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PREFACE

For this 13th iteration of the International Conference on Educational Data Mining (EDM 2020), the
conference was held completely online. EDM is organized under the auspices of the International
Educational Data Mining Society in Montreal, Canada. The conference, held July 10th through
13th, 2020, follows twelve previous editions (Montreal 2019, Buffalo 2018, Wuhan 2017, Raleigh
2016, Madrid 2015, London 2014, Memphis 2013, Chania 2012, Eindhoven 2011, Pittsburgh 2010,
Cordoba 2009, and Montreal 2008).

The official theme of this year’s conference is Improving Learning Outcomes for All Learners. The
theme comprises two parts: (1) Identifying actionable learning or teaching strategies that can
be used to improve learning outcomes, not just predict them. (2) Using EDM to promote more
equitable learning across diverse groups of learners, and to benefit underserved communities in
particular. This year’s conference features three invited talks: Alina von Davier, Chief Officer
at ACTNext; Abelardo Pardo, Professor and Dean of Programs (Engineering), at UniSA STEM,
University of South Australia; and Kobi Gal, Associate Professor at the Department of Software
and Information Systems Engineering at Ben-Gurion University of the Negev, and Reader at the
School of Informatics at the University of Edinburgh.

Building on the policy started in 2019, EDM 2020 used a double-blind review process. The confer-
ence’s Program Committee was also significantly expanded compared to 2019 in an effort to reduce
the average load per reviewer and thereby increase the quality of reviews. This year we received a
total of 98 full-paper submissions and 64 short-paper submissions. From the full-paper submissions,
30.6% were accepted as full papers, 16.3% were accepted as short papers, and 15.3% were accepted
as posters. From the short-paper submissions, 21.9% were accepted as short papers and 23.4% were
accepted as posters.

Review & Decision Processes: For transparency and possible benefit of future EDM conferences,
we are providing a detailed description of the paper review and decision processes for the Full and
Short paper tracks at EDM 2020:

1. After all papers were submitted, the Program Committee (PC) and Senior Program Committee
(SPC) members bid on which papers they would like to review.

2. If committee members did not bid on papers after several reminders, bids were entered for
them. This was done automatically via the EasyChair conference management system if the
committee members had entered topics. Otherwise, one of the Program Chairs entered topics
for the committee members based on examining publications in their Google Scholar profile;
these topics were then used to automatically create bids.

3. Given the PC and SPC bids, the Program Chairs assigned papers to reviewers using Easy-
Chair’s automatic assignment option. This assignment maximizes the total score of the as-
signment, with high weight on matches where the bid was a “yes”, medium weight on matches
where the bid was a “maybe”, and low weight on matches where the bid was a “no”. Each
paper was assigned to one SPC member and two PC members. Each PC member received at
most 5 papers, and each SPC member received at most 4 papers. The automated reviewing
assignment was manually checked to ensure fairness to reviewers in being primarily assigned
papers for which they had entered positive bids, fairness to papers in being primarily assigned
reviewers who had bid positively on that paper, and that automatic conflict detection had ac-
curately detected conflicts. One set of changes involving three papers was made based on this
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manual check due to assigning a paper to a reviewer that she had bid “no” on and that did not
match her stated topics of expertise. In a separate change, another swap was made to prevent
a reviewer from being assigned their own paper, as the authorship and reviewer information
on EasyChair did not exactly match.

4. In an effort to increase the mean and decrease the variance in review quality, the Program
Chairs defined reviewing guidelines, both for the PC and the SPC. These guidelines were
posted to the EDM 2020 website and also linked in emails sent to reviewers.

5. At the end of the review period, the Program Chairs identified papers that received fewer
than 3 reviews, as well as papers whose reviews were clearly lacking (e.g., just 1-2 sentences).
Emergency reviewers (including the Program Chairs) were identified, and papers were assigned
to them.

6. The Program Chairs examined the meta-reviews and acceptance/rejection recommendations
for all papers. For any papers lacking a meta-review, the Program Chairs read the reviews and
the paper, wrote a meta-review, and arrived at a recommendation for acceptance/rejection.

7. Papers were ranked by their unweighted average review scores. The Program Chairs then
manually identified and examined papers in “critical regions” of the ranking in which there
was large variance in the meta-reviewers’ decision recommendations (Accept as Full, Accept
as Short, Accept as Poster, Reject). The goal here was to ensure that, in the opinions of
both Program Chairs, all papers accepted as either Full or Short exhibited sufficient rigor for
publication as such. When in doubt, the more conservative outcome (i.e., Accept as Short
rather than Full, or Accept as Poster rather than Short) was chosen. In particular:

(a) For the Full paper track, the following range was calculated: Let mf be the lowest score
of any paper recommended by its meta-reviewer for “Accept as full”, and let ns be the
highest score of any paper recommended by its meta-reviewer for “Accept as short”. For
any paper recommended for “Accept as full” whose score was in [mf , ns], the Program
Chairs discussed the paper and decided jointly whether to Accept as Full or Short. This
deliberation focused on the question: “Do the reviewers point out important methodological
or other fundamental problems that could significantly threaten validity?”

(b) The analogous process (both for papers submitted as Full, and for papers submitted as
Short) was applied to papers whose unweighted average review scores were in the range
[ms, np], where ms is the lowest score of any paper recommended for Accept as Short and
np is the highest score of any paper recommended for Accept as Poster.

(c) All other papers – i.e., those whose unweighted average review scores were outside of the
ranges described above – were accepted/rejected according to the recommendation of their
assigned meta-reviewer.

During all aspects of both the Review and Decision processes, no Program Chair examined or han-
dled any paper on which he/she was a co-author; any such paper was seen and handled exclusively
by the other Chair to avoid a conflict of interest. (No papers were co-authored by both Program
Chairs.)

Note that papers submitted to the Industry, Doctoral Consortium, Poster/Demo, and Workshop
components of EDM 2020 had their own reviewing processes that were defined by the corresponding
chairs in consultation with the Program Chairs. Papers published in the Poster/Demo track are
the union of those submitted & accepted as Posters/Demos, and those submitted to either the Full

Proceedings of the 13th International Conference on Educational Data Mining ii



Preface

or Short tracks that were accepted as Posters.

Posters/Demos: In addition to the Full or Short paper submissions that were accepted as posters
mentioned above, there was a dedicated Poster/Demo track to which papers could be submitted
directly. This track accepted 14 contributions out of 17 submissions.

JEDM: Together with the Journal of Educational Data Mining (JEDM), the EDM 2020 confer-
ence held a JEDM Track that provides researchers a venue to deliver more substantial mature work
than is possible in a conference proceeding and to present their work to a live audience. The papers
submitted to this track followed the JEDM peer review process. Two JEDM papers are featured
in the conference’s program.

Industry: The main conference invited contributions to an Industry Track in addition to the main
track. The EDM 2020 Industry Track received 6 submissions of which 5 were accepted.

Doctoral Consortium: The EDM conference continues its tradition of providing opportunities
for young researchers to present their work and receive feedback from their peers and senior re-
searchers. The doctoral consortium this year features 19 such presentations.

Paper Topics: In terms of topics of all submitted papers, the table below lists the most popular
keywords associated with papers as selected by the authors themselves from a keyword list created
by the Program Chairs:

Topic # Paper Submissions
Log files/transaction logs 105
Modeling student learning 72
Other supervised machine learning 63
Post-secondary/College 55
Assessment 53
Intelligent tutoring systems 49
Natural language 48
Neural networks & deep learning 42
Unsupervised learning and clustering methods 41
Supporting teachers 33
MOOCs 30
K-12 classrooms 30
Building frameworks for EDM 30
Predicting attrition/drop-out 24
Data visualization methods 19
Informal learning environments 17
Collaborative learning 17
Images/video 17
Adult learning 17
Game-based learning 16
Multimodal analytics 15
Topic modeling 14
Closing the loop between research and practice 14
Advancing theories of learning 14
Building domain knowledge models 13
Bayesian models 12
Equity and fairness in EDM 10
Lab-based experiments 10
Socio-emotional learning and affect 8
Physiological sensors 8
Crowdsourcing 7
Social network analysis 6
Lifelong learning 6
Reinforcement learning 5
Treatment effect estimation 3
Causal inference techniques 2
Issues of Accessibility in Learning 1
Audio 1
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Test of Time Award: Following in the footsteps of last year’s conference, EDM 2020 also includes
an invited talk by the authors of the 2019 winner of the EDM Test of Time Award. This year’s
talk is delivered by Ryan Baker and Kalina Yacef.

Workshops & Tutorials: In addition to the main program, there are workshops and tutorials
on: Causal Inference in Educational Data Mining; Educational Data for Mining in Computer Sci-
ence Education (CSDM); FATED: Fairness, Accountability, and Transparency in Educational Data
(Mining); Reproducibility and Replication of Analytic Methods with LearnSphere; The Learner
Data Institute: Big Data, Research Challenges, & Science Convergence in Educational Data Sci-
ence; and An Introduction to Neural Networks.

Coronavirus: This year’s conference was originally arranged to take place in Ifrane, Morocco. Due
to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences
in 2020, had to be changed to a purely online format. This presented some difficulties, especially of
how to engage and encourage interaction among participants using just Zoom and other online tools
rather than face-to-face meetings. However, it also significantly reduced the costs of conducting
and attending the conference since physical meeting spaces, air travel, and on-site lodging were no
longer necessary – and this arguably increased our conference’s accessibility. To facilitate efficient
transmission of presentations, especially given that not everyone’s Internet connection could be
guaranteed to be stable, we required all paper presenters to pre-record their presentation as a video
and then to host it on YouTube. Moreover, we asked that all presenters enable closed-captioning
(CC), for the benefit of deaf people and those hard of hearing, as well as non-native English speakers
who prefer to read than to listen to audio.

Thanks: We thank ACTNext as a sponsor of EDM 2020 for its generous support, especially during
this financially difficult time of the coronavirus. We are also grateful to the individual conference
chairs, the senior program committee, regular program committee members, sub-reviewers, emer-
gency reviewers, and IEDMS board members, without whose expert input and hard work this
conference would not be possible. Finally, we thank the entire organizing team and all authors who
submitted their work to EDM 2020.

Anna N. Rafferty Carleton College, USA Program Chair
Jacob Whitehill Worcester Polytechnic Institute, USA Program Chair
Cristobal Romero University of Cordoba, Spain, General Chair
Violetta Cavalli-Sforza Al Akhawayn University in Ifrane, Morocco General Chair

June 23rd, 2020
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Best Paper Selection

Nominees for Best Paper Award were all full papers with an average review score greater than
2, where the average review score was weighted by the reviewer’s self-reported confidence. These
papers were sent to and evaluated by all the board members of the International Educational Data
Mining Society (IEDMS) who were not co-authors of one of the nominated papers. These board
members selected the recipient of the Best Paper and Best Student Paper awards.

Best Paper Nominees: The nominated papers were:

1. Mike Wu, Richard Davis, Benjamin Domingue, Chris Piech and Noah Goodman. “Variational
Item Response Theory: Fast, Accurate, and Expressive.”

2. Nigel Bosch, Wes Crues, Najmuddin Shaik and Luc Paquette. “‘Hello, [REDACTED]’: Pro-
tecting Student Privacy in Analyses of Online Discussion Forums.”

3. Adam Sales and John Pane. “The effect of teachers reassigning students to new Cognitive
Tutor sections.”

4. Nathan Henderson, Vikram Kumara, Wookhee Min, Bradford Mott, Ziwei Wu, Danielle Boulden,
Trudi Lord, Frieda Reichsman, Chad Dorsey, Eric Wiebe and James Lester. “Enhancing Stu-
dent Competency Models for Game-Based Learning with a Hybrid Stealth Assessment Frame-
work.”

Note that papers #1 and #4 above were also nominated for the Best Student Paper Award.
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Online Collaborative Student Group Learning

Keynote

Kobi Gal
Ben-Gurion University of the Negev, and University of Edinburgh

Abstract
Collaborative student learning has been shown to lead to significant academic benefits among students, and to improved social
skills that are critical for the workforce, such as communication and teamwork. However, these benefits were limited to small
face-to-face groups and required the support of human experts who actively monitored and guided the group’s learning.

Technological advances now enable globally dispersed teams to collaborate online, from Q&A forums to virtual laboratories.
Augmenting these settings with AI technology can scale up the benefits of collaborative group learning to online groups.

I will describe challenges to EDM research for supporting this new type of online teamwork, as well as opportunities for
combining AI and learning analytics towards supporting students’ learning and teachers’ understanding of how students
learn.

Biography
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Contextualising Data Mining within Educational
Experiences

Keynote

Abelardo Pardo
University of South Australia

Abstract
The use of technology to mediate learning experiences provides an unprecedented amount of information that can be used
to increase our understanding and improve the overall quality of those experiences. However, learning in general is strongly
mediated by a very rich set of contextual factors. The two crucial steps to translate data into knowledge, sensemaking and
deriving actions, are especially sensitive to these factors, and as such, need to be carefully considered to maximise positive
outcomes. Areas such as personalisation are highly sensitive to the context in which each learner is engaged in an experience.
Data-intensive techniques need to factor in these elements and assure learners are not adversely affected by situations ignored
or inadequately handled by algorithms. This talk aims to explore how data mining applications can be properly situated to
have a positive impact in specific aspects such as learning outcomes or connecting insights derived from data analysis with
actions.

Biography
Abelardo Pardo is Professor and Dean of Programs (Engineering), at UniSA STEM, University of South Australia. His
research interests include the design and deployment of technology to increase the understanding and improve digital learning
experiences. More specifically, his work examines the areas of learning analytics, personalized active learning, and technology
for student support.

He is the author of over 150 research papers in scholarly journals and international conferences in the area of educational
technology and engineering education. He is currently member of the executive board and president of the Society for Learning
Analytics Research (SoLAR).
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An AI-enabled Ecosystem for Learning & Assessment

Keynote

Alina von Davier
ACTNext

Abstract
AI-based tools, integrative technology and standards for various purposes in education have undergone significant development
in the past few years. The vision is to build towards processes and/or parts thereof that are automatic and seamlessly
integrated. In this presentation I will illustrate the architecture of a fluid infrastructure to effectively support learning and
assessment systems. Each component is designed within a computational framework (AI blended with psychometrics) and
each connection relies on construct taxonomy, database alignment, data exchange standards, and APIs.

I will describe a key AI-based content generator, Sphinx, developed at ACTNext. I’ll use the ACTNext Educational Companion
App as an example of how the pieces come together. Last but not least, I’ll show how voice-based interface can be integrated
within the versatile systems. The work has been conducted with an interdisciplinary team at ACTNEXT.

Biography
Alina von Davier, PhD., is the Chief Officer at ACTNext, a multidisciplinary innovation unit that is part of ACT and was
founded in 2016. Her team is comprised of experts in fields ranging from psychometrics and learning sciences to software
development, and artificial intelligence (AI) & machine learning (ML). Von Davier and her team operate at the forefront
of Computational Psychometrics, an emerging interdisciplinary field concerned with the application of theoretical and data-
driven computational methods and statistical modeling of multimodal, large scale/high dimensional learning and assessment
data. Prior to leading ACTNext, von Davier was a senior research director at Educational Testing Service (ETS) where she
led the Computational Psychometrics Research Center. Previously, she led the Center for Psychometrics for International
Tests, where she was responsible for both the psychometrics in support of international tests, TOEFLR© and TOEICR©, and
the scores reported to millions of test takers annually.

Von Davier is currently an adjunct professor at Fordham University and the president of the International Association of
Computerized Adaptive Testing (IACAT). She currently serves on the board of directors for the Association of Test Publishers
(ATP), and she is also a member of the board of directors for Smart Sparrow and of the advisory board for Duolingo.
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When is Deep Learning the Best Approach to Knowledge
Tracing?

Theophile Gervet, Ken Koedinger, Jeff Schneider and Tom Mitchell
Carnegie Mellon University

Abstract
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized
feedback and materials adapted to their level of understanding. Given a learner’s history of past interactions with an ITS,
a learner performance model estimates the current state of a learner’s knowledge and predicts her future performance. The
advent of increasingly large scale datasets has turned deep learning models for learner performance prediction into competitive
alternatives to classical Markov process and logistic regression models. In an extensive empirical comparison on nine real-
world datasets, we ask which approach makes the most accurate predictions, in what conditions. Logistic regression – with
the right set of features – leads on datasets of moderate size or containing or containing a very large number of interactions
per student, whereas Deep Knowledge Tracing leads on datasets of large size or where precise temporal information matters
most. Markov process methods, like Bayesian Knowledge Tracing, lag behind other approaches. We follow this analysis with
ablation studies to determine what components of leading algorithms explain their performance and a discussion of model
calibration (reliability), which is crucial for downstream applications of learner performance prediction models.

Citation
Theophile Gervet, Ken Koedinger, Jeff Schneider and Tom Mitchell (2020). When is Deep Learning the Best Approach to
Knowledge Tracing?. JEDM, Journal of Educational Data Mining, 12(3), (to be published).

Theophile Gervet, Ken Koedinger, Jeff Schneider and Tom
Mitchell "When is Deep Learning the Best Approach to
Knowledge Tracing?" In: Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020), Anna N.
Rafferty, Jacob Whitehill, Violetta Cavalli-Sforza, and Cristobal
Romero (eds.) 2020, pp. 4

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 4



Who’s learning? Using demographics in EDM research

Luc Paquette
University of Illinois at
Urbana-Champaign
lpaq@illinois.edu

Alexandra Andres
University of Pennsylvania

alexandraandres@gmail.com

Jaclyn Ocumpaugh
University of Pennsylvania
ojaclyn@upenn.edu

Ryan Baker
University of Pennsylvania
ojaclyn@upenn.edu

Ziyue Li
University of Illinois at
Urbana-Champaign

ziyueli3@illinois.edu

Abstract
The growing use of machine learning for the data-driven study of social issues and the implementation of data-driven decision
processes has required researchers to re-examine the often implicit assumption that data-driven models are neutral and free of
biases. The careful examination of machine-learned models has identified examples of how existing biases can inadvertently be
perpetuated in field such as criminal justice – where failing to account for racial prejudices in the prediction of recidivism can
perpetuate or exasperate them – and natural language processing – where algorithms trained on human languages corpora have
been shown to reproduce strong biases in gendered descriptions. These examples highlight the importance of thinking about
how biases might impact the study of educational data and how data-driven models used in educational context may perpetuate
inequalities. To understand this question, we ask whether and how demographic information, including age, educational-level,
gender, race/ethnicity, socio-economic status (SES) and geographical location, is used in Educational Data Mining (EDM)
research. Specifically, we conduct a systematic survey of the last five years of EDM publications that investigates whether
and how demographic information about the students is reported in EDM research and how this information is used to 1)
investigate issues related to demographics, 2) use the information as input features for data-driven analyses or 3) to test and
validate models. This survey shows that, although a majority of publication reported at least one category of demographic
information, the frequency of reporting for different categories of demographic information is very uneven (ranging from 5%
to 59%) and only 15% of publications used demographic information in their analyses.
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ABSTRACT
Educational software data promises unique insights into stu-
dents’ study behaviors and drivers of success. While much
work has been dedicated to performance prediction in mas-
sive open online courses, it is unclear if the same methods
can be applied to blended courses and a deeper understand-
ing of student strategies is often missing. We use pattern
mining and models borrowed from Natural Language Pro-
cessing (NLP) to understand student interactions and ex-
tract frequent strategies from a blended college course. Fine-
grained clickstream data is collected through Diderot, a non-
commercial educational support system that spans a wide
range of functionalities. We find that interaction patterns
differ considerably based on the assessment type students
are preparing for, and many of the extracted features can be
used for reliable performance prediction. Our results suggest
that the proposed hybrid NLP methods can provide valuable
insights even in the low-data setting of blended courses given
enough data granularity.

Keywords
Student Strategies, Blended Courses, hybrid NLP methods

1. INTRODUCTION
Data collected through educational software systems can
provide promising starting points to address hard questions
rooted in the learning sciences. Modern education relies in-
creasingly on these systems to assist teaching and grading,
manage learning content, provide discussion boards, facili-
tate group work, or replace the traditional class room setting
altogether. While blended courses revolve around the tradi-
tional class room setting accompanied by task-specific soft-
ware support, Massive Open Online Courses (MOOCs) are
usually entirely virtual and often involve video lectures and
hundreds to thousands of students in a single course. Al-
most by design, these systems come with unprecedented op-
portunities for large scale data collection on students’ study
habits, content exposure and learning trajectories.

Much of the previous research effort has been directed to-
wards performance prediction with the overall rationale that
reliable estimation of students’ grades and dropout proba-
bility at early course stages can be used to devise Early
Warning Systems (EWSs) [e.g. 31, 19, 30, 7]. Despite con-
siderable success in this area, many performance prediction
models suffer from a list of shortcomings. Prior work on per-
formance prediction from student online activity data has
predominantly focused on MOOCs [e.g. 8, 28, 25], and it
is unclear if the same methods can be applied to blended
courses [3]. In most blended courses, some of the learning
activity takes place offline and cannot be tracked which leads
to relatively shallow data on only fragments of courses. In
addition, many of the features that can be derived are sim-
ple and coarse summary statistics of students’ online activity
data, e.g. counts of clicks or logins, that only have a limited
capacity to reflect the often complex strategies students take
when interacting with course material.

A detailed understanding of how students interact with ed-
ucational systems and the strategies they take is crucial for
reliable performance prediction. We thus seek to under-
stand how students approach learning in blended courses
based on the second half of a sophomore level college course
in computer science. Our data is drawn from Diderot, a
non-commercial educational software system developed at
Carnegie Mellon University which spans functions for virtu-
ally all course components outside of face-to-face class and
recitation times, and thereby allows us to overcome many of
the challenges that are generally faced when mining blended
courses. Despite evident similarities, there are several im-
portant characteristics which differentiate our blended learn-
ing setting from the study of MOOCs. Most importantly,
our data spans relatively few students and student actions
which constitutes a challenge for many of the previously pro-
posed methods. In addition, we have access to data that is
unique to in-person classes such as individual attendance,
and the nature of our activity data facilitates contextual-
ization of student behavior which promises to increase the
interpretability of downstream prediction models.

In this paper, we place a dual focus on methodology and ed-
ucational insights. On the one hand, we propose new model-
ing pipelines based on ideas from natural language process-
ing that work well in the low-data setting of blended courses.
On the other hand, we apply both new and existing meth-
ods to Diderot data and gain valuable insights into student
behavior while addressing the following research questions:
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RQ1 How do students interact with course material, and
what are frequent strategies they take?

RQ2 How do students use these strategies for homework
solving as compared to exam preparation?

RQ3 Are student strategies indicative of grade outcomes?

The remainder of this paper is outlined as follows. We dis-
cuss related work in Section 2, and proceed to give some con-
text for the data in Section 3. Section 4 describes our meth-
ods including the preprocessing of clickstream data, and we
discuss our results in Section 5. Finally, conclusions are
drawn in Section 6.

2. RELATED WORK
2.1 Analysis Of Online Student Behavior
Raw data from educational software systems often comes
in the form of time-stamped student actions with an ar-
ray of suitable identifiers. Evidence for correlations between
activity log-based features and performance outcomes are
plentiful. Many of the commonly discussed features revolve
around simple summary statistics such as counts of cer-
tain types of actions, and have been shown to be indica-
tive of students’ success particularly in MOOCs. Recent
lines of research find links between general course comple-
tion in MOOCs and the number of watched videos [39, 9],
the number of question answer attempts [9], and the time
spent on assignments [4]. Similar results have been observed
for blended courses but are much scarcer [40, 16]. In [16], the
authors analyze sequences of transitions between different
online platforms in two undergraduate level college courses.
Their study finds that, although students are generally more
likely to stay on the same platform in a study session, high
achieving students transition more often and are more likely
to use the discussion board. In many cases, the limited
amount of data in blended courses is problematic and can
lead to complications such as zero-inflated count variables.

A major shortcoming of count-based methods is their failure
to leverage the sequential structure of students’ interactions
with educational software systems. Both the order and the
time difference between actions promise to carry valuable in-
formation that can be taken into consideration when relying
on sequence based methods instead. In this work, we pro-
pose a pipeline for analyzing student online behavior based
on session study sequences. While the order of actions is
taken into account explicitly, time differences help us to de-
rive reliable study sessions.

2.2 Study Sessions
Sequence-based approaches to processing online student ac-
tivity data group student actions into smaller sessions. In
the case of click actions, these sequences are generally re-
ferred to as clickstreams. The goal when breaking a flow of
actions into session clickstreams is to maintain some notion
of interpretability, i.e. to devise meaningful study sessions.
While this appears to be easy in some cases, it is generally
non-trivial to find automated cut-offs rules that find sensible
representations of study sessions for a large and diverse set
of clickstreams at once.

Previous research suggests several different strategies to split
clickstreams. The authors of [8] choose fixed duration time
frames to group student actions from a several months long
MOOC. The researchers decide for durations between one
day and one month and show some success in the down-
stream prediction of student achievements with their choices.
Similar fixed durations are used in [2]. Another popular
splitting strategy is based on time-out thresholds where a
new sub-session is started when no action was performed in
a predefined time window [32, 5, 36, 12, 13]. The authors
of other studies go one step further and combine the ap-
proaches by first, splitting at a fixed duration cut-off and
second, at data-driven timeout thresholds of 15 minutes
for ‘study sessions’ and 40 minutes for ‘browser sessions’
[16]. Similar data-driven approaches are pursued in [45, 40].
Other common heuristics include splitting at navigational
criteria such as reloading of the course page [26].

On a high level, the problem of devising meaningful sub-
sessions is closely related to the problem of time-at-task es-
timation in web-usage mining. Ideally, study sessions reflect
time periods in which students interact with the material
without any major breaks or distractions. There is a rich
body of literature on time at task estimation that suggests
that there is no one-fits-all solution to finding suitable time
windows to split activity streams at [e.g. 26, 6, 11]. Previ-
ous research suggests that the exact splitting heuristic can
have a significant effect on overall model fit, model signifi-
cance, and even interpretation of findings in the downstream
modeling tasks [26]. In [26], the authors explore the effect
of 15 different time-at-task estimation procedures on five
different models of student performance. Overall, the au-
thors conclude that there is no universally best method and
recommend a mixture of existing methods including data-
driven components. Following this suggestion, we employ a
multi-step splitting procedure including navigational crite-
ria, data-driven time-out thresholds, and separation of as-
sessment weeks inspired by the procedure in [16].

2.3 Sequence Analysis
Different methods have been proposed to process sequence-
type student action data dependent on the amount of data,
the length of sequences, and the goal at hand. Several lines
of research rely on Markov chains and hidden Markov mod-
els which lend themselves well to visualization of sequences,
but can make quantification of group differences in outcomes
challenging [15, 14, 20]. Another commonly used class of
methods is clustering of activity sequences [13, 23, 17]. Us-
ing data from three large MOOCs, the authors of [23] draw
on simple k-means clustering of sequences of interactions
with video lectures and assessments and observe four high-
level student trajectories: completing assessments, auditing
the course, disengaging after a while, and sampling content.
In order to cluster the sequences, the authors rely on a nu-
merical translation of student actions. The authors of [13]
cluster and visualize students’ interactions with a college
math environment, and instead rely on Levenshtein distance
to measure the distance between sequences. Some works
combine Markov models and clustering to account for the
randomness introduced by the Markov models and report
more robust results [41, 27, 24].

Although the described methods allow for a relatively easy
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grouping of sequences, interpretation of clusters can be non-
obvious. One way to address this problem is to deliber-
ately focus on finding relevant sub-parts of action sequences.
Methods based on this goal can be summarized under the
term pattern mining, and are both wide-spread and diverse.
A relatively recent approach is given by differential pattern
mining which focuses on automatically extracting patterns
that are both above a certain threshold in frequency, and suf-
ficiently different among groups of interest (e.g. high and low
achieving students) [22, 21]. Other lines of research rely on
more traditional data mining techniques [18, 35], or extrac-
tion of n-grams, i.e. sub-sequences of n consecutive actions
[8, 33, 44, 37]. The authors of [33] use a multi-step proce-
dure to extract frequent n-grams that are subsequently used
to identify different strategies in a collaborative interactive
tabletop game. Part of our analysis is based on a similar
approach to extract frequent behavioral patterns, and com-
bines ideas of n-gram extraction and clustering to get more
robust results.

A different class of promising methods is rooted in Natu-
ral Language Processing (NLP). Hybrid language models
lend themselves well to the sequential structure of education
data, and their use for student activity sequences has lead to
some success in retrieving patterns and creating new visual-
izations. The underlying idea is that, given sufficiently fine-
grained data, students’ sequential actions resemble words
building sentences and can be attributed some ‘semantic
meaning’. The NLP toolbox has not yet been explored fully,
but some attempts to using language models for educational
data are noteworthy and relevant for the context of our work.
The authors of [44] use topical n-gram models to automat-
ically extract ‘topics’ in the form of frequent patterns from
clickstreams. In [37], the authors train a skip-gram neural
network to receive a structure preserving vector embedding
of the types of clicks student can make. After standard di-
mensionality reduction, the researchers are able to provide
a new kind of visualization of students’ trajectories through
the course. Since modern NLP models generally require
large amounts of granular training data, work relying on
these models has exclusively focused on MOOCs so far. In
this study, we draw on Latent Dirichlet Allocation (LDA) in
order to automatically extract frequent patterns and com-
pare derived student strategies against the results of a more
traditional n-gram pipeline. In some sense, LDA is similar
to the ideas proposed by [44] but requires less training data
which renders it particularly useful for blended courses. In
addition, we use an adapted form of the skip-gram model
proposed by [37] in order to explore the context of student
actions in our data. To the best of our knowledge, this is
one of the first works to employ NLP methods for analysis
of blended courses.

3. DATA
3.1 Data Context: Diderot
The data this study builds on was collected through the ed-
ucational software system Diderot. Diderot is a cloud-based
course support system commonly used to assist undergrad-
uate and graduate level college courses. The system spans
a wide range of functionalities including sharing of lecture
notes, a discussion board (called post office), in-class at-
tendance polls, homework submission, and automatic code
grading. This bandwidth usually renders the use of addi-

Figure 1: Histogram of the number of clicks per student. We
observe 138,960 clicks spread between 164 students (top).
Number of clicks over observation period with assessment
deadlines highlighted (middle). Kernel density estimates for
log-distribution of waiting times between clicks dependent on
type of last click after splitting at assessment weeks and Load

course actions. Final cut-offs at 5 and 60 minutes are indi-
cated by vertical lines (bottom).

tional outside technological course support unnecessary. In
turn, the student usage data collected from Diderot can give
an almost comprehensive view on students’ course partici-
pation outside of face-to-face class times.

When it comes to sharing of lecture notes, Diderot takes
a more granular and interactive approach as compared to
traditional learning management systems. Content is split
into small sub-entities (called atoms) which are displayed in
a linear fashion following the outline of a chapter. Atoms are
highly interactive and come with a variety of clickable icons
that allow students to take notes, bookmark, follow, or like
atoms, and, in particular, to ask questions concerning their
content. Discussions about course material that are sparked
in this way are visually attached to the respective atom,
allowing other students to submit comments. This setup
results in much richer data on interactions with lecture notes
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than we can expect from PDF formatted lecture material.

Most student usage data from Diderot is presented by in-
dividual, time-stamped click actions that come with vari-
ous identifiers coding the exact type, user, and location of
the interaction. In turn, the activity data can be broadly
separated into navigation (e.g. Load course, Click link,
Search), discussion (e.g. Go to post office, Create post),
and behaviors (e.g. Like atom, Follow post).

3.2 Data Description And Exploration
Our data is drawn from the second half of a large sophomore-
level computer science course taught at Carnegie Mellon
University in spring 2019. Since data is not available for the
first part of the course due to initial technical difficulties,
we exclude all students who dropped the course throughout
the semester. One additional student was excluded based
on inflated click patterns which suggested an attempt at
automatically scraping content. Along with the click data,
we rely on performance information measured by homework
and exam grades, as well as student-level lecture and recita-
tion attendance logs. All data is collected through Diderot
and matched based on anonymous student identifiers. A
summary of the click data over the seven week observation
period is displayed in Figure 1.

Types of clicks. At finest granularity, Diderot allows for sev-
eral tens of thousands distinct click actions within a single
course since every individual click is associated to a fully
specified object and activity. However for the sake of analy-
sis, we group clicks into different types where the appropri-
ate level of granularity is non-obvious. We aggregate clicks
based on the type of object they refer to as well as the ac-
tivity performed. In order to maintain interpretability, this
aggregation is performed separately in each sub-part of the
course given by lecture notes, homework material, recitation
notes, a library documentation (which is comprised of cod-
ing references), and practice exams. This leaves us with 37
different click types, the most common of which are summa-
rized in Table 1.

Grades and types of assessment weeks. Performance out-
comes are measured by percentage grades in five homeworks
and two exams (a midterm and final exam) that fall into
the observation period. This naturally divides the data
into seven assessment weeks with a deadline for a homework
problem set or exam at the end of each period. Deadlines are
approximately evenly spaced with only one extended home-
work period of 11 days after the midterm exam (which also
spans over a four day spring holiday), followed by a shorter
homework period of only 5 days. We take interest in relating
students’ study behavior to two distinct outcome variables:
(1) The type of the assessment week, i.e. homework dead-
line or exam, and (2) the percentage grade students received
in the respective assessment. As depicted in Figure 1, there
are visible spikes of increased activity before the assessment
week deadlines especially before the two exams. In addition,
we note that the distribution of grades appears notably dif-
ferent between homeworks and exams which is confirmed by
a two-sample Kolmogorov-Smirnov test (p < 0.001). While
the distribution of exam grades is approximately bell-shaped
with heavy tails and a slight left-skew, i.e. more particularly
high scores than particularly low scores, the homework grade

Table 1: Summary of the most frequent click types.

Click type Count Share

View chapter in lecture notes 24,420 17.57 %

View general post 21,555 15.51 %

Load course 19,677 14.16 %

View post office 16,231 11.68 %

View atom post 15,468 11.13 %

View homework atom 7,888 5.68 %

distribution is left-skewed with additional modes at 0 and
100. This difference in distributions is unsurprising as ex-
ams are generally graded on a curve and cannot be skipped
by students, while homeworks allow for more variability.

Class attendance. Attendance in lecture and recitation ses-
sions was taken with Diderot polls. If a student participated
in the poll, which was generally only open for a few minutes,
it was assumed that they attended the session. We treat
attendance in lectures and recitations separately and aggre-
gate the binary information on an assessment week basis by
taking the mean. In turn, student’s attendance scores lie
between 0 and 1 with the exception of the final exam week
which is not associated to any contact class time.

4. METHODS
4.1 Session Clickstreams
In raw form, each student is associated with a single click-
stream which consists of ordered click actions over the whole
observed time period. We employ a multi-step procedure to
split this data into more meaningful study sessions. First,
we divide the clickstreams based on assessment weeks. Sec-
ond, we split the resulting sub-clickstreams each time a
Load course action is recorded, and last, we choose a data-
driven timeout threshold to further break up the resulting
sequences.

In order to find a suitable timeout threshold, we employ a
technique similar to [16] and examine the distribution of
time differences in the sub-sequences. We find that the
distribution of waiting times supports a wide range but is
rapidly decaying. While 75 % of clicks are made within 2.81
minutes or less, a small subset of clicks has time differences
of up to 7 days. Figure 1 shows kernel density estimates of
log-transformed minutes until the next click within the sub-
clickstreams obtained after the second step of our procedure.
Different estimates are obtained for distinct categories of ac-
tions. While the logarithmic distribution of post-related and
miscellaneous clicks is unimodal with the majority of follow-
up clicks made within one minute, the distribution for clicks
related to homework and lecture notes has an additional
mode at about 5-10 minutes. This disparity is unsurpris-
ing given that most actions can be expected to be short,
while reading through lecture notes or homeworks can be
a more lengthy process. In order to preserve both types of
sessions, we separate clickstreams at a 60 minutes threshold
if the last action was loading of lecture notes or homework
related content, and at 5 minutes otherwise. As a result, we
obtain a total of total of 35,703 session clickstreams where
each clickstream has between one and 115 clicks with mean
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Figure 2: Skip-gram neural network. The hidden layer lin-
early transforms one-hot encoded inputs while the softmax
output layer approximates the probability that each given
click type appears in the same context as the input click. Af-
ter training, the weights of the hidden layer provide a struc-
ture preserving embedding of click types.

of 3.98 clicks and standard deviation of 6.23; 75% of session
clickstreams have at most 4 clicks.

4.2 Context Of Click Types
We explore the contexts in which different types of clicks are
made in order to gain some understanding of how students
generally use the course support system. This is crucial
since Diderot is a fully integrated interactive platform that
allows the same type of click in contexts that can have differ-
ent interpretations. Inspired by [37], we tackle this problem
by devising a structure-preserving embedding of the click
types into a real-valued vector space, i.e. each click type is
mapped onto a vector such that click types that appear in
the same contexts or are interchangeable are close to each
other. This type of embedding can be obtained from a skip-
gram model which is a common supervised two layer neural
network model often used for language type data (see Fig-
ure 2).

Training data for the model is build by extracting pairs of
neighboring click types from the session clickstreams. More
concretely, each input click is paired with each click appear-
ing within some index in the same clickstream. Both the
window size and the number of hidden units are important
hyperparameters. Since most of our clicks are short and we
seek an embedding of only 37 clicktypes, we explore small
values for both parameters, i.e. window sizes in {1, 2} and
embedding sizes in {3, 4}. After this small grid search, we
only retain the model with the lowest average training loss
in the last 2000 training steps. In order to speed up train-
ing, we rely on mean noise-contrastive estimation (NCE)
loss where 8 negative classes are sampled for every batch
instead of computing the entire softmax output. All models
are trained over a maximum of 300,000 training steps with
SGD with learning rate 1 and a batch size of 512. Training
is terminated early when the average loss over 2000 training
steps does not change considerably for 5 consecutive non-
overlapping 2000-step periods. Because training the model
is only the surrogate task in order to obtain the embedding,
we train on all available data which comprises 206,514 or
363,260 pairs dependent on the window size.

4.3 Frequent Pattern Extraction
4.3.1 Clustered n-grams

We refer to finite sub-sequences of clickstreams as frequent
patterns if they appear various times across different stu-
dents, study sessions, and assessment weeks. Our goal is
to automatically extract frequent patterns which represent
some kind of strategy or high level task students are ful-
filling. As an example, the sequence [Login - View post

office - View general post] could be interpreted as an
attempt to catch up on the course news.

Pattern mining in educational data mining can lead to rel-
atively unstable results. In order to increase robustness, we
examine and compare the results of two distinct procedures
for frequent pattern extraction. The first method resembles
the procedure proposed by [33], and consists of a multi-step
procedure which first extracts a large set of candidate pat-
terns, and then narrows the selection down by similarity
grouping. Formally, we proceed according to the following
steps:

(1) All n-grams. We extract n-grams, i.e. consecutive sub-
sequences of n clicks, from the session clickstreams.
Since we expect very short patterns to be uninter-
pretable, and particularly long patterns are rare in our
dataset, we choose n = 3, 4, 5.

(2) Candidate patterns. Only the most frequent patterns
are kept as candidates for further analysis. Follow-
ing some experimentation, we choose to keep the most
frequent 1 % of patterns of each length.

(3) Hierachical clustering. The set of candidate patterns
can be expected to be repetitive in the sense that pat-
terns might be similar but vary in length or differ in
a single click action but yield the same interpretation.
To address this issue, we automatically group candi-
date patterns by agglomerative clustering with average
linkage. The number of clusters, and thus of final fre-
quent pattern categories, is chosen by visual inspection
of the model’s dendrogram.

The final step of this procedure requires us to specify a no-
tion of similarity between patterns. In some sense, it is
natural to draw on a string distance measure as sequences
of clicks resemble many of the characteristics we would ex-
pect from natural language. While the authors of [33] draw
on the traditional Levenshtein distance, we choose the Jaro-
Winkler distance between two patterns p1, p2 measured by
1− jw(p1, p2), where jw(·, ·) denotes the Jaro-Winkler simi-
larity. Jaro-Winkler distance is an adaptation of more tradi-
tional edit distances which takes the sequence length as well
as common starting sub-sequences into account. This allows
more sensible measuring of similarities between repetitive
patterns of different lengths such as the 3-gram [View gen-

eral post - View general post - View general post] and
the 5-gram [View general post - View general post - View

general post - View general post - View general post].
Intuitively, the two patterns should have a low distance and
in fact, their Jaro-Winkler distance is approximately 0.093
while their normalized Levenshtein distance is 0.4. For our
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purpose, we treat each click as a character that can be ex-
changed or transposed for a penalty on the distance. Then,
the Jaro similarity is defined as

j(p1, p2) :=

{
0 if m = 0,
1
3

(
m
|p1|

+ m
|p2|

+ m−t
m

)
else,

where m is the number of matching clicks within an index
window of b(max{|p1|, |p2|}/2)c−1, and t is half the number
of required transpositions for matching clicks. Further, the
Jaro-Winkler similarity is defined as

jw(p1, p2) := j(p1, p2) +
l

10
(1− j(p1, p2)),

where l is the length of a common starting sequence between
p1 and p2 (at most 4). The additional scaling ensures that
distances are normalized to lie in [0, 1].

4.3.2 Topic Model
The clustered n-grams procedure of extracting frequent pat-
terns is easy to implement and model-free. However, it re-
quires us to choose several hyperparameters such as the size
of n-grams, the share of candidate patterns, or the num-
ber of clusters. It is also likely that the exact choice of the
edit distance in the clustering step has a non-negligible ef-
fect on the observed results. In order to test our results
for robustness, we employ a second method for pattern ex-
traction and compare the resulting student strategies. This
method draws on the idea that session clickstreams resem-
ble sentences, individual clicks resemble words, and there is
some notion of semantic to a sequence of clicks. Based on
these similarities, we use Latent Dirichlet Allocation (LDA),
a common NLP model that allows automatic extraction of
topics from written documents.

LDA is a Bayesian model which, in our case, is build on
the assumption that each session clickstream is a mixture of
patterns and each pattern is a mixture of clicktypes. We use
the words pattern and topic interchangeably here. While the
clickstreams (and hence clicktypes) are given to the model,
the topics are latent and can be inferred from the fitted
model. The prior on the session clickstream generation as-
sumes that M clickstreams of lengths N1, . . . , NM are drawn
according to the following steps. (1) Draw a topic distribu-
tion θi ∼ Dirk(α) for each i = 1, . . . ,M , where k is the
number of topics. (2) Draw a click type distribution for
topics φi ∼ DirV (β) for each i = 1, . . . , V , where V is the
number of different click types. (3) For each click position
i, j with i ∈ {1, . . . ,M} and j ∈ {1, . . . , Ni}, first, choose a
topic according to zij ∼Multinomial(θi), and second, draw
a click type from wij ∼ Multinomial(φzij ). LDA comes
with three hyperparameters: the prior Dirichlet parameters
α and β which express some prior belief on how the mixtures
of topics and click types are composed, and the number of
latent topics k. While we set the prior Dirichlet parameters
to suggested default values, i.e. normalized asymmetric pri-
ors, the number of latent topics requires some more thought.
Recent research suggests the use of topic coherence measures
for comparison of models with different choices of k [34, 43].
On a high level, topic coherence attempts to measure se-
mantic similarity between high scoring words (or here click
types) in each topic which gives some indication of how in-
terpretable the topics in question are. We experiment with

several numbers of topics ranging around the number of fre-
quent patterns extracted by the clustered n-gram technique.
Since no significant differences in coherence can be observed,
we resort to using the same number of topics as for the clus-
tered n-gram method for the sake of comparison.

4.4 Prediction Models
Frequent patterns counts as features. In order to explore
what role the extracted strategies play in homework solving
versus exam preparation and whether they drive success,
we build two prediction models based on patterns counts
from the clustered n-gram method. For this, a represen-
tative pattern of 3 clicks is chosen for each of the devised
strategy clusters, and its occurrences in each of the session
clickstreams is counted by comparing against each 3-gram
derived from the clickstream. Since we cannot expect the
chosen pattern to accurately represent the whole cluster, we
allow a Jaro-Winkler distance up to 0.2 when comparing the
sub-sequences. This procedure allows matching of click se-
quences with only one replacement (1−jw(abc, abd) ≈ 0.18),
one transposition (1 − jw(abc, acb) ≈ 0.10), or one replace-
ment and one trasposition (1 − jw(abc, adb) ≈ 0.20). In
order to build student and assessment week based predic-
tion models, we aggregate pattern counts along assessment
weeks and individual students by simple addition. Similar
methods have been employed by [8, 29, 42, 10].

Predicting assessment type. A random forest classifier is
trained to predict the assessment type, i.e. homework or
exam, from frequent pattern counts, the number of clicks,
and the number of session clickstreams a student has within
a given week. In practice, it is unlikely that we would need to
predict the assessment type as it is usually known. However
when paired with careful analysis of feature importance and
partial dependence, such model can yield valuable insights
into the most important differences in student behavior be-
tween homework and exam weeks. We use 80 % of the 1,148
student-week combinations for training and hold back 20 %
as test set. Hyperparameters including the maximum tree
depth, the maximum number of features to consider at splits,
the minimum number of samples per leaf, and the number
of trees are chosen by a grid search over a range of values,
where models are trained with 5-fold cross validation on the
training set. Our model draws on Gini impurity to measure
the quality of splits, and we evaluate feature importance
based on the mean decrease in impurity (MDI) associated
with splitting at a given feature when predicting Y . For a
set of fitted trees T = {T1, . . . , TN}, the MDI of a feature
Xm is defined as

MDI(Xm) =
1

N

∑
T∈T

∑
t∈T :v(st)=Xm

p(t)∆i(st, t), (1)

where p(t) is the proportion of samples that reaches node
t, v(st) is the variable used to split st, and ∆i(st, t) is the
decrease of impurity generated by the split.

Predicting grade outcomes. Similar to the assessment type
prediction model, we train a random forest regressor to pre-
dict students’ grade outcomes based on strategy counts, the
number of clicks, the number of session clickstreams, and at-
tendance information. The additional consideration of lec-
ture and recitation attendance requires us to remove all ob-
servations from finals week, since no face-to-face class time
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Figure 3: Euclidean distances of click type embeddings based
on skip-gram neural network. Darker color suggests that em-
bedding are close. Proximity in the embedding space suggests
clicks generally appear in similar contexts. Rows and columns
are clustered for visualization.

has taken place in the last week of the course. Since this con-
stitutes half of all exam observations in the data and grade
distributions of homeworks and exams are significantly dif-
ferent (p < 0.001), we limit our prediction model to home-
work grade prediction entirely. Of the 820 homework sam-
ples, 80 % are used for training and 20 % for testing. A grid
search of hyperparamters with 5-fold cross-validation on the
training set is performed, and feature importance is mea-
sured analogous to Equation 1 with the MSE as impurity
measure.

5. RESULTS
5.1 RQ1 How do students interact with course

material, and what are frequent strategies
they take?

5.1.1 Context Of Click Types
In order to gain some initial understanding of online student
behavior, we explore the contexts in which different types of
actions are performed by deriving a skip-gram neural net-
work based embedding of actions. After exploring a small
grid of hyperparameter values, our skip-gram is trained on
data pairs with window size 1 to learn a 4-dimensional em-
bedding. Figure 3 depicts the Euclidean distances between
the embedding vectors of different click types based on the
model. Proximity of embeddings suggests that click types
either appear in a similar context, i.e. within a few clicks
of each other, or are interchangeable actions, i.e. have the
same context. In other words, by exploring which actions lie
close to a given click type in the embedding space, we can
gain some insight into the set of clicks students typically

make right before and after. It is noteworthy that some
types of actions appear together by design of the Diderot
system, e.g. in order to comment on a post, the post has
to be loaded. Figure 3 reflects many of these expected re-
lations which gives some validation to our methodological
approach.

Our results suggest several broad clusters of student actions.
The block in the upper left corner of Figure 3 appears to fo-
cus on active discussion participation including click types
such as Like post or Create comment. The next block is
somewhat close to many of the active discussion actions and
concentrates on scrolling through the discussion board repre-
sented by View post office type actions. Although more
rigorous statistical analysis is needed, the results suggest
some interesting interpretations:

(1) Students ask more questions about homeworks than
about any other course materials. This interpretation is
based on the proximity of Create post to View home-

work atom which appears to be much closer than any
other View atom type action. This suggests that stu-
dent questions, comments and clarifications are more
common for homework material than for lectures notes,
recitation material, practice exams, or the library doc-
umentation.

(2) Students are more likely to interact with course-wide
posts than material specific discussions. The action
View general post is close to interactive behavior such
as Create comment, Like post or Follow post while
View atom post appears to be performed mostly in a
different context. This suggests that discussion-specific
reactions and interactions concentrate mostly on gen-
eral posts such as course announcements or social posts
and are less common for questions and comments con-
cerning particular parts of the course materials.

Overall, context analysis for click types based on skip-gram
neural networks provides us with some valuable understand-
ing of students’ use of Diderot. The same method might be
useful to other practitioners, in particular, for initial explo-
ration of data collected through educational software sys-
tems. It appears that interpretable low-dimensional embed-
dings of a medium number of action types can be obtained
with only a few weeks worth of data from a a single col-
lege course which renders this method particularly useful
for blended courses.

5.1.2 Frequent Pattern Extraction
Patterns are extracted with two distinct methods, and sub-
sequently interpreted in terms of underlying student strate-
gies. A summary of the results and comparison between the
methods is given in Table 2. The left side of the table shows
the results of the clustered n-gram pipeline for pattern ex-
traction. The most frequent 1% n-grams for each n = 3, 4, 5
are extracted from the session clickstreams. This yields a
candidate set of 223 sequential patterns which are clustered
into 9 groups based on agglomerative clustering with aver-
age linkage and Jaro-Winkler distance as distance function.
The number of clusters is informed by visual inspection of
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Table 2: Comparison of student strategies extracted by clustered n-gram method and LDA. Patterns in the first block (B1)
consist of exactly the same click types, while other patterns show differences but allow for similar interpretations (B2). Lastly,
the LDA method finds a mixture of practice exam related patterns and a new load course pattern (B3).

Clustered n-gram method LDA method

Student strategy Associated click types Student strategy High weight click types

B1 Look at lecture notes View lecture notes chapter (75.88 %) Look at lecture notes View lecture notes chapter (1)

Look at homeworks View homework chapter (100 %) Look at homeworks View homework chapter (0.826)

Look at recitation
material

View recitation chapter (100 %) Look at recitation
material

View recitation chapter (0.712)

B2 Catch up on news View general post (52.04 %), View
main post office (24.3 %), View atom
post (16.13 %)

Catch up on news View general post (0.543), View
main post office (0.410)

Active homework
engagement

View atom post (50 %), View
homework atom (31.02 %), View
general post (10.65 %)

Active homework
engagement

View atom post (0.653), View
homework atom (0.344)

In-depth review of
lecture notes

View lecture notes atom (50 %),
View atom post (28.57 %), View
lecture notes chapter (21.43 %)

In-depth review of
lecture notes

View lecture notes atom (0.483),
View atom post (0.31), Click link
lecture notes (0.195)

Look at library
documentation

View library documentation chapter
(85.29 %)

Look at library
documentation

View library documentation chapter
(0.674), Search atom (0.321)

B3 Go through a
practice exam

View practice exam atom (100 %) Practice exams View practice exams chapter (0.658),
View practice exams atom (0.341)

Look at practice
exams

View practice exams chapter (100 %) Load course Load course (0.998)

the respective dendrogram. It is noteworthy that the clus-
ters appear to have imbalanced sizes with the largest cluster
including 106 candidate patterns, and the smallest clusters
containing only 2 or 3 of the candidate patterns. Yet, in-
spection of the associated click types and their in-cluster
frequencies allows for intuitive interpretations as student
strategies. Multiple of the devised strategies revolve around
passive review of materials such as lecture notes, homeworks,
recitation material, library documentation (which includes
code snippets for reference), or practice exams. More in-
volved strategies are given by active homework engagement,
in-depth review of lecture notes, catching up on course news,
and going through practice exams. For example, the catch-
ing up on course news strategy is associated with sequential
patterns involving reading of general posts, atom posts, and
loading the main post office page.

The right side of Table 2 summarizes the results of pat-
tern extraction based on Latent Dirichlet Allocation (LDA).
For the sake of comparison, we keep the number of ex-
tracted patterns fixed and derive 9 student strategies. By
assumption of the model, each pattern is a mixture of all
click types. In turn, extraction of weights is straightfor-
ward and we report the click types with highest weights
for each pattern. We find that multiple of the extracted
patterns match exactly the patterns retrieved with the clus-
tered n-gram method in the sense that they are based on
exactly the same click types (B1). Another set of patterns
shows small changes in included click types, but essentially
provides the same interpretation as the patterns found with
the first method (B2). Lastly, the LDA method finds a prac-
tice exam strategy which broadly presents a mixture of the
two practice exam related strategies from the first model,
and a load course strategy which almost entirely consists
of the Load course action (B3). The load course pattern
likely arises from the session clickstreams with a single click

which present 30.30% of the session clickstreams. A total
of 56.66% of these one-click sequences are Load course ac-
tions. Reasons for these single Load course clicks can be
manifold. In some cases, students might get distracted im-
mediately after loading the course, or they have to reload the
course multiple times. However, we hypothesize that in most
cases, the course overview page which is loaded when loading
the course provided all information the student was looking
for since it includes recent updates, posts and announce-
ments. Contrary to the clustered n-gram method which only
takes into consideration session clickstreams of at least three
clicks, LDA can leverage even these short clickstreams. Yet,
the additional insights gained through the load course pat-
tern are marginal since it very short and hard to interpret
as a strategy.

All in all, both methods roughly extract the same strategies
which speaks in favor of the validity of both approaches. One
could argue that the clustered n-gram method yields slightly
more tangible insights since the patterns present actually
frequently occurring sub-sequences. However for larger data
sets, the method can become computational expensive ren-
dering LDA a better choice.

5.2 RQ2 How do students use these strategies
for homework solving as compared to exam
preparation?

We extract strategy features for assessment week level pre-
diction models by matching session clickstreams against the
extracted frequent patterns. The results are summed up for
each student-week combination and thus roughly represent
how often a given student has used a strategy in a given as-
sessment week. After this aggregation, 91.03 % show at least
one occurence of one of the patterns. We generally expect
not all student click behavior to follow the extracted strate-
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Figure 4: Relative feature importance for assessment week
random forest prediction (1 = homework, 0 = exam) along
with 95 % confidence intervals (bottom) and partial depen-
dence plots for the most important features (top). Features
include strategy counts from the clustered n-gram method,
the number of clicks and the number of session clickstreams.

gies or stringent strategies at all. Thus, it is unsurprising
that some of the student week combinations do not involve
any of the patterns.

We train a random forest classifier to predict the assessment
type on pattern counts, the number of clicks and the number
of sessions within a given week. A total of 80 % of the data is
used for hyperparameter tuning and training, while 20 % is
withheld for testing. The model reaches a classification ac-
curacy of 93.68 % on the training data which constitutes an
evident improvement over the naive majority class predic-
tion (71.90 % of the training data have the label homework).
Based on a permutation test, we find that the model per-
forms better than random on the training set (p < 0.01). A
total of 100 permutations of labels were used for this eval-
uation. Accuracy on the test set is 93.91 % which suggests
sufficient generalization ability of the prediction model.

The prediction model results suggest that students use the
educational support system differently and employ the dif-
ferent strategies at different rates when preparing for exams
as compared to doing homeworks. We examine feature im-
portance in the model in order to gain more insights into
these differences. Figure 4 depicts the mean decrease in im-
purity (MDI) for splits at the different covariates, as well
as partial dependence of the predictions on the most impor-

tant features. We see that predictions are mainly driven by
pattern counts of the strategies look at lecture notes (MDI
= 0.395), in-depth review of lecture notes (MDI = 0.259),
look at practice exams (MDI = 0.140), and active home-
work engagement (MDI = 0.094). Partial dependence plots
show that while increased counts in the strategies related
to lecture notes and practice exam engagement increase the
probability that the model predicts an exam week, higher
counts in the active homework engagement strategy increase
the models likelihood of predicting an upcoming homework
deadline. These results suggest that students approach to
learning is driven by the kind of performance assessment
they are given. It appears that the increased activity in
exam weeks (see Figure 1) is largely based on increased en-
gagement with lecture notes and practice exams, while in-
teractions with the homework related content is generally
less pronounced.

5.3 RQ3 Are student strategies indicative of
grade outcomes?

We train a random forest regression model to predict home-
work grades on a individual week and student level. Fea-
tures include students’ strategy counts, the number of clicks,
the number of sessions, and the mean attendance in both
lectures and recitations. Training is conducted on 80 % of
available data while 20 % are withheld for testing. After
hyperparameter tuning with 5-fold cross validation, the pre-
diction model realizes a MSE of 0.046 on the training data
set. A permutation test based on 100 permutations of labels
shows a significant improvement over random performance
with this model (p < 0.01). On the test set, the model
attains a prediction MSE of 0.054 which suggests sufficient
generalization ability.

Figure 5 explores the importance of the different features
for predictions and displays partial dependence relations for
the most important covariates. Since we use MSE as im-
purity measure, the mean decrease in impurity (MDI) for a
given feature effectively corresponds to the mean decrease
in variance we receive by splitting at the feature. We see
that, in fact, the most relevant features appear to be the
number of clickstream sessions (MDI = 0.311), the num-
ber of clicks (MDI = 0.221), lecture attendance (MDI =
0.123), and recitation attendance (MDI = 0.112). Partial
dependence plots reveal that increases in any of the above
features increase the predicted homework score percentage
by a relatively large margin of up to 20 percentage points.
Conversely, strategy counts appear to be less relevant for
grade predictions with some exceptions. Most notably, the
predicted grade rises with the number of times students ac-
tively engaged in homeworks (MDI = 0.077).

Overall, our results show some success in prediction of home-
work grade outcomes. The extracted features, including
some of the pattern counts, add valuable information to the
prediction model. In particular, students who come back
to Diderot more often and thus use an increased number of
study sessions to solve their homeworks, and students who
generally interact with the system at high rates are predicted
to have better grade outcomes. In addition to time at task,
the mere attendance in lectures and recitations increases stu-
dents’ grade outcome predictions. In fact, students in the
our data set who attended at least one lecture in a given
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Figure 5: Relative feature importance for homework grade
random forest prediction along with 95 % confidence intervals
(bottom) and partial dependence plots for the most impor-
tant features (top). Features include strategy counts from
the clustered n-gram method, the number of clicks and ses-
sion clickstreams, and attendance information.

assessment week on average received a homework percent-
age grade of 76.58 %, while students who skipped lectures
on average scored 55.86 %. For recitation attendance this
corresponds to 74.34 % and 49.20 % respectively.

Both of the discussed prediction models provide valuable
insights for instructors and educational system design. The
tree-based ensemble methods are particularly suitable for
initial modeling and processing of features on different scales.
Their main advantage over many other models is the rel-
atively straightforward explainability of predictions given
partial dependence plots and measures of feature importance
which renders them a useful approach to high stakes at-risk
prediction.

6. CONCLUSIONS
Data from educational software systems provides insights
into students’ study behaviors. While performance predic-

tion in MOOCs has been explored extensively, similar stud-
ies for blended courses are scarce and often lack a deeper
understanding of the underlying student strategies. Based
on fine-grained contextualizable click data collected through
the non-commercial course support system Diderot, we ex-
plore how students interact with educational software sys-
tems, which strategies they employ to engage with course
materials and in which ways strategies depend on the as-
sessment type and drive performance. Our contributions are
two-fold: (1) We gain relevant understanding of students’
learning behavior that both confirms and adds to the exist-
ing literature. (2) We propose new NLP-inspired approaches
to analyzing student strategies’ based on clickstream data in
blended learning scenarios which typically come with mod-
erately sized data sets.

On the educational side, our results provide valuable insights
into how students interact with course systems. In line with
previous research [38, 1], we observe increased activity be-
fore deadlines, and, in particular, in the days leading up
to an exam. Exam preparation appears to come with in-
creased review of lecture notes as compared to homework
solving. In general, students seem to ask more questions
related to homeworks as compared to other class materials
such as lecture notes, recitation materials or practice exams.
At the same time, interactions with already existing posts
such as liking or commenting seems to concentrate mostly
on course-wide announcements, social posts and course feed-
back discussions and appears to be less common for direct
questions on course materials. Many of the derived fea-
tures have some predictive power for performance outcomes.
In particular, the number of study sessions, the number of
clicks, attendance in lecture and recitation, and engaging
with homework related course content are strong predictors
for homework grades in our model. The described observa-
tions are entirely based on data from a seven week period
of a large sophomore level college course since technical dif-
ficulties prohibited collection of data for the remainder of
the semester. In the future, more complete data (e.g. from
an entire course, or even multiple courses such as the same
course offering over several years) could provide an enhanced
understanding of student behavior and allow the tackling of
more complex problems such as the simultaneous prediction
of homework and exam grades which, such as in our data,
can have very different distributions.

The methods proposed in this work promise to be useful to a
broad range of researchers and practitioners who find them-
selves analyzing activity log-data from blended courses, or
are at the initial stages of developing early warning systems.
The key insight of this work is that hybrid NLP methods
can be used to thoroughly analyze contexts of actions as
well as frequent strategies in the relatively low-data setting
of blended courses. To the best of our knowledge, similar
models have previously only been employed in the setting of
MOOCs [e.g. 44, 37]. In fact, our analysis shows that topic
models such as latent Dirichlet allocation can recover almost
the same student strategies as more traditional data mining
based pipelines of pattern extraction, and small versions of
skip-gram neural networks can provide valuable insights into
the context of student actions even with moderately sized
data sets.
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completion at scale using the MOOC replication frame-
work. In Proceedings of the 8th International Confer-
ence on Learning Analytics and Knowledge, pages 71–
78, 2018.

[5] H. Ba-Omar, I. Petrounias, and F. Anwar. A framework
for using web usage mining to personalise e-learning.
In Proceedings of the 7th IEEE International Confer-
ence on Advanced Learning Technologies, pages 937–
938, 2007.

[6] R. S. J. D. Baker. Modeling and Understanding Stu-
dents’ Off-Task Behavior in Intelligent Tutoring Sys-
tems. In Proceedings of ACM SIGCHI: Computer-
Human Interaction, 2007.

[7] B. Bakhshinategh, O. R. Zaiane, S. ElAtia, and D. Ip-
perciel. Educational data mining applications and
tasks: A survey of the last 10 years. Education and
Information Technologies, 23(1):537–553, Jan. 2018.

[8] C. Brooks, C. Thompson, and S. Teasley. A time se-
ries interaction analysis method for building predictive
models of learners using log data. In Proceedings of the
Fifth International Conference on Learning Analytics
And Knowledge, pages 126–135, 2015.

[9] Y. Chen and M. Zhang. MOOC student dropout: pat-
tern and prevention. In Proceedings of the ACM Turing
50th Celebration Conference - China, pages 1–6, 2017.

[10] C. A. Coleman, D. T. Seaton, and I. Chuang. Prob-
abilistic Use Cases: Discovering Behavioral Patterns
for Predicting Certification. In Proceedings of the Sec-
ond (2015) ACM Conference on Learning at Scale, page
141–148, 2015.

[11] R. Cooley, B. Mobasher, and J. Srivastava. Data Prepa-
ration for Mining World Wide Web Browsing Patterns.
Knowledge and Information Systems, 1(1):5–32, Feb.
1999.

[12] R. del Valle and T. M. Duffy. Online learning: Learner
characteristics and their approaches to managing learn-
ing. Instructional Science, 37(2):129–149, 2009.

[13] M. C. Desmarais and F. Lemieux. Clustering and Visu-
alizing Study State Sequences. In Proceedings of the 6th
International Conference on Educational Data Mining,
pages 224–227, 2013.

[14] L. Faucon, L. Kidzinski, and P. Dillenbourg. Semi-
Markov model for simulating MOOC students. In Pro-
ceedings of the 9th conference on Educational Data Min-
ing, pages 358–363, 2016.

[15] C. Geigle and C. X. Zhai. Modeling MOOC student
behavior with two-layer hidden markov models. In Pro-
ceedings of the 4th ACM Conference on Learning at
Scale, pages 205–208, 2017.

[16] N. Gitinabard, S. Heckman, T. Barnes, and C. F.
Lynch. What will you do next? A sequence analysis
on the student transitions between online platforms in
blended courses. arXiv: 1905.00928, 2019.

[17] J. Guerra, S. Sahebi, P. Brusilovsky, and Y.-r. Lin. The
Problem Solving Genome: Analyzing Sequential Pat-
terns of Student Work with Parameterized Exercises.
In Proceedings of the 7th International Conference on
Educational Data Mining, pages 153–160, 2014.

[18] J. Herold, A. Zundel, and T. F. Stahovich. Min-
ing Meaningful Patterns from Students’ Handwritten
Coursework. In Proceedings of the 6th International
Conference on Educational Data Mining, pages 67–73,
2013.

[19] Y.-H. Hu, C.-L. Lo, and S.-P. Shih. Developing early
warning systems to predict students’ online learning
performance. Computers in Human Behavior, 36:469–
478, July 2014.

[20] H. Jeong and G. Biswas. Mining Student Behavior
Models in Learning-byTeaching Environments. In Pro-
ceedings of the 1st International Conference on Educa-
tional Data Mining, pages 127–136, 2008.

[21] J. S. Kinnebrew and G. Biswas. Identifying Learn-
ing Behaviors by Contextualizing Differential Sequence
Mining with Action Features and Performance Evolu-
tion. In Proceedings of the 5th International Conference
on Educational Data Mining, pages 57–64, 2012.

[22] J. S. Kinnebrew, K. M. Loretz, and G. Biswas. A Con-
textualized, Differential Sequence Mining Method to
Derive Students’ Learning Behavior Patterns. Journal
of Educational Data Mining, 5(1):190–219, May 2013.

[23] R. F. Kizilcec, C. Piech, and E. Schneider. Deconstruct-
ing disengagement: analyzing learner subpopulations
in massive open online courses. In Proceedings of the
Third International Conference on Learning Analytics
and Knowledge, pages 170–179, 2013.
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ABSTRACT
With the increased number of MOOC offerings, it is unclear how
these courses are related. Previous work has focused on capturing the
prerequisite relationships between courses, lectures, and concepts.
However, it is also essential to model the content structure of MOOC
courses. Constructing a precedence graph that models the similarities
and variations of learning paths followed by similar MOOCs would
help both students and instructors. Students can personalize their
learning by choosing the desired learning path and lectures across
several courses guided by the precedence graph. Similarly, by exam-
ining the precedence graph, instructors can 1) identify knowledge
gaps in their MOOC offerings, and 2) find alternative course plans.
In this paper, we propose an unsupervised approach to build the
precedence graph of similar MOOCs, where nodes are clusters of
lectures with similar content, and edges depict alternative precedence
relationships. Our approach to cluster similar lectures based on PCK-
Means clustering algorithm that incorporates pairwise constraints:
Must-Link and Cannot-Link with the standard K-Means algorithm.
To build the precedence graph, we link the clusters according to the
precedence relations mined from current MOOCs. Experiments over
real-world MOOC data show that PCK-Means with our proposed
pairwise constraints outperform the K-Means algorithm in both
Adjusted Mutual Information (AMI) and Fowlkes-Mallows scores
(FMI).

Keywords
Precedence Graph, Clustering, Pairwise Constraints, Precedence
Relations, Alternative Learning Paths, Common Learning Path.

1. INTRODUCTION
According to Class Central [19], by the end of 2019, over 13 thou-
sand MOOCs have been announced or launched by more than 900
universities worldwide. With such an increase in online courses,
it becomes increasingly hard for learners to understand similari-
ties and differences among courses that cover similar topics. For
instance, Coursera1, one of the leading MOOC platforms, offers
∗King AbdulAziz University, Jeddah, Saudi Arabia.
1https://www.coursera.org

several “Machine Learning” courses, such as “Machine Learning”
form Stanford University, “Machine Learning with Python” offered
by IBM, “Machine Learning for All” from University of London, etc.
Understanding the content structure across such similar courses can
be very challenging. Consequently, MOOCs users may waste time
choosing a course among a broad set of similar MOOC offerings.

Previous work studied ways for capturing prerequisite relationships
between courses [23, 11], between lectures within (or among) courses
[5, 6], or between concepts discussed within (or across) courses
[2, 10, 15, 23, 11]. While modeling prerequisite relationships is
crucial for understanding the content and knowledge structure of a
specific domain, prerequisites do not reveal content overlap in similar
courses. Further, modeling MOOC content in terms of prerequisite
relations cannot detect the variations in the learning path between
similar MOOCs.

In this paper, we propose to model the content structure of similar
MOOC offerings as a precedence graph. This graph can be useful
for both learners and instructors. Learners can use the graph to build
a customized learning plan as well as to explore how various courses
explain the same topic. As for instructors, the graph can be used
to identify any missing knowledge in their MOOCs offering, hence
help them improve their courses. Section 3.2 elaborates on other
possible applications of our proposed MOOCs precedence graph.

More precisely, we introduce an unsupervised approach to model the
content structures of MOOCs. Figure 1 demonstrates the proposed
idea. Given a set of courses that have some overlap in their content,
we first cluster lectures based on their content similarity into clusters;
each cluster represents a node in the precedence graph (see Figure 1
(b)). Then, the clusters are linked according to their lectures prece-
dence relations mined from current MOOCs as depicted in Figure
1 (c). Linking clusters of similar content based on the precedence
relations can reveal the various possible paths followed by similar
courses and also capture which path is considered more common in
these courses.

To cluster lectures based on their content similarity, we utilize a
constraint-based clustering algorithm called Pairwise Constrained
K-Means (PCK-Means). PCK-Means guides the clustering process
by using two constraints: Must-Link and Cannot-Link. The idea is
to guide the clustering process, by using the constraints, to focus on
clustering lectures across courses instead of within courses to capture
the similarity between courses. To measure the content similarity
between lectures, we exploit both lecture titles and transcripts as they
both encode enough information about the content of lectures. By
using cosine similarity, we measure the similarity between lectures

Fareedah Alsaad and Abdussalam Alawini "Unsupervised
Approach for Modeling Content Structures of MOOCs" In:
Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
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Figure 1: The basic idea of modeling the content of
MOOCs to construct the precedence graph. Given similar
Courses with some overlaps in content represented as
sequences of lectures, the precedence graph is constructed
by clustering lectures based on content similarity and
link the clusters using the precedence relations between
lectures.

and construct the constraint examples to guide the clustering process.
Our experiment on real MOOC dataset shows that PCK-Means with
our proposed constraints outperforms standard K-Means algorithm
in both Adjusted Mutual Information (AMI) and Fowlkes-Mallows
scores (FMI).

After clustering similar lectures,we construct the precedence graphby
linking clusters based on the precedence relations and label clusters
using salient and key terms in each cluster. The generated precedence
graph reveals the popular learning path and some alternative paths
in our MOOCs dataset.

The rest of the paper is organized as follows. Section 2 presents
related work. In section 3, we demonstrate the idea of modeling
the content structure of MOOCs by an illustrative example and
also present some applications of the precedence graph before we
formally define our problem in Section 4. Section 5 describes howwe
represent the content of MOOCs using word count and embedding
representations. In section 6, we explain PCK-Means algorithm and
present our method of generating the lists of pairwise constraints.
In section 7, we demonstrate the process of linking and labeling
clusters to construct the precedence graph. Section 8 elaborates on
our approach for the evaluation and presents some learning path
examples extracted from the generated precedence graph. Finally,
we conclude our work in section 9.

2. RELATED WORK
There has been recently a growing body of work that addresses the
problem of modeling the content of MOOCs. Most of this work has
focused on capturing the prerequisite relationships between courses
[23, 11], between lectures or segments of lectures [5, 6], or between
concepts discussed within or across courses [2, 10, 15, 23, 11]. These
studies have developed supervised and unsupervised approaches to
model only the prerequisite relations in MOOCs. In this paper, we
go further and develop an unsupervised approach to capture the
similarities and variations of learning paths between MOOCs in the
same domain. Our work models the precedence relations (i.e., the
implicit prerequisite relationships) between concepts by clustering
similar lectures among different courses. Therefore, our model can
revel popular learning paths shared by several courses along with
alternative possible paths to learn the topic covered by these similar
courses.

To model the prerequisite relationships, some studies have used exter-
nal knowledge such as Wikipedia to support identifying educational
concepts [10] or to represent concepts using Wikipedia articles or
categories [15, 23, 11]. Using Wikipedia to identify concepts has
some weaknesses: (1) some concepts are not included in Wikipedia
[15] and thus can affect the performance of the model, (2) the map-
ping between course concepts to Wikipedia is not always accurate,
which can affect the quality of the extracted concepts [10], and (3)
using Wikipedia categories affects concept granularity by preferring
more general concepts [2]. Instead of using Wikipedia, the work by
ALSaad et al. [2] has exploited pre-trained part-of-speech-guided
phrasal segmentation to extract phrases from course content and then
manually group synonym phrases to represent concepts. In our work,
instead of relying on external knowledge or manually improve the
concepts, we represent the precedence graph nodes by salient terms
using simple TF-IDF and bag-of-words representations. Our method
represent each cluster with key terms by accumulating lecture repre-
sentation vectors of each cluster and exploiting the top ranked words
to represent clusters. Accumulating the vector representations of
similar lectures helps in extracting representative terms that express
the content of each cluster clearly.

Another related line of work is the use of prerequisite relations
between concepts to organize learning units and predict the prece-
dence relationships between them [1, 13]. The studies [1, 13] have
proposed supervised approaches that rely on features extracted from
external knowledge such as Wikipedia [1] and DBpedia [13] to infer
the prerequisite relations between concepts. While the work [1]
assumed that concepts are given, the study [13] manually extracted
concepts by annotators. Our work is different as instead of inferring
the prerequisite relations between concepts and then organizing them
according to the precedence relations, we leverage the precedence re-
lations between lectures in existing MOOCs to detect the precedence
relations between the nodes in the precedence graph. Each node in
the precedence graph is labeled automatically with key concepts that
clearly express the content of each node without the use of external
knowledge.

The work by Shah et al. [20] is the most relevant work to ours.
The study has proposed a method for linking similar courses to
construct a map of lectures connected by two types of relations:
similar and prerequisite. The goal of the map is to help students find
the desired learning path that fits their interests and backgrounds.
Our work is very similar as we construct the precedence graph that
depicts the different possible learning paths. However, instead of
linking lectures by similar and prerequisite relations, we cluster
lectures based on content similarity and connect clusters according
to the precedence relations. Our approach reveals the similarities and
variations of learning paths between different courses by capturing
popular learning paths shared by many courses in the domain, hence
emphasizes the importance of the common, comprehensive and
alternative learning paths.

3. MODELING MOOCS CONTENT
In this section, we explain the idea of modeling the content of
MOOCs as a precedence graph by using an illustrative example. We
also discuss possible applications of the mined precedence graph.
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1. Introduction to clustering.
2. Partition-based clustering methods
3. K-Means clustering.
4. K-Medoids clustering.
5. K-Medians & K-Modes clustering.
6. Hierarchical clustering methods.
7. Agglomerative clustering.
8. Divisive clustering.

Course 4

1. Introduction to unsupervised learning.
2. K-Means algorithm.
3. Agglomerative clustering.
4. DBSCAN clustering.
5. Dimensionality reduction.
6. Principal component analysis.

Course 3

1. Introduction to clustering.
2. K-Means algorithm.
3. Agglomerative clustering.
4. DBSCAN clustering.

Course 1

1. Unsupervised learning introduction.
2. K-Means algorithm.
3. Data compression.
4. Principal component analysis.

Course 2

(a) The Sequence of Lectures in Different Courses.
Figure 2: The sequence of lectures in four different courses
that explain the topic Unsupervised Learning.

3.1 An Illustrative Example
For illustration purposes, let us assume that a MOOC platform offers
four courses aboutUnsupervised Learning topic in machine learning
as shown in Figure 2. Each course explains the topic using a sequence
of lectures. As can be seen in Figure 2, there are some overlaps
between these four courses as they all teach the same topic, but there
are also some variations. The variation in each course is based on
instructors’ perspectives and background about the topic, instructors’
teaching styles, and also the learning objective of each course. Some
courses are abstract as they focus on the theory behind the topic while
other courses are more concrete as they demonstrate the topic by
illustrating real-world examples. Courses also vary in the coverage of
topics as some courses are concise while other courses cover topics
in more details. For example, Course 1 and Course 2 in Figure 2
are examples of concise courses that focus only on teaching the
main concepts in the topic. In contrast, Course 3 and Course 4 are
examples of courses that elaborate more in the topic by providing
more detailed concepts.

Given the similarities and variations between these courses that
explain the same subject, we investigate the following questions. how
these courses are related? What are the common concepts taught
by the majority of these courses? Is there a common learning path
shared by most of these courses? what are the alternative paths to
study the topic?Modeling the content structure of these courses as
a precedence graph is a crucial step to help learners and educators
with answering these questions.

The first step in building the precedence graph is to cluster lectures
based on their content similarity and then construct a node in the
graph for each cluster. Figure 3 shows the cluster assignment of
each course lecture of Figure 2. As illustrated in Figure 3, all the
introductory lectures, the first lecture of each course, are grouped
into one cluster (clusterS1) as all these lectures introduce the topic of
Unsupervised Learning. Similarly, all the lectures about the concepts
“K-Means Algorithm”, “Agglomerative Clustering”, and “DBSCAN”
are clustered into three different clusters: S6, S3, and S7 respectively.
Furthermore, lectures about “Data Compression” are clustered into
cluster S11 while lectures taught “Principal Component Analysis”
concept are clustered into cluster S10.

After clustering similar lectures and finding the nodes of the prece-
dence graph, the next step in building the graph is to link these
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(b) The Mined Knowledge Graph.Figure 3: The mined precedence Graph from courses in
Figure 2. Lectures are grouped into clusters to construct
the nodes of the graph. Edges depict the precedence
relationships between clusters where thick edges represent
the edges with high weights and thus indicate how common
are the relations between the nodes.

scattered clusters to reveal the precedence relations between clus-
ters. To that end, we use the precedence relations between adjacent
lectures of the same course to construct the edges between nodes
(clusters) in the precedence graph. For instance, we add a directed
edge from cluster S5 to cluster S6 to determine the precedence rela-
tion between these two nodes according to the sequence of lectures 2
and 3 in course 4. To reflect the strength of each precedence relations
between two nodes (i.e., how common are the relations between the
nodes), we attach each edge in the precedence graph with different
weights. Edge weights are calculated by accumulating the frequency
of lecture sequences in various courses. For example, as shown in
Figure 3, the strength weight of edge S1 −→ S6 should be higher
than the strength weight of edge S1 −→ S5 as three out of the four
courses (1,2, and 3) have the sequence S1 −→ S6 while only one
course (4) shows the sequence S1 −→ S5.

As mentioned earlier, the mined precedence graph can help us in
revealing some hidden structures in similar MOOCs. For instance,
it is clear from Figure 3 that the path {S1 −→ S6 −→ S3 −→ S7} is
more common than other paths. The reason is that three courses (1,2,
and 3) explain the concepts “K-Means Algorithm” after introducing
the topic and two of them (courses 1 and 3) present the concepts
“Agglomerative Clustering” and “DBSCAN” after that. In addition
to indicating the common path, the mined precedence graph can
also reveal other possible paths to learn the topic such as the path
{S1 −→ S5 −→ S6 −→ S3 −→ S4}, or the path {S1 −→ S5 −→ S6 −→
S11 −→ S10}. All these paths are valid and, off course, choosing a
path depends on students’ learning objectives.

In general, the mined precedence graph helps in capturing the
similarities and variations of the learning paths of similar courses in
our illustrative examples. In section 8.3, we present some learning
path examples from the precedence graph generated by our approach.

3.2 Precedence Graph Applications
Our mined precedence graph can be used to support several appli-
cations for improving the learning and teaching process. However,
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before discussing these applications, we first want to clarify that (in
this paper), we define a student as a person who uses MOOCs as
modularized resources to learn topics of their choice (as opposed
to taking a full course as part of a certificate program.) According
to Zheng et al. [24], one of the motivations for a student to register
for a MOOC is to learn some desired concepts on-demand. Once
they achieve their learning goals, this type of student usually stops
participating in the course.

Our precedence graph can support the following applications.

Personalized (customized) course plans. Our precedence graph
can help students develop custom learning plans. Students can
examine the graph to identify possible alternative paths for learning
a topic and then choose the path that best fits their needs. For
instance, a student might choose to follow one of the following
two paths: {S6 −→ S9 −→ S8} or {S6 −→ S11 −→ S10} shown in
Figure 3. The former path helps the student explore and learn about
various clustering algorithms:“K-Means Algorithm”, “K-Medoids
Algorithm”, and “K-Medians and K-Modes Algorithms”, while the
latter path helps the student learn about the concepts of “Data
Compression”, and “PCA” with “K-Means” clustering algorithm.

An overview/summary of a topic. There are two ways in which
the precedence graph can be used to help students obtain a quick
overview of a particular topic of interest. First, students can use the
graph to follow the most common path that is shared among several
courses (i.e., the path with the highest edge weights.) For instance,
students can follow the path: {S1 −→ S6 −→ S3 −→ S7} as this is the
path with the highest edge weights in the graph shown in Figure 3.
This path introduces the topic of Unsupervised Learning first before
presenting three important and well-known clustering algorithms:
“K-Means Algorithm”, “Agglomerative Clustering Algorithm”, and
“DBSCAN Algorithm”. Second, using summarization algorithms,
we can generate a summary of the lectures in each node (cluster)
of the most common path in the precedence graph. Such a succinct
representation of clusters would provide students with a concise
summary of the topic they want to learn.

Acquiring expert knowledge. Our precedence graph can also be
usedby studentswho are interested in becoming experts in a particular
domain. The graph allows students to easily determine how the
knowledge of a domain is structured. It also allows them to choose
the path that exposes them to a varity of concepts related to the topic
they want to learn. For example, to learn the most about unsupervised
learning, a student can follow the longest path in the precedence
graph shown in Figure 3: {S1 −→ S5 −→ S6 −→ S9 −→ S8 −→ S2 −→
S3 −→ S4 −→ S7 −→ S11 −→ S10}. Clustering similar lectures from
various courses into the same clusters can also help this type of
students as they can explore how different courses explain the same
concept.

Helping instructors improve their courses. In addition to helping
students with their learning process, the mined precedence graph
can also aid instructors in understanding the structure of their
MOOC offerings. By examining the precedence graph, instructors
can identify potential knowledge gaps (missing topics) or a better
ordering of the topics, and hence incorporate the new knowledge in
their next course offerings.

4. PROBLEM DEFINITION
The design of a MOOC mimics that of a typical on-campus course
in which the fundamental structure is a sequence of lectures. By

leveraging the sequences of lectures and the content similarities
between lectures from similar courses, we can model the knowledge
structure of similar (i.e., courses that cover the same topic) MOOCs
as a precedence graph. The nodes of this graph are groups of similar
lectures, labeled by dominant and salient terms in these lectures.
The edges of the graph represent the alternative precedence relations
between nodes. Each edge can be assigned different weights that
reflect the strength of the relation.

We formally define the problem as follows. Given a set of courses
X = {C1, C2, C3, . . . , Cn}, where n is the total number of courses.
We assume that all courses inX have the same difficulty level, and
there are some content overlaps between courses. Each course Ci is
an ordered list of lectures Ci = [Li1, Li2, . . . , Li|Ci|], where |Ci|
is the total number of lectures in the course Ci. Each lecture Lij is
represented using the title tij and the lecture transcript dij . The goal
is to model the content structure of similar MOOCs by constructing
the precedence graph as a directed graph G = (V,E) where V
is the set of nodes, V = {S1, S2, S3, . . . , S|V |} (the number of
nodes |V | is given), and E = {e1, e2, e3, . . . , e|E|} is the set of
edges between nodes. Edges in the graph G are directed edges to
indicate the precedence relations between nodes. Each node in the
precedence graph is a cluster or a group of lectures that have similar
content. For example, Sv = {Li1, Li2, Lj5} is a cluster that has the
first two lectures from course Ci and the fifth lecture from course
Cj . We represent the precedence graph G as an edge weight matrix
G ∈ R|V |×|V | where each entry of matrix G contains the edge
weight. For instance, the edge weight of the entry gij reflects the
strength of the precedence relationship from cluster Si to cluster Sj .

To construct the precedence graph, we need first to find the set of
nodes V of the precedence graph by grouping similar lectures using
both lecture titles tij and lecture transcripts dij . Then, we compute
the edge weight between pairs of nodes by leveraging the sequence
of lecture in each course Ci. Sections 6 and 7 explain our proposed
approach to build the precedence graph.

5. MOOC CONTENT REPRESENTATION
In this section, we demonstrate how we represent MOOC lectures
by exploiting two representations: 1) sparse representation that
is based on word count, and 2) dense representation to capture
the semantic similarity between text. The purpose of using these
two representations is to compare how each of them affects the
performance of clustering.

To represent lectures, we use the sparse representation, a robust
and straightforward representation based on the count of words. We
represent lecture titles as vectors of word count using Bag-Of-Words
(BOW) representation. Since lecture titles are short and concise,
the frequency of each word in the BOW vector is usually one. The
bag-of-words representation can be thought of as a bit vector where a
bit is set to 1 when the word occurs in the title and set to 0, otherwise.

For representing lecture transcripts, we use the Term-Frequency
Inverse-Document-Frequency (TF-IDF) representation. TF-IDF
weighting takes into consideration the count of words in docu-
ments as well as the popularity of words in the corpus, hence gives
higher weights to the words that are more frequent in the document
and less popular in the corpus.

In our model, each lecture is represented by two vectors: a BOW
vector to represent the title and a TF-IDF vector to capture the
content of the transcript. The drawbacks of this representation are 1)
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it generates high dimensional sparse vectors, and 2) it cannot capture
the semantic similarity between similar words.

To overcomes the limitations of TF-IDF and BOW representations,
we use an alternative (dense) representation to modelMOOC content:
the unsupervised smoothed inverse frequency (uSIF) [8]. The uSIF
is a simple, yet effective method for generating sentence embeddings
without any labeled data. It is an improvement of smoothed inverse
frequency (SIF) [18], one of the state-of-the-art embedding represen-
tation for longer pieces of text. The basic idea of uSIF is to exploit
the pretrained word embeddings such as Word2Vec [14] or Glove
[16] that capture the semantic meaning between words to learn the
embeddings of sentences and paragraphs taking into consideration
the frequency of words in the text. For more information about uSIF,
please refer to [8].

For the embedding representation of lectures, we use uSIF with
Glove pretrained word embeddings [4] to represent both lecture titles
and transcripts. The number of feature dimensions in embedding
vectors is 100 dimensions.

6. CLUSTERING LECTURES OF MOOCS
To construct the nodes of the precedence graph, lectures are grouped
into clusters based on their content similarity. We can use any
clustering algorithm such as K-Means to do the clustering of lectures.
However, one problem of using K-Means or some other clustering
algorithms is that they will cluster similar lectures not just across
courses but also within courses. For example, if one course explains
the topic “Gradient Descent in Logistic Regression” and then later
explains the topic “Gradient Descent in Neural Networks”, then there
is a high chance that the clustering algorithm would group these
two lectures into the same cluster as the course instructor would use
almost the same terminology to explain these two topics. However,
our goal is to capture the similarity of lectures across courses to
reveal common learning paths utilized by many courses as well as
other alternative learning paths. Therefore, we need to restrict the
clustering process to cluster lectures fromdifferent courses rather than
within the same course. To do that, we need to guide the clustering
algorithm by imposing some constraints; which is infeasible with
the standard K-Means algorithm. Therefore, we decided to exploit a
constraint-based clustering algorithm called Pairwise Constrained
K-Means (PCK-Means) [3] to guide the clustering process.

6.1 PCK-Means Clustering Algorithm
PCK-Means clustering algorithm [3] is a variation of the standard
K-Means algorithm that incorporates distance between points as
well as pairwise constraints to guide the clustering process. PCK-
Means is a semi-supervised approach where users provide some
labels or pairwise constraints that the algorithm uses to improve
the clustering. Since collecting labels from users is expensive, we
propose an unsupervisedmethod by automatically find suitable labels
or constraints to guide the clustering process (discussed in section
6.2).

Pairwise constraints can be used to determine the prior knowledge
about the domain by specifying which instances (in our case lectures)
should or should not be clustered together [21, 3]. There are two
types of pairwise constraints: Must-Link and Cannot-Link. Must-
Link constraint specifies pairs of instances (lectures) that need to
be grouped into the same cluster, while Cannot-Link constraint
determines pairs that should not be in the same cluster. Each type of
pairwise constraint applies a penalty function when the constraint
is violated. The objective function of PCK-Means is to 1) choose

partitions that minimize the penalty cost of each constraint, and 2)
minimize the sum of the square distance between the points and the
centroids of the clusters they belong to.

More formally, letM be a list ofMust-Link constraint,which includes
tuples of lectures (Li, Lj) that needs to be clustered together. Let
C be a list of Cannot-Link constraint. Each item in C is a lecture
pair of the form (Li, Lj) where lecture Li and Lj should not be in
same cluster. Each tuple inM and C is order-independent. Assume
W = {wi,j} and W = {wi,j} are the sets of penalty costs of
violating the Must-Link and Cannot-Link constraints respectively.
Each lecture Li is assigned to a cluster Si, where Si ∈ {h}|V |h=1, by
minimizing both the distance between Li and the cluster centroid
µSi and the penalty costs of violating the constraints. The objective
function of PCK-Means algorithm is as follow:

Jpckm =
1

2

∑
Li∈X

‖Li − µSi‖
2

+
∑

(Li,Lj)∈M

wij1[Si 6= Sj ] +
∑

(Li,Lj)∈C

wij1[Si = Sj ] (1)

The first part of the objective function is K-Means objective function
while the second and the third parts are the accumulated penalty costs
of violating the Must-Link and Cannot-Link constraints respectively.
The1[.] is the indicator function where1[true] = 1 and1[false] = 0.

In the initialization step of PCK-Means, examples of the pairwise
constraints are used to estimate the centroids of clusters. Before
initializing the cluster centroids, PCK-Means finds the transitive
closure of tuples in Must-Link constraint and appends them to
the list of Must-Link constraints. Then the updated list is used to
create λ neighborhood sets. For each pair of neighborhoods, Pi and
Pj with at least one pair of points that appear in the Cannot-Link
list, PCK-means generates Cannot-Link constraint tuples between
every pair of points in Pi and Pj and appends these tuples to the
Cannot-Link constraints. Then the algorithm gets λ neighborhoods
where links of type Must-Link constraint connect points within each
neighborhood, and links of type Cannot-Link constraint connect
some neighborhoods. If λ is higher than the number of clusters,
λ > |V |, then the algorithm chooses the neighborhood sets with
the largest number of instances to initialize the clusters and the
centroids of each cluster. In contrast, if λ is less than the number
of clusters, λ < |V |, then PCK-Means initializes the clusters from
the λ neighborhoods and looks for a point that has links of type
Cannot-Link constraint to all the λ neighborhoods. If so, it initializes
a new λ+1 cluster from this point. Otherwise, PCK-Means chooses
the remaining |V | − λ clusters randomly.

In general, the PCK-Means clustering algorithm is an iterative
algorithmwhere it starts by using the pairwise constraints to initialize
the clusters. Then, iteratively (1) assign points (or lectures) to
clusters that minimize the combined objective function and then
(2) re-estimate the centroids of each cluster according to the cluster
assignment of each point. These two steps are repeated until the
algorithm converges. For more information about the algorithm,
please refer to [3].

6.2 Pairwise Constraints
To build the precedence graph, we use Must-Link and Cannot-Link
constraints to guide the clustering process. Must-Link constraint
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includes a list of pairs of lectures that have higher chance to be similar
while Cannot-Link constraint contains a list of lecture pairs that have
lower chance to be part of the same clusters such as lectures from
the same course. Yet, the question is how to find good examples of
lecture pairs for the lists of Must-Link and Cannot-Link constraints.

6.2.1 Must-Link Constraint
As our goal is to capture the content similarity between lectures
across courses, we want to feed the algorithm with similar lectures
from different courses that have higher chance to be part of the
same cluster as examples of Must-Link instances. To do that, we can
use the cosine similarity measure to calculate the similarity score
between lectures from different courses and choose lecture pairs
with a similarity score exceeds some predefined threshold.

Besides Similar lectures across courses, some similar lectures within
the same course can be good examples of Must-Link instances.
Adjacent lectures can have very similar content and hence they
should be grouped together in the same cluster. For instance, the
two adjacent lectures “K-Means Algorithm” and “Initialization of
K-Means Clustering” have similar content as they talked about
K-Means Clustering Algorithm and thus they need to be grouped
together. Therefore, we add adjacent lectures that have a similarity
score greater than the predefined threshold.

We propose two approaches to capture the similarity between lectures
within courses or among courses. First, we use the cosine similarity
between two lectures represented by lecture transcripts. Pairs of
lectures are considered similar when they have similar content and
hence the cosine similarity score would be high. Second, we use
the cosine similarity between two lectures represented by lecture
titles. We believe that two lectures are similar when they have very
similar titles even when there are some variations in the content.
One reason is that instructors sometimes explain the topic from
different perspectives. For instance, one instructor might explains
the lecture with a title “K-Means Clustering Algorithm” by using
examples while another instructor might explains the same lecture
by illustrating the theory behind it. Although the content is different,
both lectures explain the same topic but from different perspectives.
Another reason of using lecture titles is due to the average length
of lectures in MOOCs. Lectures in MOOCs are usually shorter in
length compared with regular university classes. As a result, some
instructors split the topic into two or more lectures. Usually these
lectures have very similar titles and should be clustered together even
if their content might vary. Therefore, we decided to utilize lecture
titles to measure the similarity between lectures in addition to lecture
transcripts. However, we use two different predefined thresholdsK1

andK2 to capture the lectures similarity using titles and transcripts
respectively as we have to set a higher threshold for titles to minimize
the noise.

In general, the list of Must-Link constraint contains any similar
lectures across courses and similar adjacent lectures within courses.

6.2.2 Cannot-Link Constraint
Unlike the Must-Link constraint, Cannot-Link constraint is used to
indicate lecture pairs that should not be part of the same clusters.
Since we want to force the clustering algorithm to capture the
similarity between lectures across courses, we add lecture pairs
from the same course to the list of Cannot-Link constraint. However,
not any pair can be added to the list as some adjacent lectures can
have similar content or similar titles and hence need to be grouped
into the same cluster. Therefore, to determine lecture pairs that are

suitable to be examples of Cannot-Link constraint, we apply the
cosine similarity on the transcripts of two adjacent lectures. When
the cosine similarity of two adjacent lectures, Lij and Li(j+1) of
course Ci, are less than a predefined thresholdK3, then we can say
that there is a topic shift and hence we can add these two adjacent
lectures to the list of Cannot-Link constraint. However, before adding
any lecture pairs to the list of Cannot-Link constraint, we need to
ensure that the pair is not part of the Must-Link constraint and its
transitive closure list. In addition to adding the two adjacent lectures
Lij and Li(j+1), we also pair the lecture Lij with all the subsequent
lectures of lecture Li(j+1) since there is a shift in the topic. As a
result, we add the lectures (Lij , Li(j+z))where 1 < z < |Ci|−j, to
the list of Cannot-Link constraint if they are not part of theMust-Link
constraint and its transitive closure list.

In general, the purpose of Cannot-Link constraint is to restrict the
clustering algorithm from clustering lectures within courses in order
to capture the similarity between different courses. As a result,
by using Must-Link and Cannot-Link constraints, the clustering
algorithm learns to cluster lectures from across courses and only
cluster adjacent lectures within the same course if they are similar.

7. BUILDING PRECEDENCE GRAPH
Building the precedence graph from similar MOOCs has three
steps: (1) Cluster similar lectures to construct the node of the graph,
(2) Link the nodes by a directed weighted edge to determine the
precedence relations between nodes, and (3) Represent each node
by dominant and salient terms mined from lectures belong to each
nodes. In the previous section, we explain how we cluster similar
lectures using PCK-Means algorithm with our proposed Must-Link
and Cannot-Link constraints. In this section, we first present our
method of linking the precedence graph nodes before illustrating our
approach of labeling each node.

7.1 Linking Clusters
After clustering similar lectures, we need to link the scattered clusters
to construct the precedence graph. Aswementioned earlier,we utilize
lecture sequences in each course. We can think of the sequence of
lectures in MOOCs as implicit prerequisite relationships between
lectures as these sequences are carefully designed by experts. When
instructors design courses, they usually maintain the prerequisite
order constraints between lectures by placing prerequisite lectures
before the dependent lectures. In addition, according to the locality
of references property [1], when designing a course plan, a dependent
lecture should appear as soon as possible after the prerequisite lecture
to reduce students comprehension burden. Therefore, tackling the
various sequence orders of lectures from different courses helps in
linking clusters of lectures from across courses and thus captures
the precedence relations between clusters.

To link the scattered clusters,we use the precedence relations between
adjacent lectures to infer the precedence relations between clusters.
If two adjacent lectures Lij and Li(j+1) of course Ci appear in two
different clusters, then these two clusters need to be linked by an
edge with a direction from the cluster that includes lecture Lij to the
cluster that has lecture Li(j+1). Sometimes some adjacent lectures
appear in the same cluster and hence we ignore the sequence relation
of these lectures.

To capture the strength of the precedence relations between clusters,
and hence how these relations are common in current MOOCs, we
attach each edge with different wights. We accumulate the frequency
of courses that have adjacent lectures clustered into two different
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clusters to determine the weight between these two clusters. The
equation to determine the edge weight is as follow:

W (Si → Sj) =
∑
∀C∈X

|C|−1∑
z=1

1[Lz ∈ Si ∧ Lz+1 ∈ Sj ] (2)

whereW (Si → Sj) is the weight of the edge between cluster Si
and Sj and 1[.] is an indicator function where 1[true] = 1 and
1[false] = 0.

Since the edge weights determine the popularity of relations across
similar courses, edge weights are not normalized to be between
0 and 1 because normalization will produce misleading weights.
For example, if we use normalized edge weights, then the edge that
connects two clusters that have adjacent lectures from one course will
have the same weight; which is equal to 1, to the edge that connects
two clusters that have adjacent lectures from N courses. Therefore,
we use unnormalized edge wights to capture the popularity of the
precedence relations.

7.2 Labeling Clusters
Each node in the precedence graph is labeled by some key terms
to represent the topics or key concepts discussed by the lectures
attached to this node. To extract the key terms from lectures, we
exploit lecture titles and transcripts represented by bag-of-words and
TF-IDF representations respectively. Lecture titles are very concise
and usually have the key terms in lectures. On the other hand, lecture
transcripts are more elaborative and would help in extracting other
important key terms that demonstrate topics or key concepts of each
cluster.

The basic idea to extract the key terms is to accumulate the vector
representations of each lecture that belongs to the same cluster in
order to find the key terms of that cluster. In other words, for all
lectures that belong to the same cluster we accumulate the bag-of-
word representation vectors of their titles and also add the TF-IDF
weighting vectors of their transcripts. Then, we use the top k terms
from these two different representations to find the salient terms that
represent each cluster. The following is the equation used to specify
the key words of each cluster:

Label(Si) = (max
k

|D|∑
j=1

∑
∀L∈Si

TFIDF (wj |wj ∈ dL))

⋃
(max

k

|T |∑
j=1

∑
∀L∈Si

BOW (wj |wj ∈ tL)) (3)

where the first part finds the top k terms by using the TF-IDF
representation of lecture transcripts dL where |D| is the total number
of vocabularies in the corpus of lecture transcripts. For each word
wj in the vocabulary, we accumulate the TF-IDF wights of word
wj if the word appears in lecture L that belongs to cluster Si.
Similarly, the second part determines the top k terms by exploiting
the bag-of-words representation of titles tL where the total number
of vocabularies in lecture titles is |T |. We also accumulate the BOW
weights of each word belongs to titles of all lectures that are part of

cluster Si. By taking the union of these two sets of top words, we
extract salient terms that clearly explain the content of each clusters.

8. EVALUATION
In this section, we evaluate the performance of our approach for
clustering similar lectures using PCK-Means algorithm with the
proposed pairwise constraints. We first present the dataset and ground
truth we used in our evaluation. Then, we compare the performance
of the clustering algorithms using both representations: word counts
(sparse representation) and embeddings (dense representation). We
also present some examples of the learning paths extracted from the
precedence graph that was constructed by our approach. Finally, we
discuss some limitations of our study.

8.1 Datasets
We used a dataset of six modules related to Unsupervised Learning
and Clustering Algorithms from five real machine learning and data
mining courses offered by the Coursera platform2. These modules
include “Unsupervised Machine Learning”, “Partitioning Based
Clustering Methods and Hierarchical Clustering Methods”, “Unsu-
pervised Learning”, “Clustering”, “Clustering With K-Means”, and
“Hierarchical Clustering” (see Table 1.) The total number of lectures
in the dataset is 65 lectures. Each lecture is represented by its title
and transcript.

To evaluate the performance of the PCK-Means algorithm and
the effectiveness of the proposed constraints, we asked experts to
construct the ground truth labels of our dataset. Each of our four
experts (a Machine Learning professor, an Information Science
professor, a Machine Learning graduate student, and a Database and
Information Systems graduate student) manually grouped lectures
based on topics similarities. None of the experts is participating in
this study.

To measure the level of agreement among our experts, we used
the Fleiss’ kappa measure. Fleiss’ Kappa is a statistical measure
of inter-rater agreement used to determine the level of agreement
between two or more raters. The kappa score of labels collected
from experts was κ = 0.65, which indicates substantial agreements
between the annotators.

After receiving the labeled datasets from our experts, we used the
majority votes to decide the cluster assignment of each lecture. For
lectures that experts disagreed on their clustering assignment, we
decided to follow the advice of our experts and created a new cluster
for each lecture. The total number of labeled clusters was 21 clusters.

8.2 Clustering Performance
To evaluate the performance of our clustering approach and to study
the effect of using the pairwise constraints on clustering performance,
we compared the PCK-Means algorithm to the standard K-Means
algorithm. In particular, we focused on two measures: (1) Adjusted
Mutual Information (AMI), and (2) Fowlkes-Mallows scores (FMI).
AdjustedMutual Information is a variation of theMutual Information
measure that is used for comparing clustering results. According to
2https://www.coursera.org
3https://www.coursera.org/learn/advanced-machine-learning-
signal-processing
4https://www.coursera.org/learn/cluster-analysis
5https://www.coursera.org/learn/machine-learning
6https://www.coursera.org/learn/machine-learning-with-python
7https://www.coursera.org/learn/ml-clustering-and-retrieval
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Table 1: The dataset utilized for the evaluation. It has six
modules from five courses. The total number of lectures in
the dataset is 65 lectures.

