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ABSTRACT 

Network analysis in educational research has primarily relied on 

self-reported relationships or connections inferred from online 

learning environments, such as discussion forums. However, a 

large part of students’ social connections through day-to-day on-

campus encounters has remained underexplored. The paper 

examines spatial-temporal student networks using campus WiFi 

log data throughout a semester, and their relations to the student 

demographics and academic performance. A tie in the spatial-

temporal network was inferred when two individuals connected 

to the same WiFi access point at the same time intervals at the 

‘beyond chance’ frequency. Our findings revealed that students 

were more likely to co-locate with the individuals of similar 

gender, ethnic group identity, family income, and grades. 

Analysis of homophily over the semester showed that students of 

the same gender were more likely to co-locate as the semester 

progressed. However, co-location of the students similar on 

ethnic minority identity, family income, and grades remained 

consistent throughout the semester. Mixed-effect regression 

models demonstrated that features derived from spatial-temporal 

networks, such as degree, the grade of the most frequently co-

located peer, and average grade of five most frequently co-located 

peers were positively associated with academic performance. 

This study offers a unique exploration of the potential use of WiFi 

log data in understanding of student relationships integral to the 

quality of college experience. 

Keywords 

Network analysis, homophily, spatial-temporal data, WiFi log 

data. 

1. INTRODUCTION 

With massification and globalization of higher education, 

students are exposed to individuals from a different nationality, 

ethnicity, gender, and socio-economic background. Universities 

have long been known as physical spaces where students form 

lifelong social connections, both for professional social capital 

and personal networks, such as friendship and marriage [1]. 

Therefore, understanding how social connections form and 

change in educational settings, as well as the impact student 

networks have on learning outcomes, can inform educators of 

unique ways to improve learners’ experience [2]. 

Educational research offers a range of literatures focused on 

student networks in both face-to-face and blended or online 

settings [2-9]. Social scientists have conventionally derived 

student networks from self-report surveys [2, 10]. These surveys 

ask students to list who they are friends with or who they seek 

advice from  [2]. The data can be collected multiple times to track 

the changes in network formation [10, 11]. Self-reported 

networks are a source for much of the extant evidence about 

student networks. However, such data collection is vulnerable to 

sampling biases (i.e. a low response rate, a sample from one class) 

where important network observations may be omitted. The 

timing of surveys may affect derived network features, and 

frequent surveying of learners can lead to survey fatigue and a 

lack of responses. 

Instead of self-reports, the EDM and LAK communities have 

based their network studies on the log-data generated from online 

discussion forums [3, 4, 12-14]. Digital traces from online 

discussion enabled researchers to capture the structure, 

frequency, as well as the content of communication exchanges. 

Student networks constructed from online logs also have 

limitations. For instance, many online courses do not require that 

students use online forums. In face-to-face or blended learning 

settings, students are also less likely to use discussion forums. 

Therefore, student networks derived from online communication 

are limited in their generalizability, which remains a major 

challenge for researchers in this domain. 

One underexplored data source for social network research in 

educational settings is location-based data. Social scientists have 

long argued that those in close physical proximity are more likely 

to form a social connection (McPherson, Smith-Lovin and Cook 

[1], p.430). More recently, relationship between geographic 

proximity and social ties have been corroborated by fine-grained 

geo-location-based analysis using mobile technologies. For 

example, the Copenhagen Networks Study [15] quantified the 

impact of physical proximity on student network structures using 

500 GPS-enabled smart phones. Eagle, Pentland and Lazer [16] 

also used mobile technologies to compare the network based on 

physical proximity with the self-report social network and 

reported that 95% of the network friendships can be accurately 

inferred from sensor data. Although student location data from 

GPS and Bluetooth signals has shown to be informative, such 

methods are expensive to replicate and challenging to scale due 

to a high equipment cost.  

This paper presents yet another source for location-based data to 

infer student networks. The paper reports on the study of student 

networks constructed from routinely collected WiFi logs. Such 

network data is created transparently to the learners as they 

connect to campus WiFi access points which are ubiquitous 

across physical campuses. Spatial-temporal ties between users 

can be inferred based on the overlap of time intervals in which 

learners connected to the same access point, suggesting a 
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reasonably close spatial co-location (room level). The study aims 

to understand the relationship between spatial-temporal ties and 

student characteristics across time, and predictive potential of the 

features derived from spatial temporal networks.   

