
Informatics in Education, 2011, Vol. 10, No. 1, 73–88 73
© 2011 Vilnius University

Teaching Programming in Secondary School:
A Pedagogical Content Knowledge Perspective

Mara SAELI1, Jacob PERRENET1, Wim M.G. JOCHEMS1,
Bert ZWANEVELD2

1Eindhoven University of Technology, Eindhoven School of Education
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2Open Universiteit Nederland, Ruud de Moor Centrum
P.O. Box 2960, 6401 DL Heerlen, The Netherlands

e-mail: m.saeli@tue.nl, j.c.perrenet@tue.nl, wim.jochems@esoe.nl, bert.zwaneveld@ou.nl

Received: December 2010

Abstract. The goal of this literature study is to give some preliminary answers to the questions that
aim to uncover the Pedagogical Content Knowledge (PCK) of Informatics Education, with focus
on Programming. PCK has been defined as the knowledge that allows teachers to transform their
knowledge of the subject into something accessible for their students. The core questions to uncover
this knowledge are: what are the reasons to teach programming; what are the concepts we need
to teach programming; what are the most common difficulties/misconceptions students encounter
while learning to program; and how to teach this topic. Some of the answers found are, respectively:
enhancing students’ problem solving skills; programming knowledge and programming strategies;
general problems of orientation; and possible ideal chains for learning computer programming.
Because answers to the four questions are in a way not connected with each other, PCK being an
unexplored field in Informatics Education, we need research based efforts to study this field.

Keywords: computer science education, informatics, pedagogical content knowledge, secondary
education, programming, teaching.

1. Introduction

The 21st century is characterized by the ubiquitous presence of technology in everyday
life. New generation students are surrounded by computer related instruments and will
possibly do a job that has not been invented yet. Computing succeeded to conquer most
of the aspects of our society and, in order to fit in, people need to be versatile and adapt-
able to modern and future technology. This scenario emphasizes the need to provide an
education that can offer students and future adults the ability to understand and work with
computer related instruments. The aim of Computer Science Education Research (CSER)
is to improve the quality of the teaching and learning of the topics relative to this com-
puterized world. A review of the literature (Holmboe et al., 2001) evidences the existing
need to broaden the efforts of informatics educators to contribute to the knowledge of
why informatics should be taught at all, how informatics should be taught, what topics of
informatics should be taught, and for whom the teaching of informatics is meant. In this



74 M. Saeli et al.

literature review we are particularly interested in answering these questions relative to a
specific topic of informatics: Programming.

In this article we refer with the term of informatics as the computer science education
delivered to upper secondary school students (14 to 18 years old). There seems to be no
distinction in the use of these two terms by the CSER community.

The answers to the four questions introduced lead to the understanding of the concept
called Pedagogical Content Knowledge (PCK; Shulman, 1986). PCK is a concept that
combines the knowledge of the content (e.g., maths, informatics, etc.) to the knowledge
of the pedagogy (e.g., how to teach maths, how to teach informatics, etc.), giving insights
into educational matters relative to the learning and teaching of a topic. Teachers with
good PCK are teachers who can transform their knowledge of the subject into something
accessible for the learners. Studies portraying the PCK of Programming will enable infor-
matics teacher trainings to improve their programs (Lapidot and Hazzan, 2003), boosting
in this way their future teaching. There is evidence of the international interest (Stephen-
son et al., 2005; Ragonis et al., 2010; Woollard, 2005) on this topic, where the first efforts
have been made to achieve the goal to portray the PCK of informatics.

PCK is a construct specific to teachers’ knowledge; therefore teachers are the focus of
this article. There are other aspects of the teaching and learning of programming that are
as important as teachers’ knowledge. Examples could be gender issues, mostly dealing
with motivations that bring boys and girls to enrol in informatics courses; and students’
motivation, which is part of general pedagogical knowledge. However, these topics of
interest, despite very important, are not the focus of this paper.

2. Programming Education

Programming is only one of the topics concerning the teaching of informatics. In the
Netherlands, informatics has been defined as a new generation discipline, because it
is linked with Mathematics, Physics, Engineering, Linguistics, Philosophy, Psychology,
Economy, Business, and Social Sciences in general (Mulder, 2002). If on one hand this
complexity results in a relatively difficult job for researchers in this field, on the other
it is possible to rely on the research achievements already obtained in the above men-
tioned disciplines. As Guzdial suggests, the basic mechanisms of human learning haven’t
changed in the last 50 years (2004) and we can prevent the reinvention of the wheel by
looking at research in education, cognitive science and learning sciences research (Alm-
strum et al., 2005).

A popular definition is that programming is the process of writing, testing, de-
bugging/troubleshooting, and maintaining the source of code of computer programs
(Wikipedia, 2007). We will later see that programming is a much broader topic than
that described by the latter definition, as for example the ability to solve a complex prob-
lem with a top-down approach. Programming is a skill that is considered hard to learn
and even after two years of instruction, the level of programming understanding is low
(Kurland et al., 1989). However, if supported by suitable teaching strategies and tools it
can be mastered by pupils to some extent (Papert, 1980).



Teaching Programming in Secondary School 75

In this literature study we refer to programming as the topic used to introduce upper
secondary school students to computer programming. We will not refer to specific Pro-
gramming Languages (e.g., Java, Python, etc.), because we consider these as a mean/tool
to achieve the teaching of Programming. Secondary school students should be taught
programming concepts independent of specific applications and programming languages
(Stephenson et al., 2005; Szlávi and Zsakó, 2006).

3. Pedagogical Content Knowledge

Pedagogical Content Knowledge (PCK), a concept introduced by Shulman (1986, 1987),
is defined as:

The ways of representing and formulating the subject that make it comprehensible to
others (Shulman, 1986, p. 9).