Courses Modules # of Lec-
tures

Advanced Machine
Learning and Signal
Processing3

Unsupervised Machine
Learning

13

Cluster Analysis in
Data Mining4

Partitioning Based
Clustering Methods and
Hierarchical Clustering
Methods

15

Machine Learning5 Unsupervised Learning 12
Machine Learning With
Python6

Clustering 6

Machine Learning
Clustering and
Retrieval7

Clustering With
K-Means

13

Hierarchical Clustering 6

Romano et al. [17], AMI measure should be used to evaluate the
clustering performance when the reference clustering is unbalanced
and contain small clusters. Since we have unbalanced clusters (i.e.,
some clusters have many lectures while others have one or two
lectures), we decided to use AMI for the evaluation. The second
metric,Fowlkes-Mallows scores, is a geometricmean of precision and
recall where precision determines the correctness of the clustering
assignments of lectures while recall measures the completeness of
the assignments. Similar to AMI, FMI gives a zero score for random
clustering assignments.

Before discussing clustering performance, it worth mentioning that
for finding the lists of Must-Link and Cannot-Link constraints,
we tried various values for each threshold, K1, K2, and K3, and
used the values that gave the highest performance. For TF-IDF
and BOW representations, the thresholds were K1 = 0.85,K2 =
0.3, and K3 = 0.07 for titles and transcripts in Must-Link list
and for transcript in Cannot-Link list respectively. For the uSIF
representation, the thresholds were K1 = 0.85, K2 = 0.65, and
K3 = 0. HavingK3 = 0 in uSIF representation does not mean that
we exclude the list of Cannot-Link constraint. The cosine similarity
values in the uSIF embedding representation can have negative
values as some values in the embedding vectors are negatives.

Because PCK-Means and K-Means algorithms produce different
clustering assignments for each run (based on how the centroids
are initialized), we ran each clustering algorithm 20 times. Then we
recorded the average and the max scores. TF-IDF and bag-of-words
representations have a total number of 1650 dimension features. So,
we reduced the number of dimensions before clustering the data by
applying the T-distributed Stochastic Neighbor Embedding (t-SNE)
algorithm[12]. We also applied the t-SNE reduction technique on
the uSIF embedding. However, because the performance of the uSIF
was degraded due to the dimensions reduction, we decided to use
all 200 dimensions for the embedding representation: 100 for titles,
and 100 for transcripts. Table 2 summarizes the results.

The average and max scores for each algorithm are presented in
Table 2. We can see from the table that PCK-Means outperforms
K-Means in both representations. The differences in performance
between PCK-Means and K-Means are statistically significant, using
Welch’s t-test, with p-value score < 0.01 in TF-IDF\BOW and

Table 2: The performance of clustering algorithms. PCK-
Means outperforms the standard K-Means in both repre-
sentations: (1) TF-IDF for lecture transcripts and bag-of-
words (BOW) for lecture titles, (2) The embedding rep-
resentation (uSIF) for both lecture transcripts and titles.
The performance of PCK-Means is statistically significant
(represented by *) in both representations.

AMI FMI
Method Average Max Average Max
TF-IDF\BOW Representation
K-Means 0.523 0.597 0.412 0.478
PCK-Means 0.551∗ 0.649 0.511∗ 0.632
Embedding Representation (uSIF)
K-Means 0.395 0.491 0.344 0.452
PCK-Means 0.480∗ 0.536 0.420∗ 0.548

uSIF representations for FMI measure. In contrast, when using
AMI for the comparison, the differences between PCK-Means and
K-Means are statistically significant with p-value scores < 0.01
with uSIF representation and p-value < 0.05 with TF-IDF\BOW
representation. We also compare the performance of PCK-Means
using different representations: TF-IDF\BOW and uSIF. It is clear
form the table that PCK-Means with TF-IDF\BOW representation
outperforms PCK-Means with uSIF embedding representation where
the difference is statistically significant with p-value < 0.01 in both
AMI and FMI measures. In general, PCK-Means with TF-IDF\BOW
representation achieves the highest performance.

Since uSIF embedding representation uses pretrained word em-
beddings that allow it to capture the semantic similarity between
documents, we expected it to have the highest performance. However,
it did not perform as expected. We investigate this issue and found
that some words from our dataset of lecture transcripts and titles do
not exist in the list of words from the Glove pretrained model. The
total number of missing words was 31 words from both lecture titles
and transcripts. The missing words includes some key terms, such
as agglomerative, dendrogram, subcluster, medoids, sparkml, and
dbscan.

To study the effect of using the lecture titles and transcripts when
generating the Must-Link constraint, we compared the performance
of the PCK-Means algorithm using only Must-link constraint from
titles to the performance of the same algorithm using only Must-link
constraint from transcripts. We use TF-IDF and bag-of-words rep-
resentation with the same set of thresholds for the comparison as
PCK-Means achieves the highest performance with this representa-
tion. We show the results of this experiment in Table 3. The results
indicate that using both lecture titles and transcripts to produce the
Must-Link constraint achieves the highest score. We conclude that
title and transcripts representations are important for capturing the
similarity between lectures. We also notice that removing Must-Link
tuples of lecture transcripts reduces the clustering performance more
than removing title tuples. This is expected as lecture transcripts
contain more keywords than titles. However, using only titles to
generate theMust-Link constraint tuples achieves comparable results,
which also indicates the importance of using titles to capture lectures
similarities.
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Table 3: The performance of the clustering in PCK-Means,
PCK-No-Title, and PCK-No-Trans using TF-IDF \BOW
representation. In PCK-No-Title, we remove all the tuples
from Must-Link list that are generated by using lecture
titles. In PCK-No-Trans, all Must-Link tuples produced by
lecture transcript are removed. Combing both titles and
transcripts improves the performance of PCK-Means.

AMI FMI
Method Average Max Average Max
PCK-Means 0.551 0.649 0.511 0.632
PCK-No-Title 0.534 0.561 0.489 0.576
PCK-No-Trans 0.486 0.559 0.403 0.489

8.3 Examples of Learning Paths
After clustering lectures, we create the precedence graph that repre-
sents the six modules by linking the clusters and labeling them with
salient terms. We utilize the clusters generated by PCK-Means algo-
rithm with TF-IDF and bag-of-words representation as it achieves
the highest performance. In this section, we present several learning
paths examples extracted from our precedence graph.

Follow the crowd: The first example we extracted from our prece-
dence graph is the learning path that is shared across many modules
in our dataset. Students who follow the most common learning path
would have a good overview of the topic as they follow the most
popular path that is shared by many courses. Figure 4 depicts the
common learning path for the Unsupervised Learning topic. The
figure shows that the learning path starts with an introduction about
Unsupervised Learning, followed by k-Means clustering algorithm
and how to choose the number of clusters. Then, dimensionality
reduction in clustering is discussed next using the Principle Compo-
nent Analysis algorithm as an example of dimensionality reduction
techniques.

The expert learning path: The second example path we extracted
from the precedence graph is one of the longest learning paths. Figure
5 shows a path that spans over seven nodes. This path starts with
the partitioning-based clustering methods discussing algorithms,
such as “K-Means”, “K-Medians”, “K-Medoids”, and “K-Modes”. It
then discusses the application of “K-Means Algorithm” in apache
sparkml. Next, it shifts to the hierarchical clustering methods by
recommending “Divisive Clustering Algorithm” and “Aglomerative
Clustering”. Finally, it presents the “DBSCAN”, a density-based
clustering algorithms. This long path is more comprehensive than the
common path as it exploresmore clustering algorithms. Students who
are interested in gaining comprehensive knowledge about clustering
will find this path very rewarding. Note that such a path does not exist
in any of the original six modules we have in our dataset; but it was
extracted from the precedence graph constructed by our approach.

Give me some options: Figure 6 shows an example of a sub-graph
with several alternative learning paths. To learn the “K-Means”
concept, a student can either start with introduction to unsupervised
learning or learn about partitioning-based clustering methods. After
learning “K-Means”, the student can choose one of the four possible
paths: (1) Learn how to choose the number of clusters using “Elbow”
methods, (2) Learn about different partitioning algorithms such as
“K-Medians”, (3) Move to the hierarchical clustering algorithms and
learn “Divisive Algorithm”, or (4) Shift to the hierarchical clustering
algorithms and learn “Agglomerative clustering”. Each of these
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Figure 4: The common learning path extracted from the
Precedence Graph. This path is shared by many mod-
ules and includes fundamental concepts in Unsupervised
Learning topic.
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Figure 5: An example of a long learning path extracted
from the Precedence Graph. This long path can support
students who acquiring expert knowledge as it presents
many clustering algorithms.

possible paths are also precedence to other nodes as shown in Figure
6. From the sub-graph, students can choose the learning path that
fits their needs. Additionally, the sub-graph shown in Figure 6 gives
students a comprehensive overview of how concepts are connected
among several courses related to the Unsupervised Learning topic.

8.4 Limitations
There are two limitations of our study. First, using the sequence
relations among lectures to infer the precedence relations between
clusters can cause cycles in the precedence graph. The method
proposed in this paper has not addressed the problem of cycles.
The naive approach to solve the problem of cycles is to eliminate
edges with lower weights that cause cycles in the graph. Further
investigation for addressing graph cycles is left as a future work.

Second, in the evaluation we have not examined the performance
of our approach in other domains. In the future work, we plan to
apply our method on courses from different domain areas and thus
generate the precedence graph for each domain.

9. CONCLUSIONS
In this paper, we developed an approach to build the precedence
graph of similar MOOCs that have overlaps in content. Our approach
is based on Pairwise Constrained K-Means (PCK-Means) clustering
algorithm that incorporates constraints to guide the clustering process
to focus on clustering similar lectures across courses. We proposed
a method of generating the lists of Must-Link and Cannot-Link
constraints. PCK-Means with our generated constraint examples
significantly outperforms the standard K-Means algorithm with
the TF-IDF and bag-of-words representations achieves the highest
performance. Using the clusters of similar lectures as nodes in
the precedence graph, we connect each cluster according to the

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 26



means

documents
k

phase word

mapreduce
countkey

combiners

root

clustering
tree

nodes
approach

leaf
birch

diameter
sparkml

clustering
kernel

apache
dataframe

k
spark
patterns

models
hidden
models

imageclustering

dynamic

google

applications

clustering

iteratively

partition

greedy

methods
partitioning

shorter
machine
introduction
unsupervised
learning

labels

manhattan

mu
center

optimization

k

means

centroid

distance

cluster

quality
curve
elbownumber

distortion

choose

clusters

visualization

features
curse

dimensionality
projecting

reduction
data

medoids
k

categorical

clustering
method

median

closermodes

split

merge
hierarchical

divisive

recursively
clustering

algorithmshierarchical

clustering
linkage

dendrogram
agglomerative

cut
merge

outlier
dbscan
density

noise
clustering

neighborhood

epsilon

Figure 6: An example of a sub-graph extracted from the
Precedence Graph. It depicts some possible paths to learn
the topic. It also gives a comprehensive overview about
the topic.

precedence relations between lectures in various courses by directed
weighted edges to reflect the strength of the precedence relations
between clusters. Finally, we label each node in the precedence graph
by key concepts extracted from lectures belonging to each cluster.
The generated precedence graph reveals popular learning paths as
well as alternative learning paths of learning the topics of MOOCs
in our dataset.

The precedence graph constructed by our approach is considered
the initial block for building applications that support personalized
learning. As an example, we can use the precedence graph to build a
tool that visualizes the precedence graph to help learners to choose
the desired learning paths that are suitable to their interests and
backgrounds. Another application is to build a tool that recommends
personalized study plans for students based on their interests and time
constraints. As discussed in [9, 7], the main obstacle that faces online
learners is not having enough time for the course. Further, according
to [24, 22], some learners register for a MOOC with a motivation to
learn some concepts and hence they drop the course after they are
done with studying the concepts of their interest. Wilkowski et al.
[22] found that large groups of learners just wanted to learn some
concepts without the purpose of earning certificates. Therefore, it is
very important to build an application that recommends study plans
based on learners motivation, interests, and time constraints. Our
proposed precedence graph would be the initial step for building
such applications.
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ABSTRACT
Effectively estimating student enrollment and recruiting stu-
dents is critical to the success of any university. However,
despite having an abundance of data and researchers at the
forefront of data science, traditional universities are not fully
leveraging machine learning and data mining approaches to
improve their enrollment management strategies. In this
project, we use data at a large, public university to increase
their student enrollment. We do this by first predicting the
enrollment of admitted first-year, first-time students using
a suite of machine learning classifiers (AUROC = 0.85). We
then use the results from these machine learning experiments
in conjunction with genetic algorithms to optimize scholar-
ship disbursement. We show the effectiveness of this ap-
proach using real-world enrollment metrics. Our optimized
model was expected to increase enrollment yield by 15.8%
over previous disbursement strategies. After deploying the
model and confirming student enrollment decisions, the uni-
versity actually saw a 23.3% increase in enrollment yield.
This resulted in millions of dollars in additional annual tu-
ition revenue and a commitment by the university to employ
the method in subsequent enrollment cycles. We see this as
a successful case study of how educational institutions can
more effectively leverage their data.

Keywords
education, funding, tuition, enrollment management, finan-
cial aid

1. INTRODUCTION
Managing student enrollment is one of the core administra-
tive tasks of any university. However, it is far from simple as
universities aim to attract and retain the best students with
limited resources [4, 10]. Enrollment management has wide-
ranging implications on institutions’ student body compo-
sition as well as their budgeting and finances, where a re-
liance on tuition income necessitates accurately forecasting

student enrollments [9, 23]. One instrument that has con-
tinually been leveraged in the pursuit of enrollments and
the associated tuition income is financial aid as receiving
a financial aid award increases the likelihood of a student
enrolling at the award-giving institution [13, 10]. While fi-
nancial aid remains a powerful mechanism for institutions
to reach their admissions and revenue targets, miscalculat-
ing projected student enrollments and mismanaging finan-
cial aid funds can have severe implications (such as rescind-
ing over-committed offers1)[2]. Furthermore, as institutions
face tightening budgets and find their pricing policies contin-
ually under scrutiny, it remains imperative for them to opti-
mize the resources they have by maximizing enrollments and
the associated tuition revenue from financial aid programs
[8, 12]. As such, accurately predicting enrollment and opti-
mizing how student aid is disbursed is critical to enrollment
management with financial implications that cascade across
the entirety of an institution. In this work, we developed
an approach to address this challenge, implemented it for
a recent entering class, and found that it far outperformed
previous strategies.

Predicting enrollment and optimizing the allocation of stu-
dent aid requires data on student admissions and opera-
tional budgets. This data is stored in institutions’ orga-
nizational databases or can be extracted from operational
records. However, despite having this data on previous en-
rollments and finances, institutions are often slow to lever-
age it to gain actionable insights and improve institutional
processes [20, 26, 14]. What’s more, using data for insights
in education is less prevalent at traditional campuses (i.e.
schools where learning is primarily on-campus) and more
common in online and computerized environments, which
are more amenable to the collection and analysis of digi-
tized data [17]. To this end, traditional universities remain
“data-rich” but are “information-poor” in that they have the
raw data needed to extract intelligible insights but are un-
able to do so due to infrastructure limitations and untrained
personnel, among other reasons [21]. This results in the out-
sourcing of data-centric enrollment work (including develop-
ing scholarship disbursement and enrollment strategies) to
full-service consulting firms, which do not disclose their pro-
prietary approaches or how their results are evaluated [11].
The lack of motivation for consulting services to dissemi-
nate their work coupled with institutions trying to maintain
competitive advantages in recruitment limits the extent of

1See https://bit.ly/2Scxqj6 as a recent example.

Lovenoor Aulck, Dev Nambi and Jevin West "Increasing
Enrollment by Optimizing Scholarship Allocations Using
Machine Learning and Genetic Algorithms" In: Proceedings of
The 13th International Conference on Educational Data Mining
(EDM 2020), Anna N. Rafferty, Jacob Whitehill, Violetta
Cavalli-Sforza, and Cristobal Romero (eds.) 2020, pp. 29 - 38

29 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

https://bit.ly/2Scxqj6


published research on how institutions can utilize data to
improve recruitment processes. As a result, this dearth of
literature provides little to demonstrate how data mining
and machine learning can assist in the critical mission of
enrollment management and in allocating financial aid.

In this project, we mine data from a large, public univer-
sity in the United States (US) to optimize the disbursement
of a merit-based scholarship for domestic non-resident stu-
dents. We do this in two broad steps. In the first step, we
create a predictive model of student enrollment using his-
torical student application data. In the second step, we use
a genetic algorithm to optimize scholarship disbursement to
maximize student enrollment based on the predictive enroll-
ment model from steps. We conducted this work during a
recent admissions cycle of the university and the optimized
awards were given to a recent entering class. After seeing
improvement in student enrollment yield and an increase of
millions of dollars in annual tuition revenue, the university
incorporated our approach into their enrollment manage-
ment process. We believe this project is a case study for
other institutions seeking to similarly leverage institutional
data for improving enrollment forecasting and financial aid
allocation.

2. RELEVANT WORK
The following discussion of relevant work is not exhaustive
but is intended to give examples of relevant approaches with
a focus on more recent work. While there is some work show-
ing how to predict enrollment, there is very little showing
how to allocate scholarships and hardly anything that ties
the two together.

2.1 Predicting Enrollment
A few studies have employed machine learning and data min-
ing techniques to predict university enrollment using non-
neural approaches. DesJardins developed a logistic regres-
sion model using a dataset of approximately 14,400 students
from an undisclosed tier I research university in the US.
DesJardins’ model gave an area under the receiver operat-
ing characteristic curve (AUROC) of 0.72 when predicting
whether or not a student will enroll [5]. Similarly, Goenner
and Paul used logistic regression to predict which of over
15,000 students at a large US university would eventually
enroll [7]. Their predictive model gave an AUROC value of
0.87. Nandeshwar and Chaudhari used a suite of learners to
predict which of approximately 28,000 students would en-
roll at West Virginia University [16]. They were interested
in variables contributing to students’ decisions (finding fi-
nancial aid to be an important factor) and did not give an
assessment of how well their models fared outside of accu-
racy (which was about 84%).

In addition to the above studies examining non-neural ap-
proaches for predicting enrollment, studies have also found
that neural approaches fare very well for the same task and
often perform better than non-neural approaches. For ex-
ample, Walczak evaluated different neural network designs
when predicting student enrollment at a US liberal arts col-
lege, stressing the problem as one of resource allocation [24].
Using a few thousand students, Walczak found that back-
propagating neural networks fared best among those com-
pared. Walczak and Sicich later compared neural networks

versus logistic regression to predict enrollment at two US
universities [25], finding that neural networks performed bet-
ter than logistic regression. Chang used logistic regression,
decision trees, and neural networks to predict the enrollment
of applicants at an undisclosed university, also finding that
neural networks outperformed other models when judging
by classification accuracy [3].

2.2 Scholarship Optimization
While there are some examples of works examining the use of
machine learning in predicting enrollment, there is very little
detailing scholarship disbursement strategies, especially ones
leveraging machine learning and/or numerical optimization
techniques. One example is the work of Alhassan and Lawal,
who demonstrated the use of tree-based models for deter-
mining which students would be awarded scholarships in
Nigeria [1]. Alhassan and Lawal describe the results as
“effective” compared to approaches previously used but did
not provide additional insight on the success of their ap-
proach. Spaulding and Olswang demonstrated the use of
discriminant analysis to model the enrollment decisions of
students based on varying need-based financial aid awards
at an undisclosed university in the US [22]. They found that
changes in their award policy would yield only small upticks
in enrollment.

One work used machine learning to predict enrollment in
conjunction with a numerical optimization technique to dis-
burse scholarships. Sarafraz et al. used neural networks with
genetic algorithms to optimize financial aid allocations and
while our research is similar in spirit, there are a few notable
differences [19]. Firstly, the scholarship fund optimized in
this work is merit-based, meaning there are upper and lower
bounds on scholarship awards that are specific to each stu-
dent. This makes for a more difficult optimization task. We
also examine alternative predictive models beyond just neu-
ral networks (such as ensemble approaches) and use a larger
dataset in terms of both the number of observations (i.e.
students) and the number of features (over 72,000 observa-
tions vs 4,082; over 100 features vs 6). We also provide a
comprehensive description of final model performance across
multiple metrics and a detailed outline of how genetic algo-
rithms can be used for aid disbursement, including a binning
framework to drive the optimization task. Finally, we share
real-world enrollment metrics after employing the scholar-
ship optimization to demonstrate the effectiveness of our
approach.

3. METHODS
We present the methods for this work by first giving an
overview of the setting; then, we describe the data and fea-
ture engineering; we then discuss how we predicted enroll-
ment; finally, we discuss optimization constraints and the
optimization process. The overall process for this work is
shown in Figure 1. Due to the sensitive nature of the data
and the fact that it contains personally identifiable infor-
mation (i.e. student names, addresses, and high schools),
we are unable to make it widely available. However, we
present the methods below with as much transparency as
we can to allow others to replicate the work. We used the
Python programming language and implemented feature en-
gineering and predictions using pandas and sci-kit learn, re-
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spectively [18]. We developed genetic algorithms using Dis-
tributed Evolutionary Algorithms in Python (DEAP) [6].

3.1 Setting
This scholarship optimization work was performed at a large,
public US University (the University2). The scholarship
fund examined was created to maintain the University’s aca-
demic standards while maximizing the enrollment of first-
time, first-year (freshmen) domestic non-resident (DNR) stu-
dents by giving them financial incentive to attend the Uni-
versity. DNR students are students from the US who are not
from the state in which the University is located. DNR stu-
dents account for larger tuition charges than their resident
counterparts so their enrollment is of high importance from
a budgeting perspective. Tens of millions of dollars in total
are awarded annually to these students from the scholarship
fund with millions eventually given to students who enroll.

The University is on a quarter-based term system and a
vast majority of incoming freshman students start in the fall
after applying during the preceding fall and being notified
of their acceptance in the preceding spring. The scholar-
ship fund (henceforth referred to as the “DNR scholarships”
for domestic non-resident scholarships) was designated to
be disbursed for equal amounts across three academic quar-
ters for each of four years (12 quarters total). The DNR
scholarships were to be disbursed based on merit. As such,
students with higher academic profiles, as defined later, were
given equal or larger scholarships than those with lower aca-
demic profiles, regardless of financial need. Additionally,
only freshmen DNR students who were accepted to the Uni-
versity were eligible for a DNR scholarship award. All ad-
mitted DNR students were automatically considered for a
DNR scholarship and students did not need to apply for the
scholarship.

In years prior, the disbursement strategies for the DNR
scholarship were developed by external consulting services.
Starting in 2018, the disbursement strategy was brought un-
der the technical stewardship of the University. The first
application cycle under the stewardship of the University
(i.e. the fall 2018 entering class) is the application cycle for
which we optimized scholarship disbursement and detail in
this writing. The models that were previously developed for
the disbursement of the scholarship fund were proprietary
to the consulting services and could not be leveraged. How-
ever, student application, enrollment, and scholarship data
from prior years was available. When describing results, we
compare the results from our approach to that developed by
the consulting services. We cannot compare the approach
detailed in this writing to a completely un-optimized ap-
proach or one that is randomized because the scholarship
has never been disbursed in such a manner.

Award-receiving students concurrently learned of the amount
of their scholarship and of their admittance to the Univer-
sity. However, not all applications were scored by admis-
sions officers when the first awards were given to students.
This was primarily due to the admissions review timeline at
the University. As such, we did not know of every admit-

2University administrative offices requested that the insti-
tution not be identified.

ted student at the time of optimization yet the scholarship
awards were only to be given to admitted students. Thus,
the 2018 entering class’s data could not be used directly in
the optimizations. Instead, we used data from prior years
to develop a fund allocation strategy and then applied this
strategy when disbursing scholarships to the 2018 entering
class. This was with the expectation that applicants in the
2018 applicant pool were statistically similar to years prior
across all the variables used in the modeling and we checked
to ensure that this was in fact the case using individual t-
tests.

3.2 Data
The data for this work consisted of information on all fresh-
men DNR applicants to the University from 2014-2017 with
usable data. This totaled 72,589 students. The data was
compiled from two major institutional sources: the students’
admissions applications and their Free Application for Fed-
eral Student Aid (FAFSA) information. The FAFSA is an
application prepared by incoming and current US college
students to determine their eligibility for financial aid. Ex-
amples of data from students’ admissions applications in-
clude their high school coursework, entrance exam scores,
college GPA (if they had taken classes for credit), whether
they were a first-generation college student, and their par-
ents’ educational attainment. These were all self-reported
and verified by the University as needed. Data directly from
and derived from student FAFSA filings included students’
family income, their expected family contribution to col-
lege expenses (as calculated by the University), and loan
amounts awarded to the student. About 66% of students
had filled a FAFSA. Also included in the data were indi-
cators of whether each student eventually enrolled at the
University. Of the 72,589 students in the dataset, 5,081 en-
rolled (7.00% of all). Demographic variables such as gender
and race were available but were not used as discussed in
Section 4.1.

The data included tuition amounts students would pay on
an annual basis, their financial aid grants and scholarships
awarded (outside of DNR scholarship awards), and their
DNR scholarship award amount. These variables were not
included in any prediction or optimization model on their
own. Instead, we created a “reduced_tuition” variable
which was the annual tuition amount for the students less
their total grants and scholarships (i.e. the other two vari-
ables summed). We used this variable as a single financial
aid and tuition-related feature for the optimization process.
This feature is not altered when developing the predictive
classifier but is altered during the optimization task, during
which the response of students to different award amounts
are simulated.

3.3 Feature Engineering
Prior to prediction and optimization, we engineered features
from existing variables. First, we either converted categor-
ical variables to dummy variables or replaced them with a
binary indicator variable. Then, we grouped students based
on their FAFSA award amounts into 6 discrete bins (which
were in line with University financial aid record-keeping),
each of which was used as a categorical feature. We cre-
ated binary indications of whether students attended each
of the 10 most popular high schools for student applications
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Figure 1: Process for optimizing scholarships, starting with data from institutional databases and ending with disbursements.

and did the same for the 10 most popular states from which
students applied. A binary indication was also created for
a student athlete designation as each sport had its own ap-
plication codes. In addition, we also created a separate bi-
nary indication for whether the student was transferring any
credits from a college in high school program. Students also
indicated their academic interests on their applications to
the University. We pulled these from their applications and
grouped them into 12 broader categories based primarily
on the college/department they were associated with at the
University (e.g. “Engineering”, “Humanities”, “Health Sci-
ences”, etc.). We then created binary indications of whether
a student was interested in each of the categories. Only stu-
dents’ first application to the University and the resulting
admissions/enrollment decisions were included in the data.
This ultimately resulted in a total of 108 features extracted
from students’ University and FAFSA applications.

Not all applicants filed a FAFSA form and we imputed miss-
ing FAFSA-related values. We performed this imputation by
building a separate gradient-boosted regression tree model
for each FAFSA-related feature using all features that were
complete. We then used these regression models to predict
the missing values. Only FAFSA-related values were missing
and no other features needed to be imputed.

3.4 Predicting Enrollment
To predict enrollment, we first randomly divided the data
using a 80-20 training-test split, with 57,359 students in the
training set and 14,340 students in the test set. We did
not re-balance the data with respect to classes. We scaled
the training data by subtracting the median of each fea-
ture and dividing by the feature’s interquartile range. We
subsequently scaled the test data using the scaling values
from the training data. The binary outcome variable indi-
cating whether the student enrolled at the University was
not scaled.

After performing the training-test split, we trained 7 ma-
chine learning (ML) classifiers on the training set to predict
enrollment. These classifiers were: a bagging tree ensemble
(BC), gradient boosted trees (XGB), K-nearest neighbors
(KNN), random forests (RF), regularized logistic regression
(LR), support vector machines (SVM), and a neural network
with 3 hidden layers (MLP). We tuned the hyperparameters
for each of the classifiers using 5-fold cross validation on
the training set. We report performance from all classifiers
on the test set, which was not used to train the classifiers
and only used to evaluate final performance. We used the
classifier with the best performance to optimize scholarship
disbursement.

3.5 Optimizing Scholarships
3.5.1 Genetic Algorithms

After developing a classifier to predict enrollment, we used
the predictions from the classifier as an objective function
in optimization. The aim of the optimization was to de-
velop a strategy that maximized student enrollment from
the DNR scholarships. In other words, the optimized ap-
proach disbursed scholarships in a manner that maximized
the number of students who would enroll at the University
from a pool of admitted students to the University. In this
work, we used a genetic algorithm (GA) for optimization as
GAs are known to work well with a well-defined measure to
optimize (i.e. student enrollment) but not a well-defined,
continuous, and/or differentiable objective function. GAs
are also known to find near-optimal solutions quickly, which
was essential when we wanted to rapidly outline and iterate
across different budgeting scenarios early in our modeling.

GAs are a class of evolutionary algorithms and are inspired
by biological evolution. GAs generally involve iteratively
starting with a population of chromosomes, undergoing se-
lection across this population according to a measure of fit-
ness, using genetic crossover and mutation to produce off-
spring from the most fit individuals, and then using this
offspring as the population for the next iteration [15]. The
overall population fitness improves with each iteration and
the GA eventually converges towards an optimal solution.
In this work, we start with a population of award disburse-
ment strategies whose “genetic material” (chromosomes) are
a set of scholarship award values; the measure of fitness to
assess these individuals is based on predicted enrollment af-
ter accounting for constraints; and the crossover and muta-
tion functions used to create offspring are based on altering
scholarship award values.

We used the data for the 2017 admitted class in the opti-
mization of scholarship funds. In all, this was 9,479 students
(Ntotal). In this sense, we used data from the year prior to
optimize the disbursement for the 2018 entering class. We
pared the data used in optimizations down to a single year’s
application cohort to avoid having to consider if any of the
optimization constraints in Section 3.5.3 were being violated
for each of the application years simultaneously.

3.5.2 Binning Students
We generated a set of possible scholarship awards that spanned
Smin to a chosen maximum (Smax) in $300 increments and
included $0. We did not determine Smax beforehand but
instead set it such that the optimization procedure did not
generate an output that included a Smax scholarship award.
Smin was evenly divisible by $300 and we generated possible
scholarship awards in $300 increments to satisfy constraint
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(4) from Section 3.5.3. In all, there were over 20 unique
scholarship award values and only these award values were
used in the optimizations.

Part of the difficulty of this particular optimization task lies
in the fact that awards were to be given in a merit-based
manner. As such, the scholarship award for any student is
dependent on the awards of students with similar academic
profiles. For example, if one was to rank all admitted stu-
dents in the application pool based on a measure of merit,
the minimum possible award given to a particular student
would be determined by the award given to the student with
the merit that is immediately lower. Similarly, the maxi-
mum award for a particular student would be equal to the
award given to the student with the merit that is immedi-
ately higher. As such, if optimizing on a per-student basis,
altering the award for any given student to influence their
enrollment decision could result in a cascade that subse-
quently effects every other student’s award amount. This
results in a very complex fitness landscape when optimizing
scholarship awards on an individual basis.

To resolve this issue of an optimization cascade, we first
ranked and then binned students based on academic merit
such that all students in the same bin received the same
scholarship award. To perform this binning, we sequen-
tially ranked students based on 3 variables: their appli-
cation academic score, their high school GPA, and their
scores on college entrance exams, in that order. This rank-
ing was students’ “academic profile.” Each student’s ap-
plication academic score was based on a holistic scoring of
their academics and was the primary variable for determin-
ing their academic profile. We were provided this metric
by the University admissions office and it was not calcu-
lated/determined by us. Ties between students having the
same application academic score were broken by looking at
their high school GPA; any remaining ties thereafter were
broken using students’ entrance exam scores. Once students
were ranked, they were divided into 20 ventiles based on
their academic profiles (i.e. students were grouped across
every 5th percentile) with each ventile receiving the same
scholarship award amount. Using ventiles allowed for us to
have sufficient flexibility when exploring the fitness land-
scape during optimization while also not being so granular
as to continually be caught in local extrema. Additionally,
ventiles helped mitigate the effect of optimization cascades
by giving identical awards to students with similar academic
profiles. We refer to each of these ventiles as a“bin”and each
bin served as the chromosomal building block for the GA. A
single scholarship allocation strategy consisted of the schol-
arship awards across all 20 scholarship bins and is referred
to as an “individual” henceforth when used in the context
of the GA. Thus, each individual’s genetic material can be
thought of as being in the form of chromosomes composed
of scholarship award bins. It should be noted that we used
ventiles after examining the optimization results from other
binning strategies (namely using 10, 15, and 25 bins) and
finding them to give lower predicted enrollments. We did
not, however, attempt to find an optimal bin number be-
yond this but do intend to explore this in the future.

After binning students, we created a fitness function to eval-
uate the effect of altering the reduced_tuition variable on

student enrollment. Specifically, this function took the ge-
netic material of a scholarship individual (i.e. a set of schol-
arship awards for each bin) and then re-evaluated the re-

duced_tuition variable for each student based on their up-
dated DNR scholarship award. As noted above, we created
the reduced_tuition variable by taking the tuition due for a
student and subtracting their total grants and scholarships;
it was the only financial aid and tuition-related variable used
in the predictive model. The function re-calculated each stu-
dent’s likelihood for enrollment based on the updated values
for reduced_tuition using the predictive enrollment model.
The final output for the fitness function was a calculation of
the number of students predicted to enroll for a given schol-
arship individual, which we used as the fitness criterion for
evaluating individuals.

3.5.3 Modeling Constraints
Several constraints were posed on the scholarship disburse-
ment by University administrators. Due to University pol-
icy, exact values for awards and budgets will not be dis-
cussed. Some constraints on the disbursement strategy were
as follow, where F represents funds in DNR scholarship of-
fers, B represents funds in the DNR scholarship budget, N
specifies a count of students, and S specifies a scholarship
award amount:

1. The total amount spent on DNR scholarships (Fspent)
cannot exceed a pre-determined amount (Bspent):
Fspent ≤ Bspent

2. The total amount offered to students in DNR scholar-
ships regardless of whether they enroll (Foffered) cannot
exceed a pre-determined amount (Boffered):
Foffered ≤ Boffered

3. The percentage of admitted students who are awarded
scholarships (N%awarded) should be approximately equal
to a pre-determined percentage (N%target):
N%awarded ≈ N%target

4. The award amounts must be divisible by $300 to allow
for round hundred-dollar splits across three academic
terms.

5. There is a minimum value for a single scholarship award
(Smin) but no pre-determined maximum value.

The organization of the population, individuals, and bins for
the GA optimization is shown in Figure 2. We generated an
initial population of p individuals by randomly selecting K
scholarship awards (one for each bin) from the set of possi-
ble scholarship awards and sorting for each individual. For
this work, p = 1000 and K = 20. Each bin contained the
same number of students (Nbin), which was equal to Ntotal

K
.

All students in the same bin received the same award for a
given individual; awards were not unique to each bin and
could be duplicated across a given individual. Nbin multi-
plied by the scholarship award value for each bin equalled
the funds awarded for that respective bin; the sum of these
across all K scholarship bins for an individual was Foffered

for that individual. The predicted number of enrollees for
each scholarship bin multiplied by the award for that re-
spective bin equalled the funds spent for that bin; the sum
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Figure 2: Genetic algorithm setup. Individuals (i) are schol-
arship allocation strategies of K scholarship bins (j). The
population consists of p individuals. Each Sij is a scholar-
ship award value for the ith individual and the jth schol-
arship bin. The bins are sorted based on academic profile
such that Si1 ≤ Si2 ≤ Si3... ≤ SiK for any given i (but not
necessarily across individuals). For this work, K = 20 and
p = 1000.

of these across all K scholarship bins for an individual was
Fspent for that individual. The number of bins with non-zero
award values divided by K was equal to N%awarded for an
individual.

We penalized each individual’s fitness if the optimization
constraints above were violated. We initialized a single penalty
coefficient (σ) to 1.0 and then successively enforced each of
the following squared penalties for a given scholarship indi-
vidual:

• if too much was spent on scholarship awards:

Fspent > Bspent → σ = σ ∗ (
Bspent

Fspent
)2

• if too much was offered in scholarship awards:
Foffered > Boffered → σ = σ ∗ (Boffered

Foffered
)2

• if too many students were awarded a scholarship:

N%awarded > N%target → σ = σ ∗ (
N%target

N%awarded
)2

• if too few students were awarded a scholarship:

N%awarded < N%target → σ = σ ∗ (
N%awarded
N%target

)2

Ultimately, we multiplied the output of the fitness function
(i.e. the predicted enrollment count for an individual) by
the penalty coefficient to penalize constraint-violating indi-
viduals. If there were no constraints violated, the penalty
coefficient was 1.0 and the fitness evaluation of the individ-
ual remained unchanged.

3.5.4 Optimization Process
The approach for the GA was as follows. We randomly
generated the initial population of individuals as described

above. We then calculated the fitness of each individual and
took a subset of the most fit individuals (10%) as the basis
for the next generation of the population. We then employed
genetic crossover to this subset of the population to generate
offspring. We used two-point genetic crossover, wherein two
points were randomly selected along chromosomes and the
genetic material from one individual was swapped with that
from another between the two points, much like a two-point
crossover mutation in nature. In other words, for a pair
of randomly selected individuals, we randomly selected two
scholarship bins from ventiles 1 through 20 and all scholar-
ship award values between the two bins from one individual
were swapped with those from the other individual and vice
versa.

After using crossover to refill the population, the offspring
underwent mutation. We used three types of mutations: an
increase mutation, a decrease mutation, and a swap muta-
tion. For a mutation, we randomly selected an individual
and then randomly selected a bin from this individual. The
award for this bin was either increased to another possi-
ble award amount (increase mutation), decreased to another
possible award amount (decrease mutation), or swapped for
another randomly selected award amount (swap mutation).
The probability of performing either an increase, decrease,
or swap mutation were equal unless the scholarship award
value equaled Smin or Smax, in which case we eliminated
the possibility of a decrease or an increase mutation, re-
spectively. Once a particular mutation was selected for a
given individual and bin, a single award value was randomly
selected from all possible award values that satisfied the con-
dition of the mutation and used in the mutation. After mu-
tations, we re-sorted the awards across each individual to
ensure students with higher academic profiles received larger
awards. We kept the initial subset of the most fit individ-
uals unchanged during crossover and mutation; instead, we
altered replicas of these individuals to compare the most
fit individuals from one generation to those from the next
generation. The new generation of individuals then served
as the population for the next algorithmic iteration. We
repeated this process for 20 generations of the population
and used the most fit individual thereafter as the scholar-
ship allocation strategy. The process for the GA is shown
in Process 1.

Process 1: Genetic algorithm process for scholarship allo-
cation (parameters for this work are in parentheses)

1: Initialize population (p = 1000 with K = 20 bins each)
2: Evaluate fitness of each individual (where fitness is

enrollment count predicted by classifier)
3: For each of G generations: (G = 20)
4: Keep subset of population with highest fitness (10%)
5: Use two-point crossover to fill population
6: Mutate random bins of random individuals
7: Evaluate fitness of each individual
8: Use individual with highest fitness after G generations

4. RESULTS AND DISCUSSION
Using the methods described in Section 3, we developed a
predictive classifier of student enrollment and used it in con-
junction with a genetic algorithm that optimized the alloca-
tion of a scholarship fund. Ultimately, the university saw a
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Table 1: Classifier performance sorted by rank across all
metrics. Names of classifiers are provided in Section 3.4.

Model Accuracy AUC F1-score

1. XGB 93.10% 0.846 0.905
2. RF 93.06% 0.848 0.901
3. MLP 93.01% 0.845 0.902
4. BC 93.05% 0.833 0.901
5. LR 92.96% 0.805 0.900
6. SVM 93.00% 0.780 0.900
7. KNN 92.80% 0.793 0.893

23.8% increase in enrollment yield after using our approach.
This resulted in millions of dollars of additional annual tu-
ition revenue. The following section presents these results
in greater detail in the same order as the methods.

4.1 Predicting Enrollment
Previous studies have shown the effectiveness of ML in pre-
dicting enrollment. We examined seven different predictive
classifiers for this task. We show the performance of these
classifiers in terms of prediction accuracy, AUROC, and F1-
score in Table 1. We used the same observations as a test
set when comparing performance across classifiers; for the
test set, the majority class represented 92.8% of observa-
tions (i.e. 7.2% of students in the test set eventually en-
rolled at the University). All classifiers performed similarly
in terms of both accuracy and F1-score. Because of the large
class imbalance, there were only modest gains in terms of
accuracy over the majority class representation. Ensemble
classifiers (RF, XGB, and BC) had the highest accuracies
while KNN performed on par with the majority class rep-
resentation (note: it was checked that the KNN model did
not predict that all observations were of the majority class).
The highest F1-score, meanwhile, was given by the XGB
classifier, though it was not substantially higher than other
classifiers.

We show ROC curves for the classifiers in Figure 3. The gen-
eral shape of the ROC curves was similar across the classi-
fiers but with meaningful variation in AUROC. Specifically,
RF, XGB, and MLP tended to perform similarly in terms of
AUROC and had the highest AUROC values. This is in line
with previous work where neural networks tended to per-
form well when predicting enrollment, even without more
complex architectures in this case. That said, the ensemble
classifiers performed similarly well for the task at hand.

Demographic data was not used in the models. Including de-
mographic variables in the prediction models would improve
predictive performance to some degree, albeit at the expense
of potential explicit discrimination with respect to recipient
characteristics. As such, we decided to exclude demographic
variables when building the classifiers. While doing so lim-
its the degree of explicit discrimination, the possibility of
implicit discrimination remains - particularly with respect
to associations between demographics, income, geography,
and academics. Checking and controlling potential demo-
graphic imbalances is beyond the scope of this particular

Figure 3: ROC curves for enrollment prediction

work but was handled by stewards of the DNR scholarship
fund after optimization. It should again be noted that the
DNR scholarships were designated to be awarded in a merit-
based manner and financial need was not be considered in
the allocation process.

We examined classifier performance across all metrics and
decided to use XGB when optimizing scholarship alloca-
tion. Prior to optimization, we calibrated the classification
threshold for the prediction probability to the nearest one-
hundredth such that the number of students predicted to
enroll by the model was nearest to the actual enrollment
count. By calibrating the threshold in this manner, we used
a lower probability decision threshold (0.22) than the value
of 0.5 that is typically used in binary classification. We un-
derstood that doing so came at the expense of an increased
rate of false positives (Type I error) but it also allowed for
the predicted enrollment counts to be closer to actual counts,
which was necessary when discussing predictions with ad-
ministrative stakeholders. We show the effects of this cal-
ibration in Figure 4, where the confusion matrix using the
standard classification threshold of 0.5 is shown along with
the confusion matrix using the calibrated threshold of 0.22.

Of note from the confusion matrices is how well students who
did not enroll at the University could be identified. On the
other hand, it was much more challenging to identify those
who would enroll. This speaks to the selectivity of the Uni-
versity in that many of the candidates who would not enroll
were simply those who were not accepted to the University
(students’ acceptance to the University was not included as

Figure 4: Confusion matrices for predicting enrollment us-
ing XGB and a classification threshold of 0.5 (left) and a
calibrated classification threshold of 0.22 (right)
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Table 2: Predicted enrollments after calibrating the classifi-
cation threshold for test data and all data (training + test
data).

Test Data All Data

Actual 1,032 5,081
Predicted 1,049 5,166

a feature during predictions). Concurrently, the difficulty
with identifying students who will enroll aligns with the
fact that these DNR students are applying to a university
that is away from their respective homes and social bases.
Also, those that are accepted to the University tend to be of
higher academic standing, giving them more potential col-
lege choices. Thus, the general likelihood of a DNR student
enrolling is difficult to determine when considering potential
social factors and college options.

Lowering the classification threshold resulted in predicted
enrollment counts in line with what was seen in the data,
as shown in Table 2. Calibrating the classification thresh-
old also allowed for a greater number of true positives while
also balancing the number of false positives and false neg-
atives. We also examined the effect of similarly calibrating
the classification thresholds when using the other ML clas-
sifiers and determined that using XGB would still be viable
for scholarship optimization.

4.2 Optimizing Scholarships
After we developed a model for predicting student enroll-
ment, we used a GA to design a scholarship disbursement
strategy. We used the GA in a setup with students grouped
in ventiles and each ventile receiving the same award amount.
The genetic material (awards for each ventile) for individ-
uals (allocation strategies) was altered for each iteration of
the GA and then fitness was determined. Fitness was based
on predicted enrollment after accounting for the violation
of constraints. Due to the application review timeline at
the University, we did not know which students of the 2018
entering class would be admitted and used the prior year’s
application data (2017) to develop a disbursement strategy.
Because the disbursement strategy relied on students being
grouped into ventiles, we applied it to the most recent en-
tering class after checking that the two classes were similar
across academic-related variables using paired t-tests and
chi-squared tests. Additionally, the binning strategy and
the use of ventiles alleviated concerns about the size of the
entering class as specific award amounts were disbursed to
proportions of the admitted class and not to a fixed count
thereof.

We show fitness (predicted student enrollment) measures
across the population of individuals for each generation of
the GA in Figure 5. As expected, the maximum, mean, and
median values of fitness increase across generations, though
these increases are much smaller for later generations. The
minimum fitness values for the population follow a similar
trend with some variation. All metrics eventually converge
to the predicted enrollment, which is shown as a percentage.
We intend to use Monte Carlo simulations in the future to
outline a distribution of likely enrollment counts during the

optimization process.

The exact award amounts for the DNR scholarship cannot be
disclosed due to University policy. Additionally, the percent-
age of students receiving scholarship awards was not consis-
tent across previous years. For example, in some years, 30%
of accepted DNR students may receive a scholarship while
in other years, 70% of accepted DNR students may receive
a scholarship. Furthermore, tuition charges change annu-
ally at the University. Thus, in an attempt to provide a
normalized measure for comparison across entering classes
without disclosing exact award amounts, we compare award
allocation strategies across time based on the discount on
tuition. For example, a student receiving a $5,000 schol-
arship when tuition is $20,000 receives a 25% discount on
tuition. We show previous allocations of the DNR scholar-
ship to scholarship-receiving students as a discount on tu-
ition in Figure 6. This discount on tuition factors in tuition
cost for a full-time DNR student but not additional living
or educational expenses (i.e. housing, food, books, etc). To
further illustrate the use of discount on tuition, when look-
ing at Figure 6, it can be seen that approximately 15% of all
scholarship-receiving students received an award that dis-
counted their tuition by 8-12% in 2014 while in 2017, ap-
proximately 60% of students received a similar award. For
each of the bands in Figure 6 (six bands per entering class),
only a single scholarship award amount fitting within a given
band was given to students for a single entering class. It is
apparent from examining previous allocations that the man-
ner in which the awards were historically allocated shifted
greatly from year to year. As noted previously, these pre-
vious allocations were determined by a external consulting
services and we could not leverage their underlying approach
or insight in this work.

We also show the scholarship allocation strategy for the
2018 entering class (for which the scholarship disbursement
was optimized in this project) in Figure 6. This strategy
tended to favor smaller scholarships, which aligns with the
optimized allocation strategy that Sarafraz et al. reported
[19]. In fact, scholarship stewards had initially placed a
lower limit on the scholarship awards (Smin) during model-
ing, which was equal to the lowest scholarship amount that
had historically been awarded to students. This lower limit
was between a 8-12% discount on tuition. After we discussed
preliminary results of the optimization and the effectiveness
of smaller awards with the scholarship stewards, it was deter-
mined that the lower limit on the awards would be changed

Figure 5: Fitness measures across generations of genetic al-
gorithm. Fitness was equivalent to predicted enrollment.
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Figure 6: Historical scholarship allocations for the DNR scholarship. The highlighted year (2018) shows the optimized
scholarship allocations from this work. Upper bounds for the bins indicating discounted tuition are inclusive. Percentages of
students given awards are percentages of award-receiving students only.

Table 3: Historical, predicted, and actual yields after schol-
arship disbursement.

Timeframe Yield % Increase

Historical 2014-2017 10-12% N/A

Predicted 2018 13.9% 15.8%
Actual 2018 14.8% 23.3%

to Smin
2

. Thus, the 2018 entering class had some scholar-
ship awards that were lower than those received by previous
entering classes. These lower awards discounted tuition by
4-8%. It is also noteworthy that the optimized disbursement
strategy gave a distribution of awards that was right-skewed
(with more of the awards being lower in value), in contrast
to previous allocation strategies, which were predominantly
left-skewed (with more of the awards being higher in value)
or near uniform. This speaks to the idea that smaller schol-
arships awarded to students of lower merit may be more ef-
fective than larger scholarships are for those of higher merit
(keeping in mind that students who received smaller awards
were also of lower merit for this merit-based scholarship).
This aligns with intuition that those with higher academic
profiles have more college options and require additional re-
cruitment, be it additional financial aid or in some other
form. It could also relate to the idea that higher-performing
students come from more advantaged socioeconomic back-
grounds, thereby diminishing the effect a scholarship may
have on their enrollment decisions.

After we developed the scholarship distribution strategy for
the 2018 entering class, the University distributed scholar-
ship awards to admitted DNR freshmen. We then waited
as these students indicated their enrollment decisions a few
months later. In recent years, the yield for DNR students at
the University was about 10-12% with little/no increase, as
verified by scholarship stewards, where “yield” refers to the
percentage of admitted students who enrolled at the Uni-
versity. Historical yields were not based on an un-optimized
or randomized scholarship allocation strategy but were the
product of the scholarship allocations derived by external
consulting services. Thus, because we were comparing the
results from our approach to those from a previously opti-
mized strategy (and not an un-optimized or random alloca-
tion strategy), we expected to see a modest improvement,

if any at all. Instead, we saw a much higher increase in
yield. Table 3 shows the historical yields, the predicted yield
based on our optimized approach, and the actual yield based
on student enrollment for the 2018 entering class. When
comparing to the upper bound on historical yield (12%),
we anticipated that the scholarship optimizations would in-
crease student yield by 15.8% (12% to 13.9%) based on the
enrollment numbers we had seen during the optimizations
(which was computed using XGB and the calibrated clas-
sification threshold). In reality, yield increased by 23.3%.
This amounted to hundreds of additional students enrolling
with each paying tens of thousands of dollars annually in tu-
ition. There was also no discernible difference between the
academic aptitude of students from the 2018 entering class
and years prior. Overall, the net effect was an increase in
millions of dollars in annual tuition revenue for the Univer-
sity. The University has since incorporated our approach
into their enrollment modeling process for future disburse-
ments of this scholarship fund. Of note is that yields are
based on proportions of students that enrolled and the size
of the entering class makes little difference when compar-
ing yields. The University also admitted roughly the same
percentage of DNR students as years past and nearly all
conditions during the application process were identical to
previous entering classes. That said, the degree to which
this increased yield can be causally attributed to the schol-
arship optimizations warrants further investigation. This
may be in the form of A/B testing or some other controlled
experiment.

5. CONCLUSIONS
In this work, we show how existing data at a university can
be used to improve enrollment management. We combine
machine learning with numerical optimization and use stu-
dent application data at a public university to optimize a
scholarship fund. We find that the optimized approach in-
creased student enrollment and generated millions in tuition
revenue. Our approach has been incorporated into the uni-
versity’s enrollment forecasting.

We show that ensemble classifiers can give strong perfor-
mance when predicting enrollment and we use a binning
strategy based on student merit to make the optimization
task more tractable. This strategy eliminated the need for
per-student optimizations, thereby limiting the complexity
of the fitness landscape during optimization. After optimiza-
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tion, we see that smaller scholarship awards work better for
maximizing enrollment. In all, the University had histori-
cally seen little/no increase in enrollment yield and we pro-
jected that our optimized approach would increase yield by
15.8%. In reality, enrollment yield increased by 23.3%.

Universities are at the forefront of training the next genera-
tion of data scientists and developing data-centric tools and
techniques. However, they are far behind in applying data
science to their own administrative data and processes. This
project attempted to move them in this direction. Using a
suite of machine learning tools, we were able to increase a
university’s revenue from a scholarship fund by millions of
dollars. We think there are many similar opportunities to
harness the power of data science in the realm of education
administration, especially in resource allocation.
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ABSTRACT 
Online courses often include discussion forums, which provide a 
rich source of data to better understand and improve students’ 
learning experiences. However, forum messages frequently contain 
private information that prevents researchers from analyzing these 
data. We present a method for discovering and redacting private 
information including names, nicknames, employers, hometowns, 
and contact information. The method utilizes set operations to 
restrict the list of words that might be private information, which 
are then confirmed as private or not private via manual annotation 
or machine learning. To test the method, two raters manually 
annotated a corpus of words from an online course’s discussion 
forum. We then trained an ensemble machine learning model to 
automate the annotation task, achieving 95.4% recall and .979 AUC 
(area under the receiver operating characteristic curve) on a held-
out dataset obtained from the same course offered 2 years later, and 
97.0% recall and .956 AUC on a held-out dataset from a different 
online course. This work was motivated by research questions 
about students’ interactions with online courses that proved 
unanswerable without access to anonymized forum data, which we 
discuss. Finally, we queried two online course instructors about 
their perspectives on this work, and provide their perspectives on 
additional potential applications. 

Keywords 

Text anonymization; discussion forums; online learning. 

1. INTRODUCTION 
Online education is an essential part of many university programs 
[12] and has many potential benefits, such as convenience, 
scalability, and lower cost for both students and institutions. 
However, personal connections and discussions with fellow 
students could be quite negatively impacted if there are no 

opportunities for students to interact with each other as they can 
easily do in face-to-face classes. Hence, many online courses 
include optional or required discussion forums, in which students 
can talk about course content or connect with each other. For 
researchers, the textual contents of these forums is a valuable 
source of knowledge for understanding more deeply how students 
experience learning in online environments (see studies such as [4, 
6, 8, 11, 16, 18, 23, 26, 37]). A significant barrier to analyzing the 
contents of these forums is the private nature of information 
students can and do disclose to each other, such as names, 
affiliations, locations, and contact information. Analyzing these 
data often requires anonymization before researchers can ethically 
and legally access the data for analyses. In this paper, we propose 
and evaluate a method specifically designed for anonymizing 
student-generated text in discussion forums. 

There are various types of identifying information students share 
on discussion forums. Some are relatively straightforward to 
remove, such as phone numbers and email addresses, which follow 
a relatively limited set of formatting patterns. Others are less 
predictable – especially the names of people and places, which can 
appear in various forms (e.g., nicknames), overlap with dictionary 
words (e.g., May, Lane, Bob), or refer to entities not listed in course 
rosters (e.g., family members, locations). For example, one student 
in data we analyzed posted potentially identifying information 
about a pet:  

“Hello [REDACTED], I am also a pet lover. I have a 
[REDACTED] schnauzer, whose name is [REDACTED]. 
What's your work at the dog kennel? How many puppies 
are there in the kennel? It seems lots of fun!” 

While other students refer to themselves or others by alternate 
names, as in the case of this student: 

“Hi guys,My name is [REDACTED], but I prefer to be 
called [REDACTED]. I was born and grew up in 
[REDACTED], but I moved to [REDACTED] when I was 
in 7th grade.” 

Moreover, students frequently misspell identifying and non-
identifying information (e.g., “Battlestar Gallactica”, “When we 
icnrease entropy does it change delta G as well?”), which – 
combined with grammatical errors – resulted in relatively poor 
anonymization quality in our early efforts built on named entity 
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recognition software. Hence, we sought more robust methods to 
detect identifying information to be redacted. 

Identifying information can occur in forums when students 
organize study groups, address questions and answers to each other, 
and other situations. Students may receive meaningful benefits 
from exposing private information online – for example, if it 
enables them to connect more closely with peers they may never 
meet offline. Examples such as those above are especially common 
in introductory discussion forums at the beginning of courses, 
where students get to know each other. However, the presence of 
identifying information prevents researchers at many academic 
institutions offering online courses from analyzing forum data (at 
least without individual permission from each student), and thus 
from enhancing student learning experiences through applications 
of research. We focus on this problem for the specific case of 
university-level online courses, of which there are many, and 
propose an automated text anonymization solution that rivals 
human accuracy, despite the variance in form, content, and spelling 
inherent in student-generated text. 

1.1 Privacy Concepts and Anonymization 
Strategies for Text 

There is a large body of previous research on removing identifying 
information from text. A primary focus of prior work has been 
specifically on removing names and identifying information from 
medical records (see [24] for a review). One of the earliest methods 
employed a template-matching approach to find names, addresses, 
phone numbers, and other identifying information in medical 
records (e.g., notes written by doctors) [35]. Later research with 
similar methods has shown that template-matching approaches can 
be quite accurate in held-out (unseen) medical records data, 
achieving a recall of .943 [28], which compared favorably to inter-
human agreement on the same data. 

Early work on anonymizing text also led to the concept of k-
anonymity [33, 34], in which a formal guarantee is made for a 
particular dataset that every person in that dataset is 
indistinguishable from k-1 or more other people in the dataset. This 
has resulted in additional text anonymization research that goes 
beyond names of people and places to include identifying 
characteristics such as specific diseases and treatments that may be 
sufficiently unique to reduce k with some effort [3]. In general, 
these works utilize lists of known names and forms of names (e.g., 
“Dr. [name]”) to identify words for removal in text – forms which 
are used infrequently in online course discussion forums – and tend 
to focus on the unique needs of medical literature anonymization. 

Named entity recognition (NER) is another closely-related field 
that focuses on finding and classifying names in text [25]. Modern 
NER approaches typically rely on machine learning to discover 
names in text by learning from large corpora of annotated or 
partially-annotated text. In theory, NER can be applied for 
anonymization purposes by finding names and removing or 
replacing those from classified categories of interest (i.e., people, 
places, and organizations that may be employers) [10]. However, 
modern NER systems are typically trained on large amounts of data 
that differs considerably from discussion forum data (e.g., the entire 
contents of Wikipedia), and do not generalize well to new domains 
[20, 21]. 

Previous research has also studied privacy and anonymity in 
structured data (e.g., directed graphs, tabular records) that is 
relevant to forum anonymization. For example, social network 
analysis shows that individuals in one social network can be 

identified in another network based on who they interact with [27], 
which might occur across course discussion forums. The network 
of semantic and stylistic relationships between words can also 
identify individuals from text data [2, 5]. Such connections have 
led to the concept of differential privacy. Differential privacy is one 
of the strongest types of data privacy [14], which guarantees that it 
is impossible to determine whether or not a query individual’s data 
was included in a given dataset or result. While we do not propose 
providing such a strong guarantee for anonymizing discussion 
forum text for research analyses – given the need for obfuscating 
much of the text that could be needed for analyses (e.g., person-
specific sentiment words) – we instead propose a set of goals that 
allow well-intentioned researchers to access data with minimal 
exposure to identifying information. 

1.2 Novelty of the Problem 
Our method for automatically anonymizing discussion forum text 
aims to satisfy several goals needed for practical application. 
Specifically, the automatic method should: 

1) Achieve accuracy similar to human accuracy, if it is to be 
used as a replacement for manual annotation 

2) Not require annotation of large amounts of domain-
specific text data for development or validation 

3) Not rely on lists of student names, which may be 
unavailable (as was the case in our work), may not 
capture the diversity in naming conventions of students 
from various cultures, and may not capture nicknames 
frequently used by students 

Approaches relying on NER methods satisfy goals 1 and 3 well, but 
not goal 2. Conversely, approaches developed for the needs of 
medical record anonymization typically satisfy goal 1 and 
potentially goal 2 (though this has not been well tested and may not 
be the case if the style of medical text differs notably from online 
discussion forum text), but typically do require information such as 
lists of individual’s names, and do not satisfy goal 3. 

The approach we propose here satisfies the three goals outlined 
above, utilizing a set-theoretic approach to drastically reduce the 
burden of manual annotation and machine learning to further 
automate the manual annotation process. 

2. ANONYMIZATION METHOD 
The anonymization procedure consists of three broad steps (see 
Figure 1 for an overview). First, we extract a set of possible name 
words from the discussion forum text. Second, we classify possible 
names as either actual names or not names, via manual annotation 
or machine learning. Third, we remove the identified names from 
text, along with other likely identifying information that can be 
found via regular expressions, including emails, URLs, and phone 
numbers. 

2.1 Data Collection 
We obtained discussion forum text data from two online courses 
offered at a large, public university in the Midwestern United 
States. The first course (course 1) was an elective STEM course 
offered using the Moodle learning management system [13], while 
the second course (course 2) was an introductory STEM course that 
was required for students in some majors and was offered using the 
LON-CAPA learning management system [22]. Discussion forum 
participation was a required, graded component of both courses, 
and students were quite active in the forums. We obtained two 
semesters of course 1 data separated by two years and one semester 

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 40



of data for course 2. In the first semester of course 1 there were 
14,082 posts made by 226 individuals – including the instructor, 
whose identity and forum posts also need to be anonymized. In the 
second semester of course 1 there were 9,217 posts made by 295 
individuals, and in course 2 there were 930 posts made by 78 
individuals. Forum activities consisted of personal introductions, 
questions about and discussions of topics in the course, team 
formation/coordination for group projects, and others. 

We developed the anonymization method by examining the largest 
dataset (the first semester of course 1, referred to as training data) 
and utilized the remaining two datasets as completely unseen held-
out testing data. The second semester of course 1 (referred to as 
holdout 1) provides a test of generalization of the method over time, 
while course 2 (referred to as holdout 2) serves as a test with a 
different course topic, learning management system, and instructor. 

We obtained approval from our institutional review board and the 
instructors of the courses before collecting and analyzing data. 
However, we were only permitted to access anonymized data for 
analyses. Hence, we developed the anonymization method in 
cooperation with university data warehouse staff, who ran code for 
analyses on original forum data and shared the anonymized results. 

2.2 Narrowing the List of Possible Names 
There are several possible categories for each word (sequence of 
consecutive non-whitespace characters, after removing 
punctuation) in a discussion forum post. The word may be an 
identifying name referring to a person or a place, an English word1, 
a misspelling, or a non-English word (e.g., numbers, other 
languages). The most challenging and time-consuming aspect of 
anonymization is to determine whether a particular word is 
identifying or not. We applied a set-theoretic approach to 
drastically reduce the scope of the problem, narrowing down the 
list of all words in forum posts to a small subset of possible names, 
which are then much less time-consuming to annotate. 

The top row of Figure 1 illustrates the possible name extraction 
process. We started with a dictionary of over 100,000 English 
words [36], including common loanwords, and removed any words 
that overlapped with a list of over 23,000 cities, political regions, 
and countries (words such as South, New, etc. that were part of 
place names)2. We then also removed any words from the 
                                                             
1 This paper focuses on English-language text. However, the 

method could be repeated for other languages by replacing 
English-specific components (e.g., the dictionary) with another 
language. 

dictionary that overlapped with a list of over 7,000 first and last 
names obtained from U.S. census data. Thus, the dictionary 
contained only words that were not the names of people or places – 
words like wormhole and dalliance, but not so or will. We then 
removed these non-name dictionary words from the list of all 
unique words in discussion forum posts, leaving only possible 
names. 

2.3 Feature Extraction 
We extracted various features to help both human annotators and 
machine learning models classify each possible name as a name or 
non-name word. Features can be categorized into two basic types: 
densely-distributed ad hoc features and sparsely-distributed word 
presence features. Ad hoc features calculated for each possible 
name consisted of: 

• Count of occurrences 

• Word index in the first post where the word was used 

• Count of words in the first post where the word was used 

• Proportion of occurrences where the word was 
capitalized 

• Proportion of occurrences where the word was at the 
beginning of a sentence 

• Proportion of mid-sentence occurrences (not at the 
beginning of a sentence) where the word was capitalized 

• Proportion of occurrences where the word was mid-
sentence and capitalized 

• Whether the word was a dictionary word or not (before 
modifying the dictionary) 

• Whether the word was in the U.S. census list of 
first/middle names 

• Whether the word was in the U.S. census list of last 
(family) names 

• Frequency of the word in the U.S. census list of 
first/middle names 

2 Obtained from http://www.geonames.org 

 

 
Figure 1. Anonymization method overview. Grey boxes indicate data, blue boxes indicate processing steps. Minus signs indicate 
set subtraction. 
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• Frequency of the word in the U.S. census list of last 
names 

• Whether the word was in the list of world cities 

• Whether the word was in the list of political regions (e.g., 
states, territories) 

• Whether the word was in the list of countries 

• Count of dictionary words that were within one edit 
(deletion, insertion, replacement, or transposition) of the 
word 

• Count of dictionary words that were within two edits of 
the word 

The list of ad hoc features resulted from several rounds of error 
analysis and iterative refinement, which was necessary to reach 
classification accuracies comparable to human raters. Feature 
development proceeded approximately in order of complexity. Our 
original features consisted of the simplest ideas such as the count 
of occurrences. Complex features, such as the proportion of 
capitalized mid-sentence occurrences, resulted from examining 
prediction errors from models with simpler features. While this 
process may have resulted in over-fitting the feature extraction 
process to training data, we made no adjustments to features for 
final evaluation on the holdout datasets (see description of dataset 
annotation below). 

Word presence features indicated the presence or absence of a 
particular word within the 10 most common words preceding the 
possible name word, which we refer to as context words, among all 
of its occurrences across forum posts. We tracked the most common 
context words separately for capitalized mid-sentence occurrences, 
capitalized occurrences, and all occurrences. This separation helps 
to determine whether common dictionary words like “hope” were 
also names. Word presence features consisted of a 1 if a particular 
word appeared in the ten most common context words for the 
possible name in question, and a 0 otherwise. Word presence 
features captured things like if a word was preceded by “hi” or 
“hello” – words which tended to indicate the presence of a name. 
We limited these features to the 25 most common overall context 
words, yielding 75 total context word presence features (since there 
were 3 capitalization conditions). Additionally, we included an 
“other” count category for all less-common context words, yielding 
another three features (one for each capitalization condition). For 
example, the words “tea” and “coffee” might occur among the 10 
context words for a particular possible name, but be too infrequent 
across all possible names to rank in the top 25; we would thus count 
these both as “other” and calculate features for the number of 
“other” words in the context words for that particular name, the 
number of capitalized “other” words, and the number of “other” 
words capitalized in the middle of a sentence. Thus there were 95 
features in total: 17 densely-distributed and 78 sparsely-distributed. 

2.4 Manual Annotation of Possible Names 
Two raters iteratively annotated possible names derived from the 
training data, checked agreement, and updated an annotation 
scheme to resolve patterns of common disagreement. Annotators 
had access to features listed above, as well as the possible names 
themselves. They did not, however, have access to the actual forum 
posts nor to associated possible name pairs (first and last names 
together), thereby mitigating unnecessary exposure to possible 
identifying information. 

In the first round, raters annotated 200 randomly-selected possible 
names as either names, non-names, or unknown. Of these 200, they 
annotated 10 as unknown. The annotation guide was subsequently 
revised to remove the unknown category, since ultimately a 
name/non-name decision must be made for anonymization, and to 
clarify unknown cases. Unknowns primarily consisted of famous 
individuals’ names (e.g., Obama), which we classified as names out 
of an abundance of caution. For the remaining 190 cases, the raters 
achieved 87.4% agreement and Cohen’s κ = .734 (confidence 
interval = [.634, .833]). 

Raters annotated a different set of 200 randomly-selected possible 
names in the second round to test the updated annotation guide. 
They achieved 89.5% agreement and κ = .773 (confidence interval 
= [.681, .865]). After this round we added the mid-sentence 
capitalization features described above, to help disambiguate 
disagreements noted by the raters. 

Raters completed a third round of annotation to test the final 
annotation guide, achieving 92.7% agreement and κ = .842 
(confidence interval = [.820, .864]) on all 2,588 instances in the 
training data, indicating excellent agreement [7]. After this round 
they also annotated a sample of 650 randomly-selected possible 
names from the holdout 1 dataset, though we removed 50 of these 
when we later discovered that they were erroneously included due 
to UTF-8 encoding issues. This left a holdout sample of 600 
possible names, which we deemed sufficient to produce a tight 
confidence interval for agreement, given the confidence intervals 
previously obtained with just 200 possible names. On the holdout 
1 dataset the raters achieved 93.8% agreement, with κ = .864 
(confidence interval = [.823, .907]), indicating that they were able 
to apply the annotation guide to a new dataset with at least as much 
agreement as the original dataset. Finally, raters discussed each of 
their disagreements to reach a definitive name/non-name label for 
each of the 600 possible name instances in holdout 1. 

A single rater annotated a sample of 600 possible names in the 
holdout 2 dataset as well. Given the excellent agreement between 
raters, we deemed a single rater sufficient for this task. Specifically, 
the more conservative rater (higher recall; see rater comparison in  
Table 1 results) annotated the holdout 2 dataset. 

The final data thus consisted of 2,588 labeled instances in the 
training dataset (35.5% annotated as names), 600 in holdout 1 
(36.0% annotated as names), and 600 in holdout 2 (44.5% 
annotated as names), which we used to train and validate the 
automatic name classification procedure. 

2.5 Name/Non-name Classification 
The process of extracting possible names greatly reduces the 
burden of manual annotation and limits raters’ exposure to 
identifying information. We sought to further reduce these 
concerns by automating the classification step. 

We evaluated two quite different machine learning approaches and 
ultimately combined them via decision-level fusion. The first 
classification algorithm was Extra-Trees [15], which is a variant of 
Random Forest that trains multiple trees (500 in our case) based on 
random subsets of data, and adds further randomness by choosing 
random points at which to divide the data in feature space. Extra-
Trees makes no strict assumptions about data distribution, and thus 
works well for the features in this paper, which include densely- 
and sparsely-distributed features with vastly different ranges and 
distributions. Moreover, Extra-Trees has inherent feature selection 
(dimensionality reduction) capabilities, since irrelevant features 
can simply be ignored when constructing each tree. We utilized the 
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implementation of Extra-Trees available in scikit-learn for this 
model [30]. 

The second approach we evaluated was a deep neural network 
(DNN) implemented with TensorFlow using the stochastic gradient 
descent optimizer [1]. We developed a custom structure for the 
DNN to suit the specific properties of the problem (Figure 2). The 
feature space is relatively large (95 dimensions) for a model with 
no inherent dimensionality reduction capabilities, so we added 
regularization to constrain model complexity. The densely- and 
sparsely-distributed features call for different regularization 
methods, however. Several of the densely-distributed features were 
highly correlated, and the number of features (17) was relatively 
small. Thus, we applied L2 regularization for densely-distributed 
features [29]. Conversely, we applied L1 regularization to the 
sparsely-distributed features, of which there were many (78), since 
L1 pushes the weight of irrelevant features toward 0. We then 
concatenated the post-regularization outputs of fully-connected 
layers for densely- and sparsely-distributed features, and stacked 
additional fully-connected layers (which were regularized via 
dropout [31]). Finally, we added a fully-connected sigmoid 
activation output layer (i.e., logistic regression) to predict name or 
non-name. 

We evaluated models via nested four-fold cross-validation on the 
training dataset. In this approach, we randomly selected 75% of 
instances (possible names), trained a model on those instances, and 
tested it on the remaining 25% of instances. We repeated the 
process three more times so that each instance was in the testing set 
exactly once. During training, we weighted false negative errors 
(incorrectly classifying a name as a non-name) twice as heavily as 
false positive errors (incorrectly classifying a non-name as a name), 
since we were more concerned about missing identifying 
information than about accidentally removing non-identifying 
words. False positive errors might adversely affect some analyses 
(e.g., if the word “joy” was mistaken for a name, thereby changing 
the result of sentiment analysis), but would not harm student 
privacy. 

We tuned hyperparameters (model settings) for both models via 
nested cross-validation, in which we tested different 
hyperparameters and selected the best combination of 
hyperparameters based on cross-validated mean squared error. 
Note that this step took place nested within training data only, via 
4-fold cross-validation within the training data of the outer 4-fold 
cross-validation loop, so that hyperparameters were not selected 
based on test set accuracy. 

For the Extra-Trees model, we tested hyperparameters consisting 
of the minimum number of instances required for each leaf of the 
tree (values of 1, 2, 4, 8, 16, or 32) and the maximum proportion of 
features to consider when creating each tree branch (values of .25, 
.5, .75, or 1.0). For the DNN, we searched hyperparameters 
including the number of neurons in each hidden layer (2, 4, 8, 16, 
or 32), L2 regularization strength (.1, .01, or .001), L1 
regularization strength (.1, .01, or .001), dropout regularization 
strength (0, .25, or .5), number of hidden layers after the 
concatenation layer (0, 1, 2, or 4), and the learning rate (.01, .001, 
or .0001). The hyperparameter search space consisted of the cross 
product of these values (i.e., grid search). Hence, training was time-
consuming (several days), but the trained models can be applied to 
an entire course’s data in less than 10 seconds. 

Finally, we re-trained the models on all training data and applied to 
the held-out dataset. We then combined model predictions to form 
a decision-level fusion model by simply averaging Extra-Trees and 

DNN predictions, for both cross-validated training set predictions 
and holdout predictions. 

2.6 Removal of Identifiers 
After names have been identified via manual annotation or 
automatic classification, removal of identifying information is 
relatively straightforward. First, we removed potential identifying 
information that follows known regular expression patterns, 
consisting of email addresses, URLs, phone numbers, and other 
numbers – which we removed in case they might represent things 
like social security numbers or other identifiers. As noted in 
previous research [35], such information can be identified with 
essentially 100% accuracy via pattern matching, and the 
challenging cases are names, nicknames, misspellings, and other 
name variants that we focus on in this paper. We replaced each 
pattern match with a placeholder (e.g., phone_placeholder) so that 
they could potentially serve as context words for name 
classification or be measured during analyses of forum content. 
Second, we replaced all identified name words with a placeholder, 
regardless of capitalization (see Error Analysis sections below for 
measures of how much this may result in non-name words being 
accidentally removed). 

3. CLASSIFICATION RESULTS 
We evaluated machine learning results in terms of common 
accuracy metrics below, but also compared human raters to 
evaluate the utility of the automatic approach as a replacement for 
manual annotation. 

3.1 Machine Learning Accuracy 
Table 2 contains key results of the automatic name classification 
method. Overall, results show that the models were highly accurate, 
reaching area under the receiver operating characteristic curve 
(AUC) as high as .981 in cross-validated evaluation on the training 
data, .979 on the holdout 1 dataset, and 956 on the holdout 2 dataset. 
AUC ranges from 0 to 1, where 1 indicates perfect classification 

 
Figure 2. Custom DNN structure. Elements marked in bold 
were hyperparameters (number of neurons, regularization 
strength, or number of layers) tuned via nested cross-
validation. 
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accuracy, 0 indicates completely incorrect classification, and .5 
indicates random chance level. Thus, these results indicate models 
were accurate and generalized well from training data to the 
holdout data from 2 years later as well as the holdout data from 
another course. 

We evaluated models with several different classification metrics 
in an effort to uncover any particular ways in which the method 
might be failing, but our primary concern was the number of false 
negatives – that is, the number of names misclassified as non-
names. The decision-level fusion model yielded the lowest number 
of false negatives in each dataset (37, 10, and 8 for training, holdout 
1, and holdout 2 respectively), and thus we intend to apply this 
model for practical use, though both of the individual models 
exhibited high accuracy as well. 

The machine learning results also compare favorably to examples 
of previous work on anonymization of medical literature. In one 
study [28], researchers reported .967 recall on a training dataset 
(versus .960 for our decision-level fusion model) and .941 recall in 
a holdout testing set (versus recalls of .954 and .970 for our fusion 
model across the two holdout datasets). Moreover, our method did 
not require a dataset-specific list of names, as is common in 
previous work. While results are not exactly comparable, since base 
rates and predicted rates may have differed, they are strongly 
indicative of similar accuracy. 

3.2 Comparison to Human Raters 
Measuring annotation agreement between two human raters is one 
way to determine how “difficult” a task is, and whether a machine 
learning solution is close in accuracy. We computed machine 
learning model accuracy by comparing predictions to the resolved 
set of labels produced by raters; here we compare raters (pre-
resolution) to each other. Since neither rater necessarily represents 
the ground truth more than the other, we computed comparison 
metrics alternately treating each rater as the ground truth.  

Table 1 shows these results computed with the same accuracy 
metrics as the machine learning model, using the holdout 1 dataset. 

Results show that the machine learning method was close to, and 
in some respects equally as accurate as the human raters. Recall and 
false negatives (FN) are especially important to consider for 
minimizing the risk of identifying information being revealed, and 
both showed that the fusion machine learning model (recall = .954, 
FN = 10) was close to or better than human accuracy depending on 

 
Table 1. Details of human raters' agreement, treating each 
rater as ground truth individually to allow comparison to 
machine learning accuracy on the same task. AUC refers to the 
minimum proper AUC (calculated via linear interpolation with 
a single point) because raters provided only yes/no annotations, 
not probabilities. 

 Ground truth 

 Rater 1 Rater 2 

FN 30 7 

FP 7 30 

AUC .945 .923 

Acc (% agreed) 93.8% 93.8% 

Cohen’s κ .864 .864 

Precision .864 .964 

Recall .964 .864 

Base rate .360 .360 

N 600 600 
 

Table 2. Name vs. non-name classification results. FN indicates false negatives (names classified as non-names) and FP indicates false 
positives (non-names classified as names). Precision and recall refer to the positive (name) class. Acc refers to the percentage correctly 
classified. 

Model FN FP AUC Acc Cohen’s κ Precision Recall Base rate N 

Cross-validated training data       

Extra-Trees 52 202 .971 90.2% .793 .811 .943 .355 2588 

Custom NN 37 157 .981 92.5% .841 .849 .960 .355 2588 

Fusion 37 173 .980 91.9% .828 .836 .960 .355 2588 

Holdout course 1 (later semester)       

Extra-Trees 10 56 .976 89.0% .772 .786 .954 .360 600 

Custom DNN 11 55 .975 89.0% .771 .788 .949 .360 600 

Fusion 10 54 .979 89.3% .778 .792 .954 .360 600 

Holdout course 2 (different course)       

Extra-Trees 11 54 .950 89.2% .784 .826 .959 .445 600 

Custom DNN 16 61 .950 87.2% .744 .805 .940 .445 600 

Fusion 8 54 .956 89.7% .794 .827 .970 .445 600 
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which rater we considered as ground truth (recall .864 or .964, FN 
= 30 or 7). Note, though, that for cases where algorithmic recall 
exceeds human rater recall, human rater precision is 
correspondingly better since it is reciprocal with recall when 
treating a single rater as ground truth. In terms of κ, human raters 
do seem likely to be superior to the machine learning fusion model 
(κ = .864 versus .778). Thus, for some sensitive applications of the 
method, human raters may be needed. However, the fusion model 
primarily makes false positive (FP) errors, which are less of a 
privacy concern than FN errors. 

The difference in FN between raters (FN = 7 versus 30) also 
indicates that there was some inconsistency in terms of tendency of 
one rater versus the other to make a classification of name or non-
name. This is one potential advantage of making continuous-valued 
predictions (probabilities, in this machine learning case) of name 
versus non-name, because it allows setting a threshold. For human 
raters, thresholds are implicit but not easily or specifically 
controllable. As noted previously, we weighted false negative 
errors twice as heavily as false positive errors, though that is a 
parameter that could be adjusted for the particular needs of a 
dataset. 

4. HOLDOUT 1 (LATER SEMESTER) 
ERROR ANALYSIS 

We conducted an analysis of cases where machine learning 
predictions were incorrect, focusing on the decision-level fusion 
model applied to the holdout 1 dataset. Analysis of false negatives 
is important to discover the severity of cases where names are left 
unredacted, while analysis of false positives is important to 
quantify the amount of text that will be unnecessarily anonymized 
(replaced with placeholders). 

4.1 False Negatives 
False negatives are the most serious errors, since they may result in 
identifying information being revealed. There were 10 false 
negatives, which we examined to determine how serious these 
errors might be and to determine why they might have occurred. 
Human raters disagreed on 6 of the 10 words (and they only 
disagreed 37 times total – see  
Table 1), and only agreed to classify those 6 as names after 
discussing. This indicates that these were exceptionally difficult 
cases, even for humans. Furthermore, the machine learning method 
made similar false negative errors as human raters. 

Of the 10 false negatives, there were 2 dictionary words (“long” 
and “mercy”), which may have indeed not been names. One of the 
10 was the name of an entertainment company, which may have 
been an identifying characteristic (an employer) or, more likely, 
simply a reference to entertainment. Similarly, one was a name 
from a famous television show, and one was the name of a U.S. 
national park. The remaining words included a concatenated 
combination of words that was likely a filename but could have 
been a username, two non-English words, one name that seems 
likely to be a person’s first name (though it appeared only once in 
a forum post and was not capitalized), and one possible last name. 

In sum, while there were several false negative predictions, 
examination of these cases reveals that even human raters initially 
disagreed for most of them and that it is quite possible that most of 
them, except probably the apparent last name, are indeed not 
names. 

4.2 False Positives 
While false positive errors are less serious, since they do not 
compromise identity, they do pose a challenge to subsequent 
analysis of forum text if important words are removed (e.g., words 
that might indicate sentiment, like “joy”). 

The decision-level fusion model made 54 false positive errors. We 
observed several broad categories that capture most of these 
instances. First, we observed several geographical regions (e.g., 
“Africa”, “European”) that were too broad for our definition of 
identifying information – which was restricted to political regions 
– or even extraterrestrial (e.g., “Ganyemede”). Second, there were 
misspellings (e.g., “hellium” instead of “helium”), most of which 
were correctly identified as non-names but a few of which were not. 
Third, there were abbreviations such as “NBA” and “DOI”. Fourth, 
there were references to popular culture, such as “Overwatch” and 
“Kerbal”, which are indeed names but not identifying information. 
Finally, there were several domain-specific words, which we do not 
include as examples to avoid unintentional identification of the 
course from which data were collected. 

Among these false positives, the most commonly-occurring word 
occurred just 26 times in 9,217 posts (the total size of the dataset 
from which holdout 1 data were sampled), most occurred only 
once, and all false positives combined appeared 191 times in those 
posts. This indicates that even though some non-name words were 
mistakenly removed from posts, the impact on the overall text was 
minimal. 

5. HOLDOUT 2 (NEW COURSE) ERROR 
ANALYSIS 

We performed similar analyses of classification errors for the 
holdout 2 dataset. However, it was not possible to compute inter-
rater disagreement for the misclassified cases in holdout 2 because 
only one rater performed annotations. 

5.1 False Negatives 
There were just 8 FN errors among the 600 possible names in the 
holdout 2 dataset. Of these eight, three were abbreviations for 
university-specific terms, including a building name, a college 
(collection of university departments) name, and the name of a 
major. A further three FN errors were slang terms for large 
metropolitan areas with populations over 4 million. One was half 
of a misspelled two-word city name, and the last was a local street 
name. 

None of the FN errors in this dataset were student names. The most 
serious errors are perhaps the university-specific terms, which 
could narrow down the identity of students when combined with 
other factors. However, in isolation (or even combined with each 
other) these terms match hundreds or thousands of students, and 
thus do not pose a likely risk for researchers hoping to analyze 
forum data. 

5.2 False Positives 
There were 54 FP errors in the holdout 2 dataset, which differ 
somewhat from the FP errors observed in holdout 1. Course 2, from 
which holdout 2 data were collected, utilized Roman numerals for 
assignment numbers, which were frequently mistaken for names. 
Additionally, the domain-specific content of course 2 required 
students to discuss a large number of letter combinations (strings) 
that do not represent words, and which were also often mistaken for 
names. 
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Like holdout 1, there were several misspellings mistaken for names 
in holdout 2 results. For example, “callender” (calendar), “hewlp” 
(help), and “ssolid” (solid) were FP errors. However, these account 
for very few redactions since these misspellings occurred only 
infrequently. The most notable FP was the word “my”, which 
occurred 293 times in the 930 posts in the holdout 2 dataset. 
Surprisingly, “My” was capitalized in 32.1% of its occurrences, 
including 15.4% of occurrences in the middle of sentences. This 
was somewhat unexpected, but appears to have frequently occurred 
when students did not punctuate the end of sentences and instead 
used line breaks (which we did not consider as end-of-sentence 
markers) to separate sentences. 

Human intervention after the automatic classification step can 
easily correct false positive errors such as “my”, however. To 
facilitate this, our anonymization software produces a list of names 
identified by the machine learning fusion model as an intermediate 
step before the names are removed. The list includes the fusion 
model’s probability as well as the number of occurrences of each 
word in the original discussion forum data, sorted in descending 
order by occurrences. Researchers (or authorized staff in charge of 
anonymizing data) can thus easily examine the top of the list and 
delete any rows that are clearly high-impact FP errors before 
proceeding to the last step where names are redacted. 

6. APPLICATIONS FOR INSTRUCTORS 
Our primary motivation for developing this method was to enable 
research on the text of computer-mediated discussions students 
have with each other during their online learning experiences. 
However, such research may support the needs of course instructors 
as well, either directly via analysis methods they can easily apply, 
or via generalizable insights that can be applied to their courses. 
We thus sought out instructors of online university courses (who 
were not involved in the forum anonymization work or the courses 
analyzed in this paper) to gain better insight into instructor 
perspectives on scalable analysis of online course discussion 
forums. Specifically, we asked two instructors “as an online course 
instructor, can you imagine any analyses of discussion forum text 
that would be informative for you?” 

6.1 Instructor 1 
The first instructor was a male computer science faculty member 
with 14 years of university-level teaching experience, who had 
taught for-credit online courses at the university level as well as 
massive open online courses (MOOCs). He noted: 

Specifically for all courses that I don't teach I don't have a 
legitimate need to know that student X is enrolled in course 
Y. Anonymization gives us a way to easily share forum 
discussions between different instructors of the same 
course, or across department etc. And there are numerous 
reasons why this is useful. 

* Potential for early detection of struggling students and the 
underlying cause. (Lack of time? interest? pre-reqs? 
effective strategies?) 

* Identification of hardest components of a course. 

* Research projects that look at common forum post across 
multiple courses. e.g. fresh/ sophomores/ seniors. 

He also noted that when working with students to improve courses 
it is necessary to have anonymized data: 

If I want to give the data to an undergrad staff for analysis 
for course improvement purposes (rather than for research 
publication), I'd require that they had anonymized data. 

Additionally, instructor 1 conducts and publishes research on his 
own courses, and offered research questions and ideas he would 
like to pursue that would require anonymization. These included: 

It may be possible to detect themes and generate 
hypotheses by skim reading the posts, but it is much harder 
to identify trends and quantitative trends (e.g. are there 
more X in the later part of the course). Also a general 
skimread of the forums will miss correlations with other 
data (e.g. students with background X tend to post more Y) 

Can we identify when a course pace is too fast? Compared 
to assuming too much prior knowledge? 

Suppose we consider a student's forum post action as an 
active intervention created by the student to affect on their 
own learning trajectory. How effective are these 
interventions? Do they also help similarly students that just 
read the discussion thread (and never need to post a similar 
issue themselves). Are they too late? Are they too early? 

In sum, instructor 1 was enthusiastic about the prospect of being 
able to quickly anonymize online course discussion forums, and 
proposed several ways in which anonymization would benefit both 
teaching and research. 

6.2 Instructor 2 
The second instructor was a female statistics instructor and 
graduate student, with six years of university-level teaching 
experience. Her online courses are large, and thus provide unique 
challenges for teacher–student engagement. As she noted: 

This semester there are about 1,400 students enrolled in 
[course information redacted]. It would be beneficial for 
me as an instructor to have some sort of automated analysis 
that told me which forums and topics were getting the most 
activity.  That would help me know which forums to look 
at or have my undergrad course assistants look at and 
answer some of the questions.  It would also be beneficial 
because if there was a lot of confusion about a certain topic, 
I would know I need to re-explain that topic in lecture. 

I think something that identified negative words would be 
helpful too for the same reasons.  If there's a lot of 
negativity on a thread- it's probably best that I go over that 
concept again in class to clarify any confusion. 

While some of the needs noted by instructor 2 do not require access 
to the forum text itself (such as tools to measure forum activity), 
others would require researchers and developers to have access to 
anonymized forum text. For example, developing and validating 
methods for automatic assessment of confusion in forums is only 
possible with access to text data. Moreover, these needs highlight 
the difficulty of effectively utilizing online discussion forums with 
very large numbers of students, and the potential for automated 
tools to assist instructors in these courses. 

7. DISCUSSION 
In this study we were interested in enabling analysis of online 
discussion forums in university courses through removal of 
identifying information, even in cases where capitalization, 
grammar, and spelling may be unpredictable. Our results showed 
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that automatic anonymization is possible, and that it rivals human 
accuracy. 

In this section we discuss implications of the results for various 
stakeholders, including users of the anonymization method (e.g., 
researchers, teachers) and students whose data is subject to 
analyses. 

7.1 Implications for Users of the 
Anonymization Method 

The proposed anonymization method offers two main advantages 
to users. First, it drastically reduces workload relative to 
approaches like manual identification and removal of identifying 
information directly from the forum text. Moreover, such manual 
anonymization is often intractable for users because they cannot 
access non-anonymized data in the first place. Second, it reduces 
users’ exposure to identifying information. Users may either utilize 
the machine learning approach to avoid all involvement with 
identifying information, or annotate possible names manually – in 
which case they are still protected from seeing identifiers in the full 
context of the original text. 

Anonymization is essential in many cases for researchers to either 
validate existing methods or develop new methods. For example, 
when automatically detecting sentiment from text with tools such 
as SEANCE (Sentiment Analysis and Social Cognition Engine; [9]) 
it is helpful to match sentiment to forum posts to obtain examples 
of the context in which sentimental language occurs. It is especially 
important to preserve student privacy in research that requires 
detailed reading of forum posts. For example, domain experts 
might annotate and evaluate the depth of questions students ask, or 
the responses they receive, to answer research questions about the 
relationship between a student’s engagement with their peers and 
their status as a member of demographic groups that are 
traditionally-underrepresented in postsecondary education. 

Finally, one important consideration for applications is how well 
the machine learning model is likely to generalize. We showed 
excellent generalization across time (2 years), as well as to a new 
course topic, instructor, and learning management system. While 
the change in topic (and instructor-specific course setup) did result 
in different types of errors, overall accuracy remained similar. 
However, we did not test across university populations. Students at 
other universities may have different backgrounds that influence 
how they interact with each other or with technology, and the 
vernacular language they use. Moreover, the same method could be 
applied to anonymize student-generated text in other contexts, such 
as college admissions essays [32], where students may reveal 
identifying information but in different (non-conversational) 
circumstances. Thus, for generalization to a notably different 
context, such as a different university or type of text, we 
recommend annotating a testing set of possible names to validate 
accuracy. 

7.2 Implications for Students 
The objective of our method is to minimize the potential for 
negative impacts on student privacy introduced by analyses of 
unstructured student-generated text. It is important, however, to 
recognize that such analyses carry inherent risk even with a 
(hypothetical) perfectly-accurate anonymization method. For 
example, students might mention their involvement in a particular 

                                                             
3 See  https://ilearn.illinois.edu for anonymization software 

course in venues such as Twitter, Reddit, Facebook or others [39]. 
They may even post similar questions on course forums and public 
forums, or relate events that took place on course forums. It is 
unreasonable to expect perfect anonymization. Thus, it is important 
to take appropriate steps to limit public exposure to student data – 
even anonymized data – and to ensure that students reap benefits of 
analyses conducted on their data. 

Positive impacts for students largely consist of 1) improvements 
made to future courses, and 2) additional capabilities afforded to 
instructors, both informed by research made possible through 
access to anonymized data. For example, researchers may be able 
to provide guidance to students about how to ask questions to elicit 
the most helpful responses. Or, as instructor 2 noted above, it might 
be possible to direct the attention of teaching assistants to students 
or topics where it is most needed. 

Benefits to students are indirect in nature, and, in the case of 
research-informed changes to online courses, benefits might be 
more for future students than for the students from whom data were 
collected. Thus, more research is needed to sample student 
perspectives regarding analysis of their forum data, as well as their 
perspectives on the importance and impact of anonymization. 

8. CONCLUSION 
Access to discussion forum data is essential for researchers to better 
understand the experiences of students interacting with each other 
in web-based learning environments. However, access to these 
forum data is often hampered by important privacy concerns. Our 
approach for automatic anonymization of these data helps to 
resolve this issue, and has already enabled in-depth examination of 
forum posts [17–19, 38]. We plan to make our anonymization 
software publicly available3, and hope that it will be instrumental 
in advancing researchers’ and teachers’ knowledge of student 
experiences, and, ultimately improving learning in online 
classrooms. 
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ABSTRACT
The explosion of Open Educational Resources (OERs) in
the recent years creates the demand for scalable, automatic
approaches to process and evaluate OERs, with the end goal
of identifying and recommending the most suitable educa-
tional materials for learners. We focus on building models
to find the characteristics and features involved in context-
agnostic engagement (i.e. population-based), a seldom re-
searched topic compared to other contextualised and per-
sonalised approaches that focus more on individual learner
engagement. Learner engagement, is arguably a more re-
liable measure than popularity/number of views, is more
abundant than user ratings and has also been shown to be
a crucial component in achieving learning outcomes. In this
work, we explore the idea of building a predictive model
for population-based engagement in education. We intro-
duce a novel, large dataset of video lectures for predicting
context-agnostic engagement and propose both cross-modal
and modality specific feature sets to achieve this task. We
further test different strategies for quantifying learner en-
gagement signals. We demonstrate the use of our approach
in the case of data scarcity. Additionally, we perform a sen-
sitivity analysis of the best performing model, which shows
promising performance and can be easily integrated into an
educational recommender system for OERs.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Distance learn-
ing; H.3.1 [Content Analysis and Indexing]: Linguistic
processing

General Terms
Human Factors, Measurement, Management

Keywords
Context-free Engagement, Cold Start, Video lectures, Qual-
ity Assurance, Open Education, OER, Personalisation

1. INTRODUCTION
With the recent popularity of online learning platforms, the
creation of Open Educational Resources (OERs) is increas-
ing rapidly [16]. This recent large-scale creation of educa-
tional material demands for ways to automatically manage
educational resources. In the context of OERs, this means
finding and recommending material that fits the learners’
goals while maximising learning outcomes. Such a goal usu-
ally entails a large personalisation factor. We define it as
contextualised engagement, which captures how engaging a
learning resource is with regard to the context of the learner
(e.g., learning needs/goals and learner state). Although con-
textualised engagement has gained interest in the recent
years [8], we argue that there is also a context-agnostic en-
gagement factor, that only relates to features of the learning
resource and attempts to capture the gold-standard label
of population-based engagement (i.e. the marginal of con-
textual engagement for a resource across the population of
learners). Modelling context-agnostic engagement enables
identifying highly engaging resources across a population of
learners before personalising educational recommendations
to individuals. This paper studies the features involved in
context-agnostic engagement, as a first step towards build-
ing an integrative educative recommendation system, that
will join both contextualised and context-agnostic features
[9].

A high quality learning resource needs to satisfy three main
properties: i) academic soundness and appropriate cover-
age of the body of knowledge, ii) pedagogical robustness
and iii) enabling learners to achieve their desired learning
outcomes [24]. Learner engagement has been shown to be
a proxy for (iii), as engaging with material is a prerequi-
site for learning. There is evidence from both online [33,
23] and classroom [30, 36] educational settings showing that
higher learner engagement increases the likelihood of bet-
ter learning outcomes. We thus focus on finding the general
characteristics of engaging material. Using features that can
be extracted across multiple modalities (video, text, audio
etc.) allows developing prediction models for gold-standard
engagement that are easily adaptable to a wide range of
OERs and can be automated [27].

Our work is one of the first to address educational engage-
ment prediction with video lectures, specially from a quan-
titative perspective. One of our primary goals is to under-
stand if easily automatable cross-modal features can be used
as predictors for how engaging an educational resource is, as
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opposed to modality specific features. Although large-scale
studies (involving millions of videos) have been conducted
to analyse the prediction of engagement for general purpose
videos [40], the largest study in the context of educational
video lectures involves 800 videos from 4 courses and anal-
yses engagement from a qualitative perspective [17]. To the
best of our knowledge, this work is the first attempt to pre-
dict engagement with educational videos automatically. Our
experiments involve more than 4000 video lectures that span
over 20 diverse subjects, making it the largest dataset to date
in this field. Our dataset, code and best performing model
are released with the paper.

Given the usefulness of predicting context-agnostic engage-
ment and the scarcity of work in this topic, we are motivated
to answer the following research questions, which will enable
the deployment of such a model in an educational platform:

RQ1 How to encode context-agnostic engagement?

RQ2 How effective are cross-modal language-based features
for predicting engagement with video lectures?

RQ3 Does including modality-specific features lead to a sig-
nificant improvement in performance?

RQ4 What features influence context-agnostic engagement?

RQ5 Is predicting marginal population-based engagement
useful over personalised engagement?

RQ6 Can we assume a common underlying model for pre-
dicting engagement across different knowledge areas?

2. RELATED WORK
The interest in identifying useful and engaging information
goes beyond the educational domain and is investigated in
numerous other fields [10]. For example, Wikipedia uses a
review system to evaluate the quality of its articles. To do
so, different machine learning models, such as support vec-
tor regression and ensemble methods, are used with features
such as text style, readability, structure, network, recency
and review information [14, 39]. Moreover, in the context
of automatic essay scoring, promising results have been ob-
tained through rank preference support vector machines [41]
and more sophisticated deep learning models [37].

Quality-based document ranking [3] and spam web-page de-
tection [28] are other areas in the information retrieval do-
main that also utilises textual features and recency related
features. These features categorise into different verticals
such as understandability, topic coverage, presentation, fresh-
ness and authority [10].

OERs available to the public come in large-scale and vari-
ous modalities [27, 19], which makes modality-specific mod-
els of limited use. As existing work proposes models with
domain/modality specific features (e.g. network features of
Wikipedia [15] or speaker speed in videos [17]), there is a
need for models that can evaluate how engaging educational
materials are at scale using a cross-modal feature set. We
attempt to address this gap through this work.

2.1 Why Modelling Engagement?
As argued by Lane [24], a well designed learning resource
should enable the learner to achieve the expected learning
outcomes. Prior work has studied learner engagement in
Massively Open Online Courses and shown that when op-
timised, engagement can increase the likelihood of
achieving better learning outcomes [33, 23]. User en-
gagement has also been shown to differ greatly from popu-
larity measures such as number of views [40], as the latter
does not necessarily capture whether learners consume the
material. In our work, we also show that engagement does
not positively correlate with user ratings. Instead, what we
observe is that lectures with low rating also present low en-
gagement rate. However, lectures with greater ratings can
have different engagement rates.

For videos, watch time has been used as the main mea-
sure for quantifying engagement in the literature, e.g., for
YouTube recommendations [13], predicting engagement with
videos [40]. For educational content, the median of nor-
malised engagement time (i.e., the percentage of watch time
from the total video) has been used as gold standard for
engagement [17]. Our work tests several approaches to en-
coding user engagement.

Most of the related work regarding predicting educational
engagement attempts to model learner engagement as a func-
tion of the learner’s context (demography, user activity, etc.)
[4, 19, 2], as opposed to modelling context-agnostic learner
engagement as a function of content-based features of the
educational resource, which is our aim. Context-agnostic en-
gagement has been previously studied for video lectures, ad-
vocating for qualitative and general recommendations such
as keeping videos short [17], using conversational language
for lecture delivery [5] and others. These recommendations
empower authors to create better educational videos. How-
ever, none of these works address the need for automatically
identifying the features of highly engaging educational re-
sources, which is imperative for retrieving and recommend-
ing educational material at scale.

3. DATA AND METHODOLOGY
This section first describes the dataset built for predicting
engagement, together with the set of features proposed in
this paper. Then, we introduce the machine learning meth-
ods and the feature importance analysis method considered.

To address the research questions outlined in the introduc-
tory section of this paper we do the following: i) We study
different ways of refining user engagement signals, linking to
literature on psychometrics (RQ1). ii) We propose two sets
of easily automatable features for predicting engagement
(cross-modal features inspired by context-agnostic quality
literature and video-specific features) and evaluate the dif-
ference of predictive performance between them (RQ2 and
RQ3). iii) We construct a large dataset of video lectures
and evaluate the performance of the proposed engagement
signals and sets of features (RQ2-4). iv) We compare cross-
modal to modality specific features, analysing the impact
of individual features in the predictive model that presents
the most promising performance (RQ4). v) We compare
our population-based engagement approach to its person-
alised analogue to demonstrate its usefulness (RQ5). vi) We
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compare the engagement models obtained from dividing the
video lectures in two differentiated knowledge areas: STEM
(such as technology, physics and mathematics lectures) vs
others (such as arts, social science and philosophy lectures).

3.1 Dataset and Features (RQ2-4)
We use data from a popular OER repository, VideoLec-
tures.Net (VLN)1, a collection of videos of researchers pre-
senting in peer-reviewed conferences. This data is suitable
for our aim for two reasons: i) It contains watch patterns
about how learners consume lectures, and ii) the lectures are
peer-reviewed and hence material is controlled for correct-
ness of knowledge and pedagogical robustness. The tran-
scriptions of English lectures and English translations for
the non-English lectures are provided by the TransLectures
project2. We restrict the final dataset to lectures that has
been viewed by at least 5 unique users, leading to the fi-
nal dataset having 4,063 lectures. These lectures are cat-
egorised into 21 subjects, e.g. Computer Science, Physics,
Philosophy, etc. Learner engagement labels of the dataset is
computed using 155,850 user view log events (video viewing
events) created between December 8, 2016 and February 17,
2018.The dataset constructed is publicly available, includ-
ing different statistics of population engagement and all the
cross-modal and video-based features proposed.

3.1.1 Cross-modal Features
We selected a subset of cross-modal and mostly language-
based features that are easy to extract from the VLN dataset.
The 13 extracted features are shown in Table 1. This set has
been selected based on recurring features in the related work
[3, 14, 17, 28, 39] and their quality verticals [10] identified
in our prior work. The majority of features were extracted
using methods and token (word) sets that are found in the
prior work referenced in Table 1.

Additionally, we introduce the published date, represented by
converting the video publication date to UNIX epoch time
(in days). In other words, it is the number of days between
January 01, 1970 and the lecture published date.

3.1.2 Video-based Features
We also extracted four out of the seven features proposed
for analysing educational engagement with video lectures
from [17], selecting those features that can be automatised
and are objective. These are: i) lecture duration, as shorter
videos have been shown to be much more engaging; ii) is
chunked, whether the lecture has been partitioned into mul-
tiple parts; iii) a set of indicator variables describing the type
of lecture, such as tutorial, workshop, etc; and iv) speaker
speed, measured by the average amount of words spoken per
minute. We also include the silence period rate (SPR), cal-
culated using the special tags in the video transcripts that
indicate silence. Formally, for a lecture `, this feature SPR(`)
is calculated as follows:

SPR(`) =
1

D(`)

∑
t∈T (`)

D(t) · I(N(t) = "silence"), (1)

where t is a tag in the collection of tags T (`) that belong to
lecture `, N returns the type of tag t and D returns the du-
1www.videolectures.net
2www.translectures.eu

Table 1: Extracted features from the VLN dataset.
Feature Reference

Content-based features
Easiness (FK Easiness) [14]
Stop-word Presence Rate [28]
Stop-word Coverage Rate [28]
Document Entropy [3]
Word Count [39]
Title Word Count [3]
Preposition Rate [14]
Auxiliary Rate [14]
To Be Rate [14]
Conjunction Rate [14]
Normalization Rate [14]
Pronoun Rate [14]
Published Date —

Video-based features
Lecture Duration [17]
Is Chunked [17]
Video Lecture Type [17]
Speaker speed [17]
Silence Period Rate (SPR) —

ration of tag t or lecture ` and I(·) is the indicator function
(returning 1 when the condition is verified, 0 otherwise).

