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Abstract 

In this chapter, we provide an overview of the design, data-collection, and data-analysis 

efforts for a digital learning and assessment environment for scientific inquiry / science 

practices called Inq-ITS (Inquiry Intelligent Tutoring System; www.inqits.org). We first 

present a brief literature review on current science standards, learning sciences research 

on students’ difficulties with scientific inquiry practices, and modern assessment design 

frameworks. We then describe how we used pilot data from four case studies with hands-

on inquiry tasks for middle school students to better understand these difficulties and 

design various components of the Inq-ITS system to support students’ inquiry 

accordingly. Lastly, we describe how we used key computational techniques from 

knowledge-engineering and educational data mining to analyze data from students’ log 

files in this environment to (1) automatically score students’ inquiry skills, (2) provide 

teachers with fine-grained, rich, classroom-based formative assessment data on these 

practices, and (3) react in real time to scaffold students as they engage in inquiry.  

 
Key words: Digital assessment environment, scientific inquiry practice, Inq-ITS, 
intelligent tutoring system, educational data mining.  
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Digital Assessment Environments for Scientific Inquiry Practices 

Despite the billions of dollars spent on education every year in the U.S., the 

expenditures do not result in superior test results for American students (Hanushek, 

2005). Specifically, American students continue to underperform in science compared to 

other developed countries. For example, in 2013, the United States ranked 21st 

worldwide on a key educational survey called the Program for International Student 

Assessment (PISA; Organization for Economic Co-operation and Development, 2014). 

There are a few reasons contributing to the poor test scores of American students on 

international comparisons of science competency such as PISA.  

First, the current public school system was modeled on factories with a “one-size 

fits all” approach to teaching (Christensen, Horn, & Johnson, 2008). This approach does 

not recognize the various dimensions on which students differ, including but not limited 

to: prior content knowledge, skills to conduct science inquiry, epistemological 

understanding of science, and engagement and/or motivation for science learning, all of 

which influence school performance.  

Second, standardized tests, which typically use multiple-choice and fill-in-the-

blank items that tap rote science “facts” as a measure of science content knowledge are 

not measuring the knowledge and competencies proposed by national frameworks such 

as the Next Generation Science Standards (NGSS; NGSS Lead States 2013). Key 

competencies required by the NGSS include, for example, asking questions, planning and 

carrying out experiments, analyzing and interpreting data, warranting claims with 

evidence, and communicating findings (Clarke-Midura, et al., 2011; deBoer et al., 2008; 

Haertel, Lash, Javitz, & Quellmalz, 2006; Quellmalz & Haertel, 2004; Quellmalz, 

Kreikmeier, DeBarger, & Haertel, 2007).  

The standardized, multiple choice tests developed years ago are no longer 

sufficient as a measure of 21st century skills and knowledge as described in the NGSS, 

which include process skills for ‘doing science’ (i.e., science practices) as critical aspects 

of science literacy (Perkins, 1986) so that people can apply and transfer their knowledge 

in flexible ways (NGSS Lead States, 2013). That is, these tests do not provide basic 

information about higher-order thinking in science such as students’ processes and 

reasoning (Leighton & Gierl, 2011). As discussed elsewhere (Gobert et al., 2013), the 
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limitations of these multiple choice tests are in part an artifact of a simplified 

conceptualization of what constituted science understanding at the time these 

accountability tests were designed (diCerbo & Behrens 2012; Mislevy et al., 2012). 

A third but related barrier to cultivating scientifically literate students is the lack 

of systems that can provide individualized, real time scaffolding of students’ science 

practices. From multiple choice tests designed for accountability purposes, educators 

cannot know who needs help and, as a result, any kind of feedback to students that is 

needed for deep learning from these tests is given too late to be formative - typically 

months after the school year has ended. As a result, many students struggle in silence as 

confirmed by prior literature and consistent data showing poor motivation for and 

disengagement from science learning (see, e.g., Gobert, Baker, & Wixon, 2015). 

Moreover, due to the fact that science inquiry is an ill-defined task, there are a myriad of 

ways in which students conduct inquiry, both when they are on the “right” track and 

when they are not (Kuhn, 2005). Although progress on real time systems for well-defined 

domains like math and computer science has been made (cf., Koedinger & Corbett, 2006; 

Corbett & Anderson, 1995), there are few to no systems that adapt to individual learners 

as they conduct science inquiry. 

These assessment challenges and needs for adaptive instruction have led to the 

development of new technology-centered measurement paradigms for science education 

(see Timms, Clements, Gobert, Ketelhut, Lester, Reese, & Wiebe, 2012). At present, key 

organizations such as the National Center for Education Statistics that is responsible for 

the National Assessment of Educational Progress (NCES, 2011), the Organisation for 

Economic Co-operation and Development that is responsible for PISA (OECD, 2014), 

the National Educational Technology Plan, and the National Research Council (NRC, 

2011) all acknowledge the benefits and potential of technology-based systems for the 

assessment of science inquiry (see chapter by Oranje, this volume). Computer-based 

environments like the one that we describe in this chapter along with others (see, e.g., 

Quellmalz et al, 2012; Ketelhut & Dede, 2006; Clarke et al, 2012; Leeman-Munk, Wiebe, 

& Lester, 2013; Timms, et al., 2012) are providing new possibilities for assessing science 

and are now being considered as alternatives to traditional assessments of inquiry 
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(Behrens, 2009; Gobert et al., 2012, 2013; Pellegrino, Chudowski, & Glaser, 2001; 

Quellmalz et al., 2009). 

In the following, we provide an overview of the design, data-collection, and data-

analysis efforts for our digital assessment environment for scientific inquiry / science 

practices called Inq-ITS (Inquiry Intelligent Tutoring System; www.inqits.org).  

Inq-ITS is an example of a system that was designed and instrumented to generate 

assessments of students’ science practices as they engage in rich, authentic inquiry tasks. 

Inq-ITS was explicitly designed to prioritize the assessment of inquiry rather than the 

learning of science, which many other curriculum-focused inquiry systems emphasize 

(cf., Linn & Hsi, 2000). Our work builds on the inquiry and assessment research of others 

and forges new ground for inquiry assessment and scaffolding of science with its 

application of data mining techniques (Gobert et al, 2013). 