1.1 WiFi network data in education research  

Wireless local area networks (WLANs) are ubiquitous in higher 

education as they provide on-campus Internet access to students, 

teachers, and staff. Despite extensive research using WiFi data, 

only a limited number of studies has explored their application for 

educational purposes [17-20]. A common example is the usage of 

WiFi data to visualize mobility patterns. For example, the iSpots 

project showed how people move around campus in real-time 

[17]. Hang, Pytlarz and Neville [20] combined WiFi logs with 

information about the buildings to extrapolate user preferences, 

and to predict user locations using graph embeddings. WiFi data 

has also been used in predictive modelling. Sarkar, Carpenter, 

Bader-El-Den and Knight [19] estimated the correlations between 

students’ on-campus time based on WiFi logs and academic 

performance. Zhou, Ma, Zhang, SuiA, Pei and Moscibroda [18] 

utilized WLAN data to estimate students’ punctuality for lectures 

to assess the lecture’s engagement using mobile phone’s 

interactive states at minute-scale granularity. 

An application of WiFi data which has yet to be explored in areas 

such as EDM is the formation of social network among students 

on campus. In line with previous research on location-based 

networks [15, 16], social ties between WiFi users can be inferred 

from spatial and temporal co-occurrences (i.e. two users 

connected to the same WiFi access point during the same time 

window). Compared to surveys, discussion forum data, and 

proximity data collected through mobile devices (e.g. Bluetooth 

beacons), WiFi data provides a fine-grained alternative that 

records the dynamic changes in social interactions over a long 

period of time. Importantly, WiFi logs can capture physical social 

interactions and can scale at a relatively low cost. This paper 

presents initial steps towards exploring spatial and temporal 

information in the analysis related to student learning.  

1.2 Research questions 

Individuals are likely to share social connections with others 

similar to them, a phenomenon known as homophily [1, 21]. In 

educational settings, researchers have observed homophily based 

on gender [22], ethnicity [23], international/domestic country of 

origin [10], study major [24], socio-economic status [23], and 

academic performance [25, 26]. It might be expected that high-

performing students seek friendship with other high-performing 

peers as part of their academic identity [27, 28], or that groups of 

high performing learners joined by lower performing learners will 

raise up those learners [29]. While there has been a large literature 

exploring the homophily effects in educational settings using 

traditional questionnaires or interactions in online learning 

environments, there remains a paucity of research that utilizes 

location-based data for such purposes. We hypothesize that 

students with similar traits are more likely to spend more time 

together on campus, i.e. in a spatial temporal co-occurrence from 

which a social connection can be inferred.   

RQ1: How do demographic characteristics and grades affect 

the likelihood of spatial-temporal co-occurrence among 

students? 

Second, we examine if spatial-temporal student network can 

capture social selection processes among students, also a 

phenomenon previously observed in social student networks. 

‘Social selection’ refers to the choice to interact with others of 

similar status or value, and has been observed in various 

educational settings [27, 28]. With the increasing availability of 

digital data in education (i.e. LMS, online discussion forums), 

researchers are enabled to observe the dynamics of social 

selection processes with high temporal precision. In these regards, 

we are interested in understanding the temporal changes in the 

homophily effects of demographics and academic performance 

over time. For example, one might expect that at the beginning of 

the semester, students are more likely to form friendships based 

on similarity in demographic attributes as they have not acquired 

sufficient information about their peers’ academic ability. One 

might also expect that as students approach the end of the 

semester, more social ties will be formed within similar 

performance groups. This leads us to our second research 

question:      

RQ2: How does homophily based on demographic 

characteristics and academic performance change over time? 

In addition to these questions, previous studies [7, 21, 26]  have 

confirmed a positive relation between the degree of social 

integration/participation and academic performance. Motivated 

by this, we are interested in the predictive potential of ‘peer 

effects’ for grade performance using location-based network data. 

The relationship between that of a peer and one’s characteristics 

has been studied for dormmates, as well as classmates, 

schoolmates, or children from the same neighborhood [29]. 

Administrative records of class co-enrolment have also been 

shown to capture this relationship in predictive models [24, 30]. 

