knowledge about SWR. Participants
were trained to solve SWR problems using either varied or similar examples and then were tested
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on novel SWR problems to assess transfer. Previous research has indicated strong influences of
formally irrelevant semantic features on learning and transfer of abstract concepts in mathematics
(e.g., Bassok et al., 1995). Thus, our manipulation of variation among examples focused on
variation with respect to semantic features, while our transfer assessment included problems with
novel semantic features.

To test for a possible moderating effect of prior knowledge on effects of variation, participants
were asked to report their previous experience with SWR. Self-reported experience with target
concepts has moderated effects of learning from examples in previous work (Rawson et al.,
2015) and was employed in the present study because of its close relation to our theoretical
reasons for predicting a moderating effect. In particular, previous experience with SWR would
likely increase sensitivity to the structural relations underlying SWR, and such sensitivity was
expected to increase the relative benefits of varied examples. By contrast, more general measures
of domain knowledge, such as scores on standardized tests of mathematics, might be relatively
poor indicators of sensitivity to the specific structural relations relevant to SWR.

Method

Participants

For Experiment 1, 131 undergraduate students from Indiana University (14 male, 117 female;
four aged under 18, 121 aged 18 to 21, and six aged over 21) participated in partial fulfillment
of a requirement for an introductory psychology course. Forty-three participants were assigned
to the similar examples condition and 88 to the two varied examples conditions (blocked: 44,
interleaved: 44). Seventy-five participants were classified as having higher prior experience of
SWR, and 56 as having lower prior experience, in the manner described under Procedure. The
distribution of the different training conditions did not differ as a function of prior experience,
χ2(1) = 2.399, p = .121.

Materials

Five semantic schemas,4 each describing a different type of SWR situation, were created to
serve as a basis for the experimental stimuli. The schemas were (a) people choosing objects
(PCO), in which each of several people chooses once from several objects; (b) objects selected
in sequence (OSS), in which a sequence of selections is made from several objects; (c) objects
assigned to places (OAPlc), in which one of several objects is placed in each of several places;
(d) categories assigned to events (CAE), in which each of several events is classified into one of
several categories, and (e) objects assigned to people (OAPpl), in which each of several objects
is assigned to one of several people. The schemas were designed to minimize semantic overlap
among the types of elements filling the selections role in the different schemas (PCO: people,

4Past research has often employed the term “schema” to refer to relational concepts such as SWR. In the present
study, the term schema is reserved for specific versions of abstract concepts defined by specific constraints on the types
of elements that may fill their structural roles.
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OSS: positions in temporal sequences, OAPlc: physical locations, CAE: events, OAPpl: inanimate
objects). Further, OAPpl was designed to be particularly challenging for participants exposed to
examples based on PCO, because these two schemas are semantically “cross-mapped” relative to
each other, that is, they assign semantically similar elements to different roles. In particular, people
fill the role of selections in PCO but of options in OAPpl. Cross-mapping can inhibit analogical
transfer between concept instances (Gentner & Toupin, 1986; Ross, 1987, 1989; Ross & Kilbane,
1997). Thus, OAPpl problems provide a particularly stringent test of ability to instantiate roles
based on underlying structure rather than superficial semantic features.

On the basis of each schema, a number of story problems were developed to serve as training
examples and test problems. These problems were a modified and expanded version of the
stimuli employed by Braithwaite and Goldstone (2012). One example problem belonging to each
schema is shown in Table 1. The complete set of problems is available in the online Supplementary
Information.

All training examples were based on the PCO and OSS schemas. For each of these schemas,
four stories were developed for use as training examples, for a total of eight stories. The different
stories for a given schema used different elements to fill the roles of options and selections. For
example, one PCO story involved friends choosing meals at a restaurant (Table 1, first problem),
while another involved consumers choosing pizza flavors in a marketing survey. Variation during
training was manipulated by presenting examples based either on only one (similar examples
condition) or both (varied examples condition) of the two schemas.

More specifically, the eight training example stories were used to create six training sets (i.e.,
two sets for each of three training conditions: similar, varied–blocked, and varied–interleaved).
Each set contained four of the eight training example stories. (This number of examples was
expected to be sufficient because previous studies of analogical transfer and mathematics concept
learning have found successful transfer after study of similar numbers of examples or fewer, e.g.,
Bassok et al., 1995; Braithwaite & Goldstone, 2012; Chen & Mo, 2004; Gick & Holyoak, 1983;
Novick & Holyoak, 1991.) In the similar condition, one set contained all four PCO, and the other
all four OSS, stories. In the varied–blocked condition, one set contained two PCO followed by
two OSS stories, while the other contained the other two OSS followed by the other two PCO
stories. In the varied–interleaved condition, each set contained two PCO and two OSS stories in
interleaved sequence, starting with PCO in one set and with OSS in the other. Each story appeared
in exactly one of the sets for each condition, and each story always appeared in the same ordinal
position. One of the six training sets was selected randomly for each participant.

All five schemas were used to develop additional stories for use as test problems. Thus, the
test problems served as a strong test of transfer because they included both novel stories from the
same schema(s) shown during training, as well as stories from novel schemas not shown during
training. Two test stories were developed for each schema, for a total of 10 stories. These stories
were divided into two test sets, each including one story for each schema. Within each test set,
the stories were presented in a fixed order according to their schema, as follows: OAPlc-CAE-
OAPpl-PCO-OSS. For each participant, one of the two test sets was selected randomly to serve
as pretest, while the other served as posttest. The assignment of pretest and posttest problem
sets was randomized across participants to reduce the chance that effects of training on posttest
performance would depend on idiosyncrasies of particular test problems.

For each story in both the training and test sets, two problems were constructed—a “long”
problem and a “short” problem—which differed in that the short problem was stated more briefly



236 BRAITHWAITE AND GOLDSTONE

FIGURE 1 Screenshot of a typical test trial (Experiment 1).

to avoid unnecessary repetition. The specific numbers involved and the order in which the key
problem elements were mentioned in the problem statement were also varied between the long
and short versions. The reason for including two problems for each story was to obtain a more
stable measure of accuracy for each story and to reduce the chance of obtaining a perfect score by
guessing. The long and short versions of each training example or test problem were always shown
in immediate succession, with the long version shown first. Thus, each training set consisted of
eight problems based on four stories, while each test set consisted of 10 problems based on five
stories.