We have organized this chapter into three main sections as follows. In the first 

section we review key literatures on science learning policy, students’ difficulties with 

science inquiry, and assessment design to provide a background for the design of the Inq-

ITS system. In the second section, we describe how we used pilot data from four case 

studies with hands-on inquiry tasks for middle school students to better understand these 

difficulties and design various components of the Inq-ITS system to support students’ 

inquiry accordingly. In the third section, we describe how we used key computational 

techniques from knowledge-engineering and educational data mining to analyze data 

from students’ log files to (1) automatically score students’ inquiry skills, (2) provide 

teachers with fine-grained, rich, classroom-based formative assessment data on these 

practices, and (3) react in real time to scaffold students as they engage in inquiry.  

Foundations for the Design of the Inq-ITS System 

NGSS 

The NGSS, as the National Research Council’s new framework for K-12 Science 

Education, emphasize content learning as well as inquiry practices, as did its predecessors 

(see NSES, 1996). However, in the newest framework greater emphasis is placed on the 

rich integration of authentic practices in science with disciplinary content knowledge so 

that students will possess well-honed learning strategies that can be transferred in more 

flexible ways. These inquiry practices are:  
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1. Asking questions (for science) and defining problems (for engineering)  

2. Developing and using models 

3. Planning and carrying out investigations 

4. Analyzing and interpreting data 

5. Using mathematics and computational thinking 

6. Constructing explanations (for science) and designing solutions (for engineering) 

7. Engaging in argument from evidence, and 

8. Obtaining, evaluating, and communicating information 

 

The NGSS also prescribe that American middle school students develop content 

understanding of topics as shown in Table 1.  

 

[INSERT TABLE 1 ABOUT HERE] 

 

Finally, the NGSS also describe six cross-cutting science concepts: 

 

1. Cause and effect 

2. Scale, proportion, and quantity 

3. Systems and system models 

4. Energy and matter 

5. Structure and function, and 

6. Stability and change. 

 

Given the importance placed on rich science inquiry practices that are aligned to the 

needs of the 21st century and the poor performance in science by American students in 

studies such as PISA, there follows a need for better assessments that can provide more 

fine-grained data about ‘how’ students are learning (or ‘not’ learning, as appears to be the 

case for many students).  

Learning Sciences 
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 Models for learning. There were several related bodies of literature that we drew 

on in the design of our system specifically. Briefly, the main literature includes: causal 

models (White & Frederiksen, 1990; Schauble et al, 1991; Raghavan & Glaser, 1995), 

visualization generation and comprehension (Gobert, 1994; Gobert & Frederiksen, 1988; 

Gobert, 2005; Kindfield, 1993; Larkin & Simon, 1987; Lowe, 1989), mental models 

(Gentner & Stevens, 1983; Johnson-Laird, 1983) and model-based learning (Gobert & 

Buckley, 2000; Harrison & Treagust, 2000), as well as the vast body of literature on 

students’ alternative conceptions (Pfundt & Duit, 1988; Driver, 1983) and difficulties 

with inquiry (cf., Kuhn, 2005). 

Most relevant to the theoretical framework that undergirds our system is how 

people learn with rich visual representations, specifically model-based learning; see 

Figure 1 for a graphical representation of this framework. The design of our system, its 

scaffolds, and other assessment components, are based on model-based teaching and 

learning (Gilbert, J. 1993; Gilbert, S., 1991; Gobert & Buckley, 2000). This, in turn, 

prescribed the design of the interface as well as the design of the tools and widgets in 

Inq-ITS, which we describe further below.  

[INSERT FIGURE 1 ABOUT HERE] 

Briefly, model-based learning (Clement, Brown, & Zietsman, 1989; Gobert & 

Buckley, 2000; Gobert & Clement, 1999; Harrison & Treagust, 2000) is a theory of 

science learning that integrates basic research in cognitive psychology and science 

education. The tenets of model-based learning are based on the presupposition that deep 

understanding requires the construction of mental models of the phenomena under study, 

and that all subsequent problem-solving, inference making, or reasoning are done by 

“running” and manipulating these mental models (Johnson-Laird, 1983). We view mental 

models as internal cognitive representations used in reasoning (Brewer, 1987; Rouse & 

Morris, 1986); thus, we define model-based learning as a dynamic, recursive process of 

learning by constructing mental models of the phenomenon under study. It involves the 

formation, testing, and subsequent reinforcement, revision, or rejection of those mental 

models (Gobert & Buckley, 2000; Clement, 1993; Stewart & Hafner, 1991). This is 

analogous to hypothesis development and testing seen among scientists (Clement, 1989) 

and also, we argue, a form of reasoning used in conducting inquiry.  
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 In our theoretical framework, we also use D. Norman’s contemporary definition 

of an affordance (Norman, 1983). That is, the ways in which one learns from a visual 

representation (i.e., constructs a mental model) and the features that the microworld 

affords the learner are dependent on the learner’s knowledge, skills, predispositions, and 

other characteristics. This is a more contemporary interpretation of the original use of the 

term affordance by the perceptual psychologist J.J. Gibson, who claimed that an 

affordance of a representation (or object) is independent of the user’s knowledge, skills, 

predispositions, and other characteristics (Gibson, 1977). Thus, the prior knowledge, 

epistemological frameworks, inquiry skills, and other variables related to the learner that 

s/he brings to bear when engaging in inquiry with the representation will play a role in 

the nature of the resulting mental model (Gentner & Stevens, 1983; Johnson-Laird, 

1983).  

The notion of what features provide affordances and for whom affected both our 

interface and scaffolding design. That is, since many students lack the necessary domain 

knowledge to guide their search processes through diagrams/models during learning 

(Lowe, 1989; Gobert, 1994; Gobert & Clement, 1999), our system and its scaffolds need 

to support learners so that their inquiry can be productive, resulting in the construction of 

rich mental models with which they can engage in sophisticated model-based reasoning. 

Students’ difficulties with scientific inquiry. As part of our design, we needed 

to know what difficulties middle school students have when conducting inquiry. We 

conducted a thorough literature review on students’ difficulties with inquiry to better 

understand the nature of these. This helped us to both concretize the sub-skills underlying 

the inquiry practices identified in the NGSS, as well as design tools and widgets to guide 

students in conducting inquiry. 

 Many studies have shown that students have difficulty with inquiry learning in 

general. Students do not plan which experiments to run (Glaser et al., 1992) and can act 

randomly (Schauble, Glaser, et al., 1991). They have difficulty setting goals (Charney, 

Reder, Kusbit, 1990), monitoring their progress (de Jong et al., 2005; de Jong, 2006), and 

recording their progress (Harrison & Schunn, 2004). Furthermore, they concentrate more 

on executing procedures than what they might learn or infer from experimenting, and if 

the data-gathering process is lengthy, they lose track of why they are collecting data 
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(Krajcik et al., 2000). Students have also been shown to demonstrate some difficulties in 

terms of certain very specific inquiry skills targeted in the national frameworks for which 

we sought to design assessment metrics and scaffolds. We discuss findings from prior 

research on five skills that were critical to the design of Int-ITS briefly in the following.  

