
Informatics in Education, 2013, Vol. 12, No. 1, 125–142 125
© 2013 Vilnius University

Teaching of Computer Science Topics Using
Meta-Programming-Based GLOs and LEGO
Robots

Vytautas ŠTUIKYS, Renata BURBAITĖ, Robertas DAMAŠEVIČIUS
Kaunas University of Technology, Software Engineering Department
Student ↪u 50-415, 51368 Kaunas, Lithuania
e-mail: {vytautas.stuikys, renata.burbaite, robertas.damasevicius}@ktu.lt

Received: December 2012

Abstract. The paper’s contribution is a methodology that integrates two educational technologies
(GLO and LEGO robot) to teach Computer Science (CS) topics at the school level. We present
the methodology as a framework of 5 components (pedagogical activities, technology driven pro-
cesses, tools, knowledge transfer actors, and pedagogical outcomes) and interactions among the
components. GLOs are meta-programmed entities to generate LO instances on demand depending
on the context of use and learning objectives. A GLO is a black-box entity, which is integrated
in the framework through the generating process to source the teaching and learning process via
robot-based visualization to demonstrate how programs and algorithms are transformed into real-
world tasks and processes. The methodology is tested in the real e-learning setting. The pedagogical
outcomes are evaluated by empirical data showing the increase of student engagement level, higher
flexibility and reuse enhancement in learning.

Keywords: learning object (LO), generative learning object (GLO), LEGO NXT robot, CS
teaching, educational visualization.

1. Introduction

Today, Computer Science (shortly CS) is regarded as the fundamental course (similarly
to mathematics, physics), which is delivered in both universities and schools. Its impor-
tance has been recognized far ago because it is a source of the primary and fundamental
knowledge needed for ours life and activities, which are highly penetrated by the use of
computers, Internet and other modern technologies. On the other hand, CS can be also
seen as an interdisciplinary course, for example, with respect to its relation to robotics and
e-learning domains. The learning and teaching processes within the e-learning environ-
ments are guided and underpinned by two basic components – pedagogy and technology
– both being fuelled by teaching content (or CS teaching material in our case) that in the
scientific literature is also known as learning object (LO) or learning objects (LOs).

Research on LOs forms a separate topic in e-learning domain (see, for example,
Northrup, 2007). Among multiple ideas and approaches proposed and dealt with in this
branch of research, the generative learning objects (GLOs) should be mentioned in the

126 V. Štuikys et al.

first place. Boyle et al. (2004), Morales et al. (2005) have introduced the GLO concept
and approaches based on it aiming to enforce the reuse potential in the e-learning domain.
Here, the term ‘generative’ should be understood as a property of the learning content
to be produced and handled either semi-automatically or automatically under support of
some technology. The contribution of GLOs in e-learning is that the extremely wide com-
munity involved in learning has received a sign to move from the component-based reuse
model (it relates to the use of LOs) to the generative-based reuse model, which relates to
the use of GLOs.

The aim of this paper is to present a framework of teaching CS topics in the e-learning
setting using GLOs combined with robot-based environment at the secondary school
(Balčikonis gymnasium, Panevėžys). We have selected the LEGO NXT robot as the e-
learning environment because of its popularity to introduce constructivist-based learning
through the use of problem-based or project-based models in teaching CS topics.

The contribution of the paper is twofold: (1) the systematic approach described as
a framework, were two technologies (GLO and robot programming) are seamlessly in-
tegrated; (2) a case study with the identified measurable pedagogical outcomes such as
flexibility for teachers and students (due to feedback within the processes and activities
of the framework), the increased students’ engagement level in learning, etc.

The paper is organized as follows. Section 2 analyzes the related work. Section 3
provides a general description of the approach, and subsections of Section 3 deliver some
details of the components of the approach. Section 4 presents and analyses a case study
on how the approach is implemented in real e-learning setting. Section 5 evaluates the
results from teacher’s and student’s perspectives. Finally, Section 6 presents conclusion.

2. Related Work

CS deals with abstract topics and most secondary school students have difficulties to
understand and use basic concepts, such as data structures and algorithms, to create pro-
grams that solve concrete problems. The following papers emphasize the importance of
at least two items in learning and teaching: (a) choosing of the relevant theory and model,
educational methods, activities and environments; (b) an adequate level of student en-
gagement into the process (Fagin et al., 2001; Lubitz, 2007; Pásztor et al., 2010; Pears,
2010; Hazzan et al., 2011; Cowden et al., 2012).

Usually the learning theory is introduced through educational methods, activities and
environments. There are three main categories of learning theories: behaviorism, cogni-
tivism and constructivism (Leonard, 2002; Smith, 2003). Behaviorism is based on using
an educational environment, which forms appropriate student’s behaviour and correct re-
sponses. The reinforcement of behaviour is a central issue in learning process. According
to the cognitivism, the student is an active goal-oriented information receiver, processor
and developer of new information, and information processing is more important than
the final result. The main idea of constructivism is that the student constructs own knowl-
edge based on his previous knowledge, own experience and learning context. According

Teaching of Computer Science Topics 127

to this approach, the main task of the teacher is to create a learning environment in which
the students could actualize previous knowledge and experience and could adopt new
information actively.

The constructivist-based approach dominates in CS teaching and learning (Ben-Ari,
1998; Pásztor et al., 2010; Pears, 2010; Hazzan et al., 2011). The approach highlights that
“in this situation the students stand in the centre of learning process and the teacher only
helps, gives advises as a facilitator”. Jenkins (2001) indicates that the teaching environ-
ments, learning activities and teaching methods have a significant impact on motivation.
If the above listed items are chosen properly, the students can learn CS topics in the most
effective way.

