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ABSTRACT
Consistency of learning behaviors is known to play an important
role in learners’ engagement in a course and impact their learning
outcomes. Despite significant advances in the area of learning ana-
lytics (LA) in measuring various self-regulated learning behaviors,
using LA to measure consistency of online course engagement pat-
terns remains largely unexplored. This study focuses on modeling
consistency of learners in online courses to address this research
gap. Toward this, we propose a novel unsupervised algorithm that
combines sequence pattern mining and ideas from information
retrieval with a clustering algorithm to first extract engagement
patterns of learners, represent learners in a vector space of these pat-
terns and finally group them into groups with similar consistency
levels. Using clickstream data recorded in a popular learning man-
agement system over two offerings of a STEM course, we validate
our proposed approach to detect learners that are inconsistent in
their behaviors. We find that our method not only groups learners
by consistency levels, but also provides reliable instructor support
at an early stage in a course.

CCS CONCEPTS
•Applied computing→ Education; • Information systems→
Data mining; • Computing methodologies→Machine learn-
ing.
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1 INTRODUCTION
With continued access to online courses and a corresponding in-
crease in enrollments, there is a need to understand how students
apply self-regulated learning strategies (SRL) [42] so as to support
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their engagement with the course and their eventual academic suc-
cess within the online environment [13]. SRL behaviors, such as
goal setting, self-monitoring and effort regulation are closely linked
with the consistency of study habits that control these behaviors.
This is because study habits (e.g., doing a set of activities at spec-
ified times in a week in a regular manner) can be interpreted to
also control regulation of effort. This study concerns itself with
modeling study habits that are associated with being consistent in
online courses.

Prior studies have shown that low SRL skills and poor time man-
agement are leading factors of unsuccessful learning, impacting
both retention and learning outcomes in online course environ-
ments (e.g., [3, 13, 50, 55]). Accordingly, literature on modeling
regularity in learner engagement has focused on measuring time-
related behaviors by looking into the “blackbox" of learning behav-
iors from clickstream data [7]. For example, Borougeni et al. [11]
and Park et al. [41] study ways of measuring temporal aspects of
regularity (e.g., studying on similar weekdays over the course dura-
tion) and relating these measures of regularity to learning outcomes.
Other studies have used temporal behaviors to identify learners
who may be disengaged [25], relate activity levels with grades [37],
or infer studying habits (cramming or regular) [24].

Time-related behaviors constitute only one facet of consistency
related to time management. Another important facet of consis-
tency relates to doing a set of course-related activities in a regular
manner. Knowing what course-related activities are associated with
consistency can be used as support mechanisms to encourage per-
sistence in disengaged learners, by suggesting them what to do
next. This aspect of consistency remains largely under-explored
in recent literature that uses learning analytics (LA) for modeling
learner behaviors. Recent studies, including one by Sher and col-
leagues [48], are beginning explorations in this direction, studying
engagement with one specific course component (e.g., discussion
forum participation). The current study centrally addresses this re-
search gap and aims to study patterns of engagement with multiple
course components associated with consistency and relates them
to learning outcomes (grades).

A broad array of empirical research on LA has demonstrated
how several SRL behaviors can be measured from the clickstream
captured by a learning management system (LMS) hosting online
courses [52]. The ability to detect such SRLs, including consistency
in learning habits, is useful for gaining deeper insights about the
nature of learner participation in online courses and other learn-
ing environment, thereby informing instructional design. Beyond
informing instructional design, it has the potential to serve as an
early-warning signal to instructional staff about learners struggling
in a course [25]. Scoping out the state-of-LA for measuring SRL
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behaviors, Viberg et al. [52] have underscored an urgent need to
apply LA to not only measure SRL but also to find ways in which LA
can facilitate teaching/learning support. This is the second research
gap this study aims to fill—to inform instructional design and help
instructors by using measurements derived from learners’ course
related activities to detect students who may be inconsistent early
on in the course.

Activity sequences corresponding to the order in which learners
carry out course-related activities can be automatically constructed
from the clickstream using the timing and eventing information.
We define engagement patterns to mean subsequences (e.g., visit
to the course page followed by posting to the discussion forum)
that are automatically extracted from these activity sequences. We
propose an algorithm that first extracts engagement patterns of
learners that frequently co-occur through the duration of a course,
represents the learners’ activities in terms of these engagement
patterns by embedding learners in a vector space whose dimen-
sions correspond to these engagement patterns and finally groups
learners into consistency groups based on the regularity of their
engagement behaviors. Our proposed method of measuring con-
sistency makes no LMS-specific assumption, but we validate the
utility of our proposed algorithm on a course hosted on Moodle, a
popular LMS. We demonstrate how the proposed method can serve
as a lens using which the engagement patterns associated with
consistency of learners can be inferred after a course has ended.
Additionally, we show how our approach can be used as a tool to
provide the instructor an warning signal early on in the course and
flag learners that are being inconsistent in their learning habits. To
the best of our knowledge this is the first study to tackle this joint
problem of measurement and support.

