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ABSTRACT
In contrast to simple feedback, which provides students with
the correct answer, elaborated feedback provides an explana-
tion of the correct answer with respect to the student’s error.
Elaborated feedback is thus a challenge for AI in education
systems because it requires dynamic explanations, which tradi-
tionally require logical reasoning and knowledge engineering
to generate. This study presents an alternative approach that
formulates elaborated feedback in terms of long-form ques-
tion answering (LFQA). An off-the-shelf LFQA system was
evaluated by human raters in a 2x2x2x2 ablation design that
manipulated the context documents given to the LFQA model
and the post-processing of model output. Results indicate
that context manipulations improve performance but that post-
processing can have detrimental results.
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INTRODUCTION
Feedback is an educational practice that is both commonplace
and extraordinarily complex. While naively one might as-
sume that feedback is always beneficial for learning, various
meta-analyses have shown that, depending on the conditions,
feedback can be detrimental [2, 25, 10]. A prominent exam-
ple of detrimental feedback in computer-based instruction is
“hint abuse" [1], whereby students continue to request hints
until they are given the correct answer. This particular detri-
mental effect was known in the feedback literature decades
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earlier, where it was called a presearch availability effect be-
cause students can locate and copy answers without reading
or searching through the learning material [27, 2].

Feedback effects are complex because virtually any pedagogi-
cal goal can use feedback as a vehicle, though its proximity
to student errors makes some pedagogical goals more salient
than others. Models of feedback have attempted to capture this
generality by categorizing feedback ranging from the proxi-
mal (task-level) to the more distal (self) [25, 21], such that
while the timing of feedback may be contingent on a student’s
correct or incorrect response, the informational content of feed-
back may go beyond correctness and include an explanation
of the error, metacognitive strategies for problem solving, or
reaffirming motivational statements related to performance. A
similar distinction has been made in human tutoring research,
which contrasts feedback in modes of scaffolding and high-
lighting. Scaffolding-driven feedback focuses on marking the
critical features that make the student answer incorrect [44],
whereas highlighting focuses on explaining how the student
made the error and how to avoid it in the future [6].

Feedback with additional information is typically called elab-
orated or explanatory feedback to contrast it with feedback
that tells correctness (right/wrong) or gives the student the
correct answer when they err. Several meta-analyses have
shown positive effects of elaborated feedback over these sim-
pler types of feedback [2, 10], establishing elaborated feed-
back as an important area in feedback research. This focus has
led to the inclusion of many different kinds of information in
elaborated feedback; correspondingly, taxonomies have been
proposed to capture variations in both the form and substance
of elaborated feedback. For example, Shute describes six
different subtypes of elaborated feedback: attribute isolation
of target concept/skill, topic contingent, response contingent,
hints/cues/prompts, bugs/misconceptions, and informative tu-
toring [41]. These subtypes may be considered as three under-
lying dimensions: content specificity (response, concept/skill,
or topic), feedback form (direct instruction, single hints, in-
teractive hints/tutoring), and content adaptation (domain level
or learner level; i.e. would any student making this particular
error get the same feedback, or is it adapted using the learner
model).

When considering elaborated feedback under these dimen-
sions, it is clear that providing such feedback can be chal-
lenging for computer-based instruction. While in some cases,
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elaborated feedback may be pre-authored manually with some
effort, in other cases elaborated feedback must be generated dy-
namically. For example, concept/skill- or topic-specific elabo-
rated feedback may be implemented with a limited number of
prepared remediation responses, minimally equal in number
to the concept/skills or topics being taught. Similarly, these re-
sponses can be converted into hint- and tutorial-dialogue form
with additional effort. In contrast, response-specific feedback
must be dynamic under the reasoning that there are more ways
to answer a question incorrectly than correctly. As a result,
pre-authored responses that are specific to student errors will
necessarily be incomplete, even at the domain level where the
feedback would be the same for different students. The situa-
tion is even more intractable for learner-level content adapta-
tion, where feedback depends on the bugs/misconceptions in
a learner model.