Educational robots offer new benefits to implementing the most effective active learn-
ing methods and supporting tools for teaching of CS topics (Fagin and Merkle, 2002;
Alimisis et al., 2007; Frangou et al., 2008; Kurebayashi et al., 2008). In this context,
the most commonly used learning methods derived from the constructivism-based the-
ory are as follows: problem-based learning (Mosley and Kline, 2006; Turner and Hill,
2007; Adams et al., 2010; Castledine and Chalmers, 2011; Lin and Liu, 2012), project-
based learning (Sucar et al., 2005; Arlegui et al., 2011; Janiszek et al., 2011) and game-
based learning (Atmatzidou et al., 2008; Lye et al., 2011; Hamada and Sato, 2011).
Learner-centred robotic enhanced environments based on the constructivist approach and
a methodology to involve students to knowledge construction are described in (Gerndt
and Lüssem, 2011; Grabowski and Brazier, 2011; Burbaite et al., 2012; Petrovič and
Balogh, 2012).

Some researchers (Fagin and Merkle, 2002; Weingarten et al., 2007; Kim and Jeon,
2009) define the CS content in different levels of education (primary school, secondary
school, university), which can be learned by students using robot-based environments.
The entire CS course can be covered and robotics-based curriculum constructed using
robot-enhanced environments (Sklar et al., 2007). According to Adams et al. (2010),
“the process skills have been introduced and mediated by the use of reusable learning
objects (RLOs) within a virtual learning environment. Separate RLOs have also been
used to develop skills in using the robots”.

Analysis of component-based reusability of LO (the latter is defined by the IEEE stan-
dard as “any digital entity, which can be used, reused or referenced during technology-
supported learning”) is beyond the scope of this paper. The generative reuse model we
focus here should be understood through the concept of GLO. Though the GLO-based
technology in e-learning is not yet matured enough, two research directions are clearly
visible already now. The first includes contributions of the pioneers of the GLO concept
(Boyle et al., 2004, 2008; Morales et al., 2005). Their research focuses mainly on using
the template-based generative technology to implement GLOs within the environment
GLO Maker (www.glomaker.org) to teach medical-related or other courses. The
second trend includes meta-programming-based GLOs (Štuikys and Damaševičius, 2007,
2008; Štuikys and Brauklytė, 2009; Štuikys and Burbaitė, 2012), which are more relevant
to teach CS or some engineering courses. See relevant knowledge on meta-programming
in (Štuikys and Damaševičius, 2013). Han and Krämer (2009), Oldfield (2008) can be
also regarded as proponents of the GLO-based approach.

128 V. Štuikys et al.

Our research on GLOs is different, as compared to other approaches, because we use
meta-programming as a generative technology to implement GLOs. Despite of the effort
and contribution of proponents to use the GLO-based approaches, however, this research
trend is still in its infancy as compared with LO research in general due to the following
reasons. The first is a short time for maturity of the approach. The second is the method-
ological difficulty to understand the capabilities of the approach per se. The third is the
technological difficulty to acquire knowledge on which basis GLOs are to be devised
because there is no uniform generative technology to design and implement GLOs. Fi-
nally, the non-technical (i.e., social) aspects are a major factor that hinders population
of the approach. So far, the meta-programming-based GLOs were studied mainly within
the PC-based e-learning environments. As, in fact, the GLOs are independent upon the
learning tools used, we are able to combine the use of the GLOs with the robot-based
environment. The remaining part of the paper deals with our new approach.

3. Description of CS Teaching Framework

Figure 1 outlines 5 basic components of the framework and their interaction. These com-
ponents can be identified, for example, at the very abstract level as pedagogy-driven ac-
tivities, technology-driven processes, knowledge transfer channels with actors involved,
a set of tools used (they can also be identified as a technology), and the pedagogical out-
come. The latter is a final product that implements the learning goal through the use of the
framework in the real e-learning and teaching setting (in our case in different classes at the
gymnasium level to teach CS topics). Similarly to any other product, the achieved peda-
gogical outcome is to be assessed. We anticipate three forms of the assessment: students’
self-assessment, teacher’s and expert’s assessments. The framework is generic enough
(though we do not exclude the possibility of its further generalization) because of (1)
it specifies two alternative modes of using the LEGO NXT environments: with GLO or
with LO introduced externally and (2) GLO can be viewed as generic LO (in other words
GLO is a set of LOs, thus the use of GLOs covers the case of using LOs independently).

The framework integrates the components in some well-structured manner through
relationships, knowledge transfer channels, feedback relations and decision-making pro-
cedures (see Fig. 1). The teaching process starts at stage 1 (task selecting) inspired by the
pedagogy-driven activities, while the learning process starts at stage 4 (parameter selec-
tion to derive an LO from the GLO on demand to fuel the robot’s actions for teaching
and learning). The learning process comprises all subsequent stages and pedagogy-based
activities with multiple feedback links (from FB1 to FB4) as it is depicted within the
framework.

Two underlying concepts (GLOs and LEGO NXT robot), on which our approach is
based, are seen within the framework only through the processes they provide. Techno-
logical aspects of the LEGO NXT robot (in terms on how they are related and integrated
to our teaching setting) can be found in (Burbaite et al., 2012), or they can be learnt
from other papers (Gerndt and Lüssem, 2011; Grabowski and Brazier, 2011; Petrovič and
Balogh, 2012). In order to convince reader in soundness of the meta-programming-based
GLOs, we provide a methodological background of the concept in the next subsection.

