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State-specific licensing policies and pension plans create mobility costs for educators 
who cross state lines. We empirically test whether these costs affect production in 
schools – a hypothesis that follows directly from economic theory on labor frictions 
– using geocoded data on school locations and state boundaries. We find that 
achievement is lower in mathematics, and to a lesser extent in reading, at schools that 
are more exposed to state boundaries. A detailed investigation of the selection of 
schools into boundary regions yields no indication of systematic differences between 
boundary and non-boundary schools along other measured dimensions. Moreover, we 
show that cross-district labor frictions do not explain state boundary effects. Our 
findings are consistent with the hypothesis that mobility frictions in educator labor 
markets near state boundaries lower student achievement. 
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1. Introduction 

Several features of the labor market for public educators in the United States create mobility 

frictions. Within states, cross-district mobility can be hampered by the limited transferability of 

experience, which influences teacher placements on salary schedules and other seniority-based 

benefits (e.g., preferences for open positions). Across states, teachers are subject to additional mobility 

costs owing to imperfect licensing reciprocity (Coggshall and Sexton, 2008; Goldhaber et al., 2015; 

Kleiner, 2015; Sass, 2015) and non-portable pension benefits (Costrell and Podgursky, 2010; 

Goldhaber et al., 2015; Koedel et al., 2012).1 The research literature on educator mobility across state 

lines is thin, but what evidence is available is consistent with the additional costs of cross-state mobility 

impeding teacher movement. For example, a study of the Oregon/Washington border by Goldhaber 

et al. (2015) finds that cross-state teacher mobility is substantially lower than within-state mobility near 

the state line. Podgursky et al. (2016) document that cross-state teacher moves are rare in a study of 

three contiguous Midwestern states. 

The additional mobility costs associated with crossing state boundaries for educators 

motivates the question of whether these costs introduce labor frictions that affect production. A large 

literature examining restricted labor mobility in other sectors points toward frictions lowering output 

(Botero et al., 2004; Caballero et al., 2013; Helpman and Itskhoki, 2010; Lafontaine and Sivadasan, 

2009; Mitra and Ranjan, 2010). Moreover, in the education context specifically, Jackson (2013) shows 

that teacher-school match quality is an important determinant of teacher effectiveness, which implies 

that labor frictions that prevent some matches from occurring will be costly.  

 
1 It is also sometimes the case that an educator’s seniority and tenure status will not carry over across a state line, in 
excess of any within-state mobility penalties along these lines. Goldhaber et al. (2015) document that this is true in 
Washington. However, in most cases seniority and tenure are determined at the district level, in which case a state 
change and district change would have similar effects. 
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We use geocoded information on schools in the United States merged with achievement data 

to empirically test whether exposure to state boundaries reduces schooling output. We find evidence 

of a highly-localized, robust negative effect of exposure to a state boundary on grade-8 student 

achievement in mathematics. Specifically, achievement at schools where a large share of the local-area 

workforce is on the other side of a state line is 0.09 school-level standard deviations lower, on average, 

than achievement at otherwise similar schools where none of the local-area workforce is outside of 

the state. We also estimate a negative boundary effect on reading test scores, but it is smaller than in 

math and not as robust.  

The key threat to identification in our study is that schools near state lines may differ 

systematically in other ways from schools that are farther away. We examine this possibility extensively 

using rich data from the National Center for Education Statistics (NCES) and the U.S. Census about 

schools and their local communities. There is no evidence that schools near state boundaries differ 

from other schools along measured dimensions within states. We also test whether our findings are 

driven by the presence of district boundaries, which coincide with state lines. Although our models 

suggest that there may be costly frictions associated with district lines within states, district frictions 

cannot explain the state-boundary effects. 

2. Background 

In this section we briefly discuss state-specific licensing and pension policies that impose 

additional costs on educator mobility across state lines. These policies motivate our examination of 

state boundary effects on student achievement; in the conclusion we also discuss other factors 

associated with state boundaries that may introduce labor frictions and contribute to our findings. 

2.1 Teacher Licensing 

Teacher licensing requirements are set by state policy and typically specify that teachers attain 

a particular education level (e.g., a bachelor’s degree), some form of state-approved preparatory 
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experience, and/or pass one or more state certification tests (Sass, 2015). Although in many states an 

unlicensed teacher can teach under a temporary license for a short time, temporary licenses are usually 

not renewable and individuals who plan to have a career in teaching must obtain a state-specific 

license. In addition to variation in initial requirements across states, there is also variation in what types 

of licenses cover what work. Cogshall and Sexton (2008) give the example that in some states special 

education teachers are licensed to teach children with a specific disability, while in others the license 

applies to students with any disability. Another example is that some states have dedicated licenses for 

middle school teachers but in others, middle school teachers are covered under a broader licensing 

category for teachers in grades 6-12.  

How teachers progress through the levels of licensure within states – e.g., from a “level 1” to 

“level 2” license (in Vermont, for example, these are labeled the “initial” and “professional” levels, 

respectively) – also varies across states. First, in terms of structure, states differ in the number of 

licensing levels a teacher can obtain. Coggshall and Sexton (2008) document that twelve states have 

just one licensing tier, nineteen states and the District of Columbia have two tiers, and nineteen states 

have three tiers. Among states with multiple licensing tiers, there is cross-state variability in the labeling 

of different tiers, as well as in the substantive requirements to “move up.” The requirements typically 

include combinations of experience, professional development and coursework, performance-based 

assessments and minimum scores on licensure tests. 

The Interstate Agreement (IA), created by the National Association of State Directors of 

Teacher Education and Certification (NASDTEC), reflects the policy concern that state-specific 

licensing requirements restrict educator labor flows. The IA includes individual agreements between 

most US states outlining the processes for obtaining a license for transfers (the IA includes individual 

agreements among 48 of the 50 states, plus the District of Columbia). Although the goal of the IA is 

to reduce licensing barriers to mobility, it does not offer full reciprocity. Moving across state lines still 
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requires additional steps to obtain a license in the new state (Coggshall and Sexton, 2008), which 

reflects cross-state heterogeneity in licensing rules. Our review of the IA suggests that for many states 

the required steps are substantial (e.g., taking specific tests, completing new coursework, etc.). 

Moreover, even in cases where reciprocity is complete or nearly so, the general complexity of state 

licensing rules can obscure this fact. Goldhaber et al. (2015) provide an example of a license that is 

fully reciprocal between Oregon and Washington, but for which reciprocity is not readily evident to a 

potential transfer. Numerous examples of complicated and unclear reciprocity conditions can be 

found in the IA.2  

DePasquale and Stange (2016) find that a reduction in licensing barriers for nurses brought on 

by the Nurse Licensure Compact (NLC) did not increase cross-state labor mobility. One interpretation 

of their findings is that licensing barriers are unimportant, at least in the market for nurses, but there 

are several caveats to this interpretation. First, like the IA, the NLC does not offer full licensing 

reciprocity and the literature is not clear on what aspects of imperfect licensing reciprocity drive 

behavior. DePasquale and Stange (2016) also cannot rule out fairly large mobility effects of the NLC 

relative to the baseline mobility rate in some specifications. Finally, their analysis does not isolate 

mobility near state boundaries beyond looking at boundary-touching counties, which can cover large 

geographic areas. Recent evidence on workers’ strong preferences for short commutes suggests that 

mobility effects will be most pronounced very close to boundaries (Manning and Petrongolo, 

forthcoming). 

2.2 Teacher Pensions 

State-specific pension coverage is another source of cross-state mobility costs for public 

educators. Most teachers are enrolled in defined-benefit (DB) pension plans, which are characterized 

 
2 See here for the IA: http://www.nasdtec.net/?page=interstate. Curran, Abrahams and Clarke (2001) discuss limitations 
of the IA with respect to its complexity and lack of symmetry between states. 

http://www.nasdtec.net/?page=interstate
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by highly-backloaded wealth accrual (Koedel and Podgursky, 2016). The wealth-accrual backloading 

can result in severe financial penalties for teachers who switch plans.  

There are two channels by which teachers’ retirement plans penalize mobility. First, key plan 

benchmarks – vesting and retirement eligibility – depend on in-plan service years. Vesting rules 

typically require teachers to work 5 to 10 years in the same system in order to be eligible for a pension; 

if a teacher leaves prior to vesting she loses all employer contributions to the pension plan on her 

behalf (Backes et al., 2016). Retirement eligibility also depends on in-system service and individuals 

who split time in more than one plan usually must work longer to become eligible to collect a pension 

(Costrell and Podgursky, 2010). The other way that DB plans penalize mobility is through their 

calculations of the final average salary (FAS), which is used to determine the value of the pension. 

FAS is typically calculated as the average of the highest few years of earnings and is frozen at the time 

of exit. Thus, it does not account for inflation or life-cycle pay increases and this penalizes teachers 

who switch plans mid-career.  

The precise costs facing a mobile teacher depend on the timing of the move and the details of 

the two plans, but Goldhaber et al. (2015) and Costrell and Podgursky (2010) document that cross-

state mobility costs can routinely be upward of $100,000 in present value. Mobility costs are highest 

as teachers approach retirement but impact teachers throughout the experience distribution. Koedel 

et al. (2012) additionally provide evidence on pension mobility costs for school principals, which are 

even higher than for teachers owing to their higher late-career salaries. The high costs faced by school 

principals are notable in light of emerging evidence on the important role that principals play in 

educational production (Branch, Hanushek and Rivkin, 2012).  

3. Empirical Strategy 

We estimate the effects of state-boundary exposure on student achievement using linear 

regression models of the following form: 
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0ij j ijY δ γ ε= + + + +ij 1 ij 2X δ R δ          (1) 

In Equation (1), ijY  is average achievement on the state standardized test for school i in state j, 

normalized by state, grade, and subject. 3  We estimate separate models for math and reading 

achievement. The vector ijX  includes rich information about schools and their local communities 

taken from the National Center for Education Statistics (NCES) and the U.S. Census. The full list of 

variables is shown in Table 1 and includes school- and district-average student demographic and 

socioeconomic measures, school and district enrollment, and district per-pupil revenue; for the local 

area, we include measures of population density, urbanicity, median household income and education 

levels. ijR  is a vector of exposure measures to the state boundary, for which we consider several 

different constructs as described in the next section. jγ  is a state fixed effect. ijε  is the error term, 

which we cluster at the state level.  

 The model in Equation (1) will yield unbiased estimates of boundary effects ( 2δ ) if boundary 

exposure is independent of the error term conditional on observed covariates in the X-vector; i.e., 

selection-on-observables. Although it is not possible to test directly for unobserved selection into 

boundary regions, below we show that there is no evidence of selection along any of the observed 

dimensions measured by the rich NCES and U.S. Census datasets. The results from our analysis of 

observed selection imply that unobserved selection is also likely to be of limited practical importance 

(Altonji, Elder and Taber, 2005).  

Our primary models use grade-8 test scores as outcomes. Students typically do not stay in the 

same school through grade-8, but given the local nature of the provision of public schooling in the 

U.S., boundary closeness in middle school is indicative of boundary closeness in earlier grades as well. 

Thus, the boundary effects we estimate are best viewed as cumulative effects of repeated exposure for 

 
3 In Equation (1) and all subsequent equations, variables are in row vectors and parameters are in column vectors. 
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students. Grade-8 is the highest consistently-tested grade in U.S. public schools, making it the grade 

in which we are most likely to see boundary effects that have accumulated over time in available testing 

data. We also estimate the effect of boundary closeness on test scores in earlier grades. If the labor-

frictions mechanism is correct and boundary effects accumulate, and if our findings are not driven by 

unobserved selection of schools into boundary regions, then we should estimate smaller effects in 

earlier grades. This is indeed what we find.  

