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	 There	is	a	need	for	research	in	STEM	(science,	technology,	engineer-
ing,	and	mathematics)	teacher	education	that	addresses	the	challenge	
of	building	teachers’	pedagogical	skills	in	fostering	the	development	of	
mathematical	reasoning	in	students.	The	Common	Core	State	Standards	
for	Mathematics	provide	teachers	with	guidance	on	how	to	promote	math-
ematical	practices	that	emphasize	reasoning	and	justification	through	
problem	solving	and	that	encourage	an	exploration	of	viable	strategies,	
through	mathematical	modeling	and	facilitating	communication	in	the	
classroom,	 to	 critique	 mathematical	 arguments	 (National	 Governors	
Association,	 2010).	 For	 many	 teachers,	 these	 kinds	 of	 mathematical	
practices	may	not	be	what	they	experienced	as	learners,	and,	therefore,	
it	is	not	clear	to	them	how	to	engage	their	students	in	ways	that	enact	
the	new	Standards	of	Mathematical	Practices.
	 As	 we	 and	 others	 have	 shown,	 digital	 video	 can	 be	 an	 excellent	
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resource	for	improving	teachers’	skills	at	attending	to	students’	math-
ematical	reasoning	(Borko,	Jacobs,	Eiteljorg,	&	Pittman,	2008;	Derry,	
Hmelo-Silver,	Nagarajan,	Chernobilsky,	&	Beitzel,	2006;	Sherin	&	Han,	
2004;	Van	Es,	2009;	Zhang,	Lundeberg,	Koehler,	&	Eberhardt,	2011).	
Video	can	show	the	complexity	of	classroom	practice	and	make	student	
and	teacher	thinking	visible	(Brown,	1992;	Miller	&	Zhou,	2007).	Part	
of	what	makes	video	so	compelling	is	the	degree	of	complexity	that	it	
can	convey.	It	also	can	provide	opportunities	for	teacher	professional	
development	by	encouraging	teachers	to	focus	on	teaching	and	learn-
ing	in	ways	that	they	would	not	be	able	during	classroom	instructional	
time	and	by	providing	virtual	experiences	that	allow	detailed	studies	
of	student	thinking	(Borko	et	al.,	2008;	Miller	&	Zhou,	2007;	Palius	&	
Maher,	2011).	Several	researchers	have	argued	that	video	can	provide	
a	context	for	productive	discussion	and	reasoning	about	teaching	and	
learning	(e.g.,	Borko	et	al.,	2008;	Zhang	et	al.,	2011).	Derry	et	al.	(2006)	
argue	that	one	of	the	reasons	for	the	potentially	powerful	effects	of	video	
is	that	it	provides	opportunities	to	make	connections	between	theoreti-
cal	ideas	and	real-world	practice.	A	range	of	pedagogical	approaches	for	
using	video	for	learning	includes	lesson	study,	video	clubs,	problem-solv-
ing	cycles,	and	problem-based	learning	(e.g.,	Borko	et	al.,	2008;	Maher,	
Landis,	&	Palius,	2010;	Zhang	et	al.,	2011).	
	 Why,	then,	has	there	been	relatively	little	change	in	instruction	that	
fails	to	recognize	the	power	of	student	reasoning?	One	reason	may	be	
the	lack	of	awareness	of	the	existence	of	videos	of	children	engaged	in	
sophisticated	reasoning	for	use	in	teacher	education.	We	begin	to	ex-
plore	the	question	by	first	examining	teacher	knowledge	about	student	
reasoning.	Opportunities	to	study	children’s	doing	and	talking	about	
mathematics	and	providing	convincing	arguments	for	their	solutions	
to	problems	might	not	typically	be	accessible	to	pre-service	teachers	or	
to	many	in-service	teachers	whose	approach	to	instruction	misses	op-
portunities	to	observe	how	children	learn	and	do	mathematics.	Video,	
however,	holds	the	promise	of	providing	a	window	into	alternative	class-
room	settings	in	which	communication,	collaboration,	and	the	sharing	
of	ideas	are	the	norm.	The	use	of	video	clips	of	children	thoughtfully	
engaged	in	doing	mathematics,	thus,	offers	a	new	lens	through	which	to	
view	student	learning	and	brings	forth	a	question	that	guides	our	work:	
Does	teacher	study	of	certain	videos	improve	their	ability	to	recognize	
the	variety	of	forms	of	reasoning	used	by	the	children?
	 We	have	been	conducting	research	in	teacher	education	using	the	
problem-solving	tasks	and	videos	from	prior	long-term	research	on	the	
development	of	mathematical	reasoning	in	students.	This	work	is	part	
of	the	Video	Mosaic	Collaborative,	which	also	makes	videos,	tasks,	and	
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related	resources	available	via	the	Internet	(www.videomosaic.org).	We	
report	the	results	of	quasi-experimental	studies	conducted	over	three	
years	with	pre-	and	in-service	teachers.	The	underlying	hypothesis	was	
that	a	particular	video	collection	can	serve	as	a	pedagogical	tool	for	deep-
ening	teachers’	awareness	of	how	students’	mathematical	reasoning	can	
emerge	naturally	through	problem	solving	when	appropriate	conditions	
have	been	established	in	the	learning	environment	(Maher,	2008).	This	
hypothesis	is	premised	on	the	notion	that	teachers’	ability	to	recognize	
children’s	reasoning	is	likely	essential	for	tackling	the	bigger	challenge	
of	subsequent	change	in	teaching	practice.	Thus,	we	start	to	address	
that	challenge	by	investigating	our	hypothesis	about	the	pedagogical	
value	of	certain	videos.