3.2 Quantifying Engagement (RQ1)
Our work focuses on implicit user feedback (most specifi-
cally, engagement). Implicit feedback (in the form of num-
ber of views, engagement or any other measure that does not
require the user to provide explicit feedback) has been used
for building recommender systems for nearly two decades
with great success [29, 20, 22], as an alternative to explicit
ratings, which have a high cognitive load on users and thus
are usually sparse. However, implicit signals have other chal-
lenges associated with them. For example, implicit feedback
is usually positive-only [20] and can contain effects such as
popularity bias, i.e., there might be a bias towards more pop-
ular items, whereas implicit feedback for other items may be
very sparse. There has been several works investigating the
relationship between explicit and implicit feedback [12, 34,
42], which we also do through this work.

The main measure that we use to quantify engagement is
the Median of Normalised Engagement/watch Time
(MNET), as it has been proposed as the gold standard
for engagement with educational materials in previous work
[17]. To have the MNET label in the range [0, 1], we set
the upper bound of MNET to 1. We observed in our ini-
tial data analysis that MNET values in the VLN dataset
follow a Log-Normal distribution, where it can be seen that
most users generally abandon the lecture after a generally
low time threshold. We hypothesise this may be because it
takes some time to decide whether the content is relevant
for the learner. Users that make it after this threshold seem
more committed and thus the leaving rate is significantly
lower. To address this, as this is usually a problem when
using machine learning methods, we applied a log trans-
formation to transform the engagement signal. The final
label, Log Median Normalised Engagement Time (LMNET)
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is computed using the following:

LMNET(`) = ln(max(MNET(`), 1)). (2)

To test if LMNET can be further improved, we compare
this approach of encoding engagement to other alternative
ways of quantifying and cleaning engagement signals, draw-
ing inspiration from the literature on psychometrics and sub-
jective assessment [21, 38], which focuses on explicit human
feedback and assumes that users present cognitive biases and
differences, with applications in preference ranking and mea-
suring perception-based qualities, such as engagement. The
intuition behind this is that different learners may have a
different engagement threshold and scale, similarly as with
explicit ratings [21]. We compare different approaches for
defining engagement:

1. Raw LMNET, as per Eq. (2) which considers that no
user differences exist and the marginal over the popu-
lation can be directly used as gold standard label for
engagement, similarly as in [17].

2. Cleaned LMNET, for which we test the removal of
bot-like users (those users with an average engagement
rate less than 5%), which may have a detrimental fac-
tor in the median of raw engagement.

3. Standardised LMNET, in which we preprocess LM-
NET per user (subtracting the mean of the user and
dividing by the standard deviation), as commonly done
with human ratings in order to remove user biases and
differences [21]. In this scale, positive values indicate
lectures that are more engaging than the mean of the
user and vice versa.

4. Comparative MNET, in which we exploit the law
of comparative judgement and use psychometric scal-
ing to go from user comparative engagement data to
a probabilistically interpretable engagement scale [38,
32]. More specifically, we assume that engagement
data can only be compared per user (as users may have
different biases, thresholds or engagement scales). To
do so, we generated a matrix of engagement compar-
isons (of the type: Did learner i prefer lecture A to B in
terms of engagement?), which is used as the input for
psychometric scaling, producing a final scale in which
distances can be interpreted in terms of probability of
greater engagement.

As discussed, the limitation of these approaches is that they
disregard the context of the learner and the temporal com-
ponent that may inherently be present when engaging with
educational material. A different measure to encode engage-
ment is found in Wu et al. [40], where the main idea is to
compare engagement relative to the length of the video. The
authors propose this for entertainment videos. However, we
argue against this approach in the case of educational ma-
terial, as the aim is to take the learner to the desired state
in the most efficient way, thus the general recommendations
found in the literature of keeping videos as short as possible
[17].

3.3 Machine Learning Models (RQ2)
To learn to rank video lectures based on engagement, we
evaluate the performance using pointwise ranking models.
Regression algorithms predict the target variable in real
value space (y ∈ R), which allows them to create a global
ranking of observations based on predictions. We also eval-
uate the performance of engagement prediction using ker-
nelised models. Kernelisation allows capturing non-linear
patterns in data without having to operate in the respective
basis. Although it is more computationally efficient than
working in the non-linear space itself, it is more computa-
tionally expensive than solving the non-kernelised problem.
Our choice of kernel for the models is the Radial Basis Func-
tion (RBF). RBF kernel is widely used in the literature and
has mathematical connections to other popular kernels such
as exponential and polynomial kernels [11, 35].

We use two regression algorithms, namely, Ridge Regression
(RR) and Support Vector Regression (SVR) in primal form.
We use RR as it is a widely used algorithm for regression
[40] and SVR as it has performed well in a similar task in
prior work [14]. We also evaluate the performance of the
kernelised version of the same two algorithms (with RBF
kernel), Kernelised Ridge Regression (KRR) and Kernelised
Support Vector Regression (KSVR). This allows us to under-
stand if there is non-linearity in the patterns that benefits
the prediction task. In all four models discussed above, we
employ standard scaling as these models are not scale in-
variant. L2 regularisation is used to defend against overfit-
ting and multicollinearity [26]. As ensemble techniques have
shown to perform well in prior work [39], we also employ a
Random Forest Regressor (RF) to evaluate its prediction ca-
pabilities. This model is also capable of capturing non-linear
patterns.

3.3.1 Comparison to Personalised Models (RQ5)
One of our aims is to compare the population-based model
to its personalised counterpart. The idea in this case is to
test if a common baseline can be assumed for all users. For
this, we train the same machine learning models per user,
using the features previously proposed.

3.4 Feature Importance Analysis (RQ4)
Understanding how different features influence engageability
of materials is vital in educational domain as learners will
be guided on life-changing pathways based on these judge-
ments. In a conventional linear model such as RR or SVM,
feature importance analysis is straightforward as the weight
coefficients reflect the influence of features.

In this paper we use SHapley Additive exPlanations (SHAP),
which is a model-agnostic framework that quantifies the im-
pact of features on the model predictions. It reliably esti-
mates feature importance of complex model families such as
ensembles [25]. A SHAP value is computed for every fea-
ture of every prediction. Given a prediction and a feature,
SHAP is computed by averaging how the prediction changes
when the feature is present and vice versa. This procedure
enables quantifying the contribution of each feature to the
model prediction. By plotting all the SHAP values of the
prediction data points in a SHAP summary plot, we can
identify how each feature influences the prediction. By cal-
culating the Mean Absolute SHAP (MAS) for each feature
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f over the observations:

MASf =
1

N

N∑
n=1

| SHAPf,n | , (3)

we obtain a more quantitative understanding of feature in-
fluence. N is the number of observations.

4. EXPERIMENTS AND DISCUSSION
This section shows the experimental setup and results for
the different experiments conducted.

4.1 Experimental Setup
The evaluation of the machine learning models is performed
using a 5-fold cross-validation for both feature sets. The
performance of different machine learning models with dif-
ferent engagement quantification approaches can be found
in Table 2. The performance when video-specific features
are added is found in Table 3.

After gaining an understanding of model performance (see
results in Table 2), we employ the best performing method
and encoding for the rest of the analyses, using a hold-out
validation with a train-test split of 70:30 to save computa-
tion. That is, the model is trained on the 70% training set
and interpreted using the 30% test set. The experiments
were implemented using Scikit-learn [31], textatistic

[18] and SHAP [25] python packages. The source code in
python and dataset are publicly available3.

4.1.1 Evaluation metrics
Pairwise accuracy (Pair.) and Spearman Rank Order Cor-
relation Coefficient (SROCC) are the ranking metrics we
used to evaluate the ranking performance of machine learn-
ing models with different engagement signal encodings.

Identifying models that can rank between video lectures is
the core objective of this work. Hence, we devise pairwise
accuracy as the main evaluation metric. Pairwise accuracy
is more intuitive for this task as it represents the fraction
of pairwise comparisons where the model could predict the
more engaging lecture. Another opportunity that pairwise
comparison provides is the ability to restrict the comparisons
to subsets of lecture pairs (e.g. lectures that belong to the
same subject, lectures that have similar LMNET).

In some of our experiments we also perform misranking anal-
ysis and report the pairwise accuracy. Misranking could
happen if a subset of examples is systematically difficult to
rank. We hypothesize that misclassification happens more
frequently as the difference of LMNET between a pair of
video lectures gets smaller. That is, the model may strug-
gle to differentiate between two lectures with similar en-
gagement. By doing this analysis, we can also understand
the sensitivity of the prediction model to similarly engaging
lectures. Obviously, misranking a pair of lectures that are
significantly different in engagement incurs a larger cost in
terms of user satisfaction than misranking a pair of lectures
with similar engagement.

3https://github.com/sahanbull/
context-agnostic-engagement

4.1.2 Controlling for Topics in Content
The topics covered in the content of the lecture is likely to
drive learner engagement. For instance, Data Science lec-
tures can be more popular than Physics lectures leading to
easy pairwise comparison predictions between the domains.
To test this, we restrict in some experiments the pairwise
accuracy calculation to pairs of lectures that belong to the
same domain (subject-specific column in Table 3) and ob-
serve if the accuracy value changes significantly compared
to its counterpart metric that considers all lecture pairs in
a domain-agnostic fashion.

4.2 Results
This section presents a series of experiments to:

E1 Analyse the relationship between engagement, number
of views and mean star ratings (RQ1).

E2 Test different machine learning models and engage-
ment signals for the cross-modal features (RQ1-2).

E3 Study the distribution of engagement with respect to
length of materials (RQ4).

E4 Study the influence of modality-specific features and
comparison across subject areas (RQ3).

E5 Analyse the importance of different features in the
model (RQ4).

E6 Compare the population-based model to its person-
alised counterpart (RQ5).

E7 Test if the same underlying model can be assumed for
different knowledge/subject areas (RQ6).

4.2.1 E1: Engagement vs Views and Ratings
The VLN data source also has mean star ratings (explicit
feedback) for a subset of the considered lectures. It is note-
worthy that we only have access to mean star ratings, not
to the individual ratings per observer or the number of mea-
surements. As done in previous work, we also analyse the
relationship between implicit signals (engagement and num-
ber of views) and explicit ratings. This can be found in
Figure 1, where we show mean star rating vs MNET and
number of views. The SROCC is close to zero, mainly be-
cause of the large number of lectures with high rating but low
engagement and number of views. We test the correlation
for the 4 different versions of engagement considered (raw,
cleaned, standardised and comparative), but all achieve sim-
ilar results, with SROCC close to zero. One conclusion that
is clear from the plot in Figure 1 is that number of views,
ratings and engagement do represent very different informa-
tion. For example, it can be appreciated that the variance of
MNET and number of views increases with higher ratings,
showing heteroskedasticity. This indicates that for low qual-
ity resources (with low ratings) engagement is generally low,
whereas for resources with higher ratings engagement differs
and may be either high or low. This suggest other factors
involved in engagement than simply quality perceived by
learners. Regarding number of views it seems that the cor-
relation is rather negative, showing that the materials with
the highest number of views present very low engagement.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 54

https://github.com/sahanbull/context-agnostic-engagement
https://github.com/sahanbull/context-agnostic-engagement


M
N

ET

Mean star rating Mean star rating

N
um

be
r 
of

 v
ie

w
s

Number of views
SROCC: 0.028 SROCC: -0.087SROCC: -0.333

M
N

ET

(i) (ii) (iii)

Figure 1: Scatter plots showing the relationship between (i) number of views vs. MNET, (ii) mean star
rating for the video lecture vs. MNET and (iii) mean star rating vs. number of views, together with the
Spearman’s rank correlation coefficient (SROCC).

Table 2: Pairwise accuracy (Pair.) and Spearman’s Rank Correlation Coefficient(SROCC) of engagement
prediction models with standard error from 5-fold cross validation and cross-modal features.

Model RR SVR KRR KSVR RF
Engagement Pair. SROCC Pair. SROCC Pair. SROCC Pair. SROCC Pair. SROCC

Raw .705±.011 .581±.027 .707±.000 .586±.000 .715±.004 .607±.011 .714±.007 .604±.019 .723±.009 .625±.027
Clearned .636±.033 .396±.093 .634±.031 .392±.089 .646±.025 .424±.071 .642±.028 .414±.078 .646±.031 .427±.087
Standard .603±.035 .302±.098 .600±.035 .292±.100 .609±.035 .315±.099 .602±.025 .297±.071 .611±.035 .323±.099

Comparative .624±.010 .365±.028 .624±.012 .363±.036 .626±.013 .370±.040 .627±.009 .373±.027 .636±.012 .397±.038

4.2.2 E2: Encoding and Predicting Engagement
Inherently, the task of finding a better engagement signal
is very challenging, given the lack of ground truth. In this
paper, we first attempt to see if any of these signals present
better correlation with star ratings. However, we observe
from Figure 1 that engagement is not strongly correlated
with perceived quality by users (explicit star ratings) and
similar results emerge for different methods of quantifying
engagement, meaning it is inconclusive that transforming
raw engagement signals strengthens its relationship to ex-
plicit perceived quality. Thus, in order to decide on which
is the best way of capturing and quantifying engagement,
we compare the pairwise accuracy for the four proposed ap-
proaches (raw LMNET, cleaned, standardised and compar-
ative). This simply tells us which output target variable
is easier to predict given the proposed features. Table 2
presents these results, together with the pairwise accuracy
(Pair.) and Spearman’s Rank Order Correlation Coefficient
(SROCC) obtained for each machine learning model with
the standard error bounds based on 5-fold cross validation.
The larger the accuracy value, the better performing the
model is.

These results suggest that raw LMNET may be the most ap-
propriate target label, particularly since the proposed fea-
tures seem to be more useful when building a model for
predicting raw LMNET. These results do not contradict the
literature, both educational and non-educational, as MNET
has been used as the gold-standard way of quantifying en-
gagement. Our experiments thus showed that the use of sub-
jective assessment inspired transformations do not improve
the predictive power of engagement signals. This may be
because these transformations/correction methods are ini-
tially designed to address biases in latent user preferences.

Although similar biases may exist in learners when consum-
ing educational materials (e.g. learner fatigue, different en-
gagement thresholds, language level preferences, etc.) we
hypothesise that the most influential driver of engagement
is the information content and style of the video.

Another observation from Table 2 is that KRR and KSVR
models outperform their linear versions. This suggests that
there could be non-linearity in the dataset that is better
captured by the kernel techniques. RF seems to be the
best performing model providing more evidence that non-
linearity plays a significant role.

To show how the accuracy changes when the difference of
MNET between two lectures changes, we first compute all
the possible differences between pairs of lectures and bina-
rize these pairs into bins of size 0.1 from 0 to 1, finally we
compute the pairwise accuracy for each bin. Figure 2 shows
how the performance of the model changes based on the
difference of MNET between lecture pairs. The bars in the
figure represent the pairwise accuracy for all the pairs that
belong to the same bin. For example, the pairs with largest
difference of MNET are predicted correctly with 0.962 accu-
racy whereas pairs with the smallest difference are predicted
with 0.642 accuracy.

Intuitively, a learner might have a similar experience con-
suming a pair of video lectures that are similarly engaging
(at least disregarding the topic), as one is less likely to notice
the difference. The black line in Figure 2 presents the cumu-
lative pairwise accuracy of the model if we were to assume
that the learners are insensitive to noticing the difference of
experience for lecture pairs that have a small difference of
MNET. The plotted cumulative pairwise accuracy (y-axis)
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Figure 2: Bar chart plot showing how the pairwise
accuracy changes based on the difference of MNET
between lecture pairs

is computed by restricting the comparisons to lecture pairs
with a difference of MNET between the lower bound of the
x-axis value and 1.0. For instance, the cumulative pairwise
accuracy of the model is 0.816 when the learners do not no-
tice the difference when interacting with similarly engaging
lecture pairs with MNET difference of [0.0, 0.2]. This value
is the pairwise accuracy of all the lecture pairs with a MNET
difference of ]0.2, 1.0].

4.2.3 E3: Length of Materials vs. Engagement
Several studies have shown that features that quantify mate-
rial length have a significant impact (this is also reaffirmed
by our observations in our feature importance analysis in
Figure 6 and 7) on sustained engagement with the mate-
rial [17, 14]. We investigate how the length of the lectures
impacts engagement prediction (i.e. if the engagement pre-
dictor is näıvely distinguishing between long vs. short video
lectures). We first investigate the distribution of total word
count in the video lectures (Figure 3), which is directly re-
lated to the length. Based on the observed multi-modal
distribution, we make two groups, i) short lectures of less
than 5000 words and ii) long lecture (see engagement dis-
tribution in Figure 4). It can be seen that, as anticipated,
the percentage of watch time tends to be shorter for long
lectures.

We investigate how median engagement labels are distributed
in the aforementioned groups and also how the pairwise
accuracy differs among and between the groups. Figure
5 shows that the model is better at comparing between
short-short lecture pairs compared to long-long lecture pairs.
In the context of VLN dataset, this is good because there
are more short lectures than long lectures (Figure 3). Re-
cent findings (e.g.[17]) also encourage authors to make short
videos, increasing the likelihood of future video productions
being short lectures. MNET distribution in Figure 4 shows
that long lectures have a more skewed target value distri-
bution concentrated closer to 0 compared to short lectures

Figure 3: Distribution of word count of video lec-
tures

Figure 4: Distribution of engagement labels for
short and long lectures.

Table 3: Pairwise accuracy with standard error via
5-fold cross validation for RF model using content-
based features vs. content-based + video-specific
features.

Model Pairwise Accuracy
Subject-agnostic Subject-specific

Content-based Features .724±.014 .733±.018
Video-specific Features .744±.011 .755±.014

suggesting that learners tend to consume smaller fractions
of long videos. This is likely to be driven by factors beyond
other measured features of the lectures, such as limited time
availability and short attention span of learners.

4.2.4 E4: Video-Features and Subject Areas
Table 3 shows how the pairwise accuracy increases when
restricted to subject-specific comparisons (lecture pairs be-
longing to the same subject area). This is clearly an advan-
tage, given that most often, an educational recommendation
system needs to make choices among sets of resources that
belong to the same subject area.
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Figure 5: Accuracy bar chart for different types of
comparisons using short and long lecture labels.

Table 4: Influence of content-based features on en-
gagement as per their verticals outlined in [10].
Quality Vertical Feature MAS % MAS
Topic Coverage Word Count .250 .366
Freshness Published Date .107 .157
Understandability Easiness .052 .076
Understandability Stop-word Coverage Rate .042 .061
Presentation Normalization Rate .039 .058
Topic Coverage Title Word Count .039 .057
Presentation To Be Rate .038 .055
Topic Coverage Document Entropy .033 .048
Understandability Stop-word Presence Rate .028 .041
Presentation Conjunction Rate .019 .028
Presentation Preposition Rate .014 .020
Presentation Pronoun Rate .013 .020
Presentation Auxiliary Rate .009 .013

Table 3 additionally shows how the performance differs when
using exclusively the cross-modal set of features and when
adding video specific features. The addition of video fea-
tures increase the performance by approximately 2%. This
result shows that there is a compromise in performance when
restricting features to cross-modal features although the fea-
ture extractors can be reused in a practical scenario.

4.2.5 E5: Feature Importance Analysis
The SHAP value summary plots for content-based and video-
specific feature sets are presented in Figures 6 and 7 respec-
tively, where the features are ordered based on overall fea-
ture influence using the best performing prediction model
(RF). Colour represents the raw feature value (blue low, red
high). For example, when the observed values of a feature is
red and they have a negative SHAP value, this means that
higher values of this feature negatively impact LMNET pre-
diction. Regarding video length, figures validate its impact
on engagement, showing that long videos generally present
lower engagement and vice versa, with lecture duration and
word count being the most relevant features. Prior studies
confirm this observation [17, 40, 15]).

Table 4 complements Figure 6 by giving a more quantita-
tive representation of how the influence of different features

Figure 6: SHAP summary plot for cross-modal fea-
tures.

across the test dataset changes. Higher MAS is associated
with more important features. By looking at the five most
influential features, we observe that all identified quality ver-
ticals (topic coverage, understandability, freshness and pre-
sentation) are represented. This observation supports the
importance of considering all the different verticals when
predicting context-agnostic engagement. The influence of
top features is also consistent with results on quality biased
information search [3] where it is also found that Title Word
Count is comparatively less important. Figures 6 and 7 also
show the importance of modality-specific features in this pre-
diction task by raising Lecture Duration, Silence Period Rate
and Speaker Speed in Figure 7 to high ranks.

4.2.6 E6: Population-based vs. Personalised
We use the 20 most active learners from the VLN dataset
to compare the predictive performance of context-agnostic
to contextual/personalised models when predicting engage-
ment. Firstly, we train the population-based prediction model
using the VLN dataset (outlined in section 3.1) using a 70:30
train-test split. In order to build the personalised model,
for each user, we make a similar 70:30 train-test split re-
specting the temporal order of their individual events. We
use the training data to build a personalised model per user
using only the cross-modal set of features (no video-specific
features). For each learner `, we make predictions on the
N` test events using (i) population-based model and (ii) the
personalised model trained on personal events of the learner.
We calculate Mean Absolute Error (MAE(`)) as:

MAE(`) =
1

N`

N∑̀
n=1

| yn − ŷn| , (4)

where ŷn is the prediction. As regression models are de-
vised for the task, MAE is a sensible evaluation metric to
measure predictive performance of the models. Then we
calculate the difference of MAE(`) between the population-
based and personalised model. Thus, a negative value in-
dicates that the population model is better and vice versa.

57 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



Figure 7: SHAP summary plot with video-specific
features.

Figure 8, where the y-axis represents the difference in per-
formance between the population-based and personalised,
shows that the population-based model has better predic-
tive power when the number of training examples available
for the individual learner is limited (≈ 60). This is repre-
sented by the green line (at a MAE difference of 0). This
demonstrates the usefulness of the population-based engage-
ment prediction model in a situation where the recommender
system is in a cold-start phase.

Figure 8: How the difference between Mean Abso-
lute Error (MAE) of population-based and person-
alised models change with the number of training
events per learner. Each data point is an individual
learner in the dataset.

Table 5: Pairwise accuracy for STEM and Miscel-
leneous (Misc.) lectures when trained with subject-
agnostic and subject-specific training data

Training Data Test Data
STEM Misc.

Subject-agnostic .737 .708
Subject-specific .732 .704

4.2.7 E7: Individual Models per Knowledge Area
To understand if training subject-specific models can im-
prove on the predictive power of the overall task, we parti-
tion the lecture records into 2 categories:

• STEM: Life Sciences, Physics, Technology and Math-
ematics.

• Miscellaneous: Social Sciences, Humanities, Arts and
Philosophy.

Then, we compare the performance of the models trained
on subject-agnostic (STEM + miscellaneous) and subject-
specific (STEM only or miscellaneous only) training data.
Table 5 demonstrates that there is little evidence in our re-
sults contradicting that a common subject-agnostic engage-
ment model can be assumed across knowledge areas. This is
shown in the fact that both training with all knowledge ar-
eas or dividing into two, the models obtain very similar test
accuracy for each category (.737 vs .732 and .708 vs .704). In
fact, the best performance is obtained in both cases by train-
ing with the whole dataset. This indicates that in general
a common engagement model can be assumed throughout
knowledge areas.

4.3 Limitations
Firstly, the model does not include features that capture au-
thority of content or its authors. Authority has been iden-
tified as an influential feature and lacking it is a weakness
of this model. However, identifying an authority indicator
that generalises beyond niche communities (e.g. academia)
is challenging yet necessary, especially in the OER landscape
where anyone can author learning materials. Additionally,
the topic coverage features used in this model (Word Count,
Title Word Count and Document Entropy) are relatively
näıve, although they are useful. Having better features will
likely improve the model. The current work demonstrates
promise in predicting learner engagement with video lectures
using easily automatable material features alone. More so-
phisticated features, both cross-modal and modality-specific
could lead to higher predictive performance and better un-
derstanding of context-agnostic engagement. Thirdly, the
engagement model is trained on English lectures and En-
glish translation of non-English lectures. This impacts the
generalisation ability of the model. The same applies to
non-video content as well. More rigorous testing is needed
in these fronts. Lastly, given that our dataset only consid-
ers OERs and excludes the learning dimension, we highlight
that some of our findings may not be directly applicable to
other type of educational material. Particularly, given that
most of our features are language-based and we disregard
visual information, the built models may not generalise to
general purpose videos.
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5. CONCLUSIONS
Given its timely need, we set out to develop and empirically
test the suitability of engagement prediction models for au-
tomatically assessing context-agnostic engagement of OERs.
Due to the scarcity of publicly available datasets for the task,
we sourced a new video-lectures dataset and evaluated how
different machine learning models perform on this dataset.
In our analysis, we observed that the Random Forest algo-
rithm performs best. We show that cross-modal features
provide satisfactory performance, which is a major advan-
tage, since these can be extracted from different resource
modalities. Further experiments show that the predictive
performance of the model can gain a slight boost in perfor-
mance by adding modality-specific features. However, the
performance does not deviate significantly. Feature analysis
showed that lecture length features are the most influential
features in predicting context-agnostic engagement, which
agrees with prior work. Other moderately influential fea-
tures come from diverse quality verticals. Our analysis also
showed that the model classifies much better when lectures
with very different engagement values are compared, as op-
posed to lectures with similar engagement. This is natural
and obviously the negative impact of misranking pairs of
similar engagement lectures is relatively small. Our exper-
iments demonstrated that the built model is useful in data
scarcity scenarios, e.g. to approach the common cold-start
problem in recommender systems. This is both for new users
and new content, as our model can automatically estimate
the engagement for new material and the model can be used
as a prior for when we do not have enough data from a
user to build a personalised model. We finally show that di-
viding the dataset into different knowledge areas (Subjects)
and building separate models does not show improved per-
formance, thus validating that a common underlying model
can be built for estimating engagement across differentiated
knowledge areas.

The proposed context-agnostic engagement prediction model
can be beneficial in improving different components of an ed-
ucational recommendation system. In situations where new
content is discovered frequently (e.g. OER landscape [27,
7]), the proposed prediction model estimates how engaging
materials are prior to exposing them to the learner pop-
ulation. This allows better balancing the risks relating to
learner satisfaction with opportunities of having fresh ma-
terials. Also, the proposed context-agnostic model can be
integrated with a personalisation system in different ways.
It can act as a prior that mitigates cold-start problem both
on user and content fronts. In systems where personalisa-
tion heavily focuses on the topics covered in the materials
[9], this model can complement the content-based model by
accounting for stylistic and lingual features that go beyond
topic coverage.

To further improve the models, future work should address
the three main limitations discussed: Future versions of our
model should incorporate more sophisticated features. It
could be beneficial to include features capturing authority
and topic coverage [10]. In this sense, Wikification [6] can
be used to extract covered topics, and data driven authority
features, such as [1], can be used to learn a universal author
authority score. In the cross-modal front, more features fo-
cusing on content understanding, such as topic coherence

and argument strength, can be considered. In the video-
specific front, features such as liveliness of the presenter,
sound quality and narration quality can be incorporated.
Regarding the generalisation capabilities of the model, eval-
uating the effectiveness of the cross-modal feature set with a
bigger video lecture dataset [17, 40] and a text dataset [14]
will increase the confidence on the feature set. Similarly,
non-English datasets should also be taken into account.
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ABSTRACT 

Effective teachers recognize the importance of transitioning 

students into learning activities for the day and accounting for the 

natural drift of student attention while creating lesson plans. In 

this work, we analyze temporal patterns of gaming behaviors 

during work on an intelligent tutoring system with a broader goal 

of detecting temporal trends in students’ motivation. Findings 

demonstrate that observing gaming the system behaviors in the 

near beginning or end of a working session correspond with 

predictions made by self-regulation theories of ego-depletion and 

task-switching. Furthermore, analyses provide initial evidence 

these gaming behaviors are indicative of partial cognitive 

engagement and session-level influences on student motivation. 

These findings provide evidence for how temporal fluctuations in 

students motivations might be inferred through self-regulated 

behaviors like gaming the system, and how such information 

could inform better more intelligent tutoring systems that are 

responsive to cognitive and motivational dynamics during student 

work.  

Keywords 

Motivation, Self-Regulation, Measurement, Gaming the system, 

Ego-depletion, Task-switching, Intelligent tutoring system 

1. INTRODUCTION 
Many teachers can relate to the struggle of keeping an entire class 

engaged as the end of the day approaches. Some students may be 

listening raptly while other have started packing their belongings. 

Many teachers use class management techniques, such as specific 

activities in the beginning of class, in anticipation of the 

difficulties in ramping up the engagement of the entire class [9]. 

Student motivation appears to vary systematically over the course 

of a class period. Many good teachers adapt to this reality. It 

seems appropriate that intelligent tutoring systems should as well. 

Student procrastination, the failure to engage in a task in a timely 

fashion, has a well-established link to student motivations [16]. 

The nature of the tasks that students have difficulty engaging 

themselves in can be revealing about their individual goals [15], 

their perceptions of the value of the task [5], and their beliefs 

about their abilities to complete the task [21]. Similarly, the 

context of what drives students to quit can be equally telling about 

the same facets of student motivation [20]. 

Measures of quitting and procrastination leverage the easily 

observable dichotomy of student engagement, but are there other 

within-task student behaviors that might similarly indicate 

motivation? Quitting and procrastination are evidence of students’ 

failure to exercise their self-regulation. In these moments, students 

are failing to direct their attention towards a less desirable but 

beneficial learning task, and instead opting to engage in more 

desirable non-learning tasks. Applying this self-regulation lens, it 

may be possible to understand student motivation by identifying 

and analyzing other observable moments during student work 

where students engage in less desirable behaviors for learning.  

1.1 Temporal Dynamics of Self-Regulation 
Self-regulation is the capacity to control or direct one’s attention, 

thoughts, emotions, and actions [27]. One of the leading models 

of self-regulation poses the construct as a reward-based decision-

making process [2]. In this model, self-regulation is treated as a 

series of decisions that seeks to optimize some expected value 

based on anticipated rewards and costs. Motivation is defined as 

“the orienting and invigorating impact, on both behavior and 

cognition, of prospective reward” [2]. Through this theoretical 

lens, self-regulation decisions are a reflection of student’s 

motivation. 

For instance, solving an extra credit problem on the homework 

may likely push the student’s grade from a B to an A for the year. 

However, the problem will likely take an hour to solve and the 

student may have to skip soccer practice to find time to complete 

the problem. Observing the student’s choices and behaviors in 

these critical moments of self-regulation can reveal student’s 

underlying motivation. Prior models of self-regulated learning 

behavior have focused on the cognitive facets of a given task: its 

difficulty level [4,7], its domain topic[10], its time cost[6], and its 

expected value to the student[19]. However, research on self-

regulation point to temporal factors that influence decision 

making.  

Task switching research indicates that the exercise of self-

regulation imposes a cognitive cost. Once an individual chooses to 

engage in a task, they do not always appear to be applying 

themselves with full effort [8]. Additionally, when a person is 

forced to change tasks rapidly, they are not able to perform at the 

same level as those given more consolidated spans of time to 

perform on the same task [11]. These studies imply that students 

are likely to perform at a reduced capacity when initially 

beginning work to perform on a task upon initially beginning 

work,  

Ego-depletion models of self-regulation posit that the ability to 

regulate attention over time may tend to deplete as some time-

driven function of an internal and limited resource [23]. Thus, 
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motivation may also tend to wane over time leading to an eventual 

failure to self-regulate.  

In this work, we seek to investigate whether these temporal 

properties of self-regulation are evident in the prevalence of 

student’s failures to self-regulate. 

2. Related Works 
Measuring self-regulation related constructs is not a new concept 

in the intelligent tutoring system literature. Prior work has 

developed a range of models for detecting self-regulation related 

behaviors. 

2.1 Off-task Detection 
Some of the earliest work in this space identified off-task student 

behaviors by identifying large gaps of time between interactions 

in the log data of student interactions [26]. Inferences on student 

skill improvement, in addition to whether the students asked for 

help or attempted a problem correctly/incorrectly following a long 

gap between interactions determined whether students were off-

task while idle. 

[18] developed models of mind-wandering, when students’ 

attention and thoughts move off-task, which enabled detection of 

off-task behavior over much shorter time spans. These models 

leveraged information from videos and human labels of short time 

segments to train a supervised model to classify when mind 

wandering occurs. The features fed into the model included a 

range of low-level image processing features, facial features, 

inferred emotions, and temporal features that describe the 

dynamics of facial features and emotions during a short time 

interval. [17] extended this work given user self-reports of mind-

wandering and included body position information. 

2.2 Persistence and Quitting 
[4] developed a model of student persistence by analyzing 

patterns of behavior that included observed student actions 

contingent on properties of the problems being worked and the 

student’s skill on those problems. In this work, two types of 

students emerged, where the authors posited that trait level 

differences in students’ capacity for sustained attention lead to 

differences in learning strategies and persistence during problem 

solving.  

[3] designed a game-based measure of trait level persistence and 

validated the measure against other existing survey and standard 

psychometric behavioral tasks. The measure looked at average 

time on unsolved versus solved problems given a wide range of 

difficulty levels. 

In [7], the authors built models of quitting an educational game. 

They leverage many features including features of each level of 

the game, the current state of game progress of the student, and 

the time in the current level. The final model that emerged from 

the supervised machine learning process were focused around 

actions of the student and the state of progress and counts of 

actions at each level across and within attempts at the level, thus 

not including any of the limited temporal features given at model 

training time. 

[10] attempted to predict when students would quit reading a 

given passage. In this work, the authors used semantic features of 

the reading passages, the recent context of what passage is being 

read, which passages have been read recently, and both current 

page and total reading time. Total reading time, a similar proxy to 

ego-depletion, was found to be a significant contributor to models 

of quitting with respect to the first page of a passage. The authors 

also implicitly investigated the role of task switching by 

predicting quitting at the beginning of a new passage compared to 

some other new page within a passage. While some of the data 

supports a differential impact of task switching and time on 

quitting, the authors do not explicitly explore how quitting 

behaviors vary over time. 

2.3 Gaming the System 
With intelligent tutoring systems that provide scaffolding supports 

through progressively informative hints and feedback, another 

behavior tends to arise called “gaming the system” [24]. These 

behaviors have been identified using information about a series of 

recent actions such as time spent or the number of recent hint 

requests and errors, and the characteristics of the problems 

worked, such as problem section and difficulty in those 

interactions [12]. Extensive work has attempted to determine what 

drives gaming behaviors. While some initial work determined that 

problem context better explained gaming behaviors over trait-like 

individual propensities to game [25], later work presented the 

opposite result using a different intelligent tutoring system [22]. A 

large multi-environment analysis was conducted that compared 

the types of gaming behaviors observed across urban, suburban, 

and rural contexts using three different intelligent tutoring systems 

[13]. The study found that across tutoring environments, students 

displayed different predominant gaming behaviors, which implies 

that the lure of certain types of gaming may be different given 

tutoring environment or problem-type affordances. Similarly, 

within tutoring environments, students from areas of different 

population density (eg: rural versus urban) display different 

predominant patterns of gaming. These differences point to how 

variation in work environment may have differential anticipated 

costs to gaming, while the variation within environment but across 

geographic regions point to possible cultural and thus 

motivational differences. 

2.4 Research Questions 
Prior work has developed extensive models of self-regulation 

behaviors that demonstrate the importance of cognitive, 

contextual factors, and local temporal factors for influencing 

student’s self-regulation decisions. However, these models have 

not investigated how self-regulation behaviors might vary 

systematically over time and how such trends relate to student 

learning. In this work, we seek to investigate whether the within-

session temporal properties of self-regulation are evident in 

student behaviors and whether these temporal trends are 

predictive of similar negative impacts on student learning. 

Models of the cognitive cost of task switching imply that self-

regulation related behaviors such as gaming the system are more 

likely to occur in the beginning of a work session. Similarly 

models ego-depletion imply that self-regulation related behaviors 

such as gaming are more likely to occur after students have been 

working for some time. We propose to investigate whether models 

of task-switching and ego-depletion are evident in some changes 

over time of the probability of gaming the system, a behavioral 

instance of self-regulation. We then investigate whether lower 

cognitive engagement as predicted by task-switching theory co-

occurs with gaming the system. We follow this with an analysis to 

determine if failures in self-regulation during critical time periods 

are indicative of session-level motivation.  

3. The Dataset 
We utilize an observational dataset [1] including 214 students 

across 22 classrooms using the Carnegie Learning Cognitive 

Tutor (CT) in Pre-Algebra, Algebra 1, and Geometry. The tutor 
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was used approximately two class-periods per week for a full 

school year. The dataset includes over 2.3M user transactions 

covering 55, 33, and 26 curricular units divided into 173, 98, and 

44 sections across the three courses respectively. 

The CT leverages computational cognitive models to provide 

adaptive problem selection and hint support and correctness 

feedback to the students. Problems are broken down into a multi-

step process, which allows the system to identify independent 

skills and trace skill improvement over a fine-grained skill model 

of the domain. On each step, the system is able to provide 

multiple levels of hint support, with the final level containing the 

answer to the problem step. The system logs all interactions with 

the system including problem attempts, hint requests, response 

accuracy, and problem step time. In this study, transactions for all 

students over the course of an entire academic year are utilized. 

3.1 Measuring Gaming the System 
We leverage the model of gaming developed by [14] to annotate 

transactions as gamed. This model identifies a set of patterns of 

transactions that experts identify as gamed patterns. A student is 

determined to be gaming at some time if a series of transactions 

matches an identified transaction. For instance, a common pattern 

is when students enter the same or a very similar answer into 

multiple places without answering correctly, effectively guessing 

where a calculation result belongs without understanding the 

organization of the problem.  Another common pattern is when 

students ask for help without taking much time to consider the 

problem, followed shortly after by an incorrect input. In this case, 

the student appears to be using the help facility to get an answer 

but is not taking enough time to use the information provided to 

derive an answer. The dataset consists of 4.1% of transactions as 

being labeled as part of a gaming behavior, where the majority of 

students are labeled as gaming between 3.2 to 4.3% of all 

observed transactions.  

3.2 Aligning Session Time 
The data described above only includes transactions after 

eliminating certain transactions from the original dataset. In order 

to see temporal patterns, data was excluded from short sessions 

with length in the bottom 5% of all student session lengths, which 

was determined to be about 5 minutes. The resulting observed 

student sessions ranged from 5 minutes to 58 minutes, with a 

median length of 32 minutes.  

One difficulty in measuring ego-depletion with observational data 

is in controlling for differences in the depleting effects of context. 

In ego-depletion studies, the task is controlled for and thus can be 

ruled out to explain observed differences in behavior. In 

intelligent tutoring contexts. The adaptive instruction will provide 

variably challenging and types of content and may differentially 

deplete students across the experiences within the same period of 

time. To overcome this issue, we leverage the insight that when 

two students begin working, they might be in similar states 

relative to their internal thresholds for self-regulation. We also 

assume that when two students stop working, they are in 

comparable states. If these two students stop working at different 

times, it implies similar start and finish attention states, but 

different depleting effects of context that were experienced over 

time. In order to account for these differences in uncontrolled 

contextual factors, we created an additional time measure that 

aligned individual student transactions within sessions by the 

percentage of the session time that has elapsed. This alignment 

facilitates comparison of transactions relative to the start and end 

of a session, scaled to the session length.  

4. Modeling the Effect of Time 
Theories of self-regulation imply different models of the effect of 

time on self-regulation. Attentional shift models posit a cognitive 

cost of task switching. These costs may cause some tasks to seem 

more difficult near the beginning of a session. Ego-depletion 

models imply a reduction of a limited capacity to self-regulation 

resource over time. These models suggest students may eventually 

find it difficult to continue in a task and signs of fatigue, such as 

gaming, may be revealed by an increased tendency to engage in 

gaming behaviors before finishing working. To test these model 

implications, we compare five random effect logistic regression 

models to determine how self-regulation may vary over the course 

of a session.  

We introduce M1 as the baseline model for comparison to 

determine if any temporal models are significantly more 

predictive than current best practices as suggested by prior 

gaming research. This model includes random effects for both 

student and curricular section to control for the previously 

established impacts of student and context on student’s tendency 

to game. The remaining four subsequent models similarly control 

for student and contextual factors while introducing additional 

factors representing temporal effects. 

To define the remaining four models, time is represented along 

two dimensions. In the first dimension, time is represented as 

either time elapsed since the student began working or percentage 

of total working time elapsed, as described section 3.2. Time 

elapsed models represent the default model informed by both ego-

depletion and task switching theories. Percentage of time elapsed 

models test the hypothesis that such a representation better 

captures motivation as temporally relative to the most informative 

moments of student behavior. In the second dimension, time is 

represented linearly or quadratically. Linear models allow only 

one main temporal effect to be captured by the model, either a 

constant increase or decrease in motivation over the course of a 

session. Quadratic models can capture different effects at the start 

and end of the session that differ from each other and the middle 

of the session. All temporal variables are normalized over the full 

dataset for model interpretation. 

M4.1: Baseline – Baseline model for comparison controlling for 

differences in student’s tendency to game and contextual factors 

across curricular sections, such as average difficulty, that 

influence gaming. 

Eq 4.1: Gaming ~ (1|Student) + (1|Section) 

M4.2: Linear Session Time – Extending the baseline model M4.1 

by adding a linear term for time-elapsed since the student has 

begun working 

Eq 4.2: Gaming ~ time-elapsed + M4.1 

M4.3: Linear Percent Time – Extending the baseline model M4.1 

by adding a linear term for proportion of session time elapsed as a 

percentage of total time observed working. 

Eq 4.0: Gaming ~ pct-time-elapsed + M4.1 

M4.4: Quadratic Session Time – This model extends model M4.2 

by adding a quadratic term 

Eq 4.0: Gaming ~ time-elapsed2 + M4.2 

M4.5: Quadratic Percent Session Time – In addition to the 

random effects in Eq 4.1, this model tests the hypothesis that 

students self-regulation resources are  

Eq 4.0: Gaming ~ pct-time-elapsed2 + M4.3 
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4.1 Comparing Models 
 

Table 1. Comparing models of temporal trajectories of 

student gaming behaviors 

Model BIC AIC LogLik 

M4.1 434741 434703 -217348 

M4.2 434682 434632 -217312 

M4.3 434668 434619 -217305 

M4.4 434454 434392 -217191 

M4.5 454503 434441 -217215 

 

The results of fitting each of the five models are shown in Table 1, 

including model performance as assessed by AIC, BIC, and log-

likelihood. In general, all models with temporal factors 

outperform the baseline model, M4.1. This implies that temporal 

information has a significant effect on student’s self-regulation 

behaviors. Additionally, both quadratic models, M4.4 and M4.5, 

are significantly better than their linear counterparts (Chisq = 179 

(p<0.001) for M4.2 vs M4.4, and Chisq = 242 (p<0.001) for M4.3 

vs M4.5). Likewise, M4.4 and M4.5 are significantly better than 

baseline with Chisq = 315 (p<0.001) and Chisq = 266 (p<0.001) 

respectively. 

 Figure 1. Number of observations over time in session 

 Figure 2. Proportion of Gaming Actions by minute 

 

Exploratory plots of proportion of gaming the system transactions 

over the session support these interpretations. Figure 2 and 4 plot 

the proportion of transactions identified as gaming the system 

behaviors across the session over minutes passed or proportion of 

total session time respectively. As expected from the quadratic fit 

models, each figure shows an increased proportion of gaming 

behaviors near the start and end of sessions.  

 
Figure 3. Number of observations over proportion of session 

time 

 
Figure 4. Proportion of Gaming Actions by Proportion of 

Session Time Passed 

 

A closer look at the data in Figure 1 reveals that there is a large 

student participation drop-off near the 43 minute mark. While 

whole class sessions seem to regularly measure about 60 minutes, 

students’ login and logout times are quite staggered such that 99% 

of observed student sessions are less than 43 minutes in length. 

Only 82 out of more than 9800 sessions are observed where 

students worked continuously for between 43 and 60 minutes. 

Furthermore, analyzing gaming averaged over each minute of the 

hour, Figure 2, shows that this dramatic reduction in data is 

associated with very large and volatile estimates of average 

students gaming per unit time. Because of the low amount of data 

observed in the last 17 minutes of sessions longer than 43 

minutes, it is hard to draw stronger conclusions about whether 

students are much more likely to display gaming behaviors if they 

are able to stay on task longer than 43 minutes, or if the volatility 

is due to random sampling bias.  

A closer inspection of data in Figure 3 also shows some peculiar 

variability in data at the start and end of sessions. Because session 

time is divided evenly across the proportion of sessions, there is 
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no a-priori reason to believe students have more or less frequent 

transactions at any time in the session. The small decrease in 

quantity of transactions near the start of sessions implies students 

take longer on average to complete actions near the start of work. 

The large spike of activity near the end implies students are taking 

less time per action shortly before stopping work. In both cases, 

the data sparsity issue seen in Figure 1 is not likely driving the 

changes in proportion of gaming seen in Figure 4. The small 

decrease in activity near the start is associated with the start of a 

broader downward trend in proportion of gaming behaviors that 

continues even after activity frequency flattens.  The sudden 

increased frequency of transactions near the end of sessions is 

associated with a comparable spike in prevalence of gaming the 

system behaviors. However, because some gaming behaviors are 

defined by rapid actions in succession, this relationship is 

expected. 

Taking the model comparisons and exploratory data analysis 

together, this evidence supports the interpretation that there are 

non-monotonic differences in gaming the system behaviors 

between the start, middle, and end of sessions. 

 

Table 2. Model coefficients for M4.4 and M4.5 

Term M4.4 - ß Term M4.5 - ß 

Intercept -4.215 Intercept -4.217 

Percent time 

elapsed 
-0.265 Time elapsed -0.283 

(Percent time 

elapsed) 2 
0.231 (Time elapsed) 2 0.252 

 

Comparing the two quadratic models, M4.4 is the best fit model 

by all 3 measures, BIC, AIC, and Log Likelihood. The model 

details can be seen in Table 2. The variance in gaming attributable 

to curricular sections is 0.87. This translates to average gaming 

attributable to tutor context level factors to range between 0.23% 

and 8.4% for 95% of sections. The variance attributable to 

students is much smaller, 0.088. This translates to average gaming 

attributable to trait-level student factors to range between 0.82% 

to 2.57%. An inspection of the model coefficients shows that the 

model predicts the average gaming level at the start of a session, 

P(gaming|t=0), is 4.1%. Average gaming at the end of the session, 

P(gaming|t=60 minute), is 18.7%. The quadratic model reaches a 

minimum observed gaming of 1.3% at 23 minutes into the 

session.  

An 18.7% average probability of gaming after working for 60 

minutes appears to be very high given that gaming only occurs 

overall in the dataset in about 4.5% of all actions. As discussed in 

the previous exploratory data analysis, the very high gaming 

proportion observed in the last 17 minutes of sessions is 

potentially related to the increased volatility created from 

estimates drawn from small amounts of data. These estimates 

spike upwards as high as 25%, which corresponds with the 

dramatic difference between start and end gaming predicted by 

M4.4. Therefore, the model is reflecting this same artifact of the 

data. 

Inspecting M4.5, the model predicts that gaming is more likely in 

the start and end of the session. The average probability of gaming 

decreases to 1.35% by the time the student has worked 67% of the 

total time. According to the model, we are 3.34 times more likely 

to observe students game the system near the start of work than 

near their peak level of focus. Likewise, it is 1.32 times more 

likely to observe gaming the system in the moments shortly before 

students stop work. This model appears to make less dramatic 

predictions that are more inline with expectations based on overall 

average frequencies of gaming while not reflecting the same 

uncertainties as M4.4.   

These results support the hypothesis that self-regulation processes 

have an impact on the average occurrence of gaming the system 

behaviors over the course of a work session. Students in this data 

appear to experience decreased motivation near the start of work 

as would be predicted by the cognitive costs of task switching. 

Likewise, students appear to show some decreased motivation 

before stopping work as predicted by ego-depletion theories.  

5. Leveraging Gaming for Prediction 
The previous analysis has demonstrated that observing instances 

of weaker self-regulation, such as gaming the system behaviors, 

support a view of student’s dynamic self-regulation capacities 

over time as predicted by ego-depletion and task-switching 

theories. This raises the natural question of exactly what 

observing such lapses in self-regulation implies about a student’s 

internal capacities.  

5.1 Gaming Indicates Cognitive Effort 
If students are not observed to game the system early in a session, 

we expect that student motivation is likely higher around this time 

despite the brief slightly negative impact of task switching. This 

greater motivation allows students to bring greater cognitive 

resources to the work relative to days when gaming is observed 

near the start. When comparing assistance rates in the beginning 

of a session, the proportion of questions either answered 

incorrectly or with a request for help on first attempt, a student 

who is more cognitively engaged should be less likely to make 

errors or ask for help. Likewise, similar patterns should be 

associated with assistance rates near the end of students work.  

We compared the assistance rates for sessions where a student is 

observed gaming in the first 10% of the session time (the first 3 

minutes for the median session) to assistance rates where no 

gaming is observed in the first 10% of the session time. To 

calculate the assistance rate, the raw student transactions are 

aggregated by problem-step. The outcome of each step is 

determined by the first attempt at the step. The step is labeled as 

gaming the system if any of the aggregated transactions are 

labeled as gaming. Because patterns of gaming generally involve 

either incorrect or help-seeking behaviors, steps that were labeled 

as gaming the system are removed before calculating the 

proportion of incorrect and help-request steps to overall steps 

observed in the portion of the session.  

The assistance rates in the start of sessions are shown in Figure 5 

and were found to be significantly lower (t=-15.22, p < 0.001). 

The average assistance rate where gaming is observed is 30% 

(sd=25) while the average rate when gaming is not observed is 

21% (sd=26). Similarly, Figure 6 shows boxplots for assistance 

rates in the last 10% of sessions. Rates were found to be to be 

significantly lower (t=-11.6, p<0.001) with the average session 

where gaming is observed having a rate of 25.3% (sd=22) 

compared to the average non-gaming session having a rate of 

18.6% (sd=24).  

This simple analysis does not take into account factors such as 

question difficulty. It is possible that if students are working on 

difficult content near the start, then they are more likely to make 

errors and request hints. It also implies that more challenging 

material may impact how students evaluate the likelihood of 
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prospective reward given their perceived abilities. This may lead 

students to believe that applying effort is unlikely to result in 

experiencing the reward or attempting to apply effort may have 

greater depleting effects that impact future actions. In either case, 

it is possible that more challenging material instead of task-

switching or ego-depletion explains the relationship between 

increased assistance score and gaming behaviors near the start and 

end of work. However, these tests do provide compelling 

evidence for a possible impact of decreased cognitive engagement 

on some practice opportunities that can inform future modeling 

work. 

 

Figure 5. Comparing assistance rate at the start of sessions  

 

Figure 6. Comparing assistance rate at the end of sessions 

5.2 Gaming Indicates Motivation Levels 
Student’s day-to-day average motivation level is affected by 

factors in the school, in the classroom, and in the student’s life 

more broadly. A death in the family, a fight with a significant 

other, or a poor grade in another class might be weighing on a 

student’s mind while that begin working. These factors may have 

a negative effect on student’s ability to self-regulate throughout 

the entire session. If this is the case, these factors will act in 

combination with the additional impacts of task-switching or ego-

depletion at the start and end of the session to impact a student’s 

capacity to self-regulate. Thus, observing gaming the system 

behaviors at the start or end of a session may also be informative 

about a student’s more general motivational level. In this section, 

we analyze gaming behaviors throughout the session using 

information about whether students gamed at the beginning or end 

of a session to improve predictions of gaming in the rest of the 

session. 

Gaming at the start and end are defined the same as in the 

previous section. In the data, 29.7% of sessions are observed with 

gaming at the start while 32.0% of sessions have gaming at the 

end. Together 49.9% of sessions have instances of gaming the 

system in the start or end, while only 11.8% of sessions are 

observed with gaming in the start and end of the session. While 

gaming near the start or end might be indicative of session level 

motivational impacts, in this analysis we test whether seeing any 

gaming at the start or end is sufficiently informative or if start and 

end are differently informative.  

To perform this analysis, we use the best model from the Section 

4 analysis, M4.4 the quadratic percent-time-elapsed model. This 

model will control for the variance due to student and tutor 

contextual factors, removing concerns about confounds such as 

gaming at the start may be due to generally more difficult material 

that makes gaming more likely throughout the session. We 

compare models that add main effects for whether gaming was 

observed at the start or at the end as well as linear and quadratic 

interaction effects. The models are elaborated as follows: 

M5.1: Baseline Quadratic Model – the baseline model from 

Section 4 analysis for comparison. 

Eq 5.1: Gaming ~ pct_elapsed + pct_elapsed2 + (1|Stu) + (1|Sect) 

M5.2: Gaming at start/end main effect – M5.1 with a binary 

indicator variable of whether gaming is observed near the 

beginning of the session and a binary indicator variable of 

whether gaming is observed near the end of the session 

Eq 5.2: Gaming ~ M5.1 + g_start + g_end 

M5.3: Combined Gaming at start or end main effect – M5.1 

with a binary indicator of whether gaming is observed at either the 

beginning or the end of the session 

Eq 5.3: Gaming ~ M5.1 + g_start_end 

M5.4: Gaming at start and end with linear interactions – M5.4 

elaborates on top of M5.2 adding linear interactions with time. 

Eq 5.4: Gaming ~ M5.2 + g_start:pct_elpsed + g_end:pct_elpsed 

M5.5: Gaming at start and end with quadratic interactions – 

M5 elaborates on top of M5.4 adding interactions with quadric 

time terms. 

Eq 5.5: Gaming ~ M5.4 + g_start:pct_elpsed2 + g_end:pct_elpsed2 

Comparing M5.2 and M5.3, we see that including separate main 

effects for gaming at the start and gaming at the end leads to 

better models rather than combining the information into a single 

indicator of whether there were any self-regulation failures at 

either the start of the end of the session. This particular result is 

worth further investigation to understand how and why self-

regulation at the start of a session is differently indicative of 

student motivation levels compared to gaming at the end of the 

session. 

The results in Table 3 indicate the best fit model is M5.5, the 

model with start/end gaming information and interactions with 

linear and quadratic terms. This model is significantly different 

from the baseline quadratic model (Chisq=49.42, p<0.001) and 

establishes the informativeness of gaming in the start or end of a 

session on student’s motivation levels through the time that 

students are working. Details about the model are given in table 4. 
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Table 3. Comparing Gaming Predictions using Start/End 

Gaming  

Model AIC BIC LogLik 

M5.1 434441 434503 -217295 

M5.2 422316 422403 -211151 

M5.3 427322 427397 -213655 

M5.4 419913 420045 -209958 

M5.5 418266 418402 -209122 

 

The variance accounted for by section and student level random 

effects are reduced in comparison to the baseline quadratic model 

reported in Section 4. The variance attributable to student factors 

was found to be 0.0789, which translates to an average gaming 

level of 0.64% to 1.91% for 95% of students. The variance 

attributable to section level factors was found to be 0.7527, which 

translates to an average gaming frequency of 0.20% to. 5.79% for 

95% of sections. This implies that a significant fraction of 

observations of gaming that were previously explained by section-

level factors appears to now be explained by motivational factors 

indicated by gaming at the start or end of a session. 

 

Table 4: Coefficients for start/end gaming with quadratic 

interaction terms 

Term ß 

Intercept -4.489 

Percent time elapsed 1.129 

(Percent time elapsed) 2 -1.251 

Gamed at start 0.301 

(Gamed at start) * Percent time elapsed) -1.480 

(Gamed at start) * Percent time elapsed)2 1.170 

Gamed at end 0.356 

(Gamed at end) * Percent time elapsed) -0.490 

(Gamed at end) * Percent time elapsed)2 0.900 

 

Table 5 contains the predicted gaming attributable to the main 

effect terms in model M5.5. The first column describes average 

predicted gaming at the start of work. The third column describe 

average predicted gaming at the end of work. Because the model 

includes quadratic terms, the second column is included to 

describe the optimum (minimum or maximum) probability of 

gaming throughout the session. The fourth column describes the 

odds ratio the chance of gaming at the start relative to the 

optimum point. The fifth column describes the odds ratio of the 

chance of gaming at the end compared to gaming at the optimum 

point. The complexity of the model can make it challenging to 

interpret, however there are some important trends indicated by 

the model. If gaming is observed only in the start of a session, 

gaming is most likely to occur similarly near the start and will 

reduce over the course of the session as evidenced by the odds of 

gaming being greatest at the start relative to the end. Likewise, 

observing gaming only at the end of the session implies that 

students tend to be well regulated near the beginning of the 

session and will appear to fatigue over the session until near the 

end where the odds fall slightly. When students are not observed 

gaming at the start or end, there is a corresponding low probability 

of observing gaming near the start and end. However, over the 

course of the session, the model predicts that these students 

become more likely to have slightly reduced motivation until the 

latter half of the session where attention on the time pressure of 

the end of class might increase motivation through the end of 

class. In the limited sessions where students are observed gaming 

at the start and end, the model predicts a much greater propensity 

to game throughout, with a 53% chance in the start and a 5% 

chance near the end. 

 

Table 5: P(Gaming) Main effect predictions given start/end 

gaming observations 

Context Game 

(t=0) 

Game 

(t=opt) 

Game 

(t=100) 

Start 

Odds 

End 

Odds 

No Gaming 

start or end 

0.35% 1.43% 0.21% 0.24 0.15 

Start 

Gaming 

2.14% 2.14% 0.66% 1 0.31 

End 

Gaming 

0.18% 2.10% 1.71% 0.086 0.81 

Start + End 

Gaming 

53.1% 1.72% 5.1% 30.9 2.98 

 

Taken together, these results support the conclusion that gaming 

at the start and end of work are indicative of session-level 

motivational factors influencing student behavior. It also provides 

initial evidence for separable constructs indicated by gaming at 

the start versus at the end. Each of these constructs appears to 

have different degrees of impact on underlying student motivation 

factors and the resulting decision processes that lead to observable 

behaviors. 

6. Discussion 
We have treated gaming the system behaviors as indicators of 

student’s self-regulation. Task switching and ego-depletion 

theories of self-regulation predict a temporal pattern to student’s 

abilities to self-regulate over the course of a class period. 

Predictive model comparisons are supportive of the hypothesis 

that both task switching and ego-depletion are evident in the 

patterns of student behaviors over each class session. Further  

analysis indicates that observations of self-regulation behaviors in 

the start and end of class might be indicative of both temporally 

immediate degrees of cognitive engagement as well as more 

session or day-level influences on motivation.  

Open questions remain about how student models could 

operationalize task switching or ego-depletion. The work 

presented, uses information about the full student session to 

represent time, though such information is not available to real-

time models. This raises the question of how should student’s 

prior behaviors inform a predictive models of student ability to 

task switch or ego deplete? To what degree do students display 

consistency in their ability to task switch quickly or manage ego-

depletion more effectively across sessions? Over the course of 

months or years? To what degree are these capacities independent 

or can correlations be attributable to other latent motivational 

causes?  

We believe these findings highlight the importance of leveraging 

student models that incorporate temporal variables in the design 
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of learning activities. Problem selection algorithms may want to 

be biased for lower challenge or greater interest to overcome 

negative effects of task switching. Similarly, activities may want 

to incorporate changes in the rhythm of the activity in order to 

periodically re-engage student attention as it wains over time. This 

work exposes an unexplored design space for how educational 

activities could incorporate temporal effects of student motivation 

to better enable student learning. 

In this work, we introduce the importance of considering temporal 

factors in addition to content-related cognitive factors to more 

effectively support students’ motivational trajectories within a 

work session. These findings extend the rich body of work on 

modeling student motivational and cognitive processes with self-

regulated learning. Students are not machines, and they do not 

always jump immediately into tasks full throttle or have the 

endurance to work as long as they are asked. Hopefully, a future 

that recognizes these dynamics can take intelligent tutoring 

systems one step closer to emulating the capabilities of effective 

teachers. 
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ABSTRACT
Analyzing students’ activities in their learning process is an
issue that has received significant attention in the educa-
tional data mining research field. Many approaches have
been proposed, including the popular sequential pattern min-
ing. However, the vast majority of the works do not focus
on the time of occurrence of the events within the activities.
This paper relies on the hypothesis that we can get a better
understanding of students’ activities, as well as design more
accurate models, if time is considered. With this in mind,
we propose to study time-interval patterns.
To highlight the benefits of managing time, we analyze the
data collected about 113 first-year university students in-
teracting with their LMS. Experiments reveal that frequent
time-interval patterns are actually identified, which means
that some students’ activities are regulated not only by the
order of learning resources but also by time. In addition,
the experiments emphasize that the sets of intervals highly
influence the patterns mined and that the set of intervals
that represents the human natural time (minute, hour, day,
etc.) seems to be the most appropriate one to represent time
gap between resources.
Finally, we show that time-interval pattern mining brings
additional information compared to sequential pattern min-
ing. Indeed, not only the view of students’ possible future
activities is less uncertain (in terms of learning resources and
their temporal gap) but also, as soon as two students dif-
fer in their time-intervals, this difference indicates that their
following activities are likely to diverge.

Keywords
Students behavioral patterns, time-interval pattern mining,
interval granularities, sequential pattern mining.

1. INTRODUCTION
The wealth of data that can be collected from a Learning
Management System (LMS), mainly the logs of students’ in-
teractions with learning resources, provide opportunities to

get a more comprehensive understanding of students learn-
ing process: point out engaged or at-risk students, identify
the most commonly studied or the most difficult resources,
highlight recurrent students’ activities, etc. In addition to
this thorough understanding, inferences or decisions can be
drawn: estimate students outcome, predict students future
behavior (including dropout), personalize learning by pro-
viding students with information or recommendations, etc.
To carry out such understanding, inference or decision, data
mining methods have been applied. Pattern mining, that
discovers frequent patterns of events in data, is one of these
methods and is also used in a large number of application
fields. Sequential Pattern Mining (SPM) consists of dis-
covering patterns when data is sequential in nature. These
patterns, named sequential patterns, are frequent ordered
sequences of events.
In the educational field, a sequential pattern often represents
a recurrent sequence of learning resources, that we call an
activity [30, 5].

The time of occurrence of events is often part of the data
to be mined. However, in most of the cases, the patterns
mined do not contain temporal information. Nevertheless,
the literature has introduced different ways of including such
information in patterns. We can, for example, cite tempo-
ral patterns, made of events that are associated with their
time of occurrence [36], their duration [8], or the time gap
between the events. In [9], gaps between events are grouped
into intervals, resulting in time-interval sequential patterns.
Since a time-interval pattern conveys more information than
its corresponding sequential pattern, they are still the focus
of research works [33]. In the rest of the paper, time-interval
patterns will be referred to as ti-patterns and sequential pat-
terns to as s-patterns.

We think that ti-patterns are adequate to represent stu-
dents’ activities. Indeed, it is rare that two students per-
form exactly the same activities, in both learning resources
and time, even though they share underlying sequential ac-
tivities. To the best of our knowledge, no work in the field
of educational data mining has focused on the mining of ti-
patterns.
In this work, we thus rely on the hypothesis that mining
ti-patterns will contribute to a better view and understand-
ing of students’ learning activities. These patterns do not
only indicate in which order students interact with learning
resources, but provide also information about the temporal
relationship between these resources. For example, let us
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Time-Interval Pattern Mining to Model Students Activity?" In:
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consider that students tend to interact sequentially with two
resources, each of them being lecture slides. The sequence
of both resources represents a sequential activity. Suppose
that mining ti-patterns highlights that the time gap between
both resources tends to be less than 1 minute for some stu-
dents and between 2 and 4 hours for others. We can thus
deduce beyond this sequential activity that there are two
typical behaviors.
To support our hypothesis, we will conduct a study to eval-
uate if ti-patterns can be actually identified from students’
activity data and evaluate to what extent ti-patterns provide
additional information about students’ activities.

In the following sections, we will first present an overview
of related works on sequential and temporal pattern mining
(Section 2). We then present the methodology we adopt to
support the hypothesis that we draw (Section 3). Section
4 details the experiments we conduct on a real dataset and
presents some ti-patterns. The last sections discuss the re-
sults (Section 5), then conclude the work and present our
expected future work (Section 6).

2. LITERATURE REVIEW
2.1 Sequential Pattern Mining (SPM)
Sequential Pattern Mining is a popular task in Data Mining,
introduced by Agrawal and Srikant in [1]. SPM aims to dis-
cover frequent sequential patterns in sequential databases.
A sequential database D is a set of tuples D = {(sidi, di)},
where sidi is the unique identifier of a sequence, and di an
input sequence. A sequence is an ordered list of events:
s = 〈E1E2 . . . Ex〉, with Ei ∈ E the set of events. To under-
stand what a frequent sequential pattern is, let us first define
what a sub-sequence is. α = 〈E1 . . . En〉 is a sub-sequence
of β = 〈E′1 . . . E′m〉 if:

∃[1 ≤ j1 ≤ . . . ≤ jn ≤ m]|{E1 = E′j1 , . . . , En = E′jn}.

We also say that β is a super-sequence of α, or that it con-
tains α. Let us now define what the support of a sequence
is. The support of α, noted supp(α), is the number of se-
quences in the sequential database D that contain α. Based
on both definitions, we can now define that a sub-sequence
α is a frequent sequential pattern, if supp(α) > δ, for a de-
fined minimum support threshold δ. We define SP as the
set of frequent sequential patterns.

Many SPM algorithms have been proposed in the litera-
ture. The most commonly cited ones are GSP [32], PrefixS-
pan [26], SPADE [37]. All these algorithms use the ”apri-
ori property”: ”If a sequence s is not frequent, then non of
the super-sequences of s is frequent.”. Thus, when one pat-
tern is infrequent, it is not extended. Algorithms can be
divided into two main approaches. Apriori-like algorithms
(also called breadth-first search algorithms), such as Gener-
alized Sequential Pattern Mining (GSP) algorithm [32], are
the first algorithms that have been proposed. However, these
algorithms suffer from scalability problems, mainly due to
memory requirements. Depth-first search algorithms, which
include pattern-growth algorithms, do not suffer from mem-
ory complexity, which explains their popularity.
For a couple of years, the most common SPM algorithm is
the Prefix-Projected Sequential Pattern Growth (PrefixSpan)
algorithm [26], which is a pattern-growth algorithm, that

relies on projected databases. Projected databases gener-
ally reduce the research space as the size of the projected
databases decreases at each iteration. However, the main
cost is linked to the generation of these projected databases.
The pseudo-code of PrefixSpan is presented in Algorithm 1.

Algorithm 1 PrefixSpan (α,l,D)

1: Inputs:
2: α: a sequential pattern and l its length.
3: D: a sequential database, or a projected database.
4: Outputs:
5: SP : the set of all frequent sequential patterns.
6: Method:
7: Scan S to find all frequent items b.
8: for all b do
9: add α′ = 〈αb〉 to SP as a new sequential pattern.

10: end for
11: for all α′ do
12: create the α′-projected database D|′α
13: call PrefixSpan(α′,l + 1,D|α′)
14: end for

In the works mentioned below, both the database and the
patterns are sequential. However, in some cases, the database
can be temporal, i.e. contain information about the time of
occurrence of the events. In these cases a sequence is de-
fined as: s = 〈(t1, E1), (t2, E2), . . . , (tn, En)〉. where (ti, Ei)
represents an event Ei and its time of occurrence ti.

When sequential patterns are mined from these databases,
time can be either used as an information or order between
events, such as in SPADE [37]. The time of appearance of
events can also be used as a constraint. For example, in [18]
the authors consider that when two consecutive items in a
sequence are separated by a time gap bigger than a prede-
fined threshold, they are temporally too distant to represent
an association that makes sense. In the same context, [31]
discards uninteresting patterns by introducing an interval
constraint between items.

2.2 Sequential Patterns Mining in EDM
Sequential Pattern Mining has been extensively used in Ed-
ucational Data Mining. They are mainly used to identify
frequent patterns of students’ activities [16, 28], including
those that maximize the student learning performance [10].
In [21] SPM is used to study the differences in students’ pro-
ductive and unproductive learning behaviors and thus iden-
tify high versus low performing students. A similar objective
has been studied on group work systems to understand the
success factors in groups behavior [27, 25].
SPM is also used to detect learning problems early, such as
in [20] where frequent sequential patterns and flag interac-
tion sequences that are indicative of problems are mined.

One step further, SPM can act as a first step in decision
making. In [7], the prerequisite structure of skills is find
out, by identifying relations between variables from data.
The algorithms developed in [28, 34, 11] provide students
with personalized recommendations of learning resources ac-
cording to their current activity or their learning style.
A complete view of various approaches used in educational
data mining is presented in [2].
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2.3 Temporal Pattern Mining
Temporal information appears to be fundamental in many
contexts, hence the number of works interested in the min-
ing of patterns that contain temporal information. Here
again, time information can be used in several ways and for
different goals: gaps, duration, intervals, etc.

Time information is often used as a gap between events of
a pattern. For example in [36], the author considers that
each occurrence of a sequential pattern may have different,
but close, temporal elements. So, they propose to associate
each pair of events of a pattern with a minimal, a mean
and a maximal gap values between these events. The re-
sulting model is made of sequential patterns enriched with
temporal information, called delta patterns. Similarly, [15]
proposes to add temporal information to each pair of events
in a sequential pattern. This information, referred to as
an annotation, represents a typical gap value between each
pair of events of a pattern. In this work, the acceptance of
the variation around this typical gap value is automatically
evaluated. At the opposite of the previous works, [35] pre-
defines a maximal gap value between events of a pattern,
which results in temporal patterns called chronicles. [22]
introduces an even more constraining frame, the exact gap
interval value is imposed. This approach results in a de-
crease in the support of each pattern. Thus, the number of
extracted patterns decreases.
In addition to the gap value, [17] exploits the duration of
events. Each element of a pattern is composed of the event,
associated with its begin and end timestamps. They propose
an Apriori-like algorithm, that uses a hypercube representa-
tion of temporal sequences.
More recently, [13] introduces an Apriori-like temporal pat-
tern mining algorithm on multi-modal data streams. At
the opposite of the previous works, they do not only use the
time gap between events (that represents the duration of the
event), but also use the exact starting time of each event.

In line with the works presented above, [6] also manages gap
values between events, that are grouped into intervals. At
the opposite of other works, the intervals of gap values are
predefined, and form ”time-interval sequential patterns”. A
time-interval sequence is defined as:

α = 〈E1τ1E2τ2 . . . τl−1El〉

where Ei ∈ E is the set of events for 1 ≤ i ≤ l and
τi ∈ TI the set of time-intervals. The sequence α is a time-
interval pattern if supp(α) ≥ δ. We note TP the set of
frequent time-interval patterns of a database D. In their
article, the authors propose two algorithms called I-Apriori
and I-prefixSpan, and results show that I-PrefixSpan out-
performs I-Apriori both in computing time and scalability.
The pseudo-code of the I-PrefixSpan algorithm is presented
in Section 2.

A few years later, [19] pointed out that most algorithms of
the literature use time information only as a time constraint
or to represent the time-interval between successive items
[9]. The novelty of this work is that not only the delay
between successive items is taken into account, but also be-
tween distant items. The ”multi time-interval (MI) sequen-
tial pattern” models the time-intervals between all pairs of
items within a pattern. Two algorithms have been proposed,

Algorithm 2 I-PrefixSpan (α,l,D)

1: Inputs:
2: α = 〈E1τ1 . . . τl−1El〉: a temporal pattern.
3: l: the length of α.
4: D: a sequential database, or a projected database.
5: Outputs:
6: TP : the set of all frequent temporal patterns.
7: Method:
8: Scan D to find each frequent pair (τl, El+1), where τl ∈
TI is the gap interval between items El−1 and El+1.

9: for all (τl, El+1) do
10: add α′ = 〈E1 . . . τl−1ElτlEl+1〉 to TP , as a new tem-

poral pattern.
11: end for
12: for all α′ do
13: create the α′-projected database D|′α
14: call I-PrefixSpan(α′,l + 1,D|α′)
15: end for

MI-Apriori and MI-prefixSpan, that are highly similar to the
I-PrefixSPan and I-Apriori algorithms.

Discovering time-interval patterns has attracted consider-
able efforts, due to its widespread applications. However,
several challenges remain, such as the definition of the ad-
equate set of intervals (whether manual or automatic), in-
cluding the problem of the granularity of the intervals.

2.4 Temporal Granularities
As soon as intervals are introduced, an issue arises: how to
choose these intervals?
[3] proposes to manage different temporal granularities. An
algorithm composed of Timed Automata with Granulari-
ties (TAGs), associated with heuristics is proposed. TAGs
test whether a candidate time pattern appears frequently in
a time sequence. The heuristic allows to reduce the num-
ber of candidates. [29] focuses on mining periodic patterns,
where interesting periods cannot be defined in advance. Two
temporal granules are proposed: a fine-grained granule for
hourly periods and a coarse-grained granule for daily peri-
ods. The time distribution of different time granularities is
then estimated by using a combination of Gaussian distri-
bution.

2.5 Temporal Data Mining in EDM
To the best of our knowledge, little use has been made of
Temporal Pattern Mining in the EDM field. [23] takes time
into account by evaluating the rate at which students change
the learning resources of interest. They progressively im-
prove ”when” resources have to be recommended to the stu-
dent. In a learning context, where students can choose both
which and when courses and exams to take, the research
work presented in [4] uses time information that corresponds
either to the ”semester in which the exam was taken” or to
the ”delay with which it was taken”. Using this time infor-
mation, they then study the course and exam schedule that
the students take and understand better students’ behav-
iors. Using clustering and comparison, they are then able
to suggest improvements to the scheduling of courses and
exams of students.
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3. DEFINITIONS AND METHODOLOGY
The previous literature review highlights that time-intervals
are mainly adopted to model temporal patterns. The algo-
rithm proposed in [6], I-PrefixSpan, has the main advantage
to consider intervals as a core element of the patterns and
the mining process. Intervals are considered as a constraint
about the patterns, not as supplementary information about
the patterns. It is the main reason why we choose to adopt
this algorithm in our work.
We start by introducing definitions that will be used in the
following methodology and in the experiments.

3.1 Definitions
Let p = 〈E1τ1E2 . . . τn−1En〉 and p′ = 〈E′1τ ′1E′2 . . . τ ′m−1E

′
m〉

be two ti-patterns and s = 〈E′′1E′′2 . . . E′′l 〉 be a s-pattern,
with n (resp. m and l), the length of the pattern p (resp.
p′ and s). Given these patterns, we put the following defini-
tions. Recall that TP is the set of frequent ti-patterns and
SP the set of s-patterns.

Definition 3.1. ti-form of an s-pattern
p is a ti-form of s, denoted by isform(s, p) if and only if:
(n = m) ∧ (Ei = E′i), ∀i ∈ [1 : n].
ti-form(s) is the set of ti-forms, in TP , of s.

Definition 3.2. s-form of a ti-pattern
s is a s-form of p if and only if: (n = s) ∧ (Ei = E′i),
∀i ∈ [1 : n]. s-form(p) is the (unique) frequent s-form, in
SP , of p.
s-form(P) is the set of frequent s-forms (in SP ) of the set
of ti-patterns p ∈ P .

Definition 3.3. s-equivalence of ti-patterns
p and p′ are s-equivalent, denoted s-eq(p, p′) if and only if:
(n = m) ∧ (Ei = E′i), ∀i ∈ [1 : n].
In other words, s-form(p)=s-form(p′).

Definition 3.4. Prefix of a ti-pattern
p′ is a prefix of p if and only if:
(m < n) ∧ (Ei = E′i) ∧ (τi = τ ′i),∀i ∈ [1 : m].

Definition 3.5. Extension of a pattern
p′ is an extension of p if p is a prefix of p′. We note ext(p)
the set of extensions of p that belong to TP .
A similar definition can be put for s-patterns.

Definition 3.6. Extended part of a pattern
Let p′ be an extension of p. The extended part of p, with
respect to p′, is the pattern p′′, where concat(p, p′′) = p′.
Thus, p′′ = 〈Enτ ′nE′n+1 . . . τ

′
m−1E

′
m〉.

We note extPart(p) the set of extended parts of p, i.e. the
set of patterns that, when concatenated with p, result in a
pattern that belongs to TP .
A similar definition can be given for s-patterns.
Example: Let p = 〈e1I1e0〉, and p′ = 〈e1I1e0I2e1〉 be two

ti-patterns. p′′ = 〈e0I2e1〉 is an extended part of p.

Definition 3.7. Pseudo-equivalence of ti-patterns
p and p′ are said to be pseudo-equivalent, if and only if:
s - eq(p, p′) ∧ (τn 6= τ ′n) ∧ (τi = τ ′i), ∀i ∈ [1 : n− 1]., i.e. they
differ only in their last time-interval.

3.2 Methodology
To support our hypothesis and identify the actual value of a
ti-pattern model, we define a methodology. More precisely,
this methodology aims at identifying if there actually are
temporal regularities between students’ activities, if man-
aging temporal activities allows to have a better view of
students’ future activities, and concretely what type of ac-
tivities are mined. Recall that mining ti-patterns is quite
new in educational data mining.

We intend to mine ti-patterns in a temporal database D,
which is a database made up of temporal sequences. A
temporal sequence is an ordered list of events (concretely
a list of resources students interacted with) and their asso-
ciated timestamp. Each temporal sequence represents one
student’s temporal activities and each student is represented
by a unique (and long) sequence.
Our methodology relies on four steps, described hereafter.

3.2.1 Determining the set of time-intervals
Recall that although timestamps are discrete values, their
precision is so high that relying on time-point (or gap) pat-
terns will probably only lead to infrequent patterns. For ex-
ample, two sequences that only differ by one second: 〈(0, E1)
(3, E2)〉 and 〈(0, E1)(4, E2)〉 will correspond to two different
patterns. Grouping gaps to form ti-patterns, will increase
the support of patterns. In addition, if the intervals are ap-
propriate, the loss of precision about temporal activities will
be limited.
So, before assessing the relevance of mining t i-patterns, we
have to choose the adequate set of time-intervals. Indeed,
this set influences the information conveyed.

Let TI = {I0, I1, ...It} be a set of time-intervals, where
Ij = [gapminj ; gapmaxj [ is an interval that contains all gap
values between gapminj and gapmaxj . Notice that the set
of intervals should represent a continuum of gap values from
gapmin0 to gapmaxt.

We propose to evaluate the quality of a set of intervals TI
with 3 criteria:
The fitting ratio. It is the ratio between the number of
non-empty intervals and the total number of intervals. A
non-empty interval is an interval that is part of frequent
patterns. The higher the ratio, the better the set of inter-
vals, as the number of ”useless” intervals is low.
The number of intervals. On the one hand, the more
intervals, the higher the potential of the model. Notice that
when TI = {I0} = [0 : +∞[, it comes down to PrefixSpan.
On the other hand, using too many intervals increases the
complexity of the model. In addition, as there are many
intervals, the ti-patterns discovered will probably be infre-
quent. Thus, a good set is a set that has an in-between
number of patterns.
The horizon. It is represented by TI, the upper bound of
the last interval (the maximal time value of the set of inter-
vals). The larger the horizon, the more complete the model,
as it is able to represent long-term recurrences.

From our point of view, the best set of intervals is the one
that maximizes the fitting ratio while having a large horizon,
with a limited number of intervals.
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3.2.2 Comparing sets of s-patterns and ti-patterns
After having fixed the set of intervals, the set TP of ti-
patterns can be mined. In this second step, we aim at com-
paring the set TP with the set SP set of s-patterns, and
propose some measures to perform this comparison.

First of all, we propose to study the number of patterns, and
their average length, to get a coarse-grained view of the set
of patterns. Of course, this measure cannot be used alone,
as the goal is definitely not to mine the highest number of
patterns.
Second, we study the correspondence between both sets of
patterns. Let us start by noticing that the number of ti-
patterns cannot be deduced (not even approximately) from
the number of s-patterns. A brief explanation follows.

Let s be a frequent s-pattern and ti - cand(s) = {ts1, ts2, . . .
, tsk} the set of the candidate-ti-forms of s. Note that tsi
may be infrequent. Two cases arise:
– |ti - cand(s)| = 1. This case occurs when all the occur-
rences of s have the same candidate ti-form ts. Here, supp(ts) =
supp(s), thus ts is also frequent. The corresponding set of
s-patterns is noted S1.
– |ti - cand(s)| > 1. This case occurs when some occur-
rences of s have different candidate ti-forms. As a con-
sequence, ∀i, (supp(tsi) < supp(s))∧ (

∑k
i=1 supp(tsi) =

supp(s)). Here, come three possibilities:
- @ tsi, supp(tsi) > δ: there exists no frequent ti-form of s,
thus the number of frequent patterns decreases. The asso-
ciated set of patterns is noted S0.
-∃! tsi, supp(tsi) > δ, thus: ∀j|{(1 ≤ j ≤ |ti - seq(s)|)∧ (j 6=
i)}, supp(tsj) < δ. In this case, there exists a unique fre-
quent ti-form of s, the number of patterns remains stable.
- ∃(i, j), (i 6= j) ∧ (supp(tsi) > δ) ∧ (supp(tsj) > δ). In this
case, there exist several frequent ti-forms of s, the number of
patterns increases. The set of patterns associated with both
last cases is noted S1+. Based on this, we first introduce the
pattern loss measure, that represents the ratio of s-patterns
that have no ti-form in TP (s ∈ S0).

pLoss(SP ) =

|SP | − |
⋃

p∈TP
s-form(p)|

|SP | (1)

To complete the pattern loss measure, we define the sup-
port loss measure, which applies for any s-pattern that has
at least one frequent ti-pattern (s ∈ S1+). The support loss
measure evaluates the proportion of ”lost” occurrences of s,
i.e. that have no correspondence in TP .
Let s be a s-pattern and P = {p1, p2, · · · , pk} be a set of
ti-patterns, where isform(s, pi),∀pi ∈ P . The support loss
of s is defined in equation (2).

sLoss(s) =
supp(s)− supp∗(P )

supp(s)
(2)

where supp∗(·) is the support of a set of patterns, defined in
equation (3).

supp∗(P ) = |
⋃
p∈P

Seq id(p)| ≤
∑
p∈P

|supp(p)| (3)

where Seq id(p) is the set of sequence ids in D, where p is
a subsequence. We can see that the support of P is not

defined as the sum of the supports of the patterns in P . To
explain this, let us consider P = {p1, p2}, with p1 and p2
two s-equivalent ti-patterns.

By definition, the s-form of p1 (which is the same as the
s-form of p2) occurs at most once in each sequence of D.
Similarly, p1 and p2 occur at most once in each sequence,
but both can occur in the same sequence. As a consequence,
the support of P may be lower than the sum of the supports
of p1 and p2.

The support loss defined above applies for a s-pattern. If
the support loss has to be evaluated on a set of patterns, the
average support loss and the associated standard deviation
can be used.

3.2.3 Evaluating the impact of time on the set of pos-
sible future activities of students

In the following third and fourth steps, we aim to evaluate
the benefit brought by time in patterns (through ti-patterns)
about the possible future activities of students. To perform
this evaluation, we adopt a two-stage approach.
Let p be a ti-pattern and extPart(p) the set of extended
parts of p (see Def. 3.6). From the educational point of
view, the set of extended parts of a ti-pattern p represents
the ti-activities that students frequently do after p.

In this third step, we aim at discovering if managing time
allows to reduce the uncertainty about the future activities
of students. We compare the set of extended parts of s-
patterns and the set of extended parts of their ti-forms.
To conduct this comparison, we propose to use the well-
known entropy measure. The entropy of a pattern p repre-
sents the ”degree of disorder”of the set of its extended parts.
From the educational view, given an activity performed by
students, the entropy measures the uncertainty of its follow-
ing activities. The higher the entropy, the more uncertain
the following activities. Relying on the entropy is not new
in the educational field [38]. Equation (4) presents the way
the entropy of a ti-pattern p is evaluated.

Ent(p) = −
m∑
j=1

prob(pj)log2(prob(pj)), (4)

with prob(pj) =
supp(pj)∑m

k=1
supp(pk)

and pj is one of the m ex-

tended parts of p. The same equation stands for s-patterns.
Given a s-pattern s, we thus propose to evaluate the ben-
efit of considering time-intervals in this pattern, by evalu-
ating the entropy loss (see Equation 5). Entropy loss of
an s-pattern s considers the entropy of s (Ent(s)) and the
maximum entropy of its ti-form.

eLoss(s) =
Ent(s)−maxp∈ti-form(s){Ent(p)}

Ent(s)
(5)

Several cases may arise. First, eLoss = 1. This represents
the best case: each of the ti-forms of s has exactly one ex-
tension. This means that when managing time in patterns,
the future activities are totally certain.
Second, eLoss = 0.0. This case represents one of the worst
cases: at least one ti-form of s has the same entropy as s.
Here, we cannot say that managing time makes the possible
future activity less uncertain.
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Last, eLoss < 0.0. This case represents the other worst case:
all the ti-form of s has an entropy higher than s. In this case,
considering time decreases the quality of the model. Notice
here that the term Loss is a misnomer as it may theoreti-
cally be < 0.0. However, this term has been chosen to be
coherent with previous measures.
As a consequence, the higher the entropy loss ratio the more
managing time in patterns contributes to better estimate
students’ future activities.

3.2.4 Evaluating the impact of a specific time-interval
on students’ future activities

This fourth and last step is dedicated to the evaluation of
the impact of a specific time-interval of a ti-pattern on its
extended parts. More precisely, we are interested in the im-
pact of the last time-interval of a pattern. We focus on the
following situation: given two pseudo-equivalent ti-patterns
(cf., 3.7), to what extent do their set of extended parts dif-
fer?
This evaluation allows to study to what extent two students,
who perform the same temporal activity, except about the
time of their last activity, do have identical future activities.
In other words, is a temporal difference between two activi-
ties an indicator of activities that are beginning to diverge?

To perform this evaluation, we first evaluate the proportion
of identical ti-patterns between pairs of sets of extended
parts, as defined in Equation (6).

idExt(PQ) =

∑
(P,Q)∈PQ

|P∩Q|
|P∪Q|

|PQ| (6)

with PQ = {(extPart(p), extPart(q))}|psd-eq(p, q) the pairs
of sets of extended parts of all pseudo-equivalent pairs of ti-
patterns. The higher this proportion, the lower the impact
of the last time-interval.

Second, we rely on the proportion of s-equivalent extended
parts. This measure also evaluates the impact of the last
time-interval on the set of extended parts, but by considering
only their sequential nature. The proportion of s-equivalent
extended parts is defined in Equation (7).

sidExt(PQ) =

∑
(P,Q)∈PQ

| s-form(P ) ∩ s-form(Q)|
| s-form(P ) ∪ s-form(Q)|

| s-form(P,Q)| (7)

This proportion represents if students tend to share their fol-
lowing sequential activities, even though they differ in their
last time-interval. Here also, the higher this proportion, the
lower the impact of the time-interval.

Notice that for reasons of readability, s-form(·) is used here
to represent the sequential form of a set of ti-patterns and
a set of pairs of ti-patterns.

4. EXPERIMENTS
We apply the methodology described in the previous section
to evaluate to what extent mining ti-patterns increases the
knowledge about students’ activities. We first present the
dataset on which the experiments are conducted, then use
the 4 steps of the methodology and draw conclusions for each
of them. Finally, some mined ti-patterns are displayed.

4.1 Dataset overview and implementation
We collected data from 113 first-year university students,
enrolled in a Mathematics and Computer Science Bachelor
program and who interact with learning resources on their
LMS. We focus on one specific course: algorithms and pro-
gramming from the Fall semester in 2018. This course is
a core course of this program. Diverse online materials are
available: slides, exercises for lab sessions, tests, etc.
Most of the students own a personal computer, so they can
access the course both during teaching hours (lectures or lab
sessions) and after official teaching hours.
The set of events E is made of 35 learning resources, that
students can consult. About 50% of these resources are stud-
ied during the teaching hours (lectures or lab). The dataset
is made up of about 6,300 actions and each student sees on
average 56 resources. The dataset spans almost one year, as
it includes actions performed not only during the teaching
period but also during revisions for the final examination
and actions conducted for the retake examination (for the
subset of students who failed the final examination).

In the experiments conducted, we use a relative minimum
support δ = 0.1. Two algorithms are studied: PrefixSpan,
to mine sequential patterns and I-PrefixSpan, to mine ti-
patterns. The source code used for I-PrefixSpan algorithm
is the one available in [12] (we have slightly adapted the
code to our needs). The source code used for the classical
PrefixSpan algorithm is the one proposed by Gao [14].

4.2 Determining the set of time-intervals
We propose to study two types of intervals: Linear intervals,
where each interval has an equal duration, and granular in-
tervals, where the duration of intervals grows with the gap
value.

Table 1 presents various sets of intervals studied. For each
of them, the number of intervals, the maximal horizon, the
fitting of the set, the frequency of each frequent interval, as
well as the number of frequent patterns, are displayed. To
avoid an artificially high fitting value, we consider that an
interval is frequent if its frequency is no less than 10. The
frequency of an interval is evaluated as the number of times
the interval is used in the frequent patterns.

Before going into the details of the analysis of the set of
intervals, we would like to mention that the sets do not all
have the same number of intervals, so these values in Table
1 are not directly comparable. In addition, two contiguous
granular intervals represent a totally different duration (for
example up to 1 hour and up to 1 day), the frequencies are
therefore not comparable. Last, notice that the total number
of patterns in one set of intervals cannot be explained by
the number of patterns of another set. Let us for example
consider two sets of intervals and their associated number
of patterns. Suppose that the first interval has an average
duration twice longer than the second one. A pattern that
is frequent in the first set may correspond to either two
frequent patterns in the second set, or only one frequent
pattern, or no frequent pattern at all (see section 3.2.2).

Let us first consider the three sets of linear intervals. For
the two first sets (30 min and 1 hour), the fitting measure
is quite low: 8%, which means that the vast majority of in-
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Type Duration Number of intervals Horizon Fitting Used intervals #
& associated frequency patterns

Linear 30 min 25 12h. 8% I0 : 350, 000 ; I24 : 1, 770, 000 550, 000
Linear 1 hour 25 12h. 8% I0 : 549, 380 ; I24 : 1, 843, 660 356, 811

Linear 1 day 25 24d. 72%

I0 : 90, 976 ; I1 : 42 ; I2 : 25 ;
I3 : 54 ; I4 : 119 ; I5 : 36 ;
I6 : 239 ; I7 : 189 ; I8 : 17;
I11 : 14 ; I12 : 44 ; I13 : 80;
I14 : 17 ; I17 : 14 ; I18 : 13 ;
I20 : 36 ; I21 : 45 ; I24 : 33, 298

37, 764

Granular expon.
16

I0 = [0 sec. ; 10mn.[
8mt. 56%

I0 : 17, 739 ; I1 : 79 ; I8 : 82 ; I9 : 269 ;
I10 : 4, 278 ; I11 : 5, 126 ; I12 : 6, 403 ;

I13 : 3, 693 ; I14 : 1, 159
15, 754

Granular human
6

I0 = [0 sec. ; 1 mn.[
1y. 100%

I0(sec) : 7, 706 ; I1(min) : 10, 551 ;
I2(hour) : 1, 615 ; I3(day) : 30, 925;

I4(week) : 68, 614 ; I3(month) : 22, 479
51, 025

Table 1: Fitting, examples of intervals and number of patterns for several sets of intervals

tervals are not found in frequent patterns. For example, in
”30 min”, only the first interval (between 0 and 30 minutes)
and the last interval (more than 12 hours) are not empty.
We can conclude that both sets of intervals are not good
candidates. Caution must be exercised in interpreting this
result. It might mean that students do not regularly switch
from one resource to another, with a time gap between 30
minutes and 12 hours. It can also mean that the 30 min.
time-interval is not relevant. Despite the lack of relevance of
these intervals, the number of patterns discovered is impor-
tant. As only two interval patterns are used, we can consider
that I-PrefixSpan behaves here almost as PrefixSpan.
The fitting value of the ”1 day” set is quite larger: 72%,
which means that most of the 25 intervals are frequent.
However, the total number of frequent patterns in this set
is highly decreased, compared to the ”30 min” and ”1h” sets
(by about 10 times). In addition, many interval frequencies
are not so high, some of them being close to the minimal
threshold, except the first and last one. This tends to mean
that many intervals are not that representative of the data.
Moreover, although the number of intervals is quite large
(25), the maximal horizon represented by this set remains
limited (all together, except the last one, represent a horizon
of smaller than a month). Recall that the dataset spans al-
most one year. Obviously, the horizon can be extended, but
it will be at the cost of an even larger number of intervals,
as well as an increase in the space and computation time.
These results tend to suggest that the set of intervals should
contain small intervals for close events (such as suggested by
the frequency of I0 in the 30 min set), and larger intervals
for furthest gaps (such as suggested by the frequency of I24
in the 1 day set). Thus, a granular set of intervals should
better fit the dataset.

We propose to study now two sets of granular intervals. In
the first set, the duration of intervals grows exponentially:
the duration of an interval is twice larger than the duration
of the preceding interval. The fitting of this set is greater
than for the two first ones, but smaller than the third one.
Nevertheless, the horizon is larger than for all the previ-
ous ones (about 4 months), and the number of intervals is
decreased. The empty intervals (from I2 to I7) tend to rep-
resent a gap between 20 min and 10 hours 40 min.

The second set of granular intervals is referred to as ”hu-
man”, the intervals are designed to represent the human
natural time: minute, hour, day, week, etc. This set of
intervals has a maximal fitting (100%). At the opposite of
the ”1 day” intervals, that has the highest fitting value till
then, the frequency of each interval is quite large (greater
than 1,600) and the number of intervals is reduced (only 6
intervals). Besides, the total number of patterns is larger
than both the ”1 day” and the ”exponential” sets.

All these elements contribute to consider the ”human” set as
the best set of intervals. In this set, time is represented by
the {minute, hour, day, week, month, year} intervals. This
set has a maximal fitting (100%), covers a large horizon (till
a year, which corresponds to the span of the dataset), with a
limited number of intervals (6 intervals) and provides a quite
large number of frequent temporal patterns. Therefore, in
the following experiments, this set of intervals will be used.

Given these elements, we would like to highlight that this
set of intervals intrinsically represents the classical rhythm
of courses, for example one lecture (or one lab session) is
planned each week. The human set of intervals thus allows
to mine patterns that represent natural students temporal
activities: some students tend to work immediately following
a lab session (or a lecture) represented by I0 or I1; other
students wait for some hours in the same 24h, and others
work during the week, or even the week after (before the
next session) represented by I4. It is typically the type of
information that we expect to get when we aim at modeling
students’ activities.

4.3 Comparing s-patterns and ti-patterns
This second experiment aims at comparing sets of s-patterns
and ti-patterns. Table 2 presents both sets of patterns,
associated with measures introduced in the methodology.
Let us first focus on the number of frequent patterns (line
1). The total number of frequent ti-patterns is dramatically
smaller than the number of frequent s-patterns. The pattern
loss is larger than 0.99. This means that the great major-
ity of s-patterns has no frequent ti-forms, probably due to
the spread of occurrences of s-patterns over numerous ti-
patterns. These findings are in line with [22]. In addition,
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δ = 0.1(= 11) PrefixSpan I-PrefixSpan

Number of patterns |SP | = 12, 826, 760 |TP | = 51, 025 - pLoss(SP ) = 0.998
Average 8 3.8

Max. length 17 8

Example of pattern s, frequEnt(s) s = 〈e31, e29〉 ts1 = 〈e31I0e29〉, supp(ts1) = 1
∧{@p | (isform(s, p) ∧ frequEnt(p))} supp(s) = 26 ts2 = 〈e31 I1 e29〉, supp(ts2) = 10

ts3 = 〈e31 I2 e29〉, supp(ts3) = 6
ts4 = 〈e31 I3 e29〉, supp(ts4) = 3
ts5 = 〈e31 I4 e29〉, supp(ts5) = 4
ts6 = 〈e31 I5 e29〉, supp(ts6) = 7

Example of pattern s, frequEnt(s) s = 〈e22, e33〉 p1 = 〈e22I0e33〉, supp(p1) = 25
∧{∃(pi, pj)|(frequEnt(pi) ∧ frequEnt(pj))} supp(s) = 53 p2 = 〈e22I1e33〉, supp(p2) = 22

Support loss sLoss(SP 1+)= 0.33 ; std(sLoss(SP 1+))=0.10

Table 2: Comparison of sets of patterns mined with PrefixSpan and I-PrefixSpan

we can see in Line 2 that the average length of ti-patterns is
about twice smaller than the length of s-patterns, the same
for their maximal length. A first conclusion that can be
drawn here is that most of frequent sequential patterns have
no recurrences in their time-intervals. This means that stu-
dents tend to have numerous recurrent sequential activities,
and quite less recurrent time-interval activities. However,
even though the average length of patterns is divided by 2,
ti-patterns have a significant length, which means that they
do represent a meaningful students’ activities.
Moreover, a tens of thousands s-patterns (about 34,000)
have one or more frequent ti-forms (about 51,000). This
means that for these sequential activities, there are actu-
ally temporal regularities. These activities will be studied
in more detail in the following section.

Lines 4 and 5 in Table 2 illustrate some examples of s-
patterns and their candidate or frequent ti-forms. Line 4
presents one of the 99.8% s-patterns that has no ti-form
(thus, from SP 0). This pattern (s = 〈e31, e29〉) has 6 candi-
date ti-forms, but none of them is frequent. We can conclude
that no obvious time-interval regularity is observed for this
activity. Thus, this activity does not seem to be guided by
temporal constraints. We can also observe here that the sum
of the support of the ti-patterns is greater than the support
of their s-form s. This was mentioned in section 3.2.2.

In the remaining sequential patterns (SP 1+) made up of
about 34,000 s-patterns, 65% of the s-patterns have exactly
1 frequent ti-form and 91% have 1 or 2 frequent ti-forms.
The highest number of frequent ti-forms of an s-pattern is
9, which is quite high. Let us now consider line 5 in Table 2,
that presents a s-pattern that has several frequent ti-forms.
This s-pattern (s = 〈e22, e33〉) has a support equal to 53
and two frequent ti-forms. Such a pattern occurs with two
temporal recurrences, and most of its occurrences have a
time gap between 1 minute and 1 day. Such patterns are
highly interesting and will also be further studied.

Based on these findings, it is legitimate to ask whether a ti-
pattern-based model can replace a s-pattern-based model.
Line 1 gives first indications. Many sequential patterns ”dis-
appear” with such a model (more than 99% of sequential
patterns have no frequent ti-pattern). If the objective is to
replace traditional s-patterns by ti-patterns, a problem of
coverage of the model arises. However, if the goal is to iden-

tify which activities (sequential) have temporal regularities,
ti-patterns are of the highest interest.

Let us now focus on the support loss associated with the
complete set SP 1+ of s-patterns that have at least one fre-
quent ti-form. sLoss(SP 1+) = 0.33, with a standard de-
viation equal to 0.1. This means that on average 1/3 of
the occurrences of an s-pattern ”disappear”, i.e. they do
not belong to any frequent ti-form. We can conclude that
among patterns with identified temporal regularities, 33%
of the occurrences do not follow this regularity, which may
be high.

4.4 Evaluating the impact of time on the set of
possible future activities of students

Following our methodology, we evaluate now if ti-patterns
carry more information than s-patterns about future activ-
ities of students. As a preliminary remark, we would like
to mention that @s, eLoss(s) ≤ 0. We mentioned previously
that this case would occur rarely, in practice here it does
not occur.

In the set S1+, 71% of the patterns have at least one ex-
tension in SP (see Def. 3.5). Let us first consider the 66%
of these patterns that have a unique extension. By defini-
tion for these patterns, Ent(s) = 0 and Ent(p) ≥ 0, ∀p ∈
ti-form(s). The first Line of Table 3 is an example of such
a case. The s-pattern 〈e24 e27 e14〉 has only one extended
part, so its entropy equals zero. It has three ti-forms, but
only one has an extended part. So, all these ti-forms have
an entropy equals to zero.
In this case, even if the entropy loss is null, the information
about the future activities of students is increased, as only
one ti-pattern has a frequent extended part.
Let us now consider the 34% remaining patterns, which have
more than one extension in SP . The average entropy is 0.84
with a maximal entropy of 7.71. When focusing on the set of
their ti-forms, the average entropy is 0.35 and the maximal
entropy is 6.22. To make entropies as comparable as possi-
ble, the average entropy for s-patterns has been evaluated
only on the set of s-patterns that have at least one ti-form.
We can first notice that entropy of s-patterns is globally
higher than the one of ti-patterns (for both maximal and
average values). More precisely, the average entropy of s-
patterns is 2.4 times bigger than the one of ti-patterns. We
can thus draw a first global conclusion: managing time in
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s-pattern Examples of Ent(s) Examples of nbExt(p) Examples of max- mean-
extPart(s) p ∈ ti-form(s) extPart(p) Ent(p) Ent(p)

〈e24 e27 e14〉 〈e12〉 0.0
〈e24 I2 e27 I3 e14〉
〈e24 I3 e27 I3 e14〉

0
1 〈e14 I3 e12〉(∗)

0.0 0.0

〈e1 e10 e12〉
〈e{3,13}〉
〈e19 e{3,22}〉
〈e12 e{12,19}〉

5.49

〈e1 I5 e10 I1 e12〉
〈e1 I5 e10 I0 e12〉
〈e1 I5 e10 I2 e12〉
〈e1 I2 e10 I2 e12〉

0
1
13
24

〈e12 I4 e3〉
〈e12 I5 e{19,13,12}〉
〈e12 I5 e{19,13,15}〉

4.55 0.78

Table 3: Examples s-patterns with ti-forms, extended parts and entropy values. (∗) The corresponding exten-
sion pattern is p′′ = 〈e24 I3 e27 I3 e14 I3 e12〉.

patterns allows to decrease the uncertainty of students’ fu-
ture activities.
We will now compare the entropy of each s-pattern, with
the entropy of its ti-forms (through eLoss). In 68% of the
cases, the entropy loss between the s-patterns and their ti-
forms is higher than 0. This means that when considering a
temporal student activity, in 2 cases out of 3, the future ac-
tivity of this student is less uncertain than when managing
his/her sequential activity. These 68% are divided into 51%
with a loss equal to 1, which means that future activities
become certain. 17% of the cases have a loss between 0 and
1. The average entropy loss on all s-patterns is quite high:
eLoss = 0.4. Roughly speaking, the future activities of stu-
dents are on average 40% less uncertain when managing time
in patterns, which is highly promising.

Thanks to these experiments, we confirm that managing
time-interval patterns allows, in most cases, to have a better
view of the following activities of students. In addition, for
a significant number of activities, future activities are now
totally certain.