Procedure

At the beginning of the study, participants were shown a brief review of exponential notation.
Participants then read either a “pretraining” passage describing how to solve SWR problems
(without focusing on the specific task appearing throughout the rest of the experiment) or a
passage regarding an unrelated mathematical topic. This manipulation was intended to simulate
the effects of different levels of prior knowledge. However, because this manipulation produced
neither significant effects on change scores nor significant interactions with variation, prior
knowledge, or both, it is not described further here. Details regarding the pretraining are available
in the online Supplementary Information.

After the pretraining, participants began the pretest. The problems from the assigned test
problem set were presented one at a time. For each problem, participants had to choose between
two responses of the form mn and nm, where m and n were the two numbers mentioned in the
problem. Thus, their task was to determine which number should be the base and which the
exponent. The order in which the noun phrases designating the key problem elements appeared in
the problem statements (e.g., “meals,” “friends”) and the specific numbers attached to these noun
phrases were determined quasirandomly for each trial so that these aspects would not provide
reliable cues to the correct answers. A screenshot of a typical test trial is shown in Figure 1.

After completing the pretest, participants read a passage explaining how to solve SWR prob-
lems in the context of a specific SWR story. This passage explained how to solve several SWR
problems using this story with varying numbers and then presented the general formula for SWR
problems. The passage ended with the following summary: “All Sampling with Replacement
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problems can be solved with this formula: (OPTIONS) (TIMES). You just need to figure out what
is the number of OPTIONS chosen from and what is the number of TIMES an option is chosen.”
The term “times” here refers to the structural role of selections. The full text of the training
passage is provided in the online Supplementary Information.

Participants then began the training example problems. For each example, participants were
first shown the long version problem and were asked two multiple choice questions requiring
them to identify which problem elements corresponded to the number of options and times,
respectively. They were then asked to choose the correct answer to the problem in the same way
as in the pretest. Participants giving incorrect answers to any of the above questions received
feedback and were required to give the correct answers before proceeding. The corresponding
short version problem was then administered without the prompts to identify options and times
(since the answers to these prompts would be the same as for the long version problem).

After completing the training examples, participants were shown a summary of the four
training example stories and reminded of which problem elements corresponded to the “base”
and “exponent” of the correct answers in each case. They were then asked to “describe, in as
general a way as possible, how to decide which number should be the base and which number
should be the exponent” and responded in open answer format. In contrast to previous studies
employing similar measures to assess concept learning (Braithwaite & Goldstone, 2012; Chen
& Mo, 2004; Gick & Holyoak, 1983), no effect of training on responses to this question were
found, perhaps because the question could be answered perfectly (e.g., “the number of options
should be the base and the number of times should be the exponent”) simply by repeating key
phrases from the passage shown at the beginning of training. Thus, analyses of these responses
are not reported below.

Next, the posttest was administered in the same manner as in the pretest. After completing
the posttest, participants answered the following question: “Before taking this survey, had you
ever learned about Sampling with Replacement problems before?” This question was posed at
the end of the study to ensure that participants knew the meaning of the term “Sampling with
Replacement” and so would not underestimate their experience due to not understanding the term.
Participants could respond “yes,” “maybe,” or “no.” Those responding “yes” were classified as
having more previous experience with SWR and all others as having less previous experience.

All parts of the study were presented via a computer interface. Participants were allowed to
proceed at their own paces but could not go back to any part of the study after completing it. The
study took an average of 14.8 min to complete (minimum: 5.9, maximum: 27.6).

Results

Reliability was assessed for each test set, combining cases in which the set was administered as
pretest or posttest. Cronbach’s α was low for both sets (.45, .55), apparently owing to data from
the semantically cross-mapped OAPpl problems. Accuracy for OAPpl was negatively correlated
with all other schemas, while accuracies for all other pairs of schemas were positively correlated,
and removing data from OAPpl problems improved consistency for both test sets (α = .73, .65).
Nevertheless, the OAPpl data were included in subsequent analysis because we were interested
in performance on a variety of different problems. Problem schema was included as a factor to
allow for the possibility that schema moderated effects of training condition.
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FIGURE 2 Change scores by previous experience and level of variation (Experiment 1). Error bars indicate standard
errors.

Average accuracy (percentage correct) was 50.5% at pretest and 62.3% at posttest. Pretest
accuracy was not significantly higher than chance (50.0%), t(130) = .305, p = .761, while posttest
accuracy was significantly higher than chance, t(130) = 6.986, p < .001. The improvement in
accuracy from pretest to posttest was significant, t(130) = 5.00, p < .001, d = 0.58.

Change scores were calculated by subtracting pretest from posttest accuracy separately for
each schema for each participant. Initial analysis of change scores comparing the varied–blocked
and varied–interleaved conditions found no significant effects involving condition, ps > .5, so
these two conditions were combined into a single “varied” condition for subsequent analysis.
The main effects of assignment of the test problem sets to pretest and posttest and of selection of
the schema (PCO or OSS) used for the first training example were not significant, nor were the
interactions of these factors with variation or previous experience with SWR or both, ps > .15,
so these factors were excluded from further analysis. Change scores were then submitted to a
2 × 2 × 5 mixed ANOVA, with level of variation (similar or varied) and previous experience
with SWR (less or more) as between-subjects factors and problem schema (PCO, OSS, OAPlc,
CAE, or OAPpl) as a within-subjects factor.

While the main effects of variation and previous experience did not reach significance, ps >
.75, a significant interaction between these two factors was found, F(1, 127) = 5.58, p = .020,
η2

g = .011. As shown in Figure 2, more experienced participants improved more on posttest in the
varied condition (16.7%) than in the similar condition (6.0%), while less experienced participants
showed the opposite trend (varied: 3.6%, similar: 16.5%).