To summarize, available measures of SRL are limited because
they may not provide a holistic view of the consistency of engage-
ment and have not been evaluated for their ability to serve as
early-warning signals. In this work, we make the following contri-
butions:

(1) We propose an unsupervised algorithm that extracts engage-
ment patterns from learners’ activity sequences from LMS
logs and uses them to group learners into consistency-based
groups;

(2) Using an online STEM course offered in a popular LMS, we
validate our algorithm and empirically demonstrate its relia-
bility to jointly group learners by their consistent behaviors
after a course has ended, and provide early-warning support
to the instructor to detect learners that are inconsistent in
their engagement.

2 RELATEDWORK
2.1 Modeling Learner Behaviors
Modeling learner behaviors focuses on measuring, quantifying and
modeling learners’ engagement in courses and also explores the re-
lationship between the engagement and learning outcomes relying
on clickstream data as the source for empirical studies. Prior studies
have sought to understand the relation between learner engage-
ment in online courses and learning outcomes [30, 45], including
SRL behaviors in online course settings [29, 49, 51, 52]. Other stud-
ies have focused on predicting dropout [18, 26], persistence [19],

learning outcomes [31] and even broader demographic affiliation,
such as underrepresented groups in STEM [12], using learning be-
haviors. Detecting changes in engagement patterns and relating
them to course performance have been the focus of many studies
(e.g., [40, 48]), while engagement with specific course components,
such as the number of videos watched [16], the number of forum
posts [9] and the number of forum views [8] and relating them to
learning outcomes has also been studied.

A primary paradigm of studying engagement behaviors of stu-
dents has been representing them as time series of the number of
clicks over specified periods [15, 30, 44], with the primary goal of
grouping learners by similar behaviors [37, 43], or associating them
with successful or at-risk behaviors [25].

However, representing engagement aggregated by the total num-
ber of clicks ignores the multivariate and sequential nature of learn-
ing behaviors and provides a limited view of the complex nature
of engagement and learning [21]. Because of the rich sequential
features underlying the behavior sequences, patterns of engage-
ment are better analysed as sequences of events taking into account
not just the frequency of occurrence but also the relative order in
which they occur. This has been the goal of [20, 22, 27] that harness
the sequential nature of engagement primarily relying on hidden
Markov models to understand, summarize and visualize them, or
others that clustered learners based on their activity sequences
[10, 29, 48]. All these methods have analyzed learners’ behaviors
based on all the activities, which may be redundant and noisy.

Focusing on specific events and leveraging their sequential struc-
ture many studies have sought to model learners’ behaviors using
sequential pattern mining methods [2, 28, 35, 38]. In line with these
prior studies, we seek to study learners’ engagement patterns by
leveraging the sequential structure derived from the clickstream
and focus on latent engagement patterns. In this sense our study
is similar in spirit to [10], [29], and [48]. However, we go beyond
identifying engagement patterns to show how our approach can
be used to model consistency in learning habits, both after course
completion (inference) as well as early on in the course (prediction)
using the case study of two offerings of a course in a popular LMS.

2.2 Consistency Modeling of Learning
Behaviors

Consistency modeling of learning behaviors aims to analyze how
stable students are in terms of learning behaviors and the under-
lying patterns, which is also similar to change detection in stu-
dents’ behaviors. Consistency modeling and change-point detec-
tion techniques have been studied for time-series behavioral data
[37, 40, 48, 49], and some have even grouped learners by their be-
haviors and consistency [10, 48]. This work aims to extend this
latter line of prior work on consistency modeling.

Again, we deviate from these prior studies by accounting for the
richness of the features available in the activity sequences, while
also utilizing the underlying frequency of these different activities.

More importantly, most studies have focused on an offline analy-
sis (inferring behaviors after a course is complete) and LA methods
that support early stage detection of lapse in learning behaviors
are severely lacking [52]. Because measuring learning behaviors
and supporting them are both desired objectives, this study jointly
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Table 1: Moodle Events Collected

Activity Meaning Code
Quiz Attempt Quiz attempt started QA

Quiz Attempt Review Quiz attempt reviewed QAR
Quiz Attempt Summary View Quiz attempt summary viewed QAS

Quiz Submission Quiz attempt submitted QS
Forum Post Replying to or initiating a post FP
Forum View Discussion Viewed FV
Grade View Grade user report viewed GV
Course View Course Viewed CV
User View User profile or list viewed UV

addresses them both by proposing a method to model consistency
and detect inconsistencies at an early stage in a course.

2.3 Early Warning Prediction
Early warning prediction aims to predict learning outcomes accu-
rately at an early stage and provide appropriate support. Several
studies have used static variables, including student demographics,
self-report data and prior educational reports to predict learning
outcomes at an early stage [5, 6, 47]. Despite the popularity of re-
lying on static data for early warning prediction, relying on static
data ignores students’ learning dynamics during the course and
thus may be inadequate for early warning support.