The Video Mosaic Collaborative (VMC)

	 A	quarter-century	of	research	on	the	development	of	mathemati-
cal	 ideas	 and	 reasoning	 has	 yielded	 a	 video	 collection	 that	 features	
students	 engaged	 in	 mathematical	 problem	 solving	 across	 multiple	
content	strands	in	classroom	and	informal	settings	(Maher,	2009;	Maher	
&	Martino,	1996;	Mueller	&	Maher,	2009).	The	videos	are	an	outcome	
of	research	that	followed	the	same	students	over	time	and	that	shows	
their	making	sense	of	problems	and	persevering	in	solving	them.	The	
students	in	the	videos	use	appropriate	tools	and	construct	personally	
meaningful	representations	that	support	them	in	reasoning	abstractly	
and	quantitatively	(Maher,	Powell,	&	Uptegrove,	2010).	The	videos	also	
illustrate	how	the	researcher,	in	the	role	of	classroom	teacher,	facilitated	
interactions	among	students	who	worked	in	small	groups,	as	well	as	in	
whole-class	discussions,	in	ways	that	supported	students’	articulation	of	
mathematical	arguments	and	consideration	of	whether	those	arguments	
were	convincing	as	justification	for	solutions	to	problem	tasks.	Multiple	
cameras	were	used	to	capture	the	talk	and	inscriptions	that	children	
produced	while	working	on	cognitively	challenging,	yet	accessible,	tasks	
that	allowed	them	to	explore	mathematical	ideas	before	receiving	formal	
instruction	on	those	topics	in	their	regular	school	curriculum.
	 Well-documented	 examples	 of	 students’	 mathematical	 reasoning,	
which	 were	 initially	 identified	 through	 research	 conducted	 by	 many	
scholars,	have	now	been	prepared	by	VMC	and	populate	a	searchable	
database,	 the	Video	Mosaic	Collaborative.	Of	particular	 relevance	 to	
the	research	in	teacher	education	reported	here	are	the	videos	in	the	
counting-combinatorics	strand,	which	come	from	a	seminal	longitudinal	
study	that	followed	the	same	group	of	students	from	early	elementary	
grades	through	high	school	and	beyond,	with	follow-up	interviews.	The	
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tasks	and	videos	have	been	used	in	a	variety	of	intervention	designs	
with	pre-service	and	in-service	teachers	at	the	elementary,	middle,	and	
secondary	levels.	We	report	on	the	results	of	the	various	interventions,	
through	which	teachers	first	became	engaged	as	learners,	by	working	
on	the	tasks,	finding	viable	arguments,	considering	the	mathematical	
structure,	and	then	studying	videos	of	students’	working	on	the	same	
tasks.	The	student	reasoning	from	this	strand	and	the	collection	of	tasks	
have	been	carefully	documented	(Maher,	Powell,	&	Uptegrove,	2010).	
The	video	collection,	which	includes	additional	content	strands,	can	be	
found	in	the	VMC	database	(Agnew,	Mills,	&	Maher,	2010).

Theoretical Framework 

	 We	ground	our	work	in	a	theoretical	framework	that	assumes	that	
people	learn	best	when	actively	engaged	in	interpreting	the	world	(Brans-
ford,	Derry,	Berliner,	Hamerness,	&	Darling-Hammond,	2005;	Palincsar,	
1998).	Video	can	help	to	provide	a	bridge	that	connects	prior	learning	to	
new	knowledge.	Video	allows	teachers	to	have	a	virtual	entrée	into	the	
world	of	the	classroom	(Sherin	&	Han,	2004).	Because	video	is	“not	live,”	
it	 enables	 one	 to	 rewind,	 re-watch,	 review,	 and	 reflect.	 In	 this	 way,	 it	
provides	teachers	with	opportunities	for	analytic	thinking	that	live	class-
room	observations	or	clinical	interviews	cannot.	Notably,	it	can	provide	a	
shared	focal	representation	for	professional	development	(Borko,	Koellner,	
Jacobs,	&	Seago,	2011).	In	addition,	video	offers	learners	the	opportunity	
to	discern	what	is	important	in	a	particular	situation	and	can	provide	a	
basis	for	comparison	with	their	own	lived	experiences.	In	the	case	of	the	
research	reported	here,	video	provides	opportunities	for	teachers	to	see	
that	learners	are	capable	of	engaging	in	sophisticated	reasoning	as	they	
develop	and	apply	their	new	knowledge	of	mathematics	learning	to	au-
thentic	contexts.	The	use	of	video	in	professional	development	encourages	
the	understanding	of	learning	“through	careful	observation	of	students	
and	their	work”	(Bransford	et	al.,	2005,	p.	79).	
	 The	interventions	reported	here	build	on	the	assumption	that	ob-
servation	and	analysis	 of	 student	mathematical	behavior	 can	 reveal	
learners’	developing	knowledge	and	ability	to	reason.	While	we	sought	
evidence	that	teachers	can	build	knowledge	about	students’	mathematical	
reasoning	from	studying	videos	in	a	facilitated	learning	context,	we	also	
point	to	the	potential	for	transferring	what	is	learned	through	virtual	
means	 into	attending	better	 to	students’	 reasoning	 in	 live	classroom	
environments.
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The Intervention

