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WHERE ARE THE QUADRATIC’S COMPLEX ROOTS ?  

Ágnes Orsolya Páll-Szabó  

 

Abstract: A picture worth more than a thousand words – in mathematics too. Many students fail in 

learning mathematics because, in some cases, teachers do not offer the necessary visualization. 

Nowadays technology overcomes this problem: computer aided instruction is one of the most 

efficients methods in teaching mathematics. 

In this article we try to discuss some methods of visualizing complex roots, with examples. The first 

method presented is the auxiliary polynomial method, followed by the the tangent line method. One 

of the most interesting but less known method is Lill’s circle. Another method discussed in the article 

is Domain Coloring via the Color Wheel. 
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 1.Introduction  

According ro Arcavi`s definition “visualization is the ability, the process and the product of creation, 

interpretation, use of and reflection upon pictures, images, diagrams, in our minds, on paper or with 

technological tools, with the purpose of depicting and communicating information, thinking about and 

developing previously unknown ideas and advancing understandings”.[1] 

Visualization is very important for every teacher, especially for mathematics one, because they must 

often present abstract concepts and symbols which are difficult to understand for students. Unfortunately 

many of the students fail in learning mathematics because teachers do not pay attention to the basic 

concepts and use formulas without explaining where they came from. 

In order to overcome these difficulties, teachers should use different methods. Nowadays technology is 

able to provide us the help that we need: computer aided instruction is one of the most efficients methods 

in teaching mathematics, very effective when it comes to visualize abstract concepts.  

In this article we try to discuss some methods of visualizing complex roots, with examples created by 

us, using Matlab.  

When teaching complex roots, teachers do not deal with identifying complex roots graphically and 

usually use the quadratic formula to solve a quadratic equation. The question is: where are the complex 

roots located and how can they be visualised? 

2. Preliminaries 

The roots of the general quadratic equation 𝑦 =  𝑎𝑥2 +  𝑏𝑥 +  𝑐  (𝑎, 𝑏, 𝑐 ∈  ℝ) are known to occur in 

the following sets:  real and distinct (the discriminant is greater than zero); real and coincident (the 

discriminant is equal to zero); complex conjugate pair(the discriminant is less than zero. In this case, a 

simple x–y plot of the quadratic equation does not reveal the location of the complex conjugate roots.) 

3. The auxiliary polynomial method , Example: 

We have a quadratic function with complex roots 𝑓(𝑥)  =  𝑥2 − 2𝑥 + 5  or 𝑓(𝑥) =  (𝑥 − 1)2 + 4. The 

minimum point (vertex) of the graph is at 𝑉(1,4),  see Figure 1, so it doesn’t cross the x-axis.  Because 

it lies entirely above the x-axis, we know it has no real roots. The discriminant is:  
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 ∆= 𝑏2 − 4𝑎𝑐 = 4 − 20 = −16 

and the roots are: 

𝑥1,2 =
−𝑏 ± √∆

2𝑎
= 1 ± 2𝑖 

 

 

Figure 1. 𝒇(𝒙)  =  𝒙𝟐 − 𝟐𝒙 + 5 and vertex at 𝑽(𝟏, 𝟒) 

We reflect the quadratic horizontally over the vertex, in Figure 2, we do this by transforming  

𝒇(𝑥) =  (𝑥 − 1)2 + 4  into  𝒇(𝑥) =  −(𝑥 − 1)2 + 4  , and find the x-intercepts of this new graph 

𝑅(−1,0) and 𝑃(3,0). 

 

Figure 2. f(x) =  (x − 1)2 + 4 (blue) and  f(x) =  −(x − 1)2 + 4 (green) 

If we rotate the 𝑅𝑃 segment about his midpoint, then the 𝑅 and 𝑃 points will describe a circle, 

with centre 𝐴(1,0) and radius of 2, see Figure 3, 4. In order to graphically see the complex 

roots of the original function, we need to rotate the reflected image 90 degrees to place the 

quadratic into the Argand plane.  
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                             Figure 3.    Figure 4. 

The points 𝐵(1,2𝑖) and 𝐶(1, −2𝑖) on the diagram are a representation of the complex roots. The 

complex roots of the initial equation are therefore given by 𝑥 =  1 ±  2𝑖. [2], [13].  