Therefore, it would be reasonable to expect that spatial-temporal 

student networks can be useful for engineering features based on 

the peers a student is co-located with. 

RQ3: How do network indices of spatial temporal networks 

relate to student performance?  

2. METHODS 

2.1 Datasets 

Data in this study were collected from 3,915 students enrolled in 

five large STEM freshman courses at the University of Michigan, 

USA during the Fall semester of 2018. The selected courses 

include introductory physics, calculus, biology, chemistry, and 

psychology. Note that while these make up only a small fraction 

of all available offerings, they are considered to be foundational 

for a wide range of degree programs. That is, these courses serve 

as a gateway into the discipline, account for a significant portion 

of total credits registered, and are an integral part of one’s 

academic career upon which we can leverage data collection to 

better understand the broad needs of incoming students and to 

improve instruction. The format of these courses is primarily 

didactic in nature, consisting of large lecture-style classes with 

hundreds of student enrollments. Content coverage is relatively 

stable between terms albeit with changing instructional teams, 

and the diverse student body, both in terms of demographics and 

measures of performance, was a key determinant in selecting 

these log data to represent students’ first-year experience.  

All data were de-identified. The dataset contained 91.7 million 

time-stamped entries recording log data between each device 

being connected to a particular WiFi access point. Each entry 

contained a unique user ID, a timestamp, a timestamp when a 

device was disconnected from a WiFi access point, a WiFi access 

point descriptor which (often) included a physical location such 
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as a building name and room number, and the device MAC 

address (Table 1).  

Table 1. De-identified sample WiFi data 

ID Timestamp Session End Access point MAC 

A1234 2018-09-24 

08:00:00 

NA TWC-1023 XYZ123 

A1234 2018-09-24 

08:02:00 

NA TWC-2013 XYZ123 

B2314 2018-09-24 

08:00:03 

2018-09-24 

08:00:55 

BAHR-1210 XYZ125 

C2153 2018-09-24 

08:00:05 

NA CQTB-3734 XYZ121 

The data were pre-processed by dropping all records generated by 

MAC addresses that were connected to access points within a 

single building, because they were likely to be stationary devices, 

such as computers at the libraries or lecture halls. Second, we 

computed a “connected time” feature for each user by subtracting 

two consecutive timestamps (t2-t1). For example, the connected 

time for user A1234 to access point TWC-1023 was 2 minutes 

(Table 1). The connected time feature is important for the 

subsequent network modeling, which requires a co-located time 

between any two users. Since the connected time could be biased 

when a device became disconnected (i.e. students left the 

building), we removed all data entries which contained a session 

end’s timestamp. After the pre-processing, we retained 80.9 

million records of 3,910 users, and these records were joined with 

the demographic information and final grades for a semester. 

2.2 Analysis 

2.2.1 Compute co-located time 
To draw inferences about the network structure from WiFi data, 

we created an undirected weighted one-mode network (i.e. user-

user). A tie’s weight equaled to the total amount of co-located 

time between two users. Figure 1 visualizes the temporal changes 

in WiFi access points of two users on a particular date from 08:00 

to 20:00. These two users spent a large amount of time in the 

morning at a fixed WiFi access point, possibly attending a lecture. 

In the afternoon, these two users shared the same access points 

for 2 hours. After that, each user went on about their day to 

different areas on campus.     

 
Figure 1: Temporal changes in WiFi access points of two users 

throughout a day. The boxed area indicates a two-hour period 

where these users shared the same access point 

The co-located time between each pair of users was computed 

using the roverlaps package and stored in a 3910 x 3910 

adjacency matrix.   

2.2.2 Exponential random graph models (ERGMs)  
RQ1 seeks to understand how demographic characteristics (e.g. 

gender, ethnicity, minority, under-representative, family income, 

parents’ educational level), and academic performance relate to 

the formation of ties amongst students. Specifically, we model if 

students from the same background or having the same academic 

performance were more likely to form a connection. We used 

Exponential Random Graph Model (ERGM) techniques which 

have been used to explore homophily in network formation in 

educational data previously [9, 13, 14]. ERGM, also known as a 

p* model, is a stochastic model that specifies the probability of 

the entire network as a function of its network properties [31].  