Teaching of Computer Science Topics 129

Fig. 1. CS teaching framework based on using LEGO robots and GLOs.

3.1. Learning Variability Concept – the Background to Understand GLOs

For CS teachers and students, a GLO is a higher-level program (otherwise meta-program),
because it generates other programs (meaning lower-level ones) automatically. In con-
trast to pioneers of the GLO-based approach (Boyle et al., 2004; Morales et al., 2005),
who use the template-based technology to implement GLOs, we use heterogeneous meta-
programming (Štuikys and Damaševičius, 2013) as generative technology. Though there
are different interpretations of the paradigm, in the most general case, meta-programming

130 V. Štuikys et al.

can be defined as the technology for implementing meta-programs (otherwise program
generators) through the explicit representation of domain task variability.

For less knowledgeable readers (because GLOs need still to live up their promises
to become more widely accepted in the e-learning domain), we explain the variability
concept as a basis to understand meta-programming-based GLOs more thoroughly. Let
us have a very simple object, such as the linear equation (y = ax + b), and interpret it
from the variability perspective in different domains (mathematics, CS, and e-learning).

In mathematics, for example, the equation is a canonical form meaning the general
representation with the explicit statement of eligible values for the argument (x), function
(y) and coefficients (a, b) as follows: x, y, a, b ∈ R. In a particular case, however, some
specific variants (a > 0, a < 0, a = 0, b �= 0, etc.) may be excluded and considered
separately. All these are variability in that domain, though this term is not exploited here.
The function is formally defined as a mapping of the argument (variable) eligible domain
D onto the function value space R, that is: f : D −→ R. The elegancy and beautifulness
of the mathematics language is its potential to express the items (objects, categories)
uniformly and as general and short representations as possible.

In CS (programming), the equation can be easily transformed into a computer pro-
gram to calculate y values for the predetermined space of values for x, a, and b. The
space in this case, however, is much narrower as compared to the mathematical represen-
tation due to limited computational resources. Variability (if one realizes the program)
could be seen in part explicitly and in part implicitly within the program source code.
Now we explain the difference between the program and meta-program using some ra-
tionale and the same example. From the outcome (i.e., program execution) perspective,
a program (if it is correct and terminates) always returns a concrete value as a result of
calculation (e.g., y = 2 when a = b = x = 1), while meta-program returns the other
program (programs) as a value (e.g., y := x + 1; when both higher-level parameters a′

and b′ are equal to 1). This subtle difference opens the way to extend reusability and gen-
erate the program instance on demand and use it as a subject for reuse (use-as-is, transfer
for other contexts with or without modification).

E-learning is not a homogeneous domain; rather it is a combination of the follow-
ing sub-domains: pedagogy, information sciences, IT-based technology, sociology, and
psychology and computer science (sometimes also called informatics, actually it is also
a combination of the others). As a consequence, the e-learning variability (LV) is also
not a homogeneous item; rather it is a set of the following constituents: pedagogical vari-
ability (PV), social variability (SV), content variability (CV) and technology variability
(TV) and Interaction variability (IV) among the variability constituents mentioned before.
Therefore, we have a simplified formula (1) to define LV:

LV = PV ◦ SV ◦ CV ◦ TV ◦ IV, (1)

where “◦” means a specific operator to integrate the items, which are very broad and in
terms of SW engineering are treated as domains.

We can also explain variability with other concrete examples (CV has already been il-
lustrated in this subsection). PV variants: {(teaching objective-1: <concept presentation>,

Teaching of Computer Science Topics 131

teaching objective-2: <demonstration of program examples>. . . .); (project-based model,
problem solving model). . .}; SV variants: {age, gender, capabilities, previous knowl-
edge}, etc. IV variants are more subtle and should be conceived of as relationships of
the type require here. For example, the teaching objective for better engagement (variant
of PV) requires visualization of the task (LO content).

Now we can present two definitions of the meta-programming-based GLO as it is un-
derstood in the context of this paper. Semantically, GLO is the explicit representation of
LV using heterogeneous meta-programming as generative technology. Structurally, GLO
is a set of LO instances pre-specified into the structure to automatically generate a con-
crete instance on demand.

It is not our intention to consider details of GLOs (such as the ones how to design
GLOs, see, e.g., (Štuikys and Damaševičius, 2008)) here. Nevertheless, two underlying
properties we need to state: (1) any constituent of variability may have a few or many
variants as it was explained by the foregoing examples, (2) any constituent (its type and
variants), despite of their semantic differences (e.g., pedagogical, technological, content),
can be expressed uniformly through higher-level (meta) parameters, their values and vari-
ous dependencies among the values. At this point to understand the GLO-based approach,
we present the structural model of GLOs given in Fig. 2, which corresponds to the struc-
tural definition. The model is presented at two levels: higher-level that is independent
upon the implementation (Fig. 2a) and lower-level, which is the technology-dependent
(Fig. 2b). Here, the pure programming language details are missed (reader can see them
in our case study).

Fig. 2. (a) – General structure of GLO model, (b) – GLO model “Robot calibration (sequential algorithm)” with
some details.

132 V. Štuikys et al.

In summary, we formalize the model as given by formula (2):

GLO = Meta-interface × Meta-body (2)

(here “×” means mapping).