There is in fact a difference between knowing how to program and being able to
teach programming. The classroom, where learning and teaching occur, is a complex
environment in which several processes and actions happen. But when talking about PCK
a special attention should be spent on students’ learning. An aspect of PCK concerns the
need teachers have to represent and formulate the subject, so that comprehension can
occur. From the literature we know that different learners have different learning styles
(Rayner and Riding, 1997), and needs. This implies that:

[. . .] there are no single most powerful forms of representation, the teacher must have at
hand a veritable armamentarium of alternative forms of representation, some of which
derive from research whereas others originate in the wisdom of practice. Pedagogical
content knowledge also includes an understanding of what makes the learning of specific
topics easy or difficult: the conceptions and preconceptions that students of different
ages and backgrounds bring with them to the learning of those most frequently taught
topics and lessons. If those preconceptions are misconceptions, which they so often are,
teachers need knowledge of the strategies most likely to be fruitful in reorganizing the
understanding of learners, because those learners are unlikely to appear before them as
blank slates (Shulman, 1986, p. 9).

An example in informatics could be the teachers’ knowledge about the concept of
programming structures, and the need to formulate their knowledge in a way that can be
easily understood by their students. All research in this domain agrees on claiming that
PCK is a knowledge that develops with years of teaching experience (Rovegno, 1992;
Grossman and Lynn, 1990; Loughran et al., 2001; Morine-Deshimer and Kent, 1999; Van
Driel et al., 1998; Sanders et al., 1993), because teachers need to build up “a veritable
armamentarium” of representations (Shulman, 1986).

The concept of PCK has been largely assimilated in educational research (Carpenter
et al., 1988; Cochran et al., 1993; Van Driel et al., 1998; Peterson et al., 1989; Rich, 1993;
Rovegno, 1992; Sanders et al., 1993) and some scholars have reformulated it (Grossman,
1989, 1990; Hashweh, 2005; Marks, 1990; An et al., 2004; Turner-Bisset, 1999). A deep
and broad PCK is important and necessary for effective teaching (An et al., 2004, Mag-
nusson et al., 1999). Moreover, Hashweh (2005) underlines how the teacher’s approach



76 M. Saeli et al.

Fig. 1. Diagram based on Grossman’s reformulation of PCK.

or orientation to his or her discipline (personal beliefs) influences the teaching of a certain
topic, and might influence her/his PCK. This means that each teacher’s PCK is in a way
personal.

For the purpose of this literature study we will use the reformulation of the concept
of PCK proposed by Grossman (1989, 1990). We choose her reformulation because we
think that it schematizes the PCK through simple and easy to use questions such as: why
teach a certain subject?; what should be taught?; and what are learning difficulties?. In
our study we add a fourth question, which refers to the teaching methodology: how to
teach?. This last aspect has been also lately introduced by Grossman (1990). We think
that the latter is an important aspect of the PCK of a topic because it gives an insight of
what teachers actually do. The question used to uncover this aspect of PCK is: how should
the topic be taught?. By answering these four questions (see Fig. 1) it will be possible to
define the PCK of a certain subject. The four questions are all connected with each other,
because the reasons to teach a topic (first question) will influence the contents chosen to
be included in the curriculum. In addition the learning difficulties that students encounter
will surely influence the way to teach it.

4. Methods and Aims

This literature study has been conducted by exploring the existent literature available.
Sources include printed articles, books chapters and information found on the Internet.
The research has been conducted by using searching engines such as Google Scholar, or
by browsing references lists of other articles. The keywords used, sometimes in combi-
nation with each other, are: “Pedagogical Content Knowledge”, “Teachers’ education”,
“Programming (Education)”, “Student’s misconceptions/difficulties in learning to pro-
gram”, “Secondary education”, “Why to teach programming”, and “How to teach Pro-
gramming”.



Teaching Programming in Secondary School 77

The choice of the articles has been mostly dictated by the search of papers published
in research journals and presenting research results, as practice in science education re-
search suggest. Also, papers from conference proceedings are considered, where rela-
tively young subjects like informatics find the fastest way to share their results. Despite
the call for people who are active in CSER to rely on scientific papers preferably not
published in conference proceedings (Randolph, 2007; Lister, 2007), we found that still
most of the up-to-date literature is shared through conference papers and therefore the
need to rely on them.

The goal of this literature study is to sketch the PCK of Programming, not of specific
topics (e.g., variables, functions, etc.), but referring to programming as a subject. As
instrument we use the framework introduced earlier, which consists of the four questions
(see Fig. 1).

5. PCK of Programming

As previously stated, the PCK of a subject is the knowledge that enables researchers and
teachers to better understand the issues related to the teaching and learning of the subject,
and consequently provide a better teaching. In this section we give preliminary answers
to the core questions uncovering the PCK of programming, using the method described
above.

Why Teach Programming?

What are the reasons to teach programming at high school level for non-major students?
In a way, this question could also be reformulated as “why should students learn to pro-
gram at all?”. The answer, however, is interesting from a teacher’s perspective. If this
literature study would focus on students rather than teachers, than the question should
be rephrased as “why should I, as student, learn to program?”. This question, if properly
answered, would also help teachers to motivate students to enrol in informatics courses
in a first place. However, this is not the goal of this paper.

Soloway (1993) answers this question by reporting “respected folks’ opinions” such
as those by Seymour Papert and Alan Kay, arguing that in learning to program one learns
powerful problem-solving/design/thinking strategies. This is because when students pro-
gram, they first need to find a solution to a problem, and then they need to reflect on
how to communicate their solution to the machine, using syntax and grammar, through
an exact way of thinking (Papert, 1980; Szlávi and Zsakó, 2006). The latter contributes to
the students’ natural language skills, because they are required to learn to tell, in an un-
ambiguously way, what they want the computer – an unintelligent machine – to perform
(Hromokovič, 2006).