 4. General case (auxiliary polynomial method) 

Let  𝑦 =  𝑎𝑥2 +  𝑏𝑥 +  𝑐 represent any parabola.First we complete the square. 

𝑦 =  𝑎 (𝑥2 + 
𝑏

𝑎
𝑥 +

𝑏2

4𝑎2
) + 𝑐 −

𝑏2

4𝑎
 

𝑦 =  𝑎 (𝑥 +  
𝑏

2𝑎
)

2

+ 𝑐 −
𝑏2

4𝑎
 

Its vertical reflection over its vertex is  =  −𝑎 (𝑥 +  
𝑏

2𝑎
)

2

+ 𝑐 −
𝑏2

4𝑎
 ,  which expands to 𝑦 =

 −𝑎𝑥2 − 𝑏𝑥 + 𝑐 −
𝑏2

4𝑎
  .Its complex roots will be at 

𝑥 =
𝑏

−2𝑎
±

√𝑏2 − 4(−𝑎)(𝑐 −
𝑏2

2𝑎)

−2𝑎
 

which is  

       𝑥 =
𝑏

−2𝑎
±

√4𝑎𝑐−𝑏2

2𝑎
 .  

Since (– 𝑏2   +  4𝑎𝑐) is negative, these complex roots of the flipped quadratic can be written 

as: 

𝑥 = −
𝑏

2𝑎
±

𝑖√𝑏2 − 4𝑎𝑐

2𝑎
    ,     (𝟏) 

and real roots of the quadratic we started with 

𝑥 = −
𝑏

2𝑎
±

√𝑏2 − 4𝑎𝑐

2𝑎
  .      (𝟐) 
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They are the same except for the 𝑖 in the complex roots.So we can think of (𝟐) as 

representing a circle of radius  
√𝑏2−4𝑎𝑐

2𝑎
, centred at (−

𝑏

2𝑎
, 0).  Therefore multiplying  

√𝑏2−4𝑎𝑐

2𝑎
  

by 𝑖 has the effect of rotating the point (
√𝑏2−4𝑎𝑐

2𝑎
, 0 )  90 degrees anti-clockwise around the 

point (−
𝑏

2𝑎
, 0). [11] 

5. The tangent line method 

Let (𝑥)  =  𝑎𝑥2 +  𝑏𝑥 +  𝑐 , then its derivative is 𝑓′(𝑥) =  2𝑎𝑥 +  𝑏. Let 𝛼 = −
𝑏

2𝑎
  ,  𝛽 =

√4𝑎𝑐−𝑏2

2𝑎
 and we consider two points from the graph 

  𝑆2(𝛼 + 𝛽, 2𝛾),   𝑆1(𝛼 − 𝛽, 2𝛾).  

𝑓′(𝛼 + 𝛽) = 2𝑎(𝛼 + 𝛽) + 𝑏 = 2𝑎 (−
𝑏

2𝑎
+

√4𝑎𝑐−𝑏2

2𝑎
) + 𝑏 = 2𝑎

√4𝑎𝑐−𝑏2

2𝑎
= 2𝑎𝛽 ,this mean that the 

slope of the tangent line to the parabola at 𝑆2 is 2𝑎𝛽. 

The tangent line in 𝑆2 to the parabola which contains the point (𝛼, 0) is: 

 𝑦2 = 2𝑎𝛽𝑥 − 2𝑎𝛼𝛽,  and in 𝑆1 : 𝑦1 = −2𝑎𝛽𝑥 + 2𝑎𝛼𝛽, see Figure 6. 

𝑟1 =
𝑥𝑆2+𝑥𝑆1

2
= 𝛼 , 𝑟2 =

𝑥𝑆2−𝑥𝑆1

2
= 𝛽 , 𝑥 = 𝑟1 ± 𝑖𝑟2 are the complex roots of the quadratic. For further 

information see [2]. 

Example: Let 𝑓(𝑥) =  𝑥2 − 2𝑥 + 5  , see Figure 5., 𝑓′(𝑥) =  2x − 2  , 𝛼 = 1, 𝛽 = 2 , 𝑓′(𝛼 + 𝛽) =  4, 

𝑦2 = 4𝑥 − 4, 𝑦1 = −4𝑥 + 4 ,  𝑆2(3,8),   𝑆1 (−1,8). The roots are : 

 𝑥 = 𝑟1 ± 𝑖𝑟2 = 1 ± 2𝑖 , where  𝑟1 =
𝑥𝑆2+𝑥𝑆1

2
= 𝛼 = 1 , 𝑟2 =

𝑥𝑆2−𝑥𝑆1

2
= 𝛽 = 2 

  

             Figure 5. 𝒇(𝒙) =  𝒙𝟐 − 𝟐𝒙 + 𝟓              Figure 6. 