As a solution, count-based methods using frequencies of differ-
ent online learning activities for early warning prediction have
been studied [4, 14, 17, 53]. However, they suffer from the same
shortcomings of other count-based methods mentioned before and
using the sequential structure has the potential to provide a more
holistic support.

This prompts us to consider the richer sequential features avail-
able in the activities sequences. In addition, we argue that the
approach of predicting learning outcomes for the purpose of inter-
vening may be ineffective while relying on the activity sequences
early in the course. This is due to the sparsity of the data that may
result in unreliable predictions of learning outcomes. As a more
reliable alternative, our study aims to provide early warnings by
detecting whether learners are inconsistent in their learning behav-
iors because it may be the case that the limited data are adequate
for detecting inconsistency.

3 DATA
The data used for this study were collected from the clickstream
of students from a fully online for-credit undergraduate STEM
course hosted on the Moodle learning management system (LMS)
at the University of Illinois, Urbana-Champaign, USA. All data
came from offerings of the same course over two semesters (termed
C1 and C2 henceforth), and were available for our analyses only
after the course had ended and students’ grades had been posted.
The eight-week course was composed of eight assigned readings
(lectures)1, eight assignments (homework), weekly participation
in the discussion forum on a weekly basis (viewing and posting,
except Week 8), working on a video as a group on a pre-selected
topic (project), and a final exam.

The course materials were released on a weekly basis. Each
assignment could be attempted up to 3 times and was accepted
before the (hard) deadline. The final score was computed as the

1The LMS did not log events related to lectures for C1 and hence we exclude those
events from our study.

weighted average of the scores on the weekly assignments, required
forum activities of viewing or replying to a post, a pre-class activity
(offered before week 1), group project activities, and a final exam.

The dataset includes five categories of events, describing learners’
interactions with (1) the assignments (attempts and submits), (2) the
discussion forum topics (view or post), (3) the grade page (to check
course grades as they became available), (4) the course landing page
(to check the week’s tasks and announcements), and (5) the profiles
of other learners (used while forming a group as part of the course
project requirement). The events we used are listed in Table 1.
Data preprocessing: In order to analyze learners’ study patterns,
we consider the ‘window of observation’ to overlap with weekly
assessment periods, starting from just past midnight of a Sunday
(when the previous assessment was due) to the midnight of the fol-
lowing Sunday. This constitutes our unit of time. For each student
we obtain their weekly activity sequence by concatenating the na-
tive LMS events (representing interactions with course components
over that week, of which, grade view is an example, as shown in
Table 1) in the temporal order of occurrence over each assessment
period. Because we wanted to study engagement patterns over the
duration of the course and associate them with consistency and
learning outcomes, we excluded students who dropped the course
to avoid wrongly biasing the consistency detector. Following these
data preprocessing steps, the final dataset used in this study con-
tains interaction sequences of 202 learners in C1 and 279 learners
in C2, both over eight assessment periods (weeks). This yielded a
total of 82416 activities for C1 with an average of 51 activities per
student per week; for C2, the total number of activities was 104,904
with an average of 47 activities per student per week. In addition
to the clickstream data from both the courses, we had access to
students’ weekly assessment scores, their final exam scores as well
as their final grades only for C12.

4 METHOD
We propose an unsupervised algorithm to group learners into dif-
ferent consistency groups by using students’ engagement patterns
derived from their activity sequences. Despite users’ overall dif-
ferences in learning habits (i.e., different activity sequences), our
method of extracting engagement patterns for the purpose of repre-
senting learners permits a comparison of the learners. We use such
a learner representation to group students based on their consistent
behaviors across different weeks.

Our approach relies on the key assumption that if a learner is
consistent, their engagement patterns do not change drastically
from one observation period to another. This suggests that if we
were to group learners by their engagement patterns over a reason-
able observation period of the course (e.g., an assessment period
of approximately a week), consistent learners would remain in the
same group for each of the observation periods of the course. This
also suggests that for inconsistent learners, owing to their inconsis-
tent engagement patterns, their group membership would change
through the duration of the course. An important component of this
study that sets it apart from prior related studies is that it not only
permits analyzing the behavior of students over the duration of a

2Because of data curation slippages, the data dump for C2 did not include information
on learners’ scores
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Algorithm 1: Consistency Model
Input: B = {[S1,1, S1,2, ..., S1, J ], ..., [SI ,1, SI ,2, ..., SI , J ]}

Si, j : Learner i’s behavior sequence in week j.
Output: L = {[l1,1, l1,2, ..., l1, J ], ..., [lI ,1, lI ,2, ..., lI , J ]},

O = [O1, O2, ..., OI ]

li, j : Learner i’s behavior pattern in week j,
Oi : Number of times learner i changed behavior pattern.