Additionally, the main effect of schema was significant, F(4, 508) = 12.50, p < .001, η2
g =

.069. Participants tended to show greater posttest improvement for schemas that were shown
during training (PCO: 26.7%, OSS: 17.9%) than for those shown only at test (OAPlc: 14.9%,
CAE: 18.3%, OAPpl: −19.1%). For OAPpl problems, scores were lower on posttest than on
pretest, presumably because these problems were semantically cross-mapped relative to the PCO
problems shown (to most participants) during training. Schema did not interact significantly with
any other factor, ps > .10.
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TABLE 2
Change Scores by Previous Experience, Level of Variation, and Trained Versus Untrained Schema

(Experiment 1)

Less Previous Experience More Previous Experience

Schema Type Similar Examples Varied Examples Similar Examples Varied Examples

Trained schemas 19.6% 19.7% 15.0% 25.9%
Untrained schemas 15.8% −7.1% 3.8% 10.6%

Given the significant effect of problem schema, an important question is whether the effects
of previous experience and variation were limited to the schemas shown during training or
also extended to schemas shown only at test. To investigate this question, each schema was
classified with respect to each participant as either trained or untrained, depending on whether
that participant was shown any training examples based on that schema. Change scores were
then calculated separately for trained and untrained schemas. As shown in Table 2, among more
experienced participants, varied examples led to greater improvement than similar examples for
both trained and untrained schemas, while among less experienced participants, similar examples
led to an advantage for untrained, but not for trained, schemas. Thus, trained schemas alone did
not drive the effects observed in our main analysis. Confirming this conclusion, when only data
from untrained schemas were analyzed, the interaction between previous experience and variation
was still significant, F(1, 127) = 6.79, p = .010, η2

g = .051, and was directionally identical to
that observed for the entire dataset.

Discussion

Experiment 1 found a significant interaction of previous experience and level of variation such
that learners with less experience of SWR learned better from similar examples, while those with
more experience learned better from varied examples. Many previous studies have focused on
the benefits either of variation (Chang et al., 2003; Chen & Mo, 2004; Corbalan et al., 2009; Day
et al., 2010; Gick & Holyoak, 1983; Paas & Van Merriënboer, 1994; Quilici & Mayer, 2002) or
of similarity across examples (Graham, Namy, Gentner, & Meagher, 2010; Guo & Pang, 2011;
Kotovsky & Gentner, 1996; Rau et al., 2010). An important contribution of the present study is
to show both types of benefit within the same study but for different types of learners.

Why did less experienced participants learn relatively more from similar, rather than varied,
examples? This result is consistent with the theory of progressive alignment (Gentner, 2010;
Gentner et al., 2007, 2011; Kotovsky & Gentner, 1996), according to which superficial similarities
between examples can draw learners’ attention to deeper structural correspondences and thereby
to shared structure. For example, learners who studied one PCO example involving friends
choosing meals (Table 1, first problem), then another involving consumers choosing pizza flavors,
might easily draw correspondences between friends and consumers and between meals and pizza
flavors based on semantic resemblance alone. However, drawing these correspondences might
lead learners to notice a deeper resemblance between the relation of friends to meals and that
of consumers to pizza flavors (i.e., in each case, exactly one of the latter is chosen by each
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of the former). Having noticed this deeper relational resemblance, learners might subsequently
recognize it even in the context of problems that do not superficially resemble the studied
examples. This effect is likely to be strongest for learners who would otherwise experience the
greatest difficulty in noticing shared underlying structure—that is, less knowledgeable learners.

A possible alternate explanation is that similar examples only facilitated relatively shallow
learning. For example, participants who studied the PCO examples mentioned above might learn
the shallow rule that “the people are the selections and the number of people should be the exponent
in the correct answer.” Learning this rule would improve performance on test problems belonging
to the PCO schema, although not on problems belonging to other schemas. More generally, this
explanation predicts a greater advantage of similar examples with respect to trained schemas
compared to untrained schemas. However, in fact, the advantage of similar examples among less
experienced participants was greatest with respect to untrained schemas. This result suggests that
similar examples promoted deep rather than shallow learning in this group, as predicted by the
theory of progressive alignment.

Why did the relative benefits of varied examples increase with greater previous experience
of SWR? A possible account outlined in the Introduction involves the assumption that the more
experienced participants were more sensitive to structural features in the examples, in the same
way that experts are typically more sensitive than novices to the structural relations critical to
their domains of expertise (Chi et al., 1981; Chi & VanLehn, 2012; see also Chi et al., 1989;
Novick & Holyoak, 1991). This greater sensitivity to structural features could alleviate a key
drawback of varied examples—the difficulty of seeing what such examples have in common—by
increasing the salience of the structural features shared by the examples. This account leads to
a novel prediction: Directly increasing learners’ attention to structural features prior to training
should produce effects analogous to those of previous experience, namely, improved learning
from varied examples relative to similar examples. This prediction was tested in Experiment 2.

Finally, the possibility of inaccuracy in participants’ self-reported experience with SWR de-
serves mention. Indeed, factors other than actual experience with the concept, such as understand-
ing the meaning of the term “Sampling with Replacement,” poor memory of past experience, or
inflated opinions of one’s knowledge may have influenced these reports. Even if the reports were
accurate, experience with SWR may have been correlated with other, unobserved variables, so
we cannot be certain that experience with SWR per se led to the observed interaction. To demon-
strate a causal relationship requires directly manipulating, rather than observing, participants’
prior knowledge of SWR. Just such a manipulation was performed in Experiment 2.

EXPERIMENT 2

The goal of Experiment 2 was to test the prediction that increasing learners’ attention to structural
features of examples would yield effects analogous to those of greater prior experience with
SWR in Experiment 1 (i.e., increased benefits of varied, relative to similar, examples). Prior
to training in solving SWR problems, experimental participants first received a “pretraining”
intervention (distinct from the pretraining of Experiment 1, as described below) in which they
practiced identifying critical structural relationships in SWR problems, while control participants
received no such pretraining. Experimental and control participants both then received a training
intervention similar to that of Experiment 1, using either similar or varied examples. Varied
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FIGURE 3 Pretraining interface (Experiment 2). (A) Graphical, (B) Verbal.

examples were expected to show a greater advantage over similar examples in the experimental
conditions compared to the control condition.