4. Data 

4.1 Defining Schools’ Local Labor Markets 

We geocode the locations of schools with respect to state boundaries and other schools in 

their local geographic areas in the lower 48 states and the District of Columbia. We focus exclusively 

on traditional public schools.4 We measure how much a school’s local-area labor market is exposed to 

a state boundary by first drawing circles around the school with 10- and 20-mile radii. We then identify 

the total number of full-time equivalent (FTE) teachers at other schools within these circles for each 

reference school using the Common Core of Data (CCD) maintained by the NCES. Exposure to a 

state boundary within the local labor market is measured within these circles using count- and ratio-

based metrics. Figure 1 provides an illustrative example. In the figure, School A is the reference school 

and schools B, C, D, and E are within its local area – say, for example, the circle with the 10-mile 

radius. School E is on the other side of a state line. Our ratio-based measure of boundary exposure in 

this example is: 

 / ( )E B C D EF F F F F+ + +           (2) 

where XF  is the number of FTE teachers at School X as reported in the CCD. Note that if School A 

were far from a state boundary, the value of the ratio would be zero because all nearby schools would 

 
4 Including charter schools, which mostly share pension and licensing policies with other public schools in the same state 
but sometimes do not, attenuates our primary findings slightly but they remain qualitatively similar. 
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be in the same state. We also estimate count models that include the numerator and denominator of 

Equation (2) separately, which are conceptually similar to the model used by Fitzpatrick and 

Lovenheim (2014). 

The rationale underlying our approach is that for a given local labor market, frictions brought 

on by a state boundary will shrink the effective local labor pool. Our measures of boundary exposure 

are motivated by the large research literature examining how labor frictions affect firm behavior and 

productivity (Botero et al., 2004; Caballero et al., 2013; Helpman and Itskhoki, 2010; Lafontaine and 

Sivadasan, 2009; Mitra and Ranjan, 2010). Frictions may reduce total labor flows, affect which types 

of workers move, and/or affect workers’ initial employment decisions. In education the latter issue 

could be particularly important because schools offer similar salaries and nonpecuniary job features 

matter more, making internal mobility more valuable (Greenberg and McCall, 1974). For example, 

new teachers may be more likely to start in less desirable schools with plans to move to more desirable 

schools as they become more experienced. By making some local-area mobility options more costly, 

state boundaries make positions at nearby schools less desirable, which in turn will lower the quality 

of the applicant pool for boundary schools relative to non-boundary schools, ceteris paribus. 

Principals may recognize this as well when forming their own preferences over jobs. 

 We use circles of 10- and 20-mile radii to define schools’ local-area labor markets based on 

research showing that teachers have strong preferences for short commutes. For example, in their 

analysis of a large urban school district, Miller, Murnane and Willet (2008) find that the average teacher 

commutes just 7 miles. Similarly, Engel, Jacob and Curran (2014) find that teachers in Chicago are 40 

percent less likely to apply to an opening at a school that is just over three miles further from their 

homes (for related evidence also see Cannata, 2010), and Gershenson (2013) shows that substitute 
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teachers are less likely to accept daily job offers that involve longer commutes.5 These teacher-specific 

findings are consistent with recent research showing that workers generally have strong preferences 

for shorter commutes (Manning and Petrongolo, forthcoming). Our empirical analysis is consistent 

with evidence from these studies in that the student achievement effects of boundary exposure are 

driven by exposure within 10 miles. 

In addition to our count- and ratio-based metrics that depend on teacher FTEs within 10 and 

20 miles of a school, we also consider the robustness of our findings to a number of alternative 

boundary-exposure metrics. A simple modification is to include center-school FTE in our measures 

(e.g., in the denominator of Equation 2). We also replace the FTE-based metrics with metrics based 

on local-area student enrollment, and use metrics restricted to include only other schools in the 

reference school’s local area with overlapping grades or similar student populations. In addition, we 

aggregate schools up to the district level to examine whether boundary exposure at the district level 

influences achievement and perform several other tests as detailed below. Overall, our findings are 

robust to a variety of ways of measuring and modeling the extent to which a school’s local-area labor 

market is exposed to a state boundary.  

4.2 Achievement 

We estimate the effects of boundary proximity on school-average grade-8 standardized test 

scores in math and reading from the 2012-2013 school year. We normalize scores within state-grade-

subject cells. Because the “treatment” in our case is time invariant and school-average test scores are 

highly serially correlated, adding additional years of outcome data is of little practical value in our 

application (Bertrand, Duflo and Mullainathan, 2004).6  

 
5 A related literature also shows that teachers exhibit preferences to work close to where they grew up (Boyd et al., 2005; 
Reininger, 2012). 
6 That said, we collected data from schools in a subsample of states during the 2013-2014 school year to confirm that, 
however unlikely, our findings are not driven by a peculiarity in the 2012-2013 data. As expected, the 2013-2014 results 
look very similar to what we find using the 2012-2013 data.  
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We collected test score data from state departments of education online and via direct 

correspondence. Some states did not have the data, were unwilling to process our request, or we were 

unable to use the data. Ultimately, we use standardized test score data from 33 of the lower-48 states 

in our primary models.7 Note that regardless of whether we have achievement data from a state, all 

schools in the lower-48 states and the District of Columbia are included when we code the geographic 

labor market areas for schools. Thus, the exclusion of a state from the main regression models owing 

to missing achievement data does not interfere with our ability to accurately code the out-of-state 

labor market shares for schools in neighboring states. 

We also estimate the effect of boundary closeness on school proficiency rates. We normalize 

proficiency rates within state-grade-subject cells as well. A benefit of using proficiency rates is that 

they are more commonly available from state education agencies and allow us to extend our analytic 

sample to include 43 of the lower-48 states (see Appendix Figure A2 and Appendix Table A2 for more 

information about our sample coverage using the proficiency rate data). Our findings are substantively 

similar using standardized test scores and proficiency rates. That said, while the use of proficiency 

rates allows us to increase the coverage of our analytic sample, there are well-documented 

measurement issues associated with proficiency rates and for this reason we do not emphasize these 

results too strongly (Bandeira de Mello, 2011; Bandeira de Mello et al., 2015; Ho, 2008). 

Figure 2 shows the 33 states included in our primary analytic sample with grade-8 standardized 

test data in mathematics. Table 1 compares the schools in our 33-state sample to the full sample of 

 
7 We collected data from 35 states, but we cannot use data from (a) Missouri, (b) California for grade-8 math, and (c) 
Nebraska for grade-8 reading. Missouri is in the unique situation of having more than one pension plan within the same 
state without reciprocity (Koedel et al., 2012). Our geocoded data cannot capture the pension boundaries within the 
state, and for this reason we exclude Missouri. In California, the grade-8 test data in math are not as useful as in other 
states because of the strong push in California to have grade-8 students take algebra-I, and thus the algebra-I test in 
place of the typical grade-8 standardized exam (Domina et al., 2014). There is significant variation across California 
schools in the proportion of students taking the algebra test, and the overall rate of standardized test taking is much 
lower than in other states. In a robustness test shown below, we are able to bring California data into our analysis by 
estimating boundary effects on grade-7 math scores. Finally, we do not have reading test data from Nebraska because 
they are not accessible online and the Nebraska Department of Education did not respond to our data request.  
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schools in the lower-48 states and the District of Columbia.8 The school- and district-level data are 

from the 2012-2013 CCD and zip-code level data are from the 2013 American Community Survey 

(ACS) 5-year estimates. While there are some differences between our sample and the national sample, 

they are generally similar. The bottom rows of the table show that the share of schools nationally for 

which a state boundary bisects the 10-mile circle is very similar to the share of schools in our sample, 

as is the share of schools for which 25 percent or more of the local-area FTE is on the other side of 

a state line. In some of our specifications below, we refer to this latter group as “intensely affected” 

by a state boundary. Note that while “intensely affected” boundary schools make up just a small 

fraction of our sample (≈5 percent), they account for many students. Just based on middle-school 

students, enrollment in these schools nationally during the 2012-2013 school year was approximately 

670,000, which is roughly equivalent to total middle school enrollment in the three largest school 

districts in the country combined (New York, Los Angeles, and Chicago). 

5. Results 

5.1 Selection into Boundary Regions 

We begin by examining selection of schools into boundary regions; i.e., whether schools with 

more exposure to a state boundary differ from schools with less (or no) boundary exposure along 

observed dimensions. Endogenous selection into boundary regions, or any geographic region for that 

matter, is likely less of an issue for schools than for other entities – e.g., private firms – a priori because 

schools must cover all geographic areas. Nonetheless, it may still be that schools near state boundaries 

differ from other schools. We examine this possibility in two related ways.  

 
8 Per above (footnote 7), for reading scores we include California in the analytic sample and remove Nebraska. We do 
not report separate sample characteristics for the math and reading samples because they overlap entirely except for 
these two states and thus are very similar. Appendix Table A1 provides additional details about the construction of our 
analytic sample. 
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First we use predicted test scores based on observed school, district, and local-area 

characteristics as summary measures of baseline characteristics to compare boundary and non-

boundary schools. We start by estimating the following supplementary regression of test scores using 

our full sample of schools: 

0ij j ijY eτ ψ= + + +ij 1X τ           (3) 

In Equation (3), jψ  is a state fixed effect and the covariates are the same as in Equation (1). The 

covariates are strong predictors of test scores – for grade-8 math and reading scores, the R-squared 

values from Equation (3) are 0.48 and 0.58, respectively.  

We use the output from Equation (3) to construct a predicted test score for each school based 

on observable characteristics, 0
ˆ ˆˆ ˆij jY τ ψ= + +ij 1X τ . The gaps in predicted test scores between 

intensely-affected boundary schools – i.e., those with 25 percent or more of local-area FTE in another 

state – and other schools are very small: using the 10-mile circles, they are 0.011 and 0.014 school-

level standard deviations in math and reading, respectively, nominally favoring intensely-affected 

boundary schools. With the 20-mile circles the analogous gaps are -0.030 and -0.010 school-level 

standard deviations. None of the gaps are statistically significant.  

 We also provide an expanded analysis of selection using variants of the following regression 

model: 

0ij j ijR uλ ρ= + + +ij 1X λ          (4) 

In Equation (4), ijR  is a measure of boundary closeness for school i in state j, the vector ijX  includes 

the same school-level covariates used in Equation (1), jρ  is a state fixed effect and iju  is the error 

term. Non-zero entries in the parameter vector 1λ  are indicative of selection into boundary regions 

along observed dimensions within states.  
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We estimate Equation (4) with and without state fixed effects, and defining ijR  and the analytic 

sample in several ways. We show results from three variants of Equation (4) in Table 2. First, we code 

ijR  as an indicator variable equal to one if the school is intensely affected by a state boundary using 

the 10-mile radius, per our definition above, and zero otherwise. Second, we estimate a similar model 

but define boundary exposure using the circles with 20-mile rather than 10-mile radii. In both cases 

we group moderately affected schools – those with more than zero but less than 25 percent of the 

local-area labor market on the other side of a state line – and schools without any boundary exposure 

together and assign them a value of zero for the dependent variable. We also show results from an 

alternative coding where ijR  captures the linear distance in miles to the nearest state boundary. In 

Appendix Table A3 we show results from several other versions of the selection model, which all 

corroborate the results in Table 2. 

The top rows of Table 2 show full output for each model. We use the wild-cluster bootstrap 

to obtain confidence intervals for each coefficient from the selection regressions because our primary 

analytic sample includes just the 33 state clusters (Angrist and Pischke, 2008). At the bottom of the 

table, we report p-values for the likelihood of observing the number of unbalanced covariates 

indicated in the model by chance, at the 10 percent level, in the state-fixed-effects specifications. The 

p-values are generated using randomized inference as in Cullen, Jacob and Levitt (2006) and 

Fitzpatrick, Grissmer and Hastedt (2011) and account for the covariance structure of the data.9 Table 

 
9 To obtain the randomized-inference p-values, we start by splitting the analytic dataset vertically, separately blocking off 
the covariates (independent variables) and the measures of boundary closeness. The vertical blocking maintains the 
covariance structure between the variables in the X-vector, which is important because the covariance structure will 
influence the probability of observing any given number of statistically significant relationships with the real data. We 
randomly sort the block of covariates, then re-connect it to the block of boundary-closeness measures, which effectively 
assigns each school a random boundary-closeness measure. We then run the model in Equation (3) and store the 
number of unbalanced covariates obtained under random assignment. We repeat this procedure 3,000 times to construct 
empirical distributions of covariate imbalance, from which the p-values are obtained. 
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2 shows results using our primary analytic sample for math, but in an omitted analysis we confirm that 

our findings are similar if we use the analytic sample for reading.  