Let us now focus on an example presented in the second
Line of Table 3. The s-pattern s = 〈e1e10e12〉 has many
extensions in SP and many ti-forms, among which many
of them have extensions. Notice that although the entropy
loss is low (the maximal entropy of the ti-forms is 4.55), on
average it is significantly lower (0.78). In this specific case,
eLoss measure is not that representative of the difference
in entropy, the entropy decrease is probably higher than the
eLoss value.

4.5 Evaluating the impact of a specific time-
interval on students’ future activities

The experiments conducted here fall within the scope of the
last step of our methodology. They aim at evaluating to
what extent two students who perform a similar activity
(both in terms of resources and time-interval) and who only
differ in their last time-interval, have the same future activ-
ities. In the experiments conducted, we will only focus on
patterns made up of at least 3 events (and 2 time-intervals)
to ensure that the patterns can be considered as activities.

In the set PQ composed of |PQ| = 9, 510 of pseudo-equivalent
pairs of patterns (cf., Definition 3.7), 25% of the extended
parts of a pattern of any pair are also part of the extended
parts of the other pattern (sequentially and temporally iden-
tical). 11% additional pairs have sequentially identical ex-
tended parts. This highlights that even when two ti-patterns

differ in their last time-interval only, this small difference
leads to a significant difference in their sets of extended
parts. In terms of students’ activities, this means that when
two students make exactly the same activity, except on the
last time-interval, their following activities mainly differ: not
only in terms of temporal activities but also in terms of their
sequential activities. We can conclude that the last time-
interval highly influences students’ future activities and that
it may be viewed as an indicator of activities that are be-
ginning to diverge.

Experiments conducted in both previous sections confirm
that ti-patterns contribute to the increase of the information
about students’ future activities whereby the uncertainty of
this future is reduced. As a consequence, we can say that
time is an important information in students’ activities.

4.6 Interpretation of ti-patterns
In this section, we present examples of frequent ti-patterns,
in an understandable format to better analyze and under-
stand students’ activities.
The events ids in patterns are replaced by their type and
an id. Lecn will refer to the slides associated with the nth

lecture; Glosn will be the nth glossary resource; Stxn a syn-
tax resource; Sumn will be a summary resource ; Labn a
resource that contains exercises that are studied during lab
sessions (exercise sheets); FAn are facultative additional ex-
ercises; finally Ad is the advise resource. The time-intervals
are noted (Is, Imn, Ih, Id, Iw, Imt), which refer to seconds,
minutes, hours, days, weeks and months.
Given that the longer an activity, the more information it
contains, we will preferably focus on the longest ti-patterns.

Activities made up of temporally close events
Let us start by studying activities that contain only the ”sec-
onds” time-interval (i.e. events with a maximal gap of 1
minute). This will allow us to have a better view of the type
of activities that are performed on the spot. First, the cor-
responding activities tend to be made up of specific types
of events: they are a mix of glossary, syntax, advertisement
and lab resources. Second, the maximum length here is 7,
which means that there are actually long recurrent ”quick”
activities made by students. Third, when analyzing the ac-
tivities, we can remark that they all have a similar skeleton:
students generally start by looking at the following resources
(in any order): {Sum5, Stx3, Glos3}, then study one or more
Lab exercises and finally consult an advice page. Let us for
example present a ti-pattern of length 7:
〈Sum3 Is Stx3 Is Glos3 Is Lab1 Is Lab2 Is Lab3 Is Ad〉
Such patterns can be interpreted as follows: they represent
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typical activities performed when preparing an exam. Not
only several Lab sheets are studied, but also before these re-
sources, students have a quick look at the syntax, glossary,
and summary of the lectures. They finally consult the ad-
vice page. In such patterns, students interact with resources
within a short time, including with the lab sheets.
Activities made up of Ih time-intervals
Let us now focus on patterns that use the ”hours” time-
interval, where patterns are made up of events with a gap
value between 1 hour and 1 day. Here again, we identify a
skeleton shared by most of the ti-patterns:
〈Lab{1,3} Ih Lab{2,3} Ih Lab{2,3,4}〉, where Lab{1,3} means
either Lab1 or Lab3.
These patterns highlight that some students tend to work
sequentially on several exercise sheets. The gap being be-
tween 1 hour and 1 day, tends to mean that students dig
deep into their works: they spend some hours to perform
each exercise sheet.
Other intervals
We have performed a similar study on other time-intervals.
For each of them, we also identify skeletons shared by almost
all the patterns.

An interesting conclusion that can be drawn from these find-
ings is that for any given time-interval, typical long activities
are made by students, that do all have the same skeleton.
More importantly, when comparing skeletons between time-
intervals, they are totally different. We can thus conclude
that the type of activity performed is strongly linked with
the ”rhythm” of the activity. Here, ”rhythm” means a time-
interval granularity shared by all gap between all events of
the activity.
Last, when studying the timestamps associated with each
occurrence of the activities presented above, there is no spe-
cific period associated: they are performed at any moment in
the semester. For example, when considering the first exam-
ple given, that is mainly related to the 3rd lecture, we found
similar patterns for the 1st, 2nd, etc. lecture resources.

5. DISCUSSION
While traditional studies emphasize that students have typ-
ical sequential learning behaviors (identified by frequent se-
quential patterns), this study further emphasizes that for
specific activities students work with temporal regularities.
Based on the experiments conducted in the previous sec-
tions, we initiate a discussion.

The results have highlighted that among the sets of inter-
vals tested (linear and granular), the one that represents
the human natural time is the most relevant one, at least
for the dataset used in the experiments (see section 4.2).
In addition to outperforming other sets of intervals accord-
ing to predefined measures, this set conforms to the scope
of application: the duration of most of the lectures or lab
sessions is about one hour, two successive lectures tend to
occur each week, etc. So, the interpretation of the discov-
ered patterns is enhanced. Of course, many other sets of
intervals remain untested and may be more adequate. Be-
sides, an automatic approach that learns the optimal set of
intervals could be tested, as in [24]. However, this would be
at a significant additional computational cost, without any
guarantee of applicative interpretability of these intervals.

As expected, a high number of sequential patterns have no
frequent ti-form. In the experiments conducted, we have
even highlighted that most of the sequential activities have
no temporal regularities. This results in a high number of
”lost” patterns, which can be problematic, in case we are
interested in both frequent ti-patterns and s-patterns. A
solution could manage both types of patterns: sequential
students’ activities mixed with temporal students’ activi-
ties. This solution would not only maintain the coverage of
the model, thanks to sequential patterns but also manage
time, thanks to temporal patterns, when suitable. Here is
an example of such a pattern: 〈E2 E27 I1 E13〉. This pattern
means that many students consult E2 then E27 (whatever is
the time-interval), then between 1 minute and 1 hour later
they do consult E13.

Focusing on s-patterns and their various frequent ti-forms
can help to highlight different learning approaches adopted
by students. For example, an activity done with a gap lower
than 1 minute between its events may represent the fact
that the associated students are used to first download all
the resources and then work offline. The same activity with
a time gap between 1 minute and 1 hour may reflect that
students do work online, they do not access a resource before
finishing the previous one. So, in addition to highlighting the
diversity of activities of students, ti-patterns are also a way
to identify students’ learning practices. One can foresee that
these patterns could be used as input information for many
works such as those that focus on students’ engagement.

6. CONCLUSION AND FUTURE WORKS
The study presented in this paper highlights the relevance
of using time information when mining patterns of students’
activities. A time-interval pattern mining approach, through
the I-PrefixSpan state-of-the-art algorithm, has been adopted
to conduct this study.

The experiments conducted have pointed out that the nature
of the set of intervals used highly impacts the representativ-
ity of the model and that the set of intervals that represents
the human natural time is adequate. We also found that
most of the sequential students’ activities do not correspond
to any time-interval activity. However, for other cases, man-
aging this time-interval provides a better view of the future
possible students’ activities, thanks to temporal indicators.
Moreover, results show that a single time-interval difference
between two events of two patterns sequentially equivalent
results in significantly different subsequent activities.
We thus confirm our hypothesis: temporal information is
highly promising for a more precise modeling of students’
activities. One additional experiment has illustrated some
frequent students’ activities both temporal and sequential.
It has put forward that, by looking at some specific time-
intervals, we can understand what activities students often
perform instantly or throughout a longer period.
The work we have conducted provides a first step towards
longer-term research. One of our future goals is to provide
students with recommendations of educational resources. By
relying on ti-patterns, we are confident that not only the ac-
curacy of the recommendations provided to students will be
increased but also that these patterns will give indications
about the right time to propose recommendations to stu-
dents.
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Mining patterns of events in students’ teamwork data.
In Proc. Workshop on EDM at the 8th Int. Conf. on
Intelligent Tutoring Systems, pages 45–52, 2006.

[21] J. S. Kinnebrew, K. M. Loretz, and G. Biswas. A
contextualized, differential sequence mining method to
derive students’ learning behavior patterns. J. of
Educational Data Mining, 5(1):190–219, 2013.

[22] H. Kitakami, T. Kanbara, Y. Mori, S. Kuroki, and
Y. Yamazaki. Modified prefixspan method for motif
discovery in sequence databases. In Proc. Pacific Rim
International Conference on Artificial Intelligence,
pages 482–491. Springer, 2002.

[23] C. Krauss, A. Merceron, and S. Arbanowski. The
timeliness deviation: A novel approach to evaluate
educational recommender systems for closed-courses.
In Proc. 9th Int. Conf. on LAK, Tempe, USA, pages
195–204, 2019.

[24] S. Mahajan and A. Reshamwala. An approach to
optimize fuzzy time-interval sequential patterns using
multi-objective genetic algorithm. In Technology
systems and management, pages 115–120. Springer,
2011.

[25] R. Mart́ınez Maldonado, K. Yacef, J. Kay,
A. Kharrufa, and A. Al-Qaraghuli. Analysing frequent
sequential patterns of collaborative learning activity
around an interactive tabletop. In Proc. 4th Int. Conf.
on Educational Data Mining, Eindhoven, The
Netherlands, pages 111–120, 2011.

[26] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Prefixspan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In Proc. 17th Int. Conf. on Data
Engineering, pages 215–224, 2001.

[27] D. Perera, J. Kay, I. Koprinska, K. Yacef, and O. R.
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ABSTRACT
As programming must be learned by doing, introductory
programming course learners need to solve many problems,
e.g., on systems such as ’Online Judges’. However, as such
courses are often compulsory for non-Computer Science (non-
CS) undergraduates, this may cause difficulties to learners
that do not have the typical intrinsic motivation for pro-
gramming as CS students do. In this sense, contextualised
assignment lists, with programming problems related to the
students’ major, could enhance engagement in the learning
process. Thus, students would solve programming problems
related to their academic context, improving their compre-
hension of the applicability and importance of programming.
Nonetheless, preparing these contextually personalised pro-
gramming assignments for classes for different courses is re-
ally laborious and would increase considerably the instruc-
tors’/monitors’ workload. Thus, this work aims, for the first
time, to the best of our knowledge, to automatically clas-
sify the programming assignments in Online Judges based
on students’ academic contexts by proposing a new context
taxonomy, as well as a comprehensive pipeline evaluation
methodology of cutting edge competitive Natural Language
Processing (NLP). Our comprehensive methodology pipeline
allows for comparing state of the art data augmentation,
classifiers, beside NLP approaches. The context taxonomy
created contains 23 subject matters related to the non-CS
majors, representing thus a challenging multi-classification
problem. We show how even on this problem, our compre-
hensive pipeline evaluation methodology allows us to achieve

an accuracy of 95.2%, which makes it possible to automati-
cally create contextually personalised program assignments
for non-CS with a minimal error rate (4.8%).

Keywords
non-CS majors, NLP, contextually personalised assignment
lists

1. INTRODUCTION
Introductory Programming (often known under the label of
‘CS1’) classes are now-a-days often compulsory for under-
graduate courses that do not have computing as their ma-
jor [10, 15, 20, 23]. CS1 is delivered to students majoring
in, e.g., mechanical engineering, economics, etc. - whom we
collectively name here ‘non-CS students’. It is common in
such cases to find students with difficulty in interpreting as-
signment texts, due to the lack of affinity with the area of
the problem [22]. As a result, many of these students may
be discouraged by CS1, as they fail to see the purpose that
programming can have in their professional lives [10,17,23].

Moreover, programming must be learned by doing and, hence,
learners need to solve many problems [11,17–19,27]. In this
sense, ‘Online Judge’ systems can influence positively the
learning process of non-CS students [12, 18, 20, 25], as sys-
tems which allow students to submit programming assign-
ments and provide real-time automatic code correction. As
Programming Online Judges (POJ) have large numbers of
problems registered in their problem banks [25], in principle,
there would be plenty of problems to select from, for both
students as well as teachers, allowing for a mass personalisa-
tion - where one teacher could cater in parallel for the needs
of many students. Nonetheless, the problems available on
these systems often are collected or scraped from various
environments that do not provide labelling [27], and thus
it is laborious to find appropriate problems for non-CS stu-
dents. This is more so the case, as the number of program-
ming exercises is constantly increasing [25, 27]. Therefore,
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the automatisation of the categorisation of problems based
on subject matter is becoming vital, to support instructors
who teach computer programming disciplines. To illustrate,
undergraduate students of Economics would be more famil-
iar with an if-then-else problem using terms such as“interest
rates” or “importation of goods” instead of a problem on the
“growth of cells”, which may be completely out of their com-
fort zone. Thus, we raise the following research question:

How can we extract the subject matter from programming
problem statements, to automatically match programming
assignment lists to non-CS courses?

Our main contributions with this paper are thus:

• Proposing a new, wholistic methodology pipeline for
the POJ contextual labelling problem, allowing to com-
pare a variety of cutting edge shallow and deep learn-
ing models, to experiment with the most recent data
augmentation techniques (with or without augmenta-
tion), NLP (based on BERT, Word2Vec, Glove), clas-
sifiers (based on BERT, Random Forest, SVM, XG-
Boost, GaussianNB, GradientBoosting, ExtraTree, Se-
quential DNN, CNN, RNN) and validation.

• Extracting, for the first time, to the best of our knowl-
edge, automatically and precisely, subject matters re-
lated to non-CS courses; we do this by using cutting
edge NLP techniques on the statements of assignments
available in a home-made online judge CodeBench1

used with fifteen non-CS major programmes.

• Proposing a subject-based contextualisation taxonomy
to map subject matters to non-CS courses, where CS1
is compulsory.

• We thus are enabling the contextual personalisation of
programming assignment lists for non-CS courses.

2. RELATED WORK
There are many studies tackling the challenge of teaching
introductory programming to non-CS students, based on a
variety of angles. To illustrate, [10] employed collaborative
scenarios to enhance teaching and learning programming
in non-CS courses, whist [23] used an approach involving
games and media. [15, 24] show that English-like (natural
language) syntax can help non-CS students overcome the
difficulties in learning programming syntax. Furthermore,
a recent study [21] explains that effective motivational edu-
cational design can enhance introductory programming stu-
dents and teacher engagement. Despite these works repre-
senting a move towards improving non-CS students engage-
ment, linking text collections to general or domain-specific
knowledge is essential [1,5]. More specifically, [14] argue that
students’ experiences of the learning context have important
implications for teaching and learning. Nevertheless, none of
these aforementioned studies take the context of the problem
into account. Especially untouched is the issue of contextu-
alisation of the problem statements, ensuring that problems
introduce only the degree of difficulty required to progress

1http://codebench.icomp.ufam.edu.br/index.php

in the programming knowledge and not additional complex-
ity from strange contexts for the current learner (such as a
geology context for economy students, etc.).

Online judges (POJ) are increasingly being used to support
introductory programming (CS1) classes. Via such envi-
ronments, teachers can provide problems to be solved and
students can submit their code and receive immediate feed-
back [9, 18, 25]. One of the issues of these systems is that,
in general, the problems available are not categorised based
on subject matter, topics, context, major, etc. In this sense,
there are two recent works [3, 27] which tackle the problem
of topic extraction from such problems. In these studies,
topic extraction is used for grouping problems in terms of
their related programming knowledge components, concepts
or skills. For example, a problem that can be solved by us-
ing graph algorithms, such as breadth-first search, flood-fill
or topological sort, can be classified into the graph category.
Notice however that the target audience of these studies are
more experienced POJ users. Instead, here we are not in-
terested in categorising problems based on advanced topics.

In fact, we tackle, for the first time, to the best of our knowl-
edge, the challenge of extracting the subject matter from
programming problem statements available in POJ systems
used in introductory programming, in order to improve the
teaching and learning process of CS1 for non-CS courses, by
matching problems to non-CS majors.

3. EDUCATIONAL CONTEXT
In this paper, we use as study base, as said, the CodeBench
Online Judge environment, which is self-designed and im-
plemented, as it allows us the freedom to add the changes
inspired by our research results. Thus, we analyse here run-
ning the Introductory Programming (CS1) course at the
Federal University of the Amazonas, via this self-designed
POJ, which is delivered to 15 non-CS undergraduate degrees
across the university. These courses are divided into 5 ma-
jor areas: Mathematics, Physics, Engineering, Statistic and
Geology. Three of the degrees belong to Mathematics, 2 to
Physics, 8 to Engineering, 1 to Statistics and 1 to Geology.
Figure 1 illustrates this configuration.

As Figure 2 illustrates, during the CS1 course, students in
our environment typically solve 7 assignment lists with prob-
lems of increasing difficulty, using the Python programming
language. They are allowed to solve the problems with an
unlimited number of submission attempts, as long as they
meet the deadline for solving all problems on a given list.
The exercise lists always precede an exam on the same pro-
gramming topic, both carried out in the Online Judge. Each
list has an average of 10 questions, and the tests have 2 ques-
tions. We call a list together with its exam a ’session’, where
each session addresses a specific programming topic. Alto-
gether, the course thus is formed of 7 sessions, that is, 7
programming topics are covered during CS1. Each session
lasts on average 2 weeks.

During the 7 sessions, students work on the following pro-
gramming topics: Sequential, Composite conditional struc-
tures, Chained conditional structures, Repeating structures
by condition, Repeating structures by count, Vectors and
Strings and Matrices. Before the 7 sessions, students have a
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Figure 1: non-CS undergraduate courses at the Fed-
eral University of the Amazonas
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Figure 2: CS1 course configuration

first week to get used to the Python programming language,
where they learn about Variables and Single Operations.

Whilst, in our online judge, problems are well structured
based on these programming topics as above, they lack a
clear division based on the contexts (here, related major ar-
eas) in which the problems are to be delivered. Please also
note that, although the sessions are ordered by their increas-
ing difficulty, the topics they are addressing are somewhat
unrelated. Moreover, this increase in difficulty is typical for
any CS1 course, be it offline or online.

Thus, our POJ is generic enough and is hence a good envi-
ronment in which to research approaches to automatic clas-
sification by contexts, based on the statements, to build
context-based personalised assignment lists, towards ulti-

mately enhancing the engagement of non-CS students in
their learning process.

4. DATA
The database in our Online Judge system consists of 986
programming problems in the CS1 discipline. As said, the
statements in the database were initially not categorised by
context; thus, we proceeded to create a labelled corpus, by
manually classifying the contexts of each statement, to fur-
ther use to carry out the experiments.

As labels, we adopted in this research contexts extracted
from Zanini and Raabe’s definitions [26], which show that
the context of problems plays an important role for novice
programming students. Their study manually analysed the
contexts of 428 programming problems statements used in
introductory programming (as in our case) offered to 51 un-
dergraduate courses. As a result, they found 20 possible
contexts for these problems, as follows: mathematical, com-
mercial, person, school, human resources, research, bank-
ing, physics, production, sport, computational, traffic, date
and time, environment, tax, safety, consumption, popula-
tion, others, and gamble.

We thus started with their proposed labels to annotate our
problems. However, there were some groups of statements
that could not be mapped over the above contexts. More-
over, the context “others” is too general and provides no real
information. Given that, we removed the context “others”
and propose here some additional contexts, as part of our
contribution, in order to annotate our larger set of state-
ments. As a result of the above process, we produced a
total of 23 contexts, which we grouped together in a new
CS1 Context Taxonomy, which is described in Table 1. This
includes the following contexts, as contributions of our re-
search: Games, Movies and Series, Chemistry and Geogra-
phy. In addition, the table shows the number of statements
for each context labelled and used in this research, the de-
scription of the contexts as well as the undergraduate courses
that may have a high connection with the context.

It is worth noting that we performed a statistic test that
measures inter-annotator agreement to validate if our anno-
tation process was conducted properly. To do so, we used
Cohen’s kappa (k) [4], which shows the level of agreement
between two annotators on a classification task. As a result,
we achieved a k = 0.961, which is considered almost perfect
agreement [2].

5. METHODOLOGY
Figure 3 illustrates the proposed evaluation methodology
pipeline used in the experiments of our research. We cre-
ate here a unique, comprehensive pipeline, studying various
combinations of the most popular and successful bleeding
edge state-of-the-art techniques for natural language pro-
cessing (NLP). The following subsections explain each step
of our methodology.

5.1 Data augmentation
The data augmentation stage consists of balancing the train-
ing data by paraphrasing it, using the pre-trained model
BERT [6]. Importantly for our task, this allows for contex-
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Context Focus of the Statement non-CS
course

N

Mathematical resolution of purely mathematical problems, without this be-
ing applied to another context

Mathematics
and Engineer-
ing

261

Commercial handling of products, goods, such as buying and selling, cal-
culation of commission, provision of services

Economy 120

Games game application, be it a virtual game or even a table game;
for example, in the database there are games of naval battles,
as well as video games

Digital games
courses

96

School to solve a school problem, such as averaging, passing or fail-
ing verification

Pedagogy 79

Traffic related to the driver, car, mileage, accidents All courses 43
Sport some activity involved with sport, such as running, football,

classification
Physical edu-
cation

42

Physics resolution of purely physical problems, without this being
applied to another context

Physics and
Engineering

36

Banking related to bank transactions, investment, balance, with-
drawal, deposit, stock exchange

Economy 35

Human Resources problem related to human resources, such as salary calcula-
tion, data related to employees, calculation of bonuses, re-
cruitment and selection of employees

Sociology and
Psychology

35

Movies and TV
Shows

problem situation in a film or TV shows. To illustrate, there
are questions from the movie Harry Potter about potion cal-
culation

All courses 30

Population problems on population data, such as birth rate, mortality
rate, population growth; referring to either human or animal
population

Statistic 25

Chemistry purely chemical problems, without this being applied to an-
other context

Chemical en-
gineering

23

Person problems with elements directly related to a person, like
weight, height, sex

All courses 22

Date and time calculation of date or time, calculation of day, verification
of month, conversion of hours, minutes and seconds, time
interval

All courses 21

Safety control access, password verification, data security, encryp-
tion, validation

Software engi-
neering

20

Research providing statistical data of opinion polls Statistic and
Journalism

18

Environment relating to environmental issues, such as pollution, temper-
ature

Environmental
engineering

18

Health related to issues of fighting diseases Medicine 17
Consumption calculation of water, electricity or telephone-related con-

sumption
Economy 16

Geography resolution of purely geographical problems, without this be-
ing applied to another context

Geology 11

Production related to the production of products, the quantity produced,
production value, origin of the products

Production
engineering

7

Computational computational issues, such as conversion of binary, decimal,
hexadecimal numbers, ASCII table

Computer en-
gineering

6

Tax calculation of taxes, such as income tax Economy 5

Table 1: Our proposed CS1 Context Taxonomy and Data Set description, with respective non-CS undergrad-
uate course name and Number of items per Context, N

tual paraphrasing. Figure 4 illustrates a paraphrasing pro-
cess based on a fragment of a statement from the category
“Computational”.

Figure 4 shows a new generated sentence with clear seman-
tics for a human reader. Still, generated text sometimes

misses such a clear structure. Nevertheless, our goal here is
not to generate new sentences which could be meaningful for
learners. Instead, we aim at creating artificial statements,
which are not to be presented to humans, but will be used
to expand the minority classes, providing variations to the
predictive models (see bias-variance trade-off [8]). In other
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Stop words removal
Lemmatization

BERT

SNN

Word embedding
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CNN
RNN+CNN

Embedding layer

Figure 3: Proposed Automatic Contextualisation Research Methodology Pipeline

Original text

Applying 
paraphrase

New text

Write a program that prints the following 
message on your computer screen: Hello world

Consider some code that prints the above 
message on your machine: Hello world

Figure 4: Paraphrasing Example using BERT [6]

words, despite this irregularity in the semantic sense of the
statement, it is possible to perceive that the new instance
generated belongs to the same class from which it was de-
rived from and, therefore, it may represent a useful addition
for the learning algorithm (which is later, as can be seen,
confirmed by the results).

Nonetheless, as can be seen, despite the potential of such
contextual paraphrasing, the new statements repeat some
words from the original and keep almost the same number
of tokens, which is a limitation of this method. As such,
to prevent overtraining on artificial data (instances created
using contextual paraphrases), we have set a limit of, at
most, quadrupling the base of minority classes. We estab-
lished this limit after some empirical experiments. That is,
a statement is allowed to generate at most 4 new samples in
the training base, as long as the new number of statements is
below the number of instances of the majority class. Hence,
this process may not render a perfectly balanced training
base. To illustrate, imagine that the majority class has 10
questions on the training set, while the minority class has

1 question; with this paraphrasing algorithm, it is possible
to extend the minority class for up to 5 questions (4 new
samples + original statement).

In this work, experiments were carried out with and with-
out paraphrasing, in order to analyse how the balancing by
paraphrasing can influence the results.

5.2 Pre-processing
As we used reliable data (problems statements created di-
rectly by instructors/monitors), there was no need in our
data processing of performing orthographic corrections, ex-
panding contractions and other common data-cleaning steps.
However, all our problem statements were originally in the
Portuguese language. As there are many tools available for
processing text written in English, we opted to translate our
statements first into English, by using the googleTrans2 li-
brary. Subsequently, we proceeded in applying our pipeline
processing on the English text obtained, with and with-
out the use of stop-words removal and lemmatisation, using
spacy3. As a result, we observed empirically that these two
techniques were useful for data filtering in our pre-processing
step. Next, we show how we further prepare the text for the
machine learning algorithms.

5.3 Text Representation
The machine learning algorithms take as input a sequence
of text to learn the structure of text, just like a human does.
However, we need to convert the data in numerical form. As
such, we represent our text data as a sequence of numbers
(see Keras Tokenizer function4). Moreover, the ML algo-
rithm expects each training instance to have the same length
(same number of tokens). Thus we padded with zeros at the
end sequences that are shorter than the maximum length

2pypi.org/project/googletrans/
3spacy.io
4keras.io/preprocessing/text/
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sequence. To do so, we applied the Keras padding module5

over the sequences.

In addition, two different state-of-the-art NLP techniques
for vector representation of words are used for competing
against each other: googleNews-Vectors (W2V)6 and Glove
[16] word embeddings. Moreover, for the BERT classifier,
we used its own layer of word embeddings. Similarly, for the
other deep learning models, we used the word embeddings
layers as provided by the Keras library7. The purpose of
this step is to compare the NLP techniques in terms of per-
formance with our data set. Therefore, we created a process
to obtain the best model for automatic categorisation of con-
texts of programming questions for our educational context.
The process allowed us thus to carry out experiments with
advanced Deep Learning methods, and to compare not only
those approaches with each other, but also with classical
approaches, such as shallow learning models.

5.4 Classifiers
For deep learning models we used: a) Convolutional Neural
Networks (CNN) which have a convolutional layer, followed
by three dense layers; b) Recurrent Neural Networks (RNN),
with a recurring layer using a Long Term and Short term
memory (LSTM) followed by three dense layers; c) RNN and
CNN (RNN+CNN) stacked with the same configurations as
those of the items a and b; d) Sequential Neural Network
(SNN) with two dense layers and e) BERT for classification
(notice that we used BERT for two purposes: i) perform
contextual paraphrasing; ii) multi-classification).

As we are tackling a multi-classification problem, the final
layer for each neural network was represented by a softmax
layer [13]. For all deep learning models, the configurations
used above represent the default recommended ones from
the literature [13].

Additionally, we used the following classical, shallow clas-
sifiers, with the word embeddings from googleNews-Vectors
and Glove: Random Forest Classifier (RFC), Support Vec-
tor Machine (SVM), Extremely Randomised Tree Classifier
(ETC), Gaussian Naive Bayes (GNB), XGBoost (XGB) and
Gradient Boosting Classifier (GBC).

5.5 Validation
To validate the models, we employed the stratified valida-
tion with 10 folds. This method divides the base into k
partitions, using k − 1 for training and 1 for testing. After
that, the accuracy of the test partition is calculated. This
process is repeated k times, until all partitions have been
used as a test. Finally, the average of the accuracy obtained
in the tests is computed. It is noteworthy that each fold was
divided proportionally to the number of statements present
in each class in the database [13]. We implemented it using
the StratifiedKFold from scikit-learn. Notice that we per-
formed the data augmentation only on the training sets of
each training fold. Thus, there were no paraphrased texts
in the test sets.

5keras.io/preprocessing/sequence/
6code.google.com/archive/p/word2vec/
7keras.io/

To evaluate our models, we used the F1-score, as this metric
combines precision and recall in an harmonic mean. This is
useful because it gives much more weight to low values than
a regular mean, which treats all values equally. Moreover,
we used the weighted F1-score, which takes into account the
proportion of each class.

6. RESULTS AND DISCUSSION
We built a total of 34 predictive models. Figure 5 illus-
trates all the results obtained by all models applied in this
research. From this figure, we can notice that paraphrasing
improved the (weighted) F1-score in all models. To illus-
trate this boosting, the model GLOVE + SVM achieved a
F1-score of 86%, without paraphrasing. Whereas with the
paraphrasing, the model achieved 94%, an increase of 8%.
To validate that, we performed the McNemar’s hypothesis
statistical test, which is recommended to compare machine
learning models [7]. We compared the models with or with-
out the contextual paraphrasing. As a result, we confirmed
that the paraphrasing statistically boosts all models, even
after Bonferroni correction (p − values � 0.05/2). Table 2
shows the classification performance of the models in terms
of macro and weighted precision, recall and F1-score. More-
over, this table shows the accuracy of each model.

From a visual inspection of Figure 5, we can argue that
the best model found is the BERT classifier with use of the
contextual paraphrasing (BERT + PAR), as the model has
the highest median and a low standard deviation. Moreover,
this model achieved the highest recall, F1-score and accuracy
(Table 2). To validate that, we also performed McNemar’s
test. As a result, we confirmed our previous deduction as
BERT + PAR statistically outperforms all the other models,
even after Bonferroni correction (p−values � 0.05/33). As
such, in Figure 6, we show the performance of this model
for each context, as a heat-map plot. The rows represent
the actual values, while the columns depict the predicted
contexts.

Figure 6 illustrates that, in general, our best model is capa-
ble of recognising problems from each context with a high
recall. Indeed, there are predictions in some classes with-
out miss-classification such as Computational, Sports, etc.
However, we can see some cases where the model made mis-
takes. For example, the model gets confused between the
classes Production and Commercial. This may have hap-
pened because some problem statements could have come
from a production context, but with focus on sales, which
would be further related to the Commercial context. More-
over, there are some problems that are actually from the
context Production, classified by our best model as Date and
time. This was an unexpected result for us. After visual in-
spection, we noticed that some of these problems linked the
efficiency of a company to the time-scale (e.g., how long a
process took determined its efficiency). This is a possible
explanation for such confusions within our model.

Coupled with that, according to Table 1, it is possible to
notice that the class Computational has only a few state-
ments. Despite this low number of problems in this context,
our model is able to recognize this minority class with no
errors (100% of precision and recall). Still, the class Tax
presents the lowest number of problems in our database.
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Figure 5: All results (F1-score)

But even so, our model achieved a recall of 80% in this con-
text. Consider that the instances missclassified from the Tax
context were allocated to Commercial, which makes sense,
as, in some cases, these two contexts are related.

Although the model achieved a high recall (95%) in the
context of Games, instances that the model was not able
to recognise were spread through multiple contexts (Com-
mercial, Date and time, Physics, Tax, and Mathematical).
The 2% error between Games and Tax can be explained by
statements of games that comprise tariffs, e.g., when buy-
ing a certain product within the game. For example, there
are statements in our data set that discuss buying products
for a character, such as a battle suit. Further, the error
of 1% with the class Commercial could be due to a rea-
son similar to that of the class Tax. To illustrate, within a
game, some statements comprise the purchase of products.
Regarding the class Date and time, an explanation would
be statements that address some mission that the character
needs to accomplish in a specific time. Regarding the error
in the classes Physics and Mathematical, it may be due to
statements in games that contain speed calculation.

Another important analysis to be done occurs in the class
Research. The model achieved a recall of 94%, whereas 6%
of errors occurred in the class Person. One possible reason is
that surveys are conducted based on a group of people. Also,
there are statements in our database that contain research
carried out on some characteristics of people, such as age
group, education, etc.

Another interesting outcome relates to the following classes:
Banking and Commercial. Note that both presented confu-
sion errors between each other, that is, the class Commercial
presented wrong predictions in the class Commercial and
vice-versa. This is justified because both classes deal with
statements that involve money.

Furthermore, a similar situation occurs for the classes Health
and Population. Here, errors could be due to statements
addressing, e.g., the growth of a virus or bacteria. Thus,
results may highlight relations between these contexts.

Another interesting analysis relates to the majority class of
our data set, that is, the class Mathematical. Note that it
was possible to obtain here a 99% recall. Even more impor-
tantly, note that few classes have errors in this class, that is,
although we are dealing with the majority class, our model
can differentiate, with high precision, all classes, against this
one. To illustrate, only the following classes had a confu-
sion error with respect to this class: Games, Geography and
Commercial. Regarding the error presented in the predic-
tion of the class Games, it is an error that could be justified
by questions that deal with any type of calculation, given
that any form of calculation can be directly related to the
mathematical context. For the Geography class, the error
could be justified, as we have noticed the existence of state-
ments that deal with map scale conversion. Regarding the
class Commercial, the error could be justified by calculating
the price of a certain product.

Nevertheless, we had unexpected outcomes as well. For ex-
ample, it was arguably to be expected that the Physics class
presented errors in the Mathematical class, given that state-
ments that address a physical contextualisation deal with
mathematical calculations. However, this does not happen.
Thus, our model clearly differentiates here between even
small details present in the statement of each context.

In other words, although there is an error in the classification
of some instances in the classes, most of these errors can
be easily justified. This may suggest that the statements
worked on in this research have multi-contextualisation, that
is, a statement can address more than one context. However,
what happens in practice is that one context is predominant,
and the prediction of our model reflects this. Still, it is
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Table 2: Classification performance of the predictive models (Pr: precision; Re: recall; F1: F1-score; Acc:
accuracy).
Model Pr(Macro) Pr(weighted) Re(Macro) Re(weighted) F1(Macro) F1(weighted) Acc
GLOVE+RFC 95% 88% 78% 87% 84% 87% 86.8%
GLOVE+RFC + PAR 94% 92% 86% 92% 89% 91% 91.6%
GLOVE+ETC 95% 90% 80% 88% 86% 88% 88.3%
GLOVE+ETC+PAR 95% 93% 87% 92% 90% 92% 92.3%
GLOVE+XGBC 91% 87% 74% 87% 79% 86% 86.5%
GLOVE+XGBC+PAR 92% 91% 82% 90% 85% 90% 90.2%
GLOVE+GNB 90% 86% 78% 85% 82% 85% 85.0%
GLOVE+GNB + PAR 88% 87% 82% 86% 84% 86% 86.7%
GLOVE+SVM 80% 87% 71% 87% 75% 86% 86.8%
GLOVE+SVM+PAR 95% 94% 89% 94% 91% 94% 93.7%
GLOVE+GBC 79% 83% 68% 82% 72% 81% 81.7%
GLOVE+GBC+PAR 83% 87% 77% 87% 79% 86% 86.6%
GLOVE+KC 91% 93% 89% 93% 90% 93% 92.8%
GLOVE+KC+PAR 91% 93% 90% 93% 90% 93% 93.1%
W2V+RFC 95% 88% 78% 86% 84% 86% 86.1%
W2V+RFC+PAR 94% 93% 87% 93% 90% 93% 92.7%
W2V+ETC 95% 88% 79% 87% 85% 87% 86.8%
W2V+ETC+PAR 95% 93% 87% 92% 90% 92% 92.3%
W2V+XGBC 92% 87% 76% 86% 82% 86% 86.4%
W2V+XGBC+PAR 91% 91% 86% 91% 87% 91% 90.7%
W2V+GNB 90% 87% 78% 86% 82% 86% 85.7%
W2V+GNB+PAR 88% 87% 81% 86% 84% 86% 85.9%
W2V+SVM 85% 90% 79% 90% 82% 90% 90.2%
W2V+SVM+PAR 96% 95% 91% 94% 93% 94% 94.3%
W2V+GBC 77% 82% 69% 81% 73% 81% 81.3%
W2V+GBC+PAR 83% 88% 78% 88% 80% 88% 87.8%
W2V+KC 91% 92% 89% 92% 90% 92% 92.4%
W2V+KC+PAR 93% 94% 91% 94% 92% 94% 93.9%
KT+CNN 94% 91% 84% 91% 88% 91% 90.8%
KT+CNN+PAR 92% 93% 90% 93% 91% 93% 93.2%
KT+(RNN+CNN) 86% 91% 86% 91% 85% 91% 90.8%
KT+(RNN+CNN)+PAR 89% 91% 87% 91% 88% 91% 91.4%
BT+BERT 93% 95% 91% 95% 92% 95% 94.7%
BT+BERT+PAR 94% 95% 92% 95% 93% 95% 95.2%

potentially useful to further analyse this problem as a multi-
contextual prediction task.

7. LIMITATIONS
One of the major limitations of this paper is related to data
set size. Although we have a significant number of prob-
lems, in the case of some contexts there is a small number
of instances, due to the quantity of classes in our multi-
classification problem. To address this limitation, we used
cutting-edge NLP techniques to produce new instances on
the training set, using contextual paraphrases.

Moreover, our original problem descriptions were in Por-
tuguese and hence, when we translated them to English,
this may have introduced some errors from our automatic
data processing. However, this was counter-balanced by the
availability of the most cutting-edge NLP processing tools
for the various steps involved in our pipeline, which were not
available for the Portuguese language.

In addition, this research worked with introductory topics to
computer programming. It is thus less clear if the method-
ology applies to more advanced topics of programming. For
example, database disciplines may need a different approach.
However, the holistic pipeline we propose can guarantee that
the right method can outperform the others, thus ensuring
area appropriateness.

Another limitation arises from undergraduate courses that
do not have programming in their curriculum. Although it is
clear that in this research several courses may use program-
ming for some activities, not all of them have programming
topics in the curriculum. To illustrate, although our data set
presents health issues that can be applied to the medical or
nursing courses, unfortunately these undergraduate courses
do not have programming topics in their curriculum. This
may however change in the future, with the rise of the ubiq-
uitousness of computing, and thus this research may have
wider relevance and impact than originally envisioned.
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Figure 6: BERT with Paraphrasing

8. CONCLUSION AND FUTURE WORKS
According to the results obtained and illustrated in this re-
search, we can conclude that paraphrasing of the minority
classes boosts results, that is, it was able to make predictive
models more accurate and with greater recognition capacity,
regardless of which NLP was used, that is, Glove, Word2vec,
BERT, etc.

In addition, our work was able to achieve a performance with
high precision and a high recognition rate for all 23 classes

proposed in this article. That is, our best model, which is
based on the BERT technique with paraphrase-balancing,
was able to achieve an accuracy of 95.2% with a minimal
error rate, which is no more than 4.8%.

With that, the first step to generate personalised problem
lists, according to the context of the undergraduate course,
was taken. We have additionally provided a new context
taxonomy for problems, as well as a comprehensive evalua-
tion pipeline methodology for context-based personalisation
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of problem lists.

As future work we intend to further evaluate the effect of
the personalised programming problem assignments using
our method to detect the subject matter. Thus, we can
explore if the performance of the non-CS students will be
affected when solving problems related to their courses.

In addition, three new experiments can be performed to
analyse the generalisation power of our method. The first is
to repeat the procedure on other online judge problem col-
lections, but still at an introductory programming discipline
level. The purpose of this experiment is to verify how gener-
alisable our approach is across educational settings different
from ours. We believe, nevertheless, that choices such as the
programming language used in teaching CS1 will not be a
factor that will prevent similar outcomes.

As a second experiment, we would repeat the procedure
with more advanced programming topics, to analyse if the
method can be applied to these more complex types of top-
ics. For example, disciplines such as data structures may
be a research target. Finally, we envision to adapt our
pipeline to perform automatic classification of the program-
ming problems in terms of the topics used in the CS1 courses
(Sequential, Composite conditional structures, Chained con-
ditional structures, Repeating structures by condition, Re-
peating structures by counting, Vectors and Strings and Ma-
trices). Such a pipeline would be useful for several applica-
tions, such as for problem recommendation, automatic an-
notation, amongst others.

Concluding, we believe that the automatisation of the clas-
sification of statements by contexts is extremely relevant for
several reasons, among which we highlight: i) statements
which students are already familiar with can help in the
process of engagement and learning; ii) students will find it
easier to understand the relevance of programming in their
professional lives; iii) teachers can use this automatisation
to generate personalised lists, which would facilitate their
work, since it would be too much work to select these prob-
lems manually, in addition to which it could lead to human
error and iv) students could use this automatisation to se-
lect problems to which they are used to, facilitating their
process of learning a certain programming topic.
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ABSTRACT 
In recent years, game-based learning has shown significant promise 
for creating engaging and effective learning experiences. 
Developing models that can predict whether students will struggle 
with mastering certain concepts could guide adaptive support to 
assist students with mastering those concepts. Game-based learning 
environments offer significant potential for unobtrusively assessing 
student learning without interfering with gameplay through stealth 
assessment. Prior work on stealth assessment has focused on a 
single machine learning technique such as dynamic Bayesian 
networks or long short-term memory networks; however, a single 
modeling technique often does not guarantee the best predictive 
performance for all concepts of interest. In this paper, we present a 
hybrid data-driven approach to stealth assessment for predicting 
students’ mastery of concepts through interactions with a game-
based learning environment for introductory genetics. Stealth 
assessment models utilize students’ observed gameplay behaviors 
using challenge- and session-based features to predict students’ 
learning outcomes on identified concepts. We present single-task 
and multi-task models for predicting students’ mastery of concepts 
and the results suggest that the hybrid stealth assessment 
framework outperforms individual models and holds significant 
potential for predicting student competencies. 

Keywords 
Stealth Assessment, Predictive Student Modeling, Game-based 
Learning, Multi-Task Learning 
1. INTRODUCTION 
Recent years have seen growing interest in game-based learning 
environments because of their potential for creating engaging and 
effective learning experiences [7, 43]. Researchers have 
investigated game-based learning environments in a wide array of 

domains, including mathematics [13, 40], computational thinking 
[4, 16], and science [2, 10, 30].  
While a common gameplay design adopted by many game-based 
learning environments is providing students with a fixed sequence 
of levels with increasingly difficult challenges per concept, game-
based learning environments could provide individualized 
sequences of challenges and just-in-time support, so that students 
can focus on gameplay at the edge of their knowledge and skills 
and remain engaged throughout the learning experience [20, 44]. 
To achieve this goal, game-based learning environments should be 
equipped with the ability to detect when students are struggling or 
have gaps in their knowledge and take appropriate action to tailor 
their learning experience [33]. Presenting in-game challenges 
adaptively tailored to individual students’ knowledge can play a 
crucial role in supporting mastery learning and promoting 
engagement while effectively addressing problems with a one-size-
fits-all approach.  

With recent advances in machine learning, data-driven approaches 
using students’ in-game behaviors have enabled the automatic 
assessment of students’ evolving competence [1, 21] and the 
modeling of mind wandering [19], wheel spinning [25], and 
quitting behaviors [12], all of which are associated with negative 
learning outcomes. A robust modeling of student behaviors can 
guide students from undertaking a challenge that is beyond their 
capabilities as well as facilitate their engagement through 
individualized learning activities tailored to their competencies for 
knowledge and game-playing skills.  

There is now a sizable literature on stealth assessment in game-
based learning [34]. Stealth assessment robustly measures student 
learning without disrupting engagement by embedding unobtrusive 
assessments within game mechanics, offering real-time non-
disruptive assessment [35]. Building on evidence-centered design 
(ECD) [24], which provides a systematic approach to developing 
knowledge assessments, stealth assessment examines student 
interaction data (i.e., evidence model) with in-game challenges 
(i.e., task model) to provide real-time behind-the-scenes 
measurement of students’ learning processes and outcomes (i.e., 
competency model) [22, 36]. Specifically, students’ learning is 
inferred by analyzing low-level sequences of observed problem-
solving behaviors that manifest competencies for knowledge and 
skills without conducting explicit formative assessments. 
Inferences made by stealth assessment models can inform effective 
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scaffolding strategies (e.g., adaptive challenge selection, tailored 
problem-solving support) for individual learners in a timely and 
contextually appropriate manner [29, 36]. It can also guide teachers 
to potential pedagogical adaptations or support integration with 
additional curricular activities, which are core components of 
distributed and integrated scaffolding [26, 28, 39].  

In this work, we investigate stealth assessment with Geniventure, a 
game-based learning environment for introductory high school 
genetics learning. We present modeling approaches including 
single-task and multi-task random forest and recurrent neural 
network-based regression models for predicting students’ 
competencies, whose labels were derived from students’ post-test 
scores on genetics-focused concepts. In contrast to much previous 
work on stealth assessment that used a single machine learning 
technique, we present a hybrid stealth assessment framework that 
effectively leverages predictive capacities of all the explored 
modeling approaches. We compare the models’ fitness to the data 
to gain insight into which combinations of models perform 
optimally across all the concepts, as well as which models are 
effective for individual concepts. The hybrid stealth assessment 
framework outperforms individual computational techniques with 
respect to predictive performance for student concept-level 
competencies. 

2. RELATED WORK 
Intelligent game-based learning environments simultaneously 
leverage capabilities of digital games to motivate students’ learning 
through engaging narratives, virtual environments and intelligent 
tutoring systems (ITSs) to foster students’ learning through 
adaptive scaffolding and context-sensitive feedback [15]. These 
environments facilitate learning through individualized challenges, 
narratives, feedback, and problem-solving support [30, 35, 42]. 
Students’ fine-grained, sequential game trace data has been used in 
a wide range of student modeling tasks such as inferring the level 
of competency [22, 35], predicting affective states [3, 31], and 
recognizing students’ learning goals [23]. In comparison to single-
task learning investigated in much of previous student modeling 
work, recent years have seen a growing interest in the use of multi-
task learning, a regularization method that exploits commonalities 
and differences across related tasks for improved generalizability. 
Multi-task learning has been examined for various student 
modeling tasks such as predicting student competencies in 
programming in a massive open online course (MOOC) [27] and 
modeling student performance in a game-based learning 
environment for middle-grade microbiology education [9], which 
demonstrated improved predictive performance relative to the 
single-task modeling approach. Similarly, Chaudhry et al. used 
multi-task modeling with both hint usage and knowledge tracing to 
induce models of students using online tutoring systems [5]. 
Stealth assessment is methodologically grounded in evidence-
centered design (ECD), which was proposed to construct 
educational assessments in terms of evidentiary arguments [24]. 
ECD features task, evidence, and competency models to conduct 
probabilistic reasoning about knowledge, skills, and abilities of 
students utilizing evidence captured from interactions with learning 
tasks. Stealth assessment conducts real-time processing of data 
derived from these three ECD models that informs intelligent, 
adaptive game-based learning environments through devising 
robust evidence and competency models as well as creating task 
models that effectively develop the competencies [20]. While 
human expert-designed Bayesian networks have been examined as 
the core computational method for both competency and evidence 

models for stealth assessment [37], another body of work has 
investigated an assessment pipeline that does not require costly 
domain knowledge engineering. Falakmasir et al. investigate the 
use of hidden Markov models (HMMs) to model student 
proficiency within educational games [8]. The log-likelihoods are 
approximated by the HMMs using sequential gameplay data, with 
the difference between the likelihoods serving as the independent 
variable for post-test prediction models. The authors of this work 
use linear regression to predict the student’s post-test scores. There 
has also been growing interest in deep neural network architectures 
due to their capability to learn salient features from low-level, 
sequential data captured from interactions with task models [1, 20]. 
Long short-term memory network-based stealth assessment models 
have demonstrated significant promise by outperforming 
competitive baselines with respect to predictive performance of 
inferring students’ competencies, while effectively eliminating the 
need to manually craft evidence rules and evidence models. In 
contrast to much of previous research, our work presents a hybrid 
stealth assessment framework that utilizes a suite of competency 
models to optimally harness distinguished predictive capacity 
yielded by a range of single-task and multi-task stealth assessment 
models.  

3. DATASET 
 Geniventure Learning Environment 

To evaluate the performance of our hybrid stealth assessment 
framework, we use gameplay interaction log data collected from 
students engaged with a game-based learning environment for 
introductory genetics for middle school and high school students 
(students ages 11-18 years), Geniventure. The design of the game 
is guided by core genetics-based concepts that align with the Next 
Generation Science Standards [38]. Geniventure engages students 
in exploring heredity, dominant and recessive traits, and the 
protein-to-trait relationship by breeding and studying drakes, a 
model species for dragons [18].   

The game consists of 60 increasingly difficult puzzle-like 
challenges across 6 levels (Figure 1). Each of the challenges is part 
of a “mission”, with each level containing multiple missions. The 
genetics concepts that the game addresses are presented through a 
variety of challenge types. While the game was designed to be 
played through in a linear fashion, students have the freedom to 
attempt challenges at any level and are allowed to quit a challenge 
at any time.  
In the first half of the game, students are asked to change the drake’s 
genotype to match a target phenotype (Figure 1, Level 1). To 
successfully complete these problem-solving challenges, students 
must understand several genetic concepts and be able to infer the 
phenotype of their drake from its genotype. Once students feel they 
have the correct genotype, they click the “Check” or “Hatch” button 
to submit their answer. If the drake they create matches the target 
drake, the challenge is successfully completed. Otherwise, the 
game provides the student with three progressively more directed 
levels of hints, as well as a visual cue, and allows them to continue 
to make further changes to the alleles until they quit or successfully 
complete the challenge. This model of counting moves and giving 
feedback in the form of hints is carried through the subsequent 
levels of the game, even though the challenge types vary. Other 
challenges instruct the user to match a phenotype to a given 
genotype, following a reversed procedure from Level 1 (Figure 1, 
Level 2), and also introduce scale color and other additional 
complexities to the challenges (Figure 1, Level 3). 
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 The latter half of the game introduces more difficult concepts 
such as breeding and inheritance. Through several scaffolded 
challenges, students breed parent drakes with the goal of matching 
target offspring (Figure 1, Level 4). The tasks grow increasingly 
complex as students progress through this level, eventually 
culminating in a challenge requiring students to breed two parents 
to produce offspring that match a given drake. Students are also 
introduced to test cross, a genetic method for determining the 
genotype of one organism by crossing it with a fully recessive 
organism (Figure 1, Level 5). Finally, the last level introduces 
traits with more complex inheritance patterns, such as X-linked 
and polyallelic traits (Figure 1, Level 6). This level contains 
challenges illustrating concepts from all of the preceding levels 
such as allele target match, egg drop, meiosis, breeding, and test 
cross.  

As previously mentioned, students can validate their work at any 
time and are provided with system-generated hints based on their 
perceived understanding of the genetics concepts if necessary. Hint 
usage, as well as time spent on challenges, and the students’ success 
rate during their respective gameplay sessions, serves as the 
foundation for the features used to train the competency models. 

 Data Collection 
The dataset was collected from 462 students from seven high 
schools and one middle school located in the Middle to Northern 
Atlantic coast of the United States. This data was collected during 
a teacher-led classroom implementation of Geniventure where 
students played the game during class over the course of several 
days. During gameplay, students’ gameplay trajectory and their 
detailed in-game actions were recorded as trace data logs. Before 
playing the game, students took a pre-test consisting of 28 questions 
related to the genetic concepts covered in the game. Once gameplay 
concluded, students took a post-test which was identical to the pre-
test (Figure 2). This assessment was aligned to the ECD 
competency model of the game and previously validated through 
two rounds of expert review and cognitive interviews with students. 
In administration, it demonstrated an internal consistency reliability 
of alpha = 0.873. Both the pre-test and post-test were online surveys 

accessible through the same online portal as the game. 38 students 
were removed due to the partial or missing pre/post test data. 108 
students were removed due to missing trace data, resulting in a 
dataset containing trace data from 316 students. Results from a 
paired t-test on students’ knowledge pre-test (M = 14.41, SD = 
5.826) and post-test (M = 19.33, SD = 6.131) revealed a significant 
improvement from pre-test to post-test (t(315) = 14.663, p < 0.01, 
Cohen’s d = 0.823). A majority of the students attempted between 
50 and 150 challenges. The fewest number of challenges attempted 
by a student was 5, which serves as the basis for the sequence length 
of the subsampling window used to generate the sequential data for 
the competency models. The most challenges attempted by a 
student during the duration of the study is 248. To further illustrate 
the distribution of the number of challenges attempted per student, 
a histogram of the students’ gameplay trajectories is shown in 
Figure 3.  

4. ECD FOR STEALTH ASSESSMENT 
Evidence-centered design (ECD) is a systematic approach for 
designing and developing reliable knowledge assessments in terms 
of evidentiary arguments [24]. When utilized to identify and 
analyze user behavior in online learning environments, it serves as 
the basis of stealth assessment in game-based learning 
environments [34]. While historically ECD has been utilized in the 
development of summative assessments, recent years have seen its 
application in the design of formative stealth assessment models for 
game-based learning environments [20, 34]. Assessment results 
inferred by stealth assessment models can be utilized to support 
student learning through adaptive scaffolding within the learning 
environment and also inform teachers about student learning 
trajectories through a teacher dashboard. As noted above, stealth 
assessment is grounded in three core ECD models. These three 
models were applied to the current study using Geniventure as 
follows:  

• Task Model: This model defines the activities, or tasks, that 
students undertake as part of their learning. In the Geniventure 
learning environment, the task model consisted of 60 
challenges across six game levels that students undertake. 

Level 1 Level 2 Level 3 

Level 4 Level 5 Level 6 
Figure 1. Example challenges in Geniventure for the six gameplay levels. 
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These tasks focus on genetics concepts such as heredity, 
dominance/recessive, and the protein-to-trait relationship. 
 

• Evidence Model: The evidence model takes as input low-level 
action sequences students produce while interacting with the 
game-based learning environment. Game-based learner 
behaviors are linked to targeted concepts to generate machine-
interpretable evidence that can be directly utilized with the 
modeling techniques presented here. That is, a probabilistic 
model is constructed from analysis of a series of actions 
related to mastery (or not) of a particular concept. The 
evidence model informs the competency model in order to 
update its belief of students’ competencies as they interact 
with the tasks. 

• Competency Model: Mastery of 16 concepts (Table 1) are 
dynamically estimated by the competency model with respect 
to students’ genetics knowledge. The concepts were derived 
from expert review of classroom learning goals and state 
science standards. The ground truth for their summative 
competencies are acquired from students’ post-test scores on 
an explicit content knowledge assessment. The competency 
model is aligned to the summative post-test through the same 
set of ECD-derived concepts in Table 1.  

In training the stealth assessment models, we extract competency 
scores based on correctness of students’ individual responses to 
items on a post-test knowledge assessment (Figure 2). 
Competencies for a single concept in our competency model can be 

evaluated in as few as one or as many as six items on the post-test 
survey since an assessment item can map to either one or two 
concepts. Item 28 is an open-ended question that can be answered 
in many unique ways, so we omit it from our competency score 
calculations. The mappings from each concept to individual survey 
questions can be found in Table 1.  

Each of the test items is recorded in a binary format, with 1 if the 
student answered the item correctly and 0 if the item is answered 
incorrectly. To calculate the competency score for each concept, 
the total number of correctly answered items was divided by the 
total number of items for that concept, resulting in a score between 
0 and 1. These scores serve as the target labels for our regression 
models.  

5. METHODOLOGY 
We evaluate two different approaches to the student competence 
modeling: single-task and multi-task. The single-task approach 
involves training an individual model for every concept, with each 
model only predicting a single competency score. This architecture 
allows for the model to focus exclusively on modeling trends and 
correlations between the students’ gameplay features and a single 
competency and does not take into account any interrelationships 
between the gameplay and multiple concepts. The multi-task 
approach requires a single model trained to approximate all 
competency scores using a single 16-unit vector. This approach is 
advantageous as it is capable of modeling complex, non-linear 
relationships between the various concept-level competencies that 
exist within the gameplay data. Multi-task modeling has seen an 
increase in usage due to its reduced number of parameters to be 
estimated, as well as the computational time required to train a 
model for each dependent variable, compared to the single-task 
modeling technique. Multi-task models’ capability to robustly 
model inherent relationships between multiple dependent variables 
using a shared input vector space makes this modeling technique 
ideal for stealth assessment frameworks, as well as circumstances 
where a large amount of training data may not be readily available 
[9].  
We evaluate these two approaches using two different feature 
representations of the students’ gameplay data: static and sequential 
representations. The static representation of the data involves 
producing a single feature vector representative of each student’s 
overall interaction with the Geniventure learning environment, 
resulting in a single dataset of 316 total data samples. The 
sequential representation is used to model subsequences extracted 
from individual challenge-level interactions across each student’s 
gameplay trajectory, retaining temporal information based on the 
order the challenges were completed. This sequence sub-sampling 
approach results in a single dataset of 29,977 total data samples. 

 Interaction Data 
Gameplay interactions with the Geniventure game environment 
were recorded in a timestamped log file for each student. The trace 
data log is a raw event stream in JSON format which records fine-
grained information about students’ actions in the game, such as a 
navigated challenge, changed allele, submitted answer, and 
received hints from the system. The types of actions vary among 
challenges because of the differences in the challenge settings. To 
eliminate the influence of the differences in challenges, we defined 
10 generic measurements across different challenges that describe 
contextual information about the challenge itself. The remaining 
features summarize students’ performance and actions within an 
individual challenge. For each student, we generated his/her 

Figure 2. Example post-test question. 

Figure 3. Histogram of students’ gameplay trajectories.  
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gameplay trajectory across each individual challenge attempted. 
The length of the challenge level trajectories varied from 5 to 248 
(M = 95.86, SD = 33.63). Each of the features forms the basis for 
the static and sequential data.  

Table 1. Competency model concepts 

Concept 
Number 

Concept 
Description 

Number 
of 

Questions 

C1 Only one dominant allele is needed 
to produce the dominant trait. 3 

C2 Two recessive alleles are needed to 
produce a recessive trait. 2 

C3 
Create or select parental gametes to 
create an individual offspring with 
a specific phenotype.  

4 

C4 Set parental genotypes to produce a 
specific pattern of offspring. 6 

C5 
Use patterns in the phenotypes of a 
group of offspring to predict the 
genotype of the parents. 

5 

C6 
For some traits primarily 
influenced by a single gene, both 
alleles will have some effect, with 
neither being completely dominant. 

2 

C7 
Breed with a recessive animal to 
determine an unknown genotype 
(testcross). 

2 

C8 
Different versions of a gene 
correspond to (lead to the 
construction of) different versions 
of a specific protein. 

2 

C9 Proteins do work or have jobs to do 
in cells. 1 

C10 Proteins are nanomachines; 
different proteins do different jobs. 1 

C11 The function of a protein is 
determined by its shape. 1 

C12 
Different versions of a specific 
protein have different structures 
and may also have different 
functions. 

1 

C13 
Some traits have multiple alleles, 
which can form a ranked series in 
terms of dominance. 

2 

C14 

Genes on the X chromosome are 
referred to as X-linked. Males 
receive only one copy of the X 
chromosome and pass on their X 
only to their daughters. 

1 

C15 
Working from the phenotype, 
determine possible genotypes for 
an organism. 

2 

C16 Use a genotype to predict the 
phenotype for an organism. 2 

The features representing each challenge undertaken by a student 
are: (1) Pre-test score, (2) level of challenge, (3) mission number of 
challenge, (4) challenge number, (5) total time spent on challenge, 

(6) number of movements made during challenge, (7) number of 
hints encountered during challenge, (8) number of correct 
movements made during challenge, (9) number of wrong 
movements made during challenge, and (10) student’s completion 
status of challenge (0: incomplete, 1: complete with wrong answer, 
2: complete with correct answer).  

 Static Competency Models 
We evaluate five different regression models to determine their 
capabilities to predict students’ competency levels for each 
concept. The features selected for the static competency models 
summarize the whole gameplay of each student across all 
challenges and levels. Using the challenge-level features noted 
above, the summative student-level features generated for the static 
models are (1) average time spent per challenge, (2) total time spent 
playing challenges, (3) fraction of challenges failed, (4) fraction of 
challenges succeeded, (5) fraction of challenges abandoned, (6) 
fraction of incorrect movements, (7) fraction of correct movements, 
(8) total hints received, (9) number of hints per level, (10) hint count 
per challenge, and (11) number of levels played. 
We evaluate two variations of static modeling techniques: single-
task and multi-task. Single-task models predict each target concept 
score as an independent regression problem. The data set and 
features used in each model are identical, but the target variable is 
a single competency score for each model. Multi-task models 
approximate all target variables in a single model. However, not all 
of the static, single-task models can effectively translate to a multi-
task learning environment. Using single-task learning, we aim to 
discover the best model for each target variable independently 
while multi-task models perform better when there are underlying 
dependencies between the various competencies and a student’s 
gameplay features.  

5.2.1 Single-Task Models 
We evaluate three single-task models. Elastic Net is a linear 
regression model that utilizes both L1 and L2 regularizations. The 
hyperparameter tuning of Elastic-Net was performed on the L1 and 
L2 regularization coefficients (alpha, L1 ratio). Gradient-Boosted 
Regression (GBR) is a decision tree-based modeling approach that 
builds an ensemble of weak predictors to approximate the target 
variable. The model is built in an iterative fashion where each 
subsequent stage improves on the model created in the previous 
stage. The hyperparameter tuning for the GBR model was based on 
fine-tuning the maximum depth of each tree in the model and the 
total number of estimators added to the model. We also evaluate a 
Random Forest regressor, another type of ensemble learning 
method using a ‘forest’ of decision trees. Each tree is randomly 
assigned insensitivity to different features in the training data (i.e., 
feature bagging). This approach allows for larger model ensembles 
while avoiding overfitting. The hyperparameter tuning for Random 
Forest was performed on the maximum depth of each tree and the 
total number of trees in the forest. While both Random Forest and 
Gradient Boosted Trees are decision tree-based ensemble learners, 
a notable difference between these two models is how the trees are 
added to the ensemble. Within Random Forest models, trees are 
added independently while in GBR models, trees are added 
incrementally to compensate for the shortcomings of the previous 
iteration of models. For the single-task approach, we use a single 
model for each competency score. We keep the regression model 
type consistent across all competencies and the hyperparameter 
values consistent across models. 

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 96



5.2.2 Multi-Task Models 
Due to constraints in models, only certain types of algorithms 
support multi-task modeling. In this work, two types of multi-task 
regression models are tested: the multi-task version of Elastic Net 
and the multi-task version of Random Forest. The multi-task 
version of Elastic Net adds the constraint that the selected features 
in the model are the same for all the tasks. The Random Forest 
regressor is one of the few models that does not require any special 
modification to support multi-task learning due to the trees in the 
regressor being built on different subsamples of the dataset.   
Each of the static models was implemented using the scikit-learn 
library in Python. The data set (316 samples) is divided randomly 
into an 80/20 split with 20% serving as a held-out test set to 
evaluate the models. The 80% split is used for training the models, 
with five-fold cross-validation being applied to determine the best 
model. The training and test splits remain consistent across all 
investigated models and configurations (e.g., static vs. sequential, 
single-task vs. multi-task) to ensure a fair comparison between 
models, as well as the five-fold cross-validation splits. The final 
hyperparameter values as a result of the cross-validation on the 
training data are shown in Table 2.  

Table 2. Static model hyperparameters 
Regression Model Task Type Hyperparameters 

Elastic Net  Single-Task alpha = 0.05 
L1 Ratio = 0.9 

Gradient Boosted 
Regression Single-Task Max Tree Depth = 2 

Number of Trees = 20 

Random Forest  Single-Task Max Tree Depth = 3 
Number of Trees = 250 

Elastic Net Multi-Task alpha = 0.2 
L1 Ratio = 0.9 

Random Forest 
Regression Multi-Task Max Tree Depth = 2, 

Number of Trees = 200 

 Sequential Competency Models 
We explore four different types of deep learning-based models to 
model sequential representations of each student’s gameplay 
information across attempted challenges. Here, the motivation is to 
determine whether providing sequential context for each of the 
student’s problem-solving behaviors induces higher performance 
when modeling the competencies. To provide further sequential 
information to each of the models, we generate additional temporal 
features averaged across all challenges completed up to the current 
challenge attempted by the user: (1) average time per challenge, (2) 
average movements per challenge, (3) average correct movements 
per challenge, (4) average incorrect movements per challenge, (5) 
average hint count per challenge, (6) average unsubmitted 
challenges, (7) average failed challenges, and (8) average 
successful challenges. 
We use these features in addition to the 10 static challenge-level 
features described in Section 5.1 to provide a total of 18 features to 
each of the sequential models. The models used for both the single-
task and multi-task sequential models are variants of recurrent 
neural networks including Long Short-Term Memory recurrent 
neural networks (LSTMs) [11] and Gated Recurrent Units (GRUs) 
[6], due to their capability to model both single-task and multi-task 
data. LSTMs utilize a sequence of memory blocks that each contain 

an input gate, forget gate, and an output gate. The forget gate 
determines whether the previous memory block’s gradient is 
retained or discarded, thus allowing the LSTM to model long-term 
dependencies across temporal sequences, while the input and 
output gates modulate the input and output vectors, respectively. 
GRUs are mechanisms that provide the same “forgetting” 
functionality as LSTMs but contain fewer hyperparameters, 
utilizing an update gate and a reset gate. This allows GRUs to be 
more computationally efficient and sometimes more effective on 
less training data than LSTMs.  
In addition to standard LSTMs, we evaluate bidirectional LSTMs 
(Bi-LSTMs) [32] as well as LSTMs implementing a self-attention 
mechanism (SA-LSTMs) [41]. Bidirectional LSTMs are a variation 
of LSTMs that contain two input layers on opposing sides of the 
hidden layer, allowing the model to retain temporal information 
based on the past and the future of the input sequence, as opposed 
to only the past. A self-attention LSTM provides additional 
temporal context beyond contiguous feature vectors by utilizing a 
weighted sum of hidden representations of the entire sequence.  
Adopting the same manner used in training the static competency 
models, each model is optimized using 5-fold cross validation, 
where the data splits are consistent across both static and sequential 
models to ensure a fair comparison, and then evaluated with the 
held-out test set. The hyperparameters are tuned using an iterative 
grid search, and each model was trained for 200 epochs. The 
subsequences used to train each sequential model were sampled 
across the challenges completed by each student using a sequence 
length of 10, and a sampling stride of 1. We use front padding in 
each sequence during the subsampling process to allow the models 
to fit during the beginning of each sequence. The concept-level 
prediction made for each student was calculated by taking the 
average competency prediction value across an entire sequence. 
The sequential data modeling pipeline was implemented using 
Python, and the deep learning models were implemented using the 
Keras library with the TensorFlow backend. The hyperparameter 
tuning was performed across the number of hidden units in each 
model’s hidden layer, as well as the dropout rate in the hidden layer 
[9]. The final hyperparameter values as a result of the cross-
validation on the training data are shown in Table 3. 

5.3.1 Single-Task Models 
To evaluate the single-task sequential modeling approach, we train 
16 different independent models, with each model approximating a 
single competency score based on the gameplay features described 
in Sections 5.1 and 5.3. Using the cross-validation performance on 
the training data, we selected the optimal configuration for each 
model type based on the highest performance in terms of the 
average R2 value across all competency scores.  

5.3.2 Multi-Task Models 
Because of the architecture of the sequential deep learning models, 
each single-task model type is also able to perform as a multi-task 
model, with the only change occurring within the output layer, as 
the number of output units is expanded to contain an individual 
output node for each concept, instead of a single concept. This 
allows a single model to simultaneously infer student competencies 
across all concepts. Similar to the single-task models, the optimal 
model configurations were selected based on the average R2 score 
across all concepts.  

97 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



We hypothesize that the optimal modeling techniques will vary due 
to the different complex characteristics that underlie each concept 
and the varying fitness of ECD models to these characteristics. 
Therefore, we propose the use of a hybrid framework that contains 
a combination of the various single-task and multi-task models that 
are both static and sequential. A visualization of the proposed 
hybrid stealth assessment framework comprised of the optimal 
models (highlighted in green text) is shown in Figure 4 above. 

The rationale behind the use of a hybrid stealth assessment 
framework is that student competencies can vary widely with 
regards to each concept’s correlation to specific questions in post-
test scoring methods, as well as each concept’s correlation to 
specific gameplay features or levels. By implementing both static 
and sequential variations of single-task and multi-task models, the 
long-term and short-term tendencies within each student’s 
gameplay is explored on a challenge and a student level. 
Additionally, the relationships between the individual 
competencies are modeled independently in the single-task 
approach, indicating whether certain concepts have no 
interweaving tendencies with other concepts within the gameplay. 
By utilizing a mixture of both single-task and multi-task models in 
this framework, multi-task models are only fit where underlying 
relationships exist between concepts, and concepts that have no 
underlying relationships with other concepts are optimally modeled 
by the single-task approach. The same concept applies to the 
sequential and static modeling: only concepts that have informative 
temporal trends across a student’s challenge-level gameplay data 

are modeled by the sequential models. All other concepts are 
modeled by the static models utilizing only student-level data. 

Table 3. Sequential model hyperparameters 
Regression Model Task Type Hyperparameters 

LSTM Single-Task Hidden units = 80 
Dropout rate = 0.33 

Bi-directional LSTM Single-Task Hidden units = 20 
Dropout rate = 0.33 

GRU Single-Task Hidden units = 80 
Dropout rate = 0.5 

Self-attention LSTM Single-Task Hidden units = 60 
Dropout rate = 0.33 

LSTM Multi-Task Hidden units = 100 
Dropout rate = 0.5 

Bi-directional LSTM Multi-Task Hidden units = 60 
Dropout rate = 0.33 

GRU Multi-Task Hidden units = 40 
Dropout rate = 0.33 

Self-attention LSTM Multi-Task Hidden units = 80 
Dropout rate = 0.5 

Figure 4. Hybrid, static, and sequential stealth assessment models. 
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Table 4. R2 value of single-task models based on held-out test set 
 Concept  
Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 Mean 
Elastic Net 0.210 0.169 0.176 0.300 0.348 0.232 0.145 0.185 0.073 0.138 0.048 0.098 0.052 0.163 0.094 0.162 
GBR 0.214 0.301 0.156 0.363 0.365 0.119 0.107 0.190 0.045 0.111 0.034 0.110 0.081 0.263 0.100 0.171 
RF 0.269 0.297 0.165 0.434 0.404 0.109 0.165 0.241 0.096 0.225 0.029 0.086 0.100 0.318 0.148 0.206 
LSTM 0.314 0.383 0.149 0.398 0.346 0.155 0.141 0.157 0.054 0.091 0.034 0.013 0.028 0.302 0.185 0.183 
Bi-LSTM 0.363 0.328 0.164 0.376 0.368 0.153 0.072 0.104 -0.029 0.075 0.009 -0.020 -0.094 0.273 0.262 0.160 
SA-LSTM 0.315 0.351 0.135 0.356 0.314 0.148 0.107 0.123 0.009 0.070 0.050 0.038 -0.030 0.306 0.218 0.167 
GRU 0.109 0.088 0.062 0.156 0.189 0.090 0.092 0.029 -0.158 0.017 0.022 0.004 -0.319 0.089 0.031 0.033 
 

Table 5. R2 value of multi-task models based on held-out test set 
 Concept  
Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 Mean 
RF 0.279 0.298 0.131 0.336 0.337 0.154 0.152 0.170 0.063 0.129 0.051 0.114 0.051 0.295 0.193 0.184 
Elastic Net 0.211 0.171 0.182 0.307 0.350 0.239 0.159 0.181 0.077 0.136 0.057 0.099 0.049 0.172 0.080 0.165 
LSTM 0.291 0.270 0.144 0.362 0.346 0.147 0.179 0.174 0.075 0.131 0.058 0.024 0.029 0.259 0.130 0.175 
Bi-LSTM 0.313 0.273 0.157 0.371 0.356 0.142 0.176 0.166 0.066 0.123 0.058 0.021 0.014 0.260 0.144 0.176 
SA-LSTM 0.320 0.302 0.176 0.361 0.352 0.173 0.201 0.133 0.023 0.110 0.017 0.034 -0.055 0.313 0.255 0.181 
GRU 0.309 0.241 0.152 0.352 0.350 0.156 0.199 0.169 0.061 0.127 0.050 0.048 0.036 0.275 0.040 0.171 
 

Table 6. Highest R2 values of optimal hybrid competency models 
 Concept  

Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 Mean 
Hybrid    0.363 0.383 0.182 0.434 0.404 0.239 0.201 0.241 0.096 0.225 0.058 0.114 0.100 0.318 0.262 0.241 

 

6. RESULTS AND DISCUSSION 
We report the results of the single-task models (Table 4) and the 
multi-task models (Table 5) for each concept in terms of R2. The 
highest R2 value produced for each individual concept is presented 
in Table 6, as this represents the performance of our proposed 
hybrid framework across all concepts. Figure 5 shows the 
performance of single-task and multi-task models compared to the 
performance of the optimal hybrid model (Left: comparison to 
single-task models, Right: comparison to multi-task models). The 
results are obtained based on each model’s performance on the 
held-out test set after being trained on the entirety of the training 
set. As noted above, the cross-validation splits applied to the 
training set were performed on a student level to prevent data 

leakage and were consistently applied to the set of machine learning 
techniques for a fair comparison across different models. For this 
work, Concept 10 was omitted because every student that took the 
post-test survey answered the question correctly, resulting in a 
dependent variable with zero variance, thus having no impact on 
the evaluation of our respective models.  
The best performing model in terms of average R2 value across all 
concepts was the single-task Random Forest; however, it was only 
the optimal model for 7 out of the 15 total concepts. The single-task 
bidirectional long short-term memory network performed the 
highest for two concepts, as well as the multi-task Elastic Net. The 
single-task LSTM and the multi-task Random Forest (RF), Bi-
LSTM, and self-attention LSTM were optimal models for one 
concept each. The Gradient Boosted Regression (GBR), single-task 

Figure 5. Performance of single-task and multi-task models compared to hybrid model performance. 
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Gated Recurrent Unit, and single-task SA-LSTM performed 
relatively poorly and were not the highest performing competency 
models for any of the concepts. The multi-task models were the 
most effective approach for five of the 15 concepts, while single-
task models were most effective for the other 10 concepts. 
Across both single-task and multi-task models, the GRU was the 
lowest-performing model, achieving an average R2 value of 0.102 
across all concepts. The results that variants of LSTMs (e.g., 
standard LSTMs, SA-LSTMs, Bi-LSTMs) achieved the highest R2 
score in predicting student competencies on at least one concept 
demonstrate that there exist complex, sequential patterns within the 
students’ gameplay data, which were effectively modeled by the 
LSTMs’ three gating units, but not by the two gating units enabled 
in GRUs. The SA-LSTMs, Bi-LSTMs, and standard LSTM models 
all returned relatively equal performances across the single-task 
and multi-task data, with average R2 values of 0.174, 0.168, and 
0.179, respectively. It appears that although the Bi-LSTM and SA-
LSTM capture various extra temporal contextual patterns not 
inherently captured by the standard LSTM, this information is not 
globally beneficial to all the competency models, explaining why 
neither model outperforms the standard LSTM on average. 
However, this result might also be attributed to the fact that the 
sequential data was only generated from 316 students, which may 
not be enough information for any of the more complex, sequential 
models utilizing a higher number of trainable parameters, to truly 
detect informative underlying temporal patterns.  
Selecting the single-task RF as the model for all concepts based on 
its average performance across all the concepts results in a mean R2 

value of 0.206. However, as illustrated in Table 6, by using our 
proposed hybrid system approach and selecting the optimal model 
for each individual concept, we can obtain a performance of 0.241, 
which is a 17.0% improvement compared to a homogenous 
framework typically used within stealth assessment. Our 
observation that the use of multiple models in the hybrid stealth 
assessment framework would induce higher performance than 
using a single model can be explained by the fact that static, 
sequential, single-task, and multi-task models were all selected as 
an optimal model at least once. 
Additionally, it should be noted that when considering only the 
concepts that mapped to multiple questions (i.e. 1-8, 13, 15-16), the 
deep-learning based sequential models produced a higher and more 
consistent performance (0.224 for single-task, 0.222 for multi-task) 
than the static models (0.214 for single-task, 0.210 for multi-task) 
on average. The multi-task SA-LSTM and the single-task RF both 
achieved the optimal performance across the multi-question 
concepts, with an average R2 value of 0.239. Random Forest may 
also perform relatively well as a competence model because it uses 
an ensemble approach, making it more robust against overfitting. 
One correlation that was noted is that the single-task models were 
the best technique for 75% (3 out of 4) of the concepts that had only 
one corresponding question in the post-test. This can potentially be 
attributed to the fact that each of the single-task models only models 
a single concept, without taking into account any of the linear and 
non-linear relationships that might exist between the gameplay 
features and the different competencies for a single student. 
Concepts that correspond to only a single question possibly contain 
a less complex relationship between the competency scores and the 
gameplay features, meaning that a single-task model is sufficient 
for that modeling task without simultaneously modeling any 
context related to competencies for other concepts, which can have 
a detrimental impact to the predictive tasks. In addition, each of the 
three optimal models for the single-question concepts were trained 

using static feature representations, suggesting that the student-
level features were the most informative to our model, and the 
temporal information did not yield greater predictive performance 
for the student competency models. 
However, we also observe that the single-task models were also 
frequently the highest-performing models for the multi-question 
concepts. Seven out of the 11 concepts that were represented by 
multiple post-test questions were optimally modeled using a single-
task model, either using static or sequential representations. Out of 
these 7 highest-performing models, 4 of them used static input 
representations. In a similar manner to the single-task models 
mentioned previously, this implies that student-level features were 
informative for a subset of the multi-question concepts, while the 
temporal context provided within the sequence modeling tasks was 
still beneficial to predicting students’ individual competencies for 
the three other concepts.  
Overall, the majority of optimal classifiers across the single-
question and multi-question concepts were single-task, static 
representations, as these account for 7 out of the 15 total concepts 
we evaluated. We then analyze the remaining models to investigate 
if there are any correlations between the concepts and the optimal 
models. The competency models for Concepts 1 and 2 were both 
modeled using sequential single-task models, two concepts that 
correspond to five combined post-test questions. Concept 1 deals 
with generating dominant traits using alleles, while Concept 2 deals 
with a similar task generating recessive traits using alleles. The 
similarity in these two concepts may be a possible reason that the 
highest predictive performance was achieved by the same modeling 
approach. The highest R2 values (0.434 and 0.404) occurred in 
Concepts 4 and 5, which are the two concepts that correspond to 6 
and 5 post-test questions, respectively. The correlation between the 
higher performance in these two RF-based competency models can 
be explained by the fact that ensemble models leveraging more 
single-task models contribute to improvement of the average 
predictive performance, which prevents a model that produces a 
less accurate prediction from heavily impacting the overall 
representative performance.  
The relative scores between concepts are highly correlated across 
modeling methods. In other words, the concepts that had a high R2 
score for one model also had a high R2 score for most of the other 
models. As shown in Figure 5, Concepts 4 and 5 have the highest 
R2 value irrespective of the modeling method, and Concept 14 is on 
the lower end of R2 values. This could be because of how well a 
gameplay feature predicts a concept is dependent on the type of 
concept. In other words, some concepts are harder to model 
irrespective of the modeling approach used for the model. 
Interestingly, concepts that contained only a single question (i.e. 9, 
11-12, 14) produced noticeably low R2 values. These single-
question concepts produced an average R2 value of 0.046 across all 
the models. Because there was only a single question associated 
with the concept, each competency score was entirely dependent on 
students’ single response to the question, which could result in a 
reliability issue in the competency scores due to students’ behaviors 
related to guess and slip as well as a higher variance in the scores, 
together possibly attributing to these low R2 scores.  
A chart of the average student score for each concept based on their 
post-test performance is shown in Figure 6 below, distinguishing 
between single-question and multi-question concepts. The average 
student performance on multi-question concepts was markedly 
higher than for single-question concepts, with students achieving 
scores of 0.672 and 0.507, respectively. It was noted that the 
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average students’ scores on the questions mapped to a single 
concept was remarkably low compared to an overall student score 
of 0.661 across all questions. This factor may also have impacted 
the predictive performance of the competency models compared to 
competency models that encounter fairly consistent or accurate 
student answers to post-test questions, as the questions 
corresponding to lower student scores introduce higher variance 
into the resulting competency scores used to train the models.  
Finally, we investigate the impact that overlapping concepts may 
have on the performance of the classifiers. A concept is considered 
to be “overlapping” if it shares a correlated question with one or 
more different concepts. Out of the 16 concepts, 6 concepts were 
found to be “completely” overlapping; that is, every question 
associated with that concept was also associated with another 
concept. One concept was “partially” overlapping, indicating that 
only a portion of the associated questions were also mapped to 
another concept. The remaining concepts were the only ones that 
corresponded with their own associated question or group of 
questions. Student scores were significantly higher for overlapping 
concepts as opposed to non-overlapping questions, achieving 
average scores of 0.718 and 0.550, respectively. This trend is also 
present in our competency models, as the optimal models in our 
hybrid framework yield R2 values of 0.339 (overlapping) and 0.157 
(non-overlapping) on average. Surprisingly, the optimal models for 
the overlapping concepts were primarily single-task models, with 
the exception of one model. This indicates that multi-task modeling 
across all the concepts including both relevant and irrelevant 
concepts is actually detrimental in terms of achieving higher 
predictive performance. Thus, a promising future direction is to 
investigate multi-task learning performance by grouping relevant 
concepts and separately modeling related concepts only. 

In this particular application domain (genetics), concepts C1 and 
C2 are foundational to eight other concepts, as they describe a 
common pattern of gene variant behavior in inheritance of traits. 
Some concepts are related variously to other concepts, e.g., C5 
requires deductive reasoning based on C1, C2, and C15, while it 
also serves as a prerequisite for C7, which allows determining gene 
variants for ambiguous traits. Alternatively, concepts C9-C12 focus 
primarily on molecular genetic inheritance and are not as tightly 
related to other concepts. This example of varying connections 
within genetics-related concepts illustrates the broader application 
of our hybrid model and why it demonstrates promise for other 
domains.  

7. CONCLUSION 
Stealth assessment holds considerable potential for game-based 
learning. Recent work exploring stealth assessment has typically 

employed a single machine learning technique to devise 
competency and evidence models. This approach operates under 
the assumption that each student competency can be optimally 
modeled by the same learning algorithm that yields the highest 
predictive performance on average. However, this may not always 
be the case, as student competencies often have varying 
interleaving relationships with each other or even underlying 
complexities within itself. 
In this work, we demonstrate the effectiveness of a hybrid stealth 
assessment framework consisting of a combination of single-task 
and multi-task models, using static and sequential features to 
represent student gameplay data. We evaluate our stealth 
assessment framework using a game-based learning environment 
and predict student competencies as measured by a post-
test. Results indicate that a heterogeneous approach to stealth 
assessment modeling techniques induces higher results across all 
concepts when compared to the single-model baseline evaluations. 
Selecting a single competency model for all concepts based on its 
average performance across all the concepts is a common practice 
in stealth assessment frameworks. However, the proposed hybrid 
system using the optimal model for each individual concept returns 
a performance that is substantially higher than a homogeneous 
framework. In addition to static, single-task modeling, the 
sequential, multi-task modeling approach can adapt to multiple 
concepts by effectively capturing sequential context underlying 
individual students’ gameplay behaviors, as well as simultaneously 
modeling various competencies that were manifested throughout 
the gameplay sessions. The use of all of the aforementioned 
modeling techniques provides a multi-dimensional approach that 
has been demonstrated to be a step forward in improving stealth 
assessment techniques. 
There are a number of future directions that can be investigated to 
further improve the performance of the hybrid stealth assessment 
framework. Multi-task learning becomes increasingly difficult as 
the number of tasks increases and training deep sequential models 
for 16 tasks using only 316 data samples is likely a limiting factor 
in the multi-task models’ performances. To gain further insight into 
the use of multi-task learning as a competency modeling technique, 
the hybrid stealth assessment framework presented in this work 
should be evaluated on comparatively larger datasets. This also 
enables the evaluation of the hybrid framework’s ability to 
adequately translate to other student populations. Alternatively, 
different ways to reduce the number of tasks can be investigated. 
Due to the hierarchical, interweaving relationships within both 
individual concepts and between concepts and various questions, it 
will be worthwhile to investigate other sophisticated hierarchical 
modeling methods such as Bayesian hierarchical modeling or 
clustering methods, as well as refine the post-test questions and the 
mapping to the concepts to more reliably assess students’ 
competency for each concept. Additionally, the feature engineering 
process performed for both static and sequential models can evolve 
significantly, possibly inducing higher performance from the 
competency models. Finally, it will be instructive to investigate the 
generalizability of this framework across different learning 
environments, contexts, and student populations.  
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ABSTRACT
Collaborative problem solving behaviors are difficult to iden-
tify and foster due to their amorphous and dynamic nature.
In this paper, we investigate the value of considering early
class period behaviors, based on small group development
theory, for building predictive machine learning models of
collaborative behaviors during problem solving. Over 12
weeks, 20 small groups of undergraduate students solved
problems facilitated by a digital joint problem space tool on
tablet computers, in the 50-minute discussion component of
an engineering course. We annotated 16,270 video clips of
groups for collaborative behaviors including task relatedness,
talk content, peer interaction, teaching assistant interaction,
and tablet usage. We engineered two subsets of features
from tablet log file data: onset features (early collaborative
problem solving behavior characteristics calculated from the
first ten minutes of the class) and concurrent features (more
general collaborative behaviors from the whole class period).
We compared accuracy between the onset, concurrent, and
onset + concurrent features in machine learning models. Re-
sults exhibited a U-shaped pattern of accuracy over class
time, and showed that onset features alone could not be used
to effectively model groups’ collaborative behaviors over the
entire class time. Furthermore, analysis did not show sup-
port for significant gain in accuracy when onset features were
combined with concurrent features. Finally, we discuss impli-
cations for studying collaborative learning and development
of software to facilitate collaboration.

Keywords
Collaborative Problem Solving, Computer-Supported Col-
laborative Learning, Predicting Collaboration, Small Group
Development

1. INTRODUCTION
Collaborative problem solving consists of the communication
and coordination of shared effort between team members
toward a common desired goal [19, 23, 26]. Though it has
been identified as a critical skill for students in the classroom
[11, 34, 25], it is difficult to identify effective behaviors and
nurture them, since the nature of collaboration and teams can
be amorphous [48] and dynamic [43]. Education and learning
sciences researchers have advocated for qualitative coding
of video data as a means to understand the complexities of
learning behaviors [24], and have applied these methods to
study collaborative behaviors and the development of col-
laborative practices in courses [35]. Computers can further
support collaborative learning research through collabora-
tive learning software, collaborative games, and digital joint
problem spaces—“a socially-negotiated set of knowledge ele-
ments, such as goals, problem state descriptions and problem
solving actions” [44]—the resulting log data of which have
been widely used with machine learning and data mining
approaches to uncover hidden patterns of collaborative be-
haviors [31, 1, 37, 12]. Recent technological advances have
also given way to multimodal approaches, using eye-gaze
tracking, bodily motion, and physiological data to identify
collaborative states [28, 40].

Despite such diverse approaches to detect and identify col-
laborative behaviors in learning contexts, the evolution of
collaborative practices in student groups has not been closely
investigated. Understanding the evolution of collaboration
and its impact on methods for measuring collaboration is cru-
cial, however. What constitutes collaborative behaviors may
change throughout a learning session [10], and thus measure-
ment may need to be adapted as well. In this paper we focus
on the relationship between measurement and behavioral
changes over time within classroom sessions. In particular,
we leverage organizational theory about the sequential na-
ture of small group development to inform research on how
to measure and predict collaboration via machine learning
in the presence of inevitable shifts in behaviors throughout
collaboration stages.

The rest of the paper is organized as follows: we first discuss
the small group development theories on structured, sequen-
tial group development which motivated our work, then relate
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them to collaborative problem solving in the classroom to
define our research questions and respective hypotheses. We
then introduce the context of our study, including the col-
laboration tool, behavior coding, data processing, and model
building. Next, we present our findings and close with an
interpretation of our results and note limitations and future
work.

1.1 Small Group Development
Research in organization and management fields on under-
standing how collaborative behaviors contribute to small
group dynamics and development goes back several decades.
Perhaps most notably, Tuckman’s 1965 meta-analysis of ther-
apy and human relations training groups presented the form-
ing-storming-norming-performing (and later a fifth stage,
adjourning [50]) model [49]. The model outlined the exis-
tence of a sequential, stage-based trajectory of small group
collaboration, in which a group must fulfill one stage before
advancing to the next. Tuckman’s five model stages were
described as (1) orientation to task (forming), (2) emotional
response to task demands (storming), (3) open exchange of
relevant interpretations (norming), (4) emergence of solu-
tions (performing), and (5) separation (adjourning). This
has led to decades of efforts to better understand the stages
in various settings, including management [36], education
[51], and medical training [47].

Tuckman’s 5-stage structure of group development was fur-
ther supported by Cassidy’s 36-book meta-framework study,
which aimed to clarify group development for practical use
by examining group development in therapy, education, and
management settings [17]. Though some scholars have pre-
sented theoretical models with more or fewer stages to group
development [46, 21, 54], others have supported the five-
stage model with differently termed, but analogous stages to
Tuckman’s model [16, 22, 8].

In nearly all proposed theoretical models of small group devel-
opment, the first stage is defined as the task orientation stage
[49, 16, 22]. During this stage, group members contextual-
ize the task within the given parameters and communicate
regarding the manner in which it will be accomplished [49].
While“ground rules”are set during this stage, communication
about task orientation continues on some level throughout
the collaboration process. Moreover, in problem solving,
communication with references to others’ ideas rather than
independent solution paths has been identified as an impor-
tant marker of shared task alignment, or “establishment of
a collaborative orientation toward problem solving” [4]. In
this study, we briefly analyze transitions across the stages
of small group development during problem solving in class-
rooms. However, we focus much more closely on the first
stage, orientation to task, since it has been shown to have a
significant positive effect on achievement [45]. The first stage
characterizes cooperative orientation and the motivation to
collaborate, which has a strong relation to the quality of
collaboration [13].

1.2 Contributions and Novelty
This paper considers the role of early group behaviors in
collaborative problem solving. We investigated whether
explicitly incorporating early group behaviors as features
improves machine learning predictions of collaboration and

analyze how model accuracy evolves across time and stages
of collaboration.

We used qualitative coding of collaborative behaviors on
video data to measure collaboration. We then predicted
those behaviors from features extracted from the action log
files of a digital collaboration tool (run on tablet computers)
used by undergraduate students in an introductory mechani-
cal engineering course at a large Midwestern U.S. research
university. We created various feature subsets and built
corresponding machine learning models to evaluate the pre-
dictive accuracy of early group behaviors versus behaviors
from later on in class periods. Assuming the presence of
sequential, evolving collaborative behaviors in small groups,
and the importance of early collaborative behaviors, machine
learning models created from considering class behaviors as
a whole may potentially be improved by accounting for early
behaviors. For example, a group of students who fail to form
a successful collaborative dynamic early on may struggle
throughout class, whereas a group of students who exhibit
high collaboration early on may be more effective in later
stages. Consequently, we analyze whether a model built on
features from class behaviors as a whole would have variable
performance for collaborative behaviors predictions over the
different segments of the class period, which align with the
different stages of group development.

We aim to understand how effective collaborative behaviors,
relating to orientation to task, during earlier stages may
influence a group’s collaborative behaviors in the future. As
such, we also compare the performance a model solely built
from such earlier features with one built from features of
behaviors from all current and past in-class behaviors, not
just early-stage behaviors.

We approach the aim of this paper by formulating and ad-
dressing several research questions:

RQ1 How does the predictive accuracy of collaborative be-
haviors vary across different periods of a 50-minute class?

Hypothesis: We expect stages of collaboration that are domi-
nated by tablet computer interaction behaviors (e.g., reading,
drawing) will be more successfully predicted than those dom-
inated by discussion, and that the changing base rates of
collaborative behaviors over time will influence classification
accuracy [29].

RQ2 Can early class collaborative behaviors alone be used
to effectively model and predict collaborative behaviors of
the entire class period?

Hypothesis: We expect early class behaviors to predict the
quality of collaboration later in class if and only if groups’
collaboration quality remains static or consistently mirrors
early collaboration.

RQ3 Are collaborative behavior prediction models improved
through emphasizing early class collaborative behavior fea-
tures?

Hypothesis: We expect prediction models will be more ac-
curate later in class periods if early class behaviors capture
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groups that are consistently collaborative or consistently not
collaborative.

2. RELATED WORK
In this study, we utilized video coding methods along with
machine learning approaches for analyzing action log data
to study temporality. Work in computer-supported collab-
orative learning (CSCL) has highlighted the importance of
considering temporality in collaboration, and Reimann has
argued that“the main object of analysis in CSCL is a process—
something that unfolds over time” [42]. For example, Mercier
et al. examined through video coding and counting how
the development of collaborative practices in engineering
courses evolve over four weeks, and saw that patterns of
interactions, such as conversation and workflow, change over
time [35]. Others highlighted the value of utilizing more
complex quantitative methods over video coding methods to
consider temporality in analyzing problem-solving processes
in computer-supported collaboration settings, as it can reveal
aspects of group interactions that coding methods cannot
reveal [32].

Collaborative learning may also be effectively analyzed via
the action logs, discourse data, and gameplay data of digital
tools and serious games, which are able to provide fine-grain
recollections of the learner’s interactions with the respective
software. Educational data mining researchers have applied
supervised [41] and unsupervised [14, 31] machine learning
techniques to better understand collaboration and to inform
the design of interventions to support collaborative learning
through such means as software prompts [31] and content
creation suggestions [52]. Additionally, Paquette et al. have
highlighted the need to support students during collabora-
tive learning by considering the role of the instructor in
facilitating student collaboration [38]. As such, instructor
dashboards have been explored as ways for instructors to
more easily gauge and analyze student collaboration across
multiple groups [3, 33]. A central aim of our study has been
to inform better instructor interventions for facilitating col-
laboration through insights gained from analysis of action
log data.

3. METHODS
This study utilizes data collected from a design-based imple-
mentation research project which aims to better facilitate
collaboration in engineering problem solving through the
analysis of video and interactions from engineering classes.
The project team has developed a student-facing tool that fa-
cilitates student group collaboration through a synchronized-
per-group shared digital environment (Figure 1) on tablet
computers, which group members can use to create and dis-
play their work. During use, we collected two types of data:
student interactions on the tool stored in log files—detailing
actions taken by individual students such as writing, drawing,
or editing—and video data from cameras set up around the
classroom. One of the key goals of the tool is to scale to large
classrooms where cameras are unlikely to be consistently
available; thus, we utilize video data to collect ground truth
labels, but rely only on logged tablet actions for collaboration
prediction.

Data in this study came from the use of the tool in Fall 2017
during the discussion component of an undergraduate intro-

Figure 1: One example of the result of collaborative
problem solving through the tool’s shared digital en-
vironment. The interface allows students choices of
different colors and tools to write, draw, and create
figures.

ductory mechanical engineering course at a large Midwestern
U.S. research university. The research team worked closely
with faculty and teaching assistants (TAs) to design tasks
suitable for collaboration and in line with the intended learn-
ing outcomes from the class. The tasks were independent
from week-to-week and did not build on one another, and the
students were not graded on completion by the end of each
class period. The tasks were represented in the tablet tool
as worksheets with variable number of pages, which included
problem descriptions and space to work out solutions. Data
were collected across 12 weeks of class from 20 groups of
approximately 4 students (group sizes varied from week to
week based on attendance).

While students interacted on tablets using the interface shown
in Figure 1, TAs present in the classroom viewed student
progress on their own tablets (Figure 2). The TA tablets
showed students’ editing positions in the worksheets, and
allowed TAs to join any group as a non-interactive participant
to see students’ work in detail. Our current work seeks to
augment the TA-facing tool via predictions of various markers
of collaboration quality made by machine learning models.
This feature enables TAs, who may lack extensive training
in assessing and promoting collaboration, to identify groups
that are not collaborating well and intervene to encourage
collaboration.

3.1 Behavior Coding Process
Videos of each group’s interactions (Figure 3) were captured
by high-angled cameras and synchronized with audio data
captured by microphones positioned near each group; addi-
tionally, an overhead fisheye lens camera captured the entire
class, including events such as the TAs’ interactions with
groups. The collected video data were annotated (coded) at
the group level by two trained annotators with an annota-
tion scheme adapted from previous work on collaborative
behavior annotation [38] to define group activity in terms
of task relatedness, peer verbal interaction, TA interaction,
talk content, and tablet usage.

Previous research on predicting collaboration from interac-
tions with software has involved annotating similar content
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Figure 2: Example screenshot of a teaching assis-
tant’s view of a classroom with five groups of stu-
dents. The top graph indicates activity over time
for each group, with the selected group (#4) high-
lighted in purple. Bars on each worksheet thumbnail
show the page each student is viewing and their in-
dividual levels of activity.

Figure 3: An example of a group working collab-
oratively on a problem through the tool on tablet
computers. Videos of such groups were recorded
and qualitatively coded through a coding scheme
adapted from Paquette et al.’s work [38].

in video clips at 60-second intervals [38]. In this study, the
presence of collaborative behaviors (expanded below) were
annotated at 20-second video clips, after trials of the anno-
tation process at different clip duration of 10, 20, 30, 40,
and 60 seconds. Annotators determined 20 seconds to be a
reasonable balance—10 seconds was too brief to confidently
observe the presence of collaborative behaviors, while 30 sec-
onds was too long and often led to the observance of multiple
collaborative behaviors within the same video clip. Further-
more, through our trials at varied clip lengths, additional
identifiable behaviors emerged that were better identified
at the current 20-second coding clip length rather than the
longer 60-second clips annotated in previous work. A total of
16,270 clips were annotated for the presence (annotated as 1),
or absence (0) of the following set of collaborative behaviors:

• Task relatedness: At least one of the group members ap-
pears to be on task (e.g. two students solving problems
on the tablet).

• Peer verbal interaction: Verbal interaction is present
between group members.

• TA class interaction: TA is talking to the whole class
(e.g., class-related announcement, addressing a fre-
quently asked question).

• TA group interaction: TA is verbally interacting with
at least one of the group members.

• Task talk : Audible talk content in the group is related
to solving the task.

• Other talk : Audible talk content in the group is not
related to solving the task.

• Tablet movement : At least one of the group members
is moving the tablet to initiate (and to end) sharing of
the screen content with others.

We measured inter-rater reliability via Cohen’s kappa [18]
and percent agreement on a subset of 2,125 video clips. Ta-
ble 1 shows these reliabilities. All labels except Other talk
(kappa = .651) achieved kappa = .8 or higher, indicating
substantial agreement [18]. Given this agreement, the two
annotators divided the remaining 14,145 clips and annotated
them individually.

Table 1: Inter-rater reliability for a sample of 2,125
video clips in this study.

Behavior Base rate Agreement Kappa

Task relatedness .954 98.6% .840

Peer verbal interaction .501 91.7% .833

TA class interaction .024 99.5% .898

TA group interaction .150 98.3% .932

Task talk .608 91.2% .816

Other talk .072 95.3% .651

Tablet movement .019 99.2% .801
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Of the qualitatively coded behaviors, we considered six spe-
cific behaviors for this study: on-task (derived directly from
Task relatedness), on-task-no-interaction (from a com-
bination of Task relatedness and Peer verbal interaction),
peer-interaction (from Peer verbal interaction), silent
(from Task talk and Other talk), task-talk (from Task talk),
and ta-class (from TA class interaction). These six be-
haviors were those which we believed would be best suited
for investigating the evolution of collaboration with consid-
eration of the actions of both the TA and students during
a typical class period for the course. We did not include
tablet movement due to the low base rate during annotation
and questionable value for characterizing collaboration. We
deemed on-task-no-interaction important for distinguish-
ing collaboration from individual work, and while it was not
explicitly annotated, it was calculated from a combination
of two different behavior labels (Task relatedness and Peer
verbal interaction).

3.2 Data Processing
The tablet tool collected student action log files, one per
group, during each class session. Relevant behavior data
were cleaned and stored based on expected suitability for
predicting collaborative behaviors on the tool. These types of
data included event types, such as scrolling, drawing, object
creation (inserting one of a few built-in graphics), modifying
drawings or objects (removing or undoing), as well as the
size and position of edits made, object geometry changes
(e.g., moving, resizing), page number, scroll bar position, and
changes to drawing color.

3.3 Machine Learning Models from Feature
Subsets

We aligned annotated behaviors with the student action log-
files to allow synchronized analysis between the two data
sources. We created three features sets: (1) onset features,
which characterized collaborative behaviors found in and cal-
culated within the first ten minutes, (2) concurrent features,
which captured collaborative behaviors based on the most
recent 60 seconds as well as all cumulative data, and (3)
combined features, which combines both subsets. Student
behaviors were recorded individually within each group’s log
file. However, we primarily extracted features intended to
characterize whole-group behaviors, in line with the group-
level video annotation scheme and the overall project goal
of improving collaboration rather than individual learning
behaviors.

3.3.1 Feature Engineering
Designing features to extract took place over the course
of several sessions involving the video annotators and re-
searchers, who discussed behaviors observed in the classroom
and how they might be reflected in tablet-based behaviors.

We extracted 89 features from the action logs using the full 50-
minutes of the class duration, which we refer to as concurrent
features. For these features, we used a combination of the
behaviors that annotators had observed to be related to
collaboration, as well as those characteristics we hypothesized
to be more broadly associated with effective collaboration.
For example, we created features such as: the mean distance
between consecutive edits of the same students (since it may

distinguish working in one area vs. jumping around rapidly),
total number of unique document pages viewed (a higher
number may symbolize more exploration of the task), and
maximum distance between concurrent edits of the same
page but made by different students (may symbolize task
division).