P(Y = y) = exp(θ′g(y)) / k(θ) 

• Y is the network realization;  

• y is the observed network;  

• g(y) is a vector of model statistics for network y;  

• θ is the vector of coefficients for those statistics, and  

• k(θ) represents a normalizing factor, calculated as the 

sum of exp(θ′g(y)) over all possible networks. 

This can be expressed as the conditional log-odds of a single tie 

between two actors i and j:  

logit(Yij = 1|yijc) = θ′δ(yij) 

where θ is the coefficient and δ(yij) is a change statistic. 

To translate this into our context, ERGM was used to estimate the 

likelihood, expressed in conditional log-odds of two students 

being connected, given the similarity in their demographic 

characteristics and course grades. Model fit was examined with 

AIC and BIC (the lower the better model fit) and visual plots. 

An important analytical decision was taken when weighted ties in 

our spatial temporal network were transformed into binary 

relations. To do so, we applied a filtering technique called dyadic 

thresholding. That is, a tie between two students would be kept 

when its weight was more than two standard deviations above the 

mean of all weights across all students. In other words, two users 

were considered to have a social connection when they spent a 

large proportion of their time on campus around each other.    

To address RQ2, we applied a time window slicing technique to 

create separate ERGMs for a network that captured every month 

of activities from September to December. We then compared the 

changes in network homophily based on demographics and 

academic performance across four months.  

Finally, for RQ3, network indices at the level of a node/student 

were incorporated in mixed-effect regression models. The models 

predicted grades as a function of demographics and network 

properties. To test the relationship between peer performance and 

predicted grade, we incorporated two features: 1) the average 

grade of the most frequently co-located peer, and 2) the average 

grade of five most frequently co-located peers into the model.  

All the analyses were carried in R 3.6.2. ERGMs were fit using 

the statnet package [31, 32], mixed-effect regression models 

were run with the lme4 package [33]. A simulated dataset and 

the code will be made available on Github. 

(https://github.com/quan3010/EDM20_Nguyen). 

3. RESULTS 

3.1 Network description 

The data for network construction was comprised of 80.9 million 

log events of 3,910 users over four months. From that, we derived 

a weighted, undirected network with over 6.54 million weighted 

ties. An average co-located time between two students was 0.98 

hours, with a standard deviation of 12.37 hours. This weighted 

graph was converted into an unweighted graph network by setting 

a cut-off value equal to two standard deviations about the mean, 

i.e.  25.74 hours. Thus, in the modelled network two users shared 

a tie only if they spent at least 25.74 hours together over a four-

month period. The final network had 3,910 users and a total of 
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18,704 ties. In such a network, the median number of ties was 8 

with maximum of 63 ties. For 50% of the students the range of 

connections was from a minimum of 3 peers to a maximum of 14. 

The average co-located time between two users was 120 hours, 

with a minimum of 25.74 hours, median of 38 hours, and a 

maximum of 1397.62 hours. 

Table 2. Frequency statistics of demographic and grades 

Gender N Percentage 

Male 1969 50.4% 

Female 1941 49.6% 

Ethnicity   

White 2207 56.4% 

Asian 763 19.5% 

Hispanic 337 8.6% 

Mixed 214 5.5% 

Not Indic 197 5.0% 

Black 187 4.8% 

Native American 5 0.1% 

Minority status   

Non-minority 2365 60.5% 

Minority 1346 34.4% 

International 199 5.1% 

Underep stats   

Non-Underrepresented Minority 3083 78.8% 

Underrepresented Minority 628 16.1% 

International 199 5.1% 

Family income   

> $200,000 1043 26.7% 

$150,000-$199,999 355 9.1% 

$100,000-149,999 563 14.4% 

$75,000-$99,999 243 6.2% 

$50,000-$74,999 266 6.8% 

$25,000-$49,999 366 9.4% 

< $25,000 217 5.6% 

NA 847 21.7% 

Grade_letter   

A-, A, A+ 1295 33.1% 

B-, B, B+ 1671 42.7% 

C-, C, C+ 664 17.0% 

Below D 140 3.6% 

Withdraw 120 3.1% 

 

1 Household income is self-reported on admissions data. 

NA 20 0.5% 

Table 2 provides descriptive statistics for 3,910 students in this 

study. There was a rough balance in the number of female and 

male students. This is important since homophily can occur at 

random, for instance when a relative size of a subgroup is 

markedly different. White was the most frequent ethnicity, 

followed by Asian and Hispanic. A third of the sample identifies 

as an ethnic minority and 16.1% was categorized as under-

represented minority. The family income distribute are right-

skewed with over a quarter of students report household income 

of over $200,0001. Academic performance in this semester 

followed a bimodal distribution with of the majority of students 

performed at the A-range and B-range.   