First, when ‘generating hypotheses’ - referred to as asking questions in the NGSS 

- students may have difficulties choosing which variables to work with (Chinn & Brewer, 

1993; Klahr & Dunbar, 1988; Kuhn et al., 1995), including identifying the proper 

independent variable (Richardson, 2008). They may also have difficulty translating and 

understanding how theoretical variables and manipulable variables relate to each other 

(van Joolingen & de Jong, 1997; Glaser et al., 1992).  

Second, when ‘planning and carrying experiments’, students may not test their 

articulated hypotheses (van Joolingen & de Jong, 1991, 1993; Kuhn, Schauble, Garcia-

Mila, 1992; Schauble, Klopfer, Raghavan, 1991) or may gather insufficient evidence to 

test hypotheses (Shute & Glaser, 1990; Schauble, Glaser et al., 1991) by running only one 

trial (Kuhn, Schauble, Garcia-Mila, 1992) or running the same trial repeatedly (Kuhn, 

Schauble & Garcia-Mila, 1992; Buckley, Gobert & Horwitz, 2006). They may also 

change too many variables (Glaser et al., 1992; Reimann, 1991; Tschirgi, 1980; Shute & 

Glaser, 1990; Kuhn, 2005; Schunn & Anderson, 1998, 1999; Harrison & Schunn, 2004; 

McElhaney & Linn, 2008, 2010), may run experiments that try to achieve an outcome 

(e.g., make something burn as quickly as possible), or may design experiments that are 

enjoyable to execute or watch (White, 1993), as opposed to actually testing a hypothesis 

(Schauble, Klopfer & Raghavan, 1991; Schauble, Glaser, Duschl, Schulze & John, 1995; 

Njoo & de Jong, 1993). 

Third, when ‘analyzing and interpreting data’ students may show confirmation 

bias (i.e., they will not discard a hypothesis based on negative results) (Klayman & Ha, 

1987; Dunbar, 1993; Quinn & Alessi, 1994; Klahr & Dunbar, 1988; Dunbar, 1993). They 

may draw conclusions based on confounded data (Klahr & Dunbar, 1988; Kuhn, 

Schauble & Garcia-Mila, 1992; Schauble, Glaser, Duschl, Schulze & John, 1995), they 

may not relate outcomes of experiments to theories being tested (Schunn & Anderson, 

1999), and they may reject theories without disconfirming evidence (Klahr & Dunbar, 

1988). They may have difficulty linking data back to hypotheses (Chinn & Brewer, 1993; 
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Klahr & Dunbar, 1988; Kuhn et al, 1995), may have difficulty interpreting data displays 

like graphs, or may have difficulty interpreting important differences between related 

variables (e.g., time to evaporate vs. rate of evaporation) shown in data displays (cf. 

McDermott, Rosenquist, & van Zee, 1987). 

Fourth, when ‘constructing explanations’, students may be overly reliant on 

theoretical arguments as opposed to evidence (Kuhn, 1989, 1991; Kuhn, Katz & Dean, 

2004; Ahn et al., 1995; Ahn & Bailenson, 1996; Brem & Rips, 2000; Schunn & 

Anderson, 1999), they may struggle to provide appropriate evidence for their claims 

(McNeill & Krajcik, 2007), or they may analyze data so as to protect prior beliefs, which 

can lead to faulty causal attribution (Kuhn et al., 1995; Keselman, 2003; Kuhn & Dean, 

2004).  

Finally, when ‘communicating findings’, students may have difficulty articulating 

and defending claims (Sadler, 2004). They may tend to focus on what they did as 

opposed to what they found out, may not link data and conclusions, and may not relate 

results to their own knowledge/questions (Krajcik, et al., 1998). They may also struggle 

to provide reasoning to describe why evidence supports claims (McNeill & Krajcik, 

2007).  

Assessment System Design 

Intuitively speaking, it makes sense to design educational assessments based on 

the vast literature from the learning sciences summarized in “How People Learn” 

(Bransford, Brown, & Cocking, 2000). Briefly, the literature in that volume spans from 

the onset of the information-processing perspective on learning circa 1960 to present day 

and has been extremely informative regarding the role of prior knowledge in learning, the 

nature of mental models and their role in reasoning, as well as domain-specific content 

learning and teaching, including science (Duschl, Schweingruber, & Shouse, 2007).  

In a white paper report that extended “How People Learn”, Pellegrino (2009) 

outlined some key principles that are very noteworthy in guiding the design of 

assessments of NGSS practices so that the resulting data can be used to “educate and 

improve student performance, rather than merely to audit it” (Wiggins, 1998, p. 7). In 

brief, these principles emphasize that assessments should be integrated with 

curricular/instructional needs including domain-subject matter learning (for science, this 
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includes content and practices) and that assessments need to be framed by current 

theories and data about student cognition and learning, including learning progressions 

and expert-novice differences, in addition to students’ prior knowledge.  

From a system designer’s perspective, the practical assessment problem becomes 

the following: how do we take the policy documents about what science literacy is and 

what we expect students to be able to know and do in science and use these to inform the 

design and development of a valid and reliable system capable of generating 

performance-based assessments? How do we design a system that is scalable to large 

numbers of users so that science literacy on a broad scale can be realized? It is clearly 

necessary that the new assessment permit better inferences about students’ knowledge, 

skills, and inquiry practices when compared to more traditional multiple choice tests , 

while still providing evidence of both validity and reliability, while being neither too 

expensive nor too laborious to construct. 

Properties of assessment systems. Leighton & Gierl (2011) offer three indices 

for evaluating assessment items/systems, namely granularity, measurability, and 

instructional relevance. Briefly, granularity refers to the depth and breadth of the 

knowledge and skills being measured by the system. Specifically, to permit inferences 

about what students know, underlying cognitive models must be 

described/collected/reported at a level of specificity that will provide meaningful 

information about students’ performance so that teachers (or the system itself) can 

provide necessary feedback. If developed at the right level of granularity, a teacher can, 

in turn, use these formative data to inform their instruction. Alternatively, support in the 

form of scaffolding can be done in real time via an automated pedagogical agent as in the 

Inq-ITS system that we describe in this chapter.  