Similarly, we extracted 21 features from the action logs cal-
culated from the first ten minutes of class, which we refer to
as onset features. Assuming the five stages of small group de-
velopment apply in this context, we approximately split each
50-minute class period into stages by dividing into fifths. We
expected each class period to somewhat reset the collabora-
tion process, since there was a new task each week—meaning
a new corresponding task identification stage (storming), as
well as some variation in the group, in number and person,
due to fluctuating attendance. We specifically kept in mind
the characteristics of the task identification stage, such as
verbal and written communication for contextualizing the
problem and setting “ground rules”, as well as behaviors such
as reading or using visual figures to understand (but not
necessarily solve) the exercises. To that end, we created
features such as: the proportion of the first ten tool objects
created by the group being the pre-made available diagrams
(a higher proportion may mean more complete solutions early
in class), the longest time between object additions and ed-
its (longer pauses between actions may characterize more
verbal communication), and the cumulative number of page
switches (switching back and forth between pages may signal
wanting to fully understand the task at hand by referencing
material on other pages).

3.3.2 Machine Learning and Cross-Validation
We used the random forest classifier in the scikit-learn Python
library to build models from each respective feature subset
[39]. We selected random forest due to its effectiveness in
dealing with high dimensional feature spaces, and reduc-
ing overfitting [27, 9]. It is also able to deal with highly
correlated features, and provides feature importance mea-
surements which we analyzed to find the features that were
most predictive of collaboration. We cross-validated models
via leave-one-group-out (each of the 20 groups used as the
testing set once), and tuned hyperparameters using nested
cross-validation and grid search within training data only.
Hyperparameters consisted of the proportion of features to
consider for each tree branch (0.25, 0.5, 0.75, or 1.0) and
the minimum number of instances required in a tree node to
create new branches (2, 4, 8, or 16).

Table 4 presents the values of rpb, kappa, and area under the
receiver operating characteristic curve (AUC) of the models,
cross-validated over all data ignoring the five collaboration
phases. We decided to use the point biserial correlation coef-
ficient, rpb, of the true and predicted values as the primary
accuracy metric, since the extreme base rates of on-task
and ta-class behaviors (and the changing base rates of other
behaviors over collaboration phases) led to unwanted sensi-
tivity to the threshold for kappa calculation. Kappa scores
(without threshold tuning) were not necessarily representa-
tive of accuracy changes as much as poorly-chosen decision
thresholds. Table 4 shows that the pattern of AUC values
across behavior labels was similar to rpb; however, rpb allows
straightforward computation of confidence intervals, enabling
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Table 2: Top ten most important features for each of the six considered collaborative behaviors from the
combined features (onset + concurrent) random forest model. Common features in all six behaviors are in
bold.
ON-TASK ON-TASK-NO-INTERACTION PEER INTERACTION

1. maximum seconds of no actions

2. cumulative ratio of 2nd most to most active

3. cumul. number of page changes

4. number of actions

5. ratio of least to most active student

6. proportion of students acting

7. cumul. number of scroll position changes

8. number of unique pages viewed

9. max proportion of students on different pages

10. cumul. number of actions

1. number of actions

2. cumul. number of actions

3. cumul. distance drawn

4. maximum seconds of no actions

5. cumul. mean distance of same student edits

6. cumul. number of scroll position changes

7. cumul. ratio of least to most active student

8. cumul. standard deviation of distance scrolled

9. cumul. number of page changes

10. cumul. ratio of 2nd most to most active

1. cumul. number of page changes

2. cumul. distance drawn

3. cumul. number of actions

4. cumul. ratio of 2nd most to most active

5. cumul. number of scroll position changes

6. cumul. mean distance of same student edits

7. cumul. number of tool changes

8. cumul. ratio of least to most active student

9. cumul. number of add object

10. cumul. mean y-axis value of edits

SILENT TASK-TALK TA-CLASS

1. cumul. number of actions

2. cumul. number of selection changes

3. cumul. number of add object

4. cumul. distance drawn

5. cumul. number of page changes

6. cumul. number of tool changes

7. cumul. mean distance of consecutive edits

8. cumul. ratio of 2nd most to most active

9. maximum seconds of no actions

10. cumul. number of scroll position changes

1. cumul. number of page changes

2. cumul. number of selection changes

3. cumul. distance drawn

4. cumul. number of actions

5. cumul. number of add object

6. cumul. number of tool changes

7. cumul. number of scroll position changes

8. cumul. mean distance of same student edits

9. maximum seconds of no actions

10. cumul. ratio of 2nd most to most active

1. cumul. number of actions

2. cumul. standard deviation of distance scrolled

3. cumul. number of scroll position changes

4. cumul. maximum seconds of no actions

5. cumul. proportion of students scrolling

6. cumul. number of page changes

7. cumul. distance drawn

8. cumul. number of add object

9. cumul. distance scrolled

10. cumul. number of selection changes

the statistical comparisons of models that we include in this
paper. We thus proceeded with rpb as the primary accuracy
metric.

4. RESULTS
Within a 50-minute class period, we surmised that the five
stages of a collaborative problem-solving team could be ap-
proximated through five equal 10-minute segments. However,
if base rates of each behavior vary over time, model accuracy
could as well [29]. Thus, before answering our research ques-
tions, we visualized the base rates of each behavior to help
inform the results.

4.1 Base Rates Over Time
The trajectories of average base rates of the collaborative
learning behaviors across these five segments of class are
shown in Figure 4. Across behaviors, we observed a common
pattern: the largest changes in base rates were from the
first 10-minute segment to the second. The magnitude and
direction of the changes in base rates during this transition
were variable between the different behaviors, though some
patterns can be assumed to be closely correlated. For exam-
ple, the behaviors ta-class and silent followed a similar
negative trend in magnitude, since students across groups are
more likely to be silent when the TA is addressing the entire
class at the start of the class period, when task objectives or
announcements are likely to be made. Similarly, on-task,
peer-interaction, and task-talk tended to increase dur-
ing class periods, since on-task behavior is likely to involve
more instances of peer-interaction and task-talk be-
havior. on-task-no-interaction showed a comparatively
consistent base rate throughout the class period, perhaps
being influenced by other behaviors in both directions with
similar magnitude.

As base rates become more imbalanced (closer to 0 or 1),
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Figure 4: Average base rates of annotated behaviors
across segments of each class period (averaged across
class periods).

classification problems tend to become more difficult because
fewer data points are available from one category of the
data, and because accuracy metrics tend to become less
effective [29]. Hence, the patterns in Figure 4 are important
to consider when interpreting the results of the research
questions.

4.2 RQ1: How does the accuracy of predict-
ing collaborative behaviors vary across pe-
riods of a class?

To address this research question, we focused on the accuracy
of the concurrent features model. This model has similar
accuracy to the combined features model (see RQ3), and is
more parsimonious since it has 89 features, compared to 110
features from the combined model. Thus, it will likely be
the model of choice to drive predictions in future versions of
the TA-facing tablet tool, and we focus RQ1 on this model.
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Figure 5: Concurrent features model accuracy
shown over time throughout five segments of classes.
Accuracy in this case consists of point-biserial corre-
lation coefficients with 95% confidence intervals in-
dicated by shading or by error bars for labels where
base rates were too imbalanced (0% or 100%) to al-
low prediction in every class segment.

From the overview of the model performance in Figure 5,
a general U-shape pattern can be observed across the class
period, where the second peak in accuracy toward the end
of class never quite reached the initial accuracy from the
first ten-minute segment. This trend differed for on-task-
no-interaction, which showed a rapid drop after the first
10-minute segment, from 0.351 to 0.062, and did not later in-
crease. Predictions for on-task-no-interaction and silent
also briefly dropped below chance level during the second
half of the class period.

4.3 RQ2: Can early class collaborative behav-
iors alone be used to effectively model and
predict collaborative behaviors of the en-
tire class period?

As shown in Figure 6, the onset features model had overall
lower accuracy across the class periods compared to the
concurrent features model (Figure 5). The absence of the U-
shaped pattern from the concurrent features model (Figure 5)
suggests that the first 10 minutes of collaborative behaviors
may have been sufficiently similar to be captured by a model
with features created from behaviors from the entire class
duration, but that those behaviors were not the same as the
last 10 minutes. With the exception of silent, predicted
behaviors showed a trend toward the lowest accuracy at
the end of class. However, peer-int remained significantly
above chance for the first 30 minutes of class, indicating
that groups’ verbal interactions were—to a certain extent—
characterized throughout most of the class period by their
first 10 minutes of logged behaviors. When compared to
the accuracy pattern for the concurrent model, (Figure 5),
accuracy dropped below chance level more often, with on-
task-no-interaction, task-talk, and silent behaviors
predicted at below chance level for the latter half of the class
period.
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Figure 6: Point-biserial correlation coefficients with
95% confidence intervals by class segment for the
onset features model.

4.4 RQ3: Are collaborative behavior predic-
tion models improved through the addi-
tion of early class collaborative behavior
features, leading to a greater emphasis on
the early class period?

The lower and upper 95% confidence interval bounds of the
point-biserial correlation values of the models are presented
in Table 3. Among the confidence intervals there was overlap
for concurrent vs. combined models, but not for onset vs.
concurrent and onset vs. combined (with the exception of
ta-class for onset vs. concurrent, not drastically so), high-
lighting that there was no clear significant difference in the
models from the addition of onset features to the concurrent
features model. This is further supported in Figure 7, which
shows that the trajectory of the combined model accuracy
closely resembles the concurrent features model (Figure 5).
Table 4 also shows that in most cases the combined feature
set was not notably better than concurrent features alone
when considering overall accuracy across class time segments,
in terms of rpb, kappa, or AUC. Feature importance were
analyzed and are presented in Table 2. Three common fea-
tures were found in all six behaviors: cumulative number of
set page, cumulative number of scroll position changes, and
cumulative number of rows.

5. DISCUSSION
We analyzed automatic detection of collaborative problem
solving in classrooms through a lens informed by small group

Table 3: Comparison of the 95% confidence intervals
of the models’ point-biserial correlation coefficients,
rpb

Onset Concurrent Combined

on-task .446, .492 .506, .553 .522, .569

on-task-no-int .009, .040 .125, .155 .117, .146

peer-int .075, .104 .247, .276 .220, .250

silent .080, .112 .264, .295 .269, .300

task-talk .091, .119 .410, .438 .393, .421

ta-class -.005, .022 .012, .036 .022, .050
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Figure 7: Point-biserial correlation coefficients with
95% confidence intervals by class segment for the
combined features model.

development theory. Based on the five stages of small group
development and the importance of the early periods of col-
laboration, we were curious if explicitly considering early class
behaviors was beneficial for predicting a team’s collaborative
behaviors over a class period. We annotated collaborative
behaviors from 16,270 video clips of an undergraduate engi-
neering course as ground truth for behaviors, and compared
the accuracy of a machine learning model built from onset
features (early collaborative behaviors calculated from the
first ten minutes of class) to a model from concurrent features
(general collaborative behaviors over the whole class period).
In this section, we discuss the implications of our findings.

5.1 Collaboration Across Class Periods
We investigated whether evidence of the five stages of group
development could be seen in the concurrent model accuracy
when examined in 10-minute periods of a 50-minute class.
Our experimental results showed a U-shaped accuracy curve
for a majority of the considered collaborative behaviors, with
lowest accuracy in the middle 30 minutes of class. The
base rate trends (Figure 4) may be one explanation for the
observed pattern, because a majority of the behaviors also
had U-shaped or inverse U-shaped base rate patterns, which is
indicative of unbalanced classes. An exception to the U-shape
for accuracy and base rates was on-task-no-interaction,
which had the highest accuracy at the beginning of class
and lowest by the end. One possible explanation for this
may be that the students in the first 10 minutes of the class
were reading or individually thinking about the task, and
transitioning to become more verbal and interactive as the
class goes on—which can be approximately observed in the
overall base rate pattern.

In terms of the small group development theories, the U-
shape may be interpreted as evidence for the existence of
three, as opposed to five, distinct stages: a beginning, a
longer middle, and an end. Three stages is in line with
Spitz and Sadock’s three-stage model from observing the
training of nursing students [47]. According to the model,
stage one is characterized by anxiety-related emotions, such
as curiosity and confusion, stage two is a period of trust and
cohesiveness, and stage three is disengagement and anxiety
about the group conclusion.

It is difficult to determine whether these stages were captured
in our analysis, however, since there were some notable dif-

Table 4: Accuracy comparison of the onset features,
concurrent features, and combined features (onset +
concurrent) models.

Behavior Model rpb Kappa AUC

Onset .470 .469 .737

on-task Concurrent .532 .529 .746

Combined .547 .545 .754

Onset .025 .025 .512

on-task-no-int Concurrent .192 .140 .551

Combined .175 .131 .549

Onset .093 .090 .545

peer-int Concurrent .266 .261 .630

Combined .239 .235 .617

Onset .096 .096 .549

silent Concurrent .306 .279 .620

Combined .307 .284 .623

Onset .115 .105 .558

task-talk Concurrent .445 .424 .699

Combined .422 .407 .692

Onset .011 .008 .503

ta-class Concurrent .064 .024 .507

Combined .095 .036 .510

ferences in context and aim between our study and Spitz and
Sadock’s research. In our study, we did not set out to capture
or identify emotions during collaboration, since the focus in
data collection was on annotating collaborative behaviors and
capturing action data, such as tool use, scrolling, and editing.
Furthermore, while previous work has developed approaches
for detecting student affect through applying computer vision
techniques to detect facial expressions and bodily movements
on video [15, 53, 6, 7], our study used video data as means
to obtain ground truth data for collaboration rather than
emotion. A central goal of our research is to enable analysis
for real-time collaboration intervention in the classroom, and
thus we analyzed ways to detect collaboration using solely
action log data, which can be applied in large and varied
classroom environments even when sensors are not available.
Current methods for accurately capturing emotion during
learning largely rely on video or multimodal methods [5,
20], and it is difficult to envision classrooms with access to
multimodal instruments and camera systems designed for
analyzing emotion and collaboration.

5.2 Role of Early Collaborative Behaviors
Our hypothesis that early class behaviors could effectively
predict the quality of collaboration later in class was not
supported by our findings. While we created onset features
with characteristics of task identification of problem solving,
such as verbal communication, deliberation, and reading,
through features such as handwriting on the tablet, pauses
between edits, high number of object removals, frequent page
switches, and problem diagramming, the accuracy of the
onset features model was lower than the concurrent model
as a whole. Moreover, the U-shaped pattern from concurrent
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features model was not observed. Despite the accuracy of
the onset model showing a similarly steep decrease after the
first ten minutes, it did not increase at the end of the class
for any of the considered collaborative behaviors, as had the
concurrent model. Taken together, the U-shape of concurrent
model accuracy and the steep decline in accuracy of the onset
model suggest that the first ten and last ten minutes of class
are similar, but there are differences which make it difficult
to effectively characterize based on features calculated from
the first ten minutes of class. The similarities of the first
and last ten minutes are also supported from the trends
in the base rates (Figure 4). ta-class behaviors—when
the instructor addresses the entire class—only tend to occur
at the beginning and end of class, but the content of the
announcements at the beginning of the class are different and
likely influence student behavior differently. For example,
students may be more likely to listen and be silent in response
to the announcements made at the beginning of the class
since it is immediately pertinent to the class ahead, but
students may be less silent when announcements are made
at the class end.

Our analysis also did not support the idea that the addition
of the onset features (21 features) to the concurrent features
(89 features) model might improve predictive accuracy. While
the resulting combined model was created using the largest
number (110) of features with an emphasis on the earlier
parts of class, the accuracy did not differ significantly from
the concurrent features model. Comparing the confidence
intervals of the model’s overall point-biserial correlation co-
efficient (Table 3) showed that while the accuracy of onset
and concurrent features models are significantly different
for a majority of the behaviors except ta-class (which has
especially imbalanced base rates), there is overlap between
concurrent and combined models for all behaviors. This
indicates that the models may not be statistically different,
and are not meaningfully different. Moreover, of the 110
features in the combined (onset + concurrent) model, none
of the 21 onset features were found in the top ten important
features in any of the six behaviors (Table 2). Three common
features were found in the top ten important features for
all six behaviors: cumulative number of set page, cumulative
number of scroll position changes, and cumulative number of
rows. When interpreted together, these three features may
be related to the overall activity level of the groups, which
may intuitively relate to changes in collaborative behavior.

6. CONCLUSION
In this paper, we were motivated by theories in small group
development to analyze how explicitly accounting for early
class behaviors and collaboration evolution might help im-
prove collaboration prediction from tool action log data. We
investigated collaborative problem solving in an introductory
engineering course over 12 weeks. We found that collabora-
tion prediction in a 50-minute class period did not appear to
follow a straightforward interpretation of the five-stage struc-
ture, but rather a potential three-stage structure. We found
that while the first ten minutes of class are distinct from the
middle and ending periods of class, onset features calculated
from the first ten minutes of the class could not be used to
effectively predict collaboration in the later parts of class.
Concurrent features (calculated from the whole 50-minute
period) performed better as a whole, and the combination

of onset and concurrent features did not necessarily lead
to a better predicting model. Thus, groups’ collaborative
behaviors later in class were not notably related to their
initial collaborative behaviors.

Our study was limited in several ways. Using solely tablet ac-
tion log data to examine small group development restricted
us from being able to account for changes in emotion, a
common aspect of small group development theory. We
utilized data from action logs since we wanted our analysis
to be scalable and make progress toward real-time student
interventions for collaboration in the classroom via prompts
delivered to TAs (Figure 2). However, to promote better
understanding collaborative learning theory in general, ad-
ditional approaches are needed. To this end, future work
examining small group development in collaborative problem
solving may benefit from incorporating work on sensor-free
affect detection for student engagement [2, 30], which may
help identify emotions associated with various stages of small
group development such as confusion or anxiety [47]. Addi-
tionally, audio of group conversations could be recorded from
their tablets and aligned with action log data to understand
conversations in the context of the small group development
at hand. Our study was also limited by the variability of
student groups in size and membership. Some groups had
as few as two students in some weeks of class, and the same
groups may have had four members in other weeks. This
likely influenced the amount of activity captured, in addition
to inevitable changes in the communication dynamic.

Insights into to the influence of early collaborative behav-
iors for improving collaboration prediction may help design
better interventions for helping TAs facilitate collaboration,
and design software tool features to promote effective stu-
dent collaboration. Deeper insights into understanding small
group evolution may offer ways for future work to more ac-
curately identify a group’s current collaborative stage solely
from a group’s behaviors, without considering content of
interactions between members. Based on the assumed stage,
instructors or tools could possibly allow for personalized per-
team interventions to better facilitate collaborative problem
solving.
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ABSTRACT
Data mining of course enrollment and course description
records has soared as institutions of higher education be-
gin tapping into the value of these data for academic and
internal research purposes. This has led to a more than
doubling of papers on course prediction tasks every year.
The papers often center around a single prediction task and
introduce a single novel modeling approach utilizing one or
two data sources. In this paper, we provide the most com-
prehensive evaluation to date of data sources, models, and
their performance on downstream prediction tasks. We sep-
arately incorporate syllabus, catalog description, and enroll-
ment history data to represent courses using graph embed-
ding, course2vec (i.e., skip-gram), and classic bag-of-words
models. We evaluate these representations on the tasks
of predicting course prerequisites, credit equivalencies, stu-
dent next semester enrollments, and student course grades.
Most notably, our results show that syllabi bag-of-words
representations performed better than course descriptions
in predicting prerequisite relationships, though enrollment-
based graph embeddings performed substantially better still.
Course descriptions provided the highest single representa-
tion accuracy in predicting course similarity, with descrip-
tions, syllabi, and course2vec combined representations pro-
viding the highest ensembled accuracy on this task.

Keywords
Higher education, course recommendation, course2vec, pre-
requisites, enrollment histories, syllabus, network embed-
ding, grade prediction, institutional analytics.

1. INTRODUCTION
Data from institutions of higher education are quickly com-
ing into focus for educational data mining and learning an-
alytics communities as the utility of these data start to be-
come clear and attention begins to shift from the informal
learning context of free online courses to the higher stakes
context of degree granting institutions and their students.

Educational Data Mining (EDM) plays an important role
in the developing stages of methodological adaptation to a
domain by evaluating new sources of data for their utility
in existing models and tasks and updating the utility of ex-
isting data as models and tasks evolve. Recently, EDM has
seen a more than doubling year-to-year in papers focused on
prediction with large institutional enrollment sets from the
formal higher education context, with a single paper on the
topic in 2017 [38], two in 2018 [12, 6], and five in 2019 [29,
36, 19, 37, 16], though early pioneering work on predicting
academic outcomes date back to the first EDM conference
[39, 2].

In this paper, we summarize and evaluate this quickly de-
veloping domain across three dimensions: sources of insti-
tutional data, models for representing students and courses,
and the performance of the former two categories on institu-
tionally relevant prediction tasks. As academic researchers
and practitioners know, not all sources of data are always
available and different costs are associated with obtaining a
new source. Similarly, when it comes to modeling, different
personnel and computational costs are associated with ap-
plying models depending on their complexity and recency of
introduction. We provide the most comprehensive evalua-
tion to date of the performance of different combinations of
data and models on common institutional tasks emerging in
the literature so that the costs and benefits of each, in our
setting, can be quickly apprised. In addition to evaluating
previously introduced approaches and data, we introduce
large scale syllabus data as a novel source of information
about courses and a novel application of a nascent graph-
embedding approach for representing courses.

2. RELATED WORK
Contemporary approaches to data mining institutional data-
sets in higher education have distinguished themselves from
earlier drop-out detection work [18] in the use enrollment
data and adoption of representational methods that fac-
torize, embed, or otherwise vectorize courses into a space.
This began with [10] that used matrix factorization applied
to student enrollments and observed that the factorization
grouped courses and students in semantically meaningful
ways. Subsequent research also employed matrix factor-
ization for grade prediction tasks [38, 37]. Neural embed-
ding models followed, with the skip-gram neural network
model applied to sequences of course enrollments, an ap-
proach coined “Course2vec” [32]. The course embeddings
extracted from this model were found to be predictive of on-
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Table 1: Related work on institutional prediction tasks (columns) and sources of data used in the task (rows)
Grade prediction Enrollment prediction Prerequisite prediction Course similarity

Course grades [10, 15, 21, 38, 37, 16] [10, 3, 32, 36] [22, 11, 21, 16] [17, 25, 12, 29]
Enrollment histories [10, 15, 21, 38, 37, 16] [10, 3, 32, 36, 1] [22, 11, 21, 16] [17, 25, 31, 33, 29]
Major declarations [38, 21, 37] [32, 36] [21] [25]
Catalog descriptions [32] [26, 31, 33, 12, 29]

time graduation [25], course similarity within [33] and across
institutions [31], and of latent topics of courses [8]. Student
course selections have also been posed as a graph, treating
courses as nodes and student course selections as strength-
ening the edges between courses the more frequently they
share students in common [15, 16, 1]. The aforementioned
approaches all use student course selections, a collaborative
signal, to represent a course. Other approaches utilize con-
tent data of a course (e.g., catalog description) for represen-
tation and for downstream tasks such as course similarity
analysis [26, 31, 33, 12, 29] and enrollment prediction [32].
Several papers have collected course ratings for modeling
and recommendation [13, 12].

The majority of models in related works have been framed
as potentially contributing to a course recommendation sys-
tem, or already integrated into one. They commonly focused
on grade prediction [10, 15, 21, 38, 37, 16] as a necessary
first-step towards a preparation, or goal-based [21] recom-
mendation system that could aid students in preparing for
difficult courses. In a similar vein, prerequisite course in-
ference has been framed [22, 11, 21, 16] also as a potential
means to help guide students towards course taking paths
expected to be more successful than others [11, 30]. Table
1 summarizes this body of work in terms of the most com-
mon data sources used (i.e., course grades, enrollment histo-
ries, major declarations, and catalog descriptions) and most
common evaluation tasks (i.e., grade prediction, enrollment
prediction, prerequisite prediction, and course similarity) fo-
cused on in this paper.

3. DATA SOURCES
In this section, we will describe the three primary sources of
data utilized in this paper. First, we will describe the source
generally, followed by a paragraph detailing the particulars
of the dataset used in our offline evaluation experiments.

3.1 Enrollment histories and grades
A student’s transcript is classically a report containing the
student’s histories of courses taken and the grade achieved
in each. Enterprise database systems often store raw forms
of these data. It has become more common for institutions
to not only store these data in relational form but for their
internal offices of institutional analytics to have ready access
to them. As the fields of EDM and learning analytics have
grown, these data have become more available to faculty to
aid scholarly research. We used an anonymised enrollments
and grades dataset containing student enrollment histories
at a large public university, UC Berkeley, collected from Fall
2008 through Fall 2017. The dataset consists of per-semester
(i.e., Fall, Spring, and Summer) class enrollments for 164,196
students (both undergraduates and graduates) with a total
of 4.8 million class enrollments. A class enrollment record
in the data indicates that the student was still enrolled in
the class at the end of the semester. The action of drop-

ping a class is not contained in these data. The median
number of classes enrolled by a student in a semester was
four. There were 9,478 unique lecture courses from 214 de-
partments hosted in 17 different Divisions of 6 different Col-
leges. Course meta-information was also included in these
data and contained course number, department name, class
instructor(s), and room max capacity. In this paper, we only
consider lecture courses with at least 20 enrollments total
over the 9-year period, resulting in 7,487 courses. Although
courses can be categorized as undergraduate courses and
graduate courses, undergraduates are allowed to enroll in
many of the graduate courses. Enrollment data were sourced
from the campus’ enterprise data warehouse.

3.2 Course catalog descriptions
A paper catalog use to be the primary way in which students
could browse all the course offerings at an institution. For-
tunately, this has been superseded by online catalogs, most
of which are searchable. The catalog contains course num-
bers, their hosting department, and typically a paragraph
or type description of the course. Our dataset contains the
most recent catalog description of every course in our en-
rollment histories. The average catalog description length
was 325 words with 489 courses having exceptionally short
descriptions of 10 words or fewer. We sourced these descrip-
tions from the campus Office of the Registrar official API for
Course information. These descriptions were pre-processed
by (1) removing generic, often-seen sentences across descrip-
tions (2) removing stop words (3) removing punctuation,
and (4) word lemmatization and stemming.

3.3 Course syllabi from the Learning Manage-
ment System

A course syllabus is a detailed, chronological list of subjects
and assignments that a course will cover, often with other
logistical information about course meeting place and time
and grading policies. While the syllabus is perhaps an ideal
source of information to utilize for content-based represen-
tation of a course, it has been an elusive source to conduct
research on. This is because few institutions mandate that
instructors make their syllabi public and therefore it is un-
common to have syllabi centrally stored by the institution to
subsequently make available to researchers. An additional
barrier to research availability is that many institutions view
a syllabus as an instructor’s intellectual property (IP), and
therefore not sharable in original form without permission.
Our study introduces syllabus data into contemporary pre-
dictive models and tasks, but with a caveat that maintains
instructor control over the original intellectual property.

The university from which our syllabus data come from con-
siders syllabi to be instructor IP and does not collect them
centrally. However, a common place in which instructors
often place their syllabi is the ”Syllabus” page of the cam-
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pus Learning Management System (LMS). We worked with
the campus technology services organization in charge of
the LMS to extract all text from the Syllabus pages of all
courses. Sometimes this page would contain only a link to
the pdf of a syllabus, in which case that link was down-
loaded and parsed to text. To abide by the IP restrictions
around course syllabi and respect instructor ownership of
them, a workaround was arranged. Only the technology ser-
vices would have access to the cleanly parsed data from the
LMS. They would then pre-process the syllabus themselves,
similar to how we pre-processed catalog descriptions, pars-
ing out html, converting it into bag-of-words (BOW) form.
This form would thereby make the syllabus unusable as an
instructional object but potentially usable by an algorithm
attempting to extract information for institutional predic-
tion tasks. It was also agreed that the BOW we received
would not be made public and these data could be revoked
at any time. There were 3,645 unique courses that contained
HTML on the LMS Syllabus page, not including a link to
a file. There were 2,712 courses that contained a link to a
file, with some courses having both. The total number of
courses with some amount of syllabus data was 4,017 with
a combined vocabulary of 17,194 unique words.

4. REPRESENTATION MODELS
We choose four approaches of increasing complexity for rep-
resenting courses. These four reflect the most common paradigms
of modeling found in our literature review. The simplest is
a content-based bag-of-words representation of the course.
The BOW approach could be applied to the catalog descrip-
tion or syllabus of a course, where available. Next is the use
of a recently published variant on Course2vec called multi-
factor Course2vec, which applies a skip-gram to sequences of
course enrollments. In addition to embedding courses, mul-
tifactor Course2vec also embeds the instructor of the course
and the course’s department, both presented to the model
in the form of a one-hot encoding. Multifactor Course2vec
has been shown to perform better on course similarity tasks
than the original Course2vec [33], in theory because it sep-
arates out factors, such as instructor and department, al-
lowing the course embedding to more purely represent the
content. Long Short-Term Memory models are the third
model used to embed courses, followed by a recently intro-
duced network embedding technique.

A summary of the approaches used is visually illustrated in
Figure 2. The various types of information these methods
leveraged are summarized in Table 2.

Table 2: Summary of representative learning meth-
ods for courses
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bag-of-words ✓ ✓ static
multi-c2v ✓ ✓ dynamic

LSTM ✓ dynamic
sc-AMHEN ✓ ✓ static

4.1 Bag-of-words
The basic representation mode of bag-of-words was proposed
by information retrieval researchers for text corpora. It is a
model that reduces each document in a corpus to a vector of
real numbers, each of which represents a term, or vocabulary
weight. The term weight can be term frequency, a binary
value with 1 indicating that the term occurred in the docu-
ment and 0 indicating that it did not, or a tf-idf scheme[7].
There are two sources of texts that can represent the con-
tent of courses: the course catalog descriptions and course
syllabi.

4.2 Multifactor Course2vec
The Course2vec model [32] was proposed to learn distributed
representations of courses from students’ enrollment records
throughout semesters by using a notion of an enrollment se-
quence as a “sentence” and courses within the sequence as
“words”, borrowing terminology from the natural language
domain. For each student, their chronological course enroll-
ment sequence is produced by first sorting by semester then
randomly serializing within-semester course order. Each
course enrollment sequence is then trained on like a sentence
using a skip-gram model.

More features of courses (e.g., course instructor and de-
partment) can be added to the input of the multifactor
Course2vec model to enhance the classifier and its repre-
sentations. The model learns both course and added feature
representations by maximizing the objective function over
all the students’ enrollment sequences and the features of
courses, defined as follows.∑

s∈S

∑
ci∈s

∑
−w<j<w,j ̸=0

logp(ci+j |ci, fi1, fi2, ..., fih) (1)

Probability p(ci+j |ci, fi1, fi2, ..., fih) of observing a neigh-
boring course ci+j in window size w given the current course
ci and its features fi1, fi2, ..., fih (e.g., instructors, depart-
ment) can also be defined via the softmax function,

p(ci+j |ci, fi1, fi2, ..., fih) =
exp(aT

i v
′
i+j)∑n

k=1 exp(a
T
i v

′
k)

(2)

ai = vi +

h∑
j=1

Wnj×vfij (3)

where ac is the vector sum of input course vector representa-
tion vc and all the features vector representations of course
c, fij is the multi-hot input of the j-th feature of course i,
and Wnj×v is the weight matrix for feature j. So by mul-
tiplying Wnj×v and fij , it gets the sum of feature vector
representations of the i-th course. The illustration of the
model is shown in the multi-course part of Figure 2. vi is
the course representation of course i learned from the model
that is used in various down-stream course prediction tasks.

4.3 LSTM-learned Representations
In previous work [32], an LSTM was designed to recommend
courses for students to take in the next semester, based on
their enrollment histories. The input of the model in each
time slice is a multi-hot vector representing the courses taken
in the corresponding semester. The weights of the input
Wf , Wi, Wo, and Wc learned by the LSTM transferred the
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Figure 1: Illustration of the Attributed Multiplex
HEterogeneous Network (AMHEN) of Students and
Courses.

multi-hot input to the forget gate, input gate, output gate,
and the cell in the LSTM cell, respectively. These four sets
of weights are combined to form representations of courses
that can be used in down-stream prediction tasks.

4.4 Attributed Multiplex Heterogeneous Net-
work Embeddings

Network representation learning (i.e., network embedding),
is a promising method to project nodes in a network onto a
low-dimensional continuous space while preserving network
structure and inherent properties. In terms of the network
topology (homogeneous or heterogeneous) and attributed
property (with or without attributes), six different types of
networks can be categorized, i.e., HOmogeneous Network
(HON) [34], Attributed HOmogeneous Network (AHON)
[40], HEterogeneous Network (HEN) [9], Attributed HEt-
erogeneous Network (AHEN) [5], Multiplex HEterogeneous
Network (MHEN) [24], and Attributed Multiplex HEtero-
geneous Network (AMHEN) [4]. In the university setting,
students and courses can be mapped into a large heteroge-
neous network, where students and courses are two types of
nodes connected by students’ enrollments in courses. The
proximities between students and courses vary based on the
grades (e.g., A, B, C, D, etc.) students received for courses,
yielding the network with multiple views, i.e., multiplex het-
erogeneous network. Furthermore, if we incorporate the
attributes of students and nodes (e.g., course catalog de-
scriptions), the network will turn to an Attributed Multiplex
HEterogeneous Network (AMHEN), which is illustrated in
Figure 1. Because students may receive different grades for
the courses they enrolled, we consider different grades as
different edge types between students and courses.

Definition 1. (Attributed Multiplex Heterogeneous Net-
work): An attributed multiplex heterogeneous network is a
network G = (V, E ,A), E = ∪r∈R Er,where Er consists of
all edges with edge type r ∈ R, and |R| > 1. We separate
the network for every edge type r ∈ R as Gr = (V, Er,A).
Each node vi ∈ V is associated with some types of feature
vectors. A = {xi|vi ∈ V} is the set of node features for all
nodes, where xi is the associated node feature of node vi.

In the student-course attributed multiplex heterogeneous
network we described above, V = (C,S), where each node
c ∈ C represents a course in the course set C and each node
s ∈ S represents a student in the student set S. R refers
to all the edge types in the student-course attributed mul-
tiplex heterogeneous network, i.e., grade types. As students
have enrollment and grade histories of multiple courses, we
consider student embeddings as a state of their course knowl-
edge. Different grade types mirror different levels of course
knowledge, thus should be represented as different embed-
dings.

Given the above definitions and descriptions, we can for-
mally define our problem for representation learning on the
student-course AMHEN.

Problem 1. (Student-Course AMHEN Embedding). Given
a Student-Course AMHEN G = (C,S, E ,A), the problem of
Student-Course AMHEN embedding is to give a unified low-
dimensional space representation of each student node s ∈ S
and each course node c ∈ C on every grade type r.The goal
is to find a function g : S → Rd and a function fr : C → Rd

for every grade (edge) type r, where d ≪ |C| (d ≪ |S|).

4.4.1 Student and Course Representations
In this section, we detail our adaptation of the AMHEN
framework[4] to the student-course scenario to learn graph-
based student and course representations. We split the over-
all course embedding on each course type r into three parts:
base embedding bc, grade embedding g, and attribute em-
bedding u, and split the overall student embedding into two
parts: base embedding bs, and individual embedding p.

The base embedding of course node ci, i.e., bci, is shared
between different grade types. We define bci as a parame-
terized function of ci’s attributes xi ∈ Rx as:

bci = h(xi) (4)

where h is a transformation function, such as a multi-layer
perceptron. The attribute embedding of course node ci, i.e,
ui, is defined as:

ui = DTxi (5)

Given that in the Student-Course AMHEN, the neighbors of
a course are all students while the neighbors of students are

all courses, the k-th level1 of grade embedding g
(k)
ir ∈ Rd,

(1 ≤ k ≤ K) of course node ci on grade type r is aggregated
from individual embeddings of students that are ci’s neigh-
bors, which means these students all received grade type r
for course ci.

g
(k)
ir = mean({p(k−1)

j , ∀pj ∈ Ni}) (6)

Similarly, the k-th level of individual embedding p
(k)
i ∈ Rd,

(1 ≤ k ≤ K) of a student node si is aggregated from grade
embeddings of courses that are si’s neighbors, which demon-
strates a student’s representation is derived from the grade
histories of his/her enrolled courses.

p
(k)
i = mean({g(k−1)

jr , ∀cj ∈ Nir}) (7)

1By level we mean iteration, i.e., the embedding is updated
after each parameters update process.
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Figure 2: Visual summary of representation learning methods

We denote the k-th level grade embedding g
(k)
ir as grade

embedding gir, and concatenate all the grade embeddings
for course node ci as Gi ∈ Rd×m, where d is the dimension
of grade embeddings and m is the number of grade types.

Gi = (gi1, gi2, ..., gim) (8)

We use self-attention mechanism[23] to compute the coeffi-
cients air ∈ Rm of linear combination of vectors in Gi on
edge type r as:

air = softmax(wT
r tanh(WrGi))

T (9)

where wr ∈ Rda and Wr ∈ Rda×d are trainable parameters
for grade type r. Thus, the overall embedding of course node
ci for grade type r is:

cir = αch(xi) +MT
r Giair + βcD

Txi (10)

where Mr ∈ Rd×n and D ∈ Rx×n are trainable transfor-
mation matrix. αc and βc are two coefficients adjusting the
weights of the three embeddings of courses, which can also
be trainable.

The overall embedding of student node si is:

si = αsbs +NTpi (11)

where αs is a trainable coefficient adjusting the weights of
the two embeddings of students, and N ∈ Rd×n is a train-
able transformation matrix for the individual embeddings of
students.

4.4.2 Model Optimization
Having the student and course representations constructed,
we discuss how to generate the training data and learn the

student and course embeddings. We first separate the whole
network by edge(grade) type, then given a view (grade type)
r of the network, i.e., Gr = (C,S, Er,A), we use meta-path-
based random walk[9] to generate node sequences. There are
two meta-path schema in the student-course AMHEN, i.e.,
student − course − student or course − student − course.
Finally, we apply a skip-gram [27, 28] over the node se-
quences to learn embeddings. The meta-path-based random
walk strategy ensures that the semantic relationships be-
tween student nodes and course nodes with different grade
types can be properly incorporated into the skip-gram model
[9]. For a training pair (ci, sj) with grade type r, our objec-
tive is to maximize the probability:

P (sj |ci, r) =
exp(cTirs

′
j)∑

sk∈S exp(cTirs
′
k)

(12)

where s′
k is the context embedding of student node sk. For

a training pair (si, cj) with grade type r, our objective is to
maximize the probability:

P (cj |si, r) =
exp(sT

i c
′
jr)∑

ck∈C exp(sT
i c

′
kr)

(13)

where c′kr is the context embedding of course node ck with
grade type r. Finally, we use heterogeneous negative sam-
pling to approximate the objective function −logP (sj |ci, r)
for node pair (ci, sj) as

loss(ci, sj , r) = −logσ(cTirs
′
j)−

L∑
l=1

Esk∼P (sk)[logσ(−cTirs
′
k))]

(14)
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and the objective function−logP (cj |si, r) for node pair (si, cj)
as:

loss(si, cj , r) = −logσ(sT
i c

′
jr)−

L∑
l=1

Eck∼P (ck)[logσ(−sT
i c

′
kr))]

(15)

Here we define P (sk) =
f(sk)

3/4∑|S|
i=1 f(si)3/4

and P (ck) =
f(ck)

3/4∑|C|
i=1 f(ci)3/4

according to the Skip-gram model[27], where f refers to the
frequency of the node in each node type.

After optimizing the model with all the parameters learned,
we reform the overall embedding for course i by concatenat-
ing its embeddings of all grade types.

ci = (cTi1, c
T
i2, ..., c

T
im)T (16)

5. TASKS
In this section, we describe five down-stream institutionally
relevant tasks that can be performed by using the course
representations constructed by the model approaches intro-
duced in Section 4.

5.1 Course Similarity
An essential way to check the quality and fidelity of the
course representations introduced in section 4 is to test whether
they contain important features of courses that could dif-
ferentiate between similar and dissimilar courses. To this
end, an equivalency validation set of 1,351 course credit-
equivalency pairs maintained by the Office of the Registrar
were used for similarity based ground truth. A course is
paired with another course in this set if a student can only
receive credit for taking one of the courses at the university.
For example, an honors and non-honors version of the same
course will appear as a pair because faculty have deemed
that there is too much overlapping material between the
two for a student to receive credit for both.

To evaluate different course representations on the course
equivalency validation set, we fixed the first course in each
pair and ranked all the other courses according to their co-
sine similarity to the first course in descending order. We
then noted the rank of the expected second course in the pair
and describe the performance of each model on all validation
pairs in terms of Mean Rank, Median Rank and Recall@10.

5.2 Enrollment Prediction
Enrollment prediction involves predicting the courses a stu-
dent will enroll in, but not the grade they will receive. For
this reason, it is considered a model of behavior, rather than
an assessment model. The task could be potentially useful
for the purpose of providing a normative course taking signal
that could be used to provide a personalized sorting of course
results (e.g., showing the courses a student is most likely to
take that satisfy a remaining requirement) [32]. The input
of the model in each time slice is a multi-hot vector rep-
resenting the courses taken in the corresponding semester.
However, the multi-hot representation has a large dimension
of total number of courses and may not encode course fea-
tures apparent in text descriptions of the course or graph-
based methods. Therefore, we also evaluate substituting
the multi-hot course input with the sum of pre-trained low-
dimensional representations from other models, illustrated

in Figure 3. Performance on this task is reported in terms
of Recall@ 10 and Mean Reciprocal Rank@10 (MRR@10).
MRR evaluates recommender system models that produce
a list of ranked items for queries. The reciprocal rank is the
“multiplicative inverse” of the rank of the first correct item.
MRR is defined as MRR = 1

|Q|
∑Q

i=1
1

ranki
, where ranki rep-

resents the rank of the first correct recommended item for
query i. For calculating MRR@10, the only difference is
ranki is reset to 0 if ranki > 10.

Figure 3: Illustration of the LSTM-based next-
course prediction

5.3 Grade Prediction
Grade prediction is the basis for an assessment model that
could aid adaptive sequencing of courses to achieve a partic-
ular goal. In previous work[21], a modified LSTM was de-
signed to trace students’ course knowledge, which predicted
students’ grades on enrolled courses in each semester. The
model gives students the ability to choose their grade goal (A
or B) or Pass/No-pass. A masked loss function was designed
to enable the output to predict letter grade and Pass/No-
pass independently. Two cut-offs (A or B) were also set to
separate the letter grades into two levels (e.g., higher and
lower than an ’A’). The input of the LSTM grade predic-
tion model is also a multi-hot vector with the position of
grades students received for enrolled courses as 1 and other
positions as 0. Because there are seven grade types for each
course, the dimensions of the model input in each time slice
is the number of courses multiplied by seven. As an alter-
native to the multi-hot input, we also evaluate the perfor-
mance of the model using the course grade representations
learned from the student-course AMHEN model in Section
4.4, which is illustrated in Figure 4, where gi represents the
grades of courses taken in semester i and ci represents the
courses taken in semester i. ci+1 is concatenated with gi to
incorporate the impact of the co-enrolling effect of courses
in the predicted semester on grade prediction.

In addition, the student-course AMHEN model can also pre-
dict the grades of students by calculating the cosine similar-
ities between student embeddings and course embeddings,
and then predicting the grades by picking up the grade of
each course that is most similar to the target student.

g(si, cj) = argmax
r

cos(si, cjr) (17)
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Figure 4: Illustration of the LSTM-based grade pre-
diction

For the model without grade cut-off, there are seven grade
types in the student-course AMHEN model representing A,
B, C, D, F, Pass, and No-pass. A prediction is considered
correct only if it is exactly the grade a student received in
the data. For the models with grade cut-off (A or B), we
group the letter grades not lower than the cut-off as a grade
type, and the letter grades lower than the cut-off as another
grade type in the student-course AMHEN model.

Both the enrollment prediction and grade prediction models
were trained using a temporal train/test split, with Fall 2008
through Fall 2015 semesters serving as the training set and
Spring 2016 as the testing semester.

5.4 Prerequisite prediction
Prerequisite course information is essential to encourage or
mandate that students have the necessary foundational ex-
perience to be able to learn and succeed in the advanced
stages of their degree. We used a set of 2,300 prerequi-
site course pairs, provided by the UC Berkeley Office of the
Registrar, which contains 1,215 target courses, as a source
of ground truth to test whether the grade prediction model
encodes such prerequisite relationships between courses.

Prerequisite relationships between courses can be inferred
by inferencing an LSTM-based grade prediction model as
described in [21] and illustrated in Figure 5. Note that, for
this evaluation, only one time slice input of the binary-grade
(A or lower than A) prediction trained LSTM is needed. We
iterate over all the courses with only one-hot embedded in
the ‘A’ position for that course, and feed the input, which
is a concatenation of a target course and grade A of the
input course, to the LSTM. During the iterations, the in-
put course that boosted the probability of the ‘A’ position
of target course to the largest ten values will be selected as
candidate prerequisite courses for the target course. This ap-
proach is similar to the prerequisite skill inference conducted
with DKT [35], but with a much larger vocabulary and with
ground truth prerequisite structure to validate against. As
with the other tasks, we also evaluate replacing the input
of this model with representations from the student-course
AMHEN graph-embedding approach.

A simple multinomial logistic regression can alternatively be

used to predict prerequisites courses using any arbitrary vec-
tor representation of a course. The input of the multinomial
logistic regression during training is the vector representa-
tion of the target course, and the output is a multi-hot of
the prerequisite courses for the target course. During test-
ing, the output is a probability distribution across all courses
where the most probable courses can be taken as the pre-
requisite predictions of the regression.

We classified all the models for the prerequisite course pre-
diction task into two types, supervised and unsupervised,
based on whether the model was learned using the official
prerequisite course pairs. For the supervised models (i.e.,
using the regression), we applied 10-fold cross-validation to
the 2,300 prerequisite course pairs. For the unsupervised
models (i.e., LSTM-based inferences), described in Section
5.4, the LSTM with standard course multi-hots as input
and with graph-based embeddings as input was trained first
on the supervised task of predicting course grades, and was
then inferenced in an unsupervised manor (i.e., not using
any prerequisite ground truth), to predict course prerequi-
sites.

Figure 5: Prerequisite course prediction using
LSTM-based grade prediction model[21]

5.5 Average Enrollment Prediction
Do the representations of courses created by various mod-
eling techniques encode course popularity information? To
answer this we test the course representations’ ability to
predict the average enrollment size of each course. The data
and models that perform well in this test may be indicative
of the data and modeling paradigms that would work well
for temporal versions of this model that could anticipate in-
creases in course demand and allow institutions to better
plan room and teaching staff allocations.

In order to check whether the different types of course em-
beddings encode information predictive of the number of
enrollments, we use a simple a multi-layer perceptron to pre-
dict average enrollment per course using the different types
of course embeddings introduced in section 4 as candidate
inputs. RMSE is adopted as the error metric.

6. EXPERIMENT RESULTS
We begin this section by reporting a summary of only the
best performing model and data source pairs used to con-
struct the input representations for each of our five down-
stream model predictions tasks. This summarized set of best
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Table 3: Evaluation of course representation models on various prediction tasks

Representation
created by

Course similarity
prediction

Enrollment
prediction

Grade
prediction

Prerequisite
prediction

Avg-
enroll-
predict

Model
Data
Source(s)

Mean/ Me-
dian Rank

Recall@10 Recall@10 MRR@10 Accuracy Recall@10 Target RMSE

bag-of-words catalog 602/6 [33] 0.5370[33] 0.3154 0.5216 - 0.5152 0.5938 42.4781

bag-of-words syllabus 329/19 0.4270 0.3744 0.5103 - 0.5658 0.6352 48.8965

multi-c2v
enrollments,
course meta-
information

224/15[33] 0.4485[33] 0.3791 0.5576 - 0.6957 0.7733 42.4780

LSTM
(multi-hot)

enrollments 584/58 0.2924 0.3967 0.5885 0.6952 0.3048[21] 0.4486[21] 51.4140

sc-AMHEN
enrollments,
grades,
catalog

288/11 0.4767 0.3882 0.5625 0.7008 0.7192 0.8000 52.3370

results are shown in Table 3. On the task of course sim-
ilarity, a simple bag-of-words representation of the course
catalog description performs best in terms of median rank
and Recall @ 10 on our credit-equivalency pairs validation
set. Enrollment histories provide the second best perform-
ing score using sc-AMHEN network-based embedding, fol-
lowed by multi-c2v. Scoring similarly to multi-c2v was a
simple BOW of the lms-syllabus data. On the task of pre-
dicting which courses a student will take next (enrollment
prediction), an LSTM with a multi-hot input representa-
tion of courses taken in each semester provided the best
performance in terms of both metrics. In this task, using
pre-trained embeddings from the network-based or multi-
c2v approach worked less well than multi-hot, followed by
using the content-based representations as inputs, which
performed worst. In grade prediction, the network-based
method performed slightly better than the previous state-
of-the-art LSTM. On the task of prerequisite prediction, the
network-based approach performed best in recovering the
ground-truth prerequisite relationships found in our insti-
tutional data. The multi-c2v approach was not far behind.
The content-based and LSTM course representations did not
perform nearly as well on this task. Finally, on the task of
predicting the average enrollment of a course, multi-c2v pro-
vided the lowest RMSE, but with an almost identical score
achieved by simple BOW of the course catalog description.

In the subsequent sections we provide a more detailed break-
down of performance of all model and data combinations on
the tasks of course similarity, grade prediction, and prerequi-
site prediction. Results of enrollment prediction and average
enrollment prediction are already shown in full in Table 3.

6.1 Course Similarity
The evaluation results on the equivalency validation set of
1,351 course credit-equivalency pairs are shown in Table 4.
The bag-of-words representations (Tf-idf) generated from
course catalog descriptions achieved better median rank and
recall@10 than those generated from the course syllabus
data. However, the mean rank of the catalog-based rep-
resentations is the worst among all the models, which sug-
gests there are many outliers where literal semantic simi-
larity (bag-of-words) is very poor at identifying equivalent
pairs. Concatenations of the bag-of-words based methods
and course2vec-based method increased the evaluation met-

Table 4: Course similarity validation of all the
course representations

Model
Mean/Median

Rank
Recall
@10

catalog 602/6 0.5372
syllabus 329/19 0.4270

course2vec (c2v) 244/21 0.3839
multi-c2v (mc2v) 224/15 0.4485
catalog+mc2v 132/3 0.6435
syllabus+mc2v 109/6 0.5798

catalog+syllabus+mc2v 79/3 0.6705
catalog+syllabus+mc2v

(PCA dim: 300)
177/3 0.6544

LSTM 584/58 0.2924
sc-AMHEN(u) 288/11 0.4767
sc-AMHEN(c) 330/27 0.3603

rics, especially when the bag-of-words representations of cat-
alog and syllabus were combined with the multi-factor course2vec
representations, reaching a mean/median rank of 79/3 and
recall@10 of 0.6705, the best among all the models. A Prin-
cipal Component Analysis (PCA) transformation of the con-
catenated course vectors from 10,000 to 300 did not diminish
the median rank metric, but slightly negatively affected av-
erage rank and recall. The course representations learned
from the next-course prediction LSTM performed the worst
among all the models. Course attribute embeddings sourced
from the student-course AMHEN (sc-AMHEN) model, per-
formed second best among all single representation models.

6.2 Grade Prediction
The accuracy of the grade predictions generated by the pure
student-course AMHENmodel (sc-AMHEN(s, c)), the LSTM
model with mult-hot as input (LSTM(multi-hot)), and the
LSTM model with course embeddings with different grade
types (LSTM(u, c)) are listed in Table 5. Among the three
models, the pure student-course AMHEN model is a kind
of static model learned from students’ enrollment data with
grades and course catalog descriptions, while the two LSTM-
based models are dynamic models taking into consideration
not only the student enrollment data with grades, but also
the sequential informaion (semester order) of the grades of
enrolled courses. The grade prediction results show that
the graph model, though static, could map the knowledge
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Table 5: Grade prediction evaluation (accuracy)

Model Type
Cut-
off

Letter
grade

Pass/
No-pass

All

sc-AMHEN
(s, c)

static - 0.5441 0.7972 0.5976

LSTM
(multi-hot)

dynamic - 0.6382 0.9079 0.6952

LSTM (u, c) dynamic - 0.6418 0.9209 0.7008
sc-AMHEN

(s, c)
static A 0.5526 0.7791 0.6004

LSTM
(multi-hot)

dynamic A 0.7523 0.8581 0.7633

LSTM (u, c) dynamic A 0.7571 0.9135 0.7902
sc-AMHEN

(s, c)
static B 0.8299 0.8205 0.8279

LSTM
(multi-hot)

dynamic B 0.8805 0.9178 0.8884

LSTM (u, c) dynamic B 0.8817 0.9185 0.8895

levels of students on the features of courses with different
grade types to a certain degree, resulting in prediction accu-
racies higher than 0.5 for all grade types and higher than 0.6
and 0.8 for binary grades (“not lower than cut-off”v.s.“lower
than cut-off”, Pass v.s. No-pass) on average. Furthermore,
the sequential information of students’ grades by semesters
exhibited substantial importance as the prediction accuracy
of the two LSTM-based models manifested superiortiy to
the static student-course AMHEN model by a significant
margin. Moreover, the course embeddings with different
grade types learned from the student-course AMHEN model
helped increase the accuracy of grade prediction over the
multi-hot vectors as the input of the LSTM. The potential
reasons could be the course embeddings with different grade
types captured the knowledge relations among grades of a
course and the relations among different courses, thus could
represent the knowledge of students more accurately than
multi-hot, which could not encode any knowledge relations
among grades. Although the positive impact of incorporat-
ing grade embeddings on grade prediction (improvement at
the 0.01 level) are not so salient as the advantage of bringing
in sequential information (improvement at the 0.1 level), it is
manifested in all the evaluations with different grade types.

6.3 Prerequisite prediction
The evaluation results of prerequisite course prediction are
shown in Table 6. The supervised models performed dramat-

Table 6: Prerequisite course prediction

Model Supervised
Pairs

(Recall@10)
Target
course

LSTM(one-hot) 7 0.3048 0.4486
LSTM(u, c) 7 0.2423 0.3580

catalog ✓ 0.5152 0.5938
syllabus ✓ 0.5658 0.6352
mc2v ✓ 0.6957 0.7733

sc-AMHEN(u, c) ✓ 0.7192 0.8000

ically better in reconstructing the prerequisite pairs. Among
all types of course representations, the course embeddings
and grade embeddings learned from the student-course AMHEN
performed the best, reaching 71.92% of the prerequisite pairs

correctly predicted and 80% of all the target courses with
at least one of their prerequisite course correctly predicted.
For unsupervised models, we found one-hot representation of
courses performed better than course and grade embeddings
in the prerequisite course inference framework described in
Section 5.4.

7. CONCLUSIONS
In this paper, we evaluated the utility of two content-sources
of data about courses, catalog descriptions and syllabi, as
well as enrollment histories and grades. We paired these
sources with four different representations produced by sim-
ple bag-of-words, multifactor Course2vec, LSTM, and network-
based embedding. We compared the performance of these
pairings on five prediction tasks, course similarity, enroll-
ment prediction, grade prediction, prerequisite prediction,
and average enrollment prediction.

On the topic of the utility of syllabus data, which has not
been evaluated before, we found that it showed benefit over
catalog description data only in inferring prerequisite rela-
tionships (Recall of 0.5658 vs 0.5152), perhaps due to syllabi
being the finer-grained source of content information about a
course. In terms of course similarity signal, catalog descrip-
tion was markedly better than syllabus (Recall of 0.5372 vs
0.427) and our results indicate that catalog description, syl-
labus, and enrollment histories all bring some level of com-
plementary information as the combination of all three per-
formed better than any one or two combined. Enrollment
data was used in the best scoring model in four of the five
tasks, with only the best performing course similarity task
model not utilizing enrollments. The nascent network-based
approach performed well on all tasks, and was the top model
in grade prediction and prerequisite prediction.

To conclude: (1) syllabus data is worth the effort to col-
lect compared to catalog description for prerequisite predic-
tion and (2) complements the catalog description and enroll-
ment data on the course similarity task, (3) for prerequisite
learning, supervised approaches based on embeddings per-
form much better than inferencing a pre-trained assessment
model, (4) multifactor Course2vec often performs close to
the more complex network-based approach on all tasks and
(5) seeding the LSTM with course representations from the
other models did not improve next-course prediction per-
formance, while seeding with course grade representations
from the student-course AMHEN model provided a small
improvement in the grade prediction task.

8. LIMITATIONS AND FUTURE WORK
Our analyses were limited to data from a single large pub-
lic institution in the US. Future work will need to evaluate
multiple institutions of varying sizes, student demographics,
and course taking policies in order to examine the generaliz-
ability of these approaches. In terms of models, we focused
on simple text-based approaches and more complex neural
models, both well established and nascent. Classical models
of intermediary complexity were not evaluated.

We included tasks that have been common in EDM papers
involving enrollment data; however, other institutional tasks
exist that could be evaluated to produce an even more com-
prehensive analysis. These tasks include course preparation
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recommendation [21, 20], degree or course attrition predic-
tion, and future course demand forecasting.

Syllabi in their original form could be evaluated, instead
of in bag-of-words form, in order to investigate if the posi-
tionality of words in the syllabi offered any additional pre-
dictive utility. Lastly, learning management system click-
stream data, as well as content information in addition to
the syllabus, could be leveraged to enhance both content-
based and collaborative-based course representations. This
combination of different modalities and scales of data is an
identified open challenge for the field [14].
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ABSTRACT
Identifying critical decisions is one of the most challeng-
ing decision-making problems in real-world applications. In
this work, we propose a novel Reinforcement Learning (RL)
based Long-Short Term Rewards (LSTR) framework for crit-
ical decisions identification. RL is a machine learning area
concerning with inducing effective decision-making policies,
following which result in the maximum cumulative reward.
Many RL algorithms find the optimal policy via estimating
the optimal Q-values, which specify the maximum cumula-
tive reward the agent can receive. In our LSTR framework,
the long term rewards are defined as Q-values and the short
term rewards are determined by the reward function. Ex-
periments on a synthetic GridWorld game and real-world In-
telligent Tutoring System datasets show that the proposed
LSTR framework indeed identifies the critical decisions in
the sequences. Furthermore, our results show that carry-
ing out the critical decisions alone is as effective as a fully-
executed policy.

Keywords
Critical Decisions, Pedagogical Strategies, Critical Reinforce-
ment Learning, Reinforcement Learning

1. INTRODUCTION
People make decisions every day, from minor decisions such
as what to eat for lunch, to major decisions such as which
college to enroll. This is equally true for tutorial interac-
tions. Some decisions, such as what type of example to use
may be minor, while others such as whether to give a new
problem, or provide a solution for an old one, may not. In
many cases the true significance of these decisions will not
be known until well after the fact (much delayed), when stu-
dents’ exam scores come in or beyond. Moreover, for many
such decisions, the significance is often individualized. So
our research question is: Given a long trajectory of de-
cisions, can we automatically identify those which are
critical to the outcome?

Our work is primary concerned with identifying critical deci-
sions in interactive learning environments such as Intelligent
Tutoring Systems (ITSs) and educational games, where the
human-agent interactions can be viewed as a temporal se-
quence of steps [2, 14]. Most ITSs are tutor-driven in that
the tutor decides what to do next. For example, the tutor
can elicit the subsequent step from the student either with
prompting or without (e.g., in a free form entry window
where each equation is a step). When a student enters an
entry on a step, the ITS records its success or failure and
may give feedback (e.g. correct/incorrect markings) and/or
hints (suggestions for what to do next). Alternatively, the
tutor can choose to tell them the next step directly. Each
of such decisions affects the student’s successive actions and
performance and some may be more impactful than others.
Pedagogical policies are used for the agent (tutor) to decide
what action to take next in the face of alternatives.

Reinforcement Learning (RL) offers one of the most promis-
ing approaches to data-driven decision-making for improving
student learning in ITSs. RL algorithms are designed to in-
duce effective policies that determine the best action for an
agent to take in any given situation so as to maximize a cu-
mulative reward. In recent years, RL, especially Deep RL,
has achieved superhuman performance in several complex
games [25, 26, 3]. However, different from the classic game-
play situations where the ultimate goal is to make the agent
effective, in human-centric tasks such as ITSs, the ultimate
goal is for the agent to make the student-system interactions
productive and fruitful. A number of researchers have stud-
ied the application of existing RL algorithms to improve the
effectiveness of ITSs [5, 24, 16, 21, 20, 19, 6, 27, 10, 31, 30,
32]. While promising, relatively little work has been done to
analyze, interpret, explain, or generalize RL-induced poli-
cies. While traditional hypothesis-driven, cause-and-effect
approaches offer clear conceptual and causal insights that
can be evaluated and interpreted, RL-induced policies are
often large, cumbersome, and difficult to understand. The
space of possible policies is exponential in the number of do-
main features. It is therefore difficult to identify the system
decisions that critical to desirable outcomes. This raises a
major open question: How can we identify the critical sys-
tem interactive decisions that are linked to student learning?

In this work, we propose Long-Short Term Rewards (LSTR)
framework to identify critical decisions based on RL-induced
policy. For RL-induced policies, we explore Deep Q-Networks
(DQNs) [18] and also modify Deep Q-Networks based on
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critical decisions referred as Critical DQN in the following.
More specifically, we define critical decisions as those op-
timal decisions have to be made for the desired outcomes.
To quantify their impacts, we define critical policy as the
one which will carry out the optimal actions on the critical
decisions while randomly on others. To identify critical deci-
sions, we investigate on using an RL-induced policy’s action-
value functions (long term) alone and using both action-
value functions (long term) and immediate rewards (short-
term). The effectiveness of the proposed LSTR framework
is evaluated on a synthetic GridWorld game and real-world
Intelligent Tutoring System datasets. Our results show that
the proposed LSTR framework indeed identifies critical deci-
sions and moreover, carrying out the critical decisions alone
is as effective as a fully-executed policy.

Our main contributions are summarized as follows: 1) we
proposed the Long Short Term Rewards framework to iden-
tify critical decisions and evaluated on both a synthetic Grid-
World game and real-world ITS dataset. 2) we proposed
Critical DQN to improve the long term rewards in identi-
fying critical decisions and investigated its advantages and
disadvantages.

2. METHOD
We follow the conventional Reinforcement Learning (RL)
notation. An agent interacts with an environment over a se-
ries of decision-making steps. The environment is framed as
a Markov Decision Process (MDP). At each timestep t, the
agent observes the state the environment is in, denoted st;
then the agent chooses an action from a discrete set of possi-
ble actions: A ∈ (a1, a2, ..., an). As a result, the environment
provides a scalar immediate reward r. We assume that the
future rewards are discounted by the factor γ ∈ (0, 1], and
the agent’s goal is to maximize the expected discounted sum
of future rewards, also known as the return. The return at

time-step t is defined as Rt =
∑T
t′=t γ

t′−trt′ , where T is the
last time-step in the episode.

The goal of the agent is to find the optimal action-value
function Q∗(s, a), which will result in the agent receiving
the highest possible expected return, starting from state s,
taking action a, and following the optimal policy π∗ there-
after. Formally, we define the optimal action-value func-
tion as Q∗(s, a) = maxπ E[Rt|st = s, at = a, π]. The opti-
mal action-value function must follow the Bellman Equation
shown in Equation 1, which states that the Q-value for a
given state and action should be equal to the immediate re-
ward obtained after taking that action, plus the discounted
Q-value of the optimal action a′ taken from the next state
s′. Note that this is an expectation over the next states
sampled from the environment.

Q∗(s, a) = E
s′∼E

[r + γmax
a′

Q∗(s′, a′)|s, a] (1)

In our case, we follow the batch Reinforcement Learning for-
mulation in that we have a fixed-size dataset D consisting of
all historical sample episodes and each episode is denoted as

s1
a1,r1−−−→ s2

a2,r2−−−→ s3
a3,r3−−−→ · · · sL). To make this task more

general, we assume that the state distribution and behavior
policy that were used to collect this data are both unknown.

In the following, we will describe the two DRL algorithms
explored: DQN and Critical DQN and two ways of defining
critical decisions: long term reward vs. long-short term re-
ward. Based on two types of DRL methods and two ways
of identifying critical decisions, we will compare six different
policies.

2.1 Two Types of Deep RL Policy
2.1.1 Original DQN

Deep Q-Network (DQN) is one of most promising approaches
which is widely used on areas like robotics and video games
[18]. Fundamentally, DQN is a version of Q-learning which
uses neural networks to approximate the Q-values of the
different state-action couples. In order to train the DQN
algorithm, the two neural networks with equal architectures
are employed: one for calculating the Q-value of the current
state and action: Q(s, a) and another neural network to cal-
culate the Q-value of the next state and action: Q(s′, a′).
The former is the main network and its weights are denoted
by θ and the latter is the target network, and its weights are
denoted by θ−. The Bellman Equation for DQN is shown
in Equation 2 and it is trained through running a gradient
descent algorithm to minimize the squared difference of the
two sides of the equality.

Q(s, a;θ) = E
s′∼E

[r + γmax
a′

Q(s′, a′;θ−)] (2)

The main network is trained on every training iteration,
while the target network is frozen for a number of train-
ing iterations. Every k training iterations, the weights of
the main neural network are copied into the target network.
This is one of the techniques used in order to avoid diver-
gence during the training process. In practice, DQN also
uses an experience replay buffer to store the recently col-
lected data and to uniformly sample (s, a, r, s′) steps from
it. By sampling uniformly, it breaks the correlations between
samples of the same episode, making the learning process
more robust and stable. In this work, as we are doing batch
RL, our whole dataset will be the experience replay buffer,
and it will not change during the training process.

Basically, DQN is a Q-leaning method that it finds the opti-
mal action-value function by updating its action-value func-
tion approximator recursively. Its major difference from
the traditional RL is that a deep neural network is used
as action-value function approximator and this allows it to
deal with the tasks with high dimensional state space.

2.1.2 Critical DQN
In the original DQN, the Q functions are estimated based on
the assumption that the optimal policy will be followed to
the end. We define critical policy to be the one that the op-
timal decision will be carried out on critical decision points
while random decisions on the rest. By not taking the op-
timal actions on non-critical decisions, we fundamentally
change the dynamics of Bellman equation which assumed
full-execution of the policy. Therefore we need to modify it
so that it can incorporate our critical decisions into consid-
eration.
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For a single (s, a, r, s′) tuple, the original Bellman Equation
can be expressed as:

Q(s, a) = r + γmax
a′

Q(s′, a′) (3)

where r is the immediate reward for taking action a at state
s; γ is the discount factor; and Q(s′, a′) is the action-value
function for taking action a′ at the subsequent state s′.

To induce a critical policy, we will modify the original Bell-
man equation based on whether a decision is critical or not.
The intuition behind the Critical DQN is that if a decision
is important, then the agent should take the best action
otherwise the agent can randomly choose an action to take.
Therefore, we have:

Q(s, a) =

{
r + γmaxQ(s′, a′) s’ is critical

r + γmeanQ(s′, a′) s’ is non-critical
(4)

In equation 4, to update the Q-value for any given s and a,
it will consider whether the next state s′ is critical or not.
If it is critical, the maximum Q-value for s′ will be used
to update Q(s,a); if the decision s′ is non-critical, then the
average Q-value among all the actions on s′ will be used to
update Q(s,a).

Algorithm 1 presents the pseudo-code for critical DQN. First,
it initializes all Q-values using the immediate rewards to
avoid the bias of the neural network. In the main train-
ing loop, for each iteration, the algorithm first calculate the
median threshold of Q-value difference over all the states.
Then, for each (s, a, r, s′) tuple, if the Q-value difference
of s′ is larger than the median threshold, we consider the
decision on that state is critical and its value function is
maxa′Q(s′, a′; θ−); for non-critical decisions, their value func-
tion are defined as meana′Q(s′, a′; θ−). In this work, we as-
sumes that half of the decisions in the training dataset are
critical so that the median threshold is applied to separate
critical and non-critical decisions quantitatively.

2.2 Two Types of Critical Rewards
2.2.1 Long Term Rewards (LongTRs)

In RL, Q(s, a) is an estimation of the cumulative future re-
wards the agent will receive by taking action a at state s and
following the policy to the end. If the Q-values for all the
actions are the same, then it doesn’t matter which action
to take because all the actions will result in the same final
reward. If the Q-value for one action is much larger than the
others, then taking that action will have great impact on the
future reward and this decision should be critical. So, the
Long Term Reward is defined as how much cumulative fu-
ture rewards the best action will obtain compared with the
worst action. For this paper, we therefore define the Long
Term Reward (LongTR) as:

LongTR(s) = max
a

Q(s, a)−min
a
Q(s, a) (5)

which is the difference between the maximum and minimum
Q-values in the state s. In general, the higher the LongTR,
the more important the decision is.

Algorithm 1 Pseudocode of Critical DQN

1: Initialize the training dataset D as (s, a, r, s′) tuples.
2: Initialize the Q function with random parameters θ
3: Initialize the target Q̂ function with parameters θ− = θ
4:
5: // Initialize Q(s, a) as immediate reward
6: for each (si, ai, ri, s

′
i) in D do

7: set yi = ri
8: end for
9: Perform gradient descent on (yi −Q(si, ai; θ))

2

10: Reset Q̂ = Q
11:
12: // Main Training Loop
13: for iteration k = 1, 2, ... till convergence do
14: Initialize empty array Qdiffs
15: for each (si, ai, ri, s

′
i) in D do

16: Qdiffs ← (maxQ(si, a
′; θ−)−minQ(si, a

′; θ−))
17: end for
18: median threshold = median(Qdiffs)
19: for each (si, ai, ri, s

′
i) in D do

20: if terminal s′i then
21: Set yi = ri
22: else
23: Qdiff = maxQ(s′i, a

′; θ−)−minQ(s′i, a
′; θ−)

24: if Qdiff > median threshold then
25: Set yi = ri + γmaxa′Q(s′, a′; θ−)
26: else
27: Set yi = ri + γmeana′Q(s′, a′; θ−)
28: end if
29: end if
30: end for
31: Perform gradient descent on (yi −Q(si, ai; θ))

2

32: Every C steps reset Q̂ = Q
33: end for

2.2.2 Long-Short Term Rewards (LSTRs)
For the LongTR, it only considers the cumulative future
rewards but not immediate rewards. In a deterministic en-
vironment, LongTR is enough to identify critical decisions.
But in a stochastic environment like the real world, some
non-critical decision points would become critical and the
LongTR can’t detect their importance. For example, Figure
1 shows a simple MDP with seven states and one reward in
the central state. Based on the LongTR, the decisions on S2
and S3 are critical because if doesn’t move to the center, the
agent will miss the +10 rewards. S1 is not critical based on
LongTR because either move up or down doesn’t affect col-
lecting the reward as long as the agent takes the right action
on state S2 or S3. However, in a stochastic environment, the
agent should get the reward as soon as possible because the
longer the path, the higher the risk to deorbit the rail. In RL,
the LongTR can’t learn the importance of state S1 but the
immediate reward can. So, immediate rewards are served as
Short Term Rewards (ShortTRs) in LSTR to complement
the weakness of LongTRs that the agent should collect the
rewards immediately without wandering.

2.3 Identifying & Evaluating Critical Decision
The effectiveness of our LSTR framework on identifying crit-
ical decisions is evaluated by the performance of critical
policy. Unlike normal RL policies whose decisions are car-
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Figure 1: An MDP Example for LSTR

ried out all the time, our critical policy only follows the
RL policy’s decisions at critical points and takes random
actions otherwise. Ideally, the more accurate the critical
decisions are identified, the better performance the critical
policy should have.

More specifically, for a given training data set, we can induce
RL policies following the original DQN or the Critical DQN,
named as π or πc, respectively. For each of the policy, there
are two ways to identify critical decisions, using LongTR (L)
and using LSTR (LS). Based on the rewards used for critical
decision identification and the policy used for execution, we
have the following six critical policies shown in the table 1.

Table 1: Six Critical Policies

Critical Policy Execution Policy
Rewards for
Identifying Critical Decision

1 π(L) π LongTRs in π
2 π(LS) π LSTRs in π
3 πc(Lc) πc LongTRs in πc
4 πc(LSc) πc LSTRs in πc
5 π(Lc) π LongTRs in πc
6 π(LSc) π LongTRs in πc

The first four critical policies are a simple 2 (π vs. πc) by
2 (L vs. LS) combination that each policy uses its own re-
wards to identify critical decisions. However, the connection
between the critical decisions and the performance of critical
policy is based on the assumption that the policy carried out
at the critical points are optimal. In the Critical DQN, av-
erage Q-value is considered in the updating process and this
may slow down the convergence. As a result, the policy πc
can be non-optimal. So, we include other two critical poli-
cies: π(Lc) and π(LSc) which using the LongTR and LSTR
from πc to identify critical decisions but executing the policy
π to make decisions. In general, the original DQN should
converge faster and generate better policy than the Critical
DQN.

3. SIMULATION ENVIRONMENT
3.1 GridWorld Description
The GridWorld environment is like a maze that the agent
learns an optimal path from the start point to the end point.
Figure 2 shows our GridWorld environment, which consists
of 7 by 14 cells. The agent starts from the start state (right
bottom corner), explores the 2D space and finishes at the
end state (left upper corner). There are several walls in the
GridWorld which are marked as black blocks. The agent
state is simply represented by the X and Y coordinates.

Figure 2: The Interface of the GridWorld Game

Action At each step, the agent can take three actions: up,
down and left. In Figure 2, the possible actions for each state
are labeled as small purple triangles that some states have
three possible actions while some have two or one possible
actions. The possible actions for each state are predefined
in the environment so that the agent never hit the wall or
the boundary.

Reward When moving in the GridWorld, there is -0.1 re-
ward penalty for each step and the agent can collect -1 and
+1 rewards. In order to simulate the real world, the reward
function is designed in state-action-state way, R(s, a, s′).
The black arrows indicate that only enter the reward state
along with the arrow, the agent can get the reward -1 or +1.
Otherwise, the agent won’t receive rewards. Furthermore,
when the agent hits the reward state, it is forced to move
left. This design aims to avoid the agent from collecting
the same +1 reward repeatedly without forwarding to the
terminal state.

Deterministic vs. Stochastic There are two transition
settings in the GridWorld game: deterministic and stochas-
tic. For deterministic transition setting, the next state is
determined by the current state and action. For stochastic
transition setting, the same state-action pair can result in
different next states. For example, for deterministic setting,
if the agent takes action ‘left’, then it will move to the left
neighbor cell with 100 probability. For the stochastic transi-
tion setting, if the agent takes action ‘left’, then it only has
85% chance moving left, and 15% chance moving to other
possible directions.

Finally, the performance of RL-induced policy in the Grid-
World is evaluated by the final delayed reward which is the
cumulative rewards during a trial. A good RL-induced pol-
icy should collect more +1 rewards, avoid -1 rewards and
spend less steps to reach the goal.

3.2 Experiment Setup
Data Collection Since we focus on applying offline RL ap-
proaches to induce pedagogical policies, we induce all Grid-
World policies offline. Following the data collection pro-
cedure in ITS, we collected the training data using a ran-
dom policy. For the deterministic environment, we collected
500 randomly generated trajectories. Considering that the
stochastic environment is more complicated, we collected
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1000 trajectories for it.

Inferring Immediate Rewards Our LSTR framework re-
quires immediate rewards to identify critical decisions, but
our ITS data only have delayed rewards. Thus, we apply
a Neural Network (NN) based approach to infer “immedi-
ate” rewards from delayed rewards. Given a trajectory to
the NN as input, it outputs an “inferred” immediate reward
for each step in the trajectory. The NN is trained using an
additive error (the mean square error between the sum of
inferred immediate rewards and the delayed rewards) as the
loss function.

Critical Threshold Determination A key thing for iden-
tifying critical decisions is to choose an appropriate thresh-
old on the long term and short term rewards that would not
include too many trivial decisions but at the same would not
exclude too many critical decisions. In order to pick a proper
one, we conducted an analysis on the real and inferred im-
mediate rewards and the Q-value difference. For immediate
rewards, we would want to collect the large positive rewards
and avoid the large negative rewards. Thus, rewards with a
large absolute value should be considered as critical. Figure
3 shows the distribution of the real and inferred immedi-
ate rewards on the deterministic training dataset. The X
axis shows the percentage of decisions in the dataset ranked
by the value of the rewards (from large to small), and the
Y axis shows value of the rewards. The threshold was set
by allowing the real and critical rewards to identify similar
numbers of critical decisions, which resulted in the value of
0.5. That is, if the ShortTR of a decision is greater than 0.5
or less than -0.5, it is critical. The same threshold was used
for the stochastic dataset.

Figure 3: Immediate Reward Distribution

With the determined ShortTRs threshold, we explore dif-
ferent thresholds for the LongTRs in the experiment. The
larger the threshold is (on percentage ranking), the more
decisions will be carried out following the policy and the
performance will in turn be better. To find a good bal-
ance between the number of critical decisions and the per-
formance of the policy, we apply the policy with different
thresholds (on percentage) at a 10% interval from 0% to
100% (0%, 10%, 20% ... 100%). Figure 4 shows an example
distribution of the Q-value difference (LongTRs), calculated
using the π policy in the deterministic dataset. For LSTRs,
the critical decisions are the union from two set of critical
decisions identified by LongTRs and ShortTRs separately.

Figure 4: Q-value Difference Distribution

3.3 Results
We evaluate the performance of the six critical policies across
two types of environment (deterministic vs. stochastic) with
two types of immediate rewards (real vs. inferred). Figure
5 to Figure 8 shows the online evaluation results for the
four possible settings. The X axis shows the percentage of
decisions identified as critical ones based on the LongTRs
on the training data. For example, 10% means the decisions
with the top 10 percent LongTRs were considered as critical.
The Y axis shows the cumulative rewards (the average of
100 trials under different random seeds) received by each
critical policy. As expected, across all four figures, there is a
general trend that the more decisions considered as critical,
the better the policy will perform.

Overall, πc(LSc) and π(LSc) outperforms the other four
policies across all four settings. This suggests that when
identifying critical decisions, LSTRs are more effective than
LongTRs and Critical DQN is more effective than original
DQN. This supported our expectation that both long term
and short term rewards should be considered in critical de-
cision identification and Critical DQN provides a better es-
timation of the long term rewards when the policies are par-
tially carried out.

Next, we investigate in detail how the execution policy and
the rewards (long term vs. long-short term) may impact
the performance of the critical policies. More specifically,
we present our results in five parts. First, compare the ef-
fectiveness of the original and Critical DQN on LongTRs.
Second, investigate whether LSTRs can lead to better per-
formance than LongTRs. Third, a mixed comparison be-
tween the critical decision recognition and policy execution.
Fourth, exam the effectiveness of the inferred rewards. Fi-
nally, explore the performance of the Critical DQN with
limited amount of training data.

3.3.1 Original DQN vs. Critical DQN on LongTRs
We first focus on comparing the original DQN policy π(L)
and the Critical DQN policy πc(Lc) with LongTRs, where
the same policy was used for both execution and critical de-
cisions identification. As we can see in all four figures, πc(Lc)
outperformed π(L) when no more than 50% decisions were
considered as critical. More importantly, the fewer the criti-
cal decisions, the larger the gap is (except 0% which is totally
random). This suggests that the Q-value difference in πc is
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Figure 5: Deterministic GridWorld with Imm Figure 6: Deterministic GridWorld with Infer

Figure 7: Stochastic GridWorld with Imm Figure 8: Stochastic GridWorld with Infer

more accurate and sensitive than that in π in identifying crit-
ical decisions. This result is not surprising because the Crit-
ical DQN already took the random execution of non-critical
decisions into account in policy induction. Additionally, as
expected, as the percentage of critical decisions increasing,
both policies reached optimal. This suggests that our pro-
posed Critical DQN could generate optimal policies as the
DQN can do.

3.3.2 LSTRs vs. LongTRs
Second, we investigate how different rewards (LSTRs vs.
LongTRs) may impact the performance of the policies. LSTR
policies are shown in solid lines while LongTR policies are
shown in dashed lines across Figure 5 to Figure 8. Here we
focus on comparing the pair of policies with the same ex-
ecution and critical decision identification policies such as
π(L) vs. π(LS) and π(Lc) vs. π(LSc). Overall, results
showed that the LSTR policies outperformed the LongTR
policies when no more than 50% decisions were considered
as critical (with few exceptions where the two policies have
equal performance). More importantly, the performance of
the LSTR policies had a sharp increase in the interval of 0%
to 50% while the increase of the LongTR policies was rel-
atively smooth. This resulted in a large gap between them
when few decisions were considered as critical. This gap

gradually diminished as more decisions were included and
disappeared eventually. This suggests that considering both
the long term and short term rewards is more effective than
considering the long term rewards only, especially when few
decisions were considered as critical.

3.3.3 Mixed Comparison
There are two factors in the critical policy: execution policy
and Rewards for critical decision identification. In this com-
parison, we fixed one factor and examined the impact of the
other one on the critical policy. First, through fixing the ex-
ecution policy as π, a comparison between Lc vs. L showed
that the π(Lc) outperformed the π(L) across all the four
Figures 5 to 8. Similar to this setting, we can get the same
results that π(LSc) is better than π(LS). It means that the
LSTRs in Critical DQN policy is more accurate to identify
critical decisions than the original DQN. When fixing the
Rewards for critical decision identification as Lc, a compar-
ison between π vs. πc showed that π(Lc) and πc(Lc) have
similar performance. This result also applies to π(LSc) and
πc(LSc). It indicates that the policy π and πc could make
similar decisions on critical points and the Critical DQN
could induce optimal policy as the original DQN.

3.3.4 Inferred Rewards vs. Immediate Rewards
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We also examined the effectiveness of the inferred immediate
rewards by comparing them with real rewards. Figure 5
and 7 show the policies (immediate critical policy) induced
using real immediate rewards; while Figure 6 and 8 show
the policies (inferred critical policy) induced using inferred
rewards. Through comparing the performance at 100%, all
the inferred critical policies could reach the same optimal
with the immediate critical policies in both deterministic
and stochastic environments. This suggests that the inferred
rewards could generate the optimal policy as real rewards.
Then, the lines of inferred critical policies in Figure 6 and 8
have similar trend patterns with the lines in Figure 5 and 7,
respectively. It means that the LSTRs calculated by inferred
critical policies have similar distribution with the ones from
immediate critical policies. In sum, the result indicates that
inferred rewards could not only generate the optimal policy
but also produce reliable LSTRs.

3.3.5 Data-Efficiency for Critical DQN
From the previous results, we could get a conclusion that
when the policies π and πc are both optimal, πc(Lc) is better
than π(L) regarding the identification of critical decisions.
But what if we don’t have enough data to train an optimal
policy, how’s the critical DQN performing?

Figure 9: Original DQN vs. Critical DQN

Figure 9 shows the online performance of πc(Lc) vs. π(Lc)
and πc(LSc) vs. π(LSc) as the number of training trajecto-
ries increasing. The X axis is the number of trajectories used
to train the critical policies. The Y axis is the cumulative
rewards (the average of 100 trails under different random
seed) received by each critical policy. In this experiment,
we applied the same rule to identify critical decisions for all
the four policies and the only difference is which RL policy
makes decision on the critical decision points. For π(Lc), it
means the critical decisions are identified by the LongTRs
in πc but execute π to make decisions in the online evalua-
tion. It is the same for π(LSc) that the LSTRs come from πc
while π decides what action to take. More specifically, the
threshold for critical decisions is fixed by applying the same
0.5 threshold on short term rewards and 50% threshold on
long term rewards.

The result shows that when the training datset is less than
600 trajectories, the Critical DQN policies are worse than
the original DQN policies. When the training dataset is

larger than 600 trajectories, they have similar performance.
This suggests that the Critical DQN needs more data to
converge to the optimal policy. But the LSTRs in Critical
DQN is always good as the red lines π(Lc) and π(LSc) keep
staying in the upper area from 100 to 1000 training trajecto-
ries. In summary, the Critical DQN could provide the best
LSTRs to identify critical decisions but it needs more data
to make good decision.

4. REAL-WORLD APPLICATION
4.1 Pyrenees Tutor Description
Pyrenees tutor is a web-based ITS for probability. It cov-
ers 10 major principles of probability, such as the Addition
Theorem and Bayes’ Rule. Pyrenees tutor provides step-
by-step instruction and immediate feedback. Pyrenees tu-
tor can also provide on-demand hits prompting the student
with what they should do next. As with other systems, help
in Pyrenees tutor is provided via a sequence of increasingly
specific hints. The last hint in the sequence, the bottom-out
hint, tells the student exactly what to do.

Figure 10: The Interface of the Pyrenees Tutor

Figure 10 shows the interface of Pyrenees, which consists of
four windows. The top window shows the problem state-
ment and doesn’t change throughout the problem. In the
dialog window, the upper part shows the instructions the
tutor gives to the students such as an explanation of the
current step or a prompt for the next step. At the same
time, student enters an answer in the lower part of the dia-
log window such as selecting a choice or writing an equation.
Any variables or equations generated through this process
are shown on the left side of the screen for reference.

During tutoring, students are required to complete 4 phases:
1) pre-training, 2) pre-test, 3) training, and 4) post-test. In
the pre-training phase, all students study the domain prin-
ciples through a probability textbook by reviewing some ex-
amples and solving certain training problems. In the second
phase, students take a pre-test which contains 14 problems.
More specifically, the textbook is not available at this phase
and students are not given feedback on their answers, nor
are they allowed to go back to earlier questions. This is also
true for the post-test. In phase 3, all students receive the
same 12 rather complicated problems in the same order on
Pyrenees tutor. Each of the 10 major principles needs to
be applied at least twice in the training problems. For each
problem, the average solving steps range from 20 to 50. Dif-
ferent from the pre- and post- test, students can access the
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corresponding pre-training textbook and tutor help is avail-
able during this phase. Most importantly, the pedagogical
policy works in this phase by deciding what action to take
for each problem. In the training phase, each problem could
have been provided as problem solving or worked example.
Also, each step in the problem could have been provided as
either a tell or elicit. Finally, all of the students complete a
post-test with 20 problems. 14 of the problems are isomor-
phic to the pre-test given in phase 2. The remaining six are
non-isomorphic complicated problems.

The performance of student learning is measured by the nor-
malized learning gain (NLG) which is defined as NLG =
posttest−pretest

1−pretest where 1 is the maximum score for both pre-
and post- test. When grading the pre- and post- test, we
use partial credit that each problem score is defined by the
proportion of correct principle applications evident in the
solution. For example, a student who correctly applied 4
of 5 possible principles would get a score of 0.8. All of the
tests are graded in a double-blind manner by a single expe-
rienced grader. For comparison purposes, all test scores are
normalized to the range of [0, 1].

4.2 Experiment Setup
Training Dataset Our training dataset contains a total of
1148 students’ interaction log collected over six semesters’
classroom studies (16 Fall to 19 Spring). The studies were
assigned as a regular homework to students. During the
studies, all students used the same tutor, followed the same
general procedure, studied the same training materials, and
worked through the same training problems.

From the student-system interaction logs, 142 features were
extracted which describes the student learning state. All
the 142 features can be categorized into five groups that
Autonomy features describe the amount of work done by
the student; Temporal features are the time related infor-
mation during tutoring; Problem Solving features indi-
cate the context of the problem itself; Performance fea-
tures denote student’s performance; and Student Action
features record the student behavior information. For each
problem, there are three possible actions: worked example
(WE), problem solving (PS) and step decisions (SD). In WE,
the student observes how the tutor solves a problem; in PS,
the student solves the problem; in SD, student solves a por-
tion of steps in a problem while the tutor shows how to solve
the others. For reward, there’s no immediate reward during
tutoring and the delayed reward is the student’s NLG.

Offline Learning and Evaluation The offline learning
process follows the same process with the GridWorld in sec-
tion 3.2. First, NN was applied to infer the immediate re-
wards for the training dataset. Then, critical policy π and
πc were induced based on the original DQN and the Criti-
cal DQN. Finally, we fixed the threshold of ShortTRs based
on the elbows in the distribution and explored the relation-
ship between different thresholds of LongTRs and the per-
formance of the critical policies.

Different from the online evaluation in GridWorld game, we
applied off-policy policy evaluation (OPE) metrics to evalu-
ate the performance of the critical policies. In general, there
are two types of OPE: model based and Importance Sam-

pling (IS) based. Song’s work [12] showed that Per Decision
Importance Sampling (PDIS) is the best metrics to evalu-
ate the performance of RL-induced policies in the context of
ITSs. So, PDIS was applied to evaluate the critical policies
on the training dataset. More specifically, if a decision is
identified as critical, the probability of taking that action is
calculated by the softmax of Q-values among all the possi-
ble actions. On the contrary, if the decision is identified as
non-critical, then the probability of taking that action is the
random probability 1/3 as there are three possible actions
for each problem.

4.3 Results
For Pyrenees tutor, we first present the offline evaluation
results for all six critical policies. Then, we explore the
identified critical decisions in the historical dataset.

4.3.1 Offline Evaluation Results
Figure 11 shows the offline evaluation results on Pyrenees
tutor dataset. The X axis is the percentage of decisions
identified as critical decisions in the historical dataset. The
Y axis is the PDIS value. In general, the higher the PDIS,
the better the policy.

Figure 11: Offline Evaluation Results

First of all, the trend still holds that the more critical deci-
sions, the better the policy would perform. When compar-
ing within the dashed lines, there’s no clear pattern before
40% threshold. However, π(Lc) significantly outperformed
the other two critical policies after 40%. The same trend
occurs on the solid lines with LSTRs. The reason is that
the Pyrenees dataset is not large enough for the Critical
DQN to find an optimal policy, but the Lc and LSc are still
accurate to identify critical decisions. Furthermore, the per-
formance jump around 50% demonstrates the reliability of
the Critical DQN algorithm because in the pseudo-code 1,
we already decide half of the decisions are critical decisions
and the Figure 11 reflects this setting. As expected, the
LSTR still outperforms LongTR that all the solid lines are
above the corresponding dashed lines. In summary, the re-
sult reflects the effectiveness of LSTR in identifying critical
decisions.

4.3.2 Exploring Critical Decisions
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Table 2: Distribution of Critical Decisions in each Problem
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Long-Term Rewards 3% 16% 16% 13% 15% 11% 7% 7% 6% 6%
Short-Term Rewards 0% 1% 6% 6% 6% 10% 13% 19% 19% 20%
Long-Short Term Rewards 3% 14% 15% 12% 14% 11% 8% 8% 8% 8%

In order to further investigate the critical decisions identified
by LSTRs in the tutor dataset, we analyzed where did they
occur. 50% threshold for the LSc in Figure 11 was applied
to identify critical decisions in the tutor dataset and Table 2
shows the distribution of critical decisions in each problem.
The first row represents the 10 problems in chronological
order. The second row indicates the percentage of critical
decisions identified by LongTRs in different problems. For
example, 3% of critical decisions happens in P1 while 16%
happens in P2. It indicates that the LongTRs focus on the
critical decisions in the early to mid stage. In the meantime,
the third row shows that the ShortTRs focus on the critical
decisions in the late stage. The fourth row shows the criti-
cal decisions identified by LSTRs, which is the union set of
the critical decisions from LongTRs and ShortTRs. Overall,
critical decisions are evenly distributed among all the prob-
lems except the first one. It is not surprising that the first
one is not so important because in the first problem, stu-
dents are not familiar with the system and the policy needs
more data to know the student status better. Furthermore,
it reflects that the LongTRs and ShortTRs complement each
other. If we only focus on LongTRs, we will miss the impor-
tant decisions in the late stage, otherwise we will miss the
important decisions in the early to mid stage.

5. RELATED WORK
5.1 RL For Pedagogical Policy Induction
Prior Research in Applying RL to Pedagogical Policy In-
duction can be roughly divided into classic RL vs. Deep
RL approaches. The latter is highly motivated by the fact
that the combination of deep learning (neural networks) and
novel reinforcement learning algorithms has made solving
complex problems possible in the last decade. For instance,
the Deep Q-Network (DQN) algorithm [18] takes advantage
of convolutional neural networks to learn to play Atari games
observing the pixels directly. Since then, DRL has achieved
success in various complex tasks such as the games of Go
[25], Chess/Shogi [26], and robotic control [3]. One major
challenge of these methods is sample inefficiency where RL
policies need large sample sizes to learn optimal, generaliz-
able policies. Batch RL, a sub-field of RL, aims to fix this
problem by learning the optimal policy from a fixed set of a
priori-known transition samples [15], thus efficiently learn-
ing from a potentially small amount of data and being able
to generalize to unseen scenarios.

Prior research using classic RL approaches has applied both
online and batch/offline approaches to induce pedagogical
policies for ITSs. Beck et al. [4] applied temporal difference
learning to induce pedagogical policies that would minimize
the students’ time on task. Similarly, Iglesias et al. applied
Q-learning to induce policies for efficient learning [10]. More
recently, Rafferty et al. applied an online partially observ-
able Markov decision process (POMDP) to induce policies
for faster learning [19]. All of the models described above

were evaluated via simulations or classroom studies, yielding
improved student learning and/or behaviors as compared to
some baseline policies. Offline or batch RL approaches, on
the other hand, “take advantage of previous collected sam-
ples, and generally provide robust convergence guarantees”
[22]. Thus, the success of these approaches depends heavily
on the quality of the training data. One common conven-
tion for collecting an exploratory corpus is to train students
on ITSs using random yet reasonable policies. Shen et al.
applied value iteration and least square policy iteration on a
pre-collected exploratory corpus to induce a pedagogical pol-
icy that improved students’ learning performance [24, 23].
Chi et al. applied policy iteration to induce a pedagogi-
cal policy aimed at improving students’ learning gain [5].
Mandel et al. [16] applied an offline POMDP to induce a
policy which aims to improve student performance in an ed-
ucational game. All the models described above were eval-
uated in classroom studies and were found to yield certain
improved student learning or performance relative to a base-
line policy. Wang et al. applied an online DRL approach
to induce a policy for adaptive narrative generation in ed-
ucational game using simulations [29]; the resulting DRL-
induced policies were evaluated via simulations only. In this
work, based on the characteristics of our task domain, we fo-
cus on batch RL with neural networks, also known as batch
Deep Reinforcement Learning (batch DRL) [11, 9].

5.2 Critical Decisions in Simulation
Student-Teacher framework is the most closely related work
to our problem. In this framework, a “student” agent learns
from the interaction with environment, while a “teacher”
agent provides action suggestions to accelerate the learning
process. Their research question is not what to advise but
when to advise, especially with a limited budget of advice.

Clouse [7] was the first one studied the student-teacher frame-
work in a student-initiated advising mode. They applied
Q-value difference to measure the student’s confidence in
a state and used it to decide when should the student ask
for help. The results showed that compared with random
asking, their approach could improve the learning speed sig-
nificantly. Furthermore, the experiment demonstrated that
not all the teacher’s advice are equally helpful. The same
amount of advice can cause the student agent to take widely
varying amounts of steps to find the optimal policy.

Torrey et al. [28] considered the student-teacher framework
in teacher-initiated advising way. They considered an envi-
ronment with a limited budget of advice and teacher decided
when to give advice. They proposed several heuristic meth-
ods to determine when to give advice such as early advising,
importance advising, mistake correcting and predictive ad-
vising. The results showed that mistake correcting has the
best performance which indicates that advice can have the
greatest impact when students make mistakes on important
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states.

Zimmer et al. [33] modeled the when to advise problem as
an RL problem. They learned a teaching policy with two
actions: A = advice, noadvice to decide when to give advice
to the student. Compared with heuristic methods, the result
showed that the teacher policy is effective because it can
learn not only when to give advice, but also distinguish good
and bad student agent that good agent chooses a lot of good
actions and doesn’t need advice while bad agent needs more.

Amir et al. [1] studied the jointly-initiated strategies for
student-teacher learning framework. In their model, both
student and teacher can initiate advising based on heuris-
tic functions. The motivation of their work is to reduce the
pressure of the teacher agent on monitoring the student con-
stantly and make the framework more close to the real-life
student-agent scenario. The result showed that the joint
decision-making approach could reduce the attentions re-
quired from the teacher but still keep the student learning
effectively.

Fachantidis et al. [8] explored the impact of advice quality in
the student-teacher framework. They distinguished teacher
agents to be an expert or a good teacher who provide opti-
mal or sub-optimal advice. Also, a Q-teaching method was
proposed to learn a teaching policy to decide when to give
advice. Their results showed that the best performers are
not always the best teachers and the Q-teaching approach
is significantly more efficient than others.

In summary, prior works investigated the problem of when
to give advice in simulated environments. They showed that
Q-value difference is a robust and accurate heuristic func-
tion to estimate the importance of decision in interactive
environments. However, prior works only considered RL-
based student agent but not human students. In this work,
we expand to a dataset of real-world ITS involving human
students.

5.3 Exploiting Q-value Difference in ITSs
Some prior work exploited the Q-value difference between
actions to simplify the decision-making process/problem in
the context of ITS. For example Mitchell et al. relied on the
Q-value difference to reduce the feature space [17]. More
specifically, they proposed a policy evaluation metric, sepa-
ration ratio for feature selection, which is defined as
2∗|Q(s,a1)−Q(s,a2)|
(Q(s,a1)+Q(s,a2))

where Q(s, ai) is the Q value for the state-

action pair (s, ai). The feature selection approach was then
combined with RL to induce pedagogical policies for a dialog
system, the Java tutor.

Zhou et al. [31] relied on Q-value difference to reduce the
policy space. More specifically, they applied weighted deci-
sion tree with post-pruning to extract a compact set of 529
rules from a full set of 3706 rules. During the extraction,
each rule was weighted by the Q-value difference between
two alternative actions and thus increased the carry-out like-
lihood of more important decisions. The policies were empir-
ically evaluated in a classroom study. Results showed that
the full RL policy and the compact DT policy together were
significantly more effective than a random policy and there
is no significantly difference between the full RL policy and

the compact DT policy.

Song et al. [13] proposed an ADRL framework to identify
critical decisions and conducted an empirical study to test
the effectiveness of the ADRL. In ADRL, two policies were
induced that a positive policy aims to help student while a
bad policy tries to hinder student learning. For a given state,
if the two policies have different decisions and the Q-value
difference is large enough, then this is a critical state and
the decision is important. The results showed that critical
phase exists in student learning that critical decisions always
occur in groups and the more critical phase students have
experienced, the better performance they have.

In sum, prior studies have considered the Q-value difference
between actions as a heuristic function of action importance.
The larger the difference, the more important the decision
is. However, prior work didn’t quantitatively study how
large Q-value difference is a critical decision. In this work,
we explored the Q-value difference thresholds by classifying
decisions into two categories: critical and non-critical and
evaluating the quality of the critical decisions.

6. CONCLUSIONS
In this study, we explored Long-Short Term Rewards to
identify critical decisions in both synthetic Gridworld game
and real-world ITS. Based on the LSTRs, we proposed Crit-
ical DQN to induce critical policy whose Q-value difference
is more heuristic and sensitive to the decision importance.
In order to investigate the effectiveness of LSTRs, we evalu-
ated the performance of critical policies with different criti-
cal thresholds by online evaluation on GridWorld and offline
evaluation on Pyrenees tutor’s dataset. The results showed
that the LongTRs from Critical DQN are significantly better
than the original DQN. Through considering the ShortTRs,
the LSTRs are significantly better than the LongTRs. How-
ever, the Critical DQN needs more data to converge to an
optimal policy. In summary, through identifying critical de-
cisions by the LSTRs, half of the decisions are trivial and
carry out the optimal policy on the 50% decisions (critical
ones) could achieve the similar effect of carrying out on all
decisions.

In the future, we plan to generalize the LSTR framework to
other domains in terms of interactive environments. Also,
we hope to deploy a critical DQN policy on Pyrenees tutor
and only carry out 50% decisions in a classroom study to
test the critical decisions empirically.
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ABSTRACT
With the rapid emergence of K-12 online learning platforms,
a new era of education has been opened up. It is crucial to
have a dropout warning framework to preemptively iden-
tify K-12 students who are at risk of dropping out of the
online courses. Prior researchers have focused on predict-
ing dropout in Massive Open Online Courses (MOOCs),
which often deliver higher education, i.e., graduate level
courses at top institutions. However, few studies have fo-
cused on developing a machine learning approach for stu-
dents in K-12 online courses. In this paper, we develop
a machine learning framework to conduct accurate at-risk
student identification specialized in K-12 multimodal online
environments. Our approach considers both online and of-
fline factors around K-12 students and aims at solving the
challenges of (1) multiple modalities, i.e., K-12 online envi-
ronments involve interactions from different modalities such
as video, voice, etc; (2) length variability, i.e., students with
different lengths of learning history; (3) time sensitivity, i.e.,
the dropout likelihood is changing with time; and (4) data
imbalance, i.e., only less than 20% of K-12 students will
choose to drop out the class. We conduct a wide range of of-
fline and online experiments to demonstrate the effectiveness
of our approach. In our offline experiments, we show that
our method improves the dropout prediction performance
when compared to state-of-the-art baselines on a real-world
educational dataset. In our online experiments, we test our
approach on a third-party K-12 online tutoring platform for
two months and the results show that more than 70% of
dropout students are detected by the system.

Keywords
Dropout, retention, multimodal learning, online tutoring,
K-12 education

1. INTRODUCTION
∗The corresponding author.

With the recent development of technologies such as digi-
tal video processing and live streaming, there has been a
steady increase in the amount of K-12 students studying
online courses worldwide. Online classes have become nec-
essary complements to public school education in both de-
veloping and developed countries [31, 27, 37, 42, 35, 34,
36]. Different from public schools that focusing on teach-
ing in traditional brick-and-mortar classrooms with 20 to 50
students, online classes open up a new era of education by
incorporating more personalized and interactive experience
[20, 33, 45, 9, 57].

In spite of the advantages of this new learning opportunity,
a large group of online K-12 students fail to finish course
programs with little supervision either from their parents or
teachers. Students drop out of the class may be due to many
reasons such as lack of interests or confidence, mismatches
between course contents and students’ leaning paths or even
no immediate grade improvements from their parents’ per-
spectives [37, 39, 25]. Therefore, it is crucial to build an
early dropout warning system to identify such at-risk online
K-12 students and provide timely interventions.

A large spectrum of approaches have been developed and
successfully applied in predicting dropout in Massive Open
Online Courses (MOOCs) [29, 47, 43, 58, 3, 5]. However,
identifying dropout of K-12 students on online courses are
significantly different from MOOCs based attrition predic-
tion. The main differences are summarized as follows:

• watching v.s. interaction: Even though both learn-
ing are conducted in the online environment, learners’
engagements on MOOCs and K-12 online platforms
vary a lot [20]. In MOOCs, learners mainly watch
the pre-recorded video clips and discuss questions and
assignments with teaching assistants on the MOOC fo-
rums [18]. While in K-12 online courses, students fre-
quently interact with the online tutors in a multimodal
and immersive learning environment. The tutors may
answer students’ questions, summarize the knowledge
points, take notes for students, etc.