1 Patterns = Apriori(B)
2 for all Si , j ∈ B do
3 Vi, j = [TF-IDF(pattern 1), ... ,TF-IDF(pattern K)]
4 end
5 L = Cluster(V)
6 for all Li ∈ L do
7 Li = [li,1, li,2, ..., li, J ]
8 for all li, j ∈ Li do
9 if li, j , li, j+1 then
10 Oi += 1
11 end
12 end
13 end

Table 2: An example of a daily activity sequence with the en-
gagement pattern CV FV corresponding to visiting a course
page followed by a discussion forumview (color added to aid
identifying the pattern)

User ID Week Date Activity Sequence
2b2dadf247 1 Monday CV FV UV FP FV CV FV
2b2dadf247 1 Wednesday CV FP UV CV FV CV FV CV FV
2b2dadf247 1 Friday CV CV

course, but also demonstrates how to use the proposed approach
to detect students with learning patterns unfavorable to learning
early on in the course. In this sense, we study how our approach
serves as an offline behavior model for the instructor to infer after
the course has ended, as well as an online behavior model for the
instructor to use while the course is underway.

As is shown in Algorithm 1, our algorithm takes as input the
weekly time-stamped activity sequences of learners, transforms
them into a bag of engagement patterns, where each pattern serves
as a dimension of a vector space to embed a learner into. The result
is a set of vectors, one for each student for each week. The algorithm
proceeds by using an appropriate clustering algorithm to group
the vectors into an optimal number of clusters yielding groups
of learners with similar engagement behaviors in each week. By
taking as input nothing other than the learners’ activity sequences,
our approach permits tracking learners’ patterns over different
units of time.

Our unsupervised algorithm consists of two major steps: (1) Rep-
resentation of learners using their individual activity sequences, and
(2) Clustering learners into consistency groups. We next describe
these steps in detail.

4.1 Learner Representation via Bag-of-Patterns
For each time unit (one week in our study), we split the activity
sequence over the week into subsequences corresponding to the

days of theweek. From these subsequences, we use sequencemining
methods to extract smaller subsequences of varying lengths that
correspond to consecutive actions with the requirement that they
frequently co-occur on a daily basis, which we believe to be more
meaningful than a considering a single activity. This step yields a
set of ‘action phrases’ or engagement patterns.

Next, each learner’s weekly activity sequence is represented as
a bag-of-patterns using the engagement patterns identified, where
we borrow the idea of a bag-of-words model that is popular in
information retrieval (IR) [34]. Here, instead of using words (i.e.,
single events) we use engagement patterns. A compromise is that,
even though a bag-of-words model disregards word order and only
considers words’ occurrence while representing a document, our
bag-of-patterns model takes local sequential information into con-
sideration by accepting a phrase of two or more consecutive events
that frequently co-occur.

We denote by Vi, j = [p1,p2, ...,pK ], the vector representing
learner i’s behaviors in week j, where each dimension pk captures
the occurrence of an engagement pattern k in the week and K
is the number of engagement patterns. We design pk to be the
number of occurrences of the engagement pattern k in the learner’s
weekly sequence weighted by the pattern’s term frequency-inverse
document frequency (tf-idf) value [34]. Considering that some of
the short patterns may be sub-sequences of some longer patterns
and to avoid counting them twice, we count the patterns by first
listing them in descending order of their lengths (i.e.,the number
of activities in the engagement patterns). The tf-idf value captures
the importance of pattern k in a learner’s weekly sequence and
normalizes its count relative to another pattern that may not be
unique to a given learner’s activity sequence. pk inVi, j is calculated
as follows:

pk =
fk,i, j∑
k ′ fk ′,i, j

· loд(
N

|{b ∈ B : phrasek ∈ b}|
),

where fk,i, j is the number of occurrences of pattern k in learner
i’s behaviors in week j . N is the number of all the data entries (here,
number of weeks x number of learners) in B, where B is the set of
activity sequences of all the students over all the weeks. Here, we
make a simplifying assumption that given a learner, their weekly
activities are independent, rendering the vectors Vi, j independent.
The result of this step is a set of vectors Vi, j collectively called V.

4.2 Clustering
After representing learners as vectors, we cluster the resulting
vectors V using a clustering algorithm. As a result of clustering,
each data point Vi, j ∈ V is assigned a label li, j to mean that based
on learner i’s behaviors in week j the learner was assigned to cluster
li, j , yielding one label per week for every learner.

li = [li,1, li,2, ..., li, J ],

where J is the total number of time units. We note that our ap-
proach permits considering any granularity of events and time units
for representation, potentially yielding events at a finer granularity
than what we had, or coarser (by grouping events into suitable
categories). We leave experiments using these variations for future
work.
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The whole process of our algorithm is also provided in Algorithm
1.