Because of these difficulties, many computer-based instruction
systems, including intelligent tutoring systems, have used
limited numbers of pre-authored feedback messages. The
buggy rule approach has been used in model-tracing tutors to
associate feedback with a limited number of predicted student
errors [26]. Complementarily, constraint-based tutors model
constraints that any solution must have and so can associate
feedback when students violate a constraint [33]. Perhaps the
most advanced tutoring system that has generated response-
specific feedback is BEETLE II [15]. BEETLE II uses symbolic
AI to dynamically generate natural language feedback in an
ongoing tutorial dialogue centered on a circuit simulator. To
generate elaborated feedback, BEETLE II maps student natural
language input into a logical representation and then diagnoses
any errors or missing information in that representation using
a knowledge base aligned with the state of the simulator (a
microworld). Based on the diagnosis, new tutorial dialogue is
generated that contains both simple feedback and elaborated
feedback in the form of hints and other problem-solving cues.

As impressive as symbolic, microworld-based systems like
BEETLE II are, it’s unclear that response-specific feedback can
be generated from such models over larger domains, because
of the intense effort required to logically model even a small
domain. Even with the assumption that existing logical repre-
sentations and reasoners are sufficient, one must still populate
a knowledge base with information, and assuming natural lan-
guage input/output, one must also convert natural language
to logic and back as needed to generate dynamic feedback.
Both populating large knowledge bases and converting natural
language to and from logic have proven extremely challenging.
Large manually-created knowledge bases like Cyc have been
in development for decades [28] and their value to AI is not
well established [13]. Large knowledge bases created from
semi-structured text like Wikipedia [4] are more widely used,
but they typically suffer from incompleteness [14]. Research
on addressing incompleteness has increasingly turned to graph-
embedding techniques, which project the knowledge base into
a latent space [34, 11]. Analogously, word embedding models
like BERT [12] have been used to improve the performance of
models that parse natural language into logical representations,
though even the best models have relatively weak connections

to an actual knowledge base [45, 7], which constrains their
usefulness for generating feedback.

In contrast, recent work that entirely skips knowledge base
creation and logical representations has shown great promise.
Knowledge-base-free advances include a single BERT-based
model that can achieve a B grade on the New York Regents
Science Exam at the 8th- and 12th-grade levels [9] and a
Transformer-based model that achieves state-of-the-art perfor-
mance on open-domain question answering tasks without ac-
cess to additional external knowledge sources [38]. This work
reflects an increasing convergence between language models,
knowledge bases, and question answering, such that prob-
lems in one have been shown as solvable in another [22, 29,
37]. These developments suggest the possibility that response-
specific feedback can be generated without a knowledge base
or logical representation.

Question answering, which takes natural language input as
query and returns natural language output, is of particular
interest because of its alignment with feedback’s output re-
quirements. Recent years have seen rapid advances in neural
question answering, including identifying the answer to a
question in a given paragraph [39], fusing information across
a given set of paragraphs to produce the answer [32], and
open-domain question answering which requires the system
to additionally find the documents [23, 20]. While generally
question answering focuses on factoid, Jeopardy!-style ques-
tions, recent work has focused on “why" and “how" questions,
e.g. “Why can’t we just print money to pay off our debt?",
that typically require a long-form paragraph answer instead
of a word or phrase [16]. This work has two properties that
suggest it might be suitable for domain-general, response-
specific feedback in computer-based learning environments.
First, it sources questions and their answers from the “Explain
Like I’m Five" Reddit forum (ELI5), whose rules require an-
swers to be full explanations accessible to laypeople. Second,
it is domain-general: not only is ELI5 domain-general but
the model also can be tuned to a domain without retraining
because it uses separate models for document retrieval and
answer generation (cf. [30]). The remainder of this paper
presents an approach to generating response-specific feedback
using ELI5-based long-form question answering, as well as
an ablation-style evaluation of design choices underlying this
approach.