 The second criterion for evaluating an assessment is its measurability in order to 

link learning with assessment. Specifically, the knowledge and skills in the cognitive 

model must be described in a way that would allow a developer to create a test item or 

task to measure that particular knowledge or skill. Later in this chapter we describe how 

we used information from four case studies to develop articulations of the knowledge and 

skills for scientific inquiry practice for our Inq-ITS system.  
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The third criterion for evaluating assessments is instructional relevance. That is, 

in developing a cognitive model, the knowledge and skills must be instructionally 

relevant and meaningful to the relevant group of educational stakeholders such as 

teachers, superintendents, and policy-makers. For example, teachers need highly 

actionable data that are easy to understand and use in real time to inform instruction 

(Huff & Goodman, 2007). Instructional relevance is generally related to grain size. For 

example, when data are derived from students’ logs - as is the case in with our Inq-ITS 

system - the data must be aggregated from their finer-grained level up to a level that is 

instructionally relevant for teachers for the purposes of instruction and scaffolding.  

Evidence-centered design. Despite the rich theoretical frameworks from the 

learning sciences and vast amount of findings on how people learn science, the 

development of resources to assess science is lagging behind (Leighton & Gierl, 2011). 

Specifically, the broad and deep literature base from the learning sciences about what 

students know and the types of knowledge they use in reasoning should be used to guide 

the design of test items and tasks for assessment. If designed in this way, there is greater 

potential to strengthen validity arguments regarding the inferences that can be made 

about students’ knowledge from such items (Leighton & Gierl, 2011). 

Delving a level deeper in terms of its specificity for guiding the development of 

assessments for science in particular, Mislevy and colleagues (e.g., Mislevy et al., 2012) 

thus proposed the evidence-centered design (ECD) framework. This framework describes 

how the analysis of key practices in a domain can be used to inform the design of 

assessments for that domain. Domain analysis is similar in spirit to task analysis as 

described in the information-processing literature (Newell & Simon, 1972), but ECD is 

has the explicit goal of assessment design, whereas task analysis is typically used to 

characterize learning (Newell, 1990).  

In calibrating a system for assessment purposes, Mislevy et al (2012) explicitly 

state how domain analysis and subsequent domain modeling processes are used to inform 

the design of the conceptual assessment framework within the ECD framework. In the 

context of Inq-ITS, scientific inquiry practices to be assessed are specified in a student 

model and then connected to a task model that specifies features of tasks as well as 

questions that would elicit the evidence of learning. Observable behaviors then result in 
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indicators that are used for evidence identification and accumulation processes within an 

evidence model that specify the nature of student responses that indicate levels of 

proficiency; for a full description of how our ECD models were derived see Gobert et al. 

(2012).  

We derived our cognitive model for the sub-skills underlying the inquiry practices 

from our think-aloud data from the four case studies, which we discuss in the next 

section, and the previously reviewed literature on students’ difficulties with scientific 

inquiry. In Inq-ITS, the task model includes the activities conducted in the microworld 

that reveal students’ proficiencies for each sub-skill of interest. Finally, the evidence 

model specify how one uses work products (i.e., end-state products) and processes (i.e., 

actions/behaviors as indicated in their log files) to assess students’ inquiry practices. 

These data are then aggregated and analyzed to yield performance indicators that are used 

as evidence of students’ proficiencies for each inquiry practice and their respective sub-

skills. 

To create automated evidence-based assessment summaries within a complex 

system like Inq-ITS, it is critical to know how to leverage modern computational 

techniques in order to analyze the rich log file data that are generated and captured as 

students engage in scientific inquiry tasks. Although there are many on-line learning 

environments for science, few are leveraged to assess the skills that they were designed to 

foster (Quellmalz et al., 2009). Computational techniques adapted or adopted from 

domains such as computer science or educational data mining in particular are necessary 

to handle the analysis of data both in terms of the grain-size and volume of log files that 

are generated in rich interactive systems (Behrens, 2013; Gobert et al, 2013; Mislevy et 

al, 2012).  

In line with ECD thinking, it is critical to concretize the sub-skills underlying the 

inquiry practices at a level of granularity that informs decisions about what kinds of data 

along with what kinds of computational techniques to generate assessment metrics of 

inquiry practices are needed. This design work needs to be done before the computational 

techniques can be developed for assessment rather than post hoc once the environments 

are already created. In the third section we describe how we analyzed our data by 

leveraging both knowledge-engineering and educational data mining techniques. The 
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resulting computational techniques were designed to handle both the fine grain size of 

our data and its large volume in order to assess students and scaffold them in real time 

(Gobert et al., 2012, 2013 provides a thorough description of this approach).  

Case Studies with Think-aloud Components 

 Using the above literatures as a basis, we designed and conducted a series of one-

on-one case studies with students using think aloud protocols (Richardson, 2008). Think-

aloud protocols are assumed to present a "trace" of the learner's cognitive processes in 

that the object being described as a person thinks out loud is assumed to be information/ 

knowledge that is currently being attended to in execution of the task (Ericsson & Simon, 

1980). Methods used to analyze think aloud data can be very fine-grained. Some methods 

of protocol analysis are done at the propositional (i.e., basic idea unit) level (see 

Frederiksen, 1975; 1986) or at the clause level (Chi, 1997), providing key information 

about the semantic units underlying thinking. Think-aloud data have been used to provide 

information about particular facets of task performance that can be used to develop 

canonical models for software development (Ericsson & Simon, 1980). 

 In order to inform the initial design of our Inq-ITS environment, four case studies 

with think-aloud components were conducted in our partner middle schools. Across the 

four case studies, we sought to (1) characterize how middle school students naturally 

approach scientific inquiry tasks, (2) develop a set of scaffolds for inquiry to be 

integrated into a technical environment, and (3) determine the effectiveness of various 

prompts and scaffolding tasks at fostering inquiry practices.  

Case Study 1 

 The first case study was designed to characterize how students naturally approach 

an inquiry task, to get a sense of what the students already understood in terms of inquiry, 

and to better understand common areas of weakness with respect to both inquiry in 

general as well as areas of weakness within designing controlled experiments specifically 

(Chen & Klahr, 1999). In this case study, fourteen randomly selected middle school 

students were selected from a range of class levels including high, average, and lower-

performing students. Each student was tested on an individual basis. Students were 

presented with a physical ramp apparatus whose features (steepness, run length, the type 

of ball, and surface) could be changed. They also were given blank pieces of paper and a 
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pencil to record their findings.  