Two versions of the pretraining intervention were developed. The first version employed di-
agrams to represent graphically the relationship between elements of SWR problems (Figure
3A). Visual representations such as diagrams and graphs can be effective tools for highlighting
underlying structure in concrete examples of concepts (Braithwaite & Goldstone, 2013; Catram-
bone, Craig, & Nersessian, 2006; Gick & Holyoak, 1983; Scheiter, Gerjets, & Schuh, 2010;
Stern, Aprea & Ebner, 2003; Woodward et al., 2012). The second version aimed to highlight
verbally such structure using relational language (e.g., “for each of the . . . , one of the . . . is
chosen,” Figure 3B). Like diagrams, relational words and phrases can increase learners’ attention
to structural relations (Gentner et al., 2011; Loewenstein & Gentner, 2005; Son, Doumas, &
Goldstone, 2010; Son, Smith, Goldstone, & Leslie, 2012). We made no prediction regarding the
relative efficacy of graphical versus verbal pretraining.
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Method

Participants

For Experiment 2, 215 undergraduate students from Indiana University (82 male, 133 female;
three aged under 18, 198 aged 18 to 21, and 14 aged over 21) participated in the experiment in par-
tial fulfillment of a requirement for an introductory psychology course. Seventy-one participants
were assigned to the control pretraining condition, 71 to the experimental–graphical condition,
and 73 to the experimental–verbal condition. Within each pretraining condition, participants were
assigned randomly to study either similar or varied examples (control condition: similar = 36,
varied = 35; experimental–graphical condition: similar = 36, varied = 35; experimental–verbal
condition: similar = 37, varied = 36). The graphical and verbal pretraining conditions will be
referred to jointly as the “experimental” conditions.

Materials

The four PCO and four OSS stories used for training examples in Experiment 1 were used
as training examples in Experiment 2, with minor changes in wording. Two new stories for
each schema (PCO and OSS) were also added, yielding a total of six stories per schema, or
12 stories total. Each participant was shown only six of these examples, selected as follows.
First, each participant was assigned randomly to receive either similar or varied examples. Those
in the similar condition were shown all six examples of one schema and no examples of the
other schema. Participants in the varied condition were shown three examples of each schema,
presented in interleaved sequence. The blocked sequence used in Experiment 1 was not used in
Experiment 2. Whether the first training example (and, for the similar condition, all subsequent
examples) was based on PCO or OSS was counterbalanced within each condition. The specific
examples shown and the order in which they were presented were determined randomly for
each participant, subject to the above constraints. In the experimental conditions, the same set
of examples was used for both pretraining and training, and the examples were presented in
the same order in both cases. In contrast to Experiment 1, only long problem versions of the
pretraining/training examples were shown.

The test sets used in Experiment 1 were also used for the pretest and posttest in Experiment 2,
with minor changes in wording. However, two new OAPpl stories were added at the end of each
test set, for a total six stories in each set. Just as in Experiment 1, the test sets included a long
version and a short version of each problem, for a total of 12 problems in each set. One set was
selected randomly to serve as the pretest and the other as the posttest for each participant. The
complete set of training examples and test problems employed in Experiment 2 is available in the
online Supplementary Information.

Procedure

In all conditions, participants began by completing the pretest and ended by completing
the posttest, with both pretest and posttest administered in the same way as in Experiment 1.
Between the pretest and posttest, participants in the experimental conditions received a pretraining
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intervention followed by a training intervention, while those in the control condition received
only a training intervention.

During the pretraining, participants first read a brief exposition (available in the online Sup-
plementary Information) that described the common structure shared by all SWR problems,
without explaining how to solve such problems. The six training examples were then presented
one at a time. For each example, participants chose between two descriptions of the problem
structure (Figure 3), and were required to explain their answer. In the experimental–graphical
condition (Figure 3A), the descriptions involved a diagram resembling a combination lock,
and participants had to choose which problem element corresponded to the lock tumblers and
which to the different options on each tumbler. In the experimental–verbal condition (Fig-
ure 3B), the descriptions involved a sentence template of the form “For EACH of the ,
ONE of the is chosen,” and participants had to choose which problem element belonged in
each blank. After each response, participants received feedback, including explanations of why
incorrect answers were incorrect, and reviewed all six examples together after completing each one
separately.

After the pretest and, if applicable, the pretraining, participants began the training. They first
read an expository passage explaining how to solve SWR problems (available in the online
Supplementary Information). This passage was similar to that employed in Experiment 1 except
that different terms (i.e., “alternatives” and “selections” instead of “options” and “times”) were
used to refer to the structural roles of SWR. The six training examples were then presented one at a
time, and for each one, participants chose between the two possible final answers just as in the test
sections. Participants received feedback on each response, just as in the pretraining, and reviewed
all examples together after completing them separately. At the end of the training, participants
answered two open comprehension questions. However, because experimental condition had no
effect on responses to these questions, the results are not reported below.

As in Experiment 1, the study was presented via a computer interface, and participants
proceeded at their own paces but could not return to already-completed problems. The study took
an average of 22.9 min to complete (minimum: 9.8, maximum: 44.5). The experiment took longer
in the experimental conditions (25.7 min) than in the control condition (19.9 min).

Results

As in Experiment 1, internal consistency was relatively low for both test sets (Cronbach’s α =
.59, .58) due to data from OAPpl problems. Removing these data improved consistency for both
sets (Cohen’s α = .74, .68), but they were nevertheless included in subsequent analysis, with
problem schema included as a factor, for the reasons given in Experiment 1.

Average accuracy (percentage correct) was 58.5% on the pretest and 67.4% on the posttest.
In contrast to Experiment 1, both pretest and posttest accuracy were higher than chance, that is,
50%, t(214) = 7.04, p < .001 for pretest and t(214) = 12.7, p < .001 for posttest. However, as
in the previous experiments, accuracy increased significantly from pretest to posttest, t(214) =
6.41, p < .001, d = 0.47.