	 The	design	of	the	interventions	typically	was	based	on	one	of	two	
models	(Palius	&	Maher,	2011),	with	variations	made	to	accommodate	
specific	learning	goals	for	the	population	of	participants	in	particular	
university	 courses,	 and	 the	 interventions	 shared	 common	 features.	
Participants	 in	 the	 experimental	 classes	 worked	 in	 groups	 to	 solve	
counting	 problems,	 watched	VMC	 videos	 of	 children	 who	 were	 solv-
ing	the	same	problems,	and	then	discussed	the	variations	among	the	
teacher	and	student	solutions.	Another	common	feature	of	interventions	
was	the	focus	on	students’	mathematical	reasoning,	particularly	how	
students’	representations	and	models	became	tools	that	they	could	use	
in	trying	to	express	convincing	arguments	for	their	solutions.	Although	
all	intervention	enactments	used	the	same	basic	design,	the	duration	
of	an	intervention	varied,	and	course	instructors	were	free	to	adapt	the	
interventions	to	their	specific	circumstances;	analysis	of	these	adapta-
tions	is	in	progress.	All	experimental	participants	worked	on	the	same	
core	problem	strand	and	were	given	a	subset	of	the	same	VMC	videos	of	
students’	reasoning	to	view.	In	contrast,	the	comparison	classes	neither	
worked	on	the	problems	nor	analyzed	student	arguments	from	videos	
as	part	of	their	course	curriculum.	

Methodology

Participants
	 The	participants	were	177	pre-	and	in-service	mathematics	teach-
ers.	The	experimental	group	had	127	participants,	and	the	comparison	
group	 had	 50.	The	 distribution	 of	 participants	 is	 shown	 in	Table	 1.	
Experimental	groups	included	K-5	pre-service	teachers,	K-8	in-service	
teachers,	and	pre-service	secondary	teachers,	with	corresponding	com-
parison	groups.	
	 The	K-5	pre-service	teachers	at	a	private	university	in	New	Jersey	
were	in	classes	taught	by	the	same	instructor.	These	classes	were	se-
lected	at	random	to	be	designated	as	experimental	or	comparison.	The	

Table	1
Distribution of Study Participants

Participant	Group	 	 	 Experimental		 Comparison
	 	 	 	 	 	 (n	=	127)	 (n	=	50)

K-5	Pre-service	Teachers	 	 	 47	 	 25
K-8	In-service	Teachers	 	 	 54	 	 14
Pre-service	Secondary	Teachers	 	 26	 	 11
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experimental	and	comparison	K-8	in-service	teachers	were	participants	
from	 over	 20	 New	 Jersey	 school	 districts.	The	 pre-service	 secondary	
teachers	were	mathematics	majors	in	a	state	university	in	New	Jersey.	
The	comparison	groups	were	drawn	from	teacher	populations	similar	
to	those	of	the	experimental	groups.	Four	mathematics	teacher	educa-
tors	(MTEs)	led	the	experimental	classes;	three	worked	with	in-service	
teachers,	two	of	whom	also	worked	with	pre-service	secondary	teachers;	
and	a	fourth	worked	with	pre-service	elementary	teachers.	Four	MTEs	
led	 the	 comparison	 classes,	 with	 one	 instructing	 in-service	 teachers,	
one	 instructing	 pre-service	 secondary	 teachers,	 and	 two	 instructing	
pre-service	elementary	teachers.

Assessments
	 We	were	interested	in	studying	the	extent	to	which	the	study	par-
ticipants	noticed	children’s	mathematical	reasoning	from	a	specific	video	
clip,	which	was	used	in	all	the	interventions	in	the	counting	strand	and	
administered	as	a	pre-test	and	post-test	to	both	the	experimental	and	
comparison	 groups	 of	 teachers.	The	 video	 clip	 was	 excerpted	 from	 a	
small	group	interview	with	four	children	and	the	lead	researcher.	The	
interview	was	conducted	after	the	children	had	worked	with	a	partner	
on	the	task	of	building	towers	of	a	particular	height	(e.g.,	4-tall,	5-tall)	
when	selecting	from	two	different	colors	of	Unifix	cubes.	Children	used	
different	representations	and	strategies	and	had	varying	ways	of	justi-
fying	the	solutions	they	found.	Thus,	the	purpose	of	the	interview	was	
to	give	the	children	an	opportunity	to	share	their	own	ways	of	thinking	
and	to	hear	about	what	others	did	to	solve	the	problem.	This	video	was	
useful	for	assessment	because	study	participants	had	the	opportunity	
to	recognize	different	mathematical	arguments,	which	they	were	asked	
to	describe	in	detail	in	an	open-ended	response.	Participants	also	were	
provided	with	a	transcript	of	the	video,	and	the	assessment	prompt	in-
dicated	that	they	could	refer	to	the	transcript	to	provide	specific	details	
about	the	children’s	arguments.	Note	that	this	particular	video	was	used	
for	only	for	assessment	purposes;	it	was	not	used	by	any	MTEs	in	the	
design	of	an	intervention	for	an	experimental	class.