While there is some evidence in Table 2 of imbalance between boundary and non-boundary 

schools owing to cross-state differences (i.e., in columns 1, 3, and 5), the models with state fixed 

effects provide no evidence of selection into boundary regions. The p-values reported at the bottom 

of the table are well above conventional levels of significance, ranging from 0.45-0.92. These balancing 

results are achieved despite the fact that in most cases the confidence intervals for our estimates are 

not large, and shrink for many covariates when we move to the state-fixed-effects specification. Based 

on these results, we conclude that there is no evidence of selection into boundary regions along the 

measured dimensions of our data, which we again note are quite rich.  

5.2 Primary Results for Grade-8 Achievement 

Tables 3 and 4 show the effects on math and reading achievement of exposure to a state 

boundary as estimated by two variants of Equation (1). First, in Table 3 we divide schools into three 

groups based on differential exposure to a state boundary: (a) “intensely affected” schools with 25 

percent or more of local-area FTE on the other side of a state line, (b) “moderately affected” schools 

with more than zero but less than 25 percent of local-area FTE is on the other side of a state line, and 

(c) “unaffected” schools with no local-area FTE is on the other side of a state line.10 Unaffected 

schools are the omitted comparison group. We estimate models for math and reading achievement 

 
10 The distribution of the out-of-state FTE percentage (as shown in Equation 2) is shown in Appendix Figure A1 for 
schools in our analytic sample. Unfortunately, the measure does not afford much flexibility in how we define “intensely 
affected” schools. For example, if we change the threshold for FTE on the other side of a state line from 25 to 50 
percent, the share of schools that satisfy the criterion falls by more than half, from roughly 5 to 2 percent. To illustrate 
why the sample size declines quickly as we increase the threshold, consider a stylized example of a school near a single, 
straight-line state boundary (like in Figure 1). Imagine that the school is surrounded by equal-sized schools that are 
distributed in a geographically uniform manner across the local area. Because the circle we draw around the school is 
centered on itself, and the school is in its own state (obviously), the out-of-state area covered by the circle must be less 
than the in-state area, and thus in expectation the out-of-state FTE percentage will be smaller than the in-state-FTE 
percentage. As a practical matter, this results in the number of schools categorized as “intensely affected” by a boundary 
declining rapidly as we increase the FTE threshold, as illustrated in the appendix. Consistent with this measurement 
issue, in unreported results we find that further subdividing the group of intensely affected schools does not yield 
additional insights because statistical power is significantly reduced. 
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using the 10- and 20-mile radii to define local areas. Coefficients for the non-boundary covariates are 

suppressed in Table 3 (and subsequent tables) but can be found in Appendix A. Again, confidence 

intervals and statistical significance results are obtained via state-level wild-cluster bootstrapping. 

Focusing first on the grade-8 math model, and the model that defines the local labor market 

using the 10-mile radius, we find that intense exposure to a state boundary lowers student achievement 

by 0.094 school-level standard deviations. In reading, test scores in intense-exposure schools are 0.054 

standard deviations lower than in non-boundary schools and the difference is marginally significant. 

When we define the local labor market more broadly using the 20-mile measures, our results remain 

directionally similar but attenuate substantially. Consistent with the observational similarity of schools 

that differ by boundary exposure as documented in the preceding section, in Appendix Table A5 we 

show that the findings in Table 3 are not sensitive to which components of the X-vector are included 

in the models. 

The effect sizes in Table 3 (and subsequent tables) are reported in standard deviations of the 

distribution of school-average achievement, which are akin to what one might estimate in a study of 

firm-level productivity. In education research, effect sizes are typically reported in student-level 

standard deviation units. Bhatt and Koedel (2012) find that a scaling factor of roughly one-third 

translates effect sizes in the school-level distribution to the student-level distribution. In our 

application, this would imply that the 0.094 effect size in the distribution of school-average math 

scores would translate to a roughly 0.031 effect size in student-level standard deviations.11 

Two aspects of the results in Table 3 suggest that the boundary effect is highly localized, an 

interpretation that is consistent with previous research on teacher commuting as described above. 

 
11 Burgess, Wilson and Worth (2013) use a similar scaling factor to move between school- and student-level test-score 
distributions in a different context. Note that the standard deviations of test scores at the school and student levels 
include variance due to measurement error and the measurement error variance will be larger in student-level scores. 
Thus, effect sizes in the true distributions of achievement are larger (Boyd et al., 2008). 
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First is the attenuation of results as we expand the size of the local area around each school from 10 

to 20 miles. Below, we further parse out the effect of boundary exposure as measured by the circles 

of 10- and 20-mile radii and confirm that exposure as measured by the 10-mile circles drives our 

findings. Table 3 also shows that schools where a smaller fraction of the local-area labor market is on 

the other side of a boundary – above zero but less than 25 percent of surrounding FTE – are not 

affected in the same way as intensely affected schools. Although we cannot rule out modest negative 

effects for these schools given the confidence intervals, the weaker findings persist through many 

robustness and sensitivity analyses below, further implying that the effect of boundary exposure is 

highly localized.  

Next, in Table 4, we estimate count-based models that are analogous to the models shown in 

Table 3. The count-based approach takes the ratio in Equation (2) and includes the numerator and 

denominator as separate terms (as in Fitzpatrick and Lovenheim, 2014). The models take the following 

form: 

0ij j ijY eγ π= + + + + +OS
ij 1 ij 2 ij 3X γ FTE γ FTE γ        (5) 

The variable vectors ijFTE  and OS
ijFTE  include linear and quadratic terms that measure the number of 

FTE within the 10- or 20-mile radius, and within the radius and outside the state (OS), respectively. 

All other variables are the same as in Equation (1). The variables ijFTE  and OS
ijFTE  are coded so that 

they overlap; e.g., a school with 100 local area FTE, of which 25 are on the other side of a state line, 

would have values of ijFTE  and OS
ijFTE  of 100 and 25, respectively. Thus, 3γ  can be interpreted as 

the effect of an increase in out-of-state FTE conditional on total local-area FTE. A benefit of the 

count-based models is that the association between having more FTE nearby and student achievement 

can be estimated at the same time as the boundary effect, but with the caveat that 2γ  may not be causal 

because it is identified using variation between schools that differ by labor-market thickness for 
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reasons other than closeness to a state boundary. However, conditional on ijFTE , OS
ijFTE is plausibly 

exogenous.12 

 The results in Table 4 are consistent with what we show in Table 3. First, note that the first 

and third columns of each panel document the relationship between local-area FTE and student 

achievement, omitting information about the location of FTE with respect to state boundaries (i.e., 

the models are estimated without OS
ijFTE ). The relationship between local-area FTE and achievement 

is positive and weakly concave. When we add the state boundary information, the total FTE 

coefficients remain similar and out-of-state FTE has a negative effect on achievement conditional on 

total FTE. The results are again most pronounced using the 10-mile circles; they are attenuated but 

qualitatively similar using the 20-mile circles. To connect the estimates in Table 4 to the estimates in 

Table 3, note that at average in-state and out-of-state FTE values for intensely-affected boundary 

schools and control schools (control schools have zero out-of-state FTE), the estimates in Table 4 for 

the math model with the 10-mile radius imply a test-score difference between school types of 

approximately -0.080 standard deviations, which is very close to the analogous estimate in Table 3.13 

5.3 The Localness of Boundary Effects 

Table 5 reports on a sensitivity test regarding the local intensity of boundary effects suggested 

by our estimates in Tables 3 and 4. We divide the total labor market area within 20 miles of each 

school into two parts: (1) the part that is 0-10 miles from the school (i.e., within the circle of radius 10 

 
12 At a minimum, ijFTE can be viewed as serving the basic function of any other control variable in Equation (5). Unlike 

variation in OS
ijFTE , variation in ijFTE does correlate significantly with many of the other covariates (results omitted for 

brevity), at least unconditionally, which raises concerns about its independent interpretation. Of course, we control for 
observed differences between schools with the X-vector in our models, including population density (the most obvious 
potential confounder), which is helpful, but do not take a strong stand on whether unobserved correlates of ijFTE  
contribute to the coefficient estimates. 
13 Appendix Table B6 shows an analogous version of Table 4 that reports on models that omit the quadratic FTE terms. 
The results are qualitatively similar. 
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miles), and (2) the part that is 11-20 miles from the school (i.e., within the 20 mile circle but outside 

of the 10-mile circle). We construct measures of boundary exposure analogous to what we use above 

based on local-area FTE within each distance range. These models allow us to test the effect of 

boundary exposure in the 11-20 mile range for each school conditional on exposure in the 0-10 mile 

range. Specifically, we estimate models of the following form: 

0ij j ijY α θ ξ= + + + + +0-10 11-20
ij 1 ij 2 ij 3X α R α R α         (6) 

Equation (6) is the same as Equation (1) except that that the 20-mile circle is divided into two parts 

within the equation. The parameter vector 3α  indicates how increased boundary exposure within 11-

20 miles of the school, conditional on exposure within 10 miles, affects achievement.  

Table 5 shows results for our ratio-based models, analogous in structure to the models in 

Table 3. It shows that conditional on how the local-area labor market is affected by a state boundary 

within 10 miles, differences in how the market is split 11-20 miles away has no discernable effect on 

achievement. This reinforces the point from above that the boundary effects are concentrated. 

6. Robustness and Extensions 

6.1 Measurement and Models 

We examine the robustness of our findings to a variety of ways of measuring and modeling 

boundary exposure and comparing schools. Based on the preceding results showing that the 10-mile 

exposure measures are most informative, we restrict our attention to models that use these measures 

for the robustness and sensitivity tests. We relegate most of these analyses to Appendix B, where we 

consider: (a) measuring boundary exposure by local-area school enrollment instead of local-area FTE 

teachers, (b) restricting the exposure measures to include only schools with overlapping gradespans, 

(c) restricting the exposure measures to include only schools with similar student-body compositions 

as captured by the share of free/reduced-price lunch eligible students, (d) the use of an alternative, 

more-differentiated control group, (e) using exposure measures that include the school’s own local-
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area FTE as part of the in-state FTE, (f) models that capture boundary exposure by linear and 

quadratic terms of the percentage of local-area FTE on the other side of a state line, (g) models that 

use the simple distance to a state boundary (linear and quadratic terms), and (h) regressions that are 

weighted by student enrollment and teacher FTEs. Summarizing the laundry-list of results in the 

appendix, our findings are qualitatively robust to the various modeling and measurement 

modifications. 

6.2 Proficiency Rates 

In Table 6 we report results where we use school proficiency rates on state tests in place of 

standardized test scores. Our proficiency rate measures indicate the share of grade-8 students in the 

school rated as proficient or above on the state assessment and are standardized within states and 

subjects. Proficiency rate data are available at the school level in 43 of the lower 48 states, which 

affords a significant expansion of our sampling frame. The appendix provides additional details about 

the sample expansion. Table 6 presents results from proficiency-rate models that restrict the sample 

to include only states from Tables 3 and 4 (i.e., states for which we have school-level standardized test 

scores), as well as models that use the broader sample afforded by the proficiency data. For ease of 

presentation we show results for the ratio-based models only using the 10-mile radius measure. 

The findings in Table 6 are generally consistent with the results in Table 3. Although the 

positive estimate for schools with more than zero but less than 25 percent of local FTE on the other 

side of a state line in Table 6 for the extended sample in reading is peculiar, this result is not replicated 

anywhere else in our analysis and thus we do not put much weight on its significance (in particular, 

see Tables 3, 4, 7 and 8, along with the battery of tests in Appendix B). 