3.2 Homophily based on demographics and 

grades 

Table 3 reports the results of three ERGM models. Model 1 serves 

as the baseline model, which accounts for the density of the 

network. The log-odds of a tie was -6.01 which translates to a 

probability of a tie exists equal to 0.24% (i.e. 18,704 ties divided 

by a total of 7.64 million possible ties). 

In model 2, we added five nodal attributes, including gender, 

ethnicity, ethnic minority status, under-represented minority 

status, and family income, to explore homophily related to 

demographics. Our results showed that students from the same 

gender were more likely to form a tie than those with different 

gender, with the probability of a same-gender tie being 62%. 

Ethnicity and underrepresented minority status of the student did 

not have any statistically significant effect on the formation of 

network ties. This may be explained by the effect of the minority 

variable, which already accounted for ethnicity and unrepresented 

groups. Although a social connection was more likely to exist 

between students from the same minority group (i.e. non-

minority, international, minority), the effect was marginal with a 

probability of only 54%. Family income also had a small effect 

on the formation of ties. The probability of ties to exist between 

two users with the same family income was 53%. 

Table 3. Homophily effects of demographics and grades 

 Model 1 Model 2 Model 3 

ties -6.010*** -6.375*** -6.444*** 

 (0.007) (0.016) (0.017) 

gender  0.479*** 0.479*** 

  (0.015) (0.015) 

ethnic  -0.006 -0.008 

  (0.022) (0.022) 

minority  0.157*** 0.161*** 

  (0.021) (0.021) 

underrep  0.004 -0.004 

  (0.018) (0.018) 

family_income  0.135*** 0.132*** 

  (0.021) (0.021) 

grade_letter   0.211*** 

   (0.015) 

AIC 262,286 261,101 260,913 

BIC 262,300 261,184 261,010 
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Note:  *p<0.1; **p<0.05; ***p<0.01  

Coefficients calculated in log-odds, standard errors in brackets 

Finally, in model 3, we added student’s grades to examine 

homophily related to academic performance. The probability of a 

tie among same-grade students was 55%. To conclude, we 

observed a strong homophily network effect in gender, and 

marginal effects in minority identity, family income, and 

academic performance. Spatial-temporal networks also captured 

the commonly observed patterns of social homophily. This 

suggests that spatial-temporal networks reflected the social 

connections underpinning the co-location patterns. 

The measures of homophily based on demographics have 

important implications to the understanding of diversity and 

inclusivity in higher education. The mere presence of structural 

diversity in student body (i.e. the proportional representation of 

groups of students from different backgrounds) does not 

guarantee the interactions between these diverse groups (Puritty 

et al., 2017). Homophily measures could serve as an indicator of 

how diverse and inclusive the social interactions between students 

are. A highly homophilous network could signal social 

segregation, and to some extent, inequality in student body as 

students are less likely to form a connection with peers who are 

demographically different than themselves. The use of WiFi data 

could support the design of physical spaces/educational activities 

that increase the likelihood of spatial co-occurrences between 

diverse groups of students.  

However, we are careful to draw inferences as to what the 

homophily represents. Our models do not control for types of 

building, or events that take place on campus. It is plausible that 

spatial temporal networks capture both the networks formed 

based on foci of activity (classes, living arrangements, cafeteria 

visits for students with similar schedules) as well as social ties. 

For instance, gender homophily could be explained by the 

majority of freshman students sharing their living space with 

same-gender peers in a residential building on campus. In this 

case, co-located time between roommates and dormmates would 

be the highest among freshmen. We did not find any evidence of 

homophily between different ethnicities per se. However, we 

observed homophily between different ethnic identities, such as 

ethnic minority (i.e. Black, Asian, Mixed, Hispanic), ethnic non-

minority (i.e. White), and international (i.e. mostly Asian). In 

other words, there was evidence for inter-ethnic co-location 

within ethnic minorities.  