 Students were first asked which features they thought they could change on the 

ramp that would affect how far the ball would roll. They were then told that these 

features were called variables. Next, they were asked to state a hypothesis and run an 

experiment to test their hypothesis on how the steepness of the ramp affects how far the 

ball would roll. After running the experiment, the students were asked to explain, based 

on their data, how steepness affects how far the ball rolls. When the students finished 

testing how steepness affects how far the ball rolled, they moved on to test the effect of 

run length, the type of ball, and surface again on how far the ball rolled. Then they were 

asked to reflect back on the first experiment and say what they would have done 

differently if they were to run it again. This question was asked to test if they had 

acquired meta-knowledge about how to conduct controlled experiments.  

 The prompts in this case study, which were intended to be a “gentle guide” toward 

improving the student’s strategies, were not prewritten. If a student continued to use the 

same type of inquiry strategy, the next prompt given was slightly more direct. For 

example, if a student was demonstrating “buggy” inquiry, the student was given a prompt 

and then given more time to interact with the apparatus to revise his/her strategy and re-

run the experiment. The approach of providing progressively more direct scaffolds was 

later incorporated into the Inq-ITS system. 

 The data from this study included all of the notes and tables made by each student 

during the experiment. Additionally voice data was analyzed to determine which inquiry 

skills the students struggled with and which prompts were helpful in improving inquiry 

skills. The data showed that, although students were generally fairly good at articulating a 

hypothesis (e.g., they included an independent variable, a dependent variable, and 

specified a relationship between them), they showed difficulties with other inquiry 

practices, many of which were previously described in the inquiry literature reviewed 

above.  

 First, students did not naturally seek to record their data and needed both 

prompting and a great deal of help in recording data. Specifically, many did not know 

how to record the data in columns with the values for each independent variable in one 

column and the resulting dependent variable in another column. Second, with respect to 
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designing and conducting experiments, most students did not target one variable by 

changing only that one and keeping all others the same. Many students also collected data 

from a single trial, collected data for the same trial repeatedly, or collected data merely to 

reaffirm their initial hypothesis without considering alternative explanations. When 

describing their findings, students did not include data in their explanations; that is, they 

did not provide evidence for their claims with data from their table(s). It was notable, 

however, that with some experimenter scaffolding, students’ performance was better 

across trials at making a table. Since recording data is a graphical literacy skill as 

opposed to a science inquiry skill, data on students’ difficulties on recording their data 

led us to better understand the importance of providing an auto-populated data table for 

students in the design of Inq-ITS.  

Case Study 2 

 In a second case study, we collected data from demographically-similar students 

attending one of our partner schools, a lower SES school in Central Massachusetts. All 

materials, including the physical ramp apparatus, data collection, and recording 

procedures were identical to case study 1. However, in this study we administered a short 

pretest and posttest of inquiry skills, we provided students with a lab book, and used 

more formalized inquiry prompts as part of the data collection procedure. Similar to study 

1, we found that the students did not record findings without prompting to do so. When 

they had trouble with conducting controlled trials, the experimenter showed them some 

data in the lab book and students were able to pinpoint issues in the collection procedure 

of these data. However, when conducting their own trials, they typically failed to conduct 

controlled trials when collecting data. When analyzing data, students again struggled with 

writing explanations for their data. Data from this study further demonstrated the 

complexity and “thorniness” of students’ difficulties with conducting controlled trials. 

Specifically, students do not tend to conduct contrasting trials sequentially, making the 

assessment of their knowledge of how to design controlled experiments very difficult. 

Later in the chapter we describe, in brief, how our algorithms do this, as well as describe 

the need to refine our scaffolds for this critical inquiry practice within the Inq-ITS 

system.  

Case Study 3 
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 In the third case study, again with the same student demographic, we used a 

simulated ramp environment (i.e., a virtual replica of the one students used in case studies 

1 and 2). Similar to case study 1, the goal here was to see what the students did naturally 

in terms of inquiry but within a virtual, simulated environment. In addition, the tasks 

were slightly more structured than in case study 2 because we determined that a 

structured approach was more effective in teaching how to design controlled experiments 

(Klahr & Nigam, 2004). In addition, data tables that included blank rows and columns 

were provided to the students. Voice data and videos of students’ interactions with the 

simulated ramp apparatus were collected and analyzed for each student.  

 The data from this study were very informative with respect to the breadth and 

depth of students’ difficulties with inquiry. Specifically, students again demonstrated 

difficulties with recording data and all students needed to have the columns of the table 

set up for them by the experimenter so that they could correctly record their data. When 

collecting data, they repeated trials, did not collect contrasting trials, did not collect trials 

sequentially, and did not run controlled trials. When interpreting results, they did not 

attend to the appropriate data. Of interest to data interpretation, when students were asked 

to compare their original tables to the ones set up for them by the experimenter, the 

students realized that had changed too many variables, making it harder to see the effect 

on the variable they were trying to test.  In the new tables, which were set up for them, 

the outcome was more salient to the students. Lastly, students had difficulties in 

communicating their findings in that their conclusions were not based on their data. 

Case Study 4  

 In the fourth case study, students were drawn again from the same demographic 

sample. This case study was similar to Case study 3 in that the simulated ramp 

environment was used; however, we also used a lab book similar to Case study 2. Noting 

earlier results about the consistent and pronounced difficulties conducting controlled 

experiments, the laboratory notebook included a direct explanation about how to collect 

unconfounded data since it was shown that direct instruction on this skill is effective 

(Klahr & Nigam, 2004). This was written so that the student did not need any assistance 

from a human tutor; this, we deemed, would help us in beginning to formalize the 

prompts that would be incorporated into Inq-ITS. 
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Again, we found that students demonstrated problems with inquiry. Specifically, 

when conducting experiments, they did not collect enough data and only showed a small 

improvement in conducting controlled experiments. Moreover, they had problems with 

interpreting data and communicating findings as they had in the previous case studies. 

For example, even though students did not have the data needed to support their 

conclusion, they insisted that they had “discovered the answer” and that their data 

“proved it”.  For some students it seemed too obvious that if the ramp is steeper that the 

ball will roll further (e.g., one student commented that “the higher the ball, the faster it 

goes.”) When asked if they saw those results in their table, all students answered “yes”; 

however, they did not give a deeper explanation of how they had demonstrated that the 

higher the steepness of the ramp, the further the ball will go.  