6.2 Other Extensions 

Next we look for evidence of boundary effects in lower grades – grade-7, grade-5 and grade-

3. There are two reasons to examine boundary effects in earlier grades. First, we can expand our 
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analytic sample for math in earlier grades to include California, which we dropped from our analysis 

of grade-8 due to the test-coverage issue discussed in Section 4.2. Second, and more importantly, the 

early-grade models provide indirect evidence about whether labor frictions are likely to drive our 

findings. Recall from above that labor frictions should have a cumulative impact given the local 

delivery of education services – i.e., attendance at a boundary school in grade-8 likely implies 

attendance at a boundary school in earlier grades as well. Because each year of exposure should 

influence total achievement if labor frictions are responsible for our findings, it follows that boundary 

effects in lower grades should be smaller than in grade-8.14 

Table 7 shows boundary effects on math test scores in grade-7, grade-5, and grade-3 using our 

ratio-based measures of boundary exposure and the 10-mile circles. The grade-7 point estimates are 

similar but slightly smaller than the garde-8 estimates in Table 3. The estimates for grades 5 and 3 are 

even smaller.15 The pattern of estimates is consistent with the hypothesized cumulative nature of the 

effect of boundary exposure. In contrast, it is not consistent with a story that unobserved selection 

drives our findings, in which case there would be no reason to expect differences in the estimates by 

grade. We also note that our weaker results in reading throughout are consistent with a labor-frictions 

explanation – a large body of research shows that teachers and teacher-related interventions have 

smaller effects on reading achievement than math achievement (e.g., Hanushek and Rivkin, 2010; 

Lefgren and Sims, 2012; Taylor and Tyler, 2012).  

In another extension we construct models to look for evidence of boundary effects in district-

level test data. For each school district, we build aggregated boundary-exposure measures based on 

 
14 Another frictions-related factor that may contribute to smaller estimates in lower grades is that teaching positions may 
be easier to fill in elementary versus middle schools. To the extent that boundary effects are moderated by the underlying 
thickness of the labor market, the grade-8 effects will encapsulate the more pronounced effects of boundary closeness 
during the middle-school years.  
15 The structure of the schooling system is such that our elementary analysis includes many more schools (multiple 
elementary schools typically feed into a single middle school), but this does not improve precision because of the 
clustering structure of the data at the state level. 
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our school-level measures from Equation (2). The district-level measures capture the share of intensely 

and moderately affected boundary schools in each district. As an example, a district with 10 schools, 

one of which is intensely affected by a state boundary, would have an intense-exposure share of 0.10. 

We use normalized estimates of district-average test scores as outcomes in the district-level 

models. The outcome data are taken from the publicly-available Stanford Education Data Archive 

(SEDA; Reardon et al., 2016a) and derived from information about student performance across all 

proficiency levels within states (Reardon et al., 2016b). A benefit of using the SEDA is that data are 

available for all lower-48 states (except California in grade-8 math, for the same reason that we exclude 

California in our grade-8 math models, and Washington DC), which affords another opportunity to 

look at an expanded sample.  

Table 8 shows results from district-aggregated models that follow the format of our previous 

results. We show district-level estimates for the restricted sample of states for which we have school-

level standardized test scores, and the expanded sample that includes all lower-47/48 states (again, 

California is excluded in the math model and Washington DC is excluded in both models because 

SEDA data are unavailable). The results are consistent with our school-level findings and similar using 

the restricted and full samples. In the full math model with the district-aggregated data, the estimate 

in Table 8 implies that going from a 0 to 1.0 share of intensely affected schools corresponds to a 

reduction in district test scores of 0.043 district-level standard deviations; the corresponding number 

in reading is 0.026 standard deviations. The math estimates are statistically significant at the 5 percent 

level in both samples. The reading estimates are statistically significant at the 5 percent level in the full 

sample and on the margin of statistical significance (p-value ≈ 0.11) in the restricted 33-state sample.  

Finally, we briefly discuss tests for heterogeneity in boundary effects. We had initially hoped 

heterogeneity analyses could be used to provide insights about the key drivers of boundary effects and 

possible moderators, but in practice our data structure and methods offer too little statistical power 
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for heterogeneity analyses to be informative. In unreported results omitted for brevity, we tested for 

evidence of heterogeneous effects associated with differences in local-area population density, 

differences in average teacher wages between bordering states, and differences in state income-tax 

status. Across all of these dimensions we cannot statistically distinguish differential boundary effects; 

however, our standard errors are also too large to rule out meaningful heterogeneity. Thus, we do not 

draw strong inference from our tests for heterogeneous boundary effects.16 

7. State Boundaries or District Boundaries? 

Thus far we have established that schools with a larger fraction of local-area FTE on the other 

side of a state line have lower achievement than otherwise similar schools where the labor market is 

not bisected by a state boundary. There is no indication that schools with more and less boundary 

exposure differ along other dimensions. The motivation of our study is to test for effects on schooling 

output that are predicted by economic theory if state boundaries create labor frictions. However, 

district boundaries necessarily coincide with state lines and can induce their own frictions (e.g., due to 

imperfect mapping across salary schedules, general frictions associated with changing employers, etc.). 

It is of interest to understand if the achievement declines we see for schools near state boundaries are 

more than would be expected based on the coinciding incidence of district boundaries alone. 

To test whether our findings indicate the presence of state-boundary effects above and beyond 

what would be expected owing to district boundaries alone, we add direct controls to our model for 

district-boundary exposure. Specifically, we estimate expanded models akin to what we show in 

Equations (1) and (3) as follows: 

0ij j ijY β ϕ ε= + + + + +OD OS
ij 1 ij 2 ij 3X β R β R β         (7) 

0ij j ijY eτ ω= + + + + + +ΟD OS
ij 1 ij 2 ij 3 ij 4X τ FTE τ FΤΕ τ FTE τ       (8) 

 
16 State level clustering has important power implications. Some progress may be possible if structural assumptions are 
imposed, but we do not pursue this approach here. 
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In equation (7), the variables in OD
ijR  measure the out-of-district FTE share and the variables in OS

ijR  

continue to measure the out-of-state FTE share. Similarly, the terms ΟD
ijFΤΕ  and OS

ijFTE  in Equation 

(8) include counts of out-of-district and out-of-state FTE. All other variables are as defined previously.  

Note that an out-of-state school in the local area is necessarily out-of-district because no 

district spans state lines, but the reverse is not true. Thus, when the out-of-district and out-of-state 

FTE controls are included simultaneously in the models, the coefficients on the out-of-district FTE 

variables ( 2β  or 3τ ) are identified entirely from district boundaries within states. The coefficients on 

the out-of-state FTE variables ( 3β or 4τ ) capture the additional effect of out-of-state FTE conditional 

on the effect of out-of-district FTE exposure. 

The results are shown in Tables 9 and 10 (corresponding to Tables 3 and 4 above). An 

important clarification for interpretation is that the omitted comparison group changes substantially 

in these new models. Specifically, the omitted group now includes only schools that are not exposed 

to any FTE outside the state or district within 10 miles. Because most districts cover small geographic 

areas, this group is much smaller and more selected than in previous models: for example, just 15.8 

percent of the schools in our sample have an out-of-district FTE share of zero, and more than two-

thirds of schools have an out-of-district FTE share above 25 percent.17 

The most important takeaway from Tables 9 and 10 is that district boundaries do not drive 

our findings for state boundaries. That said, the coefficients on the out-of-district FTE variables are 

also negative, which implies that district boundary frictions may also lower achievement. Combining 

the out-of-district and out-of-state FTE share coefficients in the math model with the 10-mile radius 

 
17 Clearly the distribution of out-of-district FTE is quite different than the distribution of out-of-state FTE (the latter 
distribution is documented in Appendix A). This suggests that a different way of codifying exposure to district 
boundaries may be warranted in the ratio-based models (Equation 7). Correspondingly, we have considered a variety of 
ways of controlling for exposure to district boundaries simultaneously with state boundaries and the qualitative 
implications are always similar to what we report in the main text. Given the similarity of results, we use an analogous 
coding scheme for out-of-state and out-of-district FTE ratios for presentational convenience in Equation (7).  
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in Table 9, and taking the estimate for out-of-district FTE at face value, implies that schools with 

intense exposure to a state boundary have much lower achievement than schools within states that 

are exposed to neither state nor district boundaries – the implied effect is a relative reduction of test 

scores in math of -0.1571 (-0.1005 + (-0.0566)) school-level standard deviations, or roughly -0.05 

student-level standard deviations.18   

8. Conclusion 

We study the effect on student achievement when a school’s local-area labor market is bisected 

by a state boundary. We find robust and highly-localized negative effects of intense exposure to a state 

boundary on the order of 0.09 school-level standard deviations of grade-8 math test scores. In reading, 

we find smaller negative effects that are only sometimes statistically significant. Our estimates can be 

converted into student-level standard deviations, which are more commonly used in education 

research, by multiplying them by roughly one-third (Bhatt and Koedel, 2012; Burgess, Wilson and 

Worth, 2013). Although the boundary effects are small on a per-student basis, they are spread across 

a very large population: based on the Common Core of Data, we estimate that roughly 670,000 

students are enrolled in middle schools nationally that are coded as “intensely affected” by a state 

boundary in our study.  

Labor frictions at state boundaries are a plausible explanation for our findings. A large 

literature in economics documents the adverse effect of labor frictions on production (Botero et al., 

2004; Caballero et al., 2013; Haltiwanger, Scarpetta and Schweiger, 2006; Helpman and Itskhoki, 2010; 

Lafontaine and Sivadasan, 2009; Mitra and Ranjan, 2010) and explicit state policies make it costly for 

educators to cross state lines. Our empirical results are consistent with what would be predicted by 

economic theory in this regard. We also note that while we put forth state-specific pension and 

 
18 We make this interpretation cautiously because unlike with the out-of-state FTE shares, the out-of-district FTE shares 
are correlated with other school characteristics within states and thus subject to greater concerns of selection bias. 
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licensing policies as the most likely factors driving frictions in teacher labor markets near state 

boundaries, other state policies may also create frictions. Possibilities include aforementioned 

differences across states in teacher salaries and tax policies, among others. We attempted to examine 

heterogeneity in boundary effects along these dimensions, but our heterogeneity analyses are 

underpowered. One might also hypothesize that boundary effects on achievement will be more 

pronounced where labor markets are inherently thin, such as high school math and science teachers. 

Unfortunately, comprehensive testing data are not currently available on a national level to test for 

effects in higher grades where some types of labor may be particularly scarce.19 

A large literature on teacher quality shows that teachers are important inputs into the 

educational production function and that teacher effectiveness is influenced by the match with the 

school (Jackson, 2013). Research has focused primarily on estimating achievement effects of exposure 

to a more effective teacher in a single year, and as such it is difficult to directly connect previous 

findings to our results, which reflect the cumulative effect of boundary exposure through grade-8. 

That said, with some assumptions we can perform a back-of-the-envelope calculation to approximate 

the implied effect of boundary exposure on the quality of instruction during the grades covered by 

our analysis. Specifically, we assume that the standard deviation of teacher effectiveness is 0.14 student 

standard deviations each year in grades K-8 (e.g., per Chetty, Friedman and Rockoff, 2014), boundaries 

have the same effect on the labor market in all grades K-8, and we allow for the decay of teacher 

effects over time based on available estimates (Chetty, Friedman and Rockoff, 2014; Jacob, Lefgren 

and Sims, 2010). Under these conditions, our estimate of the cumulative boundary effect in math of 

0.031 student standard deviations by grade-8 implies that intense exposure to a state boundary lowers 

 
19 Tests are administered to high school students but they vary within and across states in purpose, coverage (e.g., many 
tests in high school are not compulsory), and timing (e.g., see Parsons et al., 2015), which makes a national analysis using 
high school test data challenging. 
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teacher effectiveness by about 0.06-0.12 standard deviations of the teacher distribution.20 

 
  

 
20 This range of estimates depends in part on an assumption about student mobility between boundary and non-
boundary schools, which affects the number of years of boundary exposure for observed grade-8 students in the 
treatment and control conditions. The lower end of the range reported in the text assumes students do not switch 
between boundary and non-boundary schools at all in grades K-8. 
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Figure 1: Illustrative Example of the Construction of the Boundary Intensity Measure for 
Hypothetical School A. 
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Figure 2: 33 States with Grade-8 Math Scaled Scores Included in the Primary Analytic Sample. 
 