APPROACH
To motivate our approach, consider the scenario presented in
Figure 1, in which a student gives an incorrect answer to a
cloze-style question in our target domain of anatomy and phys-
iology. The feedback contains three components: a statement
of correctness, the correct answer, and then an elaboration
that explains the relationship between the student’s incorrect
answer and the correct answer. The elaborated feedback can
be viewed as the answer to a synthetic question asking about
the relationship between the correct and incorrect answers.
From this perspective, elaborated feedback is the answer to
a question the student should have asked but didn’t. This is
the key intuition behind our approach of generating response-
specific feedback using long-form question answering. We can



Test Item The _________ at the distal end of the axon
is rich in mitochondria and contains many
tiny vesicles that store neurotransmitter.

Student
Answer

acetylcholine

Elaborated
Feedback

Acetylcholine is not right. The correct an-
swer is cytoplasm. Acetylcholine is synthe-
sized in the cytoplasm of nerve terminals by
the enzyme choline acetyltransferase, and
is then transported into synaptic vesicles.

Synthetic
Question

What is the relationship between acetyl-
choline and cytoplasm?

Figure 1. Student error and idealized feedback. The elaborated feed-
back component is highlighted and can be viewed as the answer to the
synthetic question below.

justify the longer feedback by assuming that in the moment of
error, the student potentially has three pieces of faulty knowl-
edge: understanding of the target concept, understanding of
the confused concept, and understanding the relationship be-
tween them. If understanding of these pieces of knowledge
were tracked in a learner model, a system could opt for simple
feedback when elaborated feedback wasn’t needed, or even
use a different synthetic question better suited to the student’s
knowledge state. However, in this paper, we only explore elab-
orated feedback without a learner model, i.e. at the domain
level.

To further explain our approach, consider the behavior of the
ELI5 model. The model has a retriever/reader structure (cf.
[23, 30]), such that the retriever and reader can be completely
separate models. The retriever’s goal is to find relevant doc-
uments, and the reader’s goal is to identify information in
those documents that is useful for answering the input ques-
tion. The relationship between the retriever and the reader
models is intuitively important, and one might assume that
the reader can’t answer questions without good documents
from the retriever. As previously discussed, however, language
models can be used for open-domain question answering with-
out external documents [38], which means that a great deal
of information is contained within the reader itself. To illus-
trate the retriever/reader relationship, we present a somewhat
humorous example in Figure 2 using the HuggingFace [43]
implementation of the ELI5 model, which is the reference
model we use for our experiments (for a tutorial on this model,
see https://yjernite.github.io/lfqa.html).

Although the answer is nonsense overall, it nevertheless repre-
sents nontrivial knowledge about the structure of a long-form
answer to a question. The answer contains both of the key
terms in the question, as well as the types of language about
similarities and differences that one might expect in the answer
to such a question. Most of the answer sentences mention the
key terms, with the exception of the highlighted sentences
which seem to be generic. With this example as a guide,
we identify three places where one could intervene on the
behavior of the model. First, one can strategically manipu-
late the documents returned by the retriever. This appears

Question What is the difference between a chicken
and a noodle?

Answer A chicken is a chicken. A noodle is a noo-
dle. They are the same thing. The differ-
ence is in the way they are shaped. Chicken
tenders and noodle noodles are different
shapes, but they are both the same size and
shape. Noodles and chicken tenders are dif-
ferent sizes and shapes.

Figure 2. Long-form answer returned by the reader model in the ab-
sence of support documents from the retriever model. Generic sentences
are highlighted.

to be relatively unexplored in open-domain question answer-
ing, where Wikipedia is commonly used for external knowl-
edge. In educational settings, however, one may consider
resources like a textbook, glossary, or other course-related
material as sources of relevant documents. Second, one can
train the reader to generate better answers. This could be
done by training a larger language model, but this would sac-
rifice the domain-independent benefit of having a relatively
low-knowledge reader. Similarly training the reader to a par-
ticular domain might improve performance for that domain
but sacrifice domain independence. Third, one can manipulate
the answer itself, i.e. engage in post-processing. Such post-
processing could take many forms, from correcting aspects of
the answer, filtering out aspects of the answer, or rejecting the
answer entirely.