Coding
	 Our	research	team	developed	a	detailed	rubric	to	code	the	open-ended	
responses	to	the	video-based	assessment	on	reasoning	(see	Appendix).	
Each	 mathematical	 argument	 was	 broken	 down	 into	 its	 constituent	
features.	This	allowed	us	 to	measure	which	argument	 features	were	
identified	on	an	 individual’s	pre-test	and	post-test	and	 to	determine	
how,	 if	at	all,	what	 the	 individual	noticed	and	described	might	have	
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changed	over	the	course	of	the	intervention.	In	the	video,	the	children	
discussed	 the	patterns	 that	 they	could	see	 from	modeling,	using	 the	
Unifix	cubes,	and	they	used	those	patterns	to	support	their	mathematical	
arguments	for	convincing	one	another	that	their	solutions	were	valid.	
Two	arguments	took	the	form	of	reasoning	by	cases:	Case	I	consisted	
of	five	different	cases,	and	Case	II,	a	more	elegant	argument,	used	four	
cases.	The	third	argument	used	inductive	reasoning.	For	the	cases	ar-
guments,	the	scoring	rubric	enabled	us	to	code	for	which	specific	cases	
were	described	by	study	participants	and,	thus,	whether	they	partially	
or	completely	described	each	of	the	two	arguments	by	cases.	Similarly,	
for	the	inductive	argument,	the	rubric	enabled	us	to	code	separately	for	
the	presence	of	its	two	constituent	features	(i.e.,	establishing	that,	with	
two	colors	of	cubes,	there	are	two	possibilities	for	a	tower	of	height	one	
and	that	each	tower	then	has	two	possible	choices	for	the	color	of	a	cube	
to	be	added	on	for	a	tower	of	height	two,	and	so	on).	
	 To	illustrate	the	coding,	we	provide	examples	of	the	written	responses	
by	Subject	A	to	the	pre-assessment	and	post-assessment.	As	can	be	seen	
below,	the	pre-assessment	shows	an	incomplete	description	of	the	in-
duction	argument,	as	it	focuses	exclusively	on	presenting	a	description	
of	the	numerical	patterns	mentioned	by	the	children	in	the	video	and	
does	not	specify	either	of	its	constituent	features.	There	is	no	mention	
at	all	of	a	cases	argument.	By	contrast,	the	post-test	reveals	a	complete	
description	of	the	inductive	argument	and	a	complete	description	of	the	
Case	I	argument.	It	also	shows	a	glimmer	of	recognition	of	the	Case	II	
argument,	as	seen	in	the	observation,	“The	others	wanted	to	change	her	
pattern,”	yet,	because	what	constituted	that	alternate	case	(i.e.,	exactly	
three	towers	with	two	blue	cubes	and	one	red	cube)	was	not	mentioned,	
it	could	not	be	coded	as	complete.

	 Example	of	Pre-assessment:	Subject	A	
	 One	argument	was	to	start	with	one	cube	and	to	see	how	many	
towers	could	be	made.	Then	two	cubes	were	used,	and	an	argument	was	
made	that	you	would	have	four.	The	child	manipulated	the	cubes	and	
decided	that	three	cubes	would	be	eight,	and	then	she	tried	to	use	a	
pattern—four	would	be	12.	She	followed	a	pattern	but	didn’t	manipulate	
the	cubes	and	was	incorrect.
	 Another	argument	made	was	that	you	start	with	two	blocks	high	and	
then	(2	x	2)	make	four	towers;	three	blocks	high	would	be	2	x	2	x	2	=	8;	four	
blocks	high	would	be	2	x	2	x	2	x	2	=	16.	This	was	a	convincing	argument.
	 By	using	the	patterns,	the	students	were	able	to	check	their	solu-
tions.	They	could	see	that	they	showed	all	the	possibilities.
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	 Example	of	Post-assessment:	Subject	A	
	 Milin	and	Michelle	were	using	inductive	reasoning	to	answer	the	
tower	problem.	Both	of	them	reasoned	that,	each	time	you	added	a	block	
to	the	towers,	you	needed	to	multiply	by	2	because	there	were	only	two	
colors.	“Towers	of	one	would	be	two	towers;	towers	of	two	would	be	four	
towers	because	you	would	take	the	towers	of	one	and	add	either	a	red	
or	blue	.	.	.	”
	 Stephanie	proved	her	answers	by	using	proof	by	cases.	“She	started	
with	no	blue,	then	one	blue,	then	two	blues	stuck	together,	then	two	
blues	apart,	then	all	blue.”	Stephanie	liked	to	show	a	pattern	but	resisted	
when	the	others	wanted	to	change	her	pattern.	She	had	a	specific	way	
that	she	wanted	to	show	the	towers,	but	she	was	able	to	convince	Jeff	
that	she	had	all	possible	combinations.
	 Ultimately,	Jeff	was	convinced	by	Milan	and	Michelle.	He	would	
clearly	state	the	inductive	reasoning	they	used.	All	children	were	able	
to	 answer	 additional	 tower	 questions	 without	 actually	 building	 the	
towers.
	 “I	am	convinced!”

Analysis
	 Video	 assessment	 data	 collected	 from	 intervention	 contexts	 and	
comparison	groups	were	scored	blindly	as	an	aggregated	data	set.	Each	
assessment	was	coded	by	two	scorers	who	worked	independently,	and	we	
achieved	inter-rater	reliability	of	90%	or	greater.	Assessment	responses	
were	scored	by	the	researchers	by	whether	or	not	the	study	participants	
provided	a	complete	description	for	each	of	the	three	argument	types	
(two	different	cases	arguments	and	an	induction	argument).	The	coded	
data	were	then	analyzed.	For	analysis	purposes,	a	study	participant	was	
reported	as	exhibiting	growth	on	the	post-assessment	if	the	participant	
provided	a	complete	description	of	an	argument	type	that	was	not	in-
cluded	in	the	participant’s	pre-assessment.