Programming involves the ability to generate a solution to a problem. Generating
solutions means that one of the learning outcomes is the ability to solve problems and
also, if the problem is a big problem, the ability to split the problem into sub problems



78 M. Saeli et al.

and create a generalizable central solution. In addition, the student achieves the ability to
create usable, readable and attractive solutions.

Problem solving skills can be deployed to solve “realistic” problems in various do-
mains together with the computing goals (Sims-Knight and Upchurch, 1993; Dagienė,
2005). Transferability of these and other skills is the argument that brought Feurzeig and
his colleagues (Feurzeig et al., 1970) to introduce programming as a way to help students
to understand mathematics concepts such as: rigorous thinking, variable, function, de-
composition, debugging and generalization. Syslo and Kwiatkowska (2006) went further
by exploring those mathematics concepts that can benefice from programming, but which
have not be included in the (Polish) secondary school curriculum yet. Besides transfer-
ability of skills, when learning to program students also acquires a sense of mastery over
a technological instrument and establishes contact with some of the deepest ideas of dif-
ferent disciplines such as: science, mathematics and the art of intellectual model building
(Papert, 1980). Moreover, as we anticipated earlier on, programming is a new generation
subject, which brings together pieces from different areas such as: linguistics, mathe-
matics and economics (Mulder, 2002). This completeness gives students the opportunity
to be faced with a multi-disciplinary subject that connects different aspects in a single
class. Students could experience the opportunity to delve deeper into previously acquired
knowledge, as for example Resnick and Ocko’s students (1990) did with the physics con-
cept of friction.

What should Be Taught?

By answering this question we aim to understand what are the core concepts of program-
ming students need to learn. Decisions about what it is needed to teach are usually taken
by curriculum and examinations designers. In informatics efforts to define a suitable cur-
riculum have been made since the late ‘60s (Atchison et al., 1968). However we should
consider the different curricular representations (Van den Akker and Voogt, 1994) includ-
ing: the ideal curriculum, which refers the original ideas and intentions of the designers;
the formal curriculum, denoting the written curriculum (documents, materials); the per-
ceived curriculum, indicating the interpretation of the users, especially the teachers, of
the curriculum; the operational curriculum, identifying the actual instruction process in
the classroom; and the experiential curriculum, which represents students’ reactions and
outcomes. In this literature study we combine topics suggested from the ideal, the formal
and the perceived curriculum (e.g., Gal-Ezer and Harel, 1999; Tucker et al., 2003; UN-
ESCO, 2002; Tucker, 2010), because we think that these together form a more complete
and realistic view of what happens in a class.

Rephrasing Romeike (2008), the core of programming is all about problem solving
and creating a program as solution. In programming we can distinguish two kinds of
knowledge, namely the program generation and the program comprehension (Van Mer-
riënboer and Krammer, 1987; Robins et al., 2003; Mannila, 2007). In the first case, the
programmer analyzes the problem, produces and algorithmic solution, and then translates
this algorithm into a program code. This means that students should be coached in the



Teaching Programming in Secondary School 79

process of problem solving, reflection on this process, and in the development of algorith-
mic ways of thinking (Feurzeig et al., 1970; Resnick and Ocko, 1990; Sims-Knight and
Upchurch, 1993; Dagienė, 2005; Breed et al., 2005; Hromkovič, 2006; Futschek, 2006;
Ginat, 2006). As for program comprehension, the programmer is asked to give a demon-
stration of her/his understanding of how a given program works. We consider then the
teaching in secondary school of program generation and program comprehension very
important.

Programs are a set of instructions that computers execute in order to perform a task
and are written in a programming language. Usually curriculum designers leave the
choice of the programming language to teachers, and among secondary teachers there
seems to be heterogeneity in the choice of programming languages/paradigms. In the pro-
cess of learning to program, Govender (2006) identifies, from a technical point of view,
three main aspects students need to learn: data, instructions and syntax. Data refers to the
concepts of variables and data types for procedural programming, and objects involving
attributes and actions for OO programming. As for instructions, the needed understanding
is about control structures and subroutines for the procedural programming, and interact-
ing objects and methods in the case of OO programming. Syntax denotes the group of
rules that determine what is allowed and what is not within a programming language.
Syntax rules determine what it is called the vocabulary of the language, how programs
can be constructed using techniques such as loops, branches and subroutines.

Govender’s classification, however, does not take care of the modularity and abstrac-
tion aspects of programming, as for example Abelson and Sussman (1996) do. They
identify three main aspects: primitive expressions, representing the simplest entities that
a language is concerned with; means of combination, by which compound elements are
built from simpler ones; and means of abstraction, by which compound elements can be
named and manipulated as units. These three aspects deal with two kinds of elements:
data and instructions. By using these three mechanisms in combination with each other it
is possible to formulate complex programs, starting from simpler ones.

A final aspect, equally important, is the semantic of a program, also referred to as
the meaning of a program. A semantically correct program is a program that performs
the required task. Programs written with different syntax can perform the same semantic
task.

What Are the Tearning Difficulties?

In this section we deal with students’ different needs and difficulties. Because of the
complexity of individuals, different students will have different needs and difficulties.
For this reason some of the studies presented might result contradictory, but in fact they
present the different realities of different students.