In the present study, we focus on the first and third options,
manipulating the context documents and post-processing the
answer. Our rationale is twofold: our initial explorations
suggest that these are essential for obtaining good feedback,
and we expect long-form question answering to continue to
advance the state of the art along the second option, making
our work complementary and relevant when that occurs. Using
a handful of incorrect answers for test items like that shown in
Figure 1, we developed the following procedure for generating
feedback:

Algorithm 1: Response-Specific Elaborated Feedback
Function generate incorrectTerm correctTerm item

(1) Retrieve definitions k for key terms;
Create synthetic question q;
Retrieve documents dq using synthetic question;

(2) Filter documents that don’t contain both key terms
to obtain d f ;

(3) Construct a document list d containing k, item, d f ;
Perform long-form question answering with q and
d to obtain a;

(4) Resolve coreference in a and filter sentences in a
that don’t contain a key term to obtain a f ;

return a f
end

The numbered steps (1-4) of Algorithm 1 are aligned with the
first and third options mentioned above, with the following
rationales. Definitions could be helpful when the regularly



returned documents don’t contain basic information about
key terms. Filtering documents that don’t contain both terms
could be helpful given our synthetic question always calls for
an answer that describes how the key terms are related, and
documents that don’t contain both key terms are less likely
to have this information. Including the test item in the docu-
ments submitted for question answering could be useful for
providing a more specific context for the feedback, rather than
a generic one. While these steps are directly related to bending
the overall model towards providing pedagogically relevant
elaborated feedback, the final step, coreference plus sentence
filtering, is aimed at scrubbing generic sentences, like those
shown in Figure 2, from the final answer. The coreference
resolution component of this step is meant to allow sentences
that are clearly about the key terms yet use pronouns in their
original formulation. We considered keeping all resolutions
in the final answer but decided to keep the original text in
order to avoid introducing coreference resolution errors into
the answers. Because these numbered steps of Algorithm 1
are based on intuition and analysis of a small number of exam-
ples, we conducted an ablation-style evaluation of these steps
using expert human judges. Our primary research questions
are (1) how correct and informative is the elaborated feedback
under each condition and (2) how grammatical and fluent is
the elaborated feedback under each condition.

METHOD

Design
The evaluation study used a within-subjects design with abla-
tion of the four steps in Algorithm 1 as conditions, i.e. a 2 x 2
x 2 x 2 design where each step is either included or not. Con-
ditions were presented using a 16 x 16 balanced latin square
to counterbalance condition order and prevent carryover ef-
fects between conditions. However, the underlying context of
each elaborated feedback (i.e., the incorrect/correct answer)
was not counterbalanced. This design decision was made to
remove potential interactions between contexts and fatigue,
where participants might process contexts differently at the
beginning of the experiment versus the end. It also means that
in a fully-used latin square, a context in a particular location
would be paired with each condition, making fatigue effects
equivalent across conditions. The judgments were analyzed
using mixed-effects beta regression with random intercepts
for judge and context using the glmmTMB R package [5]. Beta
regression is appropriate for continuous bounded outcome
variables, unlike linear regression, which isn’t suitable for
bounded outcomes, and logistic regression, which can be used
for proportions, but only when the proportion is a ratio of two
counts [24]. Because beta regression is defined on the open
interval (0,1), we use a standard transformation to squeeze our
closed interval outcome variables to the open interval [42]. We
conducted statistical tests at α = .05 to address our research
questions.

Participants
Raters (N = 30) were recruited through the Amazon Mechani-
cal Turk (AMT) marketplace between January and February
of 2021, using the CloudResearch platform [31]. In this study,
raters were required to be native English speakers, or have

learned English before the age of 7, reside in the U.S., Canada,
New Zealand, United Kingdom, or Australia, have completed
at least an Associate Degree, and be employed as a nurse or
physician. The educational and occupational constraints were
selected to ensure that raters were experts in the evaluation
subject domain: they had passed anatomy and physiology in
their studies and used this knowledge on a daily basis. Demo-
graphic constraints are enforced by CloudResearch based on
rater responses to previous demographic surveys. Raters were
further required to have completed at least 100 previous AMT
tasks with at least a 95% approval rating. Raters were initially
paid $7. However, as the study progressed and the pool of
CloudResearch-qualified raters appeared to be exhausted, an
additional survey was conducted within AMT to recruit more
raters, and these raters were paid $10, with a sliding bonus
scale for passing quality checks: a $5 bonus for passing one
check, and an additional $20 bonus for passing both checks.