6. Lill’s circle 

With this method we can find both real and imaginary solutions, and will work for equations of any 

degree.We consider a general quadratic equation:   

𝑎𝑥2 +  𝑏𝑥 +  𝑐 = 0. 
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Figure 7. 𝒚 = 𝒙𝟐 + 𝟑𝒙 + 𝟐 

If 𝑎 ≠ 1, we divide the equation by leading coefficient. From the starting point (0, −1) we lay out 

counter-clockwise perpendicular segments with lengths equal to the 𝑎, 𝑏 and 𝑐 coefficients.If we have 

negative coefficient we go upwards on the vertical path, and downwards if the coefficient is positive. 

On the horizontal path we go left if the coefficient is positive, and right in the case of negative one.  

When the quadratic path is finished we draw a line from the starting point to the finishing point, and we 

draw a circle that has this diameter. The solutions of the equation are the points where this circle 

intersects the x-axis.   

Quadratic equations with complex solutions: 

 

Figure 8. 𝒚 = 𝒙𝟐 + 𝟑𝒙 + 𝟔 

First of all, we construct the 𝑎-line, 𝑏-line and 𝑐-line like in the previous case. Then we translate the 𝑎-

line in order to add to the 𝑐-line. We draw the blue circle using the 𝑐 + 𝑎 lines as diameter. The center 

of the yellow circle will be the point where the 𝑏-line and 𝑐-line intersect, and the radius will be given 

by the intersection of the 𝑏-line and the blue circle. Where the yellow circle intersects 𝑥 = −𝑏/2 line, 

there we find the two complex roots. [5] 
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7.Surface plot 

 

Figure 9.  Surface A (red) and Re Y=0 (green) Figure 10. Surface B (blue) and Im Y=0 (green) 

 

Figure 11. 𝑓(𝑥)  =  𝑥2 − 2𝑥 + 5 , complex roots at 1+2i,1-2i 

“The reader is now asked to leave the comfort zone of two-dimensional plots and extend his/her 

thinking into the third dimension.” said N.Bardell in [3]. 

We consider 𝑦 =  𝑎𝑥2 +  𝑏𝑥 +  𝑐   and 𝑋 = 𝐺 + 𝑖𝐻 a complex value. If we substitute 𝑋 in the 

equation the result is 

𝑦 =  𝑎(𝐺 + 𝑖𝐻)2 +  𝑏(𝐺 + 𝑖𝐻)  +  𝑐 

𝑦 =  𝑎𝐺2 +  2𝑎𝐺𝐻𝑖 − 𝑎𝐻2 + 𝑏𝐺 + 𝑏𝐻𝑖 + 𝑐 

𝑦 = ( 𝑎𝐺2 − 𝑎𝐻2 + 𝑏𝐺 + 𝑐) + 𝑖(2𝑎𝐺𝐻 + 𝑏𝐻) 

𝑦 = 𝐴 + 𝑖𝐵 

𝐴 =  𝑎𝐺2 − 𝑎𝐻2 + 𝑏𝐺 + 𝑐 , B=2𝑎𝐺𝐻 + 𝑏𝐻 where 

𝑅𝑒 𝑋 = 𝐺, 𝐼𝑚 𝑋 = 𝐻, 𝑅𝑒 𝑦 = 𝐴, 𝐼𝑚 𝑦 = 𝐵 

Then we plot the surfaces. The surface A has the appearance of a saddle while surface B has the 

appearance of a twisted plane. Both are hyperbolic paraboloid. The complex roots are where A = B = 0 

or Re(y) = Im(y) = 0. This is illustrated in Figure7: we have two points where surfaces A and B intersect 

each other and on the same time intersect a horizontal plane positioned at zero altitude. The parabola in 

the x–y plane is actually a section of a more general three-dimensional hyperbolic paraboloid surface. 