 
Notes: The 33 states in the primary analytic sample for math are: Arkansas, Arizona, Colorado, Connecticut, Delaware, Florida, Georgia, 
Idaho, Iowa, Kansas, Maine, Massachusetts, Michigan, Minnesota, Mississippi, Montana, Nebraska, Nevada, New Hampshire, New Jersey, 
New Mexico, New York, North Carolina, Oregon, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Vermont, West 
Virginia, Wisconsin, and Wyoming.  
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Table 1: Average Characteristics of Middle Schools in the CCD and Primary Analytic Sample. 
 All Schools in CCD Primary Analytic Sample 
  Mean St Dev Mean St Dev 

Standardized Math Scaled Score - - 0.03 0.95 
Standardized Reading Scaled Score - - 0.03 0.93      

School Characteristics     
% Free Lunch Status 45.81 25.67 44.78 24.5 

% Reduced Lunch Status 7.71 5.69 8.12 6.06 
% White 58.46 33.65 61.02 32.16 
% Black 14.71 24.15 13.89 22.25 

% Hispanic 19.87 25.61 18.96 24.23 
% Asian 3.13 6.78 2.37 4.77 

% American Indian 1.28 6.88 1.59 8.11 
% Pacific Islander 0.18 0.57 0.14 0.45 

% Two or more races 2.36 2.76 2.04 2.21 
Log of Total Enrollment 6.09 0.79 6.04 0.83      

District Characteristics     
Log of Total District Enrollment 8.63 1.97 8.43 1.93 

% English Language Learners 7.44 9.94 6.09 8 
Log of Total Revenue per pupil 9.4 0.33 9.4 0.35 
Log of Local Revenue per pupil 8.42 0.66 8.43 0.68      

Zip Code Characteristics     
Log Median Household Income 10.82 0.37 10.8 0.37 

% Low Education 45.82 15.21 45.53 14.62 
Population Density 2170.02 4005.97 1595.06 3172.51      

Urban-Centric Locale Categories     
Proportion of City Schools 22.73 41.91 19.4 39.54 

Proportion of Suburb Schools 28.96 45.36 26.64 44.21 
Proportion of Town Schools 12.92 33.54 13.58 34.26 
Proportion of Rural Schools 35.39 47.82 40.38 49.07      

Labor Market Bifurcation (10-mile Circle)     
Out-of-state Labor Market Percent ≥ 25 5.09 21.99 5.06 21.91 

0 < Out-of-state Labor Market Percent < 25 7.12 25.72 6.18 24.08 

N 
          

18,396              
11,686    

Notes: We use school records will full information to populate this table. The "Primary Analytic Sample" is the grade-8 
math sample; the grade-8 reading sample includes California but excludes Nebraska due to testing issues as described in 
the text.  
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Table 2: Models of Selection into Boundary Regions.    
  (1) (2) (3) (4) (5) (6) 

     10-mile radius 20-mile radius  
VARIABLES 1(Out-of-State Labor Market Percent ≥ 25) Distance to a state border 
% Free Lunch Status 0.0003 0.0002 0.0002 0.0000 -0.1476 -0.1475 

 [-0.000,0.001] [-0.000,0.001] [-0.001,0.001] [-0.001,0.001] [-0.490,0.165] [-0.420,0.131] 
% Reduced Lunch Status -0.0004 0.0002 -0.0008 0.0002 -0.4580 -0.5440 

 [-0.001,0.001] [-0.000,0.001] [-0.003,0.001] [-0.001,0001] [-1.270,0.373] [-1.199,0.122] 
% Asian 0.0016 0.0007 -0.0002 -0.0020 -0.9283 -0.4320 

 [-0.002,0.005] [-0.002,0.003] [-0.003,0.002] [-0.004,0.000] [-1.938,0.112] [-1.009,0.172] 
% Hispanic -0.0004 0.0001 -0.0007 0.0002 1.3741* 0.9889 

 [-0.001,0.000] [-0.000,0.001] [-0.002,0.001] [-0.001,0.001] [0.649,2.120] [0.214,1.729] 
% Black -0.0005 -0.0004 -0.0002 -0.0002 0.0076 -0.0253 

 [-0.001,0.000] [-0.001,0.000] [-0.002,0.001] [-0.000,0.000] [-0.268,0.308] [-0.262,0.208] 
% American Indian -0.0003 0.0001 -0.0002 0.0006 0.2680 0.1506 

 [-0.001,0.000] [-0.001,0.001] [-0.002,0.001] [-0.000,0.002] [-0.067,0.623] [-0.196,0.496] 
% Pacific Islander 0.0235 0.0160 0.0284 0.0125 -6.5280 -0.8220 

 [-0.001,0.047] [-0.003,0.035] [0.000,0.056] [-0.005,0.031] [-14.65,1.373] [-3.553,2.010] 
% Two or more race -0.0009 0.0006 -0.0008 0.0009 -0.3110 -0.9368 

 [-0.004,0.003] [-0.001,0.003] [-0.001,0.007] [-0.003,0.005] [-2.063,1.546] [-2.358,0.447] 
Log of Total Enrollment 0.0089 0.0061 0.0128 0.0007 -7.1819 -3.7988 

 [-0.002,0.019] [-0.001,0.014] [-0.009,0.033] [-0.012,0.014] [-17.33,3.639] [-8.725,1.361] 
Log of Total District Enrollment -0.0115 -0.0134 -0.0132 -0.0105* 7.4215 3.4269 

 [-0.027,0.003] [-0.027,0.000] [-0.032,0.005] [-0.022,0.002] [-6.122,20.42] [-1.213,8.076] 
% English Language Learners -0.0025 -0.0014 -0.0048 -0.0026 -0.1357 -0.0755 

 [-0.005,0.000] [-0.003,0.000] [-0.009,-0.000] [-0.005,-0.000] [-0.840,0.470] [-0.769,0.573] 
Log of Total Revenue per pupil 0.0554 -0.0009 0.1782 0.0596 -42.9486** -6.3986 

 [0.006,0.102] [-0.042,0.040] [0.050,0.302] [-0.005,0.127] [-73.10,-11.53] [-36.11,23.71] 
Log of Local Revenue per pupil -0.0181*** -0.0089** -0.0438** -0.0257 15.8403 0.6036 

 [-0.031,-0.006] [-0.018,-0.001] [-0.075,-0.012] [-0.054,0.003] [-4.763,35.77] [-21.48,22.59] 
Log Median Household Income 0.0577 0.0222 0.1336* 0.0509 -30.4040** -16.4235 

 [0.010,0.104] [-0.004,0.048] [0.033,0.229] [-0.008,0.112] [-45.28,-15.22] [-34.59,2.082] 
% Low Education 0.0016 0.0005 0.0030 0.0007 -0.6139** -0.4469 

 [0.000,0.003] [-0.000,0.001] [0.001,0.005] [-0.000,0.002] [-1.026,-0.241] [-0.856,-0.043] 
Population Density/1000 0.0096 0.0064 0.0225 0.0147 -2.4122 -1.3667 

 [0.001,0.018] [-0.001,0.014] [0.005,0.040] [0.001,0.028] [-4.871,0.107] [-3.838,1.134] 
1(Suburb) 0.0004 -0.0100 0.0311 0.0063 14.6649 5.9899 

 [-0.016,0.017] [-0.031,0.011] [-0.018,0.080] [-0.029,0.041] [-9.698,38.24] [-6.346,18.41] 
1(Town) -0.0214 -0.0287** 0.0026 -0.0066 8.1953 6.0233 

 [-0.048,0.004] [-0.056,-0.002] [-0.052,0.054] [-0.051,0.040] [-13.83,30.01] [-6.108,18.10] 
1(Rural) -0.0357** -0.0342** -0.0174 -0.0091 20.6961 12.4977 

 [-0.069,-0.002] [-0.070,-0.001] [-0.071,0.041] [-0.054,0.036] [-5.325,46.28] [-0.191,25.19] 
Constant -0.9563 -0.1058 -2.7289* -0.8328 648.8718*** 313.9632* 

 [-1.653,-0.251] [-0.597,0.397] [-4.300,-1.194] [-1.964,0.381] [440.4,872.0] [44.36,572.1] 
State Fixed Effects  X  X  X 
R-squared 0.0540 0.1164 0.1204 0.2510 0.2650 0.4946 
Observations (schools) 11,686 11,686 11,686 11,686 11,686 11,686 
 Joint P-Value  0.45  0.92  0.91 
Notes: This table shows variants of the selection equation in the main text where we adjust the dependent variable. The first four 
columns predict an indicator for being an intensely-affected boundary school using available covariates. Columns 1 and 2 use 10-mile 
radius in defining local labor market; columns 3 and 4 use 20-mile radius in defining local labor market. Columns 5 and 6 are from a 
model where the dependent variable is the distance to a closest state border (linear). Standard errors are clustered at the state level; 
statistical significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 3: Estimated Boundary Effects on Grade 8 Scaled Scores, Ratio Model. 
  (1) (2) (3) (4) 
 10-mile radius 20-mile radius 
 Grade 8 Scaled Score 
VARIABLES Math Reading Math Reading 
          

Out-of-State Percent ≥ 25 -0.0942** -0.0537* -0.0521* -0.0112 

 [-0.164, -0.026] [-0.108, -0.002] [-0.104,-0.001] [-0.055,0.033] 
0< Out-of-State Percent <25 -0.0095 0.0082 0.0287 0.0167 

 [-0.070, 0.048] [-0.028, 0.047] [-0.039,0.093] [-0.027,0.058] 
     

Covariates X X X X 
State Fixed Effects X X X X 
R-squared 0.4773 0.5896 0.4773 0.5895 
Observations (schools) 11,686 13,286 11,686 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the 
wild cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Estimated Boundary Effects on Grade 8 Scaled Scores, Count Model.  
  (1) (2) (3) (4) (5) (6) (7) (8) 
 10-mile radius 20-mile radius 
VARIABLES Math Math Reading Reading Math Math Reading Reading 
              

Total FTE/1000 0.0129 0.0142 0.0214** 0.0252** 0.0043 0.0057 0.0067** 0.0073*** 
 [0.001,0.024] [-0.001,0.029] [0.001,0.033] [0.009,0.041] [-0.001,0.010] [-0.000,0.012] [0.002,0.011] [0.002,0.013] 

(Total 
FTE/1000)2 -0.0002 0.0001 -0.0003** -0.0003 -0.0000 -0.0000 -0.000 -0.0000 

 [-0.000,0.000] [-0.001,0.001] [-0.001,-0.000] [-0.001,0.000] [-0.000,0.000] [-0.000,0.000] [-0.000,0.000] [-0.000,0.000] 
Out-of-State 

FTE/1000  -0.0389***  -0.0362***  -0.0111***  -0.0118*** 

  [-0.055,-0.025]  [-0.053,-0.020]  [-0.017,-0.005]  [-0.019,-0.005] 
(Out-of-State 
FTE/1000)2  0.0007  0.0010  0.0001  0.0001 

  [-0.000,0.002]  [0.000,0.002]  [-0.000,0.000]  [-0.000,0.000] 

         
Covariates X X X X X X X X 
State Fixed Effects X X X X X X X X 
R-squared 0.4835 0.4841 0.5959 0.5965 0.4797 0.4799 0.5933 0.5937 
Observations 
(schools) 11,686 11,686 13,286 13,286 11,686 11,686 13,286 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by Cameron et al. 
(2008).  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Estimated Boundary Effects on Grade 8 Scaled Scores Adding 11-20 mile Labor Market 
Variables, Ratio Model.  
  (1) (2)   