Summary of Case Studies 

 All told, the information gathered through think-aloud activities in the case studies 

helped us to greatly understand the breadth, depth, and pervasiveness of students’ 

difficulties across all of the inquiry practices outlined in the NGSS consistent with 

previous findings in the literature. We also used our think-aloud data to identify the level 

of granularity needed to conceptualize and operationalize the sub-skills underlying 

inquiry practices. Moreover, we used analyses of students’ think-aloud data to 

characterize students’ “natural” inquiry processes with no/minimal support (e.g., graphs, 

tables, widgets, scaffolds) in order to better understand students’ needs for these tasks. 

These kinds of information identified in the hand-coding of our think-aloud protocols 

were valuable to the development of the algorithms needed to measure the sub-skills of 

inquiry and to provide appropriate scaffolds for learning within Inq-ITS. We now 

describe the characteristics of this system in more detail. 

The Inq-ITS System  

As discussed previously, Inq-ITS is a rigorous, technology-based learning 

environment that assesses and scaffolds middle school students as they engage in inquiry 

in Earth, Life, and Physical Sciences. The system can be run either in “pure assessment 

mode” or in “scaffolding mode”, in which our virtual agent, Rex, jumps in to support 

students in real time when needed. In the following section, we describe the key features 

of the Inq-ITS system. 
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Microworlds 

Inq-ITS uses microworlds (Papert, 1980) to engage students in scientific inquiry. 

Microworlds are computerized representations of real-world phenomena whose 

properties can be inspected and changed (Pea & Kurland, 1984; Resnick, 1997). 

Microworlds provide authentic inquiry opportunities because they share many features 

with real apparati for “doing science” (Gobert, in press), thereby providing perceptual 

affordances for the learner. In turn, these perceptual affordances can provide leverage for 

building rich conceptual knowledge (Gobert, 2005). With a microworld a learner can 

pose questions, plan and carry out a virtual experiment with a simulation by collecting 

data, then analyze their data, and then communicate their findings in the form of a 

scientifically warranted explanation. Inq-ITS microworlds are used for performance 

assessment of students’ inquiry practices in that they: (a) are instrumented to log all 

students’ interactions, (b) leverage real time analyses of log files based on knowledge-

engineering and educational data mining, (c) provide assessment metrics to researchers 

and teachers on each inquiry skill of interest and, (d) can scaffold students’ inquiry 

processes in real time (Gobert et al., 2013).  

In developing microworlds for Inq-ITS, we surveyed the science education and 

learning sciences literature for students’ content misconceptions for each topic across 

Earth, Life, and Physical Sciences to determine which variables, domain-specific 

properties, and domain-specific representations to include in each microworld so that 

students could fully engage with the content in authentic ways to more deeply understand 

the topic and hone their inquiry practices in these domain-specific contexts. For example, 

in the domain of ‘state change’, a common misconception in middle school is that as the 

amount of a substance increases, the temperature at which it will boil also increases. 

Mislevy et al. (2012) refer to this process as the domain analysis in the ECD lifecycle of 

assessment design and delivery; the information-processing literature refers to this more 

generally as task analysis (Newell, 1990).  

An integral part of the Inq-ITS system and associated microworlds is the inclusion 

of inquiry widgets, as mentioned before. These widgets are important in that they 

scaffold students in conducting various steps of inquiry, but are also the basis upon which 

we collect our performance data on students’ inquiry practices. Our inquiry widgets were 
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designed in accordance with the learning sciences and science education literature on 

students’ difficulties in conducting inquiry.  

For example, the ‘question asking/hypothesis’ widget was designed to externalize 

the structure of students’ hypotheses using independent and dependent variables and the 

relationships between them. Using this widget, students’ questions/hypotheses are 

generated in the form of sentences. The resulting data are logged and are then used to 

generate metrics about the sub-skills of inquiry practices such as whether the student has 

included an independent variable, a dependent variable, and a relationship between them.  

The ‘data interpretation/analysis’ widget provides a structure for the student to 

interpret their data after the experimental trials are completed. Similar to the hypothesis 

widget, the data interpretation/analysis widget presents a way for the student to create 

statements about the relationship between the independent and dependent variables from 

their trials and to warrant their claims by selecting their trials to either support or refute 

their hypothesis. A full description of the widgets can be found in Sao Pedro et al. (2011), 

and Gobert et al. (2012, 2013). 

Types of Scaffolding  

As described in our theoretical framework, we believe that middle school 

students, many of whom lack adequate prior content knowledge and have difficulties 

with inquiry as previously described, need guidance in conducting scientific inquiry. The 

degree of structure used to guide students’ general and science-specific inquiry activities 

in learning environments is a topic that was hotly debated in the field of science 

education in the recent past (e.g., Kirschner, Sweller, & Clark, 2006; Hmelo-Silver, 

Chinn, & Duncan, 2006).  

As previously mentioned, Papert’s conception of inquiry with microworlds is 

more open-ended in terms of degree of pedagogical guidance (Papert, 1980; 1993) than 

inquiry with microworlds in our system. Inq-ITS allows a moderate degree of student 

choice, less choice than in purely exploratory learning environments (Amershi & Conati, 

2009; Papert, 1980; 1993) but more choice than in classic model-tracing tutors 

(Koedinger & Corbett, 2006) or constraint-based tutors (Mitrovic et al., 2001). 

Specifically, in Inq-ITS, students’ scientific inquiry is guided in three ways through (1) 

general scaffolding afforded by the system user interface, (2) teacher scaffolding, and (3) 
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adaptive scaffolding by our pedagogical agent Rex, a cartoon dinosaur. We discuss each 

form of scaffolding briefly in the followng. 

Inq-ITS user interface scaffolding. Students’ inquiry in Inq-ITS is guided by the 

order in which information is provided to learners as well as by the widgets and support 

tools provided to learners. For example, we begin by suggesting that they develop and 

ask a question using a set of independent and dependent variables. Students then plan and 

carry out an experiment by collecting data, interpret their data, provide evidence in the 

form of warrants for their claims, and communicate their findings. Inq-ITS has a progress 

bar on the top of the screen to support them in knowing what phase of inquiry they are 

presently in, which is critical to students’ monitoring (de Jong et al., 2005; de Jong, 

2006). Additionally, the artifacts that students generate by using widgets make visible 

and salient both the products and processes of inquiry for the learner in order support 

students’ meta-level understanding of inquiry.  

Teacher-led scaffolding. When in pure assessment mode, assessment of 

students’ inquiry practices is done in a stealth manner (Shute, 2011); that is, 

unobtrusively without taking time from instruction. Formative data collected on students’ 

inquiry practices are provided in real time directly to teachers via an integrated 

assessment report shown in Figure 2, which displays information at both the class-level 

and individual student level. The report is generated via our knowledge-engineered rules 

and data mined algorithms that we describe further below. 