As can be seen in the model, the addition of the terms decreased 

the AIC/BIC suggesting improved model fit. We did not manage 

to fit any of the conventional closure terms, such as popularity 

(e.g. geometrically weighted degree distribution) or transitivity 

(e.g. geometrically weighted edgewise shared partners), into the 

model. Visual examination of the goodness of fit suggested that 

the model was fit in predicting dyadic-level observations but was 

limited in reproducing the network structure. These results 

suggest that the model either requires to add control variables 

about the events/reasons for co-location (e.g. lectures, 

Thanksgiving breaks, exam periods), or that the networks need to 

be separated to have a more elaborate operationalization of co-

location (e.g. residential building, libraries, classrooms).   

3.3 Temporal changes in social networks 

To examine the changes in the homophily over time, we ran the 

ERGM model with the same specification for a network capturing 

co-location in each month (Sep, Oct, Nov, Dec). The coefficients 

of each model were visualized in Figure 2.  

Figure 2. Temporal changes in homophily effects of 

demographics and grades on network formation (* p < 0.01) 

 
We can observe an increasing trend in homophily based on gender 

over time. The probability of a same-gender tie increased from 

61% in September to 69% in December. There was a small 

increase in the homophily based on grade in October and 

November but it then decreased in December. The homophily 

effect of minority identity and family income remained constant 

over time.  

One potential explanation for the increasing trend in gender-based 

homophily is that students started expanding their social circle 

with people in the same dorm hall/residential building, who are 

likely to have the same gender. This could also be explained by 

the participation in fraternity and sorority activities for freshman. 

As a result, we observed an increase in same-gender co-location 

over time as students formed new connections within a fraternity 

and sorority. Finally, previous studies [29, 30] also observed the 

intersectional nature of grade-based performance, i.e. high-

performing boys are likely to form ties with high performing 

boys, and the same applies to girls. The consistent trend in 

performance-based homophily could be explained by the fact that 

this is the first semester and not only are students new to the 

institution, but university academic performance was generally 

not available until the end of the semester. Results suggest that it 

could be interesting to examine the temporal changes in 

performance-based homophily over a longer time period, 

especially in sophomore and senior students.  

This finding has important implication to the research of social 

interactions between students. More often than not, social 

relations in educational research are collapsed under a static and 

dichotomous category (e.g. yes/no). In reality, the formation of 

social relations is a highly dynamic and time-variant process. For 

example, students could become closer with certain peers while 

more distant with others as time goes by. Students’ social circle 

could be more elastic during their freshman year but gradually 

form a close-knit group as they approach their senior year. The 

networks inferred from WiFi data allow us to explores many 

questions about the evolution in social interactions between 

students over time, which could not previously be answered with 

self-report social network surveys.  

3.4 Predicting academic performance 

We applied mixed-effect regression models to control for the 

heterogeneity between courses (Table 4). Grade letters were 

converted into numeric format as per institutional guidelines, with 

a maximum value of 4.0. Our findings indicated that in the 

courses we studied, male students on average achieved 0.08 grade 
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points higher than female students. Compared to students with a 

family annual income over $200,000, which accounted for a 

quarter of our dataset, students with a family income of $75,000, 

$50,000, and $25,000 had 0.13, 0.30, and 0.43 grade points lower 

respectively. The effect of family income became marginal and 

non-statistically significant once it is above $100,000. Students 

from an under-represented minority (i.e. Black, Hispanic, and 

Native American) also had on average 0.30 grade points lower 

than a non-underrepresented minority (i.e. Asian, Mixed, and 

White).  

All three network indices had a positive and statistically 

significant relation with academic performance. On average, each 

additional tie increased a student’s final course grade by 0.014 

grade points. For each grade point increase in the most frequently 

co-located peer, the student’s grade increased by 0.07 grade 

points. For each additional point increase in the average grade of 

the five most frequently co-located peers, a student’s grade 

increased by 0.15 grade points. It is important to note that our 

results so not imply a causal relationship. The finding could be 

explained by a homophily effect (i.e. students co-located with 

similarly performed peers) or a roommate effect (i.e. 

performances of co-located peers influence a student’s 

performance).  