     Grade 8 Scaled Score  
VARIABLES Math Reading   

     
10 mile Out-of-State Labor Market Percent ≥ 25 -0.0856** -0.0469   

 [-0.170,-0.006] [-0.115,0.023]   
0 < 10 mile Out-of-State Labor Market Percent < 25 -0.0050 0.0119   

 [-0.074,0.062] [-0.042,0.066]   
11-20 mile Out-of-State Labor Market Percent ≥ 25 -0.0107 -0.0079   

 [-0.060,0.038] [-0.071,0.051]   
0 < 11-20 mile Out-of-State Labor Market Percent < 25 0.0329 0.0297   

 [-0.042,0.104] [-0.021,0.077]   
     

Covariates X X   
State Fixed Effects X X   
R-squared 0.4775 0.5897   
Observations (schools) 11,686 13,286   
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild 
cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Estimated Boundary Effects on Grade 8 Proficiency Rate, Ratio Model. 
  (1) (2) (3) (4) 
 Scaled Score Sample Extended Sample 
VARIABLES 10-mile radius 10-mile radius 
 Math Reading Math Reading 
        

Out-of-State Percent ≥ 25 -0.0816** -0.0329 -0.0772** -0.0319 
 [-0.145,-0.020] [-0.089,0.022] [-0.130,-0.022] [-0.102,0.038] 

0<Out-of-State Percent<25 -0.0082 0.0412 0.0160 0.0761** 
 [-0.085,0.066] [-0.015,0.096] [-0.067,0.090] [0.019,0.133] 

     

Covariates X X X X 
State Fixed Effects X X X X 
R-squared 0.4354 0.5242 0.4288 0.5070 
Observations (schools) 11,512 13,180 16,269 18,001 
Notes: Columns 1 and 2 use the same states with scaled score data from Table 3 (33 states). Columns 3 and 4 use all 
states where proficiency rate data are available (43 states). The small sample-size differences between columns 1 and 
2 here, and in Table 3, are because scale scores and proficiency rates are not both available for all schools. Standard 
errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster 
bootstrap-t procedure as described by Cameron et al. (2008).  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 7: Robustness Results Estimated Using Grade-7, Grade-5 and Grade-3 Scaled Scores; Ratio Model With 10-mile 
Radius. 
  (1) (2) (3) (4) (5) (6) 

 Grade 7 Grade 5 Grade 3 
VARIABLES Math Reading Math Reading Math Reading 
            

Out-of-State 
Percent ≥ 25 -0.0696 -0.0417 -0.0459 -0.0396 -0.0423 0.0056 

 [-0.140,-0.005] [-0.112,0.021] [-0.123,0.031] [-0.097,0.017] [-0.117,0.030] [-0.070,0.079] 
0<Out-of-State 

Percent<25 0.0073 0.0369 -0.0241 0.0065 0.0112 -0.0132 
 [-0.065,0.085] [-0.012,0.085] [-0.133,0.078] [-0.063,0.070] [-0.060,0.084] [-0.078,0.056] 
       

Covariates X X X X X X 
State Fixed 
Effects X X X X X X 
R-squared 0.4945 0.5890 0.5000 0.6310 0.5041 0.6021 
Observations 13,878 13,631 28,965 28,499 29,000 28,859 
Notes: The grade-7 math sample is substantially larger than the grade-8 math sample (from Table 3) because we include California. The grade-
7 reading sample varies slightly from the grade-8 sample because of small differences in which schools report scores for which grades. The 
elementary school sample sizes are much larger because there are many more elementary schools than middle schools in the data. Standard 
errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster bootstrap-t procedure as 
described by Cameron et al. (2008).  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 8: Robustness Results, Estimated Using District-level Performance Metrics from the Stanford 
Education Data Archive. 
  (1) (2) (3) (4) 

     Primary Scaled-Score Sample 
  Extended Sample 
(all lower-48 states) 

VARIABLES District-level Grade 8 Scaled Score 
       Math              Reading  Math Reading 
          

Share of “Intensely Affected”  
Boundary Schools 

-0.0401** -0.0192 -0.0430** -0.0260** 
[-0.074,-0.009] [-0.041,0.007] [-0.074,-0.011] [-0.045,-0.006] 

     

Share of “Moderately Affected”  
Boundary Schools 

-0.0062 0.0100 0.0005 0.0040 
[-0.045,0.029] [-0.020,0.041] [-0.030,0.032] [-0.021,0.027] 

     

Covariates X X X X 
State Fixed Effects X X X X 
R-squared 0.4769 0.5994 0.4485 0.5677 
Observations (districts) 6,087 6,710 9,549 10,346 
Notes: Columns 1 and 2 use states with scaled score data from Table 3 (33 states). Column 3 uses all lower-48 states 
except California and column 4 uses all lower-48 states; Washington DC is excluded in all columns. SEDA does not 
provide data from Washington DC or grade-8 math data from California, for the same reason that we do not include these 
data (see textStandard errors are clustered at the state level; statistical significance and confidence intervals are based on the 
wild cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 9: Estimated Boundary Effects on Grade 8 Scaled Scores with Out-of-District Variables, Ratio 
Model Using 10-mile Radius. 
  (1) (2)   

     Grade 8 Scaled Score  
VARIABLES Math Reading   

     
Out-of-State Labor Market Percent ≥ 25 -0.1005** -0.0578**   

 [-0.171,-0.030] [-0.114,-0.005]   
0 < Out-of-State Labor Market Percent < 25 -0.0101 0.0080   

 [-0.070,0.047] [-0.028,0.047]   
Out-of-District & In-State Labor Market Percent ≥ 25 -0.0566*** -0.0539***   

 [-0.095,-0.023] [-0.083,-0.025]   
0 < Out-of-District & In-State Labor Market Percent < 25 -0.0423 -0.0564   

 [-0.110,0.022] [-0.117,0.004]   
     

Covariates X X   
State Fixed Effects X X   
R-squared 0.4777 0.5899   
Observations (schools) 11,686 13,286   
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild 
cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 10: Estimated Boundary Effects on Grade 8 Scaled Scores with Out-of-District Variables, 
Count Model Using 10-mile Radius.  
  (1) (2) (3) (4) 
 Grade 8 Scaled Score 
VARIABLES Math Reading 
          

Total FTE/1000 0.0129 0.0193 0.0214** 0.0567 
 [0.001,0.024] [-0.006,0.047] [0.010,0.033] [0.001,0.114] 

(Total FTE/1000)2 -0.0002 0.0009*** -0.0003** -0.0011 
 [-0.000,0.000] [0.000,0.002] [-0.001,-0.000] [-0.003,0.001] 

Out-of-State FTE/1000  -0.0635***  -0.0520 
  [-0.089,-0.039]  [-0.100,-0.006] 

(Out-of-State FTE/1000)2  -0.0004  0.0020 
  [-0.001,0.001]  [-0.000,0.004] 

Out-of-District FTE/1000  -0.0056  -0.0425 
  [-0.035,0.023]  [-0.095,0.008] 

(Out-of-District FTE/1000)2  -0.0012**  0.0014 
  [-0.002,-0.000]  [-0.001,0.004]      

Covariates X X X X 
State Fixed Effects X X X X 
R-squared 0.4835 0.4975 0.5959 0.6094 
Observations (schools) 11,686 11,686 13,286 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the 
wild cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix A 
Supplementary Figures and Tables 

 
 
Figure A1: Distributions of the Out-of-State FTE Percentage for Schools in the Math Analytic Sample. 

  
Notes: The left panel shows the full distribution of out-of-state FTE percentages, which is dominated by the 88 percent of schools that have zero out-of-state FTE. The right panel 
shows the distribution of out-of-state FTE percentages conditional on a non-zero value. The vertical line shows the 25-percent FTE cutoff that we use in our preferred measure of 
boundary intensity. As noted in the text, even conditional on a non-zero out of state share, most schools have a larger percentage of in-state FTE. The reason is that each school’s circle 
is centered on itself, which in most cases will lead to the in-state area being larger than the out-of-state area. Kernel density estimates use the Epanechnikov kernel function with a kernel 
width of two.  
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Figure A2: 43 States with Grade-8 Math Proficiency Rate Data Included in the Extended Sample. 
 

 
Notes: List of 43 states in the extended sample for math are: Arkansas, Alabama, Arizona, Colorado, Connecticut, Delaware, Florida, 
Georgia, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, 
Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Carolina, Ohio, Oregon, Pennsylvania, Rhode 
Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont, West Virginia, Washington, Wisconsin, and Wyoming. 
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  Table A1: Sample Construction Details. 

  2012-2013 Grade-8 Test Results 
  Scaled Score  Proficiency Rate 
  Math Reading Math  Reading 

  Schools 
% of 

Universe Schools 
% of 

Universe Schools 
% of 

Universe Schools 
% of 

Universe 
Universe  12,992   14,705   18,200   20,103   

         
Missing Data                 
CCD School -262 2.02% -282 1.92% -330 1.81% -370 1.84% 
CCD District Enroll -458 3.53% -459 3.12% -857 4.71% -869 4.32% 
CCD District Fin. -76 0.58% -96 0.65% -69 0.38% -96 0.48% 
ACS ZIP-Code -89 0.69% -93 0.63% -115 0.63% -121 0.60% 
Geocoded Data -421 3.24% -489 3.33% -560 3.08% -646 3.21% 
Final Sample 11,686 89.95% 13,286 90.35% 16,269 89.39% 18,001 89.54% 
Number of States 33   33   43   43   
Notes: No test results from Missouri, North Dakota, or Oklahoma are included in the table. Reading test results are not 
available for Nebraska and we do not use California math scores for reasons discussed in the text. Scaled scores are not 
available for Alabama, Illinois, Indiana, Kentucky, Louisiana, Maryland, Ohio, Pennsylvania, Utah, and Washington. 
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Table A2: Average Characteristics of Middle Schools in the CCD and Proficiency Rate Sample. 
 All Schools in CCD Proficiency Rate Sample 
  Mean St Dev Mean St Dev 

Standardized Math Proficiency Rate - - 0.04 0.95 
Standardized Reading Proficiency Rate - - 0.05 0.92      

School Characteristics     
% Free Lunch Status 45.81 25.67 44.93 25.36 

% Reduced Lunch Status 7.71 5.69 7.68 5.72 
% White 58.46 33.65 61.7 32.78 
% Black 14.71 24.15 15.57 24.96 

% Hispanic 19.87 25.61 16.62 23.06 
% Asian 3.13 6.78 2.42 4.94 

% American Indian 1.28 6.88 1.25 6.88 
% Pacific Islander 0.18 0.57 0.14 0.48 

% Two or more races 2.36 2.76 2.3 2.5 
Log of Total Enrollment 6.09 0.79 6.08 0.76      

District Characteristics     
Log of Total District Enrollment 8.63 1.97 8.57 1.95 

% English Language Learners 7.44 9.94 5.77 7.68 
Log of Total Revenue per pupil 9.4 0.33 9.42 0.32 
Log of Local Revenue per pupil 8.42 0.66 8.47 0.64      

Zip Code Characteristics     
Log Median Household Income 10.82 0.37 10.8 0.37 

% Low Education 45.82 15.21 46.16 14.86 
Population Density 2170.02 4005.97 1967.44 3833.43      

Urban-Centric Locale Categories     
Proportion of City Schools 22.73 41.91 21.4 41.01 

Proportion of Suburb Schools 28.96 45.36 27.88 44.84 
Proportion of Town Schools 12.92 33.54 13.55 34.23 
Proportion of Rural Schools 35.39 47.82 37.17 48.33      

Proportion by Labor Market Bifurcation     
Out-of-state Labor Market Percent ≥ 25 5.09 21.99 5.66 23.11 

0 < Out-of-state Labor Market Percent < 25 7.12 25.72 7.95 27.05 

Observations (schools) 
             