• spontaneous action v.s. paid service: Learners
on existing popular MOOC platforms such as Cours-
era1, edX2, etc. are adults, who aim at continuing

1https://www.coursera.org/
2https://www.edx.org/

Hang Li, Wenbiao Ding, Songfan Yang and Zitao Liu
"Identifying At-Risk K-12 Students in Multimodal Online
Environments: A Machine Learning Approach" In: Proceedings
of The 13th International Conference on Educational Data
Mining (EDM 2020), Anna N. Rafferty, Jacob Whitehill, Violetta
Cavalli-Sforza, and Cristobal Romero (eds.) 2020, pp. 137 - 147

137 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



their lifelong learning in higher education and obtain-
ing professional certificates such as Coursera’s Spe-
cializations and edX’s MicroMasters. MOOC learners
are typically self-motivated and self-driven. On the
contrary, most available K-12 online education choices
are commercialized in service industry. Students pay
to enroll online tutoring programs to strengthen their
in-class knowledge levels and improve their grades in
final exams. As a result, there are numerous out-of-
class activities involved in K-12 online learning such as
follow-ups from personal instructors, satisfaction sur-
vey and communications with students’ parents, etc.
These out-of-class activities rarely appear in MOOC
based learning.

• high v.s. low dropout rate: The dropout rate for
MOOC based program is often as high as 70% - 93%
[31, 52] while the dropout rate in K-12 online courses
is below 20%.

Therefore, it is important to study approaches to identify at-
risk K-12 online students and build an effective yet practical
warning system. However, this task is rather challenging due
to the following real-world characteristics:

• multiple modalities: K-12 online learning is con-
ducted in an immersive and multimodal environment.
Students and instructors interact with each other visu-
ally and vocally. There are a lot of multimodal factors
that may influence the final decisions of dropout, rang-
ing from interaction qualities between students and
teachers, teaching speeds, volumes, emotions of the
online tutors, etc.

• length variability: Students join and leave the on-
line platforms independently, which results in a collec-
tion of observation sequences with different lengths. A
dropout prediction system should be able to (1) make
predictions for students with various lengths of learn-
ing histories; and (2) handle newly enrolled students.

• data imbalance: The overall dropout rate for K-12
online classes is usually below 20%, which makes the
training samples particularly imbalanced.

The objective of this work is to study and develop models
that can be used for accurately identifying at-risk K-12 stu-
dents in multimodal online environments. More specifically,
we are interested in developing models and methods that
can predict risk scores (dropout probabilities) given the his-
tory of past observations of students. We develop a data
augmentation technique to alleviate class imbalance issues
when considering the multi-step ahead prediction tasks. We
conduct extensive sets of experiments to examine every com-
ponent of our approach to fully evaluate the dropout pre-
diction performance.

Overall this paper makes the following contributions:

• We design various types of features to fully capture
both in-class multimodal interactions and out-of-class

activities. We create a data augmentation strategy to
simulate the time-sensitive changes of dropout likeli-
hood in real scenarios and alleviate the data imbalance
problem.

• We design a set of comprehensive experiments to un-
derstand prediction accuracy and performance impact
of different components and settings from both qual-
itative and quantitative perspectives by using a real-
world educational dataset.

• We push our approach into a real production environ-
ment to demonstrate the effectiveness of our proposed
dropout early warning system.

The remainder of the paper is organized as follows: Section
2 discusses the related research work of dropout prediction
in both public school settings and MOOCs scenarios. Com-
parisons with relevant researches are discussed. In Section 3,
we introduce assumptions when building a practical at-risk
student identification system and formulate the prediction
task. Section 4, we describe the details about our predic-
tion framework, which include (1) extracting various types
of features from both online classroom recordings and offline
activity logs (See Section 4.1); and (2) data augmentation
technique that helps us create sufficient training pairs and
overcomes the class imbalance problem (See Section 4.2). In
Section 5, we (1) quantitatively show that our model sup-
ports better dropout predictions than alternative approaches
on an educational data derived from a third party K-12 on-
line learning platform and (2) demonstrate the effectiveness
of our proposed approach in the a real production environ-
ment. We summarize our work and outline potential future
extensions in Section 6.

2. RELATED WORK
Dropout prediction and at-risk student identification have
been gaining popularity in both the educational research
and the AI communities. Understanding the reasons behind
dropouts and building early warning systems have attracted
a growing interest of academics in the learning analytics
area. Broadly speaking, existing research regarding dropout
prediction can be categorized by learning scenarios and di-
vided into two categories: (1) public school dropout (See
Section 2.1); and (2) MOOCs dropout (See Section 2.2).

2.1 Public School Dropout
Education institutions are faced with the challenges of low
student retention rates and high number of dropouts [45,
32]. For examples, in the United States, almost one-third
of public high school students fail to graduate from high
school each year [40, 7] and over 41% of undergraduate stu-
dents at four-year institutions failed to graduate within six
years in Fall 2009 [38]. Hence, research work has focused on
predicting the dropout problem and developing dropout pre-
vention strategies [40, 41, 8, 55, 13, 30, 10, 49]. Zhang and
Rangwala develop an at-risk student identification approach
based on iterative logistic regression that utilizes all the in-
formation from historical data from previous cohorts [59].
The state of Wisconsin creates a predictive dropout early
warning system for students in grades six through nine and
provides predictions on the likelihood of graduation for over
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225,000 students [30]. The system utilizes ensemble learn-
ing and is built on the steps of searching through candidate
models, selecting some subsets of best models, and averag-
ing those models into a single predictive model. Lee and
Chung address the class imbalance issue using the synthetic
minority over-sampling techniques on 165,715 high school
students from the National Education Information System
in South Korea [33]. Ameri et al. consider different groups
of variables such as family background, financial, college en-
rollment and semester-wise credits and develop a survival
analysis framework for early prediction of student dropout
using Cox proportional hazards model [1].

2.2 MOOCs Dropout
With the recent boom in educational technologies and re-
sources both in industry and academia, MOOCs have rapidly
moved into a place of prominence in the mind of the public
and have attracted a lot of research attentions from many
communities in different domains. Among all the MOOC re-
lated research questions, dropout prediction problem emerges
due to the surprisingly high attrition rate [54, 19, 26, 23, 44,
56, 6, 11, 12, 20]. Ramesh et al. treat students’ engagement
types as latent variables and use probabilistic soft logic to
model the complex interactions of students’ behavioral, lin-
guistic and social cues [43]. Sharkey et al. conduct a series
of experiments to analyze the effects of different types of
features and choices of prediction models [47]. Kim et al.
study the in-video dropouts and interaction peaks, which
can be explained by five identified student activity patterns
[25]. He et al. propose two transfer learning based logis-
tic regression algorithms to balance the prediction accuracy
and inter-week smoothness [21]. Tang et al. formulate the
dropout prediction as a time series forecasting problem and
use a recurrent neural network with long short-term mem-
ory cells to model the sequential information among features
[50]. Both Yang et al. and Mendez et al. conduct sur-
vival analysis to investigate the social and behavioral fac-
tors that affect dropout along the way during participating
in MOOCs [58, 39]. Detailed literature surveys on MOOC
based dropout prediction are reviewed comprehensively in
[51, 5].

In this work, we focus on identifying at-risk students in K-
12 online classes, which is significantly distinguished from
dropout predictions in either public school or MOOCs based
scenarios. In the K-12 multimodal learning environment, the
learning paradigm focuses on interactions instead of watch-
ing. The interactions come from different modalities, which
rarely happen in traditional public schools and MOOC based
programs of higher education. Furthermore, as a paid ser-
vice, K-12 online learning involves both in-class and out-of-
class activities and both of them contain multiple factors
that could lead to class dropouts. These differences make
existing research works inapplicable in K-12 online learn-
ing scenarios. To the best of our knowledge, this is the
first research that comprehensively studies the dropout pre-
diction problem in K-12 online learning environments from
real-world perspectives.

3. PROBLEM FORMULATION
3.1 Assumptions
In order to characterize the K-12 online learning scenarios,
we need to carefully consider every cases in the real-world

environment and make reasonable assumptions. Without
loss of generality, we have the following assumptions in the
rest of the paper.

Assumption 1 (Recency Effect). Time spans between
the date of dropout and the date of last online courses vary
a lot. Students may choose to drop the class right after one
course or quit after two weeks of no course. Therefore, the
per-day likelihood of dropout should be time-aware and the
closer to the dropout date, the more accurate the dropout
prediction should be.

Assumption 2 (Multi-step Ahead Forecast). The
real-world dropout prediction framework should be able to
flexibly support multi-step ahead predictions, i.e., the next-
day and next-week probabilities of dropout.

3.2 The Prediction Problem
In this work, our objective is to predict the value of future
status for the target student given his or her past learning
history, i.e., observations collected from K-12 online plat-
forms. More specifically, let S be the collection of all stu-
dents and for each student s, s ∈ S, we assume that we
have observed a sequence of ns past observation-time pairs
{< xs

j , t
s
j >}ns

j=1, xs
j ∈ Xs, and tsj ∈ Ts, such that 0 < tsj <

tsj+1, and xs
j is the observation vector made at time (tsj)

for student s. Xs and Ts represent the collections of ob-
servations and timestamps for student s. Correspondingly,
let Ys be the collection of indicators of status (dropout, on-
going or completion) of student s at each timestamp, i.e.,
Ys = {ys

j}ns
j=1. Let ∆ be the future time span in multi-step

ahead prediction. Time tsns+∆ (∆ > 0) is the time at which
we would like to predict the student’s future status ŷs

tsns+∆
.

Please note that we omit the explicit student index s in the
following sections for notational brevity and our approach
can be generalized into a large samples of student data with-
out modifications.

4. THE PREDICTION FRAMEWORK
The dropout prediction for K-12 online courses is a time-
variant task. A student who just had the class should have a
smaller dropout probability compared with a student haven’t
take any class for two weeks. Therefore, when designing a
real applicable approach of dropout prediction, such recency
effect, i.e., Assumption 1, has to be considered. In this work,
we extract both static and time-variant features from dif-
ferent categories to capture the factors leading to dropout
events comprehensively (See Section 4.1). Furthermore, we
create a label augmentation technique that not only allevi-
ates the class imbalance problem when building predictive
framework for K-12 online classes, but incorporates the re-
cency effect into label constructions (See Section 4.2). The
learning of our dropout model is discussed in Section 4.3 and
the overall learning procedure is summarized in Section 4.4.

4.1 Features
In this section, we develop a distinguished set of features
for at-risk student identification from the real-world K-12
online learning scenarios, which can be divided into three
categories: (1) in-class features that focus on K-12 students’
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online behaviors during the class (See Section 4.1.1); (2) out-
of-class features that consider as much as possible real-world
factors happened after the class, which may influence the
dropout decisions (See Section 4.1.2); and (3) time-variant
features that include both historical performance of teachers
and aggregated features of student activities within fixed-
size windows (See Section 4.1.3).

4.1.1 In-class Features
Different from adults who continue their learning in higher
education on MOOC based platforms, K-12 students come
for grade improvements. This intrinsic difference in their
learning goals leads to contrasting learning behaviors. Adult
learners of MOOCs study independently by various activi-
ties, such as viewing lecture videos, posting questions on
MOOC forums, etc. This results in various types of in-
class click-stream data, which are shown to be effective in
dropout prediction in many existing research works [15, 51,
54, 6, 12, 11, 20]. However, such click based activities barely
happen in K-12 online scenarios. Instead, there are frequent
voice based interactions between K-12 students and their
teachers. The teachers not only make every effort to clarify
unsolved questions that students remain from their public
schools, but are responsible for arousing students’ learning
interests and building their studying habits. Therefore, we
focus on extracting in-class multimodal features specializing
in K-12 tutoring scenarios from the online classroom videos.
We categorize our features as follows. Table 1 illustrates
some examples of in-class features from different categories.

• Prosodic features: speech-related features such as
signal energy, loudness, Mel-frequency cepstral coeffi-
cients (MFCC), etc.

• Linguistic features: language-related features such
as statistics of part-of-speech tags, the number of in-
terregnum words, distribution of length of sentences,
voice speed of each sentence, etc.

• Interaction features: features such as the number
of teacher-student Q&A rounds, the numbers of times
teachers remind students to take notes etc.

To extract all the features listed in Table 1, we first extract
audio tracks from classroom recordings on both teacher’s
and student’s sides. Then we extract acoustic features di-
rectly from classroom audio tracks by utilizing the widely
used open-sourced tool, i.e., OpenSmile3. We obtain class-
room transcriptions by passing audio files to a self-trained
automatic speech recognition (ASR) module. After that,
we extract both linguistic and interaction features from the
conversational transcripts. Finally, we concatenate all fea-
tures from above categories and apply a linear PCA to get
the final dense in-class features. The entire in-class feature
extraction workflow of our approach is illustrated in Figure
1.

Please note that due to the benefits of online steaming, both
students’ and teachers’ videos are recorded separately and
hence, there is no voice overlap in the video recordings. This

3https://www.audeering.com/opensmile/
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Figure 1: The workflow of our in-class features ex-
traction. ASR is short for automatic speech recog-
nition.

avoids the unsolved challenge of speaker diarization [2]. Sim-
ilar to Blanchard et al. [4], we find that publicly available
ASR service may yield inferior performance in the noisy and
dynamic classroom environments. Therefore, we train our
own ASR models on the classroom specific dataset based on
a deep feed-forward sequential memory network, proposed
by Zhang et al. [60]. Our ASR has a word error rate of
28.08% in our classroom settings.

4.1.2 Out-of-class Features
As we discussed in Section 1, personalized K-12 online tutor-
ing is a paid service in most countries. Besides the course
quality itself, there are multiple other factors in such ser-
vice industry that may change customers’ minds to drop
the class. Therefore, out-of-class features play an extremely
important role in identifying at-risk students in real-world
K-12 online scenarios, which are typically ignored in previ-
ous literatures. In this work, we collect and summarize all
the available out-of-class features and divide them into the
following two categories. The illustrative examples are listed
in Table 1.

• Pre-class features: Pre-class features capture the
students’ (or even their parents’) behaviors before tak-
ing the class, such as purchasing behaviors, promotion
negotiations, etc. Examples: the number of rounds
of conversation and negotiation before the class, how
much the discount student received, etc.

• Post-class features: Post-class features model the
offline activities in such paid K-12 online services. For
examples, students and their parents receive follow-
ups based on their previous class performance and give
their satisfaction feedbacks. Another example is that
students may request changes to their course sched-
ules.

4.1.3 Time-variant Features
Besides in-class and out-of-class features, we manually de-
sign time-variant features to model the changes of likelihood
of students’ dropout intentions. Cases like a student just
had a class compared to a student had a class two weeks
ago should be explicitly distinguished when constructing fea-
tures. Therefore, we create time-variant features by utiliz-
ing a lookback window approach on students’ observation
sequences. More specifically, for a given timestamp, we only
focus on previously observed activities of each student within
a period of time. The length of lookback windows varies
from 1 to 30 days. Sufficient statistics are extracted as time-
variant features from each lookback window. Meanwhile, we
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Table 1: List of examples in in-class, out-of-class, and time-variant features.

Category Type Examples

In-class

Prosodic

the average signal energies of student and teacher
the average loudness of student and teacher
the Mel-frequency cepstral coefficients of audio tracks from student and teacher
the zero-crossing rates of student and teacher
· · ·

Linguistic

# of sentences per class of student and teacher
# of pause words per class of student and teacher
average lengths of sentences per class of student and teacher
voice speeds (char per second) of student and teacher
· · ·

Interaction

# of teacher-student Q&A rounds
# of times the teacher reminds the student to take notes and summarization
# of times the teacher asks the student to repeat
# of times the teacher clarifies the student’s questions
· · ·

Out-of-class

Pre-class

# of days since the student places the online course order
# of courses in the student’s order
# of conversations between the sales staff and the students (or their parents)
the discount ratio of the student’s order
· · ·

Post-class

# of follow-ups after the student took the first class
# of words in the latest follow-up report
# of times the student reschedules the class
the follow-up ratio, i.e., # of follow-ups divided by # of taken courses
· · ·

Time-variant

Historical performance

# of courses taught by each individual teacher in total
# of courses the student had in total
historical dropout rates
historical average time span between classes
· · ·

Lookback window

# of courses taken in past one/two/three weeks
# of courses the student scheduled in past one/two/three weeks
# of positive/negative follow-up reports in past one/two/three weeks
the average time span of classes taken in past month
· · ·

compute historical performance features to reflect the teach-
ing experience and performance for each individual teacher.
Table 1 shows some examples of time-variant feature we use
in our dropout prediction framework.

• Lookback window features: The lookback window
features aggregate important statistics from students’
observations within a fixed-length lookback window,
such as the numbers of courses taken in past one, two,
three weeks.

• Historical performance features: The historical
features aggregate each teacher’s past teaching per-
formance, which represent the overall teaching quality
profiles. They include total numbers of courses and
students taught, historical dropout rates, etc.

4.2 Data Augmentation
According to Assumptions 1 and 2 and the problem formu-
lation in Section 3.2, a real-world early warning system is

supposed to flexibly support multi-step ahead predictions for
each student, i.e., given any future time span ∆, the system
computes the probability of student’s status ŷs

tsns+∆
. The

predicted probability should be able to dynamically adapt
when the values of ∆ get changed. The multi-step ahead as-
sumption essentially requires the approach to make predic-
tions at a more fine-grained granularity of <student, times-
tamp> pair, i.e, < s, tsns+∆ >, instead of student level, i.e.,
s. This poses a challenging question: due to the fact that
only about 20% of K-12 students drop their online classes,
how do we tackle the class imbalance problem when extract-
ing <student, timestamp> training pairs from a collection
of multimodal observation sequences (either completion or
dropout) in K-12 online scenarios?

Let S1 and S2 be the set of student indices of dropout and
non-dropout students, i.e., S1 = {i|yi

ni
= dropout}, and

S2 = {j|yj
nj

= completion}. Let P and N be the sets
of positive (dropout) and negative (non-dropout) <student,
timestamp> pairs. By definition, P and N are constructed
as follows:
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P = {< xi
ni
, tini

> |i ∈ S1}

N = {< xi
k, t

i
k > |i ∈ S1, k ∈ Ti\tini

}

∪ {< xj
k, t

j
k > |j ∈ S2, k ∈ Tj} (1)

Similar to many researches such as fraud detection [53], the
sizes of P and N are typically very imbalanced. While in
some cases the class imbalance problem may be alleviated by
applying an over-sampling algorithm on the minority class
sample set, the diversity of the available instances is of-
ten limited. Therefore, in this work, we propose a time-
aware data augmentation technique that artificially gener-
ates pseudo positive (dropout) <student, timestamp> pairs.

More specifically, for each dropout student i in S1, we set a
lookback window with length Λ where Λ ≤ tini

− tini−1
. For

each timestamp t̃il in the lookback window such that

max(tini−1
, tini
− Λ) < t̃il < tini

. (2)

We generate its corresponding pseudo positive training pair
< x̃i

l, t̃
i
l > as follows: x̃i

l = F(Xs,Ts) where F(·, ·) is the
generation function. The choices of F(·, ·) are flexible and
vary among different types of features (See Section 4.1). In
this work, for in-class and out-of-class features, we aggregate
all the available features till t̃il and re-compute the time-
variant features according to timestamp t̃il. We use P̃ to
represent the collection of all positive training pairs gener-
ated from dropout students in S1. Figure 2 illustrates how
the pseudo positive training pairs are generated.
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Figure 2: Graphical illustration of the data augmen-
tation technique.

Besides, we assign a time-aware weight to each pseudo posi-
tive training pair to reflect the recency effect in Assumption
1. For each pseudo pair < x̃i

l, t̃
i
l >, the corresponding weight

wi
l is computed by

wi
l = G(

tini
− t̃il
Λ

) (3)

where the weighting function G(·) takes the normalized time
span between each timestamp of pseudo pair and the exact
dropout date as input and outputs a normalized weighting
score to reflect our confidence on the “positiveness” of the
simulated training pairs. The closer to the dropout date, the

larger the confidence weights should be. The choices of G(·)
are open to any function that gives response values ranging
from 0 to 1, such as linear, convex or concave functions
illustrated in Figure 3.
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Figure 3: Graphical illustration of different weight-
ing function of G(·).

The effect of different choices of weighting function is dis-
cussed in Section 5.4. The augmented training set P̃ and
the corresponding time-aware weights are used in the model
training in Section 4.3.

4.3 Model Learning
In the learning stage, we combine the original training set
(P and N) with the augmented set P̃ for model training.
Even though the data augmentation alleviates the class im-
balance problem, i.e., improving the positive example ra-
tio from 0.1% to 10%, the imbalance problem still exists.
Therefore, we employ the classical weighted over-sampling
algorithm on positive pairs to further reduce the imbalance
effect. Here, the weights of the original positive examples
in P are set to 1 and pseudo positive examples’ weights are
computed by G(·) in Section 4.2. Here, since the dropout
datasets are usually small compared to other Internet scaled
datasets, we choose to use Gradient Boosting Decision Tree4

(GBDT) [16] as our prediction model. The GBDT exhibits
its robust predictive performance in many well studied prob-
lems [24, 48].

4.4 Summary
The overall model learning procedure of our K-12 online
dropout prediction can be summarized in Algorithm 1.

5. EXPERIMENTAL EVALUATION
In this section, we will (1) introduce our dataset that is
collected from a real-world K-12 online learning platform
and the details of our experimental settings (Section 5.1);
(2) show that our approach is able to improve the predic-
tive performance when compared to a wide range of classic

4https://scikit-learn.org/stable/modules/ensemble.html#gradient-
tree-boosting
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Algorithm 1 Model learning procedure of the K-12 online
dropout prediction.

INPUT:
• A set of K-12 students S and their corresponding multi-

modal classroom recordings and activities logs.
• The length of lookback window Λ.
• The choice of weighting function G(·).

PROCEDURE:

1: // Feature extraction
2: Extract in-class features from multimodal recordings, see Sec-

tion 4.1.1.
3: Extract out-of-class features from student activities logs, see

Section 4.1.2.
4: Extract time-variant features, see Section 4.1.3.
5: Concatenate three types of features above.
6: // Label generation and augmentation
7: Create original positive and negative training pair sets, i.e.,

P and N, see eq.(1).

8: Generate the augmented pseudo positive training sets, i.e., P̃
and the corresponding weights, see eq.(3).

9: // Model learning

10: Conduct weighted over-sampling on the union of P and P̃.
11: Train the GBDT model on the over-sampled positive exam-

ples and original negative examples.

OUTPUT:
• The GBDT dropout prediction model Ω.

baselines (Section 5.2); (3) evaluate the impacts of different
sizes of lookback windows, different weighting functions in
data augmentation and feature combinations (Section 5.3,
Section 5.4 and Section 5.5); and (4) deploy our model into
the real production system to demonstrate its effectiveness
(Section 5.6).

We would also like to note that hyper parameters used in
our methods are selected (in all experiments) by the internal
cross validation approach while optimizing models’ predic-
tive performances. In the following experiment, we set the
size of lookback window to 7 and the impact of window size
is discussed in section 5.4. We choose to use the convex
weighting function when conducting pseudo positive data
augmentation.

5.1 Experimental Setting
5.1.1 Data

To evaluate the effectiveness of our proposed framework,
we conduct several experiments on a real-world K-12 on-
line course dataset from a third-party online education plat-
form. We select 3922 registered middle school and high
school students from August 2018 and February 2019 as our
samples. All the features listed in Section 4.1 are computed
and extracted from daily activity logs on the platform. In
our dataset, 634 students choose to drop the class and the
dropout rate is 16.16%. The average time span of the stu-
dents on the platform is about 86 days, which provide us
338428 observational <student, time stamp> sample pairs
in total. We randomly select 80% of students and use their
corresponding <student, time stamp> sample pairs as train-
ing set and the remaining 20% of students’ sample pairs for
testing propose. The data augmentation technique discussed
in Section 4.2 is only applied in training set.

5.1.2 Multi-step Ahead Prediction Setting

To fully examine the dropout prediction performance, we
evaluate the model’s predictions in terms of different multi-
step ahead time spans, i.e, given a current timestamp, we
predict the outcome (dropout or non-dropout) in the next
X days, where X ranges from 1, 2, · · · , 14.

5.1.3 Evaluation Metric
Similar to [18, 50, 17, 15, 51, 21], we evaluate and com-
pare the performance of the different methods by using the
Area Under Curve (AUC) score, which is the area under
the Receive Operating Characteristic curve (ROC) [14]. An
ROC curve is a graphic plot created by plotting the true
positive rate (TPR) against the false positive rate (FPR).
In our dropout prediction scenario, the TPR is the fraction
of the “at-risk” predicted students who truly drop out. The
FPR is the ratio of the falsely predicted “dropout” students
to the true ones. The AUC score is invariant to data imbal-
ance issue and it does not require additional parameters, for
models comparisons. AUC score reaches its best value at 1
and the worst at value 0.

5.1.4 Baselines
We compare our proposed approach with the following rep-
resentative baseline methods: (1) Logistic Regression (LR)
[28], (2) Decision Tree (DT) [46] and (3) Random Forest
(RF) [22]. LR, DT and RF are all trained on the same set
of features defined in Section 4.1 with our proposed method.
The training set is created by using eq.(1).

5.2 The Overall Prediction Performance
The results of these models are shown in Figure 4. As we can
see from the Figure 4, we have the following observations:

Figure 4: The overall prediction performance with
different multi-step ahead time spans in terms of
AUC scores.

• First, our model outperforms all other methods in terms
of AUC scores on different future time spans, which
demonstrates the effectiveness of our approaches with
positive data augmentation. By adding more diverse
pseudo positive training pairs with the corresponding
decaying confidence weights, the GBDT model is able
to learn the dropout patterns from multiple factors.
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• Second, as we increase the lengths of time spans of
multi-step ahead prediction, all the models’ perfor-
mances decrease accordingly. Our approach achieves
AUC score of 0.8262 in the task of next day predic-
tion while the performance downgrades to 0.7430 in
the next two-week prediction task. We believe this
is because of the truth negative mistakes the models
make, i.e., the model thinks the students will continue
but they drop classes in next two weeks. This indi-
cates that without knowing more information from the
students, the ML models have very limited ability in
predicting the long-term outcomes of student status,
which also reflects the fact that there are many factors
that could lead to the dropouts.

• Third, comparing LR, DT, and RF, we can see, the
DT achieves the worst performance. This is because
of its instability. With small number of training data,
the DT approach suffers from fractional data turbu-
lence. The RF approach remedies such shortcomings
by replacing a single decision tree with a random for-
est of decision trees and the performance is boosted.
Meanwhile, as a linear model, the LR is not powerful
enough to accurately capture the dropout cases.

5.3 Impact of Sizes of Lookback Windows
As we can see, the number of augmented positive training
pairs is directly determined by the size of lookback window
Λ. Therefore, to comprehensively understand the perfor-
mance of our proposed approach, we conduct experimental
comparisons on different sizes of lookback windows. We vary
the window size from 3, 7, and 14. Meanwhile, we add a
baseline with no data augmentation. The results are shown
in Figure 5.

From Figure 5, we can see that the size of lookback win-
dows has a positive relationship on AUC scores with the
length of time span in multi-step ahead prediction. When
conducting short-term dropout predictions, models trained
on data augmentation with smaller size of lookback win-
dow outperform others. As we gradually increase the time
span of future predictions, the more the model looks back,
the higher the prediction AUC score it achieves. Overall,
the model trained with 7-day lookback window has the best
performance across different multi-step ahead time spans in
terms of AUC scores.

5.4 Impact of Different Weighting Functions
In this section, we examine the performance changes by
varying the forms of weighting functions. More specifically,
we compare the prediction results of using the convex func-
tion to results of the other choices. The results are shown
in Figure 6. As we can see from Figure 6, the convex op-
tion outperforms other choices by a large margin across all
different multi-step ahead time spans. When computing the
over-sampling weights of pseudo training examples, the con-
vex function gives more weights to the most recent examples,
i.e., examples close to the timestamp of true dropout obser-
vations. This also confirms the necessity of considering the
recency effect assumption (Assumption 1) when building the
dropout prediction framework.

5.5 Impact of Different Features

Figure 5: Models trained on data augmented by dif-
ferent size of lookback windows with different multi-
step ahead time spans in terms of AUC scores. none
represents the model training without any lookback
data augmentation.

In this subsection, we systematically examine the effect of
different types of features by constructing following model
variants:

• In: only the in-class features are used.

• Out: only the out-of-class features are used.

• Time: only the time-variant features are used.

• In+Time: it eliminates the contribution of Out fea-
tures and only uses features from In and Time.

• Out+Time: it eliminates the contribution of In fea-
tures and only uses features from Out and Time.

• In+Out: it eliminates the contribution of Time fea-
tures and only uses features from In and Out.

• In+Out+Time: it uses the combination of all the fea-
tures from In, Out and Time.

Meanwhile, we also consider different multi-step ahead pre-
diction settings, i.e., next 7-day prediction and next 14-day
prediction and the prediction results are shown in Table 2.
From Table 2, we observe that (1) by considering all three
types of features individually, the model trained from Out
features yields the best performance. Moreover, when com-
paring In, Out to In+Time, Out+Time, we obtain the sig-
nificant performance improvement by adding Out features.
These indicate the fact that dropout prediction for K-12 on-
line scenarios are very different from MOOC based dropout
prediction. The out-of-class activities and the quality of the
service play an extremely important role in the prediction
task; and (2) by utilizing all the sets of features, we could
be able to achieve the best results in both prediction tasks.
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Table 2: Experimental results of different types of features and different lengths of multi-step ahead time
span in terms of AUC scores.

In Out Time In+Time Out+Time In+Out In+Out+Time

Multi-step ahead time span - 7 day 0.6249 0.7764 0.6992 0.7145 0.7759 0.7768 0.7774
Multi-step ahead time span - 14 day 0.6251 0.7386 0.6766 0.6932 0.7393 0.7420 0.7430

Figure 6: Models trained on data augmented by dif-
ferent choices of weighting functions with different
multi-step ahead time spans in terms of AUC scores.

5.6 Online Performance
We deployed our at-risk student warning system in the real
production environment on a third-party platform between
February 2nd, 2019 to April 1st, 2019. To watch the system
performance in practice, we conduct the next-day predic-
tion task where the system predicts the dropout probability
for each on-going student at 6 am in the morning. All the
students are ranked by their dropout probabilities and the
top 30% of students with highest probabilities are marked as
at-risk students. At the end of each day, we obtain the real
outcome of all the students who drop the class. We conduct
the overlap comparison between the predicted top at-risk
students (30% of total students) and the daily dropouts and
we are able to achieve that more than 70% of dropout stu-
dents are detected by the system.

6. CONCLUSION
In this paper, we present an effective at-risk student identi-
fication framework for K-12 online classes. Compared to the
existing dropout prediction researches, our approach consid-
ers and focuses on the challenging factors such as multiple
modalities, length variability, time sensitivity, class imbal-
ance problems when learning from real-world K-12 educa-
tional data. Our offline experimental results show that our
approach outperforms other state-of-the-art prediction ap-
proaches in terms of AUC scores. Furthermore, we deploy
our model into a production environment and we are able
to achieve that more than 70% of dropout students are de-
tected by the system. In the future, we plan to explore the
opportunity of using deep neural networks to capture hetero-
geneous information in the K-12 online scenarios to enhance

the existing prediction pipeline.
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[44] C. P. Rosé, R. Carlson, D. Yang, M. Wen, L. Resnick,
P. Goldman, and J. Sherer. Social factors that
contribute to attrition in moocs. In Proceedings of the
First ACM Conference on Learning@ Scale
Conference, pages 197–198. ACM, 2014.

[45] R. W. Rumberger. High school dropouts: A review of
issues and evidence. Review of educational research,
57(2):101–121, 1987.

[46] S. R. Safavian and D. Landgrebe. A survey of decision
tree classifier methodology. IEEE Transactions on
Systems, Man, and Cybernetics, 21(3):660–674, 1991.

[47] M. Sharkey and R. Sanders. A process for predicting
mooc attrition. In Proceedings of the EMNLP 2014
Workshop on Analysis of Large Scale Social
Interaction in MOOCs, pages 50–54, 2014.

[48] J. Son, I. Jung, K. Park, and B. Han.
Tracking-by-segmentation with online gradient
boosting decision tree. In Proceedings of the IEEE
International Conference on Computer Vision, pages
3056–3064, 2015.

[49] R. Sullivan et al. Early warning signs. a
solution-finding report. Center on Innovations in
Learning, Temple University, 2017.

[50] C. Tang, Y. Ouyang, W. Rong, J. Zhang, and
Z. Xiong. Time series model for predicting dropout in
massive open online courses. In International
Conference on Artificial Intelligence in Education,
pages 353–357. Springer, 2018.

[51] C. Taylor, K. Veeramachaneni, and U.-M. O’Reilly.
Likely to stop? predicting stopout in massive open
online courses. arXiv preprint arXiv:1408.3382, 2014.

[52] Y. Wang. Exploring possible reasons behind low
student retention rates of massive online open courses:
A comparative case study from a social cognitive
perspective. In AIED 2013 Workshops Proceedings
Volume, page 58. Citeseer, 2013.

[53] W. Wei, J. Li, L. Cao, Y. Ou, and J. Chen. Effective
detection of sophisticated online banking fraud on
extremely imbalanced data. World Wide Web,
16(4):449–475, 2013.

[54] J. Whitehill, K. Mohan, D. Seaton, Y. Rosen, and
D. Tingley. Mooc dropout prediction: How to measure
accuracy? In Proceedings of the Fourth (2017) ACM
Conference on Learning@ Scale, pages 161–164. ACM,
2017.

[55] L. Wood, S. Kiperman, R. C. Esch, A. J. Leroux, and
S. D. Truscott. Predicting dropout using student-and
school-level factors: An ecological perspective. School
Psychology Quarterly, 32(1):35, 2017.

[56] W. Xing, X. Chen, J. Stein, and M. Marcinkowski.
Temporal predication of dropouts in moocs: Reaching
the low hanging fruit through stacking generalization.
Computers in Human Behavior, 58:119–129, 2016.

[57] S. Xu, W. Ding, and Z. Liu. Automatic dialogic
instruction detection for k-12 online one-on-one
classes. In International Conference on Artificial
Intelligence in Education. Springer, 2020.

[58] D. Yang, T. Sinha, D. Adamson, and C. P. Rosé. Turn
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ABSTRACT
Spatial visualization skills are essential and fundamental to
studying STEM subjects, and sketching is an effective way
to practice those skills. One significant challenge of support-
ing practice using sketching questions is the vast number of
possible mistakes, making it time-consuming for instructors
to provide customized and actionable feedback to students.
The same challenge persists for computer programs as well.
This paper introduces a clustering model designed to catego-
rize sketching answers based on the severity and character-
istics of their mistakes. The model is designed to be used by
a computer-based training platform to provide customized,
actionable formative feedback to students in real-time. The
promising results also suggest a new and comprehensive set
of evaluation criteria to assess a student’s performance on
sketching questions. As a broader contribution, our work
is a proof-of-concept for a modeling approach to automat-
ically evaluate and provide formative feedback on complex
free-hand sketches using abstract features that may be gen-
eralized to a variety of disciplines that involve the creation
of technical drawings.

Keywords
Automatic grading, Sketching, Clustering, Spatial Visual-
ization, Formative feedback

1. INTRODUCTION
Spatial visualization is the ability to represent and mentally
manipulate two-dimensional and three-dimensional objects
[11]. A body of research has shown that good spatial vi-
sualization skills help students succeed in STEM education
[39, 3, 13, 25, 27, 32, 41, 44]. It is encouraging that existing
research also demonstrates that spatial visualization skills
are malleable and can be trained and improved, for exam-
ple, via forms of workshops and seminars [42]. There have
been successes in increasing the retention rates of STEM
freshmen students with spatial visualization skills training
in recent years, especially for minority groups such as female

students [39, 23].

Besides multiple-choice questions that are traditionally used
in spatial visualization training, free-hand sketching on grid
paper is an effective type of practice question [38]. Sketching
questions can imitate the sketching tasks required in many
engineering disciplines, which is particularly helpful since
sketching is a fundamental skill for engineering designs [22].
In the training process, since students gain from learning
from their mistakes instead of failing in the first try and
giving up based on the immediate-feedback assessment tech-
nique [26], students can benefit from having a second chance
on a practice problem. However, providing formative feed-
back while not giving away the answer, which is known to
support self-regulated learning [28], on free-hand sketching
can be challenging due to the wide variety of possible incor-
rect answers on such activities.

While human instructors possess the capability to analyze
an erroneous free-hand sketch, identify the source of po-
tential errors and provide formative feedback, it is a time-
consuming process and providing such feedback to a large
student population would require prohibitive efforts that
would likely prevent the feedback from being provided in
a timely fashion [2]. Computer-based systems able to pro-
vide timely formative feedback can be considered as an al-
ternative to address this limitation. However, one significant
challenge to automatically providing immediate customized
feedback for sketching questions is the need for a computer-
based system to be able to recognize and understand how
much an answer is different from the answer key and the
types of mistakes students are making.

On the one hand, sketching questions have an enormous
number of possible incorrect answers, which are often spe-
cific to a unique problem, making it difficult, if not impos-
sible, to identify every possible error and to prepare unique
feedback for each one. As an alternative, a computer-based
system could be designed to recognize categories of answers
based on the severity or characteristics of their errors and
provide feedback relevant to each one. However, to the best
of our knowledge, there is no existing research that catego-
rizes answers to complex sketching questions based on their
errors, either conceptually or computationally. The lack of
solution motivated us to identify patterns that exist in stu-
dents’ erroneous sketching answers and create a computer-
based algorithm that can categorize them in real-time.
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Due to the lack of existing categories of erroneous answers in
free-hand sketching problems, we propose the use of a clus-
tering approach to identifying such categories. Our research
questions are the following:

RQ1 What categories exist in students’ sketching answers
based on the severity and characteristics of their er-
rors?

RQ2 How meaningful are the identified erroneous answer
categories, and what actionable feedback can be pro-
vided for each category?

We constructed a list of features that can be used to char-
acterize students’ erroneous sketching answers. Using a k-
mean clustering approach, we discovered six common answer
categories for incorrect sketches that are distinct from one
another according to the severity and characteristics of the
errors. Our clustering results suggest a new set of evaluation
criteria for complex free-hand sketching answers that is more
interpretable and generalizable than those in prior work [7,
43, 5]. Also, we provide initial suggestions for the kinds
of formative feedback appropriate for each answer category
without giving away the answer [36].

To the best of our knowledge, our study is the first to identify
categories of erroneous sketches, both computationally and
conceptually, in spatial visualization sketching problems us-
ing abstract features. Our approach also has the potential to
be generalized to other subject areas that require sketching
practices, mostly technical drawings in various Engineering
and Science subjects, such as circuit diagrams in Electri-
cal Engineering, engine models in Mechanical Engineering,
building plans in Architecture, and structural formula in Or-
ganic Chemistry.

2. RELATED WORK
2.1 Spatial Visualization Skills and Sketching
Spatial visualization skills were estimated to play an impor-
tant role in 84 careers [37], most of which are STEM-related.
A longitudinal study showed that psychometrically-assessed
spatial ability predicts career in STEM fields after account-
ing for Math and Verbal aptitudes [45].

Spatial visualization skills are applied in various STEM ar-
eas. Research shows that students with better spatial vi-
sualization skills perform better in Chemistry [32, 6]. In
Organic Chemistry, for example, students with strong spa-
tial visualization skills draw preliminary figures more often.
Hence they use figures to gain a better understanding of
the questions and are more likely to answer them correctly
[32]. Another body of research revealed the connection be-
tween spatial skills and Geoscience [17, 30]. In particular,
students with strong visual penetration ability, e.g., imag-
ining cross-sections, perform better in Geology [17]. Fur-
thermore, understanding cross-sectioning is a basic skill in
many other engineering subjects [9, 12]. Spatial visualiza-
tion is also found to be tightly related to performance in
Anatomy in Biology [34], Radiology in Medicine [16].

A wide variety of empirical research has shown that spa-
tial visualization skills are malleable. Interventions designed

to improve spatial visualization skills reach, on average, a
medium effect size of 0.47 [42]. A well-known training devel-
oped by Sorby (2009) showed significant post-test improve-
ment for each class of college students over a 6-years-long
study. In particular, Sorby found that the training signifi-
cantly improved female students’ retention rate but not that
of male students [39]. The finding suggested the critical role
of spatial visualization skills training in increasing the diver-
sity of STEM field students.

Sketching ability is fundamental to engineering design [22]
and highly correlates with many STEM subjects [35]. To
improve spatial visualization skills, sketching is one of the
most effective approaches [38]. Electronic sketching has also
demonstrated potential in training spatial visualization skills
[8, 47]. Thus, the application of sketching practice is worth
studying for better improving spatial visualization skills.

2.2 Computer-based Evaluation and Forma-
tive Feedback for Sketches

To the best of our knowledge, there is no prior work on
the evaluation of sketches in spatial visualization training,
both conceptually or computationally. The use of computer-
based formative feedback for spatial visualization sketching
has not been studied either. There is a body of research
on computer-based evaluation and formative feedback for
other types of sketches [5, 7, 43, 40, 15, 18, 19, 20]. How-
ever, some of them are too simple or too domain-specific to
be generalized to a complicated case as in spatial visualiza-
tion sketches. Others’ evaluation methods cannot provide
actionable or easy-to-interpret formative feedback.

For free-hand sketching that is evaluated mostly based on
the shape and structure, there are a few existing evaluation
approaches in domains other than spatial visualization train-
ing. Bhat (2017) developed Skechography, a river-sketching
auto-grading tool for Geology [5]. This tool could perform
sketch recognition and compare the river’s shape similarity
using the Shape Context algorithm, the distances of start
points and endpoints between a student’s answer and the
answer key. Based on the degree of similarity and distances,
the tool provided a score that was a weighted sum of these
three features. Skechography evaluated a river, which had
only one line with specific features of a start point, an end-
point, and the shape of the line. The simplicity of this ap-
plication has a weak external validity and cannot be used in
evaluating spatial visualization sketches.

The work by Chandan et al. (2018) [7], on the other hand,
worked on a complicated case of free-hand drawing of objects
of specific categories, e.g., a bee, an airplane, etc. They ap-
plied a Convolutional Neural Network approach for object
categorization and a Scale Invariant Feature Transform ap-
proach to check the similarity between a given sketch and
the ”standard” sketch. As feedback, the tool showed the per-
centage of similarity to various categories of objects. The use
of deep learning methods made the interpretation of results
challenging. Hence, this approach is limited in its capability
to generate specific and actionable feedback to help students
improve their answers.

Mechanix, a sketch-based tutoring system for learning forces
applied on a truss, could provide specific feedback to free-
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hand sketching of forces [43]. In this case, the errors that
could occur were known and clearly defined on an arrow-
basis. Given the small number of arrows, it is relatively easy
to cater specific and actionable feedback to each error. In
the case of spatial visualization sketches, a sketch contains
far more number of lines, making it infeasible to provide a
piece of feedback for each line.

There exists another body of work that focused on the recog-
nition of East Asian characters, which are similar to a sim-
ple sketch [40]. However, these solutions applied an ”all or
nothing” approach to recognize the structure of a charac-
ter, which was not helpful in providing specific formative
feedback. A few other works aimed to evaluate and pro-
vide feedback on the quality or aesthetics of a sketch, but
not on the correctness in terms of the structure of shape
[15, 18]. There is also an evaluation approach for computer-
aided design solid models specifically, using criteria related
to parameters set in the computer-aided model, which does
not apply to free-hand sketching because the concept of pa-
rameters is not intuitive in free-hand sketching [19, 20].

Overall, there is limited work on a computer-based evalua-
tion of complex free-hand sketching based on structural cor-
rectness that can generate specific and actionable formative
feedback. Our work aims to fill in this gap.

2.3 Answers Categorization in Content-based
Automated Evaluation

In evaluating constructed response automatically from a content-
based perspective, there is a rich body of work in evaluat-
ing short answer questions for a variety of subjects and do-
mains [24]. However, except for the studies mentioned in the
last section, there is very few existing literature related to
the content-based evaluation of complex free-hand sketch-
ing. Therefore, we draw our inspiration from the existing
research in evaluating short answer questions and apply it to
complex free-hand sketches, a different type of constructed
response.

Answer categorization is one of the most frequently used
approaches to perform a content-based evaluation of short
answers. In most cases, supervised learning is applied using
a manually labeled training set based on pre-defined rubrics
[21, 33, 1, 10, 29]. For example, c-rater applied NLP tech-
niques that determined whether an answer contained each
key concept and was widely applied on short answer ques-
tions in Biology, Psychology, Math, and Reading, to not
only grade but to provide specific real-time feedback [21,
1]. Pulman and Sukkarieh (2005) experimented with Induc-
tive Logic Programming, Decision Tree and Naive Bayes to
classify short answers into the desired category for Biology
[33].

In our case, however, there are neither pre-existing robust
rubrics as the evaluation standard for spatial visualization
sketches nor known categories of error. This brought dif-
ficulties to label a training set manually accurately. Also,
most content-based evaluation approaches only provided up
to three levels of scoring. Some exceptions that provided
more than three levels of scoring were either unclear about
the definition of the levels or the levels were only mechanical
composition of the correct answer [24]. As an alternative,

Figure 1: Free-hand sketching tool for isometric
sketching on the online spatial visualization train-
ing platform

we turned to unsupervised learning to perform answer cat-
egorization to identify categories that were as granular yet
meaningful as possible. Clustering is an often-used unsuper-
vised learning approach in short-answer grading, especially
in the case of answering open-ended questions. Previous
work [4, 48] has shown that clustering could group answers
that are similar in text characteristics, semantics, and top-
ics. Our work aims to leverage this method to categorize
complex sketches in spatial visualization training.

3. METHODS
3.1 Data Collection
We collected data from students solving free-hand sketch-
ing problems in a 100-level engineering course called ”Spa-
tial Visualization” that utilized an online training platform
over half a semester in Fall 2019 at our home institution,
a large public university in the Midwestern United States.
The online training platform was previously developed as a
computer-based spatial visualization training platform [47]
to enable practicing at scale using online exercise and auto-
matic grading. Previous work has shown a significant im-
provement in spatial visualization skills for those who com-
pleted the exercises on the platform [47].

Students in the course met once a week in-person for an
hour, and the majority part of the course was working through
practice problems on the platform on their own as their
weekly assignment, given the instructions. The focus of
practice questions each week was different, depending on
the particular set of skills that were being trained, such as
mental rotation, cross-sectioning, and coded plan. The plat-
form supports both multiple-choice questions and sketching
questions. Figure 1 and Figure 2 show the free-hand sketch-
ing tool on the platform that allows students to sketch out
their answers on the computer. Students can draw and erase
lines on the grid paper freely. Students could also save their
sketch when they leave the platform and load what they
saved when they come back. In the course, students were
given a maximum of two attempts for each sketching ques-
tion, i.e., they were given a second chance if they answered
incorrectly in the first attempt. All the sketching questions
were graded with an ”all or nothing” approach.

The collected dataset includes 370 incorrect sketches from
14 students in the course that covers five types of sketch-
ing questions and 61 unique questions. We excluded correct
sketches in the categorization because they would naturally
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Figure 2: Free-hand sketching tool for orthographic
sketching on the online spatial visualization training
platform

be in one category by mapping exactly to the answer key.
Examples of the types of sketching questions include draw-
ing the orthographic view of a 3D object given the isometric
view or vice versa, and drawing the resulting 3D object after
rotating a given 3D object with a certain degree in a given
direction. Each type of sketching questions contained a se-
ries of different questions with 3D objects of various shapes.
On average, each sketch contains approximately 30 to 80
lines of unit length.

Each submission of an attempt to answer a question pro-
duced a raw log describing their answer. In the raw log,
two major types of information were recorded. First, it con-
tained the set of lines in the final submitted sketch. Second,
it recorded the history of all the timestamped steps a stu-
dent took of adding or deleting a line, clearing, or loading
the sketch for that question (Figure. 3). In this paper, we
focused on the final submitted sketch only since the goal is
to categorize the final answer instead of analyzing students’
process of solving a free-hand sketching problem.

Each final submitted sketch is represented by the X-Y coor-
dinates of a list of lines. The lines are further denoted by the
type of the lines, either solid line or dashed line, which are
the two standard types of lines used in the sketching exercise
for different purposes. A sketch is mostly made up of solid
lines, but a dashed line should be used instead of a solid line
to represent a hidden edge from a particular perspective.

Another data point in the raw log is the type of grid paper
used for a sketch. There are two types of grid paper in the
sketching exercises: an isometric grid for isometric drawing,
and a dot grid for orthographic drawing. A sketch is consid-
ered as correct only if the shape and the size of the object
match with those of the answer key, and uses the correct
type of grid paper. The position of where a sketch is drawn
on the grid paper is flexible.

We performed two steps of data standardization on the raw
log before feature extraction. First, we aligned both the stu-
dent’s answer and the answer key to the lower-left corner of
the sketch-pad. Second, all the lines were broken down into
unit length and de-duplicated so that lines that overlapped
with each other would only be counted once. We conducted
these two steps for the ease of comparing student’s answers
against the answer key.

3.2 Feature Extraction

Figure 3: An example of a raw log file generated
from sketching questions on the online spatial visu-
alization training platform

We developed a total of 8 features to use as input for our
clustering model. We performed feature engineering man-
ually after observing a small subset of the data to get an
idea of what information human instructors might use when
interpreting incorrect answers. In order to get a preliminary
view of possible errors that would be as comprehensive as
possible, we selected three questions that had the highest
number of incorrect answers and observed the errors made
by students on those problems. Based on our preliminary
observation, we created three categories of features that rep-
resent different characteristics of the observed errors.

The first group of features uses a unit-length line as its basic
unit, i.e., a line connecting adjacent points, and represents
the number of lines that are wrong compared to the an-
swer key. We observed from the subset of mistakes that the
number of incorrect lines involved in a sketch varied widely,
from only one wrong line to over 80% of lines being wrong.
The number of incorrect lines is a straightforward way to
quantify the degree to which a sketch was incorrect. We
considered three scenarios in which a line is wrong.

1. An extra line: a line is in the student’s answer, but
there is no line at the same position in the answer key.

2. A missing line: a line is in the answer key, but there
is no line at the same position in the student’s answer.

3. A line with incorrect type: two lines with the same
position in the student’s answer and the answer key are
of different types, i.e., solid line vs. dashed line.

To normalize the number of incorrect lines against the com-
plexity of the sketch, we adopted the percentage of wrong
lines instead of the absolute number, i.e., dividing by the
total number of lines in a sketch. The three features in this
group are Percentage of Extra Lines, Percentage of Missing
Lines, and Percentage of Lines with Correct Position but
Incorrect Type.

The second category of features represents the groupings of
the incorrect lines based on their location in a sketch. In
our preliminary observation, we found that, between two
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Figure 4: An example of a sketch (on the right) with
four error components, i.e., four sites of mistakes.
The sketch on the left is the answer key.

sketches with a similar number of incorrect lines, the incor-
rect lines may be inter-connected and concentrated in one
place in a sketch while being scattered in multiple spots in
another sketch. These two cases represented the mistakes of
different natures.

Based on the assumption that incorrect lines that are con-
nected are more likely caused by the same mistake, we treated
all the incorrect lines as an undirected graph and defined
each component in the graph as one ”site” of mistake. A
component here has the same definition of a component in
an undirected graph, a subgraph in which any two vertices
are connected by paths, and which is connected to no ad-
ditional vertices in the supergraph [46]. As an example, in
Figure 4, there are a total of four error components in the
sketch, three extra lines in different locations, and a discon-
nected taller stack separated from the bottom of the object.

We constructed three features in this category. The first
feature is the number of components in the graph made of
incorrect lines, which is a representation of the number of
mistake sites in a sketch. Since the size of a component
represents how severe a mistake is, the second feature is the
average size of all the error components in a sketch. The
larger the average component size is, the more severe the
mistakes are on average. The last feature is the maximum
size difference among all error components, which reflects
the range of severity across multiple mistake sites in a sketch.

The last set of features describes the general characteristics
of the sketch. One feature is whether the student uses the
same type of sketching grid as the answer key. Another
feature is whether the sketch is empty. If it is empty, it
indicates either the student did not attempt the question or
accidentally skipped the question.

3.3 Model Construction
As there was no prior framework or knowledge on how to
categorize the erroneous sketches, it was not possible to ob-
tain labels (ground truth) describing each answer. As such,
we used an unsupervised clustering algorithm to identify cat-
egories of erroneous answers from existing data. Based on
prior observation of the data, we hypothesized that the fea-
tures of each cluster should have a sphere-like shape. There-
fore, we used k-means clustering with squared Euclidean dis-
tance. The algorithm aims to assign all the data points into
a specified number of clusters such that every data point is

Figure 5: Examples of mistakes in Cluster 0, having
one minor mistake. The sketch on the left is the
answer key.

in the cluster with the nearest mean. Ideally, data points
that have similar values across all the features are grouped
in one cluster.

After feature extraction, we performed further data normal-
ization as the first step of model construction. Since the
k-means clustering algorithm is sensitive to the scale of the
features, we normalized each of the three features (Number
of Components, Average Size of Components, and Maxi-
mum Difference between Size of All Components) into the
unit interval respectively across all data, so that they were
on the same scale as the other features that were either in
percentages or in a boolean format.

We performed parameter tuning to decide on the optimal
number of cluster k. We started with two clusters and re-
peatedly increased the number of clusters by one. We evalu-
ated the choice of k using two criteria. The main criterion we
used to evaluate the quality of the clustering results was how
interpretable a new cluster was and whether it could help
us provide more specific and actionable feedback. Another
complementary criterion for evaluation was the Silhouette
score, measuring the quality of the clusters based on the co-
hesion of the separation of the identified clusters (Silhouette
score ranges from -1 to 1). We valued the interpretability of
a cluster over a higher Silhouette score. Therefore, as long
as the Silhouette score remained at an acceptable level, we
increased k until the interpretation of the newly generated
cluster did not make sense or did not differ much from the
existing clusters.

4. RESULTS
Our clustering approach identified a set of six clusters re-
lated to categories of erroneous answers in free-hand sketch-
ing problems, as listed in Table 1. The 6 clusters are ordered
based on the severity of the errors in the table. The clus-
tering model yields a Silhouette score of 0.6659, which is a
reasonable value.

Cluster 0 is the most common cluster in the dataset. From
the centroid value, we can see that the sketches in this cluster
only have one mistake (Number of Component = 1) with
about two incorrect lines (Avg Component Size = 1.89). The
centroid values suggested that a large portion of the errors
had only one minor mistake, which was most likely due to
drawing errors such as forgetting an edge at the corner, or
drawing an extra edge on a plane (see examples in Fig 5).

Cluster 1, the second-largest cluster in the dataset, differs
from Cluster 0 mainly by the number of mistakes in the
sketch. On average, there are 2.21 mistake components in
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Table 1: Clustering Results Summary Table: The size, interpretation and centroid of each cluster are shown in
the table. The centroid values are transformed back to its original scale if unit normalization was performed.
Values are color-coded with different shades of red, representing low values to high values)

Figure 6: Examples of mistakes in Cluster 1, having
multiple minor mistakes. The sketches with a white
background are the answer keys.

the sketch. The average size of 3.04 lines of the components
suggests that these are still minor mistakes with three incor-
rect lines on average. It is reasonable to interpret Cluster
1 as sketches that have several minor mistakes. Examples
of this category are shown in the examples in Fig 6. Even
though both Cluster 0 and Cluster 1 contain minor errors,
they are different enough because students in Cluster 0 make
one small mistake likely due to being careless. In contrast,
those in Cluster 1 may have misconceptions that are causing
a series of mistakes.

Cluster 2 and 3 are quite different from Cluster 0 and Clus-
ter 1. Both of them have a much higher Percentage of Miss-
ing Lines and Percentage of Extra lines compared to Clus-
ter 0 and 1, suggesting more severe mistakes in the sketch.
More severe errors are more likely to be due to an incorrect
structure at specific parts of the sketch rather than careless
mistakes. These two clusters both have a high number of
components (3.70 and 2.80 for Cluster 2 and 3 respectively),
suggesting a series of mistakes across the sketch. Cluster 2
and 3 are different in two perspectives. First, Cluster 2’s
average component size is small (5.13), while Cluster 3’s av-
erage component size is a lot bigger (10.69). Second, Cluster
3 has a massive difference in size across the different com-
ponents (15.73), while Cluster 2 has a medium difference
of 5.63. These differences suggest that within the series of
mistakes in a sketch in Cluster 2, more of them are minor,

Figure 7: Examples of mistakes in Cluster 2, having
multiple minor mistakes and a small number of ma-
jor mistakes. The sketches with a white background
are the answer keys.

and there is only a small proportion of major mistakes, as
shown in Figure 7. On the other hand, a sketch in Cluster
3 has mainly major mistakes and fewer minor mistakes, as
shown in Figure 8. The major mistakes in Cluster 3 are also
more severe than those in Cluster 2 on average.

Cluster 4 has 80% of the lines missing and 67% extra lines,
a lot higher than the previous clusters. Interestingly, most
of the sketches in this cluster have only one component in
their mistake (1.05 components on average), with an average
size of 45.35 lines. These features suggest that there is one
substantial mistake that spans over half of the sketch, which
is often due to either an utterly wrong structure or a wrong
orientation. For example, both examples in Fig 9 have the
correct structure but wrong orientations.

Lastly, Cluster 5 contains empty answers, either due to the
student not attempting a question or accidentally skipping
it. Even though the cluster size is small, with only 3 data
points due to the low number of empty answers, it is distinct
enough from all the other clusters to be on its own.

Overall, we considered the erroneous answer categories de-
tected to be intuitive and well-defined. They are distinct in
the severity and characteristics of the mistakes. Being able
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Figure 8: An example of mistake in Cluster 3, hav-
ing multiple major and minor mistakes, but mainly
major mistakes. The sketch on the left is the answer
key.

Figure 9: Examples of mistakes in Cluster 4, having
one huge cluster of mistake. The sketch with a white
background is the answer key.

to automatically identify six categories of erroneous answers
demonstrated the potential advantage of using an unsuper-
vised approach in answer categorization than a supervised
learning approach that tries to align the model capability
with human judgment of the answer categories, which could
often only yield up to three clearly defined categories [24].
Additionally, we did not observe any significant difference
between the frequency distribution of the error categories
across the different types of questions in our dataset, i.e.,
the frequency of each answer category did not differ signifi-
cantly across all five types of sketching questions, suggesting
the generalizability of the error categories to more variety of
questions.

5. DISCUSSION
5.1 Evaluation Criteria for Sketching
Due to the lack of prior work on erroneous answer cate-
gories in complex free-hand sketching problems, there is no
currently available set of criteria to evaluate the degree of
correctness of a complicated sketching answer. In multiple
offerings of the spatial visualization training in the past in
our school, an instructor either used an ”all or nothing” eval-
uation approach, or used a subjective standard on one or two
dimensions to judge a sketch, e.g., taking off 0.5 point for
each missing or extra line up to a maximum of 1 point, tak-
ing off 1.5 points any time when not all features of the top,
front, and right sides are correct. These evaluation schemes
are too coarse to reflect the degree of correctness of a sketch
accurately. The results of our clustering analysis provide
promising results towards the development of a more com-
prehensive view on how to evaluate a sketch using a scale of
multiple levels.

Our model demonstrated that more than one dimension is
needed concurrently to provide a nuanced interpretation of
the state of a sketch. In our model, the percentages of miss-
ing, extra lines or lines with the wrong type, the number
of mistakes sites, the average size of the mistakes, and how
different the various mistakes sites are in a sketch are used
in combination with one another to determine the degree of
correctness and the type of errors. For example, a distinc-
tion between Cluster 2 and 3 suggests that with a similar
percentage of incorrect lines, the number of mistakes com-
ponents and the average size of the components brings addi-
tional insights into whether a sketch contains a large number
of minor mistakes or a small number of major mistakes. As
another example, even though Cluster 0 and Cluster 1 have
a similar average size of mistakes, the number of mistake
sites suggests that students in Cluster 1 may have a more
systematic misconception than those in Cluster 0 who likely
commit a mistake due to carelessness.

Our approach could also be used to define minor mistakes
versus major mistakes in a sketch for a group of sketch-
ing questions with similar size and complexity. Without a
systematic review of all the mistakes in a group of sketch-
ing questions, it is hard for an instructor to draw an objec-
tive line between an error that is significant and one that is
not. As a result, the evaluation criteria may be overly strict
or overly generous. The clustering model computationally
categorizes what it considers as minor and major mistakes
based on the optimal separation principle. Its outcome can
serve as analytical support for an instructor’s grading deci-
sion.

5.2 Potential Intervention
Since one of the motivations to construct this model is to
provide real-time, customized, and actionable formative feed-
back, we propose potential customized intervention mes-
sages for each erroneous answer category. Based on the best
practices of offering formative feedback [36], each of the mes-
sages follow a similar structure of (1) first letting the student
know how far they are from the correct answer, (2) describ-
ing what types of mistake there are, and (3) suggesting ways
for the student to approach solving the errors. A summary
of the interventions is provided in Table 2.

Students having answers that fall into Cluster 0 or Cluster
1, which consist of having one or more minor errors, under-
stand what the object should look like structure-wise. When
the system tells them that they are wrong, they may find
it confusing since they are likely confident in their answer.
Hence, the feedback message could first assure the students
that they have got the general structure of the object cor-
rect. Then, the system could let the students know that
they have X number of minor mistakes, where X is the fea-
ture Number of Components. The feedback may also include
whether they have some missing lines, extra lines, or lines of
the wrong type. Lastly, the feedback message would suggest
the students check for details of their drawing by listing out
the common reasons for such errors, such as extra edges on
a flat plane, missing edges at a corner.

If the answer falls within Cluster 2 or Cluster 3, the feedback
message should be different from that for Cluster 0 and 1
because there is at least one major mistake in the answer,
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Table 2: Interventions Summary Table

likely due to a structural error. The students in these two
cases are mostly on the right track in terms of the general
structure of the sketch. Hence, the feedback message could
first encourage them that they are heading in the right direc-
tion. The system could then say that the sketch has X minor
mistakes and Y major mistakes, where X is the Number of
Components with a size smaller than the Average Compo-
nent Size of the cluster centroid, and Y is the Number of
Components with a size larger than the average. Finally,
the intervention message could suggest the student first re-
visit the structure in detail to identify the major mistake,
and then carefully check for drawing errors referring to a list
of common minor mistakes.

For a student that falls into Cluster 4, it is likely that the
student is either on the wrong track entirely or uses a wrong
orientation. The system can perform a further check to com-
pare the student’s answer to other possible orientations and
see if it belongs to the case of having a wrong orientation.
If it is, the feedback message will remind the student that
the structure of the sketch is mostly correct, but the orien-
tation is incorrect. If it is not the case of having a wrong
orientation, the feedback message will remind the students
that they may have the wrong idea for the sketch, and they
should reconsider the question from the beginning. The sys-
tem could consider providing hints to the students as well
in this case.

Lastly, if a student submits an empty sketch, the system can
check the time spent on the question to determine whether
the student did not attempt the question at all or forgot to
click the submit button. If the student did not attempt the
question, the system would encourage the student to make
an effort in attempting to solve the problem. If the student
forgot to submit the answer, the feedback message would

remind them to submit in the next attempt.

5.3 Generalizability of the Proof-of-concept Ap-
proach

Our clustering model is more than a single model that works
only in a specific scenario. It is a proof-of-concept approach
for the evaluation of a complex free-hand sketch based on ab-
stract features. Our contributions to the evaluation scheme
of sketching answers have the potential to be generalized
from spatial visualization training to more fields that involve
free-hand technical drawings in various Engineering and Sci-
ence subjects, such as circuit diagrams in Electrical Engi-
neering, engine models in Mechanical Engineering, build-
ing plans in Architecture, and structural formula in Organic
Chemistry. Technical drawing is similar to spatial visualiza-
tion sketching in the sense that they both follow strict rules
of sketching and are often drawn on grid paper to ensure a
consistent proportion and orientation. Technical drawings
in these fields usually start from a fundamental practice of
drawing and modeling using practice problems that have a
limited number of correct answers. With the presence of an-
swer keys, our unsupervised clustering approach is flexible
and easy to be retrained on new datasets to adapt to new
types of sketches, even with additional features developed
based on the learning goal of the type of sketches.

On the other hand, for technical drawing that involves a cre-
ative component or pure creative drawing, it may be harder
to apply our approach directly. In evaluating creative draw-
ing that does not have a limited number of correct answers, a
mistake may be more subjective, and the evaluation may ex-
tend beyond getting a sketch correct to being functional, op-
timal, creative or aesthetic. The clustering approach based
on abstract features of a sketch, however, may be used for
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other purposes in this case. For example, our approach could
be used to group sketches with similar characteristics to-
gether for the convenience of human graders, especially in a
large course with limited human resources, such as Massive
Open Online Courses. Reconsideration in feature engineer-
ing would be needed to achieve the new goals.

6. LIMITATIONS AND FUTURE WORK
The current erroneous answer categories do not take into
account specific reasons that lead to a particular error in
an answer. There may be multiple reasons for a student to
end up with mistakes in the same category. To the best of
our knowledge, there is neither prior work that studies the
common misconceptions in spatial visualization sketching,
nor cognitive models that describe the process of this task.
The closest available work in cognitive models for spatial
ability focuses on how people solve multiple choice spatial
visualization questions, i.e., when candidate solutions are
provided [14, 11, 31]. These models do not cover the process
of generating a spatial object from scratch, which is what
sets spatial visualization sketching apart from the traditional
spatial ability tests. Hence, our proposed model is unable to
distinguish the errors by their causes. Future research con-
ducting qualitative interviews with students to understand
the reasons why an error occur could provide valuable in-
sights towards identifying not only broad categories of erro-
neous answer, but also the causes behind various error cate-
gories. It would also be beneficial to create cognitive models
to understand systematically the strategies students used to
solve these problems. These information would be valuable
in further developing other features that could distinguish
errors according to their underlying cause, for example, by
leveraging the temporal sequence of actions executed by the
student leading to their error. Improving current models
to include information about the most probable cause of an
error would be beneficial in generating formative feedback
that goes beyond providing information about the nature of
the students’ error, and integrates conceptual information
to support students in addressing misconceptions.

The current training data for the model only involved 14
students, which is a relatively small sample. As such, the
current model can be seen as a proof-of-concept for the feasi-
bility of erroneous answer categorization. Applying the same
approach to a larger population of students will be necessary
to validate the stability of the model and ensure that there
are no additional answer categories that may not have been
included in our current dataset. Future studies can re-train
and test the model on a larger population to confirm the ex-
istence of the answer categories identified within the current
study. Since the training process of the model is simple,
re-training the model based on another dataset would be
straightforward.

Another next step for this research is to deploy the model
in an online training platform and conduct user testing to
examine the effectiveness and accuracy of the categorization
and intervention. Last but not least, the method proposed
in this study is designed to be flexible and be applied to
other disciplines. Future work in other disciplines, such as
evaluating circuit diagrams in Electrical Engineering, engine
models in Mechanical Engineering, building plans in Archi-
tecture, and structural formula in Organic Chemistry, will

need to be conducted to evaluate the extent to which the
proposed method generalizes to new topics.

7. CONCLUSION
In conclusion, this paper presents a clustering model as a
solution to categorize erroneous answers in complex free-
hand sketching questions in spatial visualization training.
Eight abstract features were developed and proven to be ef-
fective in the categorization of erroneous answers, including
percentages of various types of incorrect lines, number of
mistake components, and metrics of the size of the compo-
nents. The clustering model detected six answer categories
based on the severity and scale of the mistakes. With these
detected categories, an online training platform will be able
to present customized and actionable formative feedback in
real-time. Moreover, our approach suggested a new and
comprehensive set of evaluation criteria to assess a sketch,
which could potentially be generalized to other disciplines
that require sketching practices.
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ABSTRACT
Digital educational technologies offer the potential to cus-
tomize students’ experiences and learn what works for which
students, enhancing the technology as more students inter-
act with it. We consider whether and when attempting to
discover how to personalize has a cost, such as if the adap-
tation to personal information can delay the adoption of
policies that benefit all students. We explore these issues in
the context of using multi-armed bandit (MAB) algorithms
to learn a policy for what version of an educational technol-
ogy to present to each student, varying the relation between
student characteristics and outcomes and also whether the
algorithm is aware of these characteristics. Through simu-
lations, we demonstrate that the inclusion of student char-
acteristics for personalization can be beneficial when those
characteristics are needed to learn the optimal action. In
other scenarios, this inclusion decreases performance and in-
creases variation in student experiences. Moreover, includ-
ing unneeded student characteristics can systematically dis-
advantage students with less common values for these char-
acteristics. Our simulations do however suggest that real-
time personalization will be helpful in particular real-world
scenarios, and we illustrate this through case studies using
existing experimental results in ASSISTments [23]. Overall,
our simulations show that adaptive personalization in edu-
cational technologies can be a double-edged sword: real-time
adaptation improves student experiences in some contexts,
but the slower adaptation and increased variability mean
that a more personalized model is not always beneficial.

Keywords: multi-armed bandits, personalization, educa-
tional technologies, online adaptive algorithms, simulation

1. INTRODUCTION
Within educational technologies, there are a myriad of ways
to design instructional components such as hints or expla-

nations. Research in education and the learning sciences
provides some insight into how to design these resources
(e.g., [25, 3]). However, there is often uncertainty about
which version of a resource will be most effective in a partic-
ular context, and effectiveness may vary based on students’
characteristics, such as prior knowledge or motivation.

Randomized experiments are one way to compare multiple
versions of a technology, but such experiments impose a
delay between collecting required evidence and using that
evidence to improve student experiences. Recently, multi-
armed bandit (MAB) algorithms have been proposed to im-
prove technologies in real time: each student is assigned to
one version of the technology, and the algorithm observes
the student’s learning outcome [18, 28]. Each subsequent
student is more likely to be assigned to a version of the tech-
nology that has been more effective for previous students, as
the algorithm discovers what is effective. Such algorithms
maintain uncertainty as they learn, balancing exploring to
learn more about what works with exploiting the observed
results from previous students. Typical MAB algorithms
do not take into account student characteristics and thus
can only identify which version of a technology is better for
students on average, but contextual MAB algorithms can
personalize which version to assign to each student, poten-
tially increasing the number of students who are directed to
versions that are most helpful for them individually [24].

While deploying contextual MAB algorithms could improve
student experiences, it raises two potential issues. First, in-
structional designers must decide which student character-
istics will be considered for personalization. For instance,
more concrete examples might be more helpful for students
with lower prior knowledge, while more abstract examples
could be more helpful for students with higher prior knowl-
edge. This relationship could only be learned if the algo-
rithm has ‘prior knowledge’ as a feature of each student.
Should the algorithm also consider which prerequisite course
was taken when selecting an example, or is prior knowledge
sufficient? Designers are unlikely to be certain which char-
acteristics influence effectiveness, but the choice of charac-
teristics will influence the performance of the algorithm. Ex-
cluding characteristics that do impact effectiveness could de-
crease the positive impact on students, but including extra-
neous characteristics that do not impact effectiveness could
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also decrease this impact. In the latter case, the system
might have to do more exploration to learn how the effec-
tiveness of instruction differs along each extraneous charac-
teristic, and so direct a greater number of students to less
effective versions.

The second issue raised by online adaptive algorithms is
whether the constantly adapting system will benefit certain
groups of students more than others. Since contextual MAB
algorithms learn by observing how the consequences of their
choices are related to feature values, students whose charac-
teristics are less common may be more likely to interact with
the algorithm when it has limited information about what
is most effective for that type of student. This could exacer-
bate differences in outcomes between subgroups of students.
Yet, such algorithms could also have an equalizing effect for
students with less common characteristics: students have
the potential to experience a version of the technology that
is most appropriate for them, even when this version is not
the most appropriate for a typical student.

In this paper, we use simulations to explore these issues and
their consequences for student experiences in adaptive edu-
cational technologies which use MAB algorithms. We focus
on three common types of models for how student charac-
teristics are related to outcomes: a baseline model in which
student characteristics do not impact the effectiveness of dif-
ferent versions of the technology; a universal optimal action
model, in which student characteristics impact effectiveness
but the same version is most effective for all students; and
a personalized optimal action model, in which student char-
acteristics impact which version leads to the best outcomes
for a given student.

We show that including the potential for personalization
significantly degrades student outcomes except in the per-
sonalized optimal action model, where this information is
necessary to encode the best policy. While the cost of in-
cluding more characteristics for personalization is relatively
modest, including these characteristics leads to greater vari-
ation: the algorithm is less consistent in learning which ver-
sions are best overall, and students may be systematically
treated differently based on characteristics that do not in-
fluence their outcomes. This increased variance is worsened
when student characteristics are not uniformly distributed,
with some characteristics being more common than others.
We use experimental data to show the potential benefits of
personalization and add nuance to the prior simulation re-
sults by demonstrating how personalization can benefit not
only students in a minority group but also all groups of
students. We end by discussing the consequences of these
results for integrating adaptive components into existing ed-
ucational technologies.

2. RELATED WORK
A wide array of work has focused on using MAB and con-
textual MAB algorithms for optimization, including applica-
tions in advertising and recommendations (e.g., [17]), crowd-
sourcing (e.g., [14]), and designing experiments and clinical
trials (e.g., [26]). Within educational technologies, MAB
algorithms have been primarily used in two ways. Some
work has used these algorithms to select problems that are
of an appropriate difficulty level for a particular student [8,

16, 22]; unlike our work, these applications typically com-
bine learned profiles about students with a second source of
knowledge, such as prerequisite structure. We focus on a
second proposed usage of MAB algorithms in education: as-
signing students to a particular version of a technology. For
example, non-contextual MAB algorithms have been used to
choose among crowdsourced explanations [27] and to explore
an extremely large range of interface designs [19]. Some of
this work has also considered the implications of collecting
experimental data via MAB algorithms on measurement and
inference [18, 20], showing systematic biases that can impair
the drawing of conclusions about the conditions. Only a lim-
ited amount of work has applied contextual MAB algorithms
to personalize which versions of a technology a student expe-
riences (e.g., [24], but focused primarily on measurement).
We build on this body of work by considering the perfor-
mance implications of several common scenarios for how stu-
dent characteristics, versions of an educational technology,
and outcomes are related. Additionally, by specifically ex-
amining some scenarios in which student characteristics are
unevenly distributed, we raise issues about personalization
for minority groups of students.

There is a great deal of theory-based literature on both stan-
dard and contextual MAB algorithms related to quantifying
performance, especially in terms of asymptotically bounding
growth in cumulative regret (the amount that the expected
reward from choosing an optimal action outpaces reward
from the actually chosen actions). The optimal worst-case
bound on regret growth is logarithmic [4]. Furthermore,
the inclusion of contextual variables increases cumulative re-
gret at least linearly; for Thompson sampling, which we use
in our simulations, the regret bounds grow quadratically in
the number of contextual variables [2]. We use simulations
to consider non-asymptotic settings and focus on areas less
explored theoretically, like impacts on individual groups of
students and variability in performance.

In this paper, we are particularly concerned with how out-
comes differ among different groups of students. One of
the promises of educational technologies is to boost all stu-
dents’ outcomes to the level that can be achieved by indi-
vidualized tutoring [9], and online adaptive algorithms may
make it easier to develop such systems. Yet, the broader
machine learning community has recently highlighted how
automated systems can learn or exacerbate existing inequal-
ities (see, e.g., [12] for an overview). Within educational
data mining, there have been mixed results when the fair-
ness of different models has been explored, and this variation
has often been correlated with the diversity of the training
data: [13] demonstrated that a model trained on a large
and diverse dataset performed similarly well for predicting
on-time graduation for students in different demographic
groups, while [11] found disparities across genders in predict-
ing course dropout, often associated with gender imbalances
in the training data. This raises the issue of how to best use
educational data mining in ways that promote equity across
students. Within the MAB literature specifically, there has
been limited discussion of fairness (e.g., [15]), although [21]
show that a particular technical definition of data diversity
can lead to fairer outcomes. Like in our work, [21] shows
cases where the presence or absence of a majority group
can help or harm minority group outcomes. Our work con-
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siders scenarios specific to education, demonstrating that
the particular scenario in [21] can be generalized consid-
erably, and more precisely characterizes the circumstances
in which including personal characteristics increases equity
versus where doing so may lead to systematically poorer ex-
periences for students in a minority group.

3. CONTEXTUAL MAB ALGORITHMS
We treat the problem of determining what version of an ed-
ucational technology will be most effective for a student as
a MAB problem. In such problems, a system must repeat-
edly choose among several actions, a1, . . . , aK . The system
initially does not know which action is likely to be the most
effective, but after each action choice, the system receives
feedback in the form of a stochastic reward r(t).

There are a variety of MAB algorithms for choosing ac-
tions. We focus on Thompson sampling [1], which is a
regret-minimizing algorithm that exhibits logarithmic regret
growth. Thompson sampling maintains for each action a dis-
tribution over reward values. This distribution is updated
after each action choice and represents the posterior distri-
bution over reward values given the observed data. At each
timestep, the algorithm samples from the posterior distri-
bution over rewards for each action, and then chooses the
action with the highest sampled value. While Thompson
sampling is also applicable to real-valued rewards, many ed-
ucational outcomes are binary, such as whether a student
completes a homework assignment or answers a question
correctly. Thus, we focus on these binary rewards in this
paper, using a Beta prior distribution to enable simple con-
jugate updates after each choice.

In our setting in which we choose versions of an educational
technology for each student, the actions are the different
versions of the technology, and the reward is the student
outcome. For example, imagine a student interacting with a
system to do her math homework. The system might choose
between two actions when the student asks for a hint: (a)
show a fully worked example, versus (b) provide the first
step of the problem as a hint and ask the student to identify
an appropriate second step. The student outcome could be
whether or not she completes the homework assignment.

In a traditional MAB problem, the reward distribution is
fixed given the action choice. However, in the situation
above, the reward may be dependent on the characteristics
of the student. For instance, a student who has stronger
proficiency in the prerequisite skills may be more prepared
to identify what to do next in the problem, while a student
with weaker proficiency may not be able to identify what
to do next. A contextual MAB algorithm incorporates such
student characteristics as features into its action choices.

For parametric contextual MAB algorithms, the features
must be predetermined, including whether interactions be-
tween features is permitted. We adopt a contextual Thomp-
son sampling approach that uses regularized Bayesian lo-
gistic regression to approximate the distribution of rewards
given the features [2, 7]. The algorithm learns a distribu-
tion over the feature weights as coefficients using a Gaussian
posterior approximation. To make each new action choice,
the algorithm computes a reward value for each action by

sampling each weight independently. The chosen action is
the action with the highest sampled reward value. Updates
may occur after each action or in batches to decrease compu-
tational costs; because the feature vectors that we consider
are relatively small, we update after each action.

4. IMPORTANCE OF FEATURE CHOICE
When using a contextual MAB algorithm to personalize stu-
dent experiences in an educational technology, the system
designer must choose which student characteristics to in-
clude as variables for personalization. The designer is very
unlikely to know with certainty which student features are
truly relevant and will actually impact student outcomes.
One could include every possible relevant feature, knowing
that while the algorithm can learn that an included feature
is not relevant, it cannot learn that a non-included feature
is in fact relevant. However, asymptotic growth rates for
regret are quadratic in the number of features [2], meaning
that as more features are included, the algorithm will tend
to take longer to learn. Designers thus must balance the de-
sire to include all features that influence outcomes with the
knowledge that extraneous features could hurt performance.

To better understand how student outcomes are impacted
by the choice of features for personalization, we systemati-
cally explore the inclusion of both relevant and non-relevant
features in a contextual MAB algorithm and examine the
impact on student outcomes and on the rate of assigning stu-
dents to their personally optimal version of the technology.
For these simulations, we assume that features are uncorre-
lated and that their values are chosen uniformly at random
for each student, i.e., the probability of observing any par-
ticular combination of features is the same as observing any
other combination of features.

4.1 Methods
4.1.1 Representing student features

We focus on binary student features and thus feature val-
ues implicitly group students. For example, some CS classes
may have two different prerequisites, such as a discrete math
course taught by the CS department or a similar one taught
by the math department. Students who have taken the CS
version will all have the same value for the prerequisite fea-
ture, while those who take the math one will have the other.1

4.1.2 Outcome-generating models
The outcome-generating model describes the true relation-
ship between student characteristics (feature values), the ac-
tions of assigning students to different versions of a technol-
ogy, and the outcomes of student learning. We focus on
scenarios in which two actions, such as choosing between
concrete versus abstract explanations, affect the outcomes
for two groups of students, such as those with math versus
CS prerequisite as aforementioned.

In each of the models, we generate the true reward prob-
ability for a student with particular features using logistic
regression, with a separate logistic regression equation for

1In both the MAB algorithms and the outcome-generating
models, feature values are represented using dummy vari-
ables.
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Relevant Feature: F=0 F=1
Action Number: A1 A2 A1 A2

Baseline 0.4 0.6 0.4 0.6
Universal optimal action (1) 0.4 0.6 0.6 0.8
Universal optimal action (2) 0.4 0.6 0.4 0.8
Universal optimal action (3) 0.4 0.6 0.5 0.7
Universal optimal action (4) 0.4 0.6 0.8 0.9
Personalized optimal action 0.4 0.6 0.6 0.4

Table 1: Reward probabilities for each combination
of actions (A1 and A2) and values of the relevant
feature (F=0 and F=1) in the simulations. The op-
timal action, shown in bold, is the same (A2) for
both feature values, except for the personalized op-
timal action model.

each action. Given a feature vector x(j) for student j, the
reward probabilities are generated according to:

Paction=k(reward = 1 | x(j)) = sigmoid(b0,k +

n∑
i=1

bi,kxi),

where bk is the coefficient vector for action k and has inter-
cept b0,k. For our simulations, the coefficients for the feature
values were zero for any feature past the first feature, mean-
ing that a maximum of one student feature impacts the out-
comes but more features may still be observed. By varying
the coefficients for the intercept (b0,k) and the first feature,
we produced three models for the relationship among stu-
dent characteristics (i.e., features or feature values), action
choices, and outcomes (see Table 1):

• Baseline: Student features have no impact on outcomes.

• Universal optimal action: Student features have an impact
on outcomes, but not the optimal action—the best version
of the technology is the same regardless of features.

• Personalized optimal action: Student features impact out-
comes, meaning that the optimal action differs based on
features—some students are better off experiencing Version
A of the technology while for others Version B.

For the baseline model,the coefficients of the actions vary
only for the intercept in order to control the effect of each
action when student features are ignored. For the universal
optimal action model, we included four variations to capture
different educationally meaningful scenarios. For instance,
universal optimal action (1) reflects a case in which differ-
ences in prior knowledge minimally interact with the impact
of different versions of a technological intervention, while (2)
reflects a student characteristic magnifying the effectiveness
of an intervention.

4.1.3 Simulation parameters
We varied three factors across the simulations: the outcome-
generating model; the MAB algorithm (contextual or non-
contextual); and the number of student features. For all
simulations, we considered three horizons: classrooms of 50,
250, and 1000 students. Multiple horizons illustrate the be-
havior of the algorithm at different time points and can guide
decisions for incorporating adaptive algorithms based on the
number of students who are expected to interact with the
system. Each simulation was repeated 1000 times.

For the non-contextual Thompson sampling, parameters for
a Beta distribution per action are learned independent of
student features. For the contextual algorithm, we specify
the weights of the student features as model coefficients. All
simulations included at least one student feature regardless
of the outcome-generating models.

To model the fact that curriculum designers may not know
which student characteristics really matter, we included sim-
ulations where the observed features were a superset of those
that actually impacted outcomes. Specifically, we consid-
ered models with a total of 1, 2, 3, 5, 7, 8, and 10 features.
Therefore, for the non-baseline scenarios, the proportion of
included features that impacted outcomes varied from 100%
to only 10%. Since our contextual features are binary, we
include indicator variables for each of the two values, and
learn a separate weight for each indicator variable.2

4.2 Results
First we focused on analyzing the performance of contextual
and non-contextual MAB algorithms for the three outcome-
generating models across 1 to 10 student features (i.e., con-
textual variables). Using an analysis of covariance (AN-
COVA), we compared the two MAB algorithms’ performance
with respect to the proportion of optimal actions for 250 stu-
dents across 1000 trials, treating the number of contextual
variables as a covariate.

Baseline: When student features do not influence out-
comes, we see that as expected, the non-contextual bandit
outperforms the contextual bandit (Table 2): average per-
formance per student for the final 50 out of 1000 students
using the contextual algorithm is similar to that of the first
250 students using the non-contextual algorithm (Figure 2).
As the number of student features increases, the contextual
MAB chooses a lower proportion of optimal actions for the
first 250 students (Figure 1a), but the effect is relatively
small especially when considering the impact on actual re-
ward (t(13996) = −10.880, p < 0.001, b = −0.006, 95% CI
= [−0.007,−0.005]). At longer horizons, the number of stu-
dent features has less of an impact on overall average reward
(Figure 2), which we discuss more below.

Universal optimal action: When outcomes are depen-
dent on student features, the contextual MAB algorithm
can learn a more accurate model than the non-contextual
algorithm. However, when this more accurate model is not
needed for optimal action choices, learning the more accurate
model does not improve action choices: the non-contextual
bandit outperforms the contextual bandits in all four sce-
narios (Table 2; see Figure 1b for scenario 1). While each
scenario might arise due to different educational conditions,
they are all very similar in how they appear to the non-
contextual bandit algorithm. The non-contextual bandit
sees the two groups of students as identical, leading the
overall performance to be the average for each group. These
changes in the average effectiveness of each intervention im-
pact the algorithm’s performance but do not necessarily de-
grade that performance; instead, the impact is dependent

2In pilot simulations, this encoding led to better perfor-
mance than if only a single coefficient was learned for each
feature, and corrected asymmetries in performance for stu-
dents who had different values of the feature.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 162



Non Contextual Contextual0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

ti
on

 o
f O

pt
im

al
 A

ct
io

ns a) Baseline

Non Contextual Contextual
Bandit Type

b) Universal Optimal Action (1)

Non Contextual Contextual

c) Personalized Optimal Action

No. of
Contextual
Variables

1
3
5
10

Figure 1: Swarm plots for the proportion of optimal actions for the two bandit types. Each point represents
results from one trial with 250 students. For the universal optimal action, all scenarios show similar results;
hence only scenario (1) is shown. The bimodality of the contextual bandits, especially at low numbers of
contextual variables, highlights the potential risks of personalization.

Superior bandit |b| 95% CI F (1, 13996) p Cohen’s d

Baseline Non Contextual 0.098 [0.089, 0.108] 2678.0 < .001 0.871
Universal optimal action (1) Non Contextual 0.088 [0.079, 0.097] 2750.0 < .001 0.880
Universal optimal action (2) Non Contextual 0.078 [0.072, 0.085] 3853.0 < .001 1.042
Universal optimal action (3) Non Contextual 0.101 [0.092, 0.11] 2891.0 < .001 0.904
Universal optimal action (4) Non Contextual 0.074 [0.063, 0.085] 1865.0 < .001 0.725
Personalized optimal action Contextual 0.295 [0.287, 0.302] 10816.0 < .001 1.677

Table 2: Inferential statistics for proportion of optimal actions for the two bandit types across all outcome-
generating models, simulated for 1000 trials of 250 students each. b represents the coefficient of improvement
of results for the superior bandit after controlling for the number of contextual variables.
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Figure 2: Average reward per student across 1–10
contextual variables for the two bandit types in the
baseline model. In this model, the maximum possi-
ble expected reward is 0.6, and the expected reward
for uniform random assignment is 0.5. Error bars
represent 1 standard error.

on how similar the two interventions are in their expected
outcomes and how close those expected outcomes are to 0.5,
where there is the most variance.

Personalized optimal action: When the best policy for
individual students depends on their features, the contextual
bandit significantly outperforms the non-contextual bandit
(Table 2). When only one student feature is included, the
contextual MAB algorithm chooses the optimal action al-
most 70% of the time for the first 50 students; this increases
to almost 90% for the final 50 of the total 250. Including ex-
tra student features decreases performance - if ten features
are included and only one impacts the policy, the overall

proportion of optimal actions falls to about 65%. Yet, this
is still an improvement over the non-contextual algorithm
(Figure 1c). These results suggest that even if a relatively
small number of students will interact with the system and
one is uncertain about which of a (limited) set of features
will impact results, including those features will on average
have a positive impact on student outcomes if one is con-
fident that the best version of the system for an individual
student varies based on one of those features.

Variability across simulations: Examining variability
across simulations provides insight into how likely actual
deployments of these algorithms are to reflect their average
performance. Across all models, the contextual MAB algo-
rithm exhibited greater variability in performance than the
non-contextual MAB algorithm (Figure 1). Surprisingly, in-
creasing the number of student features leads to lower vari-
ance for the contextual MAB algorithm. With small num-
bers of student features, there is often a concentration of sim-
ulations with lower achieved outcomes, resulting in bimodal
distributions (Figure 1). The bimodality emerges because
the algorithm can adapt more quickly, making it somewhat
more vulnerable to underestimating parameter values based
on a few samples with unexpected low rewards. Because the
parameter estimates influence future action choices, data to
correct these underestimates may not be collected quickly
enough (as has been documented for non-contextual ban-
dits in, e.g., [10]). In contrast, increasing the number of
student features increases variation near the mean but elimi-
nates the bimodality (Figure 1) since the algorithm performs
more exploration to learn the larger number of parameters.
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This makes it less likely to collect data that lead to erro-
neous conclusions about the effectiveness of actions. Errors
in the parameter values are more likely to be corrected be-
cause they are unlikely to lead to the same choices for all
student features, hence creating more variability in action
choice for students with a specific value of a single feature.
Indeed, the simulation results support these interpretations:
for the baseline and universal optimal action models in a
1000-student classroom (see Figure 2 for baseline), average
reward for the first 250 students is lower but reward for the
final 50 students is higher as the number of contextual vari-
ables increases. There is thus a trade-off between expected
outcomes and variability: the ability of the contextual MAB
algorithm to adapt more quickly when it has fewer features
to learn comes at the cost of it being less able to correct for
wrong conclusions from small amounts of data.

Variability in policies across students: As noted above,
the extra parameters learned by the contextual MAB algo-
rithm lead to the potential for greater variability in action
choices within a single simulation. This can systematically
affect groups of students when the algorithm attaches spu-
rious relevance to a feature that does not actually impact
outcomes. We can see this pattern by examining differ-
ences in action probabilities for students who differ only by
characteristics that do not impact outcomes: that is, con-
sidering all students who have the same value for the first
feature, how does the probability of choosing a particular
action change based on their different values for the other
features? As the number of contextual variables increases,
the average maximum difference in action choice probability
between such students also increases from 18–25% when two
student features are included in the model to over 90% when
ten features are included in the model after running through
250 students. This occurs both based on the greater expres-
sivity of the model with more student features and the fact
that the model with more student features is likely still learn-
ing about the impact of each of these features. This raises
potential concerns about inequity: students who should be
treated identically by the system may instead be treated sys-
tematically differently, based on features that do not impact
how they learn.

5. IMPACT OF UNEVEN DISTRIBUTION
OF STUDENT CHARACTERISTICS

The results of the previous simulations demonstrate that
in situations where student characteristics (features) impact
the outcome of different educational interventions, a contex-
tual MAB algorithm only provides an improvement over a
non-contextual algorithm when knowledge about the charac-
teristic is necessary for choosing the best action. These sim-
ulations provided insight into how performance is impacted
by different patterns of relationships between student char-
acteristics and outcomes, with the assumption that those
characteristics were uniformly distributed. However, in re-
ality, some characteristics are likely to be more common than
others. For example, when optimizing which hint to give to
students who answer a question incorrectly, the algorithm is
more likely to encounter a student with lower prior knowl-
edge than one with higher prior knowledge. Thus we now
relax this assumption and explore how changing the distri-
bution of student characteristics impacts student outcomes
for both types of MAB algorithms. In these simulations, we
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Figure 3: Proportion of optimal actions for minority
groups with sizes of 10%–50% for the two bandit
types across the three outcome-generating models,
limited to one contextual variable. Standard errors,
represented by the translucent bands, are negligible.

examined not only overall outcomes, but also outcomes for
different groups of students. Attention to group-specific out-
comes is vital for identifying inequitable impacts of adaptive
algorithms.

5.1 Methods
Similar to the first set of simulations, we compared non-
contextual and contextual MAB implementations that used
Thompson sampling across the same three horizons of 50,
250, and 1000 students, with a focus on 250; we repeated
each simulation 1000 times. These simulations include a new
independent variable: the proportion of students in each
group. Specifically, for each simulated student, we varied
the probability of the student being in the minority group
(i.e., having a value of one for the first student characteris-
tic) from 10% to 50%, using 10% increments. In addition
to analyzing performance across all students, we examined
performance for both the minority and majority groups sep-
arately. We also examined the balanced success rate, defined
as the simple average of the group-specific performances [5].
Balanced success rate provides a way of examining perfor-
mance that treats each group as equally important, even
though one group may have more students than another.

5.2 Results
As in the previous analysis, we used an ANCOVA to com-
pare the performance for the two bandit types in terms of
the proportion of optimal actions, but this time treating the
percentage of the minority group as a covariate.

One student characteristic: With one student charac-
teristic, the contextual MAB algorithm’s performance for
the minority group decreases as the size of the minority
group becomes smaller, across all outcome-generating mod-
els (Figure 3b and Figure 4; t(59996) = −33.962, p < 0.001,
b = −0.427, 95% CI = [−0.452,−0.402]). This leads the con-
textual MAB algorithm to have a lower balanced success rate
for smaller minority groups. However, overall performance
across all students is slightly better since so many more stu-
dents are in the majority group (Figure 4; t(59996) = 16.633,
p < 0.001, b = 0.126, 95% CI = [0.111, 0.141]). In other
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Figure 4: Comparing the proportion of optimal actions of the contextual bandit between 1 and 5 student
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words, decreasing the minority group size hurts the mi-
nority group more than it helps the majority group on a
per-student basis; but replacing students from the minor-
ity group, who are assigned worse conditions, with students
from the majority group, who are assigned better conditions,
increases overall reward.

This pattern of results occurs because the contextual MAB
has more uncertainty about the impact of the particular
value of the student characteristic that appeared fewer times:
in the least balanced case, we expect the minority group to
be seen only 25 times on average given a horizon of 250 stu-
dents. Hence, providing a model with the potential to per-
sonalize for a minority group is a calculated risk - although
the extra expressivity is likely intended to improve experi-
ences for all groups of students, it can negatively impact
minority groups, with a larger negative impact for smaller
minority groups.

In contrast, the non-contextual MAB algorithm is relatively
unaffected by the changing distribution of student charac-
teristics in both the baseline (t(9996) = 0.497, p = 0.619)
and universal optimal action scenarios (t(39996) = 1.506,
p = 0.132), as shown by Figure 3a. The changing distribu-
tion of student characteristics changes the expected rate of
obtained reward from each action, but the changes are small
enough that they have little impact on the algorithm’s abil-
ity to choose optimal actions.

However, for the personalized optimal action model, the size
of the minority group does have a large impact on individual
student outcomes for the non-contextual MAB algorithm:
when the minority group is small, the algorithm learns to
choose the action that is best for the majority and worst for
the minority, resulting in the optimal action being chosen
only 15% of the time for the minority group, within a horizon
of 250 students (Figure 3a). When the two groups are of
equal size, the algorithm has no systematic information that
shows one action as consistently better or worse than the
other; thus on average, it chooses the optimal action about
50% of the time for both groups.

Additional student characteristics for the contextual
MAB algorithm: When the number of student character-
istics increases, the impact on the minority and majority
groups differs for the baseline and universal optimal action
models compared to the personalized optimal action (Fig-
ure 4). In the two former models, the impact on balanced
success rate is generally small: as the number of student
characteristics increases from one to five, balanced success
decreases no more than 8%, except by 11% in universal opti-
mal action (4); for most of these models, the decrease is even
smaller when the minority group is smaller. In these models,
the algorithm’s performance for small minority groups is im-
proved with more student characteristics, while performance
for majority groups decreases. For example, in the baseline
scenario with 10% of students in the minority group, the al-
gorithm chooses the optimal action for 71% of the minority
group when there are five student characteristics, compared
to 61% of these students when there is only one student
characteristic. More student characteristics leads to more
exploration with the initial students, and thus the algorithm
is less likely to systematically execute a bad policy for the
minority group based on a small number of initial samples.

For the personalized optimal action scenario, increasing the
number of student characteristics from one to five decreases
performance for both minority and majority groups by about
15% regardless of the size of the minority group, uniformly
lowering balanced success rate. Due to the extra exploration
caused by the extraneous student characteristics, the algo-
rithm is slower to exploit the actual relationship between the
relevant student characteristic and the action choice, with-
out differential impact based on minority group size.

6. REAL-WORLD EXPERIMENTS
The first two sets of simulations can guide system designers
when making decisions about personalizing based on stu-
dent features. However, they have some limitations: while
they considered a relatively large space of possibilities for
how outcomes relate to student features, they focused on
showing a general variety of cases rather than on specific
cases that might be most common or of particular interest
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Problem Set Students Q1 Size Q2 Size Q3 Size Q4 Size

Uneven Student Distribution 293151 320 113 (35.3%) 100 (31.3%) 69 (21.6%) 38 (11.9%)
Even Student Distribution 263057 129 33 (25.6%) 28 (21.7%) 34 (26.4%) 34 (26.4%)

Table 3: Student totals and group distributions in the original ASSISTments data [23] for the two problem
sets of interest. Prior percent correct is discretized before removing students who have never answered
incorrectly to experience the assigned condition, biasing group size towards the lower quartiles in the Uneven
Student Distribution.

(a) (b) (c) (d)

Figure 5: Original average reward per student in the ASSISTments data [23], across the four quartiles
(Q1–Q4) of prior percent correct and their averages, for the two conditions in the experiments (control and
experimental) illustrates our model parameters of real-world scenarios.

in education. To address this, we conducted several case
studies of how MAB algorithms would have impacted ac-
tual experiments. We consider existing experimental data in
which the optimal action would be personalized to see if the
contextual MAB algorithms benefits students (as would be
expected from our previous simulations) and also to demon-
strate how factors from the previous simulations manifest in
real-world scenarios.

The experiments were previously conducted within ASSIST-
ments, an online learning system, and focused primarily
on middle school math. We selected several experiments
from [23] based on how student outcomes were related to
their prior successes in the system as well as their assign-
ment of either the control or experimental condition. Prior
success in the system is a strong candidate to be a student
feature for personalization: it is typically easily available
and can serve as a proxy for prior knowledge, which has
been shown to influence the success of different instructional
strategies [25].

6.1 Methods
To model previously collected ASSISTments data in our
MAB framework, we (1) transformed both the student char-
acteristics and the student outcomes into discrete variables,3

and (2) resampled from the data to generate outcomes when
the MAB algorithm assigned a condition.

For step (1), we first discretized students’ prior percent cor-
rect on problems within ASSISTments, the sole student fea-
ture that we included for personalization, into four quartiles:
the 25% of students who began the homework assignment
with the lowest prior percent correct (Q1), then those in the
26–50% range (Q2), and so on. The dataset contains some
students who began the homework but were not assigned to

3MAB algorithms can handle non-categorical data, but we
focus on the categorical case to mirror our prior simulations.

a condition. Since the experiments in [23] mainly manip-
ulated students’ experiences (e.g. type of hint) when they
answered a question incorrectly, students who have never
answered incorrectly are not included in the experiment re-
sults (nor will the MAB algorithm make choices for them).
However, they are included in the quartile cutoffs, which
means that in the population of students with whom the
MAB algorithm interacts, the number of students in each
quartile may not be uniform.

We also chose and discretized the student outcome mea-
sures. These experiments included two different measures
of student outcomes: whether each student completed the
homework and the number of problems that each student
answered in the homework. All experiments took place in
the SkillBuilder interface, where students must answer three
consecutive problems correctly to complete the homework.
Completion of homework (denoted Completed HW ) is al-
ready discrete and could easily be collected in real time; two
of our simulations use this measure. However, it is relatively
coarse, as the vast majority of students completed the home-
work. Thus, we also used a discretized version of the number
of problems to completion (denoted Completed Quickly). If
a student completes the homework, doing so in fewer prob-
lems is a better outcome than doing so in more problems.
Outcomes were based on the median problem count for stu-
dents who completed the homework. Students who com-
pleted the homework in the median number of problems or
fewer had positive reward, while those who did not complete
the homework or completed it more slowly had no reward.
Though for practical use prior data would be needed to se-
lect an appropriate cut point, using a cut point based on
collected data in our simulations measures the performance
of students more closely.

For step (2), we simulate a MAB algorithm’s performance by
repeatedly sampling students from the experiment. Within
each trial, we fix the number of timesteps to the total num-

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 166



(a) (b) (c) (d)

Figure 6: Swarm plots for the proportion of optimal actions for the two bandit types for each quartile of prior
percent correct and their averages. Each point represents results from each of the 1000 trials per experiment
and the solid black lines indicate the means of each swarm plots. Points for Q4 of Even Student Distribution,
Completed HW are clustered at 1.0 because both actions are optimal. The extra information learned by the
contextual bandit improves performance in most cases but the bimodality for some quartiles demonstrates
the associated systematic risks.

ber of students in the original experiment. At each timestep,
a random student is sampled, and the algorithm then selects
a condition for that student. To compute the outcome, we
sample from all outcomes for students in the experiment who
were in the same quartile for prior percent correct and who
experienced the same chosen condition. Each trial thus rep-
resents an experiment of the same size as the original, with
the students drawn with replacement from the experimental
data. We randomized each of the 1000 trials, though for
each trial, we use the same student ordering for both types
of MAB algorithms.

In our case studies, we focus on one problem set (#293151)
where students are unevenly distributed across quartiles,
with more lower-performing students (Q1), and one prob-
lem set (#263057) in which students are more evenly dis-
tributed across quartiles (see Table 6). With the two dif-
ferent outcome measures, this resulted in four simulation
scenarios. We chose these problem sets because they had
student outcomes that varied based on both condition and
student quartile (see Figure 5).

6.2 Results
In all four settings, at least one quartile of students (out
of Q1–Q4) was helped by the contextual MAB algorithm,
and in three of the four settings, average outcomes across
all students were improved by personalization.

Uneven Student Distribution, Completed HW: As
shown in Figure 6a, in this scenario, students in Q4 were
much more likely to experience their optimal condition with
a contextual MAB algorithm. This occurs because the con-
dition that is best for the average student is the one that
is worse for Q4: the non-contextual MAB thus optimizes
in a way that has a systematic, negative outcome for Q4
students. Conversely, the contextual MAB algorithm does
not do as well as the non-contextual algorithm for students
in Q1–Q3 because of the extra exploration needed to learn
about more variables that are not necessary to help these
students. Overall, this means that the contextual MAB al-
gorithm had a slightly lower rate of choosing the optimal ac-
tion than the non-contextual MAB. However, the difference
is relatively small, and is even smaller in terms of average

reward: reward is reduced by less than 0.01 overall, while
is increased for Q4 students by about 0.06. In this experi-
ment, reward rates are high in general (greater than 70% for
all conditions and quartiles). Thus with 320 students, small
differences in condition assignment often are not reflected
in large differences in outcomes. Q1–Q3 students have very
similar outcomes across the two methods of condition as-
signment; Q4 has the greatest difference in success for one
condition versus another, and thus the large increase in op-
timal condition assignment for these students does boost the
average outcomes.