It has been stated several times that programming is a difficult task to achieve (Van
Diepen, 2005; Govender, 2006) and often novice programmers hold misunderstanding
and misconceptions. In early stages of the learning process a correct program often re-
sults as an unexpected surprise (DuBoulay, 1989). By answering this question we aim to



80 M. Saeli et al.

understand the most common problems students have while learning to program. From
this knowledge we can attempt to find solutions to prevent or guide these problems. A
brief exploration of the most common problems is given.

DuBoulay (1989, p. 283–284) identifies five kinds of difficulties/areas which have
a certain degree of overlap in programming learning/teaching, concerning aspects such
as motivation and technical aspects. Students’ difficulties are: 1) orientation, finding out
what programming is useful for and what the benefits to learn to program are; 2) the no-
tional machine (understanding the general properties of the machine that one is learning
to control) and realizing how the behaviour of the physical machine relates to the notional
machine; 3) notation, which includes the problems of aspects of the various formal lan-
guages such as syntax and semantics; 4) structures, understanding the schemas or plans
that can be used to reach small-scale goals (e.g., using a loop); 5) mastering the prag-
matics of programming (learning the skill to specify, develop, test and debug a program
using the available tools).

From a relationship student-computer point of view, Pea (1986) identifies the exis-
tence of persistent conceptual language-independent “bugs” in how novices program and
understand programs. The starting point of the analysis of conceptual “bugs” is that stu-
dents have a tendency to converse with a computer as if it was a human (considered
also as the superbug), with consequences such as expecting the computer to interpret
students’ conversations. Pea distinguishes three different kind of conceptual “bugs”: the
parallelism bug refers to the assumption that different lines in a program can be active or
somehow known by the computer at the same time, or in parallel. Another bug is the in-
tentionality, for which students believe that computers “go beyond the information given”
in the lines of programming code being executed when the program is run. The last bug,
egocentrism, refers to students’ assumption that there is more of their meaning for what
they want to achieve in the program than is actually present in the code they have written
(e.g., “Don’t print what I say, print what I mean!”). Students’ conceptions do not guide
their attention to consider these problems as relevant reasons for their programs not to
work as planned.

Another problem students could face is the paradigm shift (Kölling, 1999a, 1999b;
Mazaitis, 1993) in cases where their teacher proposes them to learn more than one pro-
gramming language with different paradigms (e.g., procedural and object oriented), al-
though this is not advisable in an introductory course at secondary school level. Students
usually encounter problems in passing from one paradigm to another, especially from the
procedural to the object oriented (but not the vice versa).

Regarding the acquisition of problem solving skills, several papers explore the differ-
ent difficulties students encounter while trying to generate a solution for a given problem.
Novices (Ginat, 2006) tend to maintain local, limited-insight points of view of the prob-
lem, leading often to undesirable, erroneous outcomes. It seems that novices fail to realize
the importance of a global point of view. Also Weigend (2006) observed how, even when
finding a mental or practical solution to a problem, students fail to write a correct program
that does the job. The reason might be that students are not trained to translate mental in-
tuitions in a communicative way, or might be connected with the semantic of a program.



Teaching Programming in Secondary School 81

Semantic is also considered to be a problematic aspect of programming. This is because
it requires the student to put together different parts of a program (variables, expressions,
statements, control structure, objects and methods) into a working solution. Semantic is
closely related to the debugging activity and the related correctness of a program (Pea and
Kurland, 1983), a concept introduced by Dijkstra (1968, 1972). When teachers choose a
programming language offering a more complex syntax, students will be faced with both
semantic and syntax difficulties (Mannila et al., 2006).

How should the Topic be Taught?

By answering this question we aim to understand what the best approaches to introduce
students into the learning of programming are, not only to prevent the above mentioned
difficulties/misconceptions, but also to hook students’ motivation in an effective and en-
gaging way. As in the previous section, because of the complexity of individuals, differ-
ent students will have different needs and difficulties. For this reason some of the studies
presented might report contradictory results, but actually they propose different teaching
approaches to meet different students’ learning needs. We cannot conclude which one
method is the best, but only highlight those methods which are considered best in dif-
ferent circumstances. This is also directly connected with Shulman’s definition, which
considers PCK as an armamentarium/repertoire of representations.

Hromovič (2006) suggests that programming is seen as a skill to communicate, in
an unambiguously way, a set of instructions to an unintelligent computer. If this process
could take place by means of a relatively simple programming language (e.g., Python)
offering a simpler syntax than other commonly used programming languages, students
could focus more on the semantic aspect of the program and produce fewer syntax er-
rors (Mannila et. al., 2006). Another way to start this learning process could be the use
of practical examples, such as rewriting recipes for cooking for a cooking machine (Hro-
movič, 2006). The process should lead students to write at first simple programs, and then
combine the simple solutions together to obtain solution to more complicated problems
(Abelson and Sussman, 1996). This approach has the twofold purpose to let the student
not only experience the historical development, but also learn the concept of modularity
and reusability. Writing a set of instructions to solve a problem is the definition of algo-
rithm. In other words, writing code for a correct mental solution. To achieve algorithmic
thinking students should solve many problems, which should be chosen independently
from any programming language (Futschek, 2006), and should follow some pedagogi-
cal principles (Romeike, 2008). In fact, algorithmic thinking can be successfully intro-
duced without the aid of a computer at all (Bell, Witten and Fellows, 1998; Curzon and
McOwan, 2008). However, it happens that students fail to translate their correct reason-
ing into an unambiguous set of instructions for the machine. To overcome this, students
could be coached in analysing their intuitions and connecting them to the designated task
(Weigend, 2006).