Results

Comparability	of	Groups
	 Although	we	recognize	that	the	different	groups	of	teachers	have	
different	experiences	and	content	backgrounds,	we	did	not	know	their	
knowledge	of	children’s	reasoning,	as	held	prior	the	study.	Therefore,	
their	pre-assessments	were	analyzed	to	determine	whether	experimental	
and	comparison	participants	were	comparable	before	the	intervention.	
Table	 2	 presents	 the	 pre-assessment	 complete	 argument	 description	
rates	for	the	various	categories	of	study	participants.	Specifically,	22.8%	
of	the	127	experimental	participants	and	24.0%	of	the	50	comparison	
group	participants	provided	a	complete	argument	description	of	at	least	
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one	student	solution	to	the	counting	task.	Of	the	127	experimental	par-
ticipants,	the	pre-assessment	complete	argument	rates	were	12.8%	for	
the	K-5	pre-service	participants,	23.1%	for	the	secondary	pre-service	
participants,	and	31.5%	for	the	K-8	in-service	teacher	participants.	The	
pre-assessment	 complete	 argument	 description	 rates	 were	 analyzed	
for	the	four	study	subgroups	to	determine	whether	experimental	and	
comparison	 participants	 were	 comparable	 before	 the	 intervention.	A	
contingency	table	analysis	was	performed	to	test	the	null	hypothesis	of	
no	difference	in	pre-assessment	complete	argument	description	rates	for	
the	comparison	and	experimental	groups.	The	data	in	Table	2	indicate	
that	there	were	no	significant	differences	among	groups	at	the	p	<	0.05	
level	(χ2	(3)	=	4.97,	p	=	0.17).	

Combining	Comparison	Group	Data
	 Table	3	 contains	 the	post-assessment	growth	 rates	 for	 the	 three	
subgroups	of	comparison	teachers.	The	subgroup	growth	rates	varied	
from	0.00	to	0.08,	with	an	overall	mean	of	0.04.	That	is,	of	the	50	par-
ticipants	in	the	aggregate	comparison	group,	only	4%	exhibited	growth	
on	the	post-assessment.	An	ANOVA	found	that	there	was	no	significant	

Table	2
Pre-assessment Complete Argument Descriptions

	 	 	 	 	 Complete	Task	Descriptions	

Pre-Assessment	Participant
Category	 	 	 0	 	 1	or	2	 	 Total

Comparison	 	 	 38	(76.00%)	 12	(24.00%)	 		50
Experimental	 	 	 98	(77.17%)	 29	(22.83%)	 127
K-5	Teachers,	Pre-service		 41	(87.23%)	 		6	(12.77%)	 		47
K-8	Teachers,	In-service	 	 37	(68.52%)	 17	(31.48%)	 		54
Secondary	Pre-service	 	 20	(67.92%)	 		6	(23.08%)	 		26

Overall	Total	 	 	 136	(76.84%)	 42	(23.16%)	 177

Table	3
Mean Growth Estimates for the Categories of Comparison Participants

Comparison	Subgroup	 n	 Mean	Growth	 Lower	95%	 Upper	95%	
	 	 	 	 	 	 	 Estimate	 	 Growth	C.I.	 Growth	C.I.

K-5	Teachers,	Pre-service	 25	 	 0.08		 	 	 0.02		 	 0.25
K-8	Teachers,	In-service	 14	 	 0.00		 	 	 0.00		 	 0.22
Secondary	Pre-service	 11	 	 0.00		 	 	 0.00		 	 0.26
Combined	Comparison		 50	 	 0.04		 	 	 0.01		 	 0.13



Teachers Can Learn to Attend to Students’ Reasoning40

Issues in Teacher Education

difference	among	the	comparison	subgroups	at	the	p	<	0.05	level	(F(2,	
47)	=	1.02,	p	=	0.37).	Based	on	the	comparability	of	the	post-assessment	
growth	rates	for	the	three	comparison	subgroups	of	participants,	the	
data	from	all	three	were	combined	in	the	subsequent	analysis	of	the	
growth	rate	of	the	three	experimental	subgroups	of	participants.	

Experimental	versus	Comparison	Groups
	 The	third	column	of	Table	4	contains	 the	post-assessment	growth	
rates	of	the	comparison	(aggregate)	and	the	three	experimental	subgroups.	
As	seen	in	Table	4,	51.85%	of	the	K-8	in-service	experimental	teachers,	
38.46%	of	the	secondary	pre-service	experimental	teachers,	and	17.02%	of	
the	K-5	pre-service	experimental	teachers	exhibited	growth	on	the	post-
assessment.	This	can	be	contrasted	with	4%	of	the	comparison	teachers	
who	exhibited	growth.	A	logistic	regression	analysis	was	performed	to	
test	the	hypothesis	of	no	difference	in	growth	rate	of	each	subgroup	of	
experimental	teachers	in	contrast	with	that	of	the	comparison	teachers.	
The	analysis	indicated	that	the	data	provided	evidence	that	the	growth	
rate	of	each	of	the	experimental	subgroups	exceeded	that	of	the	comparison	
group	at	a	significance	level	that	varied	from	0.05	to	less	than	0.0001.
	 As	indicated	in	Table	4,	the	results	of	the	logistic	regression	analysis	
are	as	follows:	(a)	the	K-8	in-service	experimental	participants	have	25.85	
times	the	odds	of	growth	compared	to	the	comparison	participants;	(b)	
the	secondary	pre-service	experimental	participants	have	15	times	the	
odds	of	growth	compared	to	the	comparison	teachers;	and	(c)	the	pre-

Table	4
Growth Rate of the Elementary Pre-service Experimental,
Secondary Pre-service Experimental and In-Service Experimental
versus the Comparison Group	

Study	Group	 		 n	 Growth	 Odds	 Odds	 Odds	 χ2(1)	 p
	 	 	 	 	 	 Rate	 Ratioa	 Ratio	 Ratio
	 	 	 	 	 	 	 	 	 	 Lower	 Upper
	 	 	 	 	 	 	 	 	 	 95%	CI	 95%	CI	 		 	