5 CONSISTENCY MODELING
Our algorithm can be used to group learners by consistency of
behaviors both in a post-course setting (offline) as well as during
the course (online). We describe each of these settings below.

5.1 Offline Consistency Modeling
Understanding learner behaviors through the duration of a course
after it has ended (offline) offers important highlights to instruc-
tional designers and course staff. More specifically, it may be of
interest to know the extent to which learners were consistent and
what their engagement patterns were.

Based on our assumptions, the course-related activities of a con-
sistent learner should result in similar learning-related activities,
through the weeks. In terms of the activity sequence, this means
that a consistent learner’s weekly activity sequence should include
the same set of engagement patterns for all the course weeks. There-
fore, a consistent learner’s vectors should be placed in the same
cluster for all the weeks. In contrast, those of irregular learners
will appear in different clusters over the weeks depending on the
degree of irregularity.

This suggests that we can quantify the extent to which a learner
is consistent by detecting how often that learner changed their
behavior patterns, which is revealed by how many times the cluster
label of the learner changed over all the weeks. For instance, if
li, j−1 , li, j , then learner i’s behavior patterns in week j − 1 are
different from those in week j . This provides a method to explicitly
quantify each learner’s trajectory of consistency through the dura-
tion of a course as the number of changes of the cluster label. We
then assign students into consistency groups based on the number
of times the cluster label of the learner changed over the duration of
the course, with 0 denoting the most consistent learner group and
the increasing numbers corresponding to decreasing consistency.

5.2 Online Consistency Detection
Similar to offline consistency detection, our goal here is to group
learners into consistency groups while the course is in session, for
example in first few weeks. This will serve as an early warning
signal for intervention. Toward this end, we first use the bag-of-
patterns model to represent the learners, then cluster the learners
based on these features to finally determine learners’ consistency
level after the results of clustering.

6 EMPIRICAL EVALUATION
In this section, we present our research questions that guide the
validation of our proposed algorithm. We validate our algorithm’s
ability to carry out offline consistency modeling in the context of
our first and second research questions: RQ1: Can we quantita-
tively evaluate different sequence mining methods and clustering
algorithm combinations for the purpose of grouping learners by
consistency levels?RQ2:How do we use the bag-of-patterns model
in combination with a clustering algorithm to group students based
on their consistency levels?

Unlike offline detection, where the activity sequences of learners
over the entire duration were available, for online detection the
activity sequences that are available are only from the first few
weeks. Under this constraint, generating the list of engagement
patterns based on limited data may be unreliable. This leads us to
explore two conditions in which we generate the list of engagement
patterns. In the first, we utilize the list generated from a previous
course offering using the offline detection method. We hypothe-
size here that students exhibit similar engagement patterns across
course offerings when the course structure remains unchanged. In
the second, we extract engagement patterns using only the first
two weeks, where we make the simplifying assumption that the
total number of activities will be proportionately reduced compared
to the total number of activities over the entire duration. Online
consistency modeling then uses this list of engagement patterns to
group learners as in the offline setting. This leads us to our third re-
search question: RQ3: To what extent are the engagement patterns
(of the bag-of-pattern model) similar across course offerings?

7 EXPERIMENTAL SETUP
In this section we provide the details used in our experiments for
answering the research questions.
Analysis window: So as to better analyze the consistency of learn-
ers’ behaviors, we drop the data from the first two weeks and start
with the third week. This is done so as to let the learners settle into
a habit and reduce the noise in the data coming from the first two
weeks of learners’ activities.
Sequential pattern mining algorithms: For a broader view of
the effect of the pattern extraction method we explored the fol-
lowing popular sequential pattern mining algorithms: Apriori [1],
PrefixSpan [23] and N-gram [36]. For the Apriori algorithm, each
transaction was the original daily activity sequence. To extract
the most frequently co-occurring and representative engagement
patterns, we set the thresholds of support, confidence and lift (pa-
rameters of the pattern mining algorithms) to 0.45, 0.4, and 1 re-
spectively. Just like the Apriori algorithm, the PrefixSpan algorithm
takes as input the original daily activity sequence and we select
heuristically select the top 150 patterns from the output. For the
N-gram algorithm too we heuristically select the top 150 patterns
with 2-, 3-, 4- and 5-grams.
Clustering algorithms:We also explored the use of three cluster-
ing algorithms: Spectral Clustering [39], Agglomerative Clustering
[54] and K-means [32]. Because our learner representations are
unit vectors the three clustering algorithms used the Euclidean
distance to calculate the similarity between two vectors. The other
parameters were set to their default values. The optimal number
of clusters was obtained using the “Silhouette statistic” [46]. The
Silhouette statistic measures the degree of confidence in a particular
clustering result and lies in the interval [-1,1], with values close to
1 for well-clustered observations and values close to -1 for poorly
clustered observations.
Evaluation of Consistency Grouping: In the absence of ground
truth information on the level of consistency of the students, we
use reports of the positive association between consistent learning
behaviors and course grade (learning outcomes) [48] to select the
best (sequence mining,clustering algorithm) pair to provide the
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optimal consistency grouping. Toward this, we use the mean of
total weekly scores calculated as 1