Change scores were computed as in Experiment 1. Initial analysis found no significant main
effects, or interactions with pretraining condition or level of variation, of which test sets served
as pretest and posttest, ps > .15, so this factor was excluded from subsequent analyses. Training
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FIGURE 4 Change scores by pretraining condition and level of variation (Experiment 2). Error bars indicate standard
errors.

version, that is, which schema was used for the first training example (and, in the similar examples
condition, all other examples), did interact significantly with level of variation and so was
included as factor (the primary finding of interest, i.e., the interaction of pretraining condition
with variation, remained significant if training version was excluded from analysis). Thus, the
final model used for analysis of the change scores was a 3 × 2 × 2 × 5 mixed ANOVA with
pretraining condition (control, graphical, or verbal), level of variation (similar or varied), and
training version as between-subjects factors, and problem schema (PCO, OSS, OAPlc, CAE, or
OAPpl) as a within-subjects factor.

As in Experiment 1, the main effect of variation did not reach significance, p > .9. Additionally,
despite a tendency for higher change scores in the experimental pretraining conditions (control:
4.7%, graphical: 9.9%, verbal: 12.1%), the main effect of pretraining was not significant either,
p > .15. However, critically, a significant interaction of pretraining condition with level of variation
was found, F(2, 203) = 3.46, p = .033, η2

g = .007. (This interaction was still significant if the
graphical and verbal pretraining conditions were combined into a single “experimental” condition,
F(1, 207) = 4.09, p = .044, η2

g = .004.) As shown in Figure 4, studying similar examples led
to greater posttest improvement in the control condition (similar: 7.4%, varied: 1.9%), but this
advantage was attenuated in the graphical pretraining condition (similar: 10.9%, varied: 8.8%),
and reversed in the verbal pretraining condition, which showed a clear advantage for varied
examples (similar: 7.0%, varied: 17.4%).

The main effect of problem schema was also significant, F(4, 812) = 5.73, p < .001, η2
g = .022.

Replicating Experiment 1, participants improved on schemas shown during training (PCO: 16.0%,
OSS: 13.3%) more than on those encountered only at test (OAPlc: 10.0%, OAPpl: −1.5%), with
one exception (CAE: 17.4%). Furthermore, significant interactions were found between training
version with level of variation, F(1, 203) = 4.81, p < .029, η2

g = .005, and problem schema,
F(4, 812) = 3.45, p = .008, η2

g = .013. Because training version had a different meaning depending
on level of variation—version determined the schema (PCO or OSS) of all training examples in the
similar condition but only of the first training example in the varied condition—change scores in
the similar and varied conditions were examined separately to understand the above interactions.
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TABLE 3
Change Scores by Level of Variation, Training Version, and Problem Schema (Experiment 2)

Similar Examples Varied Examples

Problem Schema PCO Examples Only OSS Examples Only PCO Example First OSS Example First

PCO 26.3% 0.0% 27.6% 23.5%
OSS 21.0% 12.5% 11.5% 15.8%
OAPlc 19.7% 7.2% 7.3% 13.3%
CAE 21.7% 18.4% 17.7% 14.3%
OAPpl −17.8% 1.6% −10.4% −6.1%
Overall 14.2% 8.0% 10.7% 12.1%

As shown in Table 3, in the similar examples condition, participants improved more on whichever
of the two training schemas (PCO, OSS) they were shown during training. Furthermore, they
improved more overall after studying PCO (14.2%) than OSS (8.0%) examples. In the varied
condition, by contrast, participants showed equal improvement on problems belonging to the
two training schemas and equal improvement overall, regardless of which schema was used for
their first training example. Finally, decrement in performance on OAPpl problems was observed
among all participants who studied PCO examples but not among those who studied only OSS
examples in the similar examples condition.

Discussion

An intervention aimed at increasing attention to underlying structure differentially increased
learning from varied, relative to similar, examples. Commonalities between varied examples are
relatively difficult to detect, and failure to detect such commonalities may prevent learners from
deriving a general representation of the concept exemplified by the examples. Drawing attention
to structure, we argue, alleviates this difficulty by highlighting underlying structure that is shared
by the examples. Thus, a certain level of attention to structural features appears to be a prerequisite
for variation effectively to promote learning and transfer.

The relative benefits of varied and similar examples depended on instructional condition in
Experiment 2 in just the same way as they depended on previous experience with SWR in
Experiment 1. This result is consistent with the view that attention to underlying structure was the
“active ingredient” causing the effects of previous experience in Experiment 1. More generally,
the results suggest that knowledge of a domain can enable learners to derive greater benefits from
varied examples by virtue of increasing their sensitivity to relevant structural features.

Importantly, Experiment 2 demonstrates the feasibility of increasing attention to structure
through direct intervention. Thus, even learners who lack the requisite prior knowledge may
become prepared to learn effectively from varied examples. The idea of preparing learners to learn
from instruction is not new. For example, Schwartz and his colleagues have argued that exploratory
activities that focus attention on underlying structure can improve learning from subsequent
formal instruction (Schwartz, Bransford, & Sears, 2005; Schwartz, Chase, & Bransford, 2012;
Schwartz, Chase, Oppezzo, & Chin, 2011; Schwartz & Bransford, 1998; Schwartz & Martin,
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2004). An important contribution of the present study, however, is to demonstrate that highly
directed activities, such as the pretraining interventions of Experiment 2, can have a similar
effect, provided that the structure to which learners are expected to attend is correctly and clearly
identified (see also Mayer, 2005).