8. Quadratic equation with complex coefficients 

When it comes to finding zeros, the complex function 𝑓(𝑧) has an advantage: there are two equations 

(real and imaginary parts of 𝑓) for two unknowns (real and imaginary parts of  𝑧). 
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Figure 12. . Contour of real (red) and imaginary (black) part of the function  

𝒇(𝒛) = 𝒛𝟐 − 𝟖(𝟏 − 𝒊)𝒛 + 𝟔𝟑 − 𝟏𝟔𝒊  

Matlab code :  

x = linspace(-20,20); 
y = x; 
[x,y] = meshgrid(x,y);  
z = x + i*y; 
f = z.^2-8*(1-i)*z+63-16*i; 
contour(x,y,real(f),[0 0],'r'); 
hold on;  
contour(x,y,imag(f),[0 0],'k');  
plot(5-12i,'kO'); 
plot(3+4i,'kO'); 
hold off 
xlabel('Re z'); ylabel('Im z'); 

Example:  

Regarding  f(z) = z2 − 8(1 − i)z + 63 − 16i, ∆= −252 − 64i ,the complex roots are : 𝑧1 = 5 −

12i, 𝑧2 = 3 + 4i. If we substitute 𝑧 = 𝑥 + 𝑖𝑦 in the equation the result is:  

(𝑥 + 𝑖𝑦)2
− 8(1 − i)(𝑥 + 𝑖𝑦) + 63 − 16i = 0 

After expanding the equation: 

(𝑥2 − 𝑦2 − 8𝑥 − 8𝑦 + 63) + 𝑖(2𝑥𝑦 − 8𝑥 − 8𝑦 − 16) = 0 

separating the real and imaginary parts, and setting each equal to zero, we have two real equations:   

𝑥2 − 𝑦2 − 8𝑥 − 8𝑦 + 63 = 0, 2𝑥𝑦 − 8𝑥 − 8𝑦 − 16 = 0  . 

Then we plot 𝑦 depending on 𝑥 and 𝑥 with respect to 𝑦 (y as a function of x and x as a function of y), 

see Figure 12. The complex roots are at the intersection points of the two graphs.[4],[7] 
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9. Modulus surface 

 

Figure 13. 𝒇(𝒙) = |𝒙𝟐 + 𝒙 − 𝟏| 

If  𝑤 = 𝑥 + 𝑖𝑦, 𝑤 ∈ ℂ, 𝑥, 𝑦 ∈ ℝ  then the modulus is defined as |𝑤| = √𝑥2 + 𝑦2 ≥ 0. The modulus 

surface of the function 𝑓(𝑧)  =  𝑎𝑧2 +  𝑏𝑧 +  𝑐 is the surface defined by three real variables 
𝑥, 𝑦 𝑎𝑛𝑑 |𝑓(𝑧)| . The graph always lies on or above the Argand plane. |𝑓(𝑧)| = 0 if and only if 𝑓(𝑧) =
0 , so the modulus surface touches the complex plane in those particular points where the function is 

zero. Complex roots are found where the modulus surface has minimum points touching the 𝑥𝑦-plane 

The quadratic f(z) = z2 − 2z + 5 has the modulus surface as seen in Figure 14, where the complex 

roots of the polynomial are  1 ±  2i and the surface will have exactly those two points that touch the 

𝒙𝒚 −plane.This method can be also used with complex coefficient polynomials and with polynomials 

that have higher degree. This method enabled us to see how the zeros of a polynomial moved when a 

single coefficient is changed(surfaces became easy to draw with the use of computer graphics). This 

method is presented in [10] and [2]. 

 

Figure 14. Modulus surface of f(x) = x2 − 2x + 5 

10. Newton’s method on the complex plane. 

Newton's method is an efficient way to approximate solutions to equations of the form 𝑓(𝑥) = 0. 

Newton's method involves choosing an initial point 𝑥0 and then, finding a sequence of numbers 

𝑥0, 𝑥1 , 𝑥2, ⋯ that converge to a solution. 

Select a point 𝑥0 , arbitrarily close to the function's root. Consider the tangent line to the function 𝑓 at 

the point  (𝑥0, 𝑓(𝑥0)) than we can compute the x-intercept of this tangent line at 𝑥 = 𝑥1. Repeating this 

algorithm generates a sequence of 𝑥 values 𝑥0, 𝑥1 , 𝑥2, ⋯ by the rule  
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𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 , 𝑓′(𝑥𝑛) ≠ 0. 