N
∑N
i=1

∑J
j=1 Scorei, j , mean grade

variance 1
N

∑N
i=1Var ([Scorei,1, ..., Scorei, J ]) and mean final exam

score 1
N

∑N
i=1 FScorei , where Scorei, j represents student i’s weekly

assessment score in week j and FScorei represents student i’s final
exam score. We expect the optimal consistency grouping to yield
a set of clusters where the more consistent groups are associated
with higher learning outcomes. Thus, the larger the number of
cluster changes exhibited by the learners the lesser consistent they
are. Additionally, we expect that learners with an increase in the
number of cluster changes are associated with lower mean of total
weekly scores and lower mean final exam score, but higher mean
grade variance.

8 EXPERIMENTAL RESULTS AND ANALYSES
We now answer each of the research questions in the context of
our experimental results.
RQ1: Can we quantitatively evaluate the different combina-
tions of sequence mining methods (for phrase extraction)
and clustering algorithms for the purpose of grouping learn-
ers by consistency levels using the proposed approach?

For the data from C1, we perform offline consistency modeling
using different clustering algorithms (Spectral, agglomerative and
k-means) combined with the different pattern mining algorithms
(Apriori, PrefixSpan and N-gram). The results are summarized in
Figure 1, which compare the different clustering algorithms (Spec-
tral, agglomerative and k-means going from the first row to the
third row of the plots respectively) when used with the different pat-
tern mining algorithms (Apriori, PrefixSpan and N-gram). Each plot
shows the number of cluster changes after the clustering process
along the x-axis and the learning outcome related aspects (mean of
total weekly scores, mean final exam score and mean grade vari-
ance) along the y-axis (going from the first column to the final
column of plots).

From figure 1, we notice that for mean of total weekly scores
and mean final exam score, the results of agglomerative clustering
(Figures 2-a and 2-b) and K-means (Figure 3-a and 3-b) do not show
the correspondence between the number of cluster changes and the
mean of total weekly scores that is expected. For instance, we see
that the associations barely exist for agglomerative clustering re-
sults regardless of the sequence pattern mining approach, whereas
those of spectral clustering with the Apriori algorithm more closely
approximate our intuition. Likewise, for mean grade variance, only
the results of Spectral clustering show to the desired association.
Based on these visualizations, we choose the Apriori pattern mining
algorithm with Spectral clustering as the best performing combina-
tion for offline consistency modeling.
RQ2: How do we use the proposed approach to group stu-
dents based on their consistency level in an offline setting?

For C1, the 202 students’ activity sequences yielded 147 engage-
ment patterns, which were then used for the bag-of-patterns repre-
sentation of the students. Using the best silhouette statistic yielded
the solution with six clusters. These resulted in five consistency
groups of learners after grouping learners by the number of cluster
changes.

For each group of learners, we calculated their mean of total
weekly scores, mean grade variance and mean final exam score as
defined in Section 7. The results are shown in Table 3. We notice
that the first group of learners never change their behavior patterns
making them the most consistent learners. From the table we also
see that this group of most consistent learners has the highest
mean of total weekly scores, the highest mean final exam score and
lowest mean grade variance. From group 2 to group 5, the number
of changes gradually increases and we see a corresponding decrease
in the mean of total weekly scores and the mean final exam score,
whereas the mean grade variance increases.
Analysis of the association between group assignment and
final exam scores. In order to further evaluate our model and bet-
ter analyze the difference between groups, we performed a pairwise
significance test. We observed that the final exam scores were not
normally distributed and so used the Wilcoxon rank sum test with
continuity correction to compare the groups in a pairwise manner.
The pairwise comparison of groups with respect to the final grade
revealed that the differences between groups (2,3) and (3,4) were
not significant (all p greater than 0.05). Moreover, group 5 with only
two students was merged with the group 4. Only groups 1 and 2 had
differences in mean scores that were statistically significant. This is
also in line with our expectation—students in Group 1 who never
change their behavior patterns should be consistent and students
in the other groups who changed their behavior patterns should be
inconsistent. We use these results to merge the groups into classes
as follows.

• Class I - Consistent (N = 98, 48.5%): This class constitutes
the consistent group of learners in Group 1 in Table 3, who
do not change their behavior patterns over the duration of
the course. We also notice that this group of learners has the
highest mean of total weakly scores (760.49) and mean final
exam grade (139.42) and lowest mean grade variance (0.006)
compared to the other groups.