Materials
Authentic student errors were collected from college anatomy
and physiology (A&P) courses at a community college in Ten-
nessee, USA. Each error was in response to a cloze question
similar to that in Figure 1, generated from the course textbook
automatically [35, 36]. Errors were aggregated and counted
based on student incorrect answers for a target correct answer,
independent of cloze question, and the most frequent 80 errors
and their associated most frequent cloze items were selected
for the creation of elaborated feedback. Elaborated feedbacks
were created as described in Section 2 using the HuggingFace
Transformers library [43] and ELI5 model. Definitions were
obtained by first querying a machine-readable glossary from
the A&P textbook used in the courses [40]. If no definition
was found in the glossary, definition-like text was retrieved
from Wikipedia by first applying a wikifier [8] to the correctly
filled-in cloze item sentence in order to get Wikipedia page
ids for the key terms in the sentence. These page ids were then
used to query the corresponding Wikipedia pages for their
first paragraph of text, which was used as a proxy for a defini-
tion. Key term filtering was implemented using regular expres-
sions. Additional supporting documents were retrieved using
an Elasticsearch (https://www.elastic.co/elasticsearch/) in-
dex of the A&P textbook [40]. A maximum of three such
documents (post filtering) was used to control for search result
differences across student errors. Coreference resolution filter-
ing was implemented using AllenNLP’s implementation [18].
Using these resources, 80 elaborated feedbacks were created
for each of 16 conditions.

Sixteen surveys were created with Qualtrics, an online survey
tool, using a balanced latin square to define the order of con-
ditions. Because each row of the latin square only contains
16 orderings, each ordering was repeated 5 times in a survey.
In this way, each rater made judgments on each condition
5 times, with an interval of 16 between each repetition of a
condition. The same ordering of 80 error contexts was used in
each survey; only the condition applied to each position of the
ordering varied across surveys. Each context was formatted on
a single survey page using the direct assessment methodology
[19, 17]. An example survey page is shown in Figure 3. The
student incorrect answer and correct answer were formatted



Figure 3. Survey page illustrating the rating task for one error context.
The elaborated feedback was generated using all steps from Algorithm 1.

above the elaborated feedback to allow for easy comparison,
followed by two questions with slider-format response on a 0-
100 scale. The first was a meaning-assessment question, “The
explanation is correct and informative," and was anchored
by 0% on the left and 100% on the right. The second was a
fluency-assessment question, “The explanation is grammatical
and fluent", and was again anchored by 0% and 100%. The
decision to use percentages as anchors was made during pi-
loting when raters expressed confusion in making judgments
for multiple sentences at once, where some might be perfect
and others problematic. The sliders had no numeric indicators
and were initialized at the midpoint. The percentage anchors
were used to help raters focus on making a judgment involv-
ing all of the sentences rather than a single sentence. Both
the percentage anchors and the meanings of the scales were
explained in instructions at the beginning of the survey.

Following the direct assessment methodology, control pairs
were created to evaluate the internal reliability of each rater,
adding an additional 20 pages to each survey for a total of
100 pages [17, 19, 3]. Control pairs were created by copy-
ing an existing error context (a survey page) and then de-
grading the elaborated feedback on that page. A two-step
process was used to degrade elaborated feedback. First, we
mapped the span deletion rules proposed by [19] for ma-
chine translation into a simple linear regression formula,
spanlength = 0.21696∗wordcount +0.78698. Degraded elabo-
rated feedbacks were created by deleting a random span of
spanlength words, rounded down. Because the deleted span is
contiguous, as wordcount increases, words at the beginning/end
of the elaborated feedback are less likely to be deleted, and
words towards the interior are more likely to be deleted. In
piloting we found, however, that such deletions could be very
subtle in a paragraph of several sentences on the same general
topic, in contrast to the single-sentence translation tasks for
which they were developed. Therefore we developed a new