3.2. Pedagogy-Driven Activities

The framework we suggest uses two learning models derived from the constructivist-
based pedagogical approach: problem-based learning (Adams et al., 2010; Castledine
and Chalmers, 2011; Lin and Liu, 2012; Mosley and Kline, 2006; Turner and Hill, 2007)
and project-based learning (Arlegui et al., 2011; Sucar et al., 2005; Janiszek et al., 2011).
Though there is a thin line among the models, nevertheless, we introduce them as slightly
different teaching scenarios (in other words the models are integrated within the scenar-
ios) either explicitly or intuitively through the learning objective formulation, teacher’s
plans (such as curricular content) and teaching environment (LEGO robot-based) and
teaching task selection. The basic requirement for creating the scenarios is to enforce the
students’ involvement and engagement in the process. All these are seen as predetermined
pedagogical activities before starting the teaching and learning process. One pedagogical
activity, however, should be highlighted separately here, that is, the formulation of re-
quirements for GLO design (this activity as well as design of GLOs per se are beyond the
scope of this paper). Here, we accept that the teaching content (defined by the standard or
enhanced CS teaching curricular program in schools) either partially or fully should be
implemented as GLO or GLOs (having in mind the first mode of using the framework,
see decision point at Step 2).

The other activities are clear from Fig. 1, except the final, which we consider sepa-
rately in Section 5.

3.3. Technology-Driven Processes

Task selection. It is the first component to instantiate the other processes. It is primar-
ily based on the knowledge that comes as a result of the pedagogy-driven activity. This
knowledge should be extracted either by teacher or designer first, and only then the se-
lection follows, though in the most general case (it is not depicted in Fig. 1), the two-side
interaction may be possible. The task selection process enables to create teaching content
(either as GLO or LO; here we focus on the first). It is needed because there are multiple
ways to realize the teaching program. On the other hand, there are restrictions imposed
by the robot-based environment and requirements for student engagement in learning.
For example, the first task to be solved is to synchronize robot’s characteristics to oper-
ate mechanical actions properly. Therefore the first task should be a test for the correct
functioning of the robot.

From the CS perspective, it is an important aspect in which programming language,
the algorithms that should cover the curricular should be selected. Another factor that
affects the task selecting is the possibility of robots actions to visualize the real world
problems that might appear for students as the most interesting ones (one of pedagogical

Teaching of Computer Science Topics 133

objectives is to motivate students to learn as much as possible). Examples of such prob-
lems could be: drawing ornaments or other pictures that attract students and are used in
practice, to model the robot’s movement in the space with obstacles, cutting some ob-
jects, such as vegetables in food preparation, etc.). On the other hand, the task selected
for teaching and learning, has to cover the curricular content requirements for CS for
different grade classes. Therefore, the possibilities for task selection are only one kind of
sources to obtain LV, mainly based on content, and then to design GLOs.

Further, we miss the description of the following technology-based processes (GLO
designing and on-line representing) because here we focus on using GLOs as black-box
entities.

(Meta)parameter selection (process 4 in Fig. 1). In fact, the learning process starts at
this stage because students (along with teacher) are involved to a larger extent. Physically,
selecting parameters means the reading of the GLO meta-interface, which is a human-
oriented structure being represented as graphical boxes (see for example, Fig. 3a. We
define the learning process in this context as a sequence of processes 4–8 along with
pedagogy-based activities underpinned with multiple feedback links (from FB1 to FB4).

Content generation. The content generation (process 5 in Fig. 1) is fully automatic.
The PHP processor supports this process, because the PHP has been selected as a meta-
language to describe the GLO specifications. The generating process should be under-
stood as an action of deriving LO instances on demand according to the selected param-
eter values. Students are able to repeat the process multiple times by selecting different
values in each case. This repeatable process can be viewed as the adaptation of the gen-
erated content (we call it LO instance) to the learner’s specific context. There might be
such a case, when a learner is not satisfied by the generated LO instance. In this case,
he/she has a possibility to change the content (perhaps with the help of teacher) manually
(process 6.2). The remaining processes are not so much related with GLO itself but rather
with LO instance because the job prescribed to the GLO has been already done.

Compiling and task running are well-known processes for CS courses independent
upon which facilities (computer, robot, mobile phone) are used.

Feedback links (FB1-FB4) is a very important part of the learning process because
they ensure a great deal of flexibility to re-generate the content, to modify the content, to
obtain knowledge through monitoring learning scenarios as they are seen in the robot-
based reality (but not in the virtual reality as it takes place when the only PC and Internet
as learning facilities are used).

We summarize technology driven processes in combination with pedagogical activi-
ties in Table 1.

4. Case Study

We present two variants of our case study. The first illustrates the initial task as a manda-
tory action to prepare the robot for correct functioning. The task was implemented as
GLO with 4 parameters (Fig. 3a, parameter values are given in the white boxes or marked

134 V. Štuikys et al.

Table 1

Summary of the process analyzed

Item Details

Initial requirements Knowing of pedagogical model
Knowing of curriculum content
Robot readiness for the use

Guide Human-guided, tool-guided

Automation level Automatic, semi-automatic

Activity Single activity, multiple reuse activity

Tools type Hardware, software

Degree of the teacher or student
involvement

Teacher/student, student/student measured by the number of FBs,
visualization, adaptability (see also Table 3)

Constraints Initial knowledge and readiness of teacher

Functionality Described as the input/output specification

Abstraction level How much details relevant to teaching topic should be revealed
explicitly

Types of sub-processes Robot independent, robot dependent
Generative technology independent, generative technology dependent

Fig. 3. (a) – Meta-interface of GLO “Robot calibration”, (b) – generated instance as LO to teach sequential
algorithms/programs.

by ‘v’), and its derivative instances to cover the simplest CS topics (sequential algorithms
and programs, Fig. 3b). The snapshot of the learning scenarios that are observed by stu-
dents is given in Figs. 3 and 4. As it was said previously, technical details of how to pre-
pare robot mechanics for information processing is beyond of the paper’s scope, though
some aspects are encoded in the GLO specification as it is described by the following.