Comparison			 	 50	 0.0400	 	 	 	 	
Exp.	K-8	Teachers,
	 In-service		 	 54	 0.5185	 25.85	 7.01		 168.13	 17.78	 <0.0001
Exp.	Secondary
	 Pre-service		 	 26	 0.3846	 15.00	 3.50		 104.60	 10.73	 0.001
Exp.	K-5	Teachers,
	 Pre-service		 	 47	 0.1702	 	4.92	 1.15		 33.88	 3.78		 0.052

Note.	a.	Odds	of	growth	of	each	experimental	group	divided	by	odds	of	growth	of	com-
parison	group.
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service	experimental	participants	have	4.92	times	the	odds	of	growth	
compared	to	the	comparison	participants.	
	 Table	5	provides	a	breakdown	of	the	growth	rates	in	the	experimental	
group	by	type	of	argument.	Overall,	the	K-8	in-service	teachers	achieved	
the	highest	growth	rate	(51.85%),	followed	by	the	pre-service	secondary	
(38.46	%),	and	pre-service	K-5	teachers	(17.02	%).	It	should	be	noted	
that	both	the	two	cases	and	inductive	argument	types	contributed	to	
the	growth	rates.	A	complete	argument	description	of	Case	Argument	1	
was	the	leading	contributor	to	growth	among	experimental	participants.	
It	is	interesting	to	note	that	at	least	70%	of	the	overall	growth	rate	is	
attributed	to	the	Case	Argument	1	for	each	of	the	experimental	sub-
groups.	It	is	even	more	interesting	to	note	that,	while	the	overall	growth	
rate	varied	among	the	three	experimental	subgroups,	nearly	40%	of	the	
growth	rate	can	be	attributed	to	multiple	argument	type	descriptions	
for	each	of	these	three	subgroups	of	participating	teachers.	

Conclusions

	 We	are	encouraged,	based	on	this	research,	to	find	growth	in	both	
pre	and	in-service	teachers	and	at	both	elementary	and	secondary	levels,	
in	terms	of	teachers’	identifying	students’	reasoning	from	a	video.	This	
suggests	that	interventions	using	the	VMC	tasks	and	videos	have	the	
potential	to	help	teachers	to	recognize	student	reasoning,	an	important	
goal	in	the	learning	and	teaching	of	mathematics.	Because	the	growth	
rates	vary,	it	may	be	useful	to	explore	what	may	account	for	some	of	the	
differences.
	 We	 first	 address	 the	 finding	 that	 the	 Case	 1	Argument	 was	 the	
major	contributor	to	the	overall	growth	rate	for	all	of	the	experimental	
subgroups.	Each	of	those	participants	had	an	opportunity	to	work	on	the	
task	of	building	towers	of	a	specified	height	(i.e.,	4-tall,	5-tall,	…	n-tall)	

Table	5
Growth Rate in Experimental Groups for Each
of the Three Arguments in the Assessment Video 

Argument	Type	 	 K-8	In-service	 Secondary	 K-5	Pre-service
	 	 	 	 	 	 Pre-service

Case	Argument	1	 38.9%	 	 26.9%	 	 14.9%
Case	Argument	2	 13.0%	 	 19.2%	 	 		4.3%
Inductive	Argument	 24.1%	 	 11.5%	 	 		4.3%
Multiple	Arguments	 20.4%	 	 15.4%	 	 		6.4%