Linn and Dalbey (1989, p. 58–62) suggest an ideal chain for learning computer pro-
gramming, which gradually goes from program comprehension and ends with program



82 M. Saeli et al.

generation. The chain has three main links: single language features, design skills, and
general problem-solving skills. According to Linn and Dalbey (1989) the ideal chain
should start with the understanding of the language features, knowledge that can be as-
sessed by asking students to reformulate or change a language feature in a program so
that the program does something slightly different. The second link of the chain consists
of design skills, which are a group of techniques used to combine language features to
form a program. This chain link also includes templates (stereotypical patterns of code
that use more than a single feature) and procedural skills (used to combine templates and
language features in order to solve new problems, including planning, testing and refor-
mulating). The third link of the chain, problem-solving skills, is useful for learning new
formal systems. Problem-solving skills can be assessed by asking students to solve prob-
lems using an unfamiliar formal system such as a new programming language. Though
this chain of cognitive accomplishment requires an extensive amount of time it forms a
good summary of what could be meant by deep learning in introductory programming
(Robins et al., 2003).

To provide novices with a framework for understanding, some model or description of
the machine should be introduced, where a model should be designed around each group
of novices, distinguished either for their age, background or kind of studies (Du Boulay et
al., 1989). Students working with such models excelled at solving some kind of problem
more than students without the model (Mayer, 1989). An example could be the metaphor
of a black box inside the glass box as a way to present computing concepts to novices.
The reason is that novices start programming with very little idea of the properties of the
notional machine implied by the language they are learning.

The previous approaches mostly deal with the difficulties and misconceptions pre-
sented in the previous section. If we look at approaches which aim at teaching program-
ming in an engaging way, we should refer to the family of programming environments
and suited programming languages developed with the main goal to introduce students
into the programming practice in active and motivating scenarios. These environments
have been specially designed to answer the difficulties students usually encounter when
learning to program with normal programming languages (Mannila et al., 2006). The
list is quite long and the first efforts have been already made in the early ‘70s. Among
the most popular we have Logo and its derivates (Feurzeig et al., 1970; Papert, 1980;
Resnick and Okco, 1990; etc.), initially designed to teach mathematics, which has the
focus to enhance problem solving skills; Scratch (Resnick et al., 2009) which, based on
a metaphor of building bricks and offering much of the same functionality as Logo, al-
lows students to create syntactically correct program, and leaves the students to focus
on the semantic aspect; and finally the more modern Alice Greenfoot and Gamemaker
(relatively Cooper et al., 2003; Kölling and Henriksen, 2005; Overmars, 2005). These
learning environments find their basis in Piaget’s model of children’s learning, where
students are fostered to build their own intellectual structures, if provided with the right
material. It is then the teacher’s task to find suitable support/stimuli/learning material to
use with each of these tools. Some of these languages and environments, however, might
not include some structures or topics important to the learning of programming (Murnane
and McDougall, 2006).



Teaching Programming in Secondary School 83

6. Conclusions and Implications

In the previous section we gave the first preliminary answers to the questions that aim to
uncover the PCK of programming.

The first question aims to understand what the reasons to teach programming are.
Preliminary answers to our first questions are the following: enhancing students’ prob-
lem solving skills and offering the students a subject, which includes aspects of different
disciplines; use of modularity and transferability of the knowledge/skills; and the oppor-
tunity to work with a multi-disciplinary subject.

The second question aims to list the concepts/aspects that a programming curriculum
should include. Preliminary answers point to the following concepts/aspects: program-
ming knowledge, which refers to the knowledge of the data, instructions and syntax of a
programming language, but also primitive expression, means of combination and means
of abstraction; programming strategies, which identify the way syntax is used to create
programs to solve problems; and programming sustainability, which refers to the abil-
ity to create user friendly and attractive program/software that takes care of ethical and
privacy issues.

The third question aims to answer issues relative to the various difficulties students
encounter while learning to program, such as a general problem of orientation; difficulty
to instruct the machine about the solution of a problem; and tendency to converse with
a computer as if it was a human Regarding the solution of a problem, students tend to
maintain a local, limited point of view, failing to find a suitable solution.

The fourth question addresses these difficulties, by discussing teaching methods such
as possible and effective teaching sequences; offering a simple programming language
so students can focus on the syntax; choosing several problems to solve, which should
be carefully chosen, independently from any programming language, in order to achieve
algorithmic thinking; and teaching by means of suited programming languages or pro-
gramming environments.

In most of the cases these four ‘answers’ are not connected with each other, because
no explicit attempt to uncover the PCK of programming has been done before, neither on
higher or secondary education. The task in portraying the PCK of programming will be
to find the answers not only from a general point of view (programming in general), but
from the perspective of each of the most frequently taught topics, which are at the heart
of learning to program (e.g., variables, functions, etc.). An example will be answering
the four questions regarding the teaching of problem solving skills. Despite the fact that
some of these answers are available for some concepts, most have still to be studied.
Therefore we propose a call for research to portray the PCK of the most commonly taught
programming topics.

This literature study constitutes the first phase of a PhD project, which is still in
progress. In the second phase it will be attempted to uncover the PCK of Programming
for secondary education from an international perspective, through the use of research in-
struments already deployed in other subjects (Loughran et al., 2001). In the third phase an
instrument will be developed to assess to what extent an informatics textbook can support



84 M. Saeli et al.

teachers with low PCK. While the fourth phase of the project will consist of the formula-
tion of an approach to assess the PCK of Dutch teachers. The results of this project will
be used to improve teacher training for the subject of programming.

References

Abelson, H., Sussman, G.J. (1996). Structure and Interpretation of Computer Programs, 2nd edition. Series
MIT Electrical Engineering and Computer Science.

Almstrum, V.L., Guzdial, M., Hazzan, O., Petre, M. (2005). Challenges to computer science education research.
In: Proceedings ITiCSE, St. Louis, 191–192.