The effectiveness of verbal pretraining for improving the benefits of varied examples is,
perhaps, not surprising. This pretraining employed relational language (the sentence template
“for each of the , one of the is chosen”), which several studies have found can increase
attention to underlying structure (Gentner et al., 2011; Loewenstein & Gentner, 2005; Son et al.,
2010, 2012). However, the utility of diagrams for promoting analogical transfer in several studies
(Catrambone et al., 2006; Gick & Holyoak, 1983) suggests diagrams can sometimes have the same
effect. Why, then, did the graphical pretraining not lead to an advantage of varied examples? One
possibility is that the lock diagrams were hard to understand. However, accuracy on the training
problems actually was higher in the graphical (87%) than in the verbal (78%) and control (73%)
pretraining conditions. Thus, the diagrams were likely well understood and may even have
facilitated performance. More plausibly, the diagrams may have served as a crutch rather than
as a scaffold for learning, allowing some participants to solve the problems more easily without
deeply processing their structure. Thus, the diagrams might not produce a lasting increase in
attention to underlying structure and thus not increase the benefits of varied examples. This
account fits into a larger body of research indicating that facilitating performance during study
may not always improve learning outcomes (Bjork, Dunlosky, & Kornell, 2013; Oppenheimer,
2008).

Considered together with Experiment 1, Experiment 2 yielded strong evidence for the psycho-
logical reality of the schemas used to generate the training and test stimuli. In both experiments,
participants tended to improve more on schemas shown during training (PCO, OSS) than on
novel schemas shown only at test (with the exception of CAE). Similarly, in Experiment 2,
participants in the similar examples condition improved more on whichever of the two training
schemas they studied. Additionally, those who studied PCO examples during training (but not
those who did not) showed a decrement in accuracy on OAPpl problems, which were semantically
cross-mapped (Gentner & Toupin, 1986) relative to PCO. In summary, the degree of match or
mismatch between training example schemas and test problem schemas exerted a strong influence
on ability correctly to solve the test problems. On the one hand, these findings validate our use of
the schemas as a basis for manipulating variation among examples during training. On the other
hand, they suggest that these or similar schemas can be a useful tool to organize the systematic
creation of varied examples in educational practice.

GENERAL DISCUSSION

Summary of Findings

The present findings imply that the question of how variation during learning affects subsequent
transfer may have no simple answer and suggest the importance of a related, more nuanced
question: How do the effects of variation depend on learner knowledge? In Experiment 1, learners
with less prior knowledge showed better transfer after studying similar examples, while those
with more prior knowledge showed better transfer after studying varied examples. In Experiment
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2, an intervention intended to increase a particular aspect of prior knowledge—awareness of
and attention to relevant structural features—yielded directionally the same effects as greater
prior knowledge in Experiment 1. Thus, it appears that the relative benefits of varied and similar
examples are not fixed but instead depend on prior knowledge, and in particular, on sensitivity to
structural features.

It is tempting to conclude that the benefits of varied relative to similar examples simply increase
as prior knowledge increases. Indeed, as reviewed in the Introduction, several studies provide
evidence consistent with this conclusion (Braithwaite & Goldstone, 2012; Große & Renkl, 2007;
Guo & Pang, 2011; Guo et al., 2013; Rau et al., 2010; Rittle-Johnson et al., 2009). However, it is
important to note that an interaction in the opposite direction—that is, relatively greater benefits
of varied examples for less, not more, knowledgeable learners—is also plausible a priori. One of
the key potential benefits of variation is that it highlights underlying structure and avoids drawing
attention to superficial commonalities among examples, and this effect might be most beneficial
for learners who have the most difficulty focusing on structure to begin with—namely, those with
less prior knowledge. A few studies have obtained evidence supporting this possibility (Day et al.,
2010; Quilici & Mayer, 1996). For example, among students in a regular level class, Day et al.,
2010 found benefits of varying the topic domain used to illustrate the concepts of positive and
negative feedback loops, while no such advantage appeared among the presumably more capable
students in an accelerated class.

These apparently discrepant results suggest the need for a unifying theoretical account able
to explain not only the observed interactions of prior knowledge and variation, but also why the
pattern of such interactions might itself vary depending on circumstances. We now present such an
account. The account is first described in qualitative terms and then formalized as a mathematical
model. We demonstrate that the mathematical model is indeed able to accommodate all of the
qualitative patterns of results in the studies mentioned above but is still sufficiently constrained
so as to make predictions for future studies.

Theoretical Account

The key assumptions of our theoretical account are as follows:

1. For a learner to acquire the proper structural basis for a concept from examples, the learner
must detect that there is a commonality between the examples and, having succeeded in
this, must extract the structural basis underlying that commonality.

2. Superficial similarities among examples facilitate detection of commonalities, while vari-
ation facilitates extraction of underlying structure (Gick & Holyoak, 1983; Kotovsky &
Gentner, 1996). In an earlier study using a similar paradigm to the present one (Braith-
waite & Goldstone, 2012; see also Chen & Mo, 2004), participants who studied varied
examples were subsequently less likely to describe the target concept (SWR) correctly,
consistent with greater difficulty detecting commonalities among examples, but were
more likely to refer to abstract structural features when describing it, consistent with
greater ease of extracting underlying structure.

3. Both of the effects described in Assumption 2 depend on learners’ structural sensitivity,
that is, their ability to attend to and encode structural features. Prior knowledge influences
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the effects of variation by increasing structural sensitivity (Chi et al., 1981; Chi &
VanLehn, 2012).

P (l|s, v) = P (c|s, v) ∗ P (e|c, s, v) (1)

P (c|s, v) = σ
(
e−av + sK,w, x

)
(2)

P (e|c, s, v) = σ

(
sK

e−av + sK
, y, z

)
(3)

A mathematical model reflecting the above assumptions is shown in Equations 1–3. Equation 1
states that the probability P (l|s, v) of successfully learning a concept for a learner with structural
sensitivity s studying examples whose level of superficial variation is v is equal to the product
of the probability P (c|s, v) of detecting commonalities among the examples, and the probability
P (e|c, s, v) of extracting their shared structure conditional on having detected commonalities.
These two probabilities are multiplicatively combined because they are conjunctively required
for structural learning to occur (Assumption 1).