• Class II - Not Consistent (N = 104, 51.5%): This class con-
sists of Groups 2, 3, 4 and 5 in Table 3. They change their
behavior pattern at least once. With the decrease of consis-
tency, we can also see the decrease of mean of total weekly
scores and mean final exam score and the increasing of mean
grade variance. Associated with their inconsistency, are their
lower mean of total weekly scores (751.35) and mean final
exam grade (131.68) and higher mean grade variance (0.01)
compared to Class I.

Analysis of the engagement patterns. In Figure 3 we show the
TF-IDF values of some engagement patterns in each week averaged
over the learners in each class ( Class I is the consistent group and
Class II is the inconsistent group). For each pattern, we observe the
difference between the consistent group and inconsistent group.
We can see that for pattern “FV CV”, “FP FV” and “FP FV CV”, the
TF-IDF values of the consistent group are always higher than those
of the inconsistent group, which indicates that the learners in the
consistent group exhibit these patterns more frequently. And for
pattern “GVCV” and “CVGV”, the TF-IDF values of the inconsistent
group are higher than those of the consistent group. Going by the
activity captured by these patterns, it appears that the learners in
the inconsistent group are more concerned about checking their
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Figure 1: Comparison between different clustering algorithmswith different patternmining algorithms. 1: Spectral Clustering.
2: Agglomerative Clustering. 3: K-means. a. Relationship between number of changes and mean of total weekly scores. b.
Relationship between number of changes and mean final exam score. c. Relationship between number of changes and mean
grade variance.

Table 3: Grade-related statistics for the different consistency-related groups obtained by our model for learners in C1.

Group Num of Changes Mean of Total Weekly Scores Mean Grade Var Mean Final Exam Score Learners
1 0 760.49 0.006 139.42 98
2 1 760.3 0.009 132.35 77
3 2 737.35 0.010 129.72 15
4 3 736.52 0.019 139.93 10
5 4 680.04 0.014 79.295 2

grades (GV= grade view) and pay less attention to viewing their
course material or participating in the discussion forum compared
to the consistent learners.
Analysis of the relationship between behavior patterns and
grades. We illustrate the relationship between the change of be-
havior patterns and the change of weekly scores using a random
sample of learners from each consistency group. In Figure 2, lines
with different colors represent different learners and points with
different colors represent different clusters. For three consistent
learners (plot on the left), we can see that they are assigned to the
same cluster through the course duration. We also notice that their

scores do not vary much. However, for three inconsistent learners
(plot on the right), with the change of cluster there is always a
significant change of their weekly scores.
RQ3: To what extent are the engagement patterns of the bag-
of-patterns model similar across course offerings?

We answer this question in two analysis settings: 1) By perform-
ing an offline consistency modeling on C2; and 2) by performing
online consistency detection based on fewer number of weeks in C2.
For the first setting, we compare the results of offline consistency
modeling on C2 with that of C1. For the second setting, we check
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Figure 2: Relationship between weekly scores and weekly behavior patterns for consistent learners and inconsistent learners.
For each week, points with different colors represent different clusters and different behavior patterns. Different lines denote
different learners.

Figure 3: Average TF-IDF values in each week for students in C1
Table 4: The different consistency-based groups for learners
in C2

Group 1 2 3 4 5 6
Num of Changes 0 1 2 3 4 5

Number of Learners 29 65 57 85 30 13

whether using patterns extracted from C1 also leads to a good per-
formance of online consistency detection in C2, and whether the
results are comparable to the performance of the detector using
patterns extracted from C2 alone.

For offline consistency modeling on C2, 142 engagement patterns
were extracted for 279 students. Of these, 130 engagement patterns
(91.5%) overlapped with the patterns extracted from C1. Moreover,
the clustering solution with six clusters was found to be optimal.
The six groups of learners were grouped by their consistency levels
as shown in Table 4, where we see that 29 of the learners were
consistent and 250 were inconsistent (albeit to different degrees).

We also show the TF-IDF values of some engagement patterns
in each week averaged by learners each group in Figure 4. For each
engagement pattern, we observe that the differences between the
consistent group and the inconsistent group engagement are similar
to those in C1 (Figure 3). For instance, we can see that the trends in
participation for the patterns “FV CV” and “FP FV” are comparable
between C1 and C2. Likewise, as in C1, for the pattern “GV CV” and
“CV GV”, the TF-IDF values of inconsistent group are also higher
than the TF-IDF values of consistent group.

For online consistency detection, the results from the offline
setting were used as ground truth owing to the absence of actual
ground truth information on consistency. We used two methods
to get the engagement patterns. In the first method, we use the
patterns extracted from a previous offering (C1) for detection in
a subsequent offering (C2). Here we refer to the results above (of-
fline for C2), where we saw that there were 29 consistent learners
and 250 inconsistent learners. With this as a reference, using the
first two weeks’ data (weeks 3 and 4), we found that 166 learners
were correctly detected as being inconsistent and 18 learners were
correctly detected as being consistent.