An, S., Kulm, G., Wu, Z. (2004). The pedagogical content knowledge of middle school, mathematics teachers
in China and the U.S. Journal of Mathematics Teacher Education, 7, 145–172.

Atchison, W.F., Conte, S.D., Hamblen, J.W., Hull, T.E., Keenan, T.A., Kehl, W.B. et al. (1968). Curriculum 68:
Recommendations for academic programs in computer science: a report of the ACM curriculum committee
on Computer Science. Communications of the ACM, 11, 151–197.

Bell, T., Witten, I.H., Fellows, M. (1998). Computer Science Unplugged. Off-line activities and games for all
ages. http://unplugged.canterbury.ac.nz

Breed, e.a., Monteith, J.L. de K., Mentz, E. (2005). Effective learning in computer programming: the role of
learners’ reflective thinking. In: Samways, B. (Ed.), 35 Years of Computers in Education: What Works?
Proceedings of IFIP 8th World Conference on Computers in Education – WCCE 2005, University of Stel-
lenbosch, Western Cape, South Africa.

Carpenter, T.P., Fennema, E., Peterson, P.L., Carey, D.A. (1988). Teachers’ pedagogical content knowledge of
students’ problem solving in elementary arithmetic. Journal for Research in Mathematics Education, 19,
385–401.

Cochran, K.F., DeRuiter, J.A., King, R. A. (1993). Pedagogical content knowing: an integrative model for
teacher preparation. Journal of Teacher Education, 44, 263–272.

Cooper, S., Dann, W., Pausch, R. (2003). Teaching objects-first in introductory computer science. SIGCSE
2003.

Curzon, P., McOwan, P. (2008). Engaging with computer science through magic shows. Paper presented at The
13th Annual Conference on Innovation and Technology in Computer Science Education.

Dagienė, V. (2005). Teaching information technology in general education: challenges and perspectives. In: R.T.
Mittermeir (Ed.), Proceedings of International Conference on Informatics in Secondary Schools – Evolution
and Perspectives, Klagenfurt, Austria, 53–64.

Dijkstra, E.W. (1968). A constructive approach to the problem of program correctness. BIT Numerical Mathe-
matics, 8, 174–186.

Dijkstra, E.W. (1972). Notes on structured programming. In: Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R. (Eds.),
Structured Programming. London and New York, Academic Press, 1–82).

Du Boulay, B. (1989). Some difficulties of learning to program. In: Soloway, E., Spohrer, J.C. (Eds.), Studying
the Novice Programmer, London, Lawrence Erlbaum Associates, 283–299.

Du Boulay, B., O’Shea, T. Monk, J. (1989). The black box inside the glass box : presenting computing concepts
to novices. In: Spohrer, C. (Ed.), Studying the Novice Programmer. London, Lawrence Erlbaum Associates,
431–446.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., Solomon, C. (1970). Programming-language as a conceptual
framework for teaching mathematics. Newsletter SIGCUE Outlook, 4(2), 13–17.

Futschek, G. (2006). Algorithmic thinking: the key for understanding computer science. In: Mittermeir, R.T.
(Ed.), ISSEP 2006, LNCS, 4226, 159–168.

Gal-Ezer, J., Harel, D. (1999). Curriculum and course syllabi for a high-school cs program. Computer Science
Education, 9, 114–147.

Ginat, D. (2006). On novices’ local views of algorithmic characteristics. In: Mittermeir, R.T. (Ed.): ISSEP 2006,
LNCS, 4226, 127–137.

Govender, I. (2006). Learning to Program, Learning to Teach Programming: Pre- and In-service Teachers’
Experiences of an Object-oriented Language. University of South Africa.



Teaching Programming in Secondary School 85

Grossman, P.L. (1989). A study in contrast: sources of pedagogical content knowledge for secondary English.
Journal of Teacher Education, 40, 24–31.

Grossman, P.L., Lynn, P. (1990). The making of a Teacher: Teacher Knowledge and Teacher Education. New
York, Teachers College Press, Columbia University.

Guzdial, M. (2004). Programming environments for novices. In: Fincher, S., Petre, M. (Eds.), Computer Science
Education Research, Lisse, The Netherlands, Taylor & Francis, 127–153.

Hashweh, M.Z. (2005). Teacher pedagogical constructions: a reconfiguration of pedagogical content knowl-
edge. Teachers and Teaching, 11, 273–292.

Holmboe, C., McIver, L., George, C. (2001). Research agenda for computer science education. In: 13th Work-
shop of the Psychology of Programming Interest Group, 207–223.

Hromkovič, J. (2006). Contributing to general education by teaching informatics. In: Mittermeir, R.T. (Ed.),
ISSEP 2006, LNCS, 4226, 25–37.

Kölling, M. (1999a). The problem of teaching object-oriented programming, Part I, Languages. Journal of
Object-Oriented Programming, 11, 8–15.

Kölling, M. (1999b). The problem of teaching object-oriented programming, Part II, Environments. Journal of
Object-Oriented Programming, 11, 6–12.

Kölling, M., Henriksen, P. (2005). Game programming in introductory courses with direct state manipulation.
ITiCSE 2005.

Kurland, D.M., Pea, R.D., Clement, C., Mawby, R. (1989). A study of the development of programming abil-
ity and thinking skills in high school students. In: Soloway, E., Spohrer, J.C. (Eds.), Studying the Novice
Programmer. London, Lawrence Erlbaum Associates, 83–112.

Lapidot, T., Hazzan, O. (2003). Methods of teaching a computer science course for prospective teachers. Inroads
– The SIGCSE Bulletin, 35(4), 29–34.