 

Table 4. Effects of demographics and network on grades 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Male 0.055* 0.071** 0.075** 0.082** 0.080** 

 (0.023) (0.025) (0.025) (0.025) (0.025) 

Ethnicity (ref= White)   

Mixed -0.036 -0.111 -0.065 -0.060 -0.070 

 (0.135) (0.177) (0.175) (0.174) (0.174) 

Asian 0.033 0.026 0.070 0.076 0.059 

 (0.122) (0.166) (0.164) (0.163) (0.163) 

Black -0.358* -0.304 -0.269 -0.254 -0.253 

 (0.149) (0.189) (0.187) (0.187) (0.187) 

Hispanic -0.041 -0.049 -0.025 -0.012 -0.019 

 (0.143) (0.183) (0.181) (0.181) (0.180) 

Native Am -0.295 -0.239 -0.141 -0.143 -0.129 

 (0.357) (0.374) (0.369) (0.368) (0.367) 

Ref = Non-minority     

Internatnl 0.239* 0.174 0.173 0.174 0.183 

 (0.109) (0.151) (0.149) (0.149) (0.149) 

Minority 0.043 0.067 0.028 0.020 0.033 

 (0.125) (0.168) (0.166) (0.165) (0.165) 

Ref = Non-underrepresented minority 

Underrep -0.319*** -0.297*** -0.314*** -0.305*** -0.304*** 

 (0.081) (0.090) (0.089) (0.089) (0.089) 

Family income (ref=above $200,000)  

$199,999  0.007 -0.007 -0.012 -0.010 

  (0.042) (0.042) (0.042) (0.042) 

$149,999  -0.082* -0.091* -0.085* -0.082* 

  (0.036) (0.035) (0.036) (0.036) 

$99,999  -0.086 -0.081 -0.094* -0.089 

  (0.048) (0.047) (0.048) (0.047) 

$74,999  -0.133** -0.139** -0.131** -0.131** 

  (0.048) (0.047) (0.047) (0.047) 

$49,999  -0.280*** -0.309*** -0.303*** -0.298*** 

  (0.042) (0.042) (0.042) (0.042) 

$25,000  -0.460*** -0.452*** -0.446*** -0.429*** 

  (0.053) (0.053) (0.053) (0.053) 

No. of ties   0.014*** 0.014*** 0.014*** 

   (0.002) (0.002) (0.002) 

Closest peer    0.106*** 0.072*** 

    (0.016) (0.019) 

5 close peers     0.150*** 

     (0.040) 

Constant 3.114*** 3.193*** 3.059*** 2.717*** 2.345*** 

 (0.130) (0.129) (0.142) (0.149) (0.176) 

Obs 4,422 3,554 3,554 3,500 3,500 

AIC 9,872.995 7,945.483 7,871.099 7,733.857 7,726.519 

BIC. 9,956.122 8,068.999 8,000.792 7,869.388 7,868.211 

Note: *p<0.05; **p<0.01; ***p<0.001 

4. CONCLUSION 

This paper explores the use of WiFi data of 3,910 students in Fall 

2018 in understanding student physical on-campus connections. 

Specifically, we explore if spatial-temporal student networks 

reflect homophily based on demographics and academic 

performance expected in social networks. Network connections 

were inferred when two users exhibited a high level of co-located 

time (i.e. connecting to the same WiFi access point in the same 

time window). We found evidence of homophily with regards to 

gender, ethnic minority identity, family income, and academic 

performance. Gender-based homophily is particularly interesting, 

given that the composition of the student body has equal share of 

both genders and that this homophily increased significantly over 

time. This suggests that observed homophily is not baseline, but 

largely structural. That is, the organization of physical space, as 

well as curricular and extracurricular activities may create 

opportunities for gender-based homophily on campus. Exploring 

this further may be useful in understanding the effect of various 

institutional (e.g. gender-based meetups, structured study 

sessions, or mentoring workshops) and non-institutional (e.g. 

gender-based social activities, such as fraternity and sorority 

functions and enrollments) activities on the development of friend 

and support networks. 

In addition, we found that the number of ties and the average 

performance of the most frequently co-located peer(s) were 

predictive of academic performance. This is in line with extant 

literature on self-reported peer effects [29], or the effects of peers 

observed from academic records [24]. Contextualizing this 

relationship and determining signals for specific causal activities 

is a clear next step. 