The second method was to use the patterns extracted from the
first two weeks of a given semester. For learners in C1, we found
that there were 98 consistent learners and 104 inconsistent learners.
Using the first two weeks’ data, we were able to correctly detect 88
of these 98 learners as consistent and 93 of these 104 learners as
inconsistent. Table 5 summarizes these results for the consistent
and the inconsistent groups. For learners detected as consistent, we
can see that their mean of total weekly scores and mean final exam
score are both higher than learners detected as inconsistent. The
mean grade variance of consistent learners is much lower than that
of inconsistent learners, which is also expected. For learners in C2,
there were 191 learners correctly detected as inconsistent and 18
learners correctly detected as consistent, which is slightly better
than the first method.
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Figure 4: Average TF-IDF values in each week for students in C2

Table 5: Summary of results for online detection for learners in C1

Group Num of Changes Mean Total Weekly Scores Mean Grade Var Mean Final Exam Score Learners
Consistent 0 762.63 0.003 134.86 107
Inconsistent 1 738.58 0.015 134.29 95

To quantify the online detection performance, we evaluate how
our method performs when detecting inconsistent student groups
because our focus is to provide early intervention. Toward this,
we consider detecting some consistent students as inconsistent to
be acceptable as long as most of the inconsistent students can be
correctly detected as inconsistent. Therefore, for a reliable detector,
we are interested in the number of inconsistent students (positive
class) that are correctly detected as being inconsistent (true posi-
tives, TP) and the number of inconsistent students that are wrongly
detected as being consistent (false negative, FN). We use the Recall
score, defined as R = T P

T P+FN . The recall of inconsistent student
detection for C1 is 0.83. The recall of inconsistent student detection
for C2 using the first method is 0.80 and the recall of inconsistent
student detection for C2 using the second method is 0.92, indicating
that using the second method has a better performance. The high
recall scores for both course offerings, suggests the reliability of
our method for detecting inconsistent students at an early stage.

Overall, although both methods show the feasibility of reliably
detecting inconsistent learners early on in a course, we find that
using the patterns extracted from the first two weeks of the course
under consideration has a slightly more reliable performance.

9 DISCUSSION
Our experimental results showed that learners can be grouped into
groups based on the consistency of their behavior patterns. This
suggests that the proposed approach to group learners can serve
as a way of measuring consistency of behaviors after a course has
ended. In addition, the experimental results on online consistency
modeling also suggest the feasibility and reliability of using our
proposed approach to detect students showing inconsistent behav-
ior patterns and potentially in need of instructional support to
persist in the course and learn in an effective manner. Our results
also showed how learning analytic measures of consistency are
strongly associated with learners’ academic performance adding
further support to the consistency detection algorithm.
Interpretation of the engagement patterns: The engagement
patterns we discover from our sequence mining step do not have ex-
plicit interpretations, and in this sense are unlike those proposed in
previous studies (e.g., Maldonado-Mahauad and colleagues sought

to ascribe theory-driven SRL behaviors to such patterns [33]). Nev-
ertheless, we have shown that the engagement patterns play an
important role both in terms of offline and online consistency de-
tection. We leave it to future work to study consistency detection
using interpretable engagement patterns.
Generalizability of the engagement patterns: We also notice
that the manner in which the engagement patterns are expressed
may not necessarily be generalizable from one course offering to
the other. For example, we can see in Figure 3 and Figure 4 that
there are differences in how the same pattern, for example “FP FV
CV”, are differently exhibited by learners in C1 and C2. Despite
the difference in the way individual patterns are expressed from
one course offering to another, their collective use in detecting
consistency is what we highlight and demonstrate by showing
comparable results for online consistency detection. Additionally, it
is also important to note that the engagement patterns themselves
are course/LMS specific and may not generalize from a course in
one domain to another (e.g., physics to mathematics). Although
we make no LMS specific assumptions in the way we extract the
patterns, the list of engagement patterns naturally depends on the
inherent differences in LMSs and the native events gathered by
the LMS. Finally, course-specific activities and grading schemes
custom-created by instructional designers or instructors for each
course (e.g., watching lecture videos may be part of one course, and
forum participation may not be a gradable activity in a course) will
affect the engagement patterns that are extracted.

10 CONCLUSION AND FUTUREWORK
This paper studied a novel unsupervised approach combining se-
quence mining methods with ideas from information retrieval and
clustering, to detect consistency of learners’ behaviors using en-
gagement patterns extracted from their activity sequences. Using
an online STEM course offered in a popular LMS, we empirically
demonstrated the algorithm’s reliable performance in detecting
inconsistent learners at an early stage in a course.

A primary limitation of this study was the use of only one course
to validate ourmethod.We leave it to future work to explore the gen-
eralizability of our approach to a wider set of courses and LMSs. A
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second direction for future exploration could be verifying online in-
consistency detection performance with ground truth information
based on instructor and learner input in an explicit experimental
setting.
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