Linn, M.C., Dalbey, J. (1989). Cognitive consequences of programming instruction. In: Soloway, E., Spohrer,
J.C. (Eds.), Studying the Novice Programmer. London, Lawrence Erlbaum Associates, 58–62.

Lister, R. (2007). The randolph thesis: csed research at the crossroads. Inroads – SIGCSE Bulletin, 39, 4, 16–18.
Loughran, J., Milroy, P., Berry, A., Gunstone, R., Mulhall, P. (2001). Documenting science teachers’ pedagogi-

cal content knowledge through PaP-eRs. Research in Science Education, 31, 289–307.
Magnusson, S., Krajcik, J., Borko, H. (1999). Nature, sources, and development of pedagogical content knowl-

edge for science teaching. In: Gess-Newsome, J., Lederman, N.G. (Eds.), Examining Pedagogical Content
Knowledge. Dordrecht, the Netherlands, Kluwer Academic Publishers, 95–132.

Mannila, L., Peltomaki, M., Salakoski, T. (2006). What about a simple language? Analyzing the difficulties in
learning to program. Computer Science Education, 16, 3, 211–227.

Mannila, L. (2007). Novices’ progress in introductory programming courses. Informatics in Education, 6, 139–
152.

Marks, R. (1990). Pedagogical content knowledge: from a mathematical case to a modified conception. Journal
of Teacher Education, 41, 3–31.

Mayer, R.E. (1989). The psychology of how novices learn computer programming. In: Soloway, E., Spohrer,
J.C. (Eds.), Studying the Novice Programmer. London, Lawrence Erlbaum Associates, 129–159.

Mazaitis, D. (1993). The object-oriented paradigm in the undergraduate curriculum: a survey of implementa-
tions and issues. SIGCSE Bulletin, 25, 58–64.

Morine-Dershimer, G., Kent, T. (1999). The complex nature and sources of teachers’ pedagogical knowledge.
In: Gess-Newsome, J., Lederman, N.G. (Eds.), Examining Pedagogical Content Knowledge. Dordrecht, the
Netherlands, Kluwer Academic Publishers, 21–50.

Mulder, F. (2002). van BÈTA – naar DELTA-discipline (in English: Computer Science: from a BÈTA to a
DELTA subject). Informatica, Tinfon, 11, 48.

Murnane, J., McDougall, A. (2006). Bad computer science in beginners programming courses: “Considered
harmful?” – A case study of the Trufts graphical programming language. In: Watson, D., Benzie, D. (Eds.),
Proceedings of IFIP-Conference on Imagining the future for ICT and Education, Alesund, Norway.

Overmars, M. (2005). Teaching computer science through game design. IEEE Computer, 37(4), 81–83.
Papert, S. (1980). Mindstorms. Children, Computers and Powerful Ideas. Basic Books, Inc. Publishers, New

York.
Pea, R.D., Kurland, D.M. (1983). On the Cognitive Prerequisites of Learning Computer Programming. Techni-

cal report No. 18, Bank Street College of Education, New York, NY.



86 M. Saeli et al.

Pea, R.D. (1986). Language-independent conceptual ”bugs” in novice programming. Journal of Educational
Computing Research, 2, 25–36.

Peterson, P.L., Fennema, E., Carpenter, T.P. Loef, M. (1989). Teacher’s pedagogical content beliefs in mathe-
matics. Cognition and Instruction, 6, 1–40.

Ragonis, N., Hazzan, O., Gal-Ezer, J. (2010). A survey of computer science teacher preparation programs in
israel tells us: computer science deserves a designated high school teacher preparation! SIGCSE’10 Pro-
ceedings of the 41st ACM Technical Symposium on Computer Science Education. Milwaukee, Wisconsin,
USA.

Randolph, J.J. (2007). Computer Science Education at the Crossroads: A Methodological Review of Computer
Science Education Research: 2000–2005. PhD Dissertation. Utah State University. Logan, Utah.

Rayner, S., Riding, R. (1997). Towards a categorisation of cognitive styles and learning styles. Educational
Psychology, 17, 5–27.

Resnick, M., Ocko, S. (1990). LEGO/Logo: Learning Though and about Design. Epistemology and Learning
Group, E & L Memo No. 8, MIT Media Laboratory, Cambridge.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosen-
baum, E., Silver, J., Silverman, B., Kafai, Y. (2009). Scratch: programming for all. Communications of the
ACM, November 2009.

Rich, Y. (1993). Stability and change in teacher expertise. Teacher and Teacher Education, 9, 137–146.
Robins, A., Rountree, J., Rountree, N. (2003). Learning and teaching programming: a review and discussion.

Computer Science Education, 13, 137–172.
Romeike, R. (2008). What’s my challenge? The forgotten part of problem solving in computer science educa-

tion. In: Mittermeir, R.T. (Ed.), ISSEP 2008, LNCS, 5090, 122–133.
Rovegno, I.C. (1992). Learning to teach in a field-based methods course: the development of pedagogical con-

tent knowledge. Teaching and Teacher Education, 8, 69–82.
Sanders, L.R., Borko, H., Lockard, J.D. (1993). Secondary science teachers’ knowledge base when teaching

science courses in and out of their area of certification. Journal of Research in Science Teaching, 30, 723–
736.

Shulman, L.S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15,
4–14.

Shulman, L.S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review,
57, 1–22.

Sims-Knight, J.E., Upchurch, R.L. (1993). Teaching software design: A new approach to high school computer
science. Paper presented at The Annual Meeting of the American Educational Research Association. Atlanta,
GA.

Soloway, E. (1993). Should we teach students to program? ACM Communications, 36, 21–24.
Soloway, E., Spohrer, J.C. (1989). Studying the Novice Programmer. London, Lawrence Erlbaum Associates.