[INSERT FIGURE 2 ABOUT HERE] 

Recently, we completed the development of an alerting platform called Inq-

Blotter (Sao Pedro, Gobert, & Betts, 2015) that automatically alerts teachers on their 

mobile devices as to which students are having difficulties with inquiry and on which 

inquiry practices and sub-skills of these. With these data literally ‘in hand’, teachers can 

walk around the room and provide assistance to students as they need it, when 

scaffolding is most critical to learning (Koedinger & Corbett, 2006). From these data, a 

teacher might decide to stop the entire class, say, if many do not understand what an 

independent variable is or are not conducting controlled trials, or s/he might decide to go 

over to help individual students in real time if there are only a few students having 

difficulty with a particular skill. Our reports and alerts are designed to be highly readable 
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and to identify the students who need most help for the teacher while they monitor the 

overall class’ performance. These reports and alerts were designed in collaboration 

between our user experience designer, graphic designers, and our partner teachers using 

an iterative design process of conceptual sketches and mock-ups. We then interviewed 

teachers as to the usability of these reports and the levels of aggregation that they needed 

in the reports and tweaked the reports as needed.  

Automated adaptive scaffolding via Rex. Assessment can be done either 

without Rex or with Rex. In the full embodiment of our system with Rex’s scaffolding 

capacity, our goal was to provide the optimal degree of guidance so that students’ inquiry 

skills could be honed in real time, when real time feedback is most effective (Koedinger 

& Corbett, 2006). By running Inq-ITS in scaffolding mode, assessment is seamlessly 

integrated with instruction so that skills can be developed and assessed in the rich 

contexts in which they are developing (Mislevy et al., 2003).  

Rex, our pedagogical agent, provides scaffolds on a particular inquiry practice 

when - and only when - our system detects that the student needs this type of help via our 

data-mined algorithms (for a fuller description see Gobert et al., 2013). In this way, 

Vygotsky’s notion of scaffolding within the zone of proximal development (1978) can be 

realized. This automated scaffolding approach is used instead of on-demand help in 

which students explicitly ask for support (e.g., Anderson et al., 1995) because on-demand 

help requires metacognitive knowledge (Aleven & Koedinger, 2000; Aleven, McLaren, 

Roll & Koedinger, 2004). Given that students have difficulty monitoring their progress 

(de Jong et al., 2005), we had empirical evidence to believe that students would be 

unaware when they are in need of help during inquiry. 

Inq-ITS has four types of automated scaffolds embodied by Rex: (1) orienting 

scaffolds to help students monitor where they are in the inquiry process (de Jong et al., 

2005), (2) conceptual scaffolds to provide students conceptual information needed for the 

current task (e.g., Rex may explain why controlled experiments are important for testing a 

hypothesis), (3) procedural scaffolds to help students on the current task (e.g., Rex may 

instruct the student to “construct a controlled trial, relative to your last trial run” or to 

“design experiments by changing only one variable while keeping the others the same”),  

and (4) instrumental scaffolds to provide the student direct instruction as to what to do on 
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the current task (e.g., Rex may break down strategic help in a step by step fashion, 

providing a type of worked example from which to learn) (Koedinger & Aleven, 2007). 	

In short, to us, the goal of providing scaffolded support for inquiry practices via 

the teacher or Rex in the form of orienting messages or conceptual/procedural strategies 

is not equivalent to direct instruction of formulas and rote science facts as characterized 

in Kirschner et al (2006). In Inq-ITS, we scaffold students’ inquiry practices since (1) 

these are not likely to develop naturally (Kuhn, 2005); (2) students can become lost and 

frustrated and their confusion can lead to misconceptions if they are not scaffolded 

(Brown & Campione, 1994), (3) teachers spend considerable time scaffolding students’ 

procedural skills (Aulls, 2002), and (4) there are many “lost” opportunities for learning 

and assessments if students are not guided properly via scaffolds (e.g., if students are not 

testing their hypothesis or if their data are confounded, all subsequent inquiry tasks such 

as data interpretation, warranting claims, and developing explanations are moot since 

their data do not afford the possibility of successfully completing these tasks due to 

“buggy” data collected during data collection phase of inquiry).  

Illustrative Vignette 

 To make the previous ideas more concrete, we now present a small vignette in the 

context of a ‘states of matter’ microworld that students use to conduct inquiry to 

determine the effects of the independent variables (e.g., level of heat, amount of 

substance) on the dependent variables (e.g., time to melt, temperature when melted); see 

Figure 3 for a screenshot of this microworld.  

[INSERT FIGURE 3 ABOUT HERE] 

 After the student has had some time to explore the microworld, the student uses 

the ‘question asking/hypothesis’ widget to generate a hypothesis. When the student 

finishes this, it is checked for correctness using a knowledge-engineered rule 

(Feigenbaum & McCorduck, 1983). If the student incorrectly enters a dependent variable 

in place of an independent variable, this particular sub-skill (i.e. to distinguish 

independent from dependent variables) is auto-scored as ‘incorrect’ and the teacher report 

shown earlier in Figure 2 will be auto-populated with this information so the teacher will 

always know the status of his/her students’ inquiry skills; such timely feedback is critical 

to deep learning.  
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Students then design and conduct their experiment by first selecting variables to 

manipulate and then running a simulation. This provides students additional opportunities 

to demonstrate their understanding of independent and dependent variables as well as 

their understanding of how to test a hypothesis using controlled trials. As students collect 

data by running trials with the simulation, it is highly likely that some students will not 

design controlled experiments whereby one variable is systematically targeted across 

trials and all other variables are held constant (Chen & Klahr, 1999). Once a number of 

trials have been completed, our data-mined assessment algorithm is able to assess 

whether students are successfully demonstrating this skill (Sao Pedro, Baker, & Gobert, 

2012). If not, this information is automatically updated in the teacher report. Again, as the 

teacher helps one student, our algorithms continually update the report/alerts.Once 

sufficient data are gathered to support or refute the hypothesis, students interpret their 

data and warrant their claims using the ‘analysis interpretation’ widget. Again, as in 

hypothesis formation, a knowledge-engineered rule checks the student’s interpretation 

both for correctness, and whether they have selected the correct data to warrant their 

claim. The report indicates which students are most in need of help on which skill(s). 

Generation of Assessment Metrics 

 The log files of students’ actions collected unobtrusively and in situ within the 

Inq-ITS system provide a fertile basis upon which to generate performance-based 

assessments of rich inquiry processes (Clarke-Midura, Dede, & Norton, 2011). 