Teaching of Computer Science Topics 135

Fig. 4. (a) – DRAWBOT designing steps; (b) – a full view of DRAWBOT (Burbaitė et al., 2012).

Fig. 5. Meta-interface variants of the GLO “Ornaments’ drawing by DRAWBOT”: (a) motors speed described
as power in percents, (b) motors speed given in cm/s.

Motors are controlled by specifying the needed power level to be applied to the motor.
For this purpose, the programming language RobotC uses the parameter named “Power
level”. In Fig. 5a, the parameter is expressed in percents, while in Fig. 5b – in speed
(cm/s). That is done because some students better perceive the first measure, while others
– the second. Power levels range from −100 to +100. Negative values indicate the reverse
direction and positive values indicate the forward direction. For example, to move motor
A forward at 30% of full power, we use the following statement: motor[motorA] = 30;
(see Fig. 3b).

Now we consider the second variant of our case study. It deals with the task that
responds to the requirement to ensure the possibility for better students’ engagement in
learning. The task (to teach loops in program) is about visualization of the result created
by the program. The program is derived from the GLO as a LO instance. Then the instance
runs within the robot environment that makes drawing to realize the visualization. As, in
this case, the robot was adapted to drawing activity, it was called DRAWBOT.

Though it is possible to apply the DRAWBOT to various tasks, we use ornament
drawing here because of extremely high variability of the task (see, e.g., Table 2) and
its practicality in use (e.g., ornaments can be used in artistic design). Furthermore, from
the pedagogy perspective, the task enables to demonstrate the use of both the problem
solving model and the project-based model in teaching. For example, Fig. 6 illustrates
the use of the first model and Fig. 7 – the second.

136 V. Štuikys et al.

Table 2

Generative learning objects (GLOs) to teach Computer Science topics

Number Topic Number Number of LO instances

of parameters of parameter possible to generate

1. Sequential algorithms/programs 4 135

2. Conditional statements 4 108

3. Loops 4 1350

4. Nested loops 7 29160

Fig. 6. (a) – Generated LO instance (from GLO) as motivating example to cover “Loop teaching”, (b) – result
of LO execution as a material introduced by teacher for learning at initial phase through problem solving.

Finally, we discuss the pedagogical outcome of the approach. Table 2 summarizes the
SC topic teaching content which was transformed into GLO specifications by the teacher
(second author of the paper). She was working as a course designer to prepare the material
(GLOs) in advance. The 4th column (see Table 2) describes the content variability (CV,
see also (1)) space. Thus, there is a wide possibility for choice to adapt the content for
the use context. In practice, however, the only small part of the LO instances to fuel the
robot actions are needed to use.

To evaluate the outcome through the increase of student engagement level, we have
applied the methodology adapted from (Urquiza-Fuentes and Velázquez-Iturbide, 2009).
Results are summarized in Table 3. Here the engagement level is categorized into 5 cat-
egories, where the first (Viewing) requires the least effort for students. Thus, all students
have passed this level easily. Each subsequent level requires the progressively increased
effort. Therefore, the number of students able to fulfil actions (as they are specified by the
engagement level) is progressively decreasing. Only the small part of students were able
to be evaluated by the highest engagement level (Presenting) in the first teaching year,

Teaching of Computer Science Topics 137

Fig. 7. (a) – Generated instance after corrections made by students as a result of problem solving, (b) – task
solving result based on student activities.

though the number of such students was higher in the 2nd year of teaching according to
the presented methodology. The results were evaluated by the teacher taking into account
also the student’s self-assessment.

5. Analysis and Evaluation of the Outcomes

We have discussed a methodology that integrates two technologies for learning CS topics:
meta-programming-based GLOs and LEGO NXT robot-based. As the core idea on which
GLOs are constructed is the learning variability (which comprises pedagogical, content,
technological aspects such as tools), it is possible to seamlessly integrate the process of
using GLOs within the LEGO NXT robot environment into a coherent e-learning setting.
In this paper, our focus was given on the synergy effect of using GLOs and robots. As tools
that support GLOs enable to automatically generate LO instances on demand for sourcing
the robot functioning, the first technology ensures flexibility to a much larger extent as
compared with the LOs prepared manually. Since we can express flexibility with the level
of automation, by the number of feedback links, by modes for adaptation and changes,
GLO-based technology extends the reuse dimension too. What is the most important that
this dimension is measurable. In essence, the GLO technology is independable upon the
tools used for learning (robots, PC, mobiles).

Thus, we can speak about the enhancement of internal reusability through the use of
GLOs (in our case within the robot environment), or about the enhancement of exter-
nal variability (meaning a much wider extent of reusability). The internal reuse impact
on LEGO NXT can be understood as a better exploitation of its technical capabilities
(by more frequent use, by the larger number of different information testing for robot
functioning, etc.).