text-degradation approach that we call split-sentence derange-
ment that proceeds as follows. First, an interior word boundary
is randomly selected for each sentence, and each sentence is
split into a two strings occurring before that point and after
that point, forming a pair. Next, the pairs are deranged, i.e.
permuted such that all original pairings are broken, and the
deranged pairs are recombined to form degraded sentences.
Finally, the degraded sentences are shuffled to create a new
sentence ordering. We used the split-sentence derangement
approach for all degraded elaborated feedbacks except those
comprised of a single sentence, for which we used the span
deletion approach. An example split-sentence derangement
for the elaborated feedback in Figure 3 is:

The takes the food through the digestive tract and breaks
it down into small water-soluble molecules that can be
absorbed into the blood stream. The digestive system is
the system that digestive tract is the part of the digestive
system that goes from the mouth to the anus.

Each survey of 100 pages contained 80 distinct pages and 20
degraded versions of distinct pages. We refer to a distinct page
and its degraded version as a control pair. These numbers
were chosen because they represent the sample size needed to
detect a large (.8 SD) effect using a Wilcoxon signed-ranks
test for matched pairs at α = .05 and .95 power on a one-
tailed test. If we do not detect a large effect between ratings
of elaborated feedbacks and their degraded versions, we infer
the rater is not reliable. The degraded pages were in the
same randomly assigned positions in each survey and were
evenly distanced from their matched distinct pages, modulo
50. This ensured that pages in control pairs had 50 other
items between them, making it less likely that raters would
remember their rating on a previous item. Because of the
complexity of the survey design and their length, a Qualtrics
export file was reverse engineered and the survey items were
programmatically generated and imported into Qualtrics.

We additionally developed an occupation survey to help us find
more qualified raters. The occupation survey consisted of two
questions, a generic occupation question from the standard
Qualtrics demographics library, and a conditional branch ques-
tion that only appeared if a respondent selected healthcare
on the first question. The conditional branch question asked
for a more specific healthcare occupation, with options in-
cluding certified nursing positions and physician positions
matching our original recruiting criteria. This indirect ap-
proach to asking about specific healthcare occupations was
designed to avoid demand characteristics (i.e., false responses)
from asking such questions directly.

Procedure
The survey was initially piloted to better assess the amount of
time required for completion, the number of raters passing the
meaning and fluency control checks (i.e., intra-rater reliability
using the control pairs), and the agreement amongst raters
(inter-rater reliability). Piloting suggested that the span dele-
tion approach was insufficient for creating degraded items for
paragraph-length text, leading to a redesign of the degraded
items using split-sentence derangement.



Survey Meaning Fluency

α n α n

1 .940 4 .835 4
2 .979 3 .965 5
3 .957 3 .980 6
4 .981 3 .954 4
5 .901 2 .946 3
6 .985 2 .932 3
7 .837 2 .932 2

Table 1. Inter-rater reliability per survey for included raters.

Two waves of surveys followed piloting. In the first wave,
successive surveys were released serially with a cap of 4
raters; however, this cap was increased as needed to ensure
that at least 3 raters per survey and per measure passed control
checks. However, during the third survey, it became clear that
there were either not enough qualified raters to recruit in the
CloudResearch pool or that the monetary incentive was not
enough to attract all available qualified raters. Therefore we
used the occupation survey to find an additional 19 qualified
raters out of 603 respondents. In the second wave, we invited
these raters in addition to the existing CloudResearch pool.
We also changed the incentives for the task, as previously
described, and further changed the instructions of the task to
encourage participants to use reference materials as needed
during the task. Finally, we relaxed the requirement to have 3
raters per survey to 2 raters per survey, the minimum needed
to calculate inter-rater reliability.