Equation 2 states that the probability of detecting commonalities is a logistic function of the
sum of their perceived superficial similarity e−av and structural similarity sK , while Equation 3
states that the probability of extracting shared structure conditional on detection of commonalities
is a logistic function of the ratio of structural to total similarity. The parameters of the logistic
functions (center parameters w and y and scale parameters x and z) are free parameters of the
model. Perceived superficial similarity e−av is an exponentially decaying function of superficial
variation v, reflecting a common assumption in psychological models (Shepard, 1987); the rate of
exponential decay (a) is a free parameter of the model. Because of this relation, increasing v results
in decreasing the value of Equation 2 and increasing the value of Equation 3. That is, making a set
of examples more variable decreases the likelihood of noticing commonalities among them but
increases the likelihood of identifying the structural basis underlying such commonalities if they
are noticed (Assumption 2). Perceived structural similarity is the product of learners’ structural
sensitivity s (Assumption 3) and a constant value K , reflecting that all examples are assumed to
have the same shared structure regardless of level of superficial variation. The constant K is a
free parameter of the model.

Figure 5 shows the probabilities of successful learning predicted by the model as a function of
superficial variation (v) for several different levels of structural sensitivity (s). Several important
observations are immediately evident. First, for each level of structural sensitivity, there is an
ideal level of variation, such that the probability of generalization peaks at the ideal level and is
lower on either side of it. Second, the ideal level of variation is higher when structural sensitivity
is higher. Third, higher structural sensitivity leads to weaker effects of variation, reflected by
“flatter” curves.

Patterns consistent with each of the results discussed previously can be found in the model
predictions. First, comparing structural sensitivity levels 0.2 and 0.3 for variation levels 0.15 and
0.25 (Figure 5, points A, B, C, and D) reveals a pattern consistent with the findings of the present
study; that is, better learning outcomes for low variation for lower structural sensitivity and for high
variation for higher structural sensitivity. Second, comparing structural sensitivity levels 0.2 and
0.6 for the same variation levels, 0.15 and 0.25 (Figure 5, points A, B, E, and F), reveals a pattern
consistent with the findings of Guo and Pang (2011) and Rau et al., 2010; that is, better outcomes
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FIGURE 5 Probability of successful learning as a function of superficial variation and learners’ structural sensitivity, as
predicted by the model described in Equations 1–3, using the following settings for the model’s free parameters: a = 2,
K = 1, w = .80, x = .02, y = .20, z = .08.

for low variation at the lower level of structural sensitivity but virtually no effect of variation at
the higher level. Finally, comparing structural sensitivity levels 0.3 and 0.6 again for the same
variation levels, 0.15 and 0.3 (Figure 5, points C, D, E, and F), shows a pattern similar to those of
Quilici and Mayer (1996) and Day et al., 2010; that is, better outcomes for high, rather than low,
variation at the lower level of structural sensitivity and little effect of variation at the higher level.

We did not attempt to fit this model to the empirical results reviewed above due to the diversity
of dependent measures, measures of prior knowledge, and manipulations of variation. However,
the model demonstrates that these results can be organized within a common framework amenable
to precise description and consistent with past research regarding effects of superficial similarity,
variation, and learner knowledge. The model adds to existing accounts in three respects. First,
it formally articulates two factors that trade off when determining the effects of variability for
an individual learner: the likelihood of detecting commonalities among examples (benefitting
from superficial similarity) and the likelihood of extracting a structural concept representation
(benefitting from variation). Second, the model predicts that, for any given learner, optimal
learning occurs at an ideal level of variation. Thus, for any level of learner knowledge, some
levels of variation are too low and others too high, resulting in poorer learning than the ideal
level. Third, the model predicts that the ideal level of variation increases with learner knowledge.
Thus, for example, if increasing variation from a specific lower level to a specific higher level
improves learning among less knowledgeable learners, the same increase in variation will also
improve learning among more knowledgeable learners, although possibly to a lesser degree.

Related Theoretical Accounts

Although the above account connects most closely to research on concept learning and ana-
logical transfer, our findings may also be viewed as an instance of the expertise reversal effect
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(Kalyuga, 2007; Kalyuga, Ayres, Chandler, & Sweller, 2003), an effect typically interpreted us-
ing the framework of cognitive load theory (Sweller, 1988; van Merriënboer & Sweller, 2005).
This effect occurs when instructional supports benefit less knowledgeable learners but do not
benefit, or even harm, more knowledgeable ones (for a recent example see Fyfe, Rittle-Johnson,
& DeCaro, 2012). Less knowledgeable learners are assumed to lack the knowledge structures
needed to organize information from instruction, while instructional supports can facilitate such
organization, reducing cognitive load. More knowledgeable learners already possess the requi-
site knowledge structures, while the need to integrate them with external supports can create
extraneous cognitive load. In the present study, superficial similarity between examples may be
viewed as a form of support, insofar as such similarity should facilitate drawing correspondences
between examples. Thus, our observed interaction between similarity and prior knowledge may
be viewed as an instance of the expertise reversal effect, and our findings as consistent with the
larger literature regarding this effect.

Viewing similarity between examples as a type of support implies that the question of what
level of similarity (or variation) promotes the best learning outcomes is a special case of a
more general issue in instructional design—the assistance dilemma (Koedinger & Aleven, 2007;
Koedinger, Pavlik, Mclaren, & Aleven, 2008). The larger question is how much assistance should
be offered to learners during study. While broad qualitative responses such as “provide more
assistance (i.e., greater similarity between examples) for less knowledgeable learners” may be
useful as guidelines, an important long-term goal is the creation of quantitative models that can
help to determine specific optimal levels of assistance for specific learning situations. Existing
models have addressed this goal with respect to some dimensions of instructional design, such
as temporal spacing of vocabulary review (Pavlik & Anderson, 2008) and balance of worked
examples and problem solving (Koedinger et al., 2008). To our knowledge, no such model
currently exists with respect to the issue of similarity and variation among examples. The model
described in the previous section can serve as a first step in this direction.