138 V. Štuikys et al.

Table 3

Student engagement levels using GLO “Ornaments’ and DRAWBOT” environment

No. Engagement level 2011–2012 2012–2013

No. of No. of No. of No. of No. of No. of

students boys girls students boys girls

1. Viewing: Students view the ornaments given by
teacher passively and are passive LO consumers.

44
100%

33
100%

11
100%

67
100%

54
100%

13
100%

2. Responding: Students use the visualization of
ornaments actively as a resource for answering
questions given by teacher and are active LO con-
sumers.

34
77%

24
73%

10
91%

78% 43
80%

9
69%

3. Changing: Students themselves modify orna-
ments by changing meta-parameter values using
the pre-specified meta-interface and the tool and
are LO designers.

33
75%

24
73%

9
82%

46
69%

37
69%

9
69%

4. Constructing: Students construct their own or-
naments introducing new meta-parameter values
not anticipated by the meta-interface and are LO
co-designers and testers.

17
39%

9
27%

8
73%

27
40%

23
43%

4
31%

5. Presenting: Students present to the audience for
discussion new ornaments and are treated as
GLO co-designers.

5
11%

3
9%

2
18%

17
25%

15
28%

2
15%

All these observations are given from the perspective of understating what the
methodology can bring to its users in general. Now we evaluate the pedagogical out-
comes from the teacher’s and student’s perspective. From the teacher’s viewpoint, the
teaching and learning processes are more intensive since there are much more possibili-
ties for creating various scenarios (variants how processes are carried out). Teacher has
more time to observe student’s activities, participate in student’s reflections on teaching
outcomes. Thus, the process is more effective and more easily organized. Of course, those
are positive sides of the methodology; however, one needs to take into account the follow-
ing assumptions as constraints: (1) GLOs are treated as black-box entities (meaning that
GLOs have been designed in advance and they are correct); (2) Robot-based environment
was created and tested in advance. A negative side of the methodology is the teacher’s
overload in the preparatory work and the need for knowledge that might be beyond the
scope of a standard level. Not every CS teacher (if there is no external support) can go
through such a trial.

From the student’s perspective, the methodology gives understanding how the CS
content is to be realized practically by solving real world tasks. This, combined together
with pedagogical models, visualization of the problems, makes the teaching and learning
process much more attractive – students see how abstract items (variables, data, types,
loops within a program) are transformed into physical entities (robot’s movement, speed,
etc.). The methodology enforces the interdisciplinary vision to teaching and provides
integrated knowledge for students. It also enforces the level of engagement leading to the

Teaching of Computer Science Topics 139

increase of student activeness. Though this is not true for each student, nevertheless, our
experience has shown that, in average, such the impact on students is notable. Even more,
some students were able to accept the role of co-designers (apprentices of a teacher) in
developing GLOs and constructing the robot-based teaching environment.

6. Conclusion

1. Meta-programming-based GLO can be seen not only as a tool for sourcing e-
learning environments but also as a learning content per se for teaching and learn-
ing CS-based courses.

2. As the methodology we have proposed is based on using a variety of technologies,
students are able to receive the integrated knowledge and enforce the vision that
CS is an interdisciplinary course.

3. The methodology can be also adapted to other (different from robots) environments
and it can be easily extended for delivery of the entire CS course (not only selected
topics as it may follow from our case study considered in this paper).

References

Adams, J., Kaczmarczyk, S., Picton, P., Demian, P. (2010). Problem solving and creativity in engineering:
conclusions of a three year project involving reusable learning objects and robots. Engineering Education,
5(2), 4–17.

Alimisis, D., Moro, M., Arlegui, J., Pina, A., Frangou, S., Papanikolaou, K. (2007). Robotics&constructivism
in education: the TERECoP project. In: Kalas, I. (Ed.), Proceedings of the 11th European Logo Conference,
Bratislava, Slovakia, Comenius University, 1–11.

Arlegui, J., Pina, A., Moro M. (2011). A paradox in the constructive design of robotic projects in school. In:
Proceedings of 2nd International Conference on Robotics in Education (RiE 2011), Vienna, Austria, 29–34.

Atmatzidou, S., Markelis, I., Demetriadis, S. (2008). The use of LEGO mindstorms in elementary and secondary
education: game as a way of triggering learning. Workshop Proceedings of SIMPAR 2008, 22–30.

Ben-Ari, M. (1998). Constructivism in computer science education. In: Proceedings of SIGCSE’98, Atlanta,
USA, ACM, 257–261.

Boyle, T., Leeder, D., Chase, H. (2004). To boldly GLO – towards the next generation of learning objects.
In: Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher
Education 2004, Chesapeake, VA, AACE, 28–33.

Boyle, T., Ljubojevic, D., Agombar, M. Baur, E. (2008). On conceptual structure of generative learning objects.
In: Proce of World Conference on Educational Multimedia, Hypermedia&Telecommunications, AACE, Aus-
tria, Vienna, 4570–4578.

Burbaite, R., Stuikys, V., Marcinkevicius, R. (2012). The LEGO NXT robot-based e-learning environment to
teach computer science topics. Electronics and Electrical Engineering, 18(2), 133–136.

Castledine, A., Chalmers, C. (2011). LEGO Robotics: an authentic problem-solving tool? Design and Technol-
ogy Education, 6(3), 19–27.