Additionally, the resulting evidence about key student competencies from log files can be 

connected to the evidence from the artifacts or products they create as a result of the 

captured activities (see, e.g., Rupp et al., 2010).  

As alluded to previously, our system assesses inquiry practices using a 

combination of knowledge-engineered rules (Feigenbaum & McCorduck, 1983) and data 

mined algorithms (Romero & Ventura, 2007; Baker & Yacef, 2009), depending on 

whether the inquiry practice of interest is more well-defined or more ill-defined. 

Knowledge-engineering techniques (see Shute & Glaser, 1990; Schunn & Anderson, 

1998), which work best for well-defined domains such as mathematics problem solving 

(e.g., Koedinger & Corbett, 2006) and computer programming tasks (Corbett & 

Anderson, 1995), are used for inquiry practices or subskills that are similarly well-
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defined such as ‘identifying independent versus dependent variables’ in developing 

hypotheses or certain aspects of ‘data interpretation/analysis’.  

 By contrast, educational data mining techniques are used to assess inquiry 

practices for which skilled performance can manifest itself in several ways and more 

complex disambiguation of evidence is necessary; for a thorough review of the methods 

we used see Gobert et al., 2012, 2013; Sao Pedro et al., 2011. Two examples of inquiry 

practices that fall into this category are ‘testing stated hypotheses’ and ‘planning and 

carrying out experiments’ since there are a number of approaches that students can take 

on these, reflecting both skilled and unskilled performance (Shute,	Glaser,	&	Raghavan,	

1989;	Kuhn, 2005).   

 We validated our assessment algorithms for these inquiry practices with 

thousands of middle school students. Specifically, our data-mined algorithm for 

evaluating whether students are testing their articulated hypothesis matches a human 

scorer 91% of the time. Similarly, our data-mined algorithm for assessing students’ skills 

at designing controlled experiments can distinguish controlled vs. confounded data 

collection 94% of the time (Sao Pedro et al., 2012). Furthermore, the latter algorithm can 

assess whether students are conducting controlled experiments even when students do not 

conduct their trials sequentially. Viewed this way, our work represents a large 

methodological advance over other assessments of this skill that evaluate only 

information from sequential trials as evidence of this skill (McElhaney & Linn, 2010; 

Klahr & Nigam, 2004) or evaluate only information from any two contrasting trials 

regardless of whether they are sequential or not. The former approach is too stringent an 

assessment of this since skill students do not necessarily conduct trials sequentially. The 

latter approach is too lenient an assessment of this skill since one cannot know whether 

the two non-sequential trials were conducted by chance or were collected deliberately to 

be contrasted by the student.  

 As of this writing, we have developed and validated assessment algorithms for all 

the NGSS science practices. We have also shown their generalizability across multiple 

domains (Sao Pedro, Jiang, Paquette, Baker, & Gobert, 2014; Sao Pedro, Gobert, Toto, & 

Paquette, 2015; Gobert, Kim, Sao Pedro, Kennedy, & Betts, in press).  

Summary 
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In an educational system like the one in the United States, which is dedicated to 

standardization and accountability, inquiry in science classrooms cannot take center stage 

until considerable progress has been made on inquiry assessment. This is where “the 

rubber meets the road”, and success with reform outlined in policy documents such as the 

NGSS rests, in our opinion, on rigorous assessment of students’ science practices. In this 

chapter we described Inq-ITS, an on-line environment for assessing and scaffolding 

students’ inquiry practices. We described how the NGSS, the learning sciences literature, 

the literature on students’ difficulties with inquiry, and our early pilot work with students 

with hands-on inquiry tasks informed the design of Inq-ITS and how our system 

measured up in terms of granularity, measurability, and instructional relevance of the 

assessed scientific practices (Leighton & Gierl, 2011).  

 We argue that our system reflects several key advances in assessment design and 

practice in several areas. Perhaps most notably, the use of sophisticated knowledge-

engineered and data-mined models allowed us to (1) assess students’ inquiry practices in 

real time, (2) generate teacher reports and alerts in real time, and (3) trigger a pedagogical 

agent to scaffold inquiry in real time, all of which are critical to deep learning (Black & 

Wiliam, 1998; Pellegrino et al., 2001). This has several related benefits. First, teachers do 

not need to use additional instructional time for assessment because they receive 

immediate reports and alerts about their students and know who and what inquiry 

practices to focus on during instruction. Second, since our assessment algorithms work in 

real time over the web, the data-mined models are able to continually capture their 

emerging learning trajectory, which is ideal for continual adaptive assessment, adaptive 

instruction, and effective learning (Klahr & Nigam, 2004; Vygotsky, 1978).  

Third, from a research perspective, the continual data that the Inq-ITS system 

provides allows us to advance our understanding of how students both conduct inquiry 

and hone these practices of inquiry over time. Finally, due to the sophistication of the 

microworld and widget design as well as the design of the underlying computational 

architecture, the Inq-ITS system can be scaled to many users simultaneously. Due to 

these functionalities, Inq-ITS and systems like it will continue to reduce or eliminate the 

separation between learning activities and assessment activities, allowing us to realize 

both the long-range vision for learner-centered environments (Quellmalz & Pellegrino, 
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2009; Quellmalz et al., 2012) as well as the rigorous assessment of inquiry practices as 

called for in the NGSS. 
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Table 1 

Next Generation Science Standards (NGSS Lead States, 2013) 

 

Life Science Physical Science 

LS1: From Molecules to Organisms: 

Structures and Processes 

LS2: Ecosystems: Interactions, Energy, 

and Dynamics 

LS3: Heredity: Inheritance and 

Variation of Traits 

LS4: Biological Evolution: Unity and 

Diversity 

PS1: Matter and Its Interactions 

PS2: Motion and Stability: Forces and 

Interactions 

PS3: Energy 

PS4: Waves and Their Applications in 

Technologies for Information Transfer 

Earth & Space Science Engineering & Technology 

ESS1: Earth’s Place in the Universe 

ESS2: Earth’s Systems 

ESS3: Earth and Human Activity 

ETS1: Engineering Design 

ETS2: Links Among Engineering, 

Technology, Science, and Society 
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Figure 1 Model-based learning and teaching framework. 
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Figure 2 Assessment report for teachers reported out by inquiry practice and sub-skills. 
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Figure 3 Screenshot of the Inq-ITS system with all phases of inquiry shown. Students 
generate a question, run trials to test it, then interpret data, and select trials to warrant 
claims with evidence. 
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