Implications for Instruction

A practical implication of the present study is that learners must be prepared in order to profit
from studying varied examples. One possible approach to such preparation is to begin with
similar examples, and later switch to varied examples, on the grounds that initial study of similar
examples could create the prior knowledge needed to benefit from varied examples (Day et al.,
2010; Elio & Anderson, 1984; Kotovsky & Gentner, 1996). This approach was tested in another
experiment not reported above. Participants in an experimental condition practiced with similar
examples until accuracy reached a criterion, after which they practiced with varied examples for
the remainder of training. However, this “adaptive variation” condition showed no advantage over
training with either similar examples only or examples with a uniform (high) level of variation.
This null result suggests that inductive learning from multiple similar examples may not be the
most effective way to prepare learners to benefit from variation.

An alternative approach is to precede the study of concepts with explicit instruction and
practice in encoding relevant structural features. The success of the experimental conditions of
Experiment 2, especially the verbal pretraining condition, provides evidence for the effectiveness
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of this approach. The use of explicit terminology referring to critical relations and roles (e.g.,
“for each of . . . one of . . . ,” “alternatives,” “selections”) may have been critical to the success
of the experimental pretraining (Gentner et al., 2011; Loewenstein & Gentner, 2005; Son et al.,
2010, 2012). While well-developed terminology exists to refer to structural roles within mathe-
matical formalisms—for example, “addend” and “augend,” “term” and “factor,” “domain” and
“range”—the use of relational terminology to refer to structural relations and roles within specific,
concrete situations has received less attention. Such terminology has the potential to highlight
the underlying structure within situations and thus facilitate making connections to formalisms
that represent such structure.
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Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2009). Combining shared control with variability over surface
features: Effects on transfer test performance and task involvement. Computers in Human Behavior, 25 (2), 290–298.
doi:http://dx.doi.org/10.1016/j.chb.2008.12.009

Day, S. B., & Goldstone, R. L. (2012). The import of knowledge export: Connecting findings and theories of transfer of
learning. Educational Psychologist, 47(3), 153–176. doi: http://dx.doi.org/10.1080/00461520.2012.696438

Day, S. B., Goldstone, R. L., & Hills, T. (2010). The effects of similarity and individual differences on comparison and
transfer. In Proceedings of the 32nd annual meeting of the cognitive science society (pp. 465–470). Portland, OR:
Cognitive Science Society. Retrieved from http://csjarchive.cogsci.rpi.edu/proceedings/2010/papers/0078/paper0078.
pdf

De Bock, D., Johan, D., van Dooren, W., Roelens, M., & Verschaffel, L. (2011). Abstract or concrete examples in learning
mathematics? A replication and elaboration of Kaminski, Sloutsky, and Heckler’s study. Journal for Research in
Mathematics Education, 42(2), 109–126.

Eiriksdottir, E., & Catrambone, R. (2011). Procedural instructions, principles, and examples: How to structure instructions
for procedural tasks to enhance performance, learning, and transfer. Human Factors: The Journal of the Human Factors
and Ergonomics Society, 53(6), 749–770. doi: http://dx.doi.org/10.1177/0018720811419154



VARIATION AND PRIOR KNOWLEDGE IN CONCEPT LEARNING 253

Elio, R., & Anderson, J. R. (1981). The effects of category generalizations and instance similarity on schema abstraction.
Journal of Experimental Psychology: Human Learning and Memory, 7(6), 397–417. Retrieved from http://act-r.psy.
cmu.edu/papers/183/journaleperimental.pdf

Elio, R., & Anderson, J. R. (1984). The effects of information order and learning mode on schema abstraction. Memory
& Cognition, 12(1), 20–30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6708807

Fisher, K. J., Borchert, K., & Bassok, M. (2011). Following the standard form: Effects of equation format on algebraic
modeling. Memory & Cognition, 39(3), 502–515. http://dx.doi.org/10.3758/s13421-010-0031-6

Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science
instruction: A systematic review. Educational Psychology Review, 26(1), 9–25. Retrieved from http://link.springer.
com/article/10.1007/s10648-014-9249-3

Fyfe, E. R., Rittle-Johnson, B., & DeCaro, M. S. (2012). The effects of feedback during exploratory mathematics problem
solving: Prior knowledge matters. Journal of Educational Psychology, 104(4), 1094–1108.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155–170. doi:http:
//dx.doi.org/10.1207/s15516709cog0702 3

Gentner, D. (2010). Bootstrapping the mind: Analogical processes and symbol systems. Cognitive Science, 34(5),
752–775. doi:http://dx.doi.org/10.1111/j.1551-6709.2010.01114.x

Gentner, D., Anggoro, F. K., & Klibanoff, R. S. (2011). Structure mapping and relational language support children’s
learning of relational categories. Child Development, 82(4), 1173–1188. doi:http://dx.doi.org/10.1111/j.1467-8624.
2011.01599.x

Gentner, D., Loewenstein, J., & Hung, B. (2007). Comparison facilitates children’s learning of names for parts. Journal
of Cognition and Development, 8(3), 285–307. doi: http://dx.doi.org/10.1080/15248370701446434

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for analogical encoding.
Journal of Educational Psychology, 95(2), 393–405. doi: http://dx.doi.org/10.1037/0022-0663.95.2.393

Gentner, D., Loewenstein, J., & Thompson, L. (2004). Analogical encoding: Facilitating knowledge transfer and integra-
tion. In Proceedings of the 26th annual conference of the Cognitive Science Society. Mahwah, NJ: Erlbaum.

Gentner, D., & Toupin, C. (1986). Systematicity and surface similarity in the development of analogy. Cognitive Science,
10(3), 277–300. doi:http://dx.doi.org/10.1016/S0364-0213 (86)80019-2

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1–38.
Gick, M. L., & Paterson, K. (1992). Do contrasting examples facilitate schema acquisition and analogical transfer?

Canadian Journal of Psychology, 46(4), 539–550. Retrieved from http://psycnet.apa.org/journals/cep/46/4/539/
Goldstone, R. L. (1996). Isolated and interrelated concepts. Memory & Cognition, 24(5), 608–28. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/8870531
Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The

Journal of the Learning Sciences, 14(1), 69–110.
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