Ley, C.N, Wong, W.K., Chiou, A. (2011). Framework for educational robotics: a multiphase approach to en-
hance user learning in a competitive arena. In: Edutainment’11, Proceedings of the 6th International Con-
ference on E-Learning and Games, Edutainment Technologies, Springer-Verlag Berlin, 317–325.

Cowden, D., Ustek, D., O’Neill, A., Opavsky, E., Walker, H.M. (2012). A C-based Introductory course using
robots. In: The 43rd Technical Symposium on Computer Science Education, 463–468.

Sucar, E.L., Noguez, J., Huesca, G. (2005). Project oriented learning for basic robotics using virtual laboratories
and intelligent tutors. In: Frontiers in Education. Proceedings of 35th Annual Conference, S3H-12.

140 V. Štuikys et al.

Fagin, B.S., Merkle, L. (2002). Quantitative analysis of the effects of robots on introductory computer science
education. Journal on Educational Resources in Computing (JERIC), 2(4), 1–18.

Fagin, B.S., Merkle, L.D., Eggers, T.W. (2001). Teaching Computer Science with Robotics Using
Ada/Mindstorms 2.0, SIGAda, Bloomington, MN, USA, 73–77.

Frangou, S., Papanikolaoum, K., Aravecchia, L., Montel, L., Ionita, S., Arlegui, J., Pina, A., Menegatti, E.,
Moro, M., Fava, N., Monfalcon, S., Pagello, I. (2008). Representative examples of implementing educational
robotics in school based on the constructivist approach. In: SIMPAR Workshop on Teaching with Robotics:
Didactic Approaches and Experiences, Venice, Italy, 54–65.

Gerndt, R., Lüssem, J. (2011). Mixed-reality robotics – a coherent teaching framework. In: Proceedings of 2nd
International Conference on Robotics in Education (RiE), 193–200.

Grabowski, L.M., Brazier, P. (2011). Robots, recruitment, and retention: Broadening participation through CS0.
In: Frontiers in Education Conference (FIE), F4H-1–F4H-5.

Hamada, M., Sato, S. (2011). A game-based learning system for theory of computation using Lego NXT Robot.
Procedia Computer Science, 4, 1944–1952.

Han, P., Krämer, B.J. (2009). Generating interactive learning objects from configurable samples. In: Interna-
tional Conference on Mobile, Hybrid, an On-Line Learning (ELML’09), Cancun, 1–6.

Hazzan, O., Lapidot, T., Ragonis, N. (2011). Guide to Teaching Computer Science – An Activity-Based Ap-
proach. Springer-Verlag, London.

Janiszek, D., Pellier, D., Mauclair, J., Baron, G.L., Parchemal, Y. (2011). Feedback on the use of robots in
project-based learning: how to involve students in interdisciplinary projects in order to increase their interest
in computer science. INTED2011 Proceedings, 1815–1824.

Jenkins, T. (2001). The Motivation of Students of Programming. Thesis of Master of Science. The University of
Kent.

Kurebayashi, S., Kanemune, S., Kamada, T., Kuno, Y. (2007). The effect of learning programming with au-
tonomous robots for elementary school students. In: 11th European Logo Conference, Comenius University
Press, Bratislava, 1–9.

Leonard, D. (2002). Learning Theories, A to Z. Westport, Conn, Oryx Press.
Ley, C.N, Wong, W.K., Chiou, A. (2011). Framework for educational robotics: a multiphase approach to en-

hance user learning in a competitive arena. In: Edutainment’11, Proceedings of the 6th International Con-
ference on E-Learning and Games, Edutainment Technologies, Springer-Verlag Berlin, 317–325.

Lin, C.H., Liu, E.Z.F. (2012). The effect of reflective strategies on students’ problem solving in robotics learn-
ing. In: Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), IEEE Fourth International Con-
ference, 254–257.

Lubitz, W.D. (2007). Rethinking the first year programming course. In: Proceedings of the Canadian Engineer-
ing Education Association.
http://library.queensu.ca/ojs/index.php/PCEEA /article/view/3811/3767.

Morales, R., Leeder, D., Boyle, T. (2005). A case in the design of generative learning objects (GLOs): ap-
plied statistical methods. In: Proceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications, Chesapeake, VA, AACE, 2091–2097.

Mosley, P., Kline, R. (2006). Engaging students: a framework using LEGO robotics to teach problem solving.
Information Technology, Learning, and Performance Journal, 21(1), 39–45.

Northrup, P.T. (2007). Learning Objects for Instruction: Design and Evaluation. Information Science Publish-
ing, New York.

Oldfield, J.D. (2008). An implementation of the generative learning object model in accounting. In: Proceedings
of ASCILITE, Melbourne.
http://www.ascilite.org.au/conferences/melbourne08/ procs/oldfield.pdf.

Pásztor, A., Pap-Szigeti, R., Lakatos Török, E. (2010). Effects of using model robots in the education of pro-
gramming. Informatics in Education, 9(1), 133–140.

Pears, A.N. (2010). Enhancing student engagement in an introductory programming course. In: 40th
ASEE/IEEE Frontiers in Education Conference, Arlington, F1E1–F1E2.

Petrovič, P., Balogh, R. (2012). Deployment of remotely-accessible robotics laboratory. International Journal
of Online Engineering, 8(2), 31–35.

Kim, H.S., Jeon, J.W. (2009). Introduction for freshmen to embedded systems using LEGO Mindstorms. Edu-
cation, IEEE Transactions, 52(1), 99–108.