Overall	 	 	 51.85%	 	 38.46%	 	 17.02%
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when	selecting	from	two	colors.	The	task	calls	for	providing	a	convincing	
argument	that	all	possible	towers	have	been	found,	which	requires	using	
some	kind	of	pattern	to	organize	the	solution.	The	use	of	cases	tends	to	
arise	naturally	in	the	reorganization	of	data	from	patterns.	The	assess-
ment	video	features	a	student,	Stephanie,	who	argues	strongly	for	her	
particular	organization	of	cases,	namely,	the	Case	1	Argument.	Although	
other	students	in	the	video	question	Stephanie	about	her	organization	
and	suggest	a	more	elegant	organization,	namely,	the	Case	2	Argument,	
this	was	not	described	by	as	many	participants.	However,	the	secondary	
pre-service	 teachers	 provided	 this	 observation	 in	 their	 response	 most	
frequently,	 followed	 by	 the	 in-service	 teachers.	The	 explanation	 of	 an	
inductive	argument	offered	by	students	in	the	video	was	not	articulated	
as	clearly	as	was	the	Case	1	Argument	and,	thus,	required	more	attentive	
listening	to	make	sense	of	what	the	students	were	trying	to	say,	as	they	
elaborated	on	the	pattern	that	they	noticed	and	why	it	worked,	to	explain	
the	doubling	of	the	number	of	towers	as	their	height	increased	by	one.	
We	suspect	that	the	in-service	teachers’	greater	experience	in	listening	to	
children	express	their	mathematical	ideas	contributed	to	that	subgroup	
of	experimental	participants’	having	a	higher	growth	rate.
	 It	 is	notable	 that,	consistently,	 the	 in-service	 teachers	performed	
better.	We	argue	that	this	occurred,	perhaps,	due	to	the	particular	model	
used	in	the	in-service	intervention	(Maher,	Landis,	&	Palius,	2010);	this	
model	enabled	the	teachers	to	carry	out	the	tasks	with	their	own	students	
and	to	study	the	differences	in	arguments	posed	by	their	students.	This	
direct	feedback	was	not	available	to	the	pre-service	teachers,	who,	as	
novices,	have	little	or	no	opportunity	to	work	directly	with	students.	The	
better	performance	by	in-service	teachers	leads	us	to	conjecture	that	
the	demonstrated	ability	to	understand	and	explain	student	reasoning	
via	virtual	means	could	lead	to	an	increased	capacity	to	do	so	in	the	
classroom.	This	is	a	worthwhile	area	for	future	research.
	 The	instances	of	the	higher	growth	rate	for	the	secondary	pre-service	
teachers	might	be	explained,	in	part,	by	their	stronger	mathematical	
backgrounds.	For	example,	they	out-performed	the	in-service	teachers	in	
description	of	the	Case	2	Argument	due	to	their	paying	greater	attention	
to	the	inelegance	of	the	Case	1	Argument.	Not	surprisingly,	their	growth	
rates	were	higher	for	all	arguments	than	for	those	of	the	elementary	
pre-service	teachers.	Yet,	it	is	interesting	to	note	that	a	background	as	a	
mathematics	major	was	not	sufficient	to	enable	the	teacher	to	recognize	
children’s	emergent	reasoning.	Even	secondary	pre-service	teachers	had	
room	to	grow	from	pre-	to	post-assessment	and	improved	in	recognizing	
more	detail	in	the	children’s	arguments,	even	though	their	intervention	
was	of	the	shortest	duration.	
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	 More	work	needs	to	be	done	at	the	elementary	level.	Our	findings	
show	that	challenges	have	been	identified	(e.g.,	Ball,	Hill,	&	Bass,	2005)	
and	that	other	researchers	have	explored	ameliorating	these	challenges	
through	the	use	of	video	case	studies	and	focused	discussions	(Borko	et	
al.,	2008;	Llinares	&	Valls,	2009).	With	regard	to	fostering	pre-service	
elementary	teachers’	recognition	of	children’s	mathematical	reasoning,	
it	may	turn	out	that	working	with	students	as	part	of	the	intervention	
could	have	a	substantial	payoff.	Future	research	could	explore	value	
of	models	that	provide	opportunities	to	move	from	theory	and	knowl-
edge	into	direct	practice.	Perhaps	such	research	could	be	accomplished	
through	small	teaching	experiments	conducted	by	pre-service	teachers	
with	students,	using	the	tasks	and	videos	as	tools	to	design	interventions	
and	study	the	developing	reasoning	of	the	students	in	both	informal	and	
formal	settings.	Further	work	also	could	follow	some	of	these	pre-service	
teachers	into	their	student	teaching	practicum	to	look	for	sustained	ef-
fects	that	are	visible	only	on	a	long-term	basis.	Another	worthwhile	line	
of	research	is	to	investigate	the	varied	details	of	an	intervention	(e.g.,	
number	of	tasks,	amounts	of	time	spent	on	face-to-face/online	activities,	
individual/class	viewing)	by	instructors	as	a	means	to	shed	more	light	on	
what	underlies	the	differences	in	growth	rate	among	treatment	groups.	
This	work	is	currently	in	progress,	yet	some	implications	of	the	research	
presented	here	are	already	apparent.	
	 The	analysis	of	the	assessment	data	from	interventions	in	the	count-
ing	strand,	which	showed	growth	rates	that	range	from	17%	to	52%,	
as	 contrasted	 with	 4%	 for	 the	 combined	 comparison	 groups,	 provide	
evidence	that	these	interventions	can	be	effective	in	helping	teachers	
to	learn	to	attend	to	students’	mathematical	reasoning.	Further,	despite	
the	small	sample	size,	we	found	differences	between	experimental	and	
comparison	groups.	The	positive	results	from	our	design	research	stud-
ies	contribute	to	the	literature	on	mathematics	teacher	education	and	
professional	development.	That	the	strongest	growth	was	found	among	
the	in-service	teachers	points	to	the	value	of	an	intervention	model	that	
includes	classroom-based	task	implementation	in	addition	to	teachers’	
problem	 solving	 and	 studying	 videos	 of	 students	 engaged	 in	 solving	
those	same	tasks.	Although	our	model	has	activities	also	used	in	other	
approaches	to	professional	development,	such	as	problem-solving	cycles	
(Koellner	et	al.,	2007),	the	sequence	of	activities	and	the	video	resources	
used	are	different.	
	 The	VMC	 videos	 feature	 a	 researcher	 in	 the	 role	 of	 a	 classroom	
teacher	 who	 is	 an	 expert	 in	 facilitating	 classroom	 discourse	 among	
students	 engaged	 in	 cognitively	 challenging	 tasks	 (Palius	 &	 Maher,	
2011).	Studying	 these	videos,	after	working	on	 the	 tasks	 themselves	
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but	before	doing	classroom	implementation,	may	be	particularly	use-
ful	for	teachers	who	are	learning	how	to	align	their	practices	with	the	
Common	Core	State	Standards	related	to	mathematical	content	and	
practices.	The	VMC	videos	show	students	engaged	in	making	sense	of	
problems	as	well	as	how	the	teacher	fosters	the	norm	of	sense	making	
in	the	classroom.	These	videos	also	show	how	students	attend	to	struc-
ture	and	make	use	of	it	in	their	reasoning	as	well	as	how	the	teacher	
engages	students	in	mathematical	discussions	to	construct	arguments	
and	critique	the	reasoning	of	others.	Perhaps	of	greatest	 importance	
to	mathematics	 teacher	 educators	 is	 that	 the	 resources	 of	 the	VMC,	
which	include	statements	of	problem-solving	tasks	as	well	as	videos,	are	
openly	accessible	(www.videomosaic.org)	and	can	be	utilized	broadly	in	
courses	and	professional	development	programs.	Looking	more	broadly	
at	STEM	education,	the	resources,	models,	and	tools	that	have	emerged	
from	the	VMC	research,	along	with	the	promising	findings	from	their	
applications	to	teacher	education,	give	further	support	to	the	medium	
of	video	for	use	by	teacher	educators	to	deepen	teachers’	understanding	
of	standards-based	practices.	