 

                                

             Figure 15. Newton's method              Figure 16. Basin of attraction 

Consider f(x) = x2 − 2x + 5 ,it has two solutions at 𝑥 = 1 +  2i and 𝑥 = 1 −  2i. If we choose 𝑥0 on 

the real axis then the iterates behave chaotically. If the chosen 𝑥0 is not on the real axis, Newton's 

method converges. 

𝑥0 = 0.5000 +  0.5000𝑖 

 𝑥1 = 2.7500 +  2.2500𝑖 

 𝑥2 =   1.4442 +  1.6788𝑖 

𝑥3 =    0.9275 +  1.9528𝑖 

𝑥4 =    1.0017 +  1.9992𝑖 

𝑥5 =    1.0000 +  2.0000𝑖 

𝑥0 = −0.5000 −  0.5000𝑖 

 𝑥1 =  1.4500 −  0.6500𝑖 

 𝑥2 =  −0.2150 −  2.4050𝑖 

𝑥3 =    0.7272 −  1.8650𝑖 

𝑥4 =     1.0172 −  1.9824𝑖 

𝑥5 =    0.9998 −  2.0000𝑖 

𝑥6 =    1.0000 −  2.0000𝑖 

The basin of attraction of root 𝑟 is the set of all 𝑥0 numbers, such that Newton's method starting at 𝑥0  

converges to 𝑟. Since the real axis is the perpendicular bisector, any initial value chosen on the real 

axis will not converge. For example, if we pick any complex point in the green regions, when it is used 

as the initial point in the Newton Method, it will converge to the root 1 − 2𝑖. Every starting value that 

converges to 1 − 2𝑖 is in the basin of attraction of its own.      

11. Color Representations (Domain Coloring via the Color Wheel) 

With color wheel method we graphically represent complex functions.The color wheel method assigns 

a color to the point of complex plane.The domain coloring technique gives a continuous and bijective 

map from the complex plane to the color wheel: 0 maps to white, 1 maps to red, −1 maps to cyan, and 

the remaining sixth roots of unity map to yellow, green, blue, violet and infinity maps to black. Phase 

is encoded as hue, while lightness corresponds to the modulus. 

The behavior and the basic properties (zeros and their multiplicities, periodicity, symmetry and range) 

of the function can be rapidly overviewed with this method. [8][14]  
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Figure 17. f(x) = x2 + 1, complex roots at i, -i 

 

Matlab code: 
x = linspace(-2.5,2.5,500); 
y = linspace(-2.5,2.5,500); 
z=complex(ones(500,1)*x,y'*ones(1,500)); 
f = z.^2+1; 
ff = surf(real(z),imag(z),0*z,angle(-f)); 
set(ff,'EdgeColor','none'); 
colormap hsv(500) 
view(0,90) 
axis equal 
xlim([-2.5 2.5]);ylim([-2.5 2.5]); 

Conclusion 

Visualising make teaching of mathematics much more interesting because we are able to tell the whole 

graphical story, not just part of it. We can present a complete analysis to the connection between the 

roots of a quadratic equation and the graph of its related quadratic function thanks to computer-aided 

mathematical visualization, obtaining great results. Of course, just as Arcavi [1] warns us, there are 

some problems which cannot be solved with this method. 

Although the effectiveness of the visualization cannot be measured, the researchers of the topic agree 

about it`s usefulness. The “Möbius Transformations Revealed”  a short film created at the University 

of Minnesota by Douglas Arnold and Jonathan Rogness gathered, until now, more than two million 

viewers on Youtube, proving that science can go viral if properly presented.[12]A Turkish study got 

the same result: they determined that the use of visualization method at the beginning of the class 

attracted students’ attention to the subject and relieved classroom boredom.[9] 

Unfortunately the majority of the teachers from Eastern-Europe, especially from Romania, still rarely 

use computers for visualizing mathematical examples however it would help students to develop much 

deeper understanding in such abstractions as similarity, self-similarity. Some drawings, as we have 

seen examples above, cannot be made during a usual class on the blackboard with chalk, but can be 

easily drawn by a computer. All these techniques increase our ability to understand complex function 

behavior.  
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