From a theoretical perspective, our results confirmed homophily 

with regards to demographics and academic performance. At the 

same time, we extended the findings to capture the temporal 

changes in homophily within a semester. Our findings suggest 

that the tendency to form (co-located) connections may vary over 

time and more longitudinal studies are needed to understand the 

mechanism behind dynamic homophily.  

From a methodological perspective, we demonstrated a novel 

application of spatial-temporal data in the study of student social 

networks, which have primarily relied on self-reports and log-

data from discussion forums. This opens up a new venue to 

capture social interactions between students on campus on a large 
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scale and with fine-grained granularity. Importantly, this can be 

achieved without the need to collect additional data beyond what 

has been already collected by the university wireless networks. 

Location data inferred from WiFi access points can be considered 

as less invasive than using mobile phone’s GPS or location-

sensors to track users’ location [15, 16]. Future research could 

combine self-report, discussion forum data, and location-based 

data to form a more holistic picture of student social networks and 

to triangulate findings from multiple data sources.  

From a practical perspective, this study highlighted several 

factors that determine the formation of network among college 

students as well as their effect on academic performance. Such 

results may be useful to institutions in designing or evaluating 

location-based initiatives to promote gender, ethnicity, and 

culture diversity and inclusivity on campus, as well as to support 

ethnic minority, underrepresented minority in social integration 

during their time in college. There are opportunities to better 

understand the impacts of learning communities (e.g. themed 

residences for groups of students, such as Women in STEM 

communities), of co-curricular activities and their placement on 

campus (e.g. guest speakers or academic support groups), and 

even architectural planning (e.g. the relationship between 

dormitories and classrooms or libraries) through these methods.  

4.1 Limitations 

The data used does note capture the use of non-university run 

network (e.g. cellular networks), when students choose to go 

offline (e.g. intentionally by powering down their phone or due to 

low battery), or in spaces on campus without access to university 

network. There is also an inherent messiness which comes with 

the use of multiple or shared devices, the former of which is very 

common and increasing with the use of wearables. Network 

inference based on co-located time is further be biased when 

students co-locate by random chance or by sharing common 

activities (i.e. attending lectures, going to the libraries, going to 

the gym) but do not interact with one another. Similarly, it is 

possible for students to be in completely different rooms yet 

connected to the same access point depending upon the wireless 

network and building topologies, introducing further noise to 

social network models. As a result, there might be hidden bias 

when using networks inferred from location data for predictive 

purposes. More sophisticated network inference techniques may 

be helpful in understanding this, such as weight/tie reshufflings 

or spatial/temporal simulations [34], and better cataloging of 

network endpoints (e.g. classroom, office, hallway) may be 

helpful in modeling social network relationships. 

Finally, the modeling techniques used with the limited dataset 

chosen required significant computing power. More fine-grained 

temporal analyses (e.g. weekly or daily models), a longer time 

frame (e.g. a full academic year or throughout the students’ 

academic career), and increased data (e.g. from more courses and 

non-freshman students) will only increase the need for 

computational power. 

4.2 Concerns with the Use of Wi-Fi Data 

WiFi data is highly sensitive data and the security of the 

collection, storage, and analysis of such data is of utmost 

importance. As is appropriate, we sought IRB oversight of our use 

of this data and worked with institutional data governance teams 

to ensure the data we received was appropriately stored, was de-

identified, and was as minimal as possible to support our analyses. 

At the same time, we feel it incumbent upon us to note that 

research access to such data is under threat by the potential misuse 

of educational location data for non-research purposes, which 

does not have to undergo IRB review. Specifically, some have 

begun to incorporate location data into formative evaluation of 

students. Location data is captured not only through WiFi, but 

also Bluetooth beacons and student mobile application software 

(which may be required), and has been used in an identifiable way 

to assign students grades based on location (attendance in class) 

[35]. While there are broad discussions of agency, privacy, 

paternalism, and ethics which the authors have positions on, the 

purpose of this section of the paper is to raise the importance such 

data has in understanding teaching and learning, and to encourage 

researchers in the field of Educational Data Mining (EDM) to 

voice opinions on the value of de-identified location data and it’s 

use in educational research. 
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