Teaching of Computer Science Topics 141

Sklar, E., Parsons, S., Azhar M.Q. (2007). Robotics across the curriculum. In: AAAI Spring Symposium on
Robots and Robot Venues: Resources for AI Education, 142–147.

Smith, M.K. (2003). Learning theory. The Encyclopedia of Informal Education.
www.infed.org/biblio/b-learn.htm. Last update: May 29, 2012.

Štuikys, V., Brauklytė, I. (2009). Aggregating of learning object units derived from a generative learning object.
Informatics in Education, 8(2), 295–314.

Štuikys, V., Burbaite, R. (2012). Two-stage generative learning objects. In: Skersys, T., Butleris, R., Butkiene,
R. (Eds.), 18th International Conference, ICIST, Kaunas, Lithuania. Proceedings Series: Communications
in Computer and Information Science, Vol. 319, Springer Berlin Heidelberg, 332–347.

Štuikys, V., Damaševičius, R. (2007). Towards knowledge-based generative learning objects. Information Tech-
nology and Control, 36(2), 202–212.

Štuikys, V., Damaševičius, R. (2008). Development of generative learning objects using feature diagrams and
generative techniques. Informatics in Education, 7(2), 277–288.

Štuikys, V., Damaševičius, R. (2013). Meta-Programming and Model-Driven Meta-Program Development:
Principles, Processes and Techniques, Springer. Springer.

Turner, S., Hill, G. (2007). Robots in problem-solving and programming. In: 8th Annual Conference of the
Subject Centre for Information and Computer Sciences, University of Southampton, UK, 82–85.

Urquiza-Fuentes, J., Velázquez-Iturbide, J.Á. (2009). Pedagogical effectiveness of engagement levels – a survey
of successful experiences. Journal Electronic Notes Theoretical Computer Science, 224, 169–178.

Weingarten, J.D., Koditschek, D.E., Komsuoglu, H., Massey, C. (2007). Robotics as the delivery vehicle: a con-
textualized, social, self paced, engineering education for life-long learners. In: Robotics Science and Systems
Workshop on “Research in Robots for Education”, 1–6.

V. Štuikys is a professor of Software Engineering Department at KUT and holds the de-
gree of habilitate doctor of cience. His research interests include system design method-
ologies based on reuse and automatic program generation and transformation. He is au-
thor of about 100 papers in this area and co-author of the monograph „Meta-Programming
and Model-Driven Meta-Program Development: Principles, Processes and Techniques“
published by Springer. His specific interest is the application of the design methodologies
to the e-learning domain. Currently he is a head of research group at KUT and supervisor
of 3 PhD students. He is a member of ACM and IEEE.

R. Burbaitė is a PhD student at Software Engineering Department of Kaunas University
of Technology (KUT) and a teacher of computer science (CS, Informatics) at Balčikonis
Gymnasium (Panevėžys, Lithuania). She also provides teaching of students in informatics
at KUT. Her research interests relate to the e-learning domain that includes the use of
meta-programming-based generative learning objects and educational robots to teach CS
topics. She is a member of Interest Group of Informatics Teachers.

R. Damaševičius is a professor at Software Engineering Department, KUT. He received
his PhD (2005) degree in informatics engineering from KUT. Currently he teaches pro-
gramming, robotics and software engineering courses. He is also the member of Design
Process Automation Group at Software Engineering Department. His research interests
include program transformation and meta-programming, design automation and software
generation, as well as domain analysis methods. Currently he is a supervisor of 3 PhD
students. He is also a member of ACM.

142 V. Štuikys et al.

Informatikos mokymas(is) panaudojant generatyvinius
metaprogramavimu grindžiamus mokymo(si) objektus ir LEGO
robotus

Vytautas ŠTUIKYS, Renata BURBAITĖ, Robertas DAMAŠEVIČIUS

Straipsnyje pateikiama metodologija, integruojanti generatyvini ↪u mokymo(si) objekt ↪u (GMO)
ir LEGO robot ↪u technologijas. Ši metodologija skirta informatikos mokymui(si) vidurinėje mokyk-
loje. J ↪a sudaro 5 komponentai (pedagoginė veikla, technologiniai procesai, ↪irankiai, žini ↪u per-
davimo dalyviai ir pedagoginiai rezultatai) bei j ↪u tarpusavio s ↪aryšiai. GMO specifikuojami
metaprogramomis, kurias vykdant generuojami mokymo(si) objekt ↪u egzemplioriai pagal poreik↪i,
priklausomai nuo konteksto ir mokymo(si) tiksl ↪u. Mokytojo ir mokinio požiūriu, GMO yra „juodoji
dėžė“, kuri integruota ↪i pasiūlyt ↪a struktūr ↪a naudojant generavimo proces ↪a. Mokymo(si) procesas
vykdomas LEGO robot ↪u aplinkoje, o mokymo turinys sukuriamas iš GMO. Aplinka ↪igalina vi-
zualizuoti mokymo turin↪i transformuojant algoritmus ir programas ↪i realaus pasaulio uždavinius ir
procesus. Metodologija išbandyta realioje e. mokymosi aplinkoje. Pedagoginiai rezultatai (mokini ↪u
motyvacijos padidėjimas, mokymo(si) medžiagos automatinis rengimas, užtikrinantis lankstum ↪a ir
pakartotin↪i panaudojim ↪a) ↪ivertinti pateikiant empirinius duomenis.

	Bind215
	INFE215
	p142
	Infe215

	p125
	Infe215

	Bind215
	INFE215
	p142
	Infe215