Stephenson, C., Gal-Ezer, J., Haberman, B., Verno, A. (2005). The New Educational Imperative: Improving
High School Computer Science Education (Rep. No. Final Report of the CSTA Curriculum Improvement
Task Force – February 2005).

Syslo, M.M. Kwiatkowska, A.B. (2006). Contribution of informatics education to mathematics education in
schools. In: Mittermeir, R.T. (Ed.), ISSEP 2006, LNCS, 4226, 209–219.

Szlávi, P. Zsakó, L. (2006). Programming versus application. In: Mittermeir, R.T. (Ed.), ISSEP 2006, LNCS
4226, 48–58.

Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., Verno, A. (2003). A Model Curriculum for K-
12 Computer Science (Rep. No. Final Report of the ACM K-12 Education Task Forse Computer Science
Curriculum Committee).

Tucker, A.B. (2010). K-12 computer science: aspirations, realities and challenges. In: J. Hromkovič, R.
Královič, J. Vahrenhold (Eds.): ISSEP 2010, LNCS, 5941, 22–34.

Turner-Bisset, R. (1999). The knowledge bases of the expert teacher. British Educational Research Journal, 25,
39–55.

UNESCO (2002). Information and Communication Technology in Education. A Curriculum for Schools and
Programme of Tacher Development, Paris.

Van den Akker, J., Voogt, J. (1994). The use of innovation and practice profiles in the evaluation of curriculum
implementation. Studies in Education Evaluation, 20, 503–512.



Teaching Programming in Secondary School 87

Van Diepen, N. (2005). Elf redenen waarom programmeren zo moeilijk is (in English: Eleven reasons why
programming is so difficult). Tinfon, 14, 105–107.

Van Driel, J.H., Verloop, N., de Vos, W. (1998). Developing science teachers’ pedagogical content knowledge.
Journal of Research in Science Teaching, 35, 673–695.

Van Merriënboer, J.J.G., Krammer, H.P.M. (1987). Instructional strategies and tactics for the design of intro-
ductory computer programming courses in high school. Instructional Science, 16, 251–285.

Weigend, M. (2006). From intuition to programme. Programming versus application. In: Mittermeir, R.T. (Ed.),
ISSEP 2006, LNCS, 4226, 117–126.

Woollard, J. (2005). The implications of the pedagogic metaphor for teacher education in computing. Technol-
ogy, Pedagogy and Education, 14 (2)2, 189–204.

M. Saeli received her bachelor degree in computer science from the University of Ferrara
(Italy) and her master degree in mathematics and science education from the University of
Amsterdam (The Netherlands). Currently she is doing her PhD at the Eindhoven School
of Education (Eindhoven University of Technology) on the teaching of programming for
secondary school.

J. Perrenet participated in various mathematics education research projects and was in-
volved in the development and innovation of higher technological education for many
years. Nowadays he is associated with the Eindhoven School of Education, for teacher
training in science education and communication, for coaching PhD students, and for re-
search into mathematics and informatics education. He is also associated with the math-
ematics and computer science programmes of the TU/e for developmental advice and
participates in the project Academic Competencies and Quality Assurance that measures
the academic profile of programmes at the TU/e and at other technical universities.

W. Jochems received his master degree in educational psychology and methodology
from Utrecht University. He did his PhD in technical sciences at Delft University of
Technology (TU Delft). In 1989 he became full professor in educational development
and educational technology at TU Delft. From 1993 until 1998 he was dean of the Fac-
ulty of Humanities at TU Delft. In 1998 he became dean of the Educational Technology
Expertise Centre at the Open University of the Netherlands (OUNL) and full professor
in educational technology. From 2006 onwards prof. Jochems is dean of the Eindhoven
School of Education and full professor in educational innovation at Eindhoven University
of Technology.

B. Zwaneveld, professor in mathematics education and informatics education at the Ruud
de Moor Centrum of the Open Universiteit of the Netherlands, expertise centre in profes-
sional development of teachers. B. Zwaneveld is professor in mathematics education and
informatics education at the Ruud de Moor Centrum of the Open Universiteit. His main
fields of interest are the training of intending informatics teachers, the teaching of math-
ematical modelling and the teaching of mathematics in primary education. He started his
career as a mathematics teacher in secondary education. Afterwards he was a course de-
veloper in the Faculty of Computer Science of the Open Universiteit. He has a PhD in
didactics of mathematics.



88 M. Saeli et al.

Programavimo mokymas vidurinėje mokykloje:
pedagogini ↪u dalyko žini ↪u perspektyvos

Mara SAELI, Jacob PERRENET, Wim M.G. JOCHEMS, Bert ZWANEVELD

Pedagoginės dalyko žinios apibrėžiamos kaip žinios, kurios leidžia mokytojams pakeisti j ↪u
dalyko žinias ↪i kažk ↪a prieinamesnio mokiniams. Straipsnio autori ↪u tikslas – surasti preliminarius
atsakymus ↪i klausimus, kuriais siekiama atskleisti pedagogines dalyko žinias apie programavimo
mokym ↪a. Pagrindiniai keliami klausimai: dėl koki ↪u priežasči ↪u yra mokoma programavimo; su ku-
riomis s ↪avokomis reikėt ↪u supažindinti mokinius; kokios yra dažniausiai pasitaikančios klaidos ir
sunkumai, su kuriais susiduria mokiniai, besimokantys programuoti; kaip mokyti programuoti. Au-
toriai, pasitelkdami atsakymus ↪i klausimus, kurie nėra akivaizdžiai susij ↪e, nori rasti priežastis, kodėl
mokyti programuoti reikia jau vidurinėje mokykloje.