Uneven Student Distribution, Completed Quickly:
Using the Completed Quickly outcome measure with the
same students, students in all quartiles were more likely to
be assigned to the optimal condition when the contextual
MAB algorithm was used (Figure 6b). This pattern oc-
curs because the overall probability of a positive outcome is
very similar across the two conditions when student quar-
tiles are ignored (shown by All in Figure 5b), making it
difficult for the non-contextual bandit to learn that the ex-
perimental condition is better on average. In contrast, the
differences between conditions are large for all quartiles ex-
cept Q2. Thus, the information from the student quartiles
makes the problem easier for the contextual MAB algorithm,
though the relatively small difference between conditions for
Q2 results in the lowest overall proportion of optimal action
choices. This simulation thus importantly shows a scenario
that was not explored in the prior simulations, in which
knowing about extra information increases the number of
parameters to learn but makes learning about each of those
individual parameters easier.

Even Student Distribution, Completed HW: For this
scenario, there were again very high reward probabilities
across all conditions, and a relatively small overall difference
between conditions but larger differences between conditions
for three of the four quartiles. The results from the previous
simulation were mirrored here: all groups with some reward
rates of less than 100% were aided by the contextual MAB
algorithm.

Even Student Distribution, Completed Quickly: Fi-
nally, using the Completed Quickly outcome measure for this
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second set of students, the results were still largely in favor
of the contextual MAB algorithm. As the experimental con-
dition is better on average, students in Q1 experience a large
positive impact through personalization because the control
condition is uniquely better for them. Q2 and Q3 also ex-
perience positive impacts, with the impact on Q2 students
being larger because the difference between the two condi-
tions is larger, which speeds learning for the contextual ban-
dit. Conversely, Q4 students experience slightly less positive
outcomes under the contextual MAB algorithm because the
small difference between conditions slows learning; in com-
parison, the contextual MAB algorithm is more beneficial
for Q4 students since the overall difference between condi-
tions across all students is larger than the difference for Q4
students only.

Variability in real-world scenarios: Variability across
trials in these scenarios showed the same trend as in the
previous simulations: the non-contextual MAB algorithm
typically has slightly more variation around the mean of the
distribution, but only the contextual MAB algorithm shows
bimodality, with some trials showing very poor performance
for at least one of the groups (Figure 6).

7. DISCUSSION
Real-time adaptive algorithms can respond quickly to opti-
mize experiences for individual students, and their expres-
sivity for personalizing experiences increases with each addi-
tional type of student information they are given. In this pa-
per, we have shown that this expressivity is worthwhile only
when it is necessary for expressing the best policy to im-
prove student outcomes. It is also especially helpful in cases
where student characteristics are not uniformly distributed.
In that case, an algorithm without the extra information
may instead learn a policy that systematically optimizes
for the majority but not for a minority group. However,
when this expressivity is not necessary, it increases vari-
ability across students and also increases the time for iden-
tifying the correct policy, thus significantly decreasing the
number of students assigned the best version of the technol-
ogy and slightly decreasing their average outcomes. Despite
this, the results based on the real-world experimental data
clarify the potential benefits of personalization by demon-
strating that having extra information about students can
sometimes make learning easier, outweighing the negative
impact of learning additional parameters.

There are several limitations to our results. First, we have
focused only on discrete student features and discrete out-
comes but continuous parameters are also common. For ex-
ample, we might measure student scores rather than home-
work completion or model prior knowledge as an estimated
ability parameter. If one wanted to extend these analyses
to real-valued student features, one could easily incorporate
them into the current modeling framework with versions of
Thompson sampling for real-valued outcomes [2], and there
exist metrics from a large literature for assessing whether
students are treated fairly (e.g., [6]). Using real-valued pa-
rameters is unlikely to significantly impact trends in results,
except that defining student groups for analyzing equitable
outcomes is more difficult. Our results from our universal
optimal action scenarios show that, with binary rewards,
knowledge of the student features is not beneficial if it is

unnecessary for expressing the best policy. However, these
results may not translate to the real-valued rewards case,
where the latent student features will add to the variability
in the distributions observed by the non-contextual bandit,
and exploring these scenarios is an important step for future
work. A second limitation is that our simulations comprise
only a single student feature that influences the outcome,
though in actual deployments multiple features may influ-
ence the best policy. Still, we believe that our results can
guide system designers when thinking about such scenarios,
especially in weighing the costs and benefits of including
each possible variable.

The results from the real-world scenarios highlight the po-
tential value of MAB algorithms for educational technolo-
gies. For almost all scenarios and groups, both types of MAB
algorithms chose the optimal condition more often than if
students had been assigned uniformly at random, and av-
erage rewards were in many cases very close to the optimal
expected reward (i.e. if the optimal action had been chosen
for all students). The absolute difference in rewards was rel-
atively small between the two bandit types–at most 0.075–
and the contextual bandit achieved at worst 12% less than
the optimal expected reward for any student group. Yet the
earlier simulations urge caution for incorporating student
characteristics, due to (1) decreases in achieved outcomes
when these characteristics are unnecessary, (2) increases in
variability of performance, and (3) the systematically differ-
ent treatment of students based on irrelevant characteristics.
Thus, system designers should weigh the risk of not person-
alizing when the best policy for the minority differs from
the majority with these side effects of personalization and
ultimately strive to only include variables that past evidence
suggests differentially impact outcomes.

One could make a number of extensions of this work for us-
ing MAB algorithms to improve and personalize educational
technologies. First, contextual MAB algorithms might mit-
igate issues of biases when different types of students inter-
act with an educational technology and while all are most
helped by the same version of the technology, their out-
comes have different distributions. For example, struggling
students may complete homework later, leading the MAB
algorithm’s early estimates to be non-representative of the
broader population. Prior work has shown that this bias
significantly worsens inference about the effectiveness of the
technology as well as expected student outcomes [20]: the
use of a contextual MAB algorithm could allow the system
to adapt to such differences across students. Second, if the
technology is used by a large number of students, the set
of variables used by the contextual algorithm could be in-
creased as more data are collected. Such a system might
improve consistency across student outcomes, while still per-
sonalizing based on truly relevant features that are justified
the sufficient information collected. The work in this paper
both provides a starting point for considering what scenar-
ios, algorithms, and metrics should be explored in future
work, as well as guidance for system designers who would
like to deploy MAB algorithms within their own technolo-
gies but are uncertain about which student characteristics,
if any, to include for personalization.
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ABSTRACT
Modeling student learning processes is highly complex since
it is influenced by many factors such as motivation and
learning habits. The high volume of features and tools pro-
vided by computer-based learning environments confounds
the task of tracking student knowledge even further. Deep
Learning models such as Long-Short Term Memory (LSTMs)
and classic Markovian models such as Bayesian Knowledge
Tracing (BKT) have been successfully applied for student
modeling. However, much of this prior work is designed to
handle sequences of events with discrete timesteps, rather
than considering the continuous aspect of time. Given that
time elapsed between successive elements in a student’s tra-
jectory can vary from seconds to days, we applied a Time-
aware LSTM (T-LSTM) to model the dynamics of student
knowledge state in continuous time. We investigate the ef-
fectiveness of T-LSTM on two domains with very different
characteristics. One involves an open-ended programming
environment where students can self-pace their progress and
T-LSTM is compared against LSTM, Recent Temporal Pat-
tern Mining, and the classic Logistic Regression (LR) on the
early prediction of student success; the other involves a clas-
sic tutor-driven intelligent tutoring system where the tutor
scaffolds the student learning step by step and T-LSTM is
compared with LSTM, LR, and BKT on the early predic-
tion of student learning gains. Our results show that T-
LSTM significantly outperforms the other methods on the
self-paced, open-ended programming environment; while on
the tutor-driven ITS, it ties with LSTM and outperforms
both LR and BKT. In other words, while time-irregularity
exists in both datasets, T-LSTM works significantly better
than other student models when the pace is driven by stu-
dents. On the other hand, when such irregularity results
from the tutor, T-LSTM was not superior to other models
but its performance was not hurt either.

1. INTRODUCTION
Student Modeling sits at the epicenter of educational data
mining. It monitors a student’s progress, ability, or knowl-
edge over a set of skills and can predict the student’s future
performance based on historical sequence data. In recent
years, recurrent neural network architectures, such as Long
Short-Term Memory (LSTMs), have become the workhorses
for modeling sequence data in a variety of tasks involving se-
quential data, such as video processing, climate change de-
tection, and patient disease progression prediction [20, 19,
25, 12]. Deep Knowledge Tracing [35, DKT], the first LSTM
approach in student modeling, reported an impressive im-
provement over a classical statistical model Bayesian Knowl-
edge Tracing [10, BKT]. Both LSTM/DKT and BKT are de-
signed to handle sequences of events with discrete timesteps,
not considering the continuous aspect of time.

On the other hand, student response time, the elapsed times
between consecutive elements of a sequence can vary greatly
by student, from seconds to days. Ever since the mid-1950s,
student response time has been used as a preferred educa-
tional assessment to evaluate how active and accessible stu-
dent knowledge is in cognitive psychology [43]. For example,
it has been shown that response time reveals student pro-
ficiency [40] and there is a significant negative correlation
between student average response time and student final
exam score taken at the end of the semester [16]. Addi-
tionally, response time has been suggested as an indicator
of student engagement in answering questions [21] as well as
an important factor for predicting motivation in learning en-
vironments [9]. Also, by leveraging time information, BKT
prediction performance can be improved [38, 44]. Therefore,
by not taking the time intervals into consideration, the de-
sign of traditional LSTM and BKT may lead to sub-optimal
performance for modeling student learning.

Previous work for modeling sequence data has explored sev-
eral ways to handle time irregularity [3, 34, 8, 6] and among
them, Time-aware LSTM (T-LSTM) is one of the most state-
of-the-art models [3]. T-LSTM transforms time intervals
between successive elements into weights and uses them to
adjust the memory passed from previous moments. In this
work, we apply T-LSTM to model the dynamics of student
knowledge state in continuous time and conduct two empiri-
cal comparisons between T-LSTM and the standard LSTM,
Recent Pattern Mining [23], and classical student model-
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ing methods such as BKT and logistic regression models on
two real-world data sets collected from two learning environ-
ments with very different characteristics. One is an open-
ended block-based programming environment for a novice
programming task where students are free to explore the
environment with minimal system support or constraints.
Each student’s log file is a trajectory of actions with corre-
sponding time stamps and time intervals calculated between
the two consecutive student actions. The other probabil-
ity tutor is tutor-driven in that the tutor decides what to
do next. Each student’s log file is a trajectory of student-
ITS interactions. In each interaction, the tutor first elicits
the subsequent step from a student with prompting, and
when the student performs a step, the tutor records its suc-
cess or failure and may give feedback (e.g. correct/incorrect
markings); if the student’s answer is incorrect, the tutor
provides a series of hints from general to specific and the
bottom-out hint tells the student exactly what to do. The
interaction is ended only when a step is correctly answered
and the tutor moves to the next interaction. As a result,
each student’s log file is a trajectory of tutor actions mixed
with student’s responses with corresponding time stamps. In
this environment, the time intervals are calculated between
the student’s first attempt on one problem and the next.
Our research question is: By taking time-awareness into
consideration, would T-LSTM outperform other tra-
ditional student modeling methods on both self-paced
and tutor-driven learning environments?

2. METHODS
2.1 Long Short-Term Memory
Long Short Term Memory [18, LSTM] is a special type of
RNN which is explicitly designed to avoid the long-term de-
pendency problem. LSTM can avoid the vanishing (and
exploding) gradient problem and works tremendously well
on a large variety of problems.

Figure 1: The Structure of a LSTM Unit

The internal structure of each LSTM module is shown in
Figure 1. There are three major components: a forget gate,
an input gate, and an output gate in a standard LSTM unit
cell, where these components interact with each other to
control how information flows. In the first step, a function
of the previous hidden state ht−1 and the new input Xt

passes through the forget gate, indicating what is probably
irrelevant and can be taken out of the cell state. The for-

get component will calculate a weight ft between 0 to 1 for
each element in hidden state vector Ct−1. An element with
a weight of 0 should be completely forgotten whereas an el-
ement with a weight of 1 needs to be entirely remembered.
The formula to calculate ft is shown below where Wf and
bf are the weights and intercepts, respectively, for the forget
component.

ft = sigmoid(Wf · [ht−1, xt] + bf ) (1)

There are two steps involved in input component’s calcula-
tion. In the first step, a tanh layer calculates a candidate
vector C̃t that could be added to the current hidden state.
In the second step, the input components calculate a weight
vector it (ranging from 0 to 1) to determine to what extent

C̃t should update the current memory state.

C̃t = tanh(Wc · [ht−1, xt] + bc) (2)

it = sigmoid(Wi · [ht−1, xt] + bi) (3)

With the forget and input components, the module is able
to throw away the expired information in the previous cell
state by calculating Ct−1 · ft, and process new information
by computing C̃t · it. Consequently, the formula to update
the current memory cell is shown below. Note that the cur-
rent memory cell state Ct is then passed to the next LSTM
module.

Ct = Ct−1 · ft + C̃t · it (4)

Finally, the output component is simply an activation func-
tion that filters elements in Ct. The Ct can be converted to
a value between -1 to 1 by the tanh function. The output
component calculates a weight vector

ot = sigmoid(Wo · [ht−1, xt] + bo) (5)

that determines how much information is allowed to be re-
vealed.

Ct = ot ∗ tanh(Ct) (6)

With such a gated structure, LSTM is capable of handling
long-term dependencies.

2.2 Time-Aware Long Short Term Memory
The standard LSTM assumes that the elapsed times be-
tween elements of a sequence are uniformly distributed, and
therefore it is designed to handle sequences with discrete
timesteps. However, in the educational domain, the interval
between two consecutive steps during a student trajectory
can span from seconds to days. In general, the events that
occurred long ago tend to have less impact to the current
state and thus we should properly reduce their contributions.
Therefore, it is important to consider the elapsed time when
predicting the current event’s output. In this work, we ap-
plied Time-aware LSTM [3, T-LSTM], which is proposed to
handle the temporal dynamics of sequential data with time
irregularities, to model student knowledge states in contin-
uous time.

The T-LSTM architecture is shown in Figure 2. To fit in
our domain, we represent the input sequence by the stu-
dent trajectories. Apart from the three gates in standard
LSTM: forget, input, and output; T-LSTM also integrates
the time elapsed between successive records into the net-
work architecture, and we call this as the time decay compo-
nent. The information stored in the memory of the previous
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Figure 2: The Structure of a T-LSTM Unit

hidden state Ct−1 is decomposed into two parts: long-term
memory and short-term memory. Without losing the long-
term memory contained in Ct−1, the time decay component
mainly plays a role to adjust the short-term memory by em-
ploying the elapsed time between successive steps. If the
gap between two steps is significantly huge, e.g. few hours
in our domain, it means there has been a long time with no
interaction between students and the tutor/computer. In
that case, there is not much point to heavily rely on the
previous short-term memory to predict the current output.
In the framework of T-LSTM, a non-increasing function of
the elapsed time is applied to transform the time duration
into an appropriate weight. And in this work, we applied
g(∆t) = 1/ log(e+ ∆t) to get the corresponding weights.

The following calculations are involved in the time decay
component of T-LSTM. First, short-term memory CS

t−1 is
calculated.

CS
t−1 = tanh (Wd · Ct−1 + bd) (7)

The long-term memory can be obtained by deducting short-
term memory from the previous hidden state.

CL
t−1 = Ct−1 − CS

t−1 (8)

Then CS
t−1 is discounted by the elapsed time weight to ob-

tain the discounted short-term memory ĈS
t−1.

ĈS
t−1 = CS

t−1 ∗ g(∆t) (9)

Finally, the adjusted previous hidden state C∗t−1 is com-
posed by adding long-term memory and discounted short-
term memory.

C∗t−1 = CL
t−1 + ĈS

t−1 (10)

The following parts are very similar to standard LSTM. Fol-
lowing the steps in Section 2.1, we first calculate the forget
gate ft, candidate vector C̃t and input gate it by applying
Equation (1), (2) and (3). For the calculation of the current
memory cell state Ct, the adjusted previous hidden state
C∗t−1 instead of Ct−1 is applied in the T-LSTM framework.

Ct = C∗t−1 · ft + C̃t · it (11)

The final output for the current state can be achieved using
the following Equation (6). In this work, we investigate the
effectiveness of T-LSTM via the early prediction of both stu-
dent success and learning gains. As far as we know, no prior
studies have explored T-LSTM on both computer-based pro-
gramming systems and intelligent tutoring systems.

2.3 Recent Temporal Pattern Mining
The Recent Temporal Pattern mining (RTP) framework [2]
was originally proposed to find predictive patterns from com-
plex multivariate time series data. This framework first con-
verts time series into time-interval sequences of temporal
abstractions, and then constructs more complex temporal
patterns backwards. The following part will explain how
the RTP framework is applied in our work.

Multivariate State Sequences: We denote a State S as
(F, V ), where F is a temporal feature and V is the value
for feature F at a given time and the State Interval E
is denoted as (F, V, s, e), where s and e refer to the start
and end times of the state (F, V ). Thus, we can convert
each student’s data xi into a corresponding Multivariate
State Sequence (MSS) zi by sorting all the state intervals by
their start times: zi = 〈E1, E2, ..., En〉 : Ej .s ≤ Ej+1.s, j ∈
{1, ..., n − 1}. And we apply two temporal relations in this
work: 1)Ei before(b) Ej : When Ei ends before the start
of Ej (Ei.e < Ej .s); 2) Ei co-occurs(c) with Ej : When Ei

and Ej have some overlap (Ei.s ≤ Ej .s ≤ Ei.e).

Recent Temporal Patterns: Here, we call a state interval
E = (F, V, s, e) a Recent State Interval of MSS zi if: 1)
E is the last state interval for feature F ; that is, for all

E
′

= (F, V
′
, s

′
, e

′
), we have E

′
.e ≤ E.e; or 2) E is less

than g time units away from the end time of the last state
interval: zi.end; that is, zi.end− E.e ≤ g.

Given an MSS zi, a temporal pattern P = (〈S1, ..., Sn〉, R),
and a maximum gap parameter g, we say P is a recent tem-
poral pattern (RTP) in zi, denoted Rg(P, zi), if all 3 of the
following conditions hold: 1) zi contains P , where P ∈ zi
if: (a) zi contains all k states of P , and (b) all temporal
relations of P are satisfied in zi; 2) Sn = (Fn, Vn) matches
a recent state interval in zi; and 3) Every consecutive pair
of states in P maps to a state interval less than g time units
apart. That is, each pair of temporal sequences should not
be g time units apart. In short, parameter g forces pat-
terns to be close to the end of the sequence zi, and forces
consecutive states to be close to each other.

Mining Algorithm: Taking student success classification
as an example, we will have two sets of labeled MSSs: Z1 =
{zi : yi = 1} for all unsuccessful sequences and Z0 = {zj :
yi = 0} for all successful ones. Given Z1, the mining al-
gorithm applies a level-wise search to find frequent RTPs.
More specifically, it first starts with all frequent 1-RTPs, and
then extends the patterns by adding a new state to each se-
quence, one at a time, until no new patterns are discovered.
That is, at each level k, the algorithm finds frequent (k+1)-
RTPs by repeatedly extending k-RTPs through Backward
candidate generation, and the Counting phase, as described
below.

Backward (k + 1)-pattern candidates are generated from a
k-pattern P = (〈S1, ..., Sk〉, R), by adding a new frequent

state, Snew, to the beginning of the sequence to create P
′

=

(〈Snew, S1, ..., Sk〉,R
′
). Then we specify the new before (b)

or co-occurs (c) relations R
′

between Snew and all original
k states, restricted by the following two criteria: 1) Two
state intervals of the same temporal feature cannot co-occur.
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Figure 3: An example of generating 3-patterns out
of a single 2-RTP, by appending a new state.

That is, if Snew.F = Si.F for i ∈ {1, ..., k}, then R′new,i 6=
c. 2) Since the state sequence in pattern P is sorted by
the start time of the states, once a relation becomes before:
R′new,i = b for any i ∈ {1, ..., k}, all of the following relations
have to be before, so R′new,j = b for j ∈ {i+ 1, ..., k}.

In the Counting phase, candidate (k + 1)-patterns are re-
moved if they do not meet the minimum support threshold
by occurring at least σ times as RTPs in Z1. The same
procedure is carried out for Z0. Finally, we combine all the
frequent RTPs into a final Ω set of RTPs.

Binary Matrix Transformation: We transform each MSS
zi ∈ Z into a binary vector vi of size |Ω|, such that each 0
and 1 indicates whether the pattern Pj ∈ Ω is a recent tem-
poral pattern in Zi or not. This will result in a binary matrix
of size N × |Ω|, which represents our original dataset.

2.4 Bayesian Knowledge Tracing
BKT is a student modeling method extensively used in ITSs.
Figure 4 shows a graphical representation of the model and a
possible sequence of student observations. The shaded nodes
S represent hidden knowledge states. The unshaded nodes
O represent observation of students’ behaviors. The edges
between the nodes represent their conditional dependence.

Figure 4: The Bayesian network topology of the
standard Knowledge Tracing model

Fundamentally, the BKT model is a two-state Hidden Markov
Model [11, HMM] characterized by five basic elements: 1)
N, the number of different types of hidden state; 2) M, the
number of different types of observation; 3) Π, the initial
state distribution P (S0); 4) T, the state transition probabil-
ity P (St+1|St) and 5) E, the emission probability P (Ot|St).
Note that both N and M are predefined before training
occurs, while Π, T and E are learned from the students’
observation sequence.

Conventional BKT assumes there are two types of hidden
knowledge states (N=2) corresponding to student knowl-
edge states of unlearned and learned. It also assumes there
are two types of student observation (M=2) correspond-
ing to student performance of incorrect and correct. BKT
makes two assumptions about its conditional dependence
as reflected in the edges in Figure 4. The first assumption
BKT makes is a student’s knowledge state at a time t is
only contingent on her knowledge state at time t − 1. The
second assumption is a student’s performance at time t is
only dependent on her current knowledge state. These two
assumptions are captured by the state transition probability
T and the emission probability E.In the context of student
learning, BKT further defines five parameters:

Prior Knowledge = P(S0=learned)
Learning Rate = P(learned|unlearned )
Forget = P(unlearned | learned)
Guess = P(correct | unlearned)
Slip = P(incorrect | learned)

In order to apply BKT to our dataset, we captured and
mapped all students’ actions based on the learning oppor-
tunities of knowledge components (KCs) step by step. For
each of the KC, the Baum-Welch algorithm (or EM method)
is used to iteratively update the model’s parameters until a
maximized probability of observing the training sequence is
achieved.

3. EXPERIMENTS
In this work, we explored different student modeling tasks
based on characteristics of two different learning environ-
ments. One was the task of early prediction of student suc-
cess in an open-ended, self-paced programming environment
while the other is the task of early prediction of student
learning gains within a tutor-paced probability tutor.

3.1 Predicting Student Success on iSnap
3.1.1 iSnap

iSnap1 is an extension to Snap! [15], a block-based pro-
gramming environment, used in an introductory computing
course for non-majors in a public university in the United
States [37]. iSnap extends Snap! by providing students with
data-driven hints derived from historical correct student so-
lutions [36]. In addition, iSnap logs all students actions while
programming (e.g. adding or deleting a block), as a trace,
allowing us to detect the sequences of all student steps, as
well as the time taken for each step. In this work, we focused
on one homework exercise named Squiral, derived from the
BJC curriculum [15]. In Squiral, students are asked to write
a procedure that draws a square-like spiral. As shown in
Figure 5, correct solutions require procedures, loops, and
variables using at least 7 lines of code. We collected stu-
dents’ data for Squiral from Spring 2016, Fall 2016, Spring
2017, and Fall 2017. We excluded students who requested
hints from iSnap to eliminate factors that might affect stu-
dents’ problem-solving progress, leaving a total of 65, 38, 29,

1All tutors and assignments names have been blinded for
anonymous review

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 174



and 39 student code traces from each semester, respectively.
The detailed statistics for iSnap dataset are shown in Table
1.

The data collected from iSnap consists of a code trace for
each student’s attempt. This code trace represents a se-
quence of timestamped snapshots of student code. We used
an expert feature detector (EFD), described in [49], that
automatically detects 7 features of a correct solution in a
student snapshot. For example, for each snapshot in a stu-
dent code trace, the EFD outputs a feature state, which is
a series of 0s and 1s (e.g. 10000001) indicating the absence
or presence of each feature, such that feature-state: 1000001
shows that feature 1 and feature 7 are present, while the
other 5 features are not. We ran the expert-feature detector
to tag each snapshot in all 171 code traces, making a total
of 31,064 tagged snapshots.

Figure 5: The iSnap interface, with the blocks
palette on the left, the output stage on the right,
the scripting area in the middle, and the hints but-
ton on top.

3.1.2 Student Success
In the context of iSnap, all the models were measured on
the task of predicting student success. We classify the stu-
dents who finished the programming assignment in one hour
or less and got full credit as successful and labeled with “0”,
those who either failed to complete or submit the assignment
within one hour as unsuccessful, labeled with “1”. The one-
hour cutoff was chosen based on a distribution showing that
the vast majority of students (around 94%) who complete
the assignment with full credit do so within one hour. Thus,
each trajectory is assigned one ground truth label based on
whether the student finished the assignment successfully or
unsuccessfully. As a result, we refer to this task as the early
prediction task for student success. Based on this definition,
59 of 171 students are in the successful group, and the re-
maining 112 are in the unsuccessful group. Note that this is
a homework assignment that counts for only a small portion
of a student’s overall grade, and this behavior (of not at-
tempting to obtain full credit) is typical in this introductory
level.

To predict student success, we are given the first up to n
minutes of a student’s sequence data and our goal is to pre-
dict whether the student will successfully complete the pro-
gramming assignment at any given point in the remainder
of the sequence. To conduct this task, we left-aligned all the
students’ trajectories by their starting times and our obser-
vation window (the part of data used to train and test dif-

ferent machine learning models) includes the sequences from
the very beginning to the first n minutes. If a student’s tra-
jectory is less than n minutes, our observation window will
include their entire sequence except the last one.

3.1.3 Four Models
In the task of early prediction of student success, we have
four models involved: Logistic Regression (LR), RTP, LSTM
and T-LSTM. Note that BKT is not included here because
for the open-ended domain like iSnap, there are no pre-
defined steps or knowledge components that students must
achieve to complete a given program. Thus, it is hard to map
student actions on iSnap to learning opportunities defined
in BKT.

Logistic Regression (LR): Since LR do not handle se-
quence data directly, we used a “Last Value” approach to
treat the last measurement of each attribute within the given
observation window as the input to train models. For early
prediction settings, we truncated all the sequences in the
training dataset in the same fashion as the testing dataset
and then applied the Last Value approach on the truncated
training dataset. For example, when our observation win-
dow is 6 minute, we apply the last value before 6 minutes
for each sequence and treat them as inputs for LR.

RTP: For the RTP-based model, we first used RTP mining
to generate the binary matrix and then applied LR to learn
from the generated binary matrix. For early prediction, we
only apply the truncated training sequences included in ob-
servation window to find RTPs. For example, for our 6-
minute observation window, only the first 6 minutes of se-
quences were used for pattern extraction.

LSTM and T-LSTM: For LSTM the input is a multivari-
ate temporal sequence from student work, and the output
from the last step is used to make a prediction. While for
T-LSTM, we also feed it with another sequence indicating
time intervals for each student. As shown in Table 1, the
time intervals of iSnap range from 1 to 291 seconds across
four semesters, with µ = 0.613 and σ = 0.217 for the over-
all decayed intervals. For both LSTM and T-LSTM, we
used one hidden layer with 128 hidden neurons and set the
maximum length to accommodate the longest sequence in
our data. Typically for deep learning models, the whole
multivariate time series from student sequence data is used
as input data. However, for early prediction, only those
events happening within our observation window from each
sequence were used.

3.2 Predicting Learning Gains on Pyrenees
3.2.1 Pyrenees

Pyrenees is a web-based ITS teaching probability, which
covers 10 major knowledge components (KCs), such as the
Addition Theorem, the Complement Theorem, and Bayes’
Rule, etc. Domain experts both identified the 10 KCs and la-
beled each step/exercise with the corresponding KCs, kappa
> 0.9. Figure 6 shows the interface of Pyrenees which con-
sists of a problem statement window, a variable window,
an equation window, and a tutor-student dialogue window.
Through the dialogue window, Pyrenees provides messages
to the students. It can explain a worked example or prompt
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Table 1: Detailed data statistics for iSnap, including total steps, total time spent in minutes, time intervals
in seconds, corresponding decayed time intervals, and the success labels distribution for each of the four
semesters.

Semester
Total Steps Total Time (minutes) Time Intervals (seconds) Decayed Time Intervals Success Labels

min max median mean(std) min max median mean(std) min max median mean (std) mean(std) S U
S16 10 1024 169 199 (175) 0.533 95.667 20.733 22.777 (17.149) 1 209 2 6.739 (13.75) 0.628 (0.217) 23 42
F16 28 884 121 167 (168) 3.283 119.083 16.325 22.379 (24.177) 1 189 3 7.919 (14.12) 0.594 (0.217) 15 23
S17 15 439 75 112 (94) 2.817 62.983 14.167 16.347 (11.872) 1 177 3 8.512 (16.14) 0.599 (0.225) 12 17
F17 10 2276 100 219 (376) 1.65 189.667 19.1 28.224 (33.869) 1 291 3 7.597 (15.61) 0.609 (0.215) 9 30

the student to complete the next step. Students can en-
ter their inputs in the text area. Any variable or equa-
tion that is defined through this process is displayed on the
left side of the screen for reference. Pyrenees can also pro-
vide on-demand hints. The bottom-out hint tells the stu-
dent exactly how to solve a problem. Different from iSnap,
the Pyrenees tutor provides immediate feedback for correct-
ness/incorrectness whenever an answer is submitted.

Figure 6: The Pyrenees interface, with the problem
statement on the top, the variable window in the
middle, the equation window at the bottom, and
the dialog window on the right.

When training on Pyrenees, students were required to com-
plete 4 phases: 1) pre-training, 2) pretest, 3) training, and
4) post-test. During the pre-training phase, all students
studied the domain principles from a probability textbook.
The students then took a pretest which contained 10 prob-
lems. The textbook was not available. Students were not
given feedback on their answers, nor were they allowed to
go back to earlier questions. During the training phase, stu-
dents received the same 12 training problems in the same
order on Pyrenees. Each domain concept was applied at
least twice. The minimum number of steps needed to solve
each training problem ranged from 10 to 50. The number
of domain principles required to solve each problem ranged
from 3 to 10. Finally, all of the students took a post-test
with 20 problems. Both pretests and post-tests were graded
in a double-blind manner by a single experienced grader (not
the authors), and were normalized in the range of [0,1]. We
collected six semesters of data from Pyrenees, including Fall
2016, Spring 2017, Fall 2017, Spring 2018, Fall 2018, and
Spring 2019. The overall dataset comprises 102,948 data
points from 1190 students, with 207, 159, 215, 161, 261 and
187 from each semester, respectively. The detailed statistics
for Pyrenees dataset are shown in Table 2.

3.2.2 Quantized Learning Gain
In the context of Pyrenees, we applied all the models for
student learning gains prediction. The concept of learning
gain is formally defined as the difference between the skills,
competencies, content knowledge and personal development
demonstrated by students at two points in time [28]. we
used a qualitative measurement called Quantized Learning
Gain [24, QLG] to determine whether a student has bene-
fited from our learning environment. QLG is a binary quali-
tative measurement on students’ learning gains from pretest
to the posttest: high vs. low. To infer QLGs, students were
split into“low”,“medium”, and“high”based on whether they
scored below the 33rd percentile, between the 33rd and 66th
percentile, or higher than the 66th percentile in pre-test and
post-test respectively. Once a student’s pre- and post-test
performance groups are decided, the student is a“high”QLG
if he/she moved from a lower performance group to a higher
performance group from pre-test to post-test or remained in
“high”performance groups; whereas a“low”QLG is assigned
to the student if he/she either moved from a higher perfor-
mance group to a lower performance group from pre-test to
post-test, or stayed at a“low”or“medium”groups (as shown
in Figure 7). In Figure 7, solid lines represented the forma-
tion of the high QLG groups and dashed lines represents the
formation of the low QLG groups, and they will be coded
with “1” and “0” respectively for QLG prediction. As a re-
sult, we have 487 of 1190 students in the high learning gain
group, and the remaining 703 students in the low learning
gain group.

Figure 7: Quantized Learning Gain

Students usually need to spend 2-4 hours to complete the
Pyrenees tutor. Thus we are given the first up to n percent-
age of a student’s sequence data to predict student QLG,
and our goal is to predict whether the student will benefit
from our tutoring system in the end. As with the success
prediction in iSnap, we left-aligned all the students’ trajec-
tories by their starting times and our observation window
includes the data from the very beginning to the first n per-
cent of the whole sequence.
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Table 2: Detailed data statistics for Pyrenees, including total steps, total time spent in hours, time intervals in
seconds, corresponding decayed time intervals, and the QLG labels distribution for each of the six semesters.

Semester
Total Steps Total Time (hours) Time Intervals (seconds) Decayed Time Intervals QLG Labels

min max median mean(std) min max median mean (std) min max median mean (std) mean (std) low high
F16 12 144 78 75 (25) 0.545 173.553 4.142 15.039 (25.56) 1 542136 31 731.799 (10876.82) 0.298 (0.11) 80 127
S17 59 152 88 94 (23) 0.642 240.661 2.643 17.492 (38.29) 1 861636 25 685.094 (14329.39) 0.314 (0.11) 59 100
F17 38 148 113 105 (25) 0.773 576.055 5.100 24.335 (64.29) 1 1287547 24 844.083 (20941.73) 0.313 (0.11) 105 110
S18 23 138 73 71(21) 0.587 135.597 2.682 9.431(18.33) 1 354272 27 486.703 (7021.54) 0.307 (0.10) 47 114
F18 26 162 86 88 (23) 0.679 165.559 4.024 14.914 (22.54) 1 438986 28 613.861 (8924.83) 0.301 (0.10) 98 163
S19 12 138 81 83 (21) 0.571 170.116 4.613 16.909 (27.56) 1 609641 28 738.505 (11439.02) 0.305 (0.11) 98 89

3.2.3 Four Models
In the task of early prediction of student QLG, we have
four models involved: LR, BKT, LSTM and T-LSTM. Note
that we do not compare RTP here because, in Pyrenees, stu-
dents’ responses are determined not only by their underlying
knowledge state, but also by the pre-designed turn-taking
nature of the system, which could obscure the temporal pat-
terns found by RTP.

Logistic Regression (LR): As with student success pre-
diction, the “Last Value” approach was applied to the non-
temporal LR for the task of predicting student learning
gains, as well as the early prediction setting. For exam-
ple, when the training data is the first 30% sequence, only
the last value before 30% of each sequence was applied for
both training and testing.

BKT: To train the BKT model for QLG prediction, two
steps were involved. In the first step, the probability of a
student being in the learned state on each KC at the last at-
tempt was learned from the BKT model. And in the second
step, the output of the first step was computed as features
for our prediction tasks. That is, the number of features
involved here equals to the total number of KCs involved.
The logistic regression was applied to predict QLG. As with
early prediction setting of student success, only the truncated
training sequences were applied to learn student learning
probabilities from BKT.

LSTM and T-LSTM: In order to better compare LSTM
and T-LSTM performance with BKT, the same two types
of features were applied here for QLG prediction: 1) the
assignment of KCs corresponding to each step, and 2) stu-
dent performance at each step, i.e, correct or incorrect. As
shown in Table 2, the time intervals of Pyrenees range from
1 second to 14 days across the six semesters, with µ = 0.307
and σ = 0.107 for overall decayed intervals. For both LSTM
and T-LSTM, we used one hidden layer with 64 hidden neu-
rons and also set the maximum length to accommodate the
longest sequence in our data. Again, only those events hap-
pening within our observation window from each sequence
were applied for training and testing of early prediction.

3.3 Evaluation Metrics
Our models in this work were evaluated using Accuracy, Pre-
cision, Recall, F1 Score, and AUC (Area Under ROC curve).
Accuracy represents the proportion of students whose labels
were correctly identified. Precision is the proportion of stu-
dents who were predicted to be successful by each model
who were actually in the successful (or high QLG) group.
Recall tells us what proportion of students, who will actu-

ally be unsuccessful (or in low QLG group), who were cor-
rectly recognized by the model. F1 Score is the harmonic
mean of Precision and Recall that sets their trade-off. AUC
measures the ability of models to discriminate groups with
different labels. Given the nature of the tasks, we mainly use
Accuracy and AUC to compare different models. Finally, it
is important to emphasize that all models were evaluated us-
ing semester-based temporal cross-validation for both tasks,
which just applied data from previous semesters for training
and is a much stricter approach for time series data than the
standard cross-validation.

4. RESULTS
4.1 Predicting Student Success in iSnap
Table 3 shows the performance of all models using the first-
6-minute training sequences to predict students’ success in
the programming task. The first column indicates the mod-
els including majority baseline model using simple Majority
vote, Logistic Regression (LR), RTP, LSTM and T-LSTM.
Columns 2-5 report all of the models’ performance for the
first-6-minute observation window. We evaluated the mod-
els on different metrics including Accuracy, Precision, Re-
call, F1 and AUC score; note that we ignored the Precision,
Recall and F1-measure of the simple Majority baseline. The
last column reports the mean AUC score of all models from
0 - 20 minutes, with standard deviations between brackets.
At first-6-minute, we can observe that T-LSTM outperforms
all the other models and it contributes the highest score on
every measurement except that the best Recall comes from
RTP. LSTM and RTP have very similar performance at first-
6-minute, and both of them get better performance than
LR except on Precision and AUC. On the other hand, when
comparing the overall AUC score among all the models, T-
LSTM still achieves the highest score. These results suggests
T-LSTM can better learn the difference between success-
ful/unsuccessful groups with the help of time-awareness.

Figures 8 (a) and (b) report Accuracy and AUC performance
respectively for all models predicting student success. For
each graph, we vary the observation window from the first
2 minutes up to 20 minutes. As shown in Table 1, students
generally take 10 to 60 minutes to complete the task and
thus we took a measurement every 2 minutes for the first
10 minutes to generate the early stage predictions for each
model. T-LSTM is in red, LSTM in blue, RTP in purple,
LR in green, and majority baseline in black. Both Figures 8
(a) and (b) show that T-LSTM was the best model for stu-
dent programming success prediction as it stays on the top
across all sizes of the observation window. It is not surpris-

177 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



Table 3: iSnap Student Success Prediction at First-6-minute and Overall Time (0 - 20 minutes)

Models
first-6-minute Overall

Accuracy Precision Recall F1-measure AUC AUC
Majority 0.6604 - - - 0.5000 0.5000
LR 0.6038 0.8333 0.5000 0.6250 0.6528 0.7123(±0.08)
RTP 0.6792 0.7195 0.8429 0.7763 0.6020 0.6948(±0.09)
LSTM 0.6792 0.7368 0.8000 0.7671 0.6222 0.6755(±0.09)
T-LSTM 0.7358 0.875 0.7000 0.7778 0.7528 0.7512(±0.07)

Note: best model on each metric in bold

ing that generally for all the models (except majority base-
line), the longer the observation windows, the better perfor-
mance. This is because the training data includes more and
more information and students get closer to their final state.
The fact that the best prediction comes from T-LSTM re-
ally suggests that during the self-paced programming task,
taking time-awareness into consideration brings us closer to
the truth of the student learning process, especially for the
early stage (first 10 minutes). However, this is only one
observation from one programming task and more research
is needed to understand the full nature of the benefits of
time-awareness.

4.2 Predicting Learning Gains in Pyrenees
Table 4 shows the performance of all models using the first-
30%-sequence to predict students’ QLG on the probability
tutor. The first column indicates the models including ma-
jority baseline model using simple Majority vote, LR, BKT,
LSTM, and T-LSTM. Columns 2-5 report the all of the mod-
els’ performance at the first-30%-sequence observation win-
dow. As with Table 3, we evaluated the models on Accu-
racy, Precision, Recall, F1 and AUC score and ignored the
Precision, Recall and F1-measure for the simple Majority
baseline. The last column reports the mean AUC score of all
models from 0 - 100% sequence, with standard deviations be-
tween brackets. When only applying the first-30%-sequence,
T-LSTM generates the best performance on every measure-
ment except Recall and F1, where the best Recall is from LR
and best F1 from LSTM. Comparing the two deep learning
models with classic BKT, we can observe that both LSTM
and T-LSTM outperform BKT across all metrics. For the
overall AUC performance, LSTM and T-LSTM have very
similar scores and are equally good. And still, they achieve
higher mean AUC scores than BKT, with a lower standard
deviation. Despite the similar overall performance from the
two deep learning models, the better early prediction of T-
LSTM suggests that time-awareness can help to understand
student learning states earlier.

The early prediction results for student learning gains in
probability are reported in Figure 9. BKT is in purple, and
as in Figure 8, T-LSTM, LSTM, and LR are in red, blue and
green, respectively. For each graph, the results are measured
at every 10% increment of the sequence length. Generally
speaking, the three models (BKT, LSTM and T-LSTM) gen-
erate better results as the sequence length increases. Both
Figures 9 (a) and (b) show that the two deep learning mod-
els outperform BKT for probability, no matter on Accuracy
or AUC score. While between LSTM and T-LSTM, there
is not a clear winner. Sometimes T-LSTM gets better per-

(a) Accuracy performance

(b) Area under ROC performance

Figure 8: Student Success Early Prediction on iSnap
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Table 4: Pyrenees Student QLG Prediction at First-30%-minutes and Overall Time (0 - 100%)

Models
first-30%-sequence Overall

Accuracy Precision Recall F1-measure AUC AUC
Majority 0.5860 - - - 0.5000 0.5000
LR 0.5839 0.5893 0.9566 0.7293 0.5066 0.4957(±0.01)
BKT 0.6022 0.6113 0.8819 0.7221 0.5442 0.5690 (±0.03)
LSTM 0.6226 0.6188 0.9271 0.7422 0.5594 0.6013 (±0.02)
T-LSTM 0.6328 0.6322 0.8924 0.7401 0.5789 0.5950 (±0.02)

Note: best model on each metric in bold

(a) Accuracy performance

(b) Area under ROC performance

Figure 9: Student Learning Gain Early Prediction
on Pyrenees

formance on Accuracy (from 10% to 30%) while sometimes
LSTM slightly outperforms T-LSTM (from 40% to 70%).
Overall, LSTM and T-LSTM generate very similar results
on predicting student QLG; and T-LSTM generally has bet-
ter performance on the very early stage.

5. RELATED WORK
Student modeling has been widely and extensively explored
in previous research. For example, prior research has pro-
posed a series of approaches based on logistic regression in-
cluding Item Response Theory (IRT) [42], Learning Factor
Analysis [5], Learning Decomposition [4], Instructional Fac-
tors Analysis [7], Performance Factors Analysis [33], and
Recent-Performance Factors Analysis [14]. These models
were implemented with different parameters to better un-
derstand and model student learning and were shown to be
very successful.

BKT [10] is one of the most widely investigated student
modeling approaches. It models a student’s performance in
solving problems related to a given concept using a binary
variable (i.e., correct, incorrect) and continually updates its
estimation of the student’s learning state for that concept.
Many extensions of BKT have been proposed to capture the
complex and diverse aspects of student learning. Pardos
and Heffernan [31] explored individualized prior knowledge
parameters based on students’ overall competence. Their
results showed that the proposed model outperformed con-
ventional BKT in predicting students’ responses to the last
question at the end of the entire training. They later in-
troduced problem difficulty to BKT and found substantial
performance improvement in predicting student step-by-step
responses over BKT [32]. Additionally, Yudelson et al. [48]
parameterized student learning rates in BKT models and
the results showed that the new model outperformed con-
ventional BKT in predicting whether the students’ next re-
sponses were going to be correct/incorrect. Baker et al.[1]
investigated contextualized guess and slip rates to deal with
the issues of identifiability and model degeneracy commonly
observed in conventional BKT. Their results suggested that
the proposed models achieved better performance in predict-
ing students’ next-step response than BKT. However, in this
study, BKT-based models cannot be directly applied to our
open-ended programming tasks, because of the adversity of
mapping students’ time-various actions step by step.

In recent years, extensive research has been conducted on
deep learning models, especially Recurrent Neural Networks
(RNN) or RNN-based models such as LSTM. These deep re-
current models have shown great success in many domains
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such as speech recognition [17], language translation [26],
video classification [29], and rainfall intensity prediction [46],
etc. Their success in all these domains has opened up a new
line of research in educational data mining [35, 41, 22, 45,
47, 24, 30]. Mao et al. [27] have shown that LSTM has supe-
rior performance on the early prediction of student learning
gains compared with classic BKT-based models. For the
task of predicting students’ responses to exercises, LSTM
was shown to outperform conventional BKT [35] and Per-
formance Factors Analysis [33]. However, RNN and LSTM
did not always have better performance when the simple,
conventional models incorporated other parameters. For ex-
ample, Khajah et al. [22] investigated what statistical reg-
ularities neural networks can exploit that BKT cannot, and
showed that BKT with relaxed assumptions can outperform
LSTM. Wilson et al. [45] also show that Bayesian extensions
of simple IRT-based models are also equal to or outperform
RNN-based models on a variety of datasets.

While most of the previous studies on student modeling fo-
cus on predicting students’ success and failure in the next-
step attempt, some research has used student-tutor inter-
action data to predict student post-test scores [13, 39]. In
this work, we explored the early prediction of student suc-
cess and learning gains for a computer-based programming
system and an intelligent tutoring system, respectively.

6. CONCLUSIONS
Early prediction of student learning state is a crucial compo-
nent of student modeling, since it allows tutoring systems to
intervene by providing needed support, such as a hint, or by
alerting an instructor. Both prediction tasks involved in this
work are challenging because: 1) the open-ended nature of
iSnap hinders the prediction of student final success, and 2)
it is extremely hard to track whether a student benefits from
a tutoring system or not even in a well-defined domain like
Pyrenees. In this work, we investigated the effectiveness of a
time-aware model, T-LSTM on the two different prediction
tasks and compared it with other student modeling methods
including LSTM, RTP, logistic regression models, and BKT.
Our results show that T-LSTM consistently outperforms the
other models such as LSTM, RTP, and non-temporal logistic
regression on the task of predicting student success in iSnap,
at all observation windows from first 2 minutes to 20 min-
utes. On the other hand, for the task of predicting student
learning gains in Pyrenees, T-LSTM does not outperform
the other models. More specifically, T-LSTM outperforms
LSTM and BKT on the early stage with only 30% of the stu-
dent sequences, and afterward time-awareness does not help
much when more data is available. One possible explana-
tion behind this is that in a well-defined domain, the whole
learning process is mainly driven by the tutor, which makes
the elapsed time less important to student learning gains es-
pecially when the step-level performance is available. How-
ever, in the open-ended programming environment, students
are self-prompted to complete an assignment; and therefore
the amount of time they stayed in a state really matters to
understand their learning. And therefore, T-LSTM can gen-
erate better performance by modeling the student dynamics
of knowledge in continuous time than other methods in dis-
crete timesteps.

One limitation of this work is that we only explored one im-

portant student modeling task in each learning environment.
An important direction for future work is to investigate the
time-aware model on other student modeling tasks in both
learning environments to determine whether the same re-
sults will hold. In addition, we are planning to employ
the time-awareness to other models such as RTP to explore
whether it continues to support improvement for the open-
ended programming environment. Also, this work will be
applied to larger groups of students and longer program-
ming tasks, along with integration of more informative fea-
tures such as intervention and demographic features to de-
velop more robust models. Additionally, we plan to expand
our evaluations to longer programs with more complex con-
structs from both text-based and block-based programming
languages.
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ABSTRACT
In some computerized educational systems, there is evidence
of students wheel-spinning, where a student tries and re-
peatedly fails at an educational task for learning a skill.
This may be particularly concerning in low resource set-
tings. Prior research has focused on predicting and model-
ing wheel-spinning, but there has been little work on how
to best help students stuck in wheel-spinning. We use past
student system interaction data and a minimal amount of
expert input to automatically inform individualized inter-
ventions, without needing experts to label a large dataset of
interventions. Our method trains a model to predict wheel-
spinning and utilizes a popular tool in interpretable machine
learning, Shapley values, to provide individualized credit at-
tribution over the features of the model, including actionable
features like possible gaps in prerequisites. In simulation on
two different statistical student models, our approach can
identify a correct intervention with over 80% accuracy be-
fore the simulated student begins the activity they will wheel
spin on. In our real dataset we show initial qualitative re-
sults that our proposed interventions match what an expert
would prescribe.

Keywords
Explainable Machine Learning, Inferring Interventions, Wheel-
Spinning, Feature Attribution, Shapley Values

1. INTRODUCTION
Educational technology is increasingly used in a wide array
of K-12 settings and some students struggle. Beck et al. [6]
coined the term “wheel-spinning” to denote students that
were repeatedly trying, and failing, to successfully complete
a specific skill after many attempts in an intelligent tutoring
system. They additionally found it was a significant issue in
two popular computerized educational systems. Such long
repeated failures are likely to be an inefficient use of time
for students, and may additionally contribute to lack of mo-
tivation for future learning.

Although expert human instructors are often very good at
diagnosing and assisting students who are stuck, it is time
consuming for both the instructors and the students waiting
for the instructor’s intervention. Additionally many educa-
tional settings lack a sufficient number of expert teachers.
Our research is particularly motivated by a collaboration
with the non-profit War Child Holland whose program Can’t
Wait to Learn (CWTL) provides self-paced educational soft-
ware on tablets primarily to children in or coming from
conflict-affected regions. In such settings, a limited number
of teachers must often address the learning needs of a large
number of students with a wide variety of educational back-
grounds. To give a specific example, in the classes in Uganda
the program is implemented in, the average class size is 114
students per teacher. Additionally for some population of
students where education is especially hard to access, the
program is run by facilitators who do not have the same
expertise as instructors to provide learning support for indi-
viduals. Methods that can automatically identify individu-
alized interventions, such as having the student practice an
activity to review a prerequisite skill, to help wheel-spinning
students could be greatly beneficial for students and teach-
ers. However, since the term was coined, there has been
much work for modelling and predicting wheel-spinning [11,
12, 16], but little work in developing interventions.

There are many possible reasons a student may wheel-spin,
including lack of required prior knowledge, a long gap in
learning of the material, or an ineffective educational activ-
ity. One approach could be to have experts label a large
dataset with expert prescribed interventions and train a
model to predict those interventions. However in many cases
the time necessary to label such a dataset can be infeasibly
large. For example, in our real world dataset a domain ex-
pert needed 30 minutes to label the 6 wheel-spinning cases
we use for a qualitative evaluation. This would translate to
120 expert hours to label our whole dataset of more than
2000 wheel-spinning cases.

In this work we present a method to automatically predict
when an intervention could be helpful and which interven-
tion to give. Our method uses prior student system log
data and only requires a few hours of expert input. Our
method takes as input a set of features, a subset of which
are actionable and correspond to a concrete intervention (for
example, the feature “prerequisite performance” could cor-
respond to an intervention of reviewing that prerequisite).
We then use featurized past student data to train a model
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to predict wheel-spinning. With the prediction model, we
use methods from explainable machine for providing feature
credit attribution for the prediction of individual datapoints,
specifically Shapley values [19], to determine which action-
able feature contributed most to the prediction and suggest
an intervention.

We evaluate the ability of our method to suggest correct
interventions through simulation and through a qualitative
study with our real data. Evaluating if our method is im-
pactful will eventually require experimental studies. The
costs of an experiment are high in our situation where this
educational technology is being used by children in conflict-
affected areas and who may be in remote villages without
internet. Before embarking on such an effort, in this work
we first assess the potential benefits and performance of our
method. In simulation studies, we simulated students us-
ing two different student models, both based on the popular
Bayesian Knowledge Tracing (BKT) [10] student model. In
both of our simulations, our method can prescribe a correct
action (a helpful intervention or correctly identifying no in-
tervention is needed) with high accuracy before attempting
an activity. This accuracy can be improved if the predic-
tion is made at a later attempt. In an initial qualitative
assessment in our real world CWTL setting we show our
method’s explanations are consistent with what an expert
would prescribe in a majority of the cases. In the other
cases the method did not have access to key data used by
the expert, suggesting our method is able to identify correct
interventions over correctly defined inputs.

Our method is, to our knowledge, one of the first works
for both addressing automatically identifying interventions
for wheel-spinning students and using interpretable machine
learning in educational technologies. These results suggest
that our method can help inform interventions, whether for
carefully designed human-in-the-loop systems (such as only
informing the teacher if confident the teacher is the best
source) or for automated systems (jumping back to practice
an earlier skill), and may help further adaptive automated
systems for effective, efficient and engaging education.

2. RELATED WORKS
2.1 Wheel-Spinning
The term wheel-spinning was first coined by Beck et. al [6]
where they examine its prevalence in two educational sys-
tems. Gong et al.[11] further explored models to predict
wheel-spinning. Beck et al [5] found it applied to students in
non-western societies as well. They also examined the influ-
ence of affective factors, and found it correlated with gaming
the system. Matsuda et al. [16] examined using neural net-
works together with the BKT model [10] to predict wheel-
spinning using only past student performance information.
Kai et al. [12] investigate using decision trees to distinguish
between productive persistence and wheel-spinning. Zhang
et al. [24] make a comparison over many methods for detect-
ing wheel-spinning. Wan et. al [23] take a step in model-
ing with actionable results by examining the effects of using
prerequisite performance as features. They modeled wheel-
spinning using both the average prerequisite performance
and the weakest prerequisite and found that prerequisite
knowledge was a reliable predictor of wheel-spinning and
slightly improved model performance. In our work we pro-

(a) Example 1: Fake simplified
datapoint inspired by CWTL

(b) Example 2: Simple Binary
Example

Figure 1: Simulated Student Setting

pose a method to not only predict wheel-spinning, but also
give suggestion of a possible intervention. We achieve this
by designing our features to be actionable, such as incorpo-
rating performance on all prerequisites as separate features,
with methods from explainable machine learning.

2.2 Explainable Machine Learning
Explainable Machine Learning is a rapidly growing popular
field in the machine learning community. One subfield is the
study of feature attribution which are methods that return
how much each feature contributed to the total prediction
of a datapoint in a machine learning model. In our work
we use Shapely values [19], and the python implementation
SHAP [13, 14] package to inform interventions. Shapley val-
ues are a method originating in game theory for fairly allo-
cating a payout between participants. It has recently found
popularity in explainable machine learning to calculate fea-
ture attributions. Shapley values have been used widely
both within and outside of machine learning, including in
medical applications [15], social network node analysis [17],
and studying carbon emission quotas in China [25]. To our
knowledge this is one of the first works on using Shapley
values and explainable machine learning methods for educa-
tional technologies.

3. METHODS
In this section we present an algorithm to help students
likely to wheel spin by suggesting actionable interventions.
Our goal is to provide a method for using past student
log data to predict when and which intervention a student
will need to prevent wheel-spinning. We would also like
to minimize interruptions to student-activity pairs who do
not wheel spin. Similar to prior work [6] we define wheel-
spinning as when a student consecutively fails an educational
activity more than a threshold number of times. We will re-
fer to the student-activity pair of the ith student working
on the jth activity as pairij . To achieve our goal, for every
pairij , our algorithm uses a 2 level decision process shown
in Algorithm 1.

We first train a machine learning model using an existing
dataset of student log data to predict wheel-spinning. Our
overall algorithm (Algorithm 1) is compatible with any ma-
chine learning model that outputs probabilities of wheel-
spinning given an input set of student features. In our work
we use the popular gradient boosting method XGBoost [9].
When a student is using the educational program, given
their current state the algorithm uses the trained model
to predict if a student-activity pair will result in wheel-
spinning. We define the number of failed attempts a student
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makes before we decide to possibly suggest an intervention
as n. If the student has reached the nth attempt on the cur-
rent item our method uses the wheel-spinning model to pre-
dict if wheel-spinning will occur. If the output probability
of wheel-spinning of the model is greater than a threshold,
p, the algorithm will then propose a potential intervention.
n and p are hyperparameters, and we provide further dis-
cussion on their effect in Sections 4.5 and 6.

Interventions are proposed using a method of feature at-
tribution from explainable machine learning, Shapley Val-
ues[19] (described in more detail in Section 3.1). We use
Shapley values to assign a contribution value to each feature
used in the wheel-spinning prediction model. A subset of
these features are designed to be actionable and correspond
to an intervention. For example, Figure 1a shows example
feature values of a fake datapoint for a student-activity pair
inspired by CWTL. An example of an actionable feature in
this fake datapoint is number of attempts required on a pre-
requisite skill. If assigned a high positive attribution value,
it would suggest the student needs more practice on that pre-
requisite. Our method identifies the actionable feature with
the highest Shapley value and suggests the corresponding
intervention to give to the student. Non-actionable features
that do not correspond to an intervention but increase pre-
diction accuracy are also included.

There are a few places that require expert input, for ex-
ample choosing hyperparameters n and p and designing the
features and interventions. For experiments with our real
world dataset, we worked together with a domain expert to
create actionable features and corresponding interventions.

3.1 Background on Shapley Values
In this section we provide some background on the calcu-
lation and properties of Shapley Values [19] which is used
in our method to provide feature attribution for the wheel-
spinning prediction of individual datapoints. Shapley values
originated in game theory and in the context of explainable
machine learning, provide an attribution for how much each
feature contributes to the total prediction of a datapoint. To
give an example, consider a setting where we are predicting
wheel-spinning using features in our dataset. We will re-
fer to this setting as example setting 1. The datapoint in
Figure 1a gives an example datapoint in this setting. As-
sume the mean prediction of the wheel-spinning model over
all the datapoints in this example is 0.5, and for this data-
point the model predicts a probability of 0.8, which is +0.3
from the mean. The Shapley values for each feature give
the contribution of each feature to this difference from the
mean where the sum of contributions over all features must
be +0.3. For example the features ID, T , P2 could all
be attributed -0.1 and the feature P1 could be attributed
+0.6. This attribution would suggest the value of the num-
ber of attempts on prerequisite 1 is likely to be responsible
for the increased probability of wheel-spinning over the av-
erage wheel-spinning prediction.

Shapley values is the only method for attribution that satis-
fies the following desirable properties which together are the
definition of a fair attribution[19]: symmetry (two features
that contribute equally will have the same value), dummy
(a feature that does not change the prediction has a value of

0), and additivity (if the prediction model is the sum of mul-
tiple models, the value of a feature in the prediction model
is the sum of all values over the individual models). To give
intuition of why the symmetry and dummy properties are
desirable in this context, consider a second, simpler exam-
ple setting, example setting 2, where we are also predicting
wheel-spinning but all inputs and outbuts are binary. In this
setting the wheel-spinning prediction is for one activity that
is thought to have three prerequisites (P1, P2, P3). Fig-
ure 1b gives an example datapoint in this setting. Consider
the case where two prerequisites, P1 and P2, are equally
important and P3 was incorrectly labeled as a prerequisite
and its value never influences the prediction of the model.
Because P1 and P2 are equally important and for the dat-
apoint in figure 1b both their values are high, we would like
them to have equal attribution, or to satisfy the “symmetry”
property. Additionally, because P3 was incorrectly labelled
as a prerequisite we would want it to be given 0 attribution
regardless of its value, or to satisfy the “dummy” property.

We now describe formally how to calculate Shapley values.
Let F denote the set of features and X denote the dataset.
One example of a datapoint in X from example setting 1 is
the example datapoint Figure 1a, which we will refer to as
xi. In this example F = {ID, T , P1, P2}. Also assume
there is a function V where V (xi) is the predicted value
on datapoint xi. Let SHAP (xi, fj) be xi’s Shapley value
for feature fj . In our example, V (xi) would output the
probability of xi wheel-spinning. For a subset of features
s, (s ⊆ F) we define a fake datapoint, xi,s, as a datapoint
that only includes the the values of xi for the features in s.
In our example, one potential s could be {T, P1}, and the
corresponding xi,s = [T : 25, P1 : 7]. For a feature fj , we
define a coalition of features, F , as a subset of F that does
not include fj . We define C as the set of all unique coalitions
for fj and let Fk denote the kth coalition in this set. Let the
contribution of fj in coalition Fk to the prediction of xi be
the difference in prediction of the datapoint without fj and
the datapoint with fj included, or V (xi,Fk∪fj ) − V (xi,Fk ).
In our example, the s = {T, P1} is a coalition of features
for fj = ID as it does not include fj . If the probability
of wheel-spinning on xi,s (V ([T : 25, P1: 7])) is -0.1 and
V (xi,Fk∪fj ) = V ([ID: 31, T : 25, P1 : 7]) = -0.2. Then the
difference V (xi,Fk∪fj )− V (xi,Fk ) = -0.1

The Shapley value is then the expected contribution of fj
averaged over all coalitions:

SHAP (xi, fj) = EC [V (xi,F∪fj )− V (xi,F )] (1)

=
∑

Fk∈C

|Fk|!(|F| − 1− |Fk|)!
|F|! (V (xi,Fk∪fj )− V (xi,Fk ))

(2)

Going back to example setting 2 (Figure 1b), we see once
either P1 or P2 enters a coalition that does not contain
either of them (so {∅} or {P3}) the prediction increases
from zero to one and will not increase further when the other
enters. Because we average across all coalitions and in half
of the coalitions, P1 will occur before P2 and in the other
half P2 will occur before P1, the symmetry property will be
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satisfied and P1 and P2 will be given equal attribution. We
can also see that if P3 does not change the prediction value
in any coalition, it will be given zero attribution, satisfying
the dummy property.

In the machine learning case, we would like to use a machine
learning model M as the function that assigns a predicted
value to xi. Because a machine learning model requires a
datapoint to have values for all features, we must approxi-
mate V (xi,Fk ) using other datapoints. Let xl be a randomly
sampled real datapoint from the dataset that is not xi. We
define a fake datapoint xi,Fk,l as a hybrid datapoint that
contains the feature values of xi for the features in Fk and
the feature values of xl for the features not in Fk. In our
running example, xi,Fk,l = [ID: xl,ID, T : 7, P1:6, P2:xl,P2].
M(xi,Fk,l) is then used to approximate V (xi,Fk ).

Shapley values require summing over all possible coalitions
and are very computationally expensive. There are algo-
rithms that compute an approximate solution through sam-
pling such as the method proposed by Vstrumbel et al [20].
In our case, we use an implementation, TreeSHAP [13, 14],
designed to efficiently and quickly calculate exactly Shapley
Values for decision tree based models.

Algorithm 1: Suggest Intervention for Pairij

Input : Dataset of Preexisting Log Files (D), Set of
Actionable Features (Fa), Set of other
features (Fo), Mapping of Actionable
Features to Interventions (GetIntervention),
studenti log file(Li) at nth attempt on
problemj , wheel-spinning Model Output
Probability Threshold (p)

Output: Suggested Intervention for Pairij
// We abbreviate wheel-spinning as WS

WSModel = TrainModel(D, {Fa,Fo}, n)
Xi = GetCurrentFeatures(Li, {Fa,Fo})
q = WSModel.predict(Xi)
if q > p then
{SHAPa, SHAPo} = ComputeShapley(Xi,
WSModel, {Fa,Fo}) // Section 3.1

MaxFeature = argmaxfaSHAPa

Intervention = GetIntervention(MaxFeature)

else
Intervention = Don’t Intervene

end

3.2 Baselines
We compare to two baselines and, in this section, include dis-
cussion for building intuition for which situations our prosed
method could outperform the baselines.

Baseline 1 - Overall Feature Importance (FI): Because we
are using a decision tree based method to predict wheel-
spinning, overall feature importances are calculated auto-
matically. Therefore, we can consider a method that when a
student-item pair is predicted to wheel spin, choose the in-
tervention suggested by the feature with the highest overall
feature importance. This method requires less compute as
it does not require an additional step of calculating individ-
ualized feature attributions. Conceptually, this method will
perform equivalently as our proposed method when there is

a single cause for wheel-spinning. However in cases where
there can be many potential causes (for example, some student-
item wheel-spinning is due to forgetting effects from long du-
rations between learning while others are due to unmastered
prerequisites), then this baseline, which will only select the
single, most predictive cause for all students, will perform
poorly. In this respect, this baseline has parallels to a base-
line which predicts the majority class. Note that we do not
compare to a baseline that predicts the majority class be-
cause we are considering a setting where we do not have any
labels for wheel-spinning causes. Consequently our method
has no way of discerning what the majority cause is. The
goal of our work instead is investigating the effectiveness of
feature attribution methods to identify causes.

Baseline 2 - Logistic Regression (LR): Linear models such
as logistic regression are a computationally efficient subset
of our method as they, by nature and without needing addi-
tional calculation, have feature credit attribution for the pre-
dictions of individual datapoints. They can potentially work
well in cases where a linear relationship can accurately model
the relation between features and wheel-spinning. However
in many domains, such as CWTL, non-linear models for the
wheel-spinning prediction can achieve better performance
(shown in Section 5.4). Therefore in this work we focus on a
method that can work with non-linear models and we treat
linear models as a baseline.

4. SIMULATIONS
We assess the performance of our method in simulation where
we can create true causes of wheel-spinning, which we define
as needing 10 or more attempts on one educational activity
to match both prior work [11, 12] and evidence from the
CWTL data.

We simulate students using two different student models
both based on the Bayesian Knowledge Tracing (BKT) model
[10]. The BKT model is a two state Hidden Markov Model
(HMM) and is a popular model of student learning that
has been shown to be successful for various applications in
the educational technology literature (for example Corbett
et al. [10]). The model has two hidden states, mastered or
not mastered, and two observed states, correct or incorrect.
From the mastered state of a skill, the student will answer
an educational activity involving that skill correctly unless
they slip and answer incorrectly with a probability of slip
(P(s)). From the unmastered state of that skill, a student
will answer a problem involving the skill incorrectly, unless
they guess correctly with a probability of guess (P(G)). Ev-
erytime the student is presented a practice opportunity for
an unmastered skill, they have a probability of transitioning
(P(T)) to the mastered state for the skill. We make modi-
fications to the BKT model to match aspects of the CWTL
domain that may also occur in other domains. In our sim-
ulations we specifically consider a situation where a student
may have been moved on too fast because they passed a
prerequisite by guessing. This is because the corresponding
intervention of reviewing the relevant prerequisite could be
automated and is a key feature we are trying to achieve in
the CWTL setting.

4.1 Simulated Curriculum
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In Figure 2a we illustrate our simulated sequence of edu-
cational activities as well as the prerequisite structure be-
tween them. In this setting we consider each activity as
corresponding to a unique skill. Skills build on each other
in the way shown in the prerequisite graph. To mimic the
CWTL curriculum, simulated students are presented educa-
tional activities in order starting at A1. They are repeat-
edly presented an educational activity (for example A1) until
they succeed and are moved onto the next activity (in our
example, A2).

We note that while our analysis and results are in a setting
where the curriculum is linear, our method does not rely on
this setting and can be applied more generally to different
types of ordering constraints over educational activities.

4.2 Student Model 1
In our first student model, we make two modifications to the
BKT model to reflect behaviors that occur in our domain
and in other domains. In CWTL, each activity involves
answering a certain percentage of multiple choice questions
relating to the target skill of the activity correctly. In this
setting, the probability of guess starts low, however ques-
tions are reused between activity instances so the probabil-
ity of guess increases with attempts as students may start
to memorize answers. This effect can also occur in other
domains where questions are reused. To mimic this effect in
simulation, we start the probability of guess at a low base
value P(G) and with every attempted answer by the stu-
dent, we increase it in such a way that at the nth attempt of
the student on the problem the probability of guess, Pn(G),
is Pn(G) = 1 − (1 − P (G))n. We use this function as it
monotonically increases to its limit of 1.

Our second modification is, for skills involving prerequisites
(A4 and A5), we enforce the prerequisite structure by defin-
ing a new transition probability for when the prerequisites
are not mastered, Punmastered(T ). In all our simulations this
was set to zero however this probability can also be set to
a small non-zero probability with similar results. This is to
reflect the difficulty of learning complex combinatorial skills
without mastering the prerequisites.

4.2.1 Data Generation
In our simulations, we show our method is able to correctly
distinguish when and which prerequisite should be reviewed.
We consider the whole population comprised equally of two
different populations of students. Students of student pop-
ulation 1 finds all skills “easy” to master and has high tran-
sition probabilities for all skills. Students of student popu-
lation 2 finds one of the prerequisite skills (A1, A2, or A3)
“hard”to master and has low transition probabilities for that
skill. For this student model, we are able to control which
prerequisite students of student population 2 may not mas-
ter by setting that prerequisite as “hard”. Additionally we
can examine the performance of our method at suggesting
interventions in a heterogeneous population.

We report results from one set of parameters with the transi-
tion dynamics described in Table 1. Notice P(G) is lower for
A4 and A5 to reflect the complexity of those two questions
over A1, A2, and A3. We generate both our training and
test sets by simulating 1000 student trajectories, 500 from

Table 1: Parameters for Student Model 1

P(T)
“easy”

P(T)
“hard”

P(G)
(A1,A2,A3)

P(G)
(A4,A5)

P(S) “hard”
skill

0.5 0.01 0.01 0.005 0 A2

Table 2: Parameters for Student Model 2

P(T) P(D) P(G)
(A1,A2,A3)

P(G)
(A4,A5)

P(S)

0.5 0.1 0.01 0.005 0

each population. For these simulation parameters, initially
Peasy(T ) is higher than Pn(G) and if a student needs a low
number of attempts on a prerequisite, they are most likely
part of student population 1 and have mastered the prereq-
uisite. If a student needs a higher number of attempts on
a prerequisite, then they are most likely in student popula-
tion 2 and they may either have mastered the prerequisite
or passed through guessing and need to repractice the pre-
requisite. Decreasing the value of Peasy(T ) or P (G) can in-
crease the strength of this correlation between attempts and
mastery and allow model accuracy to increase. Similarly, in-
creasing these parameters, or increasing Punmastered(T ) can
decrease accuracy.

4.3 Student Model 2
We designed our second simulated model to account for stu-
dent engagement and simulate disengagement and wheel-
spinning behavior. We did so based on expert insights, and
findings from prior literature on boredom and disengage-
ment in tutoring systems. A figure illustrating this modified
model is shown in Figure 2b.

In this model we make an additional modification on Stu-
dent Model 1 by splitting the “Not Mastered” state into
two states: “Engaged” and “Disengaged”. Each student for
each activity starts in the Engaged state. In the Engaged
state the student is open to learning and can transition to
the “Mastered” state with probability P(T). However with
each failed activity attempt, on the nth attempt they can
also transition to the “Disengaged” state with probability
Pn(D). This probability of disengagement starts at 0 and
is parametrized by a base value of P(D). It increases mono-
tonically in the same way the probability of guess does, to
eventually reach 1: Pn(D) = 1 − (1 − P (D))n−1. Once in
the disengaged state for a skill, the student can transition
out of it with probability P (E). In our simiulations we set
P (E) to 0 however it can also be set to a small non-zero
probability with similar results.

We make these modifications to reflect points from (1) prior
literature and from domain expert insights that suggests
repetitive tasks can lead to boredom [22, 8], (2) literature
suggesting boredom can lead to disengagement which results
in gaming behavior (such as random guessing) [3, 2, 4, 1, 11]
as opposed to productive learning (3) literature suggesting
disengagement and boredom are affective states that persist
and are hard to transition out of [4, 1, 18].

4.3.1 Data Generation
We generate both our training and test set by simulating
and generating 1000 student trajectories. Parameters used
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(a) Simulated Curriculum (b) Diagram of the modified BKT of Student Model 2

Figure 2: Simulated Student Setting

to generate the results are given in Table 2. For these param-
eters because P (T ) is initially much higher than Pn(G) and
Pn(D), if a student needs a low number of attempts, they
most likely mastered the activity. If they need a large num-
ber of attempts, they most likely became disengaged and
guessed correctly. In these simulations, the correlation be-
tween attempts and mastery can be increased by increasing
P (T ) or decreasing either P (G) or P (D). Similarly chang-
ing the parameters in the opposite direction or increasing
Punmastered(T ) or P (E) can decrease accuracy.

4.4 Features
We train our model to predict wheel-spinning on the later
skills, A4 and A5, and automatically suggest interventions
in the form of if and which prerequisite to review. In both
of the student models, needing a higher number of attempts
on an activity is positively correlated with a skill not being
learned. With this in mind we use the following three fea-
tures and corresponding interventions: (1) Activity identity
(A4 or A5): If assigned a high contribution, the correspond-
ing intervention could be redesiging the level. (2): Number
of attempts on the most recent prerequisite as defined by the
prerequisite graph. The corresponding intervention would
be to have the student review that activity. (3): Number of
attempts on the second most recent prerequisite.

4.5 Results

4.5.1 Evaluation Metrics
To evaluate the accuracy of our method, we consider the
frequency with which the method predicts a correct action,
which includes correctly deciding to not intervene and cor-
rectly suggesting a correct intervention. We refer to student-
problem pairs that would lead to wheel-spinning if no in-
tervention is given as a wheel-spinning pair and student-
problem pairs that would not wheel spin if no intervention
is given as non-wheel-spinning pairs. Across all student-
problem pairs, we define four counts:

1. Correct-Pairs No-Intervention (CP NI): the number of
student-problems where the model correctly suggests
no intervention)

2. Correct-Pairs Intervention (CP I): model correctly sug-
gests the right intervention

Student
Model

n Method Accuracy Precision Recall F1 AUC

1
0

XGB 88% 0.68 0.72 0.70 0.89
LR 86% 0.71 0.50 0.59 0.89

5 XGB 94% 0.79 0.93 0.85 0.97

2
0

XGB 83% 0.75 0.58 0.65 0.79
LR 80% 0.75 0.44 0.55 0.79

5 XGB 93% 0.81 0.99 0.90 0.96

Table 3: Simulation wheel-spinning prediction results av-
eraged over 200 simulations. XGB refers to XGBoost, LR
refers to the Logistic Regression baseline. At n= 5 attempts
the performance of XGB and LR are very similar so only
the XGB results are included. At n = 0 attempts, XGB has
higher Acuracy and F1 than LR.

3. Missed-Pairs (MP): model either suggests an incorrect
intervention or incorrectly does not suggest an inter-
vention)

4. Interrupted-Pairs (IP): model incorrectly suggests giv-
ing an intervention when it is unneeded, or suggests
the wrong intervention

Note that IP and MP both include students that were wheel-
spinning but the model suggests the wrong intervention since
such students are both not helped (“missed”) and would be
asked to do something not useful (“interrupted”). Addition-
ally, we classify wheel-spinning students who mastered both
prerequisites and were still jumped back to a prerequisite
as CP I as insights from our domain expert suggests that
jumping back when a student is wheel-spinning and possi-
bly disengaged can be a helpful intervention.

Let S be the total number of student-problem pairs and
define accuracy as the total percentage of student problem
pairs that were given a correct intervention (= CP NI+CP I

S
);

miss rate as the percentage of wheel-spinning instances that
were not identified or which were proposed the incorrect
intervention (= MP

CP I+MS
), and the interrupted rate as the

percentage of Interrupted Pairs out of all student-problem
pairs that did not need an intervention (= IP

CP NI+IP
).

4.5.2 Results
For all results, we averaged over N=200 simulations by re-
peating 200 times the data generation procedure outlined in
Sections 4.2.1 and 4.3.1. With this size of N, the standard
deviation for all results reported in this section is less than
0.005 (for results reported in percentages, less than 0.5%).
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Student
Model

n Method Accuracy Miss
Rate

Interrupted
Rate

1
0

Ours 88% 28% 8%
LR 86% 50% 5%

5
Ours 92% 14% 8%
LR 92% 14% 8%

2

0
Ours 83% 42% 8%
LR 80% 56% 5%
FI 75% 68% 16%

5
Ours 92% 4% 10%
LR 86% 25% 17%
FI 84% 34% 19%

Table 4: Simulation intervention suggestion results, aver-
aged over 200 simulations. Ours refer to our proposed
method, LR refers to the Logistic Regression baseline, FI
refers to the overall XGBoost feature importance baseline.
Notice the FI baseline was not included for Student Model
1 because in that simulation, there was only one cause of
wheel-spinning (Prerequisite 2) so FI is exactly equivalent
to our method.

We report the results of the XGBoost and Logistic Regres-
sion (baseline) models for predicting wheel-spinning in Ta-
ble 3. For lower values of n, XGBoost can achieve higher
accuracy and F1 when predicting wheel-spinning. As n in-
creases, the dataset becomes heavily skewed towards data-
points with wheel-spinning as well as students needing less
than n attempts correctly automatically labelled as no-wheel-
spinning, resulting in both methods achieving high accuracy.

We report the results of our method for identifying inter-
ventions for both student models in Table 4 when making
the prediction at 0 attempts and 5 attempts (n = 0 and n =
5). The probability threshold of the wheel-spinning model
over which we suggest an intervention (p) was set to 0.5 for
both. Our approach achieves high accuracy for both stu-
dent models even when making early predictions before the
student begins an activity (0th attempt). Additionally our
method is mostly able to do better than the Logistic Re-
gression baseline (LR). For Student Model 1, because there
is only one cause of wheel-spinning the prescriptions of the
XGBoost Overall Feature Importance Baseline (FI) was ex-
actly the same as our method. However in Student Model
2 where there is more than one cause of wheel-spinning, our
method performs much better.

Due to the fact that students are modelled stochastically,
we are not able to achieve 100% accuracy as the correlation
between number of attempts on a problem and problem mas-
tery is not perfect. However we can increase the accuracy
by making the prediction at a later number of attempts as
shown in Table 4 when the intervention prediction made at
the fifth attempt (n = 5). Our accuracy for both student
models increases and the miss rate for both decreases. As we
increase the attempt number at which we consider providing
an intervention, all the student problem pairs that resulted
in less than 5 attempts were correctly not intervened upon
and automatically categorized as CP NI. We provide further
discussion of this hyparameter and the p hyperparameter in
the Discussion (Section 6).

5. CAN’T WAIT TO LEARN

Our method was motivated by our collaboration with the
Can’t Wait to Learn (CWTL) program of War Child Hol-
land. CWTL is a tablet based, curriculum aligned, self-
paced, autonomous learning program that aims to teach
basic numeracy and literacy skills to children in conflict-
affected settings who are facing challenges in accessing qual-
ity education. The program is delivered on a tablet and tar-
gets learning objectives from grade 1-3. Based on the con-
text, the program can be used as a standalone or a supple-
mental educational program. CWTL is currently rolled out
in Sudan, Lebanon, Jordan, Chad, Bangladesh and Uganda.
Prior studies found the program was able to result in in-
creased psychological well-being as well as positive learning
outcomes in multiple countries [7, 21].

5.1 Game Mechanics
For our application we focus on the English reading program
in Uganda where we notice a high amount of wheel-spinning.
In classrooms utilizing the program, the instructor to stu-
dent ratio is large, with class sizes of 114 students per teacher
on average. The game takes place in the game world shown
in the left panel of Figure 3a. In the game, the student is
a member of a Ugandan village and the overarching narra-
tive of the game is to help each village member achieve their
goals by playing educational mini-games. The educational
mini-games (Figure 3a right panels give two examples) and
the instructional videos explaining concepts, such as letters
or more complex vowel sounds, form the main educational
mechanism. Each educational activity in the program is
a specific instance of a mini-game and the curriculum is a
fixed linear curriculum of a sequence of these educational
activities. For example, in the mini-game at the top right
of Figure 3a, the goal concept is learning to combine sounds
of words beginning with “o”. In the specific practice ques-
tion shown of this mini-game, students first tap the blue
buttons to listen to the sounds the “o” and “ff” components
of the word make separately. To answer the question cor-
rectly, they must then tap the correct picture describing the
complete word (“off”). To succeed on the activity students
must answer 8 out of 10 instances of this question correctly
as described by the green the orange circles displayed at the
top. Students practice each activity repeatedly until they
achieve this success criteria. When a student succeeds at an
educational activity they are progressed to the next activity
in the curriculum.

5.2 Wheel-Spinning Details
In analyzing the data, we find that 2.4% of student-problem
pairs exhibit wheel-spinning. This is lower than in other sys-
tems because there exist easier activities for entertainment,
engagement, morale, and for gaining initial familiarity with
a new concept without too much cognitive overload. Wheel-
spinning is still a problem as we find that 51% of students
wheel spin at least once. The bottom plot of Figure 3b shows
time played compared with the last activity reached. The
students who are below the curve whom we would like to
help are circled in orange.

To determine the threshold of attempts to define wheel-
spinning, we examine plots of student attempts on the game
they are currently playing at the end of the most recent log
file. If students are stuck on an activity, they are spend-
ing more time on it and have a higher probability of being

189 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



(a) The Educational environment (b) Top: Part of the prerequisite structure between
minigames, Bottom: wheel-spinning

Figure 3

on that activity when the playing session ends. Therefore
the activity the student is currently playing at the time the
log file was accessed is correlated with activities students
are wheel-spinning on. We compared the distribution of
attempts of the problem students are currently on to the
distribution of attempts on the activities they played 1 or 5
activities ago, which are less correlated with wheel-spinning.
We find a non-negligible percentage of students need 10
or more attempts on the current activity they are playing
(27%) while few students require 10 or more attempts on ac-
tivities played 1 activities (6.8%) or 5 activities (5.9%) ago.
We therefore defined wheel-spinning as failing 10 or more
attempts on an activity.

5.3 Model
In our model we used the following actionable features and
describe the corresponding intervention. We highlight the
actionable features that allow for in game interventions in
bold. These are especially helpful in our domain where
student to teacher ratios may be large. We also provide an
example of a non-actionable feature1:

(1) Last Played: If there has been a long duration since
the student last played, the intervention is to diagnose and
have them review what they forgotten. (2) Number of
attempts on the Prerequisite 1, 2 and 3 Prerequi-
sites ago: A small portion of the prerequisite structure is
shown in the top image of Figure 3b. These features use
the prerequisite graph to find the last, second to last, and
third to last prerequisite in the curriculum. These features
in the CWTL domain can be evidence that a student did not
master the corresponding prerequisite. The intervention is
to have the student practice the prerequisite. (3) Mini-game
Type: Allows the model to identify if a mini-game should be
redesigned. (4) Number of attempts on the first video: To
pass any video, a student only needs to watch it completely.

1We also included other non-actionable features to reduce
confounding and improve prediction accuracy which we omit
in sake of clarity and brevity. Some examples of other non-
actionable features included were the number of times mini-
game was seen before, the Learning Level, which gives a
rough location of where the student is in the curriculum,
as well as other features helpful for distinguishing current
student location in curriculum.

The number of attempts on the first video can be an indica-
tor of low technological fluency. The intervention is to have a
notification that encourages them to ask a teacher or a peer
for help. (5) First Time Mini-game Type Seen?: Students
generally will need more attempts the first time they expe-
rience a mini-game. So this feature, while not actionable,
allows the model to make more accurate predictions.

5.4 Results
We first examine the accuracy of our model at predicting
wheel-spinning. We used data from 1170 students. Stu-
dents were assigned randomly to the training and test set
with 80%, or 943, students assigned to the training set. The
students completed 60 activities on average. There were a
total of 55,035 student-activity pair datapoints in the train-
ing set with 1,294 of them as wheel-spinning (2.4%). There
were a total of 15,004 datapoints in the test set with 322 of
them as wheel-spinning (2.2%). These datapoints were all
used in the n = 0 condition. Considering only the student-
activity pairs that required 5 or more attempts (n = 5),
the training set had 2568 datapoints (50% wheel-spinning -
there were still 1,294 wheel-spinning datapoints since only
datapoints with less than 5 attempts were removed) and the
test set had 664 datapoint (48% wheel-spinning). At n = 9,
the training set had 1454 datapoints (89% wheel-spinning)
and the test set had 365 datapoint (88% wheel-spinning).

As shown in Table 5, while our accuracy is quite high, due
to the class imbalance, precision, recall, and F1 are low.
We tried a variety of different models such as CART de-
cision trees and Random Forests and we found the model
we used, XGBoost, to do the best by a slight margin over
Random Forests and significantly over CART. We addition-
ally report results for Logistic regression to show that for
lower values of n, it is not able to achieve the same accu-
racy as XGBoost. As with the simulations, as the value of
n increases, the accuracy difference of the two models on
predicting wheel-spinning decreases as both models achieve
high accuracy at higher values of n. This is due both to a
higher balance of wheel-spinning datapoints in the dataset
and automatically correctly predicting not-wheel-spinning
on students who needed less than n attempts. However this
increased accuracy at higher values of n is at the expense of
allowing some of the students who will eventually wheel-spin
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n Method Accuracy Precision Recall F1 AUC

0
XGB 93% 0.21 0.60 0.31 0.91
LR 88% 0.12 0.60 0.19 0.86

5
XGB 98% 0.60 0.60 0.60 0.99
LR 98% 0.53 0.58 0.55 0.99

9
XGB 99.7% 0.90 1 0.94 0.999
LR 99.7% 0.88 1 0.94 0.99

Table 5: Wheel-Spinning Prediction: XGB refers to XG-
Boost, LR refers to the logisitc regression baseline. LR has
worse predictive accuracy and a lower F1 score than XGB
when the prediction is made at lower values of n.

on a problem still spend multiple attempts on the problem.
To deploy a system we would work with a domain expert to
decide the n that would be best.

To verify the method, we compare our method’s predictions
to those an expert would prescribe. To obtain the expert
prescription, we blinded the domain expert author of this
paper, by showing them the cases and asking for their pre-
scriptions before sharing with them the details or results of
the model. To generate the test cases, we randomly sampled
true wheel-spinning student-problem pairs of that were also
predicted as wheel-spinning by the model. To get diverse
cases, sampling was done by throwing out newly sampled
cases that were very similar to two or more previously se-
lected cases, until we had 6 cases total. For purposes of
making a comparison, we made a list of possible causes and
interventions for the domain expert to choose from, includ-
ing a none-of-the above choice. In our model, some features
allow for immediate actions (reviewing a prerequisite prob-
lem) while others do not (redesigning an educational activ-
ity). The immediately actionable features are much easier
to intervene on and based on our expertise gained, are much
more favorable to an expert or instructor. To reflect this, we
made the decision (before discussing the methods and giving
the examples to the expert) to choose the maximum imme-
diately intervenable feature if its Shapley value is greater
than half of the maximum feature Shapley value.

The cases are shown in Table 6. The expert’s prescription
and the suggestions of various algorithms are shown in Ta-
ble 7. Overall we found that our method can be promis-
ing for automatically suggesting correct interventions. Our
method’s suggested interventions agreed with the domain
expert’s prescribed interventions 4 out of 6 times, but not
in Cases 1 and 6. Additionally our method performed bet-
ter than logistic regression and the highest overall XGBoost
feature importance baselines.

In Case1, the expert believed the exact identity of the edu-
cational activity, a feature we did not include was the true
cause of the wheel-spinning and the intervention would be
to redesign that particular activity. While we did include
the mini-game type of each activity, we did not include the
unique identity of each activity in the model as it would re-
sult in too many features compared to the amount of data
we had. Therefore one tradeoff of our method that needs to
be made when there is limited data is using as many fea-
tures as we can to catch all possible causes and using only
the most important subset of the features to maintain model
robustness. In Case 6, even though the prerequisite struc-

Features Case1 Case2 Case3 Case 4 Case 5 Case 6
Mini-game (MG) 31 31. 611. 31 31. 546

Last Played (s) (LP) 34. 10. 6 10 12 25
First Time Seen? (F?) F F F F F T
Attempts Prereq1 (P1) 1 1. 1 7 12 ∅
Attempts Prereq2 (P2) 1. 1. 1. 1 1. ∅
Attempts Prereq3 (P3) 1. 4. 1. 3 4. ∅

Table 6: The 6 cases from the CWTL dataset used for qual-
itative evaluation of the methods.

Expert Ours LR FI
Case1 ∅ P3 P3 P3
Case2 P3 P3 P3 P3
Case3 MG MG MG P3
Case4 P1 P1 P3 P3
Case5 P1 P1 P3 P3
Case6 P1 F? F? P3

Accuracy - 4/6 2/6 1/6

Table 7: A comparison of our method and various baselines
with the Expert’s prescription. Ours refers to the method
described in this work, LR refers to the logistic regression
baseline, and FI refers to the XGBoost overall feature im-
portance baseline. MG refers to the “Mini-game” feature, F?
refers to “First Time Seen?” featuree, P1, P2, and P3, refer
to “Attempts Prerequisite1”, “Prerequisite2” and “Prerequi-
site3” respectively and ∅ refers to an expert prescription not
in the list of what the model can suggest.

ture was created together with the domain expert, during
the activity of prescribing interventions, the expert realized
there may have been an incorrect dependency in the graph.
Where under the original graph there were no prerequisites
for this activity, under the new prerequisite graph this ac-
tivity would have prerequisites. This case highlights the
importance of having the correct curriculum graph.

In both the incorrect cases it would not have been feasible for
our method to have obtained the correct answer, suggesting
the ability of our method to identify correct interventions
given correct inputs.

6. DISCUSSION
6.1 Possible Improvements With More Data
The program is currently running and data is being col-
lected. As the amount of data increases and even more
expressive function classes, such as neural networks, can be
robustly trained, it is possible for the model to become more
accurate. Additionally currently we have limited data, espe-
cially of the wheel-spinning class, therefore we do not include
all possible helpful features, such as exact activity identity,
to ensure model robustness. This omission can cause errors
such as in Case 1. As more data becomes available this
tradeoff between including features and model robustness
becomes less important. More features can be included for
more accurate intervention predictions.

Table 8: Parameters for Student Model 1

P(T)
“easy”

P(T)
“hard”

P(G)
(A1,A2,A3)

P(G)
(A4,A5)

P(S) “hard”
Skill

0.5 0.01 0.01 0.005 0 A2
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(a) Sweeping n (p = 0.5) with
Student Model 2

(b) Sweeping p (n = 0) with
Student Model 2

Figure 4: Sweeping Hyperparameters

6.2 Setting Hyperparameters
As shown in both the results sections, our prediction at the
0th attempt of a student activity pair (before the student
starts an activity) can be inaccurate. As we increase the
number of attempts, n, before we intervene, we are able to
increase accuracy as we by default do not intervene on stu-
dents who need less than n attempts. However this increased
accuracy comes at the expense of letting the students who
will wheel spin spend time unproductively attempting the
activity. This tradeoff may also not be feasible in environ-
ments where students may dropout before n attempts such
as educational games played in a casual setting. We illus-
trate the miss rate decreasing and the accuracy increasing as
we increase the number of attempts on which we make the
prediction for Student Model 2 (Section 4.3) in Figure 4b.
We fix the threshold probability of the wheel-spinning model
output to make prediction (p) at 0.5.

Another key design choice touched upon is setting p, the
threshold of the wheel-spinning model output for classifying
wheel-spinning. To give a concrete example, changing the
threshold from the default 0.5 to 0.7 would mean we need
the wheel-spinning model to output a probability of 0.7 on a
student-activity pair before we decide to suggest an interven-
tion. Therefore at every attempt, we can trade off between
correctly suggesting an intervention for a student-question
pair and “interrupting” students by changing the certainty
threshold. We examine this tradeoff using simulations fol-
lowing Student Model 2 (Section 4.3) at n = 0 and plot this
in Figure 4b. As expected, as we increase the threshold, the
missed rate increases as the interrupted rate decreases.

6.3 Limitation: Does Not Establish Causality
One limitation of this method is causal inferences cannot be
made. To illustrate this we consider simulations following
the simulation procedure of Student Model 1 (Section 4.2)
under a new set of parameters given in Table 8. In this case
we make A2 difficult instead of A1. As shown in Figure 2a,
A2 only affects A4. Students who struggle due to unmas-
tered prerequisite skills only struggle on A4. There will be
very few students who, due to randomness, will struggle on
A5. Therefore A4 will be positively correlated with wheel-
spinning. However the design of A4 is not the direct cause
of most students’ struggling where the true cause is the lack
of mastery on A2. Looking into the Shapley values, A4 is
chosen incorrectly as the highest valued feature for 11% of
all true positive wheel-spinning cases. This can inaccurately
lead to an assumption that A4 needs to be redesigned. While
redesiging A4 could indeed reduce the number of students
wheel-spinning on A4, if students master A2, they will not

struggle more on A4 than they would on A5. Therefore sug-
gesting reviewing A2 instead of redesigning A4 as the most
likely intervention candidate would be desired as reviewing
A2 is often a much lower overhead intervention than re-
designing A4. Coming up with solutions for this issue would
be an interesting direction of future work.

7. CONCLUSIONS
In this work we propose a method to automatically suggest
interventions for wheel-spinning students. To our knowl-
edge this is one of the first investigations of both designing
a wheel-spinning model to suggest immediately actionable
interventions as well as using interpretable machine learn-
ing methods such as Shapley values in educational technol-
ogy. We evaluate our method’s ability to suggest useful in-
terventions by investigating the correctness of the suggested
intervention in two different simulations and through a qual-
itative investigation comparing the interventions suggested
by our method and the interventions prescribed by the ex-
pert. We found our method had high accuracy and was able
to choose an accurate intervention for more than 80% of the
time in the simulations before the students begin an activity.
Additionally in our real world setting our suggestions mostly
agreed with the expert prescription and the other cases were
due to limitations of the model and errors made in the in-
puts to the model. Our results suggest our method can help
inform interventions and improve educational systems to be
more effective and engaging.
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ABSTRACT 

Network analysis in educational research has primarily relied on 

self-reported relationships or connections inferred from online 

learning environments, such as discussion forums. However, a 

large part of students’ social connections through day-to-day on-

campus encounters has remained underexplored. The paper 

examines spatial-temporal student networks using campus WiFi 

log data throughout a semester, and their relations to the student 

demographics and academic performance. A tie in the spatial-

temporal network was inferred when two individuals connected 

to the same WiFi access point at the same time intervals at the 

‘beyond chance’ frequency. Our findings revealed that students 

were more likely to co-locate with the individuals of similar 

gender, ethnic group identity, family income, and grades. 

Analysis of homophily over the semester showed that students of 

the same gender were more likely to co-locate as the semester 

progressed. However, co-location of the students similar on 

ethnic minority identity, family income, and grades remained 

consistent throughout the semester. Mixed-effect regression 

models demonstrated that features derived from spatial-temporal 

networks, such as degree, the grade of the most frequently co-

located peer, and average grade of five most frequently co-located 

peers were positively associated with academic performance. 

This study offers a unique exploration of the potential use of WiFi 

log data in understanding of student relationships integral to the 

quality of college experience. 

Keywords 

Network analysis, homophily, spatial-temporal data, WiFi log 

data. 

1. INTRODUCTION 

With massification and globalization of higher education, 

students are exposed to individuals from a different nationality, 

ethnicity, gender, and socio-economic background. Universities 

have long been known as physical spaces where students form 

lifelong social connections, both for professional social capital 

and personal networks, such as friendship and marriage [1]. 

Therefore, understanding how social connections form and 

change in educational settings, as well as the impact student 

networks have on learning outcomes, can inform educators of 

unique ways to improve learners’ experience [2]. 

Educational research offers a range of literatures focused on 

student networks in both face-to-face and blended or online 

settings [2-9]. Social scientists have conventionally derived 

student networks from self-report surveys [2, 10]. These surveys 

ask students to list who they are friends with or who they seek 

advice from  [2]. The data can be collected multiple times to track 

the changes in network formation [10, 11]. Self-reported 

networks are a source for much of the extant evidence about 

student networks. However, such data collection is vulnerable to 

sampling biases (i.e. a low response rate, a sample from one class) 

where important network observations may be omitted. The 

timing of surveys may affect derived network features, and 

frequent surveying of learners can lead to survey fatigue and a 

lack of responses. 

Instead of self-reports, the EDM and LAK communities have 

based their network studies on the log-data generated from online 

discussion forums [3, 4, 12-14]. Digital traces from online 

discussion enabled researchers to capture the structure, 

frequency, as well as the content of communication exchanges. 

Student networks constructed from online logs also have 

limitations. For instance, many online courses do not require that 

students use online forums. In face-to-face or blended learning 

settings, students are also less likely to use discussion forums. 

Therefore, student networks derived from online communication 

are limited in their generalizability, which remains a major 

challenge for researchers in this domain. 

One underexplored data source for social network research in 

educational settings is location-based data. Social scientists have 

long argued that those in close physical proximity are more likely 

to form a social connection (McPherson, Smith-Lovin and Cook 

[1], p.430). More recently, relationship between geographic 

proximity and social ties have been corroborated by fine-grained 

geo-location-based analysis using mobile technologies. For 

example, the Copenhagen Networks Study [15] quantified the 

impact of physical proximity on student network structures using 

500 GPS-enabled smart phones. Eagle, Pentland and Lazer [16] 

also used mobile technologies to compare the network based on 

physical proximity with the self-report social network and 

reported that 95% of the network friendships can be accurately 

inferred from sensor data. Although student location data from 

GPS and Bluetooth signals has shown to be informative, such 

methods are expensive to replicate and challenging to scale due 

to a high equipment cost.  

This paper presents yet another source for location-based data to 

infer student networks. The paper reports on the study of student 

networks constructed from routinely collected WiFi logs. Such 

network data is created transparently to the learners as they 

connect to campus WiFi access points which are ubiquitous 

across physical campuses. Spatial-temporal ties between users 

can be inferred based on the overlap of time intervals in which 

learners connected to the same access point, suggesting a 
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reasonably close spatial co-location (room level). The study aims 

to understand the relationship between spatial-temporal ties and 

student characteristics across time, and predictive potential of the 

features derived from spatial temporal networks.   

1.1 WiFi network data in education research  

Wireless local area networks (WLANs) are ubiquitous in higher 

education as they provide on-campus Internet access to students, 

teachers, and staff. Despite extensive research using WiFi data, 

only a limited number of studies has explored their application for 

educational purposes [17-20]. A common example is the usage of 

WiFi data to visualize mobility patterns. For example, the iSpots 

project showed how people move around campus in real-time 

[17]. Hang, Pytlarz and Neville [20] combined WiFi logs with 

information about the buildings to extrapolate user preferences, 

and to predict user locations using graph embeddings. WiFi data 

has also been used in predictive modelling. Sarkar, Carpenter, 

Bader-El-Den and Knight [19] estimated the correlations between 

students’ on-campus time based on WiFi logs and academic 

performance. Zhou, Ma, Zhang, SuiA, Pei and Moscibroda [18] 

utilized WLAN data to estimate students’ punctuality for lectures 

to assess the lecture’s engagement using mobile phone’s 

interactive states at minute-scale granularity. 

An application of WiFi data which has yet to be explored in areas 

such as EDM is the formation of social network among students 

on campus. In line with previous research on location-based 

networks [15, 16], social ties between WiFi users can be inferred 

from spatial and temporal co-occurrences (i.e. two users 

connected to the same WiFi access point during the same time 

window). Compared to surveys, discussion forum data, and 

proximity data collected through mobile devices (e.g. Bluetooth 

beacons), WiFi data provides a fine-grained alternative that 

records the dynamic changes in social interactions over a long 

period of time. Importantly, WiFi logs can capture physical social 

interactions and can scale at a relatively low cost. This paper 

presents initial steps towards exploring spatial and temporal 

information in the analysis related to student learning.  

1.2 Research questions 

Individuals are likely to share social connections with others 

similar to them, a phenomenon known as homophily [1, 21]. In 

educational settings, researchers have observed homophily based 

on gender [22], ethnicity [23], international/domestic country of 

origin [10], study major [24], socio-economic status [23], and 

academic performance [25, 26]. It might be expected that high-

performing students seek friendship with other high-performing 

peers as part of their academic identity [27, 28], or that groups of 

high performing learners joined by lower performing learners will 

raise up those learners [29]. While there has been a large literature 

exploring the homophily effects in educational settings using 

traditional questionnaires or interactions in online learning 

environments, there remains a paucity of research that utilizes 

location-based data for such purposes. We hypothesize that 

students with similar traits are more likely to spend more time 

together on campus, i.e. in a spatial temporal co-occurrence from 

which a social connection can be inferred.   

RQ1: How do demographic characteristics and grades affect 

the likelihood of spatial-temporal co-occurrence among 

students? 

Second, we examine if spatial-temporal student network can 

capture social selection processes among students, also a 

phenomenon previously observed in social student networks. 

‘Social selection’ refers to the choice to interact with others of 

similar status or value, and has been observed in various 

educational settings [27, 28]. With the increasing availability of 

digital data in education (i.e. LMS, online discussion forums), 

researchers are enabled to observe the dynamics of social 

selection processes with high temporal precision. In these regards, 

we are interested in understanding the temporal changes in the 

homophily effects of demographics and academic performance 

over time. For example, one might expect that at the beginning of 

the semester, students are more likely to form friendships based 

on similarity in demographic attributes as they have not acquired 

sufficient information about their peers’ academic ability. One 

might also expect that as students approach the end of the 

semester, more social ties will be formed within similar 

performance groups. This leads us to our second research 

question:      

RQ2: How does homophily based on demographic 

characteristics and academic performance change over time? 

In addition to these questions, previous studies [7, 21, 26]  have 

confirmed a positive relation between the degree of social 

integration/participation and academic performance. Motivated 

by this, we are interested in the predictive potential of ‘peer 

effects’ for grade performance using location-based network data. 

The relationship between that of a peer and one’s characteristics 

has been studied for dormmates, as well as classmates, 

schoolmates, or children from the same neighborhood [29]. 

Administrative records of class co-enrolment have also been 

shown to capture this relationship in predictive models [24, 30]. 

Therefore, it would be reasonable to expect that spatial-temporal 

student networks can be useful for engineering features based on 

the peers a student is co-located with. 

RQ3: How do network indices of spatial temporal networks 

relate to student performance?  

2. METHODS 

2.1 Datasets 

Data in this study were collected from 3,915 students enrolled in 

five large STEM freshman courses at the University of Michigan, 

USA during the Fall semester of 2018. The selected courses 

include introductory physics, calculus, biology, chemistry, and 

psychology. Note that while these make up only a small fraction 

of all available offerings, they are considered to be foundational 

for a wide range of degree programs. That is, these courses serve 

as a gateway into the discipline, account for a significant portion 

of total credits registered, and are an integral part of one’s 

academic career upon which we can leverage data collection to 

better understand the broad needs of incoming students and to 

improve instruction. The format of these courses is primarily 

didactic in nature, consisting of large lecture-style classes with 

hundreds of student enrollments. Content coverage is relatively 

stable between terms albeit with changing instructional teams, 

and the diverse student body, both in terms of demographics and 

measures of performance, was a key determinant in selecting 

these log data to represent students’ first-year experience.  