18,396    
             

16,269    
Notes: We use school records will full information to populate this table.  
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Table A3: Additional Models of Selection into Boundary Regions. 
  (1) (2) (3) (4) (5) (6) 

     1(Out-of-State Percent > 0)  
1(Out-of-State Percent ≥ 25) & 

Exclude subsample 
Out-of-state Share (linear) 

VARIABLES 10-mile 20-mile 10-mile 20-mile 10-mile 20-mile 
% Free Lunch Status -0.0000 -0.0003 0.0001 -0.0001 -0.0078 0.0102 

 [-0.001,0.000] [-0.001,0.001] [-0.000,0.001] [-0.001,0.001] [-0.030,0.013] [-0.016,0.039] 
% Reduced Lunch Status 0.0006 -0.0005 0.0001 -0.0001 -0.0172 -0.0142 

 [-0.001,0.002] [-0.003,0.002] [-0.001,0.001] [-0.002,0.002] [-0.058,0.025] [-0.077,0.042] 
% Asian 0.0014 0.0022 0.0005 0.0007 -0.0600 0.0492 

 [-0.001,0.004] [-0.002,0.006] [-0.002,0.003] [-0.002,0.004] [-0.218,0.099] [-0.035,0.142] 
% Hispanic 0.0008 0.0007 0.0001 0.0004 -0.0195 -0.0150 

 [-0.000,0.002] [-0.001,0.002] [-0.001,0.001] [-0.001,0.002] [-0.053,0.016] [-0.054,0.023] 
% Black 0.0002 -0.0001 -0.0004 -0.0003 0.0127 0.0054 

 [-0.001,0.001] [-0.001,0.001] [-0.001,0.000] [-0.001,0.001] [-0.010,0.037] [-0.029,0.042] 
% American Indian 0.0007 0.0019* 0.0001 0.0012 -0.0094 -0.0451 

 [-0.000,0.002] [0.000,0.004] [-0.001,0.001] [-0.001,0.003] [-0.045,0.028] [-0.103,0.017] 
% Pacific Islander 0.0135 0.0057 0.0121 0.0133 -0.6852 -0.4769 

 [-0.005,0.031] [-0.019,0.030] [-0.007,0.031] [-0.014,0.039] [-1.567,0.199] [-1.247,0.280] 
% Two or more race 0.0015 0.0017 0.0005 0.0008 -0.0466 -0.0561 

 [-0.003,0.006] [-0.005,0.009] [-0.002,0.003] [-0.003,0.005] [-0.172,0.074] [-0.237,0.126] 
Log of Total Enrollment -0.0048 0.0124* 0.0059 0.0018 -0.1094 -0.1019 

 [-0.020,0.009] [-0.003,0.026] [-0.002,0.003] [-0.011,0.014] [-0.567,0.329] [-0.728,0.489] 
Log of Total District Enrollment -0.0049 -0.0097 -0.0125** -0.0150** 0.7306 0.6565 

 [-0.019,0.009] [-0.029,0.010] [-0.021,-0.003] [-0.027,-0.002] [-0.014,1.469] [-0.076,1.367] 
% English Language Learners -0.0027 -0.0034 -0.0011 -0.0020 0.0967 0.1271 

 [-0.006,0.000] [-0.007,0.000] [-0.003,0.001] [-0.004,0.000] [-0.031,0.224] [-0.020,0.275] 
Log of Total Revenue per pupil 0.0528 0.0656 0.0291 0.0458 -0.7257 -2.8401 

 [-0.006,0.116] [-0.034,0.165] [-0.013,0.073] [-0.029,0.120] [-2.923,1.498] [-6.363,1.010] 
Log of Local Revenue per pupil -0.0314 -0.0299 -0.0212 -0.0010 0.9120* 1.7672 

 [-0.068,0.006] [-0.084,0.023] [-0.049,0.006] [-0.031,0.031] [0.144,1.670] [-0.101,3.526] 
Log Median Household Income 0.0645 0.0968 0.0537 0.0853 -1.5167 -2.1514 

 [-0.014,0.144] [-0.029,0.229] [-0.002,0.114] [-0.020,0.188] [-3.130,0.117] [-4.937,0.854] 
% Low Education 0.0008 0.0020 0.0009 0.0013 -0.0224 -0.0402 

 [-0.000,0.002] [0.000,0.004] [-0.000,0.002] [-0.000,0.003] [-0.053,0.010] [-0.089,0.007] 
Population Density/1000 0.0104 0.0041 0.0102 0.0138*** -0.5309 -0.7979 

 [-0.004,0.024] [-0.014,0.022] [0.004,0.017] [0.007,0.020] [-1.080,0.013] [-1.640,0.025] 
1(Suburb) -0.0201 -0.0192 0.0048 0.0081 0.4053 -0.4100 

 [-0.059,0.019] [-0.079,0.042] [-0.011,0.022] [-0.037,0.057] [-0.805,1.671] [-2.008,1.196] 
1(Town) -0.0467* -0.0363 -0.0237** -0.0109 1.2018* 0.1803 

 [-0.099,0.008] [-0.101,0.027] [-0.047,0.001] [-0.059,0.038] [-0.291,2.813] [-1.975,2.252] 
1(Rural) -0.0643** -0.0654** -0.0288** -0.0154 1.5230* 0.5973 

 [-0.117,-0.012] [-0.121,-0.014] [-0.059,0.000] [-0.059,0.038] [-0.361,3.442] [-1.294,2.565] 
Constant -0.8847 -1.4228 -0.6526 -1.2849 111.8508*** 131.4815*** 

 [-2.113,0.346] [-3.571,0.758] [-1.599,0.246] [-3.090,0.554] [77.56,147.2] [75.54,184.3] 
State Fixed Effects X X X X X X 
R-squared 0.1997 0.2496 0.3200 0.3882 0.1456 0.2821 
Observations (schools) 11,686 11,686 8,096 8,957 11,686 11,686 
 Joint P-Value 0.70 0.45 0.52 0.72 0.25 0.92 
Notes: This table provides additional selectivity tests following on Table 2 in the main text. Columns 1 and 2 code the dependent variable 
to one for schools with any non-zero out-of-state FTE share and zero otherwise; columns 3 and 4 code the dependent variable to one for 
intensely affected schools and zero otherwise, but further differentiate intensely-affected schools from control schools by dropping 
“moderately affected” schools and control schools within 20 miles from a state border. Columns 5 and 6 are from a model where the 
dependent variable is the out-of-state labor market share as a linear measure. Standard errors are clustered at the state level; statistical 
significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table A4: Estimated Coefficients for Non-boundary Controls from Main Models in Table 3.  
  (1) (2) (3) (4) 
 10-mile radius 20-mile radius 
 Grade 8 Scaled Score 
VARIABLES Math Reading Math Reading 
% Free Lunch Status -0.0178*** -0.0189*** -0.0179*** -0.0190*** 

 [-0.022,-0.014] [-0.023,-0.015] [-0.022,-0.014] [-0.023,-0.015] 
% Reduced Lunch Status -0.0070*** -0.0049 -0.0070*** -0.0049 

 [-0.010,-0.003] [-0.010,0.001] [-0.011,-0.003] [-0.010,0.001] 
% Asian 0.0202*** 0.0118*** 0.0199*** 0.0118*** 

 [0.013,0.027] [0.010,0.014] [0.013,0.027] [0.010,0.014] 
% Hispanic -0.0048** -0.0032** -0.0048** -0.0032** 

 [-0.007,-0.002] [-0.005,-0.001] [-0.007,-0.002] [-0.005,-0.001] 
% Black -0.0113*** -0.0106*** -0.0113*** -0.0105*** 

 [-0.014,-0.009] [-0.013,-0.008] [-0.014,-0.009] [-0.013,-0.008] 
% American Indian -0.0129*** -0.0101*** -0.0130*** -0.0101*** 

 [-0.017,-0.009] [-0.013,-0.007] [-0.017,-0.009] [-0.013,-0.007] 
% Pacific Islander -0.0039 -0.0359 -0.0045 -0.0363 

 [-0.028,0.020] [-0.062,-0.011] [-0.028,0.019] [-0.062,-0.011] 
% Two or more race -0.0058 -0.0035 -0.0059 -0.0035 

 [-0.014,0.003] [-0.009,0.002] [-0.015,0.003] [-0.009,0.002] 
Log of School Enrollment 0.2441*** 0.2692*** 0.2434*** 0.2688*** 

 [0.164,0.319] [0.200,0.340] [0.162,0.319] [0.199,0.339] 
Log of District Enrollment -0.0703*** -0.0870*** -0.0697*** -0.0865*** 

 [-0.102,-0.038] [-0.106,-0.068] [-0.102,-0.037] [-0.106,-0.067] 
% English Language Learners 0.0088** 0.0033** 0.0088 0.0033** 

 [0.002,0.015] [0.001,0.006] [0.002,0.015] [0.001,0.006] 
Log of Total District Revenue Per Pupil 0.0762 -0.1427 0.0787 -0.1423 

 [-0.092,0.254] [-0.413,0.123] [-0.090,0.260] [-0.414,0.125] 
Log of Local District Revenue Per Pupil -0.0012 0.0179 -0.0014 0.0179 

 [-0.070,0.062] [-0.048,0.085] [-0.070,0.063] [-0.047,0.085] 
Log Median Household Income -0.0822 -0.1367** -0.0833 -0.1373** 

 [-0.181,0.016] [-0.230,-0.044] [-0.183,0.016] [-0.231,-0.044] 
% Low Education -0.0068*** -0.0114*** -0.0069*** -0.0114*** 

 [-0.010,-0.004] [-0.014,-0.009] [-0.010,-0.004] [-0.014,-0.009] 
Population Density/1000 0.0123* 0.0112 0.0127* 0.0112 

 [0.004,0.021] [0.002,0.020] [0.005,0.021] [0.002,0.020] 
1(Suburb) 0.0368 0.0352* 0.0389 0.0358* 

 [-0.024,0.095] [-0.002,0.073] [-0.022,0.098] [-0.002,0.073] 
1(Town) 0.0044 -0.0218 0.0078 -0.0204 

 [-0.077,0.080] [-0.076,0.033] [-0.073,0.085] [-0.076,0.035] 
1(Rural) 0.0520 0.0608* 0.0566 0.0627* 

 [-0.014,0.0115] [0.003,0.120] [-0.011,0.120] [0.005,0.124] 
Constant 0.6889 3.2772 0.6798 3.2778 

 [-0.672,2.121] [1.150,5.491] [-0.696,2.114] [1.145,5.494] 
     

State Fixed Effects X X X X 
R-squared 0.4773 0.5896 0.4773 0.5895 
Observations (schools) 11,686 13,286 11,686 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild 
cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table A5: Replication of Results in Table 3 Using Sparse Control Sets, Ratio Model Using 10-mile Radius. 
  (1) (2) (3) (4) (5) (6) (7) (8) 
VARIABLES Grade 8 Scaled Score Math Grade 8 Scaled Score Reading 
              

Out-of-State 
Percent ≥ 25 -0.1060 -0.0897*** -0.0862*** -0.0942** -0.0738 -0.0464* -0.0455* -0.0537* 

 [-0.255,0.049] [-0.159,-0.025] [-0.154,-0.024] [-0.164,-0.026] [-0.229,0.092] [-0.101,0.004] [-0.099,0.005] [-0.108,-0.002] 
0<Out-of-State 

Percent<25 -0.1303 -0.0182 -0.0032 -0.0095 -0.1120 0.0028 0.0191 0.0082 
 [-0.270,-0.002] [-0.089,0.050] [-0.071,0.060] [-0.070,0.048] [-0.259,0.027] [-0.034,0.042] [-0.018,0.058] [-0.028,0.047] 

         
State FE X X X X X X X X 
School Controls  X X X  X X X 
District Controls   X X   X X 
Local Comm. 
Controls    X    X 
R-squared 0.0047 0.4672 0.4727 0.4773 0.0076 0.5724 0.5775 0.5896 
Observations 
(schools) 11,686 11,686 11,686 11,686 13,286 13,286 13,286 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by Cameron 
et al. (2008).  
*** p<0.01, ** p<0.05, * p<0.1 
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Appendix B 
Sensitivity Analysis 

 
The purpose of this appendix is to examine the robustness of our findings to a variety of ways of 

measuring and modeling boundary exposure. 