In all waves, raters discovered the surveys through AMT and
completed the surveys using Qualtrics. Because the study is a
system evaluation and not human subjects research, informed
consent was not obtained. Raters saw the instructions for the
survey twice, once as a preview on AMT before undertaking
the survey, and again once they clicked on the survey link.
On each following page, raters read a student incorrect an-
swer, a correct answer, and an elaborated feedback as shown
in Figure 3 and then completed the corresponding rating of
meaning and rating of fluency. Raters were paid upon comple-
tion of the survey, and in the second wave, received bonuses
on confirmation they had passed control checks for meaning
and fluency.

RESULTS AND DISCUSSION
Even with these changes between the first and second waves of
surveys, we were only able to attract enough raters to complete
7 rows of the latin square. Median completion time across
surveys was 62 minutes, giving approximately 37 seconds to
read the error context and paraphrase and then make meaning
and fluency judgments. Although 30 raters completed surveys,
only a subset successfully passed control checks for meaning
(n = 19) and fluency (n = 27). Control checks were consid-
ered to be passed if p < .05 on the aforementioned Wilcoxon
signed-ranks test. Cronbach’s alpha was calculated for raters
passing control checks in each survey and was high overall
(α > .8) Table 1 shows the number of included raters and their
inter-rater reliability per survey; all other raters were excluded
from further analysis.

Our first research question is how correct and informative the
elaborated feedback is under each condition (meaning rating).
Table 2 shows the mean meaning rating for each condition.
The first row of the table is the baseline system with none
of the four steps in Algorithm 1. We can immediately see
that multiple conditions are below the baseline, indicating that
some of the steps are negatively impacting meaning ratings. In
particular, the conditions on the next three rows, which include
key term filtering, coreference filtering, or both, are below
baseline, suggesting that these steps may be detrimental to
performance. The best performing condition is the definition-
only condition, whose meaning rating is approximately 20%
above the baseline.

To answer our first research question, we ran a mixed-effects
beta regression with random intercepts for judge and context.
The model did not include interaction terms because we are
interested in the additive effect of each step. The beta regres-
sion revealed significant effects for all four steps on ratings
of meaning. Conditions including definition documents had
significantly higher meaning ratings (M = 61.01, SE = 1.18)
than conditions without definition documents (M = 50.95,
SE = 1.22), β = .50, z = 7.50, p < .001. Though to a lesser
extent, conditions including cloze documents also had signif-
icantly higher meaning ratings (M = 58.08, SE = 1.18) than
conditions without them (M = 53.89, SE = 1.24), β = .17,
z = 2.67, p = .007. In contrast, conditions with key term fil-
tering had significantly lower meaning ratings (M = 51.71,
SE = 1.24) than those without (M = 60.26, SE = 1.17),
β = −.43, z = −6.77, p < .001. Though to a lesser extent,
conditions including coreference filtering also had signifi-
cantly lower meaning ratings (M = 53.95, SE = 1.24) than
those without (M = 58.02, SE = 1.17), β = −.16, z = 2.50,
p = .013. Notably, the steps that significantly increased mean-
ing ratings both involved giving additional documents to the
reader that the retriever would not otherwise provide, and the
steps that significantly decreased meaning ratings either re-
moved documents the retriever provided or edited the answer
post hoc.

Our second research question is how grammatical and fluent
the elaborated feedback is under each condition (fluency rat-
ing). Table 3 shows the mean fluency rating for each condition.
The first row of the table is the baseline system with none of
the four steps in Algorithm 1. The baseline is approximately
30% higher than the meaning baseline. This suggests the flu-
ency baseline is a relatively strong baseline and might explain
why eleven conditions are below it. Notably, many of the
conditions that are below baseline include key term filtering.
The best performing condition again is the definition-only
condition, but it is only about 3% above the baseline.