Note
	 The	Video	Mosaic	Collaborative	is	a	research	and	development	project	spon-
sored	by	the	National	Science	Foundation	(Award	DRL-0822204).	We	gratefully	
acknowledge	the	support	of	the	National	Science	Foundation	and	note	that	the	
views	expressed	in	this	paper	are	those	of	the	authors	and	not	necessarily	those	
of	the	NSF.
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Appendix

VMC Studies: Counting Video Assessment Scoring Rubric
Scoring	Holistically
	 Study	participants	watch	a	video	clip	from	the	“Gang	of	Four”	interview	with	
the	researcher	and	four	4th	graders:	Milin,	Michelle,	Jeff,	and	Stephanie.	In	an	
open-ended	format,	participants	respond	to	a	prompt	that	asks	them	to	describe	
as	completely	as	they	can:	(1)	each	example	of	reasoning	that	a	child	puts	forth;	
(2)	whether	or	not	the	reasoning	forms	a	valid	argument;	(3)	whether	or	not	the	
argument	is	convincing;	and	(4)	why	or	why	not	they	are	convinced.	They	are	
asked	to	provide	evidence	from	the	interview	to	support	any	claims	that	they	
make,	and	they	are	provided	with	copy	of	transcript	for	the	video	clip.
	 Scoring	of	an	assessment	begins	by	the	researchers’	reading	the	participant’s	
response	in	its	entirety	to	get	a	sense	of	its	scope.	Then	it	is	reviewed	more	care-
fully	to	look	for	written	evidence	that	supports	scoring	of	particular	rubric	items.	
Care	is	taken	due	to	the	participant’s	being	free	to	express	his	or	her	response	
in	any	desired	organization	within	the	open-ended	response	format.	The	entire	
response	is	thus	considered,	as	a	participant	may	respond	to	one	part	of	the	
assessment	instructions	in	detail	and	not	repeat	this	detail	in	response	to	the	
other	parts.	The	scoring	focus	is	on	mathematical	reasoning,	with	less	importance	
on	the	language	used	to	express	that	reasoning.	For	instance,	a	sophisticated	
response	may	present	the	name	of	an	argument	type	and	a	discussion	of	it	only	
in	general	form;	other	responses	may	use	very	informal	language.	What	someone	
says	in	his	or	her	response	matters	more	than	how	it	is	expressed.

Argument	Forms	and	Constituent	Features
	 Cases Argument 1:	Stephanie’s	cases	argument	for	towers	three	cubes	high	
that	are	selected	from	two	colors	(blue	and	red)	results	in	a	set	of	eight	unique	
towers.	A	complete	argument	includes	each	of	the	following	cases.	Note	that	
written	responses	by	study	participants	may	well	be	fragmentary	and	use	much	
less	precise	language	than	the	following.

•	All	blue	cubes	or	no	red	cubes,	resulting	in	only	one	tower.	
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•	One	blue	cube	and	two	red	cubes,	resulting	in	three	unique	(differ-
ent)	towers.	

•	Two	blue	cubes	stuck	together	and	one	red	cube,	resulting	in	two	
unique	towers.	

•	No	blue	cubes	or	all	red	cubes,	resulting	in	one	tower.	

•	Two	blue	“stuck	apart”	or	separated	by	one	red	cube,	resulting	 in	
one	tower.

	 Cases Argument 2:	An	alternate	 cases	argument	 for	 towers	 three	 cubes	
high	that	are	selected	from	two	colors	(blue	and	red)	proposed	by	several	of	the	
children.	Several	of	the	cases	overlap	completely	with	the	ones	articulated	by	
Stephanie.	Participants	may	describe	the	organization	of	the	third	case	as	bet-
ter	(e.g.,	preferred,	more	elegant)	than	the	way	that	Stephanie	organized	her	
cases,	which	bifurcated	it	into	the	third	and	fifth	cases	in	the	Cases	Argument	
1,	above.

•	All	blue	cubes	or	no	red	cubes,	resulting	in	only	one	tower.	

•	One	blue	cube	and	two	red	cubes,	resulting	in	three	unique	(differ-
ent)	towers.	

•	Two	blue	cubes	and	one	red	cube,	resulting	in	three	unique	(differ-
ent)	towers.	

•	No	blue	cubes	or	all	red	cubes,	resulting	in	one	tower.	

	 Inductive Argument:	This	argument	may	be	expressed	with	reference	to	
towers	of	a	specific	height,	as	in	the	two	features	below.	It	also	may	be	expressed	
in	general	form.

•	When	building	towers	that	are	selected	from	two	colors,	there	are	
exactly	two	unique	towers	of	height	one.	With	a	single	position	in	the	
tower,	the	one	cube	can	be	(say)	either	red	or	blue.

•	Two	unique	towers	of	height	one	can	be	used	to	generate	all	possible	
towers	of	height	two.	For	each	tower	one	cube	in	height,	two	different	
towers	can	be	built	from	it.	Starting	with	(say)	a	red	cube	in	the	first	
position,	either	a	red	cube	or	a	blue	cube	can	be	placed	in	the	second	
position.	Similarly,	starting	with	a	blue	cube	in	the	first	position,	either	
a	red	cube	or	a	blue	cube	can	be	placed	 in	the	second	position.	The	
resulting	four	unique	towers	of	height	two	is	double	the	amount,	two,	
that	there	are	of	towers	of	height	one.	(And	so	on	for	n-tall.)