First, in Table B1 we examine the sensitivity of our findings to alternative ways of constructing our 

measure of boundary exposure. The estimates in Table B1 are comparable to our primary findings in Table 3. 

The first two columns restrict the exposure measure to only include schools that have overlapping grades with 

the reference school. The middle two columns consider a similar, alternative restriction where we construct 

the analogs to Equation (2) restricted to schools where the share of free/reduced-price eligible students is 

within 20 percent of the share at the reference school. The last two columns return to the full sample of local-

area schools, but replace the FTE-based measures in Equation (2) with analogous measures based on school 

enrollment. In all cases the substance of our results is maintained, although in the middle columns the results 

are weaker.  

Next, Table B2 shows results from models where we further differentiate boundary schools from 

control schools. To do this, we drop from the control group schools where there is at least one other school 

within 20 miles that is on the other side of a state line. Thus, the control group in Table B2 is even less likely to 

be influenced by a state boundary.21 The estimates in Table B2 are similar to what we show in Table 3. 

In Table B3 we adjust Equation (2) to include each school’s own FTE in the denominator. Although 

our preferred construct omits own-school FTE, it is not unreasonable to include it. Table B3 shows that our 

findings are not substantively sensitive to including the own-school FTE share directly in the measure.22  

 
21 This restricted control group is also examined in the analysis of selection into boundary regions in Appendix Table A3.  
22 Note that our confidence interval is wider in Table B3, in part because a smaller fraction of schools meets the pre-defined 
cutoffs for the boundary-exposure bins. We can better connect the estimates in Table B3 to our estimates in Table 3 by adjusting 
the thresholds for the bins to maintain a constant share of the sample coded to each level of intensity. We omit results from this 
extended sensitivity analysis for brevity but they are substantively similar to what we show in Table B3. 
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Tables B4 and B5 show results from models that include linear and quadratic measures of boundary 

exposure. In Table B4, the linear and quadratic terms are for the out-of-state FTE share, which is the same 

variable that we use for the models in our main analysis. In Table B5, we use linear and quadratic terms that 

capture of the simple distance to the nearest state boundary in two subsamples – schools within 20 and 50 

miles from a state border, respectively – and the full sample of schools. In Table B4 our findings are 

substantively maintained. In Table B5, the results are consistent with our main findings for the 20- and 50-

mile subsamples (note that while the negative coefficients on the quadratic terms are larger than on the first-

order terms in absolute value, the distance variables are divided by 100, which more than offsets the coefficient 

gaps near boundaries) but disappear in the full sample. We attribute the latter result to the imposition of a 

strict functional form across a wide range of distances. We also note that as we expand the sample further and 

further from the border, relatively more of the identifying variation comes from schools far away, between 

which we do not expect true differentiation in this regard (e.g., there is not a strong rationale for differential 

achievement effects at 60 versus 70 miles from a boundary). 

Table B6 shows results analogous to what we show in Table 4 in the main text, but without the 

quadratic terms for local-area FTE. The results are directionally similar to what we show in the main text with 

the quadratic terms are included. 

Finally, in Table B7 we show results from regressions weighted by schools’ student enrollment levels 

and teacher FTEs. Solon, Haider and Wooldridge (2015) mention the usefulness of the presenting both 

weighted and unweighted estimates because they have different probability limits in the case of endogenous 

sampling or model misspecification. The estimates in Table B7 are substantially similar to our main findings. 
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Table B1: Robustness Results, Estimated Using Different Measures of the Intensity of Boundary Exposure, Ratio 
Model Using 10-mile Radius. 
  (1) (2) (3) (4) (5) (6) 

 
 FTE in Schools with 
Overlapping Grade 

 
FTE in Schools  

with Similar FRL Percent 
School Enrollment 

  
 Grade 8 Scaled Scores 

VARIABLES Math Reading Math Reading Math Reading 
            

Out-of-State 
Percent ≥ 25 -0.0932* -0.0596 -0.0522 -0.0016 -0.0864** -0.0388 

 [-0.172,-0.017] [-0.123,0.000] [-0.116,0.007] [-0.058,0.054] [-0.151,-0.024] [-0.089,0.011] 
0<Out-of-State 

Percent<25 -0.0155 -0.0072 0.0040 0.0040 -0.0172 -0.0068 
 [-0.097,0.061] [-0.050,0.039] [-0.063,0.068] [-0.035,0.044] [-0.079,0.042] [-0.042,0.032] 
       

Covariates X X X X X X 
State Fixed 
Effects X X X X X X 
R-squared 0.4773 0.5896 0.4770 0.5894 0.4773 0.5895 
Observations 11,686 13,286 11,686 13,286 11,686 13,286 
Notes: The “FTE in Schools with Overlapping Grade” measure uses FTE only in local schools that share an overlapping grade with the 
reference school. The “FTE in Schools with Similar FRL Percent” measure uses FTE only in local schools that have a similar share of 
free/reduced-price lunch eligible students to the reference school (i.e., +/- 20 percent). The “School Enrollment” measure uses school 
enrollment in local schools instead of FTE to capture boundary exposure. Standard errors are clustered at the state level; statistical 
significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table B2: Robustness Results, Estimated Using a Restricted Control Group of Non-Boundary 
Schools Without Any Out-of-State FTE within a 20-mile Radius, Ratio Model Using 10-mile 
Radius.  
  (1) (2)   

     Grade 8 Scaled Score  
VARIABLES Math Reading   

     
Out-of-State Labor Market Percent ≥ 25 -0.1063** -0.0581*   

 [-0.189,-0.023] [-0.114,-0.004]   
0 < Out-of-State Labor Market Percent < 25 -0.0042 0.0148   

 [-0.073,0.069] [-0.023,0.054]   
     

Covariates X X   
State Fixed Effects X X   
R-squared 0.4795 0.5903   
Observations (schools) 10,156 11,791   
Notes: The sample sizes in this table are smaller than in Table 3 because the restricted control group is limited to 
schools that have zero out-of-state FTE within the 20-mile radius. Standard errors are clustered at the state level; 
statistical significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by 
Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table B3: Robustness Results, Estimated Using a Measure of Boundary Exposure with Own School 
FTE in the Denominator, Ratio Model Using 10-mile Radius.  
  (1) (2)   

     Grade 8 Scaled Score  
VARIABLES Math Reading   

     
Out-of-State Labor Market Percent ≥ 25 -0.0886* -0.0476   

 [-0.168,-0.007] [-0.111,0.013]   
0 < Out-of-State Labor Market Percent < 25 -0.0252 -0.0069   

 [-0.089,0.032] [-0.043,0.030]   
     

Covariates X X   
State Fixed Effects X X   
R-squared 0.4773 0.5895   
Observations (schools) 11,686 13,286   
Notes: The local-area labor market percent is calculated with the reference school’s FTE in the denominator. Standard 
errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster 
bootstrap-t procedure as described by Cameron et al. (2008).   
*** p<0.01, ** p<0.05, * p<0.1 
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Table B4: Robustness Results, Estimated with Linear and Quadratic Controls for the Out-of-State 
FTE Share Using 10-mile Radius.  
  (1) (2)   

     Grade 8 Scaled Score  
VARIABLES Math Reading   

     
Out-of-State Labor Market Percent -0.0031* -0.0017   

 [-0.007,0.000] [-0.005,0.001]   
(Out-of-State Labor Market Percent)2 0.0000 0.0000   

 [-0.000,0.000] [-0.000,0.000]   
     

Covariates X X   
State Fixed Effects X X   
R-squared 0.4772 0.5895   
Observations (schools) 11,686 13,286   
Notes: The local-area labor market percent is calculated with the reference school’s FTE in the denominator. Standard 
errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster 
bootstrap-t procedure as described by Cameron et al. (2008).   
*** p<0.01, ** p<0.05, * p<0.1 
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Table B5: Robustness Results, Estimated with Linear and Quadratic Controls for the Distance to a Nearest State 
Boundary (in miles), Irrespective of Local Area FTE. 
  (1) (2) (3) (4) (5) (6) 

 Grade 8 Scaled Scores Math Grade 8 Scaled Scores Reading 
 Subsample by distance to a closest border 

VARIABLES ≤ 20 ≤ 50 All ≤ 20 ≤ 50 All 
            
Distance to a State 

Border/100 2.0451*** 0.5451 -0.0373 0.6225 0.3110 -0.1114 
 [0.583,3.470] [-0.085,1.174] [-0.142,0.072] [-0.825,2.034] [-0.188,0.825] [-0.2083,-0.008] 

(Distance to a 
State Border/100)2 -7.381** -1.3183* 0.005 -1.7285 -0.9457 0.0418 

 [-14.09,-0.487] [-2.638,-0.031] [-0.019,0.028] [-7.985,4.976] [-2.030,0.114] [-0.006,0.089] 
       

Covariates X X X X X X 
State Fixed Effects X X X X X X 
R-squared 0.5247 0.4968 0.4771 0.6231 0.6070 0.5903 
Observations 3,589 6,678 11,686 3,517 6,574 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster bootstrap-t 
procedure as described by Cameron et al. (2008). 
*** p<0.01, ** p<0.05, * p<0.1 
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Table B6: Robustness Results, Estimated with Linear Controls, Count Model.  
  (1) (2) (3) (4) (5) (6) (7) (8) 
 10-mile radius 20-mile radius 
VARIABLES Math Math Reading Reading Math Math Reading Reading 
              
Total FTE/1000 0.0067 0.0135** 0.0095 0.0171*** 0.0029** 0.0043 0.0040 0.0057*** 

 [0.000,0.013] [0.006,0.022] [0.002,0.017] [0.010,0.024] [0.001,0.005] [0.001,0.008] [0.002,0.006] [0.003,0.008] 
Out-of-State 
FTE/1000  -0.0140**  -0.0185***  -0.0032  -0.0045** 

  [-0.022,-0.07]  [-0.027,-0.010]  [-0.007,0.001]  [-0.008,-0.001] 

         
Covariates X X X X X X X X 
State Fixed Effects X X X X X X X X 
R-squared 0.4833 0.4838 0.5952 0.5962 0.4796 0.4796 0.5931 0.5934 
Observations 
(schools) 11,686 11,686 13,286 13,286 11,686 11,686 13,286 13,286 
Notes: Standard errors are clustered at the state level; statistical significance and confidence intervals are based on the wild cluster bootstrap-t procedure as described by Cameron et al. 
(2008).  
*** p<0.01, ** p<0.05, * p<0.1 
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Table B7: Robustness Results, Estimated Boundary Effects on Grade 8 Scaled Scores Weighted by 
FTE or Enrollment, Ratio Model Using 10-mile Radius. 
  (1) (2) (3) (4) 
 Weighted by FTE Weighted by Enrollment 
 Grade 8 Scaled Score 
VARIABLES Math Reading Math Reading 
          

Out-of-State Labor Market Percent ≥ 25 -0.0743** -0.0434 -0.0667* -0.0310 

 (0.0323) (0.0274) (0.0354) (0.0261) 
0 < Out-of-State Labor Market Percent < 25 0.0104 0.0168 0.0076 0.0140 

 (0.0338) (0.0223) (0.0373) (0.0250) 
     

Covariates X X X X 
State Fixed Effects X X X X 
R-squared 0.5480 0.6676 0.5505 0.6788 
Observations (schools) 11,686 13,285 11,686 13,286 
Notes: Standard errors are clustered at the state level using the standard clustering procedure because the wild cluster 
bootstrap-t procedure cannot handle weighting.  
*** p<0.01, ** p<0.05, * p<0.1 

 
 
 