To answer our second research question, we ran a mixed-
effects beta regression with random intercepts for judge and
context, again only including model terms for main effects.
The beta regression revealed significant effects for only two
steps on ratings of fluency. Conditions including definition
documents had significantly higher fluency ratings (M = 71.74,
SE = 1.02) than conditions without definition documents
(M = 66.79, SE = 1.09), β = .20, z = 3.23, p = .001. In con-



Definition
documents

Cloze
document

Key term
filter

Coreference
filter

M

. . . . 56.73

. . . 52.16

. . . 48.29

. . 34.99

. . . 59.31

. . 55.40

. . 49.16

. 51.57
. . . 68.22
. . 61.28
. . 55.23
. 54.19

. . 65.80

. 63.19
. 61.42

58.79
Table 2. Mean meaning rating for each condition.

Definition
documents

Cloze
document

Key term
filter

Coreference
filter

M

. . . . 74.26

. . . 71.99

. . . 60.89

. . 59.84

. . . 70.33

. . 73.88

. . 57.59

. 65.49
. . . 76.31
. . 75.79
. . 64.43
. 66.56

. . 74.36

. 74.32
. 69.27

72.93
Table 3. Mean fluency rating for each condition.

trast, conditions with key term filtering had significantly lower
fluency ratings (M = 64.63, SE = 1.15) than those without
(M = 73.90, SE = .93), β = −.41, z = −6.69, p < .001. As
with the meaning ratings, the step that significantly increased
fluency ratings gave additional documents to the reader, and
the step that significantly decreased fluency ratings removed
documents from the retriever.

Our strongest findings were that adding definition documents
to the document set given to the reader improved both meaning
and fluency ratings and that filtering out documents returned
by the retriever without both key terms harmed both meaning
and fluency ratings. The positive effect of adding definitions
was expected: definitions provide high-quality information at
a relatively basic level consistent with elaborated feedback.
The finding of a positive effect over the documents already
returned by the retriever suggests that such information is not
occurring in the main body of the textbook. The negative
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Figure 4. Density plot for ratings with indicated medians in the best-
performing definition condition.

effect of filtering documents using key terms was unexpected
because it too was aimed at improving the overall quality of
documents input to the reader. The finding of a negative effect
suggests either that the reader performs better with a breadth
of input documents or that the key term filter may be reducing
the documents available to the reader below a critical threshold
necessary for good performance (cf. Figure 2).

The relatively weak and sometimes null effects of adding the
cloze document and the coreference filter were also surprising.
Perhaps the cloze document, which contributes item-specific
context to the elaborated feedback, is less important to mean-
ing ratings because the errors students make tend to go outside
the item context, i.e., are basic errors. This explanation is
consistent with the positive effect of definitions, which are
context-free. The negative effect on meaning of filtering an-
swer sentences that don’t contain coreference-resolved key
terms is perhaps best explained by it being an overly aggres-
sive criterion that removes sentences that positively contribute
to meaning. It could be that removing such sentences is a
result of coreference resolution’s failure to correctly resolve
referents to key terms (false negatives), or it could indicate
that sentences not containing key terms are contributing more
to positive meaning ratings than anticipated, e.g., by providing
background information.

The overall rating performance of the best system, which
added only the definition documents to the baseline system, is
shown in Figure 4. The median ratings are quite high, with a
median rating of 75 for meaning and a median rating of 82 for
fluency. However, the relatively long tail of ratings suggests
many opportunities remain to improve overall performance.

CONCLUSION
We have proposed a new approach to generating response-
specific elaborated feedback using long-form neural question
answering and evaluated several approaches to improving the



quality of the feedback. Results from the evaluation study
suggest that including definition information in the documents
submitted to the reader model is important for improving
results and that filtering documents submitted to the reader
model can lead to worse performance. Because our approach
can be applied to any textbook, this work has potentially broad
implications for scaling up elaborated feedback for computer-
based instruction. This approach could be used both for dy-
namic generation of feedback in a real-time system or to create
draft feedback for manual review and correction by a domain
expert, potentially reducing authoring effort.

Our study has several limitations. First, we were unable to
complete our latin square design, so while it is not clear how
condition order might have affected our results, it is still pos-
sible that some of our effects are confounded with condition
order. Second, our evaluation was conducted with only one
textbook on a single topic, anatomy and physiology. It may
be that these results do not generalize well to other domains;
investigating this question should be a fruitful target for future
research.
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