All data were de-identified. The dataset contained 91.7 million 

time-stamped entries recording log data between each device 

being connected to a particular WiFi access point. Each entry 

contained a unique user ID, a timestamp, a timestamp when a 

device was disconnected from a WiFi access point, a WiFi access 

point descriptor which (often) included a physical location such 
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as a building name and room number, and the device MAC 

address (Table 1).  

Table 1. De-identified sample WiFi data 

ID Timestamp Session End Access point MAC 

A1234 2018-09-24 

08:00:00 

NA TWC-1023 XYZ123 

A1234 2018-09-24 

08:02:00 

NA TWC-2013 XYZ123 

B2314 2018-09-24 

08:00:03 

2018-09-24 

08:00:55 

BAHR-1210 XYZ125 

C2153 2018-09-24 

08:00:05 

NA CQTB-3734 XYZ121 

The data were pre-processed by dropping all records generated by 

MAC addresses that were connected to access points within a 

single building, because they were likely to be stationary devices, 

such as computers at the libraries or lecture halls. Second, we 

computed a “connected time” feature for each user by subtracting 

two consecutive timestamps (t2-t1). For example, the connected 

time for user A1234 to access point TWC-1023 was 2 minutes 

(Table 1). The connected time feature is important for the 

subsequent network modeling, which requires a co-located time 

between any two users. Since the connected time could be biased 

when a device became disconnected (i.e. students left the 

building), we removed all data entries which contained a session 

end’s timestamp. After the pre-processing, we retained 80.9 

million records of 3,910 users, and these records were joined with 

the demographic information and final grades for a semester. 

2.2 Analysis 

2.2.1 Compute co-located time 
To draw inferences about the network structure from WiFi data, 

we created an undirected weighted one-mode network (i.e. user-

user). A tie’s weight equaled to the total amount of co-located 

time between two users. Figure 1 visualizes the temporal changes 

in WiFi access points of two users on a particular date from 08:00 

to 20:00. These two users spent a large amount of time in the 

morning at a fixed WiFi access point, possibly attending a lecture. 

In the afternoon, these two users shared the same access points 

for 2 hours. After that, each user went on about their day to 

different areas on campus.     

 
Figure 1: Temporal changes in WiFi access points of two users 

throughout a day. The boxed area indicates a two-hour period 

where these users shared the same access point 

The co-located time between each pair of users was computed 

using the roverlaps package and stored in a 3910 x 3910 

adjacency matrix.   

2.2.2 Exponential random graph models (ERGMs)  
RQ1 seeks to understand how demographic characteristics (e.g. 

gender, ethnicity, minority, under-representative, family income, 

parents’ educational level), and academic performance relate to 

the formation of ties amongst students. Specifically, we model if 

students from the same background or having the same academic 

performance were more likely to form a connection. We used 

Exponential Random Graph Model (ERGM) techniques which 

have been used to explore homophily in network formation in 

educational data previously [9, 13, 14]. ERGM, also known as a 

p* model, is a stochastic model that specifies the probability of 

the entire network as a function of its network properties [31].  

P(Y = y) = exp(θ′g(y)) / k(θ) 

• Y is the network realization;  

• y is the observed network;  

• g(y) is a vector of model statistics for network y;  

• θ is the vector of coefficients for those statistics, and  

• k(θ) represents a normalizing factor, calculated as the 

sum of exp(θ′g(y)) over all possible networks. 

This can be expressed as the conditional log-odds of a single tie 

between two actors i and j:  

logit(Yij = 1|yijc) = θ′δ(yij) 

where θ is the coefficient and δ(yij) is a change statistic. 

To translate this into our context, ERGM was used to estimate the 

likelihood, expressed in conditional log-odds of two students 

being connected, given the similarity in their demographic 

characteristics and course grades. Model fit was examined with 

AIC and BIC (the lower the better model fit) and visual plots. 

An important analytical decision was taken when weighted ties in 

our spatial temporal network were transformed into binary 

relations. To do so, we applied a filtering technique called dyadic 

thresholding. That is, a tie between two students would be kept 

when its weight was more than two standard deviations above the 

mean of all weights across all students. In other words, two users 

were considered to have a social connection when they spent a 

large proportion of their time on campus around each other.    

To address RQ2, we applied a time window slicing technique to 

create separate ERGMs for a network that captured every month 

of activities from September to December. We then compared the 

changes in network homophily based on demographics and 

academic performance across four months.  

Finally, for RQ3, network indices at the level of a node/student 

were incorporated in mixed-effect regression models. The models 

predicted grades as a function of demographics and network 

properties. To test the relationship between peer performance and 

predicted grade, we incorporated two features: 1) the average 

grade of the most frequently co-located peer, and 2) the average 

grade of five most frequently co-located peers into the model.  

All the analyses were carried in R 3.6.2. ERGMs were fit using 

the statnet package [31, 32], mixed-effect regression models 

were run with the lme4 package [33]. A simulated dataset and 

the code will be made available on Github. 

(https://github.com/quan3010/EDM20_Nguyen). 

3. RESULTS 

3.1 Network description 

The data for network construction was comprised of 80.9 million 

log events of 3,910 users over four months. From that, we derived 

a weighted, undirected network with over 6.54 million weighted 

ties. An average co-located time between two students was 0.98 

hours, with a standard deviation of 12.37 hours. This weighted 

graph was converted into an unweighted graph network by setting 

a cut-off value equal to two standard deviations about the mean, 

i.e.  25.74 hours. Thus, in the modelled network two users shared 

a tie only if they spent at least 25.74 hours together over a four-

month period. The final network had 3,910 users and a total of 
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18,704 ties. In such a network, the median number of ties was 8 

with maximum of 63 ties. For 50% of the students the range of 

connections was from a minimum of 3 peers to a maximum of 14. 

The average co-located time between two users was 120 hours, 

with a minimum of 25.74 hours, median of 38 hours, and a 

maximum of 1397.62 hours. 

Table 2. Frequency statistics of demographic and grades 

Gender N Percentage 

Male 1969 50.4% 

Female 1941 49.6% 

Ethnicity   

White 2207 56.4% 

Asian 763 19.5% 

Hispanic 337 8.6% 

Mixed 214 5.5% 

Not Indic 197 5.0% 

Black 187 4.8% 

Native American 5 0.1% 

Minority status   

Non-minority 2365 60.5% 

Minority 1346 34.4% 

International 199 5.1% 

Underep stats   

Non-Underrepresented Minority 3083 78.8% 

Underrepresented Minority 628 16.1% 

International 199 5.1% 

Family income   

> $200,000 1043 26.7% 

$150,000-$199,999 355 9.1% 

$100,000-149,999 563 14.4% 

$75,000-$99,999 243 6.2% 

$50,000-$74,999 266 6.8% 

$25,000-$49,999 366 9.4% 

< $25,000 217 5.6% 

NA 847 21.7% 

Grade_letter   

A-, A, A+ 1295 33.1% 

B-, B, B+ 1671 42.7% 

C-, C, C+ 664 17.0% 

Below D 140 3.6% 

Withdraw 120 3.1% 

 

1 Household income is self-reported on admissions data. 

NA 20 0.5% 

Table 2 provides descriptive statistics for 3,910 students in this 

study. There was a rough balance in the number of female and 

male students. This is important since homophily can occur at 

random, for instance when a relative size of a subgroup is 

markedly different. White was the most frequent ethnicity, 

followed by Asian and Hispanic. A third of the sample identifies 

as an ethnic minority and 16.1% was categorized as under-

represented minority. The family income distribute are right-

skewed with over a quarter of students report household income 

of over $200,0001. Academic performance in this semester 

followed a bimodal distribution with of the majority of students 

performed at the A-range and B-range.   

3.2 Homophily based on demographics and 

grades 

Table 3 reports the results of three ERGM models. Model 1 serves 

as the baseline model, which accounts for the density of the 

network. The log-odds of a tie was -6.01 which translates to a 

probability of a tie exists equal to 0.24% (i.e. 18,704 ties divided 

by a total of 7.64 million possible ties). 

In model 2, we added five nodal attributes, including gender, 

ethnicity, ethnic minority status, under-represented minority 

status, and family income, to explore homophily related to 

demographics. Our results showed that students from the same 

gender were more likely to form a tie than those with different 

gender, with the probability of a same-gender tie being 62%. 

Ethnicity and underrepresented minority status of the student did 

not have any statistically significant effect on the formation of 

network ties. This may be explained by the effect of the minority 

variable, which already accounted for ethnicity and unrepresented 

groups. Although a social connection was more likely to exist 

between students from the same minority group (i.e. non-

minority, international, minority), the effect was marginal with a 

probability of only 54%. Family income also had a small effect 

on the formation of ties. The probability of ties to exist between 

two users with the same family income was 53%. 

Table 3. Homophily effects of demographics and grades 

 Model 1 Model 2 Model 3 

ties -6.010*** -6.375*** -6.444*** 

 (0.007) (0.016) (0.017) 

gender  0.479*** 0.479*** 

  (0.015) (0.015) 

ethnic  -0.006 -0.008 

  (0.022) (0.022) 

minority  0.157*** 0.161*** 

  (0.021) (0.021) 

underrep  0.004 -0.004 

  (0.018) (0.018) 

family_income  0.135*** 0.132*** 

  (0.021) (0.021) 

grade_letter   0.211*** 

   (0.015) 

AIC 262,286 261,101 260,913 

BIC 262,300 261,184 261,010 
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Note:  *p<0.1; **p<0.05; ***p<0.01  

Coefficients calculated in log-odds, standard errors in brackets 

Finally, in model 3, we added student’s grades to examine 

homophily related to academic performance. The probability of a 

tie among same-grade students was 55%. To conclude, we 

observed a strong homophily network effect in gender, and 

marginal effects in minority identity, family income, and 

academic performance. Spatial-temporal networks also captured 

the commonly observed patterns of social homophily. This 

suggests that spatial-temporal networks reflected the social 

connections underpinning the co-location patterns. 

The measures of homophily based on demographics have 

important implications to the understanding of diversity and 

inclusivity in higher education. The mere presence of structural 

diversity in student body (i.e. the proportional representation of 

groups of students from different backgrounds) does not 

guarantee the interactions between these diverse groups (Puritty 

et al., 2017). Homophily measures could serve as an indicator of 

how diverse and inclusive the social interactions between students 

are. A highly homophilous network could signal social 

segregation, and to some extent, inequality in student body as 

students are less likely to form a connection with peers who are 

demographically different than themselves. The use of WiFi data 

could support the design of physical spaces/educational activities 

that increase the likelihood of spatial co-occurrences between 

diverse groups of students.  

However, we are careful to draw inferences as to what the 

homophily represents. Our models do not control for types of 

building, or events that take place on campus. It is plausible that 

spatial temporal networks capture both the networks formed 

based on foci of activity (classes, living arrangements, cafeteria 

visits for students with similar schedules) as well as social ties. 

For instance, gender homophily could be explained by the 

majority of freshman students sharing their living space with 

same-gender peers in a residential building on campus. In this 

case, co-located time between roommates and dormmates would 

be the highest among freshmen. We did not find any evidence of 

homophily between different ethnicities per se. However, we 

observed homophily between different ethnic identities, such as 

ethnic minority (i.e. Black, Asian, Mixed, Hispanic), ethnic non-

minority (i.e. White), and international (i.e. mostly Asian). In 

other words, there was evidence for inter-ethnic co-location 

within ethnic minorities.  

As can be seen in the model, the addition of the terms decreased 

the AIC/BIC suggesting improved model fit. We did not manage 

to fit any of the conventional closure terms, such as popularity 

(e.g. geometrically weighted degree distribution) or transitivity 

(e.g. geometrically weighted edgewise shared partners), into the 

model. Visual examination of the goodness of fit suggested that 

the model was fit in predicting dyadic-level observations but was 

limited in reproducing the network structure. These results 

suggest that the model either requires to add control variables 

about the events/reasons for co-location (e.g. lectures, 

Thanksgiving breaks, exam periods), or that the networks need to 

be separated to have a more elaborate operationalization of co-

location (e.g. residential building, libraries, classrooms).   

3.3 Temporal changes in social networks 

To examine the changes in the homophily over time, we ran the 

ERGM model with the same specification for a network capturing 

co-location in each month (Sep, Oct, Nov, Dec). The coefficients 

of each model were visualized in Figure 2.  

Figure 2. Temporal changes in homophily effects of 

demographics and grades on network formation (* p < 0.01) 

 
We can observe an increasing trend in homophily based on gender 

over time. The probability of a same-gender tie increased from 

61% in September to 69% in December. There was a small 

increase in the homophily based on grade in October and 

November but it then decreased in December. The homophily 

effect of minority identity and family income remained constant 

over time.  

One potential explanation for the increasing trend in gender-based 

homophily is that students started expanding their social circle 

with people in the same dorm hall/residential building, who are 

likely to have the same gender. This could also be explained by 

the participation in fraternity and sorority activities for freshman. 

As a result, we observed an increase in same-gender co-location 

over time as students formed new connections within a fraternity 

and sorority. Finally, previous studies [29, 30] also observed the 

intersectional nature of grade-based performance, i.e. high-

performing boys are likely to form ties with high performing 

boys, and the same applies to girls. The consistent trend in 

performance-based homophily could be explained by the fact that 

this is the first semester and not only are students new to the 

institution, but university academic performance was generally 

not available until the end of the semester. Results suggest that it 

could be interesting to examine the temporal changes in 

performance-based homophily over a longer time period, 

especially in sophomore and senior students.  

This finding has important implication to the research of social 

interactions between students. More often than not, social 

relations in educational research are collapsed under a static and 

dichotomous category (e.g. yes/no). In reality, the formation of 

social relations is a highly dynamic and time-variant process. For 

example, students could become closer with certain peers while 

more distant with others as time goes by. Students’ social circle 

could be more elastic during their freshman year but gradually 

form a close-knit group as they approach their senior year. The 

networks inferred from WiFi data allow us to explores many 

questions about the evolution in social interactions between 

students over time, which could not previously be answered with 

self-report social network surveys.  

3.4 Predicting academic performance 

We applied mixed-effect regression models to control for the 

heterogeneity between courses (Table 4). Grade letters were 

converted into numeric format as per institutional guidelines, with 

a maximum value of 4.0. Our findings indicated that in the 

courses we studied, male students on average achieved 0.08 grade 
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points higher than female students. Compared to students with a 

family annual income over $200,000, which accounted for a 

quarter of our dataset, students with a family income of $75,000, 

$50,000, and $25,000 had 0.13, 0.30, and 0.43 grade points lower 

respectively. The effect of family income became marginal and 

non-statistically significant once it is above $100,000. Students 

from an under-represented minority (i.e. Black, Hispanic, and 

Native American) also had on average 0.30 grade points lower 

than a non-underrepresented minority (i.e. Asian, Mixed, and 

White).  

All three network indices had a positive and statistically 

significant relation with academic performance. On average, each 

additional tie increased a student’s final course grade by 0.014 

grade points. For each grade point increase in the most frequently 

co-located peer, the student’s grade increased by 0.07 grade 

points. For each additional point increase in the average grade of 

the five most frequently co-located peers, a student’s grade 

increased by 0.15 grade points. It is important to note that our 

results so not imply a causal relationship. The finding could be 

explained by a homophily effect (i.e. students co-located with 

similarly performed peers) or a roommate effect (i.e. 

performances of co-located peers influence a student’s 

performance).  

 

Table 4. Effects of demographics and network on grades 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Male 0.055* 0.071** 0.075** 0.082** 0.080** 

 (0.023) (0.025) (0.025) (0.025) (0.025) 

Ethnicity (ref= White)   

Mixed -0.036 -0.111 -0.065 -0.060 -0.070 

 (0.135) (0.177) (0.175) (0.174) (0.174) 

Asian 0.033 0.026 0.070 0.076 0.059 

 (0.122) (0.166) (0.164) (0.163) (0.163) 

Black -0.358* -0.304 -0.269 -0.254 -0.253 

 (0.149) (0.189) (0.187) (0.187) (0.187) 

Hispanic -0.041 -0.049 -0.025 -0.012 -0.019 

 (0.143) (0.183) (0.181) (0.181) (0.180) 

Native Am -0.295 -0.239 -0.141 -0.143 -0.129 

 (0.357) (0.374) (0.369) (0.368) (0.367) 

Ref = Non-minority     

Internatnl 0.239* 0.174 0.173 0.174 0.183 

 (0.109) (0.151) (0.149) (0.149) (0.149) 

Minority 0.043 0.067 0.028 0.020 0.033 

 (0.125) (0.168) (0.166) (0.165) (0.165) 

Ref = Non-underrepresented minority 

Underrep -0.319*** -0.297*** -0.314*** -0.305*** -0.304*** 

 (0.081) (0.090) (0.089) (0.089) (0.089) 

Family income (ref=above $200,000)  

$199,999  0.007 -0.007 -0.012 -0.010 

  (0.042) (0.042) (0.042) (0.042) 

$149,999  -0.082* -0.091* -0.085* -0.082* 

  (0.036) (0.035) (0.036) (0.036) 

$99,999  -0.086 -0.081 -0.094* -0.089 

  (0.048) (0.047) (0.048) (0.047) 

$74,999  -0.133** -0.139** -0.131** -0.131** 

  (0.048) (0.047) (0.047) (0.047) 

$49,999  -0.280*** -0.309*** -0.303*** -0.298*** 

  (0.042) (0.042) (0.042) (0.042) 

$25,000  -0.460*** -0.452*** -0.446*** -0.429*** 

  (0.053) (0.053) (0.053) (0.053) 

No. of ties   0.014*** 0.014*** 0.014*** 

   (0.002) (0.002) (0.002) 

Closest peer    0.106*** 0.072*** 

    (0.016) (0.019) 

5 close peers     0.150*** 

     (0.040) 

Constant 3.114*** 3.193*** 3.059*** 2.717*** 2.345*** 

 (0.130) (0.129) (0.142) (0.149) (0.176) 

Obs 4,422 3,554 3,554 3,500 3,500 

AIC 9,872.995 7,945.483 7,871.099 7,733.857 7,726.519 

BIC. 9,956.122 8,068.999 8,000.792 7,869.388 7,868.211 

Note: *p<0.05; **p<0.01; ***p<0.001 

4. CONCLUSION 

This paper explores the use of WiFi data of 3,910 students in Fall 

2018 in understanding student physical on-campus connections. 

Specifically, we explore if spatial-temporal student networks 

reflect homophily based on demographics and academic 

performance expected in social networks. Network connections 

were inferred when two users exhibited a high level of co-located 

time (i.e. connecting to the same WiFi access point in the same 

time window). We found evidence of homophily with regards to 

gender, ethnic minority identity, family income, and academic 

performance. Gender-based homophily is particularly interesting, 

given that the composition of the student body has equal share of 

both genders and that this homophily increased significantly over 

time. This suggests that observed homophily is not baseline, but 

largely structural. That is, the organization of physical space, as 

well as curricular and extracurricular activities may create 

opportunities for gender-based homophily on campus. Exploring 

this further may be useful in understanding the effect of various 

institutional (e.g. gender-based meetups, structured study 

sessions, or mentoring workshops) and non-institutional (e.g. 

gender-based social activities, such as fraternity and sorority 

functions and enrollments) activities on the development of friend 

and support networks. 

In addition, we found that the number of ties and the average 

performance of the most frequently co-located peer(s) were 

predictive of academic performance. This is in line with extant 

literature on self-reported peer effects [29], or the effects of peers 

observed from academic records [24]. Contextualizing this 

relationship and determining signals for specific causal activities 

is a clear next step. 

From a theoretical perspective, our results confirmed homophily 

with regards to demographics and academic performance. At the 

same time, we extended the findings to capture the temporal 

changes in homophily within a semester. Our findings suggest 

that the tendency to form (co-located) connections may vary over 

time and more longitudinal studies are needed to understand the 

mechanism behind dynamic homophily.  

From a methodological perspective, we demonstrated a novel 

application of spatial-temporal data in the study of student social 

networks, which have primarily relied on self-reports and log-

data from discussion forums. This opens up a new venue to 

capture social interactions between students on campus on a large 
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scale and with fine-grained granularity. Importantly, this can be 

achieved without the need to collect additional data beyond what 

has been already collected by the university wireless networks. 

Location data inferred from WiFi access points can be considered 

as less invasive than using mobile phone’s GPS or location-

sensors to track users’ location [15, 16]. Future research could 

combine self-report, discussion forum data, and location-based 

data to form a more holistic picture of student social networks and 

to triangulate findings from multiple data sources.  

From a practical perspective, this study highlighted several 

factors that determine the formation of network among college 

students as well as their effect on academic performance. Such 

results may be useful to institutions in designing or evaluating 

location-based initiatives to promote gender, ethnicity, and 

culture diversity and inclusivity on campus, as well as to support 

ethnic minority, underrepresented minority in social integration 

during their time in college. There are opportunities to better 

understand the impacts of learning communities (e.g. themed 

residences for groups of students, such as Women in STEM 

communities), of co-curricular activities and their placement on 

campus (e.g. guest speakers or academic support groups), and 

even architectural planning (e.g. the relationship between 

dormitories and classrooms or libraries) through these methods.  

4.1 Limitations 

The data used does note capture the use of non-university run 

network (e.g. cellular networks), when students choose to go 

offline (e.g. intentionally by powering down their phone or due to 

low battery), or in spaces on campus without access to university 

network. There is also an inherent messiness which comes with 

the use of multiple or shared devices, the former of which is very 

common and increasing with the use of wearables. Network 

inference based on co-located time is further be biased when 

students co-locate by random chance or by sharing common 

activities (i.e. attending lectures, going to the libraries, going to 

the gym) but do not interact with one another. Similarly, it is 

possible for students to be in completely different rooms yet 

connected to the same access point depending upon the wireless 

network and building topologies, introducing further noise to 

social network models. As a result, there might be hidden bias 

when using networks inferred from location data for predictive 

purposes. More sophisticated network inference techniques may 

be helpful in understanding this, such as weight/tie reshufflings 

or spatial/temporal simulations [34], and better cataloging of 

network endpoints (e.g. classroom, office, hallway) may be 

helpful in modeling social network relationships. 

Finally, the modeling techniques used with the limited dataset 

chosen required significant computing power. More fine-grained 

temporal analyses (e.g. weekly or daily models), a longer time 

frame (e.g. a full academic year or throughout the students’ 

academic career), and increased data (e.g. from more courses and 

non-freshman students) will only increase the need for 

computational power. 

4.2 Concerns with the Use of Wi-Fi Data 

WiFi data is highly sensitive data and the security of the 

collection, storage, and analysis of such data is of utmost 

importance. As is appropriate, we sought IRB oversight of our use 

of this data and worked with institutional data governance teams 

to ensure the data we received was appropriately stored, was de-

identified, and was as minimal as possible to support our analyses. 

At the same time, we feel it incumbent upon us to note that 

research access to such data is under threat by the potential misuse 

of educational location data for non-research purposes, which 

does not have to undergo IRB review. Specifically, some have 

begun to incorporate location data into formative evaluation of 

students. Location data is captured not only through WiFi, but 

also Bluetooth beacons and student mobile application software 

(which may be required), and has been used in an identifiable way 

to assign students grades based on location (attendance in class) 

[35]. While there are broad discussions of agency, privacy, 

paternalism, and ethics which the authors have positions on, the 

purpose of this section of the paper is to raise the importance such 

data has in understanding teaching and learning, and to encourage 

researchers in the field of Educational Data Mining (EDM) to 

voice opinions on the value of de-identified location data and it’s 

use in educational research. 
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ABSTRACT
The design of the Cognitive Tutor Algebra I (CTA1) intel-
ligent tutoring system assumes that students work through
sections of material following a pre-specified order, and only
move on from one section to the next after mastering the
first section’s skills. However, the software gives teachers the
flexibility to override that structure, by reassigning students
to different sections of the curriculum. Which students get
reassigned? Does reassignment hurt student learning? Does
it help? This paper used data from the treatment arm of
a large effectiveness study of the CTA1 curriculum to esti-
mate the effects of reassignment on students’ scores on an
Algebra I posttest. Since reassignment is not randomized,
we used a multilevel propensity score matching design, along
with assessments of sensitivity to bias from unmeasured con-
founding, to estimate the effects of reassignment. We found
that reassignment reduces posttest scores by roughly 0.2
standard deviations—–about the same as the overall CTA1
treatment effect—that unmeasured confounding is unlikely
to completely explain this observed effect, and that the effect
of reassignment may vary widely between classrooms.

1. INTRODUCTION
Two closely related pillars of intelligent tutoring systems
are sequencing and mastery learning. It has long been ob-
vious that the sequence in which students learn different
topics is an important component of a curriculum, due to
prerequisites—for instance, students must master arithmetic
in order to learn how to solve algebraic equations. A related
example is scaffolding, in which learners gradually achieve
independence over a sequence of problems; scaffolding “con-
sists essentially of the adult ‘controling’ those elements of
the task that are initially beyond the learner’s capacity, thus
permitting him to concentrate upon and complete only those
elements that are within his range of competence”[33]. How-
ever, measuring the effects of sequencing [21] [9] and de-
termining prerequisites or optimal sequences [29] [31] [17]
remains an active area of research.

By“mastery learning,”we mean the idea that students should
“progress through topics as they master them,” [22] as op-
posed to at a fixed pace. This typically results in students
within the same classroom working on different parts of a
curriculum at the same time.

The Cognitive Tutor Algebra I (CTA1) system [8] includes
both features. A particular Algebra I curriculum is pro-
grammed into the software, so that students, if left alone,
will encounter topics in a specific, intentional sequence. Mas-
tery learning governs how they progress from one section to
the next: an underlying knowledge tracing model estimates
the probability students have mastered a set of pre-defined
skills as they work through problems that incorporate those
skills. Students ideally progress from one section to the next
only after demonstrating mastery on the previous section’s
skills.

Mastery learning does not always proceed this way in the
CTA1 software. After a student has worked a certain, pre-
specified number of problems in a particular section, he or
she is automatically promoted to the next section, even if
he or she has not mastered its skills [28]. Teachers can also
reassign students working on one section to work on an en-
tirely different section. If a teacher reassigns a student to
a section other than the next one in the sequence, reassign-
ment violates the intended sequencing as well as mastery
learning.

There are a number of reasons teachers may want to meddle
in the automatic progress of students through a curriculum
[16]. If a teacher observes an advanced student spending
time on basic skills, the teacher may move the student to
more advanced sections. If certain skills will be on a stan-
dardized test, and a teacher wants all students to have had
exposure to those skills before the test, the teacher may re-
assign all of his or her students to work on a section covering
those skills. If a teacher notices a student falling behind his
or her peers in the classroom, the teacher may choose to re-
assign the student to the section that the rest of the class is
working on, even if the student has not demonstrated mas-
tery on prerequisite skills (at least, within the tutor). If a
teacher disagrees with the method a certain CTA1 section
employs in teaching an Algebra topic, the teacher may reas-
sign students out of that section, perhaps to the next unit
or section in the curriculum.

It is unclear whether reassignment benefits students. On the
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one hand, it violates the design principles of the software.
On the other hand, it allows teachers flexibility to teach
the material as they see fit, and use the tutor to meet the
particular needs of their classrooms.

This paper uses data from a large randomized trial of the
CTA1 curriculum to estimate the effect of reassignment.
Unfortunately for our purposes, reassignment itself was not
randomized—the study was designed to estimate CTA1’s ef-
fectiveness, so access to the tutor was randomized instead.
Still, log data from study participants includes data on how
often each student was reassigned from one section to an-
other, and posttests measure their algebra skills at the end
of the study. For those reasons, this data provides a rare
opportunity to measure the effect of reassignment, and, by
extension, the (joint) importance of topic sequencing and
mastery learning.

The following section gives background on the effectiveness
trial and describes the data we will use for the study. Sec-
tion 3 describes propensity score matching, the method we
employ. Section 4 describes the propensity score models,
which in turn describe characteristics of students who are
reassigned. Section 5 describes the matching algorithm and
covariate balance. Section 6 gives our main results on the
effects of reassignment, including sensitivity analysis to con-
founding from unmeasured covariates and between-classroom
effect heterogeneity. Section 7 concludes.

2. DATA: THE RAND CTA1 EFFECTIVE-
NESS STUDY

In the years 2007–2010, the RAND Corporation conducted
a randomized study to test the effectiveness of the CTA1
curriculum relative to business as usual. The study tested
CTA1 under authentic, natural conditions—that is, over-
sight and support of CTA1’s use was the same as it would
have been outside of an RCT. The study population con-
sisted of over 25,000 students in 73 high schools and 74 mid-
dle schools located in 52 diverse school districts in seven
states. Students in Algebra I classrooms in participating
schools took an algebra I pretest and a posttest, both from
the CTB/McGraw-Hill Acuity series. The pretest was the
Algebra Readiness Exam, a 40-item multiple-choice exam
testing students’ algebra I prerequisite skills. The posttest
was the Algebra Proficiency Exam, a 32-item multiple-choice
exam testing algebra I skills including solving equations for
an unknown, graphing linear and quadratic functions, calcu-
lating complex algebraic expressions and other skills. Data
from both exams were scored with a three-parameter item
response theory (IRT) model.

Results [19] were reported separately for middle and high
schools, in the first and second years of implementation. In
the first year, estimated effects were close to zero in middle
schools and slightly negative in high schools, with confidence
intervals including negative, null, and positive effects in both
cases. In the second year, estimated effects were positive—
roughly one fifth of a standard deviation—in both middle
and high schools, and were statistically significant in high
schools. In the high school sample, the difference between
the effects in the first and second years was statistically sig-
nificant as well.

Table 1: The number and percent of students in each
study year of the dataset who were never reassigned,
or reassigned once, twice, three times, or four or
more times

# Reassignments

year 0 1 2 3 4+

n 1621 552 133 43 34
1

% 68 23 6 2 1

n 1056 297 193 95 194
2

% 58 16 11 5 11

As part of the study, RAND collected basic demographic
data from students, including gender, race/ethnicity, prior
standardized test scores, and special education, free or reduced-
price lunch, and English language learner status.

Carnegie Learning collected computer log data from most
users in the treatment arm of the study. At the prob-
lem level, this dataset records which problems students at-
tempted, along with timestamps and the numbers of hints
and errors for each attempted problem. The dataset also
contains data on which sections of CTA1 students attempted,
and the result: whether the student mastered the section,
was promoted automatically without mastery, was reassigned
by the teacher to a new section, or stopped using the tutor
altogether midway through the section.

The current study analyzes data from the high school treat-
ment group only, assessing the effect of teachers reassigning
students from one CTA1 section to another. Since students
in the control arm of the study did not have access to the
tutor, section reassignment is not relevant for them. We fo-
cus on high school, as opposed to middle school, since the
characteristics of Algebra I students tend to differ between
the two levels: 8th-grade students only take Algebra I if they
are sufficiently advanced, whereas most 9th grade students
(who have not taken it already) take Algebra I regardless.
Thus, the high school sample was not only larger but also
more broadly representative than middle school sample.

Unfortunately, log data was not available for every student
in the treatment arm of the study, primarily for two reasons:
some students in CTA1 schools nevertheless did not use the
tutor, and some students used the tutor but their log data
was irretrievable or could not be reliably linked to posttest
scores and covariates. This study omitted schools in which
data was missing for over 20% of students in either year,
leaving 18 schools. Among the students at these schools, we
omitted 164 who had no log data, and 242 who worked—but
did not complete—only one section or who had no section
completion data for some other reason. A total of 4,218
students in 282 classrooms remained in the analysis sample,
roughly 70% of the full treatment group.

Table 1 shows the number of included students in each year
of the experiment who were reassigned zero, one, two, three,
or four or more times. Since the sample size decreases
quickly with the number of reassignments, and for the sake
of simplicity, we chose to dichotomize reassignment, esti-
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mating the effect of being reassigned at least once versus
never.

3. STATISTICAL APPROACH
For subjects i = 1, . . . , N in the treatment arm of the CTA1
trial, let Yi denote subject i’s posttest score, and let Zi ∈
{0, 1} indicate whether i was ever reassigned. Following [18]
and [25], let y0i and y1i denote i’s posttest score were Zi = 0
or 1—i.e., had i not been reassigned, or had i been reas-
signed, perhaps counterfactually—and let τi = y1i − y0i be
the effect of reassignment on i’s posttest score. Since y1i
and y0i are never simultaneously observed, τi is unidenti-
fied; however, weighted average treatment effects of the form
τw =

∑
i wiτi, with wi ≥ 0 and

∑
i wi = 1 may be identi-

fied under the right causal assumptions. For instance, had
Z been randomized, the average treatment effect, τw with
wi = 1/N , could be estimated without bias by the differ-
ence in the mean of Y between subjects with Z = 1 and
with Z = 0. Of course, reassignment Z was not random,
so identifying average treatment effects requires some com-
bination of control for observed covariates and assumptions
about unobserved covariates.

Let xi denote a vector of covariates for subject i. These
include pretest scores, special education, gifted, and English
language learner (ELL) status, race/ethnicity (white, black,
Latinx1), received free or reduced-price lunch (FRL). Let
Classi be i’s classroom; since reassignment occurred within
classrooms, Class is a covariate as well. If reassignment were
randomly assigned, the (theoretical) distribution of x and
Class would be equal between reassigned and not-reassigned
students—x and Class would be balanced. Our strategy
will be to construct a randomization scheme in which x,
and, to the extent possible, Class are balanced, and conduct
inference under that randomization scheme.

Specifically, we use propensity score matching [23] [27]. The
propensity score for subject i, ei(xi, Classi) = Pr(Zi =
1|xi, Classi) is the probability of i being reassigned condi-
tional on covariates x and classroom. [24] showed that un-
der two conditions, described below, estimates of the average
treatment effect conditional on e(x, Class) are unbiased. To
estimate effects, we first estimate propensity scores (Section
4), then identify groups of reassigned and not-reassigned stu-
dents with similar estimated propensity scores—a“match”—
and verify that covariates are sufficiently balanced within
the matched sample (Section 5), and, finally, estimate ef-
fects within the matched sample 6.

The first condition for propensity score matching is that
there is some randomness in the treatment assignment:

0 < ei(xi, Classi) < 1 for all i. (1)

When (1) fails for a subset of the analysis sample, common
practice is to drop that subset and estimate average effects
for the remainder of the analysis sample, i.e. the subset for
which (1) holds; this subset is referred to as the “region of

1For the sake of parsimony, these categories were collapsed
from a larger set in the original dataset, so that 8 Amer-
ican Indian/Alaskan Native students were categorized as
Latinx, 23 Asian/Pacific Islander students and 118 stu-
dents with missing data were categorized as white, and 22
Other/Multiracial students were categorized as black.

common support” [4] [30]. In this study, including Class
among the covariates leads to violations of (1). Of the 282
classrooms over the two years of the study, 95 contained no
reassigned students, and in 52 classrooms every student was
reassigned at least once. In this subset of the data, including
44% of students, Pr(Z = 1|Class) = 0 or 1. Our solution
is to drop classrooms in which no one or everyone was reas-
signed, and only estimate effects for students in classrooms
with some reassignment variance, a student-level analysis.

We attempted a parallel classroom-level analysis, in which
we matched classrooms in which all students were reassigned
to classrooms in which no one was. However, we were un-
able to construct a match with adequate covariate balance
(there were few no-reassigned classrooms with similar mean
pretest scores to the all-reassigned classrooms that were of
similar sizes). For that reason, we dropped the classroom-
level analysis.

The second condition for propensity score matching is that
there are no unmeasured confounders:

(y1, y0) ⊥⊥ Z|x, Class (2)

Assumption (2) is well known as the Achilles heel of causal
inference outside of RCTs. (2) is untestable; its believabil-
ity depends on what is understood about the process that
underlies treatment assignment Z, and what covariates are
available for control. In our case, reassignment is poorly
understood, and appears highly idiosyncratic [16]. Fortu-
nately, our study includes a pretest measure, and observa-
tional studies controlling for pretest scores tend to perform
well, and replicate experimental estimates [6] [7]. Section 6.1
discusses a sensitivity analysis that relaxes 2 and assumes
reasonable levels of unmeasured confounding.

Our attitude towards propensity score matching is agnostic.
If the propensity score models in the following section were
approximately correct, and yielded good estimates of the
true propensity scores, then the theory underlying propen-
sity score adjustment holds. If not, the process of propensity
score matching may still result in a set of matched reas-
signed and not reassigned students that, on average, resem-
ble each other on all measured covariates. In other words,
the (mis)estimated propensity scores ê may still be approx-
imate “balancing” scores, satisfying

x ⊥⊥ Z|ê. (3)

Causal inference based on comparisons within these matched
sets will still be plausible; indeed, [24] showed that in order
to estimate average treatment effects, it is sufficient to con-
dition on a balancing score, rather than the propensity score
itself.

Following that logic, we choose propensity score models, and
matching schemes based on the fitted models, in order to
satisfy (3). Since posttest scores play no role in propensity
score estimation and matching, the process may be iterative
without affecting the objectivity of the final causal estimate.
That is, we may try a series of candidate propensity score
models and matches, and choose the one that results in the
best covariate balance. Only then do posttests enter the
picture, so that we may estimate effects.
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All data analysis was done in R [20] using the tidy-

verse suite of packages [32] for data manipulation, plot-
ting, and other tasks. This document was produced dy-
namically with knitr [34]. Source code is available at
www.github.com/adamSales/cpEffect.

4. PROPENSITY SCORES: WHO GETS
REASSIGNED?

We use multilevel logistic regression [10] to estimate stu-
dent level propensity scores. The multilevel regression ac-
counts for the nesting of students within classrooms, class-
rooms within teachers, and teachers within schools. In con-
structing the model, we give special consideration to the
role of pretest scores, a proxy for student mathematical abil-
ity at the beginning of the school year, in predicting reas-
signment. First, we decompose pretest scores into student-
and classroom-level components. If wi is student i’s pretest
score, let wi = w̄j[i] + w̃i, where w̄j[i] is the average pretest
score in i’s classroom j[i], and w̃i is the difference between i’s
pretest score and the classroom mean. This decomposition
was motivated by the possibility that reassignment patterns
may differ between high- and low-achieving classrooms, and
that a teacher’s decision to reassign a student depends on
the student’s ability relative to the classroom than his or
her absolute ability. Second, we modeled the effect of w̃
on Z as linear in the logit scale, but allowed the slope to
vary by classroom. This was motivated by the possibility
that some teachers use reassignment to help struggling stu-
dents catch up to their peers, so lower w̃ would predict Z,
and other teachers use it to help high-achievers skip sec-
tions related to basic skills, so higher w̃ would predict Z.
We also considered models incorporating non-linear effects
of w̃, via natural splines [14] but found no evidence that the
non-linearity improved the model fit. We fit the model using
the lme4 package in R [1].

All in all, the propensity score model was:

logit {Pr(Zi = 1|xi, Classi = j)} =

β0state[i] + β1w̃i + β2w̄j[i]+

β3Blacki + β4Latinxi + β5Malei+

β6Freshmani + β7SpEdi + β8giftedi+

β9ESLi + β10FRLi + β11FRLmisi + β12yeari+

γj[i]w̃i + εCls
j[i] + εTeach

k[i] + εSchl
l[i]

(4)

where logit(x) = log(x/(1−x)) is the logit function, β0state[i]
is a (fixed) intercept for each state in the sample, FRLmisi
is an indicator for missing data in FRL (which was mode-
imputed), and yeari = 1, 2 is the study year for subject i.

Finally, γj[i], ε
Cls
j[i] , ε

Teach
k[i] , and εSchl

l[i] are random effects. The
subscripts j, k and l refer to classroom, teacher, and school,
respectively; the [i] refers to student, so that j[i] is i’s class-
room, k[i] is i’s teacher, and l[i] is i’s school.

γj[i] is a random slope for w̃i, varying at the classroom level.
This is essentially an interaction term, allowing the slope for
(classroom centered) pretest scores to vary from one class-
room to the next. However, unlike standard regression in-
teractions, random slopes are modeled as being drawn from
a normal distribution, with a standard deviation estimated
from the data. This is a form of regularization, shrinking
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Figure 1: Estimated coefficients and 95% confidence
intervals for student and class-level covariates from
model (4).

the classroom-level slopes towards a common value, and al-
lowing stable estimation even with very few observations
from each classroom [10] [26]. The set of random slopes γj
has a mean of zero—the average slope across classrooms is
the fixed intercept β1. Therefore, the slope for pretest in
classroom j is β1 + γj .

εCls
j , εTeach

k , and εSchl
l are random intercepts for classroom,

teacher, and school. These were also modeled as normal with
a mean of zero and a standard deviation estimated from the
data. Including them in the regression accounts the fact that
two students in the same classroom or with the same teacher
or in the same school may be more likely to have the same
Z—either both be reassigned or neither—than two students
in different classrooms, with different teachers, or in different
schools.

Figure 1 gives estimated coefficients and 95% confidence in-
tervals for the propensity score model (4). Reassignment
was much more prevalent in the second year of implemen-
tation than in the first, and classrooms with low average
pretest scores reassigned students more often—though the
magnitude of this trend is hard to determine, ranging from
moderate to very large (the coefficients for w̄ and w̃ were
scaled by the standard deviations of these variables in the
data). Latinx students were reassigned more often than their
White classmates.

Students with lower pretest scores were reassigned more fre-
quently than their classmates with higher scores. However,
this may vary by classroom. On average, classroom-specific
β1j was approximately -0.31 standard deviations, but the
95% confidence interval for the mean includes slightly posi-
tive values as well. The standard deviation of β1j , varying
by classroom, was estimated as 0.83, suggesting that in some
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classrooms the slope on w̃ was moderately positive, and in
others it was negative. However, the model was not able
to estimate the variance of β1j precisely; the p-value test-
ing the null hypothesis of zero variance was 0.07.2 When
model (4) was modified so that β1 was not allowed to vary
by classroom, it was estimated as -0.32±0.27.

5. MATCHING AND COVARIATE BAL-
ANCE

We construct a student-level match based on propensity
scores on the log-odds scale, i.e. log(ê/(1 − ê). Instead
of a pair-matching design, which would necessitate discard-
ing non-reassigned students who would make good matched
comparisons, we use a restricted full match design [11]. In
this design, the numbers of reassigned and not-reassigned
students in each matched set is allowed to vary, so that in
some cases several reassigned students may be matched with
a single non-reassigned student, and vice-versa. We use the R
package optmatch [13] to choose the matched sets optimally.
The fullmatch() routine takes a matrix of discrepancies
(e.g. differences in propensity scores) between treatment
and control subjects, and arranges them into matched sets
so that the sum of absolute discrepancies between matched
subjects is minimized.

As described at the end of Section 3, the post-test scores
played no role in this process. Hence, we were able to it-
eratively match students, check covariate balance, modify
the propensity score model and/or the matching routine if
necessary, and repeat until adequate balance was achieved.
Here we present the final match; a record of attempts is
available on the first author’s github site.

The initial full match based on the log-odds propensity
scores yielded decent covariate balance. However, pretest
scores were slightly unbalanced, and since we consider
pretest to be the most important covariate, we decided to
match on the Mahalanobis distances between reassigned and
not reassigned students combining propensity scores and
pretest scores. Additionally, as displayed in Figure 2, the
distributions of propensity scores among reassigned and not-
reassigned students do not entirely overlap. Although this
is at least partially due to overfitting the propensity score
model (4), matching students with highly discrepant propen-
sity scores may hinder the believability of the result. Hence,
in our final match we imposed a caliper of 0.3 pooled stan-
dard deviations of the Mahalanobis distances. This pre-
vented students with very different pretest scores or propen-
sity scores to be matched. On the other hand, matches
were unavailable for 25% of the students in the sample (21%
of reassigned students and 28% of not-reassigned students).
Propensity scores for these students are colored red in Fig-
ure 2. Our effect estimates pertain only to the remaining
75% of students—all in all, 1480 students, 604 reassigned
and 876 not reassigned.

Covariate balance after matching was excellent. Figure 3
and Table 2 give covariate balance (standardized differences)
before and after matching. They were produced with the RI-

2This hypothesis was tested with a likelihood ratio χ2 test
comparing (4) to a model in which β1 did not vary by class-
room.
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Figure 2: Estimated propensity scores for reassigned
and not-reassigned students. Scores for students
who were excluded from the ultimate match are col-
ored red.
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Figure 3: Covariate balance (standardized differ-
ences) before and after matching, for student level
data. Dotted lines indicate standardized differences
of 0.25 and 0.05, following the What Works Clear-
inghouse standards.
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Table 2: Balance (standardized differences) on stu-
dent level covariates before and after propensity
score match. Omnibus p-values testing covariate
balance are p<0.001 before matching and p=0.95
after matching.

Before Match After Match

std.diff std.diff

Pretest
Class Mean -0.09 . 0.00
Class Centered -0.09 . -0.01

Race/Ethnicity
White -0.53 *** 0.06
Black 0.06 -0.02
Latinx 0.59 *** -0.05

Sex
F -0.01 -0.01
M 0.01 0.01

Grade
10+ 0.14 ** -0.03
9 -0.14 ** 0.03

Special Ed. 0.12 * -0.05
Gifted -0.04 0.00
ESL 0.22 *** -0.02
FRL -0.02 0.00
FRL Missing -0.28 *** 0.06
Year 0.11 * 0.00

tools package in R [3]. Before matching, several covariates
were unbalanced, especially race. Table 2 shows stars reflect-
ing p-values from individual covariate balance tests; nearly
all covariates were unbalanced at the α = 0.1 level. An om-
nibus balance test [12] gives p < 0.001. Figure 3 shows, as
benchmarks, standardized differences of ± 0.25 and 0.5, cor-
responding to thresholds given in the What Works Clearing-
house (WWC) handbook3 [5]. Before matching, imbalances
in race and FRL missingness exceeded 0.25, and most other
imbalances were greater than 0.05.

Matching improved nearly all of these imbalances. Most
importantly, pretest measures were nearly exactly balanced.
None of the individual covariate balance tests was significant
at the 10% level or had standardized differences greater than
0.25, and, with the exception of race, and FRL missingness
none of the covariates was imbalanced with a standardized
difference greater than 0.05. The omnibus p-value testing
overall balance was 0.95.

The match also balanced classroom indicators. Before
matching, the omnibus p-value testing balance of classroom
indicators was < 0.001; after matching it was 0.99.

6. THE EFFECT OF REASSIGNMENT

Table 3 gives five estimates for the effect of reassignment in
classrooms where some students, but not all, were reassigned
at some point. The first column gives the estimate itself, the
second gives the sample size N for that estimate, the third,
“Std Error” gives the standard error, and the fourth, “CI,”
gives a 95% confidence interval. The last two columns con-
tain sensitivity analyses, described in the following section.
All the estimates used a regression routine from the esti-

matr package in R [2], with “HC2” heteroskedasticity-robust
standard errors.

The first row, labeled “Raw,” is an an unadjusted estimate,
comparing all students in the sample who were reassigned to
all students who weren’t. There is little difference in their
average posttest scores.

The next row, labeled “Matched+Regression,” gives the ef-
fect estimate based on the match from Section 5. The lower
sample size 1480 reflects the fact that some students were
excluded from the match; this estimate only pertains to
those who were included. To estimate the effect, we regress
posttests on Z including a fixed effects for each match. Let
τ̂m be the estimated effect in match m. If m is a pair—
one reassigned student matched with one non-reassigned
student—then ˆtaum is the difference between the two stu-
dents’ posttest scores. If there are more than two students
in the match, τ̂m is difference in posttest means between
reassigned and not-reassigned students within matched-set
m. If treatment assignment is unconfounded within each
match, Z ⊥⊥ {yC , yT }|match, then τ̂m is unbiased for the
average effect of Z on posttest scores in match m. Then the
regression estimate is a weighted average of τ̂m, with weights
wm ∝ (1/n1m + 1/n0m)−1; this weighing scheme minimizes
the standard error under standard linear regression assump-
tions (if the regressions assumptions do not hold, but Z is
still unconfounded within the match, then the estimate is
still unbiased but the weights are sub-optimal).

The next row, labeled “Match+Regression” uses the same
regression model as the “Matched” estimator, but addition-
ally controls for pretest scores (with a natural spline with
five degrees of freedom), and indicators for special education
status, missing free or reduced-price lunch data, and race.
This strategy controls for differences in these covariates left
over after the match, accounting for the fact that the match
was imperfect.

The “Matched” and “Match+Regression” estimates were al-
most identical—effect sizes of -0.2 and -0.19, respectively,
with 95% confidence intervals of [-0.29,-0.12] an [-0.28,-0.11].
These negative effect estimates suggest that reassignment
hurts student learning. The effect size of a fifth of a standard
deviation is roughly the same as the overall average effect
of CTA1 in high schools in the second year of implementa-
tion, as estimated in [19], suggesting that reassignment may
negate most of the positive effect of using CTA1.

The next two rows of Table 3, however, suggest that the

3In the context of a randomized experiment with attrition,
covariate imbalances with standardized differences greater
than 0.25 invalidate a study, whereas differences between
0.05 and 0.25 require statistical adjustment and differences
less than 0.05 are acceptable as is.
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Estimate N Std. Error CI [Pretest] [State]
Raw -0.04 1981 0.03 [-0.11,0.03] [-0.15,0.07] [-0.16,0.08]

Matched -0.20 1480 0.04 [-0.29,-0.12] [-0.35,-0.06] [-0.36,-0.05]
Match+Regression -0.19 1480 0.04 [-0.28,-0.11] [-0.33,-0.05] [-0.34,-0.04]

Year 1 -0.24 1008 0.06 [-0.34,-0.13] [-0.42,-0.06] [-0.43,-0.04]
Year 2 -0.11 472 0.07 [-0.25,0.02] [-0.33,0.11] [-0.35,0.12]

Within-Class -0.17 1981 0.04 [-0.24,-0.10] [-0.29,-0.05] [-0.30,-0.04]

Table 3: Estimates of the effect of reassignment without controlling for confounding (“Raw”), controlling for
confounding with propensity score matching (“Matched”), with matching and further regression adjustment
(“Match+Regression”), overall and separately for each year, and matching by classroom, with further re-
gression adjustment (“Within-Class”). The table gives estimates, standard errors, 95% confidence intervals,
and 95% sensitivity intervals assuming an unobserved confounder with properties similar to pretest scores
(“[Pretest]”) and to State (“[State]”)

effect of reassignment may depend on context. Each row
uses the “Match+Regression” approach, but separately in
data from implementation years 1 and 2. It appears that
reassignment may have hurt students’ posttest scores more
in the first than in the second year of implementation—in
the first year, we estimate an effect of -0.24 and in the second
year we estimate an effect of -0.11. That said, the difference
between the two effects is not itself statistically significant—
that is, it may be the result of statistical noise.

The final row of Table 3, labeled “Within-Class,” uses a dif-
ferent confounder control strategy altogether. This estimate
matches students by classroom, as if reassignment were ran-
domized within classrooms. To weaken that assumption,
the “Within-Class” estimate incorporates additional regres-
sion controls: a natural spline with five degrees of freedom
for pretest, and indicator variables for the remaining covari-
ates. This strategy estimates a similar negative effect as the
others, NA, with a 95% confidence interval of [-0.24,-0.10].

6.1 Unobserved Confounding
The estimates in Table 3 all assumed (2), that there was
no unobserved confounding. This assumption is strong,
untestable, and could undermine all of the inference in Sec-
tion 6. For instance, the estimated negative effect may be
due to baseline differences in ability, beyond what is cap-
tured in pretest scores.

[15] suggest a method of estimating the sensitivity of a re-
gression to an omitted confounder based on benchmarking
from observed confounders. Roughly speaking, the idea is
to widen the confidence interval from an ostensibly causal
linear model to account for the possibility of a hypothetical
unmeasured confounder, U , that predicts reassignment and
posttests to the same extent as one of the observed covari-
ates. These “sensitivity intervals” account for uncertainty
from two sources: random error, and systematic error due
to the omission of a confounder.

In order to confound the causal relationship between reas-
signment and posttests, a confounder would have to predict
both. Capturing these two requirements, the method of [15]
is based on two sensitivity parameters: first, TZ encodes the
extent to which U predicts Z, after accounting for observed
covariates x. Formally, TZ is the t-statistic on the U co-
efficient from an ordinary least squares regression of Z on
U and X. The second parameter is ρ2, the squared partial

correlation between posttest scores and U , conditional on
x. Of course, since U is unobserved, neither TZ nor ρ2 is
known; [15] suggest benchmarking them using observed co-
variates. That is, imagine each observed covariate, in turn,
were unobserved, and calculate its TZ and ρ2 given the rest
of the observed covariates.

Table 3 includes two such sensitivity intervals. The column
labeled “[Pretest]” includes sensitivity intervals for an unob-
served confounder that predicts reassignment and posttests
as well as do pretest scores—typically the most impor-
tant confounder. That is, these intervals are 95% confi-
dence intervals that assume the possible existence of an
unmeasured covariate as important as pretest. It turns
out, in the current analysis, that omitting state indica-
tors would cause more bias than omitting pretest scores;
for that reason, the column labeled “[State]” gives sensi-
tivity intervals for an unobserved confounder that predicts
reassignment and posttest scores as well as state indica-
tors. Both sets of sensitivity intervals are considerably wider
than the corresponding confidence intervals, including both
large and small negative effects. Sensitivity intervals for
the“Matched”, “Match+Regression,”“Year 1,” and“Within-
Class” estimates, whose confidence intervals excluded zero,
excluded zero as well. That is, confounding from an un-
observed variable as important as pretest or state may have
led us to over-estimate the negative effect of reassignment; it
may have also led us to under-estimate the effect. However,
such confounding cannot explain the sign of the effect we
estimated—even assuming the existence of an unobserved
confounder as important as our most important covariates,
the effect must be negative.

That said, an even stronger confounder, or more complex
confounding from several unobserved covariates, may ex-
plain the observed results. Without a randomized trial, it is
impossible to entirely rule out unobserved confounding.

6.2 Treatment Effect Heterogeneity
Previous research [16] has found evidence for a wide variety
of uses for reassignment. In some cases, teachers reassign
students who are falling behind their classmates, in other
cases teachers reassign nearly the entire class to work on a
particular section of the tutor, and in other cases teachers
will simultaneously reassign all students working on a par-
ticular section out of that section. Along similar lines, our
(inconclusive) evidence for variance between classrooms in
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Figure 4: Classroom-specific effects of reassignment
(β̂1 + γ̂j) from model (5). Error bars represent stan-
dard errors.

the relationship between pretest scores and the probability
of a student being reassigned points towards varying uses
for reassignment.

If reassignment is used differently from classroom to class-
room, it stands to reason that it might have different effects
in different classrooms, as well. To test that assumption,
we fit a multilevel model with random effects for reassign-
ment, varying by classroom. The model had the same fixed
effects as model underlying the “Match+Regression” results
described above, as well as random intercepts for classroom
and random slopes for reassignment, varying by classroom.
Formally, the model is:

Posttesti = β0,m[i] + β1Zi + β2SpEdi+

β3frlMISi + β4Blacki + β5Hispi+

ns5(pretesti,α) + γj[i]Zi + εCls
j[i] + εInd

i

(5)

where β0,m[i] is a fixed intercept for each match,

ns5(pretesti,α) is a natural spline for pretest, with five de-
grees of freedom and coefficient vector α, and γj[i], ε

Cls
j[i] , and

εInd
i are random effects, modeled as normal with mean zero

and standard deviation estimated from the data. Symbols
α, β, γ, and ε do not represent the same quantities as in
equation (4). γj[i] is the random slope for reassignment,
varying by classroom; the effect of reassignment in class-
room j is estimated as β̂1 + γ̂j . That is, β1 represents the
effect of reassignment, averaged over all classrooms, and γj
represents the difference between classroom j’s effect and
the average. While precisely estimating the effect of reas-
signment in any particular classroom is beyond the scope
of our data, this model allows us to estimate the variance
across those effects, as the variance of γjs.

The results are displayed in Figure 4. The effect of reassign-
ment in an average classroom is estimated as similar to the
effects in Table 3. This effect varies with a standard devi-
ation of approximately 0.25. To test for between-classroom
variance, we compared the fit of the multilevel model to an
analogous model without random slopes, with a likelihood
ratio χ2 test; the p-value was 0.004. This standard devia-
tion is large enough to imply that the effect will be positive
in some classrooms—indeed, Figure 4 shows a number of
classrooms with positive effects. That said, the confidence
intervals (based on estimates for the conditional variance
of random slopes, combined with the standard error of the
main effect of reassignment) are all rather wide and nearly
all contain zero.

Therefore, while the effect of reassignment was negative, on
average, it may have been positive in some classrooms.

This variation could be due to a number of factors, includ-
ing differences in the composition of classrooms and in when
or how reassignment is used. We considered two simple hy-
potheses about classroom-level predictors of heterogeneous
treatment effects. The first hypothesis was that variance in
students’ pretest scores within a classroom predicts the ef-
fect of reassignment in that classroom. The idea is that some
teachers may use reassignment as a tool to address vary-
ing student ability—for instance, they may reassign lagging
students to help them keep up with their classmates. Class-
rooms with higher variance in pretest scores afford more op-
portunities for teachers to use this reassignment strategy. If
the strategy is widely used, and either particularly effective
or ineffective at boosting students’ posttest scores, there will
be a correlation between classroom-level variance in pretest
scores and the effect of reassignment.

Our second hypothesis was that the proportion of stu-
dents in a classroom who have been reassigned may predict
classroom-level effects. The idea here is that in classrooms
with a low proportion of students reassigned, teachers use
reassignment in a more targeted fashion, so it may be more
beneficial.

Figure 5 plots random effects γ̂j from model (5) as a func-
tion of classroom level pretest variance and the proportion
of students reassigned, respectively, with simple OLS fits.
A positive relationship between pretest variance and γ̂, and
a negative relationship between proportion reassigned and
γ̂ are apparent, but with wide standard errors. To test
these hypotheses more formally, we re-fit model (5), adding
fixed effects for the variance in pretest scores and propor-
tion reassigned, as main effects and interacted with Zi. The
model reduced the unexplained variance in classroom-level
effects from 0.25 to 0.21—these variables explained about
27% of the unexplained variance in treatment effects. The
coefficient on the interaction beween pretest variance and
reassignment—measuring the extent to which pretest vari-
ance explains treatment effects—was estimated as 0.09, with
a 95% confidence interval of [-0.75,0.93], so the data are
compatible with large associations in either direction be-
tween pretest variance and treatment effects. No firm con-
clusions may be drawn. The coefficient on the interaction
beween proportion reassigned and reassignment—measuring
the extent to which classroom proportion reassigned ex-
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Figure 5: The random effects γj from model (5) (with error bars for one standard error) as a function
of classroom-level variance in pretest scores and the proportion of students in a classroom who were ever
reassigned. OLS fits are added for interpretation.

plains treatment effects—was estimated as -0.3, with a 95%
confidence interval of [-0.57,-0.03], and a p-value of p = 0.03.
This suggests that the effect of reassignment may be lower—
more negative—in classrooms in which a higher proportion
of students were reassigned. This aligns with our second
hypothesis.

These effect heterogeneity analyses assume (2), no unmea-
sured confounding. Unfortunately, we are not aware of
methods for sensitivity analysis of the type presented in Sec-
tion 6.1, applied towards estimates of effect heterogeneity.
In particular, unobserved confounding may vary by class-
room; for instance, the structure of the propensity score
match may vary with the proportion of students ever reas-
signed, since within-classroom matches will be scarce when
this proportion is high. For those reasons, the conclusions in
this section should be taken as suggestive and exploratory.

7. DISCUSSION
A deeper understanding of the use of reassignment and its ef-
fects can yield practical and theoretical dividends. Teachers
would benefit from clear guidelines as to when and whether
reassigning students to a new section may benefit that stu-
dent’s learning. A better understanding of if and when reas-
signment helps or hurts student learning can contribute to
our understanding of the importance of sequence and mas-
tery learning in intelligent tutoring systems.

Here, we estimate that, on average, reassignment hurts stu-
dent learning, perhaps as much as CTA1 helps. That con-
clusion comes with two important caveats: first, although it
appears unlikely that the entire reassignment effect we esti-
mated is due to confounding from unmeasured variables, a
large portion of the effect might be. That is, the magnitude
of the reassignment effect we estimated may be an artifact of
unmeasured confounding—reassignment may not be as bad

as we estimate, or it may be worse. (Of course, we cannot
rule out that the entire effect is due to confounding, or that
the direction of our estimated effect is wrong.)

Secondly, there is evidence that the effect of reassignment
varies widely between classes. Even if it hurts on average,
used properly it may help.

More broadly, these issues illustrate the opportunities and
perils of analyses of log data from randomized trials of ed-
ucational technology. Even when the randomization itself
does not contribute to an analysis, the combination of log
data collected under natural conditions and a long period of
time and a posttest measuring student ability at the end of
the study can be used to gain insights on tutor use and ef-
fects. On the other hand, log data, even from a randomized
trial, is observational, and therefore messy and subject to
confounding and other threats. Causal modeling of log data
from randomized experiments is crucial, but difficult.
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ABSTRACT
Supervised machine learning has become one of the most im-
portant methods for developing educational and intelligent
tutoring software; it is the backbone of many educational
data mining methods for estimating knowledge, emotion,
and other aspects of learning. Hence, in order to ensure opti-
mal utilization of computing resources and effective analysis
of models, it is essential that researchers know which eval-
uation metrics are best suited to educational data. In this
article, we focus on the problem of wrapper feature selection,
where predictors are added to models based on how much
they improve model accuracy in terms of a given metric.
We compared commonly-used machine learning algorithms
including naive Bayes, support vector machines, logistic re-
gression, and random forests on 11 diverse learning-related
datasets. We optimized feature selection based on nine dif-
ferent metrics, then evaluated each to address research ques-
tions about how effective each metric was in terms of the
others (e.g., does optimizing for precision also result in good
F1?) as well as calibration (i.e., are predictions produced by
models accurate probabilities of correctness?). We provide
empirical evidence that the Matthews correlation coefficient
(MCC) produced the overall best results across the other
metrics, but that root mean squared error (RMSE) selected
the best-calibrated models. Finally, we also discuss issues
related to the number of features selected when optimizing
for each metric, as well as the types of datasets for which
certain metrics were more effective.

Keywords
Feature selection, Metrics, Machine learning, Student mod-
els

1. INTRODUCTION
Machine learning is a popular method for building predic-
tive models that automatically estimate various aspects of
learning. These models, in turn, can be applied to study
the processes of learning or teaching, or to automatically

guide students as they learn. Training models is a complex
process, however. The space of possible machine learning
models is far too large to fully explore, and thus the search
space is typically narrowed by focusing on candidate mod-
els that appear promising via some measure of correctness
(agreement with ground truth labels, for supervised classifi-
cation), such as Cohen’s kappa or F1 [16, 40]. One common
methodological step that involves model selection (narrow-
ing the search space) is wrapper forward feature selection
[29], a process wherein features are added one at a time to
a model based on which feature produces the largest gain
in model correctness. Changing the correctness metric by
which features are evaluated can have a significant impact
on the final selected model (which we demonstrate in this pa-
per); however, little is known about exactly what these im-
pacts are for different correctness metrics. In this paper, we
address this problem by performing feature selection based
on different metrics and comparing the resulting models.

Previous work in the area of examining correctness met-
rics for educational data mining has largely focused on what
those metrics reveal about models [40, 10]. Related work has
shown, for example, that area under the receiver operating
characteristic curve (AUC or AUROC) ignores the scale of
model predictions [40], and that F1 can be increased by over-
predicting the positive class [10]. From such findings we can
generate hypotheses about the properties of models that re-
sult from relying on those metrics during feature selection.
For example, we might expect recall- and F1-based feature
selection to favor models that over-predict the positive class.
However, there is little empirical evidence to support such
hypotheses, which we aim to provide in this paper.

We explore a wide variety of correctness metrics for feature
selection, evaluating them on 11 education-related datasets,
to empirically measure relationships between feature selec-
tion metrics and resulting models. We include well-known
and extensively-used metrics like AUC, Cohen’s kappa, and
others, as well as metrics that are less-commonly used but
perhaps equally valuable, like the Matthews correlation coef-
ficient and the minimum proper AUC. We experiment with
metrics and datasets across four commonly-used machine
learning classifiers, including support vector machine, naive
Bayes, logistic regression and random forest. These algo-
rithms have been frequently applied with great success in
educational data mining and related research [24, 21, 43, 9],
including in situations where high-dimensional data require
feature selection [27, 49, 34].
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To the best of our knowledge, ours is the first work to ex-
plicitly test differences between correctness metrics in the
context of feature selection. Our results are valuable for fu-
ture educational data mining research and practice by pro-
viding guidance to machine learning experts who wish to
make evidence-based decisions about their model building
methods. In particular, we characterize metrics in terms
of the models that result from performing feature selection
based on those metrics, which will help researchers decide
on appropriate metrics based on the desired properties of
their resulting models.

2. RELATED WORK
While previous research and other projects in this area is
limited, there have been a few relevant research projects
with findings that significantly informed our current work.
In this section, we describe metrics evaluated in this study
along with examples where they were used in previous work,
then discuss directly-related work on evaluating metrics in
educational data mining.

2.1 Metrics and their Usage
Accuracy. In this paper, accuracy refers to the proportion
of correctly classified instances, though in other contexts
it may refer more generally to any measure of how well a
model’s predictions align with ground truth values. Accu-
racy is one of the most straightforward metrics to calculate
and understand, and thus has been reported frequently in
machine learning studies [35, 12]. However, previous re-
search has noted flaws with accuracy. In situations where
labels are imbalanced, accuracy is often attenuated [25] or
inflated [10] depending on the rate at which the model pre-
dicts the majority class. Despite possible flaws, it is com-
monly examined and is often the default correctness measure
in machine learning software [39], including in wrapper fea-
ture selection software [41], so we include it in this paper.

AUC. AUC measures model correctness in terms of true
positive rate across every possible false positive rate (i.e.,
across all possible decision thresholds). Chance level AUC
is 0.5, while a perfect model has AUC = 1 and a completely
incorrect model has AUC = 0. AUC is a valuable metric for
its clear interpretability and effectiveness in the face of class
imbalance [25], and has often been reported as an evaluation
metric on educational datasets (e.g., [26, 23, 40, 37]). How-
ever, it only measures correctness in terms of the order of
predicted values, not their scale [40], so it is unclear whether
selecting features based on AUC will result in models that
may have poorly-scaled predictions (an issue we explore in
this paper). A related metric is the area under the precision–
recall curve (AUPRC) [44], which also considers all possible
decision thresholds. We have not yet included AUPRC in
analyses, but expect that its behavior with respect to scale
of predictions may be similar to AUC.

MPAUC. In situations where models provide only binary
predictions, an approximation of AUC can be calculated
by measuring the minimum proper AUC (MPAUC) of the
quadrilateral formed by the single available decision thresh-
old [38], as shown in Figure 1. We refer to this metric
as MPAUC for the sake of brevity when reporting results,
though it is not typically abbreviated in previous literature.
It differs from AUC in that it measures the area for a“curve”

defined by a single point instead of many points as in AUC.
Its advantage is that it is applicable even when continuous
decision thresholds are not available. MPAUC has been uti-
lized as a metric for feature selection in prior educational
data mining research [9], but it is unclear how it compares
to alternatives we explore in this paper.

Figure 1: Example MPAUC (shaded area).

MCC. The Matthews Correlation Coefficient (MCC) mea-
sures the correlation between two binary variables (predicted
labels and actual labels) [30], and is equivalent to Pearson’s
r for two binary variables (i.e., φ). MCC ranges from -1
to 1, where 0 indicates chance level and 1 indicates perfect
classification. MCC is especially useful in binary classifica-
tion models where there is class imbalance, since its chance
level is not affected by imbalance. MCC is simply a corre-
lation coefficient between the true and predicted class. It is
only defined for binary variables. While it is not common in
educational data mining research, it has been occasionally
reported [8, 1] and is valued in other machine learning fields
[15].

Recall. Recall is the proportion of a certain label class
(typically the positive class) that was correctly identified as
being in that class [46, 4]. Recall is an informative measure
for understanding model correctness, especially in situations
where it is important to focus on one class (e.g., in situations
where false negatives are costly). However, it can be inflated
by over-predicting the positive class [10] and is thus not
often reported as the sole measure of model correctness, so
it is unclear whether it is appropriate as a metric for feature
selection.

Precision. Precision is similar to recall; it is the proportion
of instances predicted as being in the positive class that were
correct predictions. Like recall, it is typically only reported
in conjunction with other correctness metrics, but unlike
recall it cannot be inflated by over-predicting the positive
class [10]. However, in some cases it can be maximized by
predicting the positive class for only a few of the highest-
confidence instances.

F1. F1 is defined as the harmonic mean of precision and
recall, and thus avoids some of issues of recall (favoring
over-prediction of the positive class) and precision (under-
predicting the positive class). However, it can be inflated
by over-predicting the positive class [10], so it is unclear
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whether selecting features based on F1 will favor models
that over-predict the positive class or not.

RMSE. RMSE (root-mean-square error) measures the Eu-
clidean distance between predictions and ground truth la-
bels. Since RMSE is an error metric, lower values are better,
with 0 indicating no error. It is commonly associated with
regression problems, since it can be easily calculated for con-
tinuous labels, but is also effective for binary classification
with models that produce continuous-valued probability pre-
dictions [40, 13]. Previous research has noted that RMSE
is especially effective for optimizing probabilistic predictions
[40]; thus, we expect that selecting features based on RMSE
might also produce models with well-calibrated probabili-
ties (where model confidence matches the probability that
the model is correct). Like AUC, RMSE does not require
setting a decision threshold, unlike the other metrics we con-
sider in this study. We refrained from using close variants
like Mean Absolute Deviation (MAD) or Error (MAE), since
previous work has noted issues with these metrics for model
selection [40].

Kappa. Cohen’s kappa (κ) was developed as a measure
of agreement between human annotators [16], but has of-
ten been utilized as a machine learning correctness metric
by measuring the agreement between ground truth labels
and predicted labels [10]. Like correlation measures, kappa
ranges from -1 to 1 where 0 is random chance and 1 indicates
perfect classification.

2.2 Research on Metrics in Educational Data
Mining

Previous research has focused on metrics primarily in terms
of the perspective that metrics have on a model of students,
or on the properties of the model that are highlighted (or
hidden) by particular metrics.

In one previous project, researchers focused on evaluating
the properties of metrics that require continuous (probability-
like) predictions [40]. In particular, they focused on AUC,
RMSE, mean absolute error (MAE), and log likelihood (LL).
They noted that for some applications (e.g., prediction of
probability that a student has mastered a specific skill) met-
rics such as AUC do not favor well-calibrated models. They
also compared metrics in terms of how often they agreed
on picking the best model out of a pool of 20 simulated
datasets, finding that RMSE and LL frequently agreed (17
out of 20) but others agreed much less often; the second-
highest agreement was between RMSE and AUC, on 7 out
of 20 datasets. This is especially relevant to the work in
this paper, where we compare properties of metrics applied
across 11 real-world datasets.

In similar previous work, researchers compared the proper-
ties of metrics that require binary or categorical predictions,
rather than continuous predictions [10]. They noted that F1
is influenced by the base rate of the positive class in data, in
line with other research on Cohen’s kappa, AUC, and other
metrics [25]. However, they also noted that F1 (and recall)
are influenced by the predicted rate of classifiers. This find-
ing is especially relevant to the current research because it
is possible that feature selection will favor models and fea-
tures that tend to predict more of the positive class when

selecting based on these metrics.

3. FRAMING THE PROBLEM
The goal of this paper is, broadly speaking, to provide em-
pirical results that illustrate the relationships 1) among dif-
ferent metrics, and 2) between metrics and models, when
metrics are employed for forward feature selection.

Sequential feature selection is a type of wrapper (model-
based) feature selection in which a feature is added to or re-
moved from a model, the model is re-trained, and the quality
of the feature in question is assessed based on improvement
in model correctness (as measured by some metric). In this
study, we specifically performed forward feature selection by
adding one feature at a time, stopping when all features were
added or when the model had not improved for three consec-
utive features, then returned the set of features with maxi-
mum correctness among all the combinations explored. Our
work focuses primarily on the effects of utilizing different
metrics for the step in which model correctness is assessed,
which drives the entire feature selection process. We define
four research questions (RQs) to explore this problem:

RQ1: When selecting features based on a specific
metric, how do the results vary in terms of the
other metrics? Addressing this question will inform deci-
sions about which metric to apply during feature selection
by showing the relationships between metrics. For exam-
ple, some low-cost applications may benefit from high recall
(e.g., automatically selecting the most relevant material for
students to review) while other higher-cost applications may
require high precision (e.g., automatically predicting when a
teacher should intervene to redirect learning behaviors). In
these examples, we may wish to optimize feature selection
for different metrics, but it is crucial to understand how that
might influence other metrics; e.g., does optimizing feature
selection for AUC tend to produce models that are also good
in terms of Cohen’s kappa, recall, and the other metrics?

To address RQ1 we define the ranking of a metric with re-
spect to all the other metrics. Specifically, given a set of
metrics M, a selection metric X ∈ M has rank 0 with re-
spect to another metric Y ∈ M if selecting features based
on X results in the best1 value of Y compared to selecting
features based on all other metrics inM. Likewise, a metric
Z ∈ M has rank 1 with respect to Y if selecting features
based on Z produces the second-best value of Y compared
to all other metrics in M, and so on. Generally, we ex-
pect that selecting features for some metric X ∈ M will
have rank 0 with respect to itself (X), though this is not
necessarily always true. Furthermore, some metrics may be
generally better than others in terms of rank, if they tend to
favor models with well-rounded properties that satisfy each
metric. We thus calculate the mean ranking of each metric
as the mean of all rankings for a metric with respect to it-
self and all other metrics (nine in total, in this paper), as a
way to discover which feature selection metrics tend to yield
models that satisfy the wide range of criteria imposed by
different metrics.

1“Best” meaning highest for most metrics, but lowest for
RMSE since it is an error metric.
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RQ2: How do different feature selection metrics im-
pact model calibration? As previous work noted, some
metrics do not penalize models for being poorly calibrated
[40]. However, it remains unclear how large of an effect us-
ing different metrics during feature selection may have on the
calibration of the resulting model. We address this research
question by calculating CAL scores (described in Sec. 4.4)
for models selected based on each metric [12].

RQ3: How do different feature selection metrics im-
pact the predicted rates of models? Certain correctness
metrics favor over- or under-prediction of the positive class
more than others. For example, accuracy for a problem with
imbalanced classes can be increased simply by biasing pre-
dictions of the positive class in the same direction as the
imbalance in the data [10]. We might expect that relying
on accuracy for feature selection could thus result in models
that over or under-predict the positive class, but it is unclear
how problematic these effects may be, which we measure in
addressing this research question.

RQ4: Do some feature selection metrics tend to re-
sult in more parsimonious models (fewer features)
than others? In addressing this research question, we fur-
ther characterize the models that result from applying dif-
ferent metrics during feature selection, and highlight cases
where feature selection may fail (by selecting too few fea-
tures) or unnecessarily increase model complexity (by se-
lecting an unusually large number of features).

4. EXPERIMENTS
We performed a variety of experiments to address our re-
search questions, consisting of training and testing machine
learning classifiers with forward feature selection. Experi-
ments required approximately 11 months of continuous run
time2, given that we performed extensive hyperparameter
selection with 4 classifiers, 11 datasets, and 9 feature selec-
tion metrics, as detailed in this section.

4.1 Classifiers
As mentioned in the Introduction, we trained models includ-
ing random forest, support vector machines, naive Bayes,
and logistic regression. These machine learning algorithms
represent a variety of methods with differing assumptions
and levels of flexibility, and which are frequently employed
in educational data mining research [18, 5, 21, 43, 20, 7, 11,
45]. Moreover, with the possible exception of random for-
est, these models quite often benefit from feature selection
to avoid problems of over-fitting (e.g., when a logistic regres-
sion has nearly as many parameters as instances) [33] and
collinearity (e.g., when two very similar features incorrectly
double the impact of a relationship in a naive Bayes model).

4.2 Cross-validation
We utilized student-level four-fold cross-validation, training
each model on data from 75% of students and testing it on
the remaining 25% of students, then repeating a total of four
times until each student was in the testing data exactly once.
This procedure ensured that data from the same student was

2Experiments were run on an Intel Core i7 4.2 GHz proces-
sor (using a single core) with 32 GB memory and 256 GB
storage.

never present in training and testing at the same time, which
was crucial given that some of our datasets had multiple
instances per student.

We performed nested (within training data) student-level
four-fold cross-validation for evaluating hyperparameters and
selecting features. Specifically, for every possible combina-
tion of hyperparameters, we performed forward feature se-
lection, then stored the best result from the feature selection
process (according to the current selection metric). Finally,
we retrained the model using the best set of hyperparame-
ters, including the best features, on all training data, and
applied it to the testing data. Hyperparameter selection and
feature selection did not involve the testing set in any way.

There are two common strategies for evaluating the results
of cross-validation. The first, macro-level averaging, con-
sists of calculating the desired correctness metric for each
fold and averaging across folds (four folds, in our case). The
second strategy, micro-level averaging, involves storing the
predictions of each fold and calculating the correctness met-
ric once at the end based on all predictions. We evaluated
both strategies to assess possible differences on the feature
selection process.

4.3 Hyperparameters
We extensively tested common hyperparameters for each
classification algorithm to ensure models had a chance to
fit to the very different properties of our datasets (e.g., type
of data, number of features, size of dataset).

For random forest we set the number of trees at 50 (signif-
icantly increasing this proved infeasible for an already-long
run time). We varied the minimum number of samples re-
quired to create a branch in each tree, trying 5 different val-
ues (2, 4, 8, 16, or 32). This hyperparameter controls model
complexity by restricting how fine-grained the decisions in
each tree can be. We also varied the number of features
randomly chosen for building each tree, testing 4 options in-
cluding proportions of .25, .50, .75, and the square root of
the number of features (the default setting). This hyperpa-
rameter controls how different trees are from each other in
terms of the features from which they are trained. In total,
there were 5 × 4 = 20 combinations of hyperparameters for
random forest.

We trained SVMs with the radial basis function (RBF) ker-
nel, which has a hyperparameter γ that controls the size
(radius of influence) of each RBF kernel. We tried values
for γ of 0.001, 0.01, 0.1, 1, and 10. Similarly, we tuned C,
the SVM complexity hyperparameter, over the same set of 5
possible values. There were thus 5 × 5 = 25 hyperparameter
combinations for SVM.

Naive Bayes has little in the way of hyperparameters to tune,
apart from the distribution assumption to use. We assumed
a Gaussian distribution for all models, and thus did not
perform grid search across hyperparameters.

We trained logistic regression models with L2 regularization,
and tuned the strength of regularization as a hyperparam-
eter over the space of 5 possible values: 0.001, 0.01, 0.1, 1,
and 10.
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Finally, we experimented briefly with hyperparameters re-
lated to class imbalance in the datasets, after noting that
models frequently learned to only predict the majority class.
We initially experimented with re-weighting instances of the
minority class with higher weight set as a hyperparameter,
but ultimately found that generating synthetic minority-
class data via SMOTE (Synthetic Minority Over-sampling
TEchnique [14]) was more consistently effective across our
datasets without requiring hyperparameter tuning.

4.4 Measuring Model Calibration
Calibration refers to how well a model’s predicted probabili-
ties match the probability that those predictions are correct.
For example, given a set of 100 instances where model pre-
dictions are all ≈ 0.7, we would expect 70 of the instances
to be the positive class, and 30 to be in the negative class. If
more than 70 are true positives, the model is under-confident
for those 100 instances, while if fewer are true positives, the
model is overconfident. Good model calibration is desirable
so that predictions are interpretable as probabilities, allow-
ing decision thresholds to be set in meaningful ways (e.g.,
triggering an intervention only if the model is at least 90%
confident, knowing that it will thus result in a 10% false
positive rate).

We measured calibration by calculating CAL scores [12].
The CAL score for a model is calculated by sorting all N
instances according to predicted probability, then dividing
into N – 99 sliding windows of 100 instances (sliding by 1 in-
stance). For each window, we calculated the absolute differ-
ence between the base rate of the positive class for those 100
instances and the mean predicted probability for the same
instances. The CAL score consists of the mean of those ab-
solute differences across all windows, and can be interpreted
as the mean absolute error in model confidence.

4.5 Datasets
4.5.1 Video-based Engagement Detection Datasets

We obtained six datasets from a study that measured stu-
dents’ self-reported engagement during an essay writing task
[31], during which students’ faces were recorded by a video
camera. Students made verbal judgments of their engage-
ment in the moment (concurrently) in response to auditory
probes. One week later, they made retrospective judgments
of their engagement by viewing video clips of themselves that
were recorded during the essay writing task. There were 23
students who made a total of 530 judgments of engagement
during the writing task and 1,325 retrospective judgments.
Researchers extracted three sets of features from videos: 1)
heart rate, estimated via photoplethysmography [32]; 2) an-
imation units (ANUs), a set of facial feature descriptors pro-
vided by the Microsoft Kinect SDK, which are analogous to
facial action units (AUs) [19]; and 3) local binary patterns
in three orthogonal planes (LBP-TOP) [50], which capture
facial textures and how those textures change over time.

There were thus two sets of labels and three sets of features,
for a total of six video-related datasets. We refer to the
two heart rate datasets as video-hr-c (concurrent labels)
and video-hr-r (retrospective labels). Similarly, we refer to
the two animation unit datasets as video-anu-c and video-
anu-r, and the two LBP-TOP datasets as video-lbp-c and
video-lbp-r.

4.5.2 Cognitive Tutor Algebra Datasets
We obtained two datasets from a study [36] in which 59 stu-
dents interacted with a computerized learning environment
called Cognitive Tutor Algebra [3]. Students used Cogni-
tive Tutor Algebra for an entire year as part of their reg-
ular mathematics curriculum. Researchers labeled 10,397
sequences of student actions in the learning environment for
the presence of “gaming the system” behavior, where stu-
dents attempt to progress through material by exploiting
features of the learning environment (e.g., requesting hints
repeatedly, guessing many answers) [6].

Researchers extracted two sets of features. Pattern features
captured the presence or absence of 60 different sequences of
actions that were designed to be similar to patterns identi-
fied by domain experts. We refer to the dataset with pattern
features as cta-pf in this paper. The second set of features
consisted of 25 count features. Count features captured the
number of times 6 different actions occurred as well as the
number of times 19 different events occurred. Events were
identified by domain experts, and included things like paus-
ing between attempts to answer a problem or trying to reuse
an answer in multiple steps of a problem. We refer to the
dataset with 25 count features as cta-c in this paper.

4.5.3 Student Survey Datasets
Two additional datasets came from surveys obtained from
788 students at two different secondary schools during the
2005–2006 school year [17]. The survey consisted of 30 ques-
tions, including demographics, which school they attended
(of two possibilities), and other variables. We one-hot en-
coded variables with categorical answers. Labels in both
datasets consisted of course grades recorded on a 0–20 scale.
We converted these to binary labels by splitting on the me-
dian into high and low grades, so that all datasets would be
comparable binary classification problems.

One of the datasets came from students in a mathematics
course (math, with 395 students) and the other from a Por-
tuguese language class (portuguese, with 649 students).
Some students were in both classes; thus, the total number
of students was less than the sum of the classes.

4.5.4 Educational Process Mining Dataset
We also extracted features from an educational process min-
ing (epm) dataset. Students worked on electronics exercises
in a software environment called DEEDS (Digital Electron-
ics Education and Design Suite). Students’ actions in the
learning environment were timestamped and logged, and in-
cluded mouse movements, keystrokes, and information about
the exercises being solved. Grade data were provided for five
learning sessions, from which we extracted features including
time spent on activities, number of actions, mean, standard
deviation, and other summary features from problem-level
data. In total, 115 students participated, but grades and
action log data were not available for all students in every
session. Grades were recorded on a numeric scale, though we
again converted these to classification problems via median
split to maintain consistency with other datasets.

5. RESULTS AND DISCUSSION
We focus results on the four research questions outlined in
Section 3; we also provide model correctness results in the
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Appendix, but do not focus on these results here since the
goal of this work is to compare metrics rather than focus
on improving over previously-published models. Our exper-
iments to address the research questions included 4 different
machine learning algorithms, 2 methods of calculating re-
sults during cross-validation, and 11 datasets. The different
machine learning algorithms yielded similar patterns for our
primary research question (RQ1), with only a few exceptions
(Figure 2). Similarly, results differed little across macro- and
micro-averaging methods (Figure 3). Thus, we aggregated
across classification algorithms and averaging methods to
address our research questions without unnecessarily divid-
ing results into 8 (2 averaging levels × 4 classifiers) subsets.
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Figure 2: Mean ranking for each machine learning
algorithm and feature selection metric. “Log. Reg.”
refers to logistic regression.
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Figure 3: Mean ranking for feature selection met-
rics when calculating results via macro-level versus
micro-level averaging.

5.1 Mean Rankings
RQ1 asks When selecting features based on a specific metric,
how do the results vary in terms of the other metrics? Re-
sults in Table 1 show that MCC was, on average, the best
(lowest) across models and datasets. Mean ranking for MCC
averaged 3.441 across all datasets, while AUC and MPAUC
were similar with mean rankings of of 3.468 and 3.476 respec-
tively. Low rank for MCC indicates that, across 11 datasets,

selecting features based on improvement in MCC yielded
better results (in terms of itself and the other 8 metrics)
than selecting features based on any of the other metrics.
Specifically there were 3.441 correctness metrics on average
for which selecting features based on some metric other than
MCC yielded better results than MCC.

Conversely, precision was the worst-performing metric in
terms of producing good results for other correctness met-
rics, with a mean ranking of 5.672. Recall and accuracy both
had mean rankings above 4, while all other selection metrics
had rankings ≈ 3.5.

There was also some notable variation across datasets. Pos-
sible causes of variations include the differing types of fea-
tures in the datasets (binary, continuous, counts, etc.), class
imbalance, and problem difficulty (e.g., signal to noise ra-
tio). A handful of datasets had significantly lower mean
rank values for a specific metric when compared other met-
rics and the average value across all datasets for the metric
itself. For example, in the portuguese dataset, AUC was
a particularly effective metric. AUC’s mean ranking was
1.764, indicating that selecting features based on AUC in
that dataset was almost always better (in terms of itself and
the other metrics) than optimizing for those metrics was.
In other datasets like video-lbp-c, the best metric had a
much higher mean ranking. Similarly, metrics like F1 and
Accuracy had unusually low mean rank values for the math
and video-hr-r datasets, respectively. In such cases, one
metric did not frequently outperform the others.

We also explored RQ1 visually by counting the number of
datasets for which each metric had at least a certain rank-
ing or better (Figure 4), much like constructing a receiver
operating characteristic curve requires finding predictions
above every possible threshold. In Figure 4, higher curves
are better, indicating that there were more datasets where
the metric had a desirable ranking. The curve for precision
was clearly lowest, followed by recall and then accuracy. The
rest of the metrics were similar to one another, though the
consistency of MCC is apparent from the fact that it was the
first metric to achieve a certain ranking across all datasets.

5.2 Probability Calibration
RQ2 asks How do different feature selection metrics impact
model calibration? The features that are selected can in-
fluence how well it is theoretically possible to calibrate a
model. For example, a model with two binary features can
only output four possible values, and thus it is quite likely
the model will be unable to output predicted probabilities
that closely align with the true probability that the model’s
prediction is correct or not.

Results show that RMSE easily produced the best results
(Table 2), with a mean calibration score (CAL) of 0.166 and
the best CAL score in 8 of the 11 datasets. Recall had the
worst calibration score averaged across models and datasets,
followed by precision, accuracy and F1.

5.3 Positive Class Predicted Rate
RQ3 asks How do different feature selection metrics impact
the predicted rates of models? The predicted rate of mod-
els is in some respects related to model calibration, since
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Table 1: Mean ranking for each metric and dataset. Lower is better, indicating that a metric, on average,
yielded better results in terms of itself and the other metrics. Values range from 0 (selecting features for that
metric always produced the best score in terms of itself and the other metrics) to 9 (the number of metrics).
The best metric for each dataset is highlighted in green, while the worst is in red.

Dataset Accuracy AUC F1 Kappa MCC MPAUC Precision RMSE Recall

cta-c 6.319 2.653 2.153 2.681 3.167 4.181 4.778 3.528 6.542

cta-pf 5.403 2.222 4.903 4.625 3.986 2.208 6.069 3.736 2.847

video-anu-c 2.958 4.069 3.583 3.403 4.194 3.806 6.556 5.250 2.181

video-hr-c 3.847 5.111 4.514 3.764 3.556 4.181 5.153 2.333 3.542

video-lbp-c 3.806 3.389 3.986 3.528 3.319 3.986 5.875 4.097 4.014

video-anu-r 4.931 3.306 3.431 5.139 2.931 3.264 4.764 3.542 4.694

video-hr-r 2.000 4.389 4.111 4.333 3.583 4.722 5.319 3.306 4.236

video-lbp-r 3.833 2.361 6.458 2.528 4.056 3.069 4.597 3.306 5.792

epm 3.222 5.319 3.208 2.458 3.125 2.694 6.056 3.556 6.361

math 5.556 3.569 1.583 3.333 2.222 2.653 6.472 4.056 6.556

portuguese 4.819 1.764 3.028 3.792 3.708 3.472 6.750 2.125 6.542

Mean 4.245 3.468 3.723 3.598 3.441 3.476 5.672 3.530 4.846

Std. dev. 1.282 1.172 1.327 0.862 0.573 0.776 0.781 0.843 1.605

Table 2: Mean calibration score of each metric for each dataset. Lower is better, where 0 indicates that
predicted probabilities exactly matched the probability that that model’s predictions were correct. The best
metric for each dataset is highlighted in green, while the worst is in red.

Dataset Accuracy AUC F1 Kappa MCC MPAUC Precision RMSE Recall

cta-c 0.387 0.149 0.164 0.155 0.204 0.225 0.228 0.106 0.408

cta-pf 0.337 0.282 0.269 0.268 0.269 0.260 0.403 0.252 0.261

video-anu-c 0.271 0.281 0.281 0.263 0.278 0.261 0.320 0.257 0.271

video-hr-c 0.199 0.223 0.215 0.210 0.207 0.217 0.237 0.171 0.213

video-lbp-c 0.284 0.257 0.272 0.241 0.248 0.255 0.308 0.232 0.280

video-anu-r 0.235 0.217 0.233 0.228 0.220 0.223 0.235 0.214 0.257

video-hr-r 0.199 0.194 0.209 0.199 0.198 0.205 0.217 0.173 0.202

video-lbp-r 0.211 0.193 0.239 0.201 0.219 0.214 0.249 0.199 0.249

epm 0.067 0.147 0.069 0.060 0.066 0.071 0.099 0.063 0.184

math 0.086 0.132 0.138 0.141 0.137 0.130 0.083 0.091 0.137

portuguese 0.072 0.114 0.131 0.113 0.140 0.117 0.133 0.066 0.207

Mean 0.213 0.199 0.202 0.189 0.199 0.198 0.228 0.166 0.243

Std. dev. 0.106 0.059 0.068 0.065 0.063 0.063 0.096 0.073 0.070
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Figure 4: Step graph for mean rankings of met-
rics used for wrapper feature selection across all
datasets. The left edge of the x axis indicates the
best (lowest) ranking, while the right indicates the
worst (highest). The y axis indicates the number of
datasets that have mean rank ≤ x.

a model that severely over- or under-predicts the positive
class is unlikely to be well-calibrated (e.g., a model that
always predicts 100% confidence for the positive class will
have very poor calibration for any negative-class instances).
Results reflect this calibration–predicted-rate relationship
(Table 3), showing that selecting features based on recall
resulted in the largest mean absolute difference between ac-
tual base rate and predicted rate (0.233), while RMSE was
close to best (0.080). Selecting features based on accuracy
(proportion correct) did not produce inaccurate predicted
rates (mean absolute difference = 0.079), however, despite
relatively poor model calibration.

For imbalanced datasets where classification is imperfect, ac-
curacy can be inflated by over-predicting the majority class
[10, 25]. However, Table 3 shows that selecting features
based on accuracy did not have this effect, perhaps because
we applied SMOTE to reduce the impact of class imbal-
ance during training. Conversely, selecting features based
on recall increased the positive class predicted rate for most
datasets, since doing so can inflate recall regardless of the
presence of class imbalance [10]. Similarly, selecting features
based on precision often resulted in under-prediction of the
positive class (10 out of 11 datasets).

5.4 Number of Features Selected
Selecting features based on precision yielded the fewest num-
bers on average (4.173), while selecting based on RMSE
yielded the most (10.523). Selecting features based on AUC
also yielded more features (10.006, on average) than other

metrics except RMSE.

These patterns are likely due to the fact that adding rela-
tively unimportant features to a model will offer only marg-
inal improvement, and may not be enough to shift predic-
tions above or below the decision threshold. All of the met-
rics that require a decision threshold (accuracy, F1, kappa,
MCC, MPAUC, precision, and recall) resulted in fewer fea-
tures than the threshold-free metrics of AUC and RMSE.
For example, adding a feature that applies to only a few
instances may help push the probability decision for those
few instances in the right direction, but may not change
the binary decision for those instances and thus may not be
selected when evaluating based on threshold-based metrics.

6. LIMITATIONS AND FUTURE WORK
There are a few limitations to the experiments in this pa-
per. First, the datasets that we analyzed represent only a
handful from among thousands of educational datasets that
researchers and others have collected over the years. Our
datasets are also quite diverse, measuring very different stu-
dent characteristics. Thus, we have only a sparse sampling
of the space of educational datasets, and datasets that vary
notably from those reported on here could exhibit differ-
ent trends. Future work is especially needed in this area to
discover specific properties of datasets (e.g., number of fea-
tures, type of features) that inform which metrics are likely
to be successful for wrapper feature selection. Such analysis
is only possible with a large enough number of datasets to
enable statistical comparisons at the dataset level.

Second, the metrics we examined also only represent a subset
of many possible. Many other metrics are closely related to
those we studied (e.g., informedness, markedness, balanced
accuracy), but may not exhibit exactly the same patterns.
We selected a diverse mix of commonly reported metrics and
some less-common metrics, all of which have been shown to
be useful in previous research.

Third, we explored only four of the most prominent machine
learning classifiers from among many possible options. We
chose these classifiers because they are represented in many
education-related research endeavors, but results for other
classifiers may differ. Perhaps most importantly, deep neu-
ral networks are increasingly popular for educational data
mining research [2, 28, 48, 47, 42], but were not considered
here. Wrapper feature selection is perhaps less common for
deep neural networks, given the high computational cost of
model training, but correctness metrics often play a simi-
lar role in the model selection process for neural networks –
for example, when deciding when to stop training a model.
In future work we will explore issues of model selection for
neural networks as well.

Fourth, averaging across the four classifiers is a limitation
as well. While classifiers performed somewhat similarly, Fig-
ure 3 shows some exceptional cases. For example, kappa per-
formed poorly with random forest, and precision performed
well with logistic regression. As part of future work, we will
explore classifier-based analysis of metrics in more depth,
including statistical analyses (e.g., Friedman test) where we
consider a large number of classifiers as judges that are rank-
ing metrics.
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Table 3: Mean predicted rate of the positive class for models with features selected based on each metric, for
each dataset. Base rate indicates the actual proportion of the positive class in the dataset. The last row refers
to the mean absolute difference between predicted rate and base rate across datasets. Green highlighting
indicates the closest match to the true base rate, while red indicates the predicted rate furthest away in each
row.

Dataset Base rate Accuracy AUC F1 Kappa MCC MPAUC Precision RMSE Recall

cta-c 0.068 0.060 0.179 0.170 0.169 0.215 0.250 0.149 0.111 0.695

cta-pf 0.068 0.029 0.084 0.084 0.084 0.084 0.087 0.003 0.064 0.085

video-anu-c 0.776 0.612 0.502 0.591 0.562 0.534 0.554 0.353 0.533 0.557

video-hr-c 0.776 0.669 0.688 0.669 0.724 0.705 0.703 0.681 0.753 0.663

video-lbp-c 0.776 0.631 0.526 0.586 0.617 0.563 0.548 0.385 0.588 0.607

video-anu-r 0.733 0.610 0.637 0.567 0.594 0.616 0.611 0.581 0.657 0.568

video-hr-r 0.733 0.718 0.658 0.703 0.690 0.705 0.683 0.627 0.732 0.702

video-lbp-r 0.733 0.590 0.614 0.529 0.610 0.572 0.560 0.389 0.629 0.590

epm 0.237 0.312 0.405 0.321 0.309 0.319 0.331 0.214 0.315 0.585

math 0.410 0.373 0.505 0.627 0.491 0.537 0.552 0.120 0.484 0.730

portuguese 0.425 0.437 0.524 0.609 0.509 0.573 0.532 0.085 0.473 0.840

Mean |∆| 0.079 0.126 0.135 0.098 0.123 0.128 0.210 0.080 0.233

Table 4: Number of features in each dataset (N) and mean number of features selected by each metric. The
highest number of selected features for each dataset is highlighted in light blue, while the lowest is highlighted
in gray.

Dataset N Accuracy AUC F1 Kappa MCC MPAUC Precision RMSE Recall

cta-c 25 2.531 10.313 8.781 8.750 5.750 4.094 7.188 12.969 2.875

cta-pf 60 10.469 35.219 25.125 24.625 26.125 28.156 1.000 28.094 27.969

video-anu-c 42 3.656 5.031 3.875 4.500 4.531 4.625 3.219 5.438 4.031

video-hr-c 7 3.313 3.188 2.594 3.563 3.875 3.531 2.750 4.094 2.969

video-lbp-c 2304 3.563 6.344 4.031 5.750 5.781 4.844 2.000 7.656 3.625

video-anu-r 42 4.281 6.063 5.063 5.594 4.906 4.813 3.875 7.688 4.281

video-hr-r 7 3.531 3.563 3.031 3.938 3.781 3.563 3.938 4.906 2.719

video-lbp-r 2304 8.344 12.656 6.500 9.125 9.500 9.469 6.500 16.781 4.750

epm 38 6.375 6.344 6.219 7.125 6.688 5.813 7.156 7.406 1.000

math 43 7.000 8.719 6.438 8.656 7.781 7.781 4.313 8.250 1.375

portuguese 43 10.844 12.625 7.719 11.344 9.531 9.719 3.969 12.469 1.313

Mean 446.818 5.810 10.006 7.216 8.452 8.023 7.855 4.173 10.523 5.173
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7. CONCLUSION
As the field of educational data mining develops, and ma-
chine learning becomes increasingly popular for modeling
student outcomes, it is imperative to deeply understand each
step of the process and the influence researchers’ choices
have on models. Our experiments offer insight into the large
differences that can arise from machine learning design de-
cisions, specifically for feature selection. We showed that
selecting features based on some metrics is rarely advisable
(especially precision), and that the choice of metric has im-
pacts not only on correctness measures but on other impor-
tant properties of the resulting models, including calibration
and size (number of features).

We found that MCC produced the overall best results across
the other metrics in terms of mean ranking as a measure of
well-rounded correctness across metrics. MCC was not the
best selection metric for all the datasets; in fact, it was the
most effective only for 2 of the 11 datasets we analyzed in
this study. However, it was more consistently well-ranked
than the other metrics. On the other hand, RMSE produced
the best-calibrated models, which can also be an important
consideration for applying student models that might benefit
from easily-adjustable decision thresholds.

Student models are the driving forces in adaptive learning
software. Thus, enhancing them will lead to better software
for students and teachers. The results of this project will
enable researchers to more accurately build models which
predict student outcomes by informing the correctness met-
rics relied upon for feature selection. In particular, we sug-
gest utilizing metrics like MCC and RMSE (if calibration is
desirable) to yield models with well-rounded accuracy across
metrics. We suggest avoiding recall, precision, and accuracy,
even though accuracy is the default setting in some machine
learning software.
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APPENDIX

A. OVERALL CORRECTNESS AND COM-
PARISON TO PREVIOUS RESULTS

In this appendix we provide the correctness results obtained
from our experiments, as a point of comparison to previous
work and for comparison in future work. We report results
where we selected features via MCC, since that metric had
the best mean ranking in terms of other metrics (Table 1).
We report only macro-level averaging, though results were
similar for micro-level averaging (Figure 3). We also average
results across all four classifiers, rather than selecting only
the best classifier (and thus potentially introducing Type I
error).

Table 5 shows the overall correctness metrics, with compar-
isons to previous work (where possible) noted by highlighted
colors. For math and portuguese datasets we could not
make direct comparisons because previous results did not
perform median splitting to transform regression to binary
classification. The feature selection criterion (which metric
was used for selection) used by previous analysis is not clear
in most cases. Hence, it is difficult to make close compar-
isons to previous models.

For the video-* datasets we compared AUC to [31]. In
[31], AUCs reported were video-anu-c: 0.635, video-hr-c:
0.544, video-lbp-c: 0.645, video-anu-r: 0.666, video-hr-
r: 0.590 and video-lbp-r: 0.644.

For the cta-c dataset we compared AUC and kappa to [36].
However, the other models in this paper include feature-level
fusion of both cta-c and cta-pf features, so they are not
directly comparable to the cta-pf features that we have.
Reported values for cta-c were AUC = 0.865 and kappa =
0.332.

For the epm dataset we compared results to [22], which
reports accuracy, F1, kappa, RMSE, precision and recall.
However, accuracy, F1, precision and recall are reported
for the random division and the alpha-investing feature se-
lection methods and hence are not comparable to our re-
sults. The values (averaged across the reported models) were
kappa = 0.443 and RMSE = 0.490, though the division of
grades into two categories may have been based on a differ-
ent split value than we utilized in this paper (the median),
so comparisons should be made with that in mind.

Table 5: Our results for all metrics and datasets using MCC as the selection metric and macro-level averaging.
Where previous results are known, green highlighting indicates that models we trained were better (more
accurate) and red indicates that they were worse. Specific previous results are reported in the Appendix
text.

Dataset Accuracy AUC F1 Kappa MCC MPAUC Precision RMSE Recall

cta-c 0.819 0.874 0.368 0.295 0.363 0.796 0.242 0.361 0.770

cta-pf 0.919 0.740 0.466 0.423 0.427 0.735 0.425 0.357 0.521

video-anu-c 0.501 0.500 0.588 -0.004 -0.010 0.491 0.765 0.536 0.516

video-hr-c 0.654 0.565 0.762 0.102 0.107 0.554 0.801 0.483 0.738

video-lbp-c 0.534 0.511 0.633 0.006 0.002 0.500 0.773 0.518 0.570

video-anu-r 0.558 0.552 0.636 0.035 0.039 0.521 0.747 0.514 0.585

video-hr-r 0.622 0.536 0.729 0.072 0.080 0.539 0.750 0.496 0.727

video-lbp-r 0.560 0.568 0.646 0.067 0.076 0.545 0.758 0.508 0.577

epm 0.871 0.915 0.764 0.678 0.695 0.882 0.667 0.322 0.901

math 0.619 0.667 0.599 0.252 0.269 0.632 0.532 0.507 0.706

portuguese 0.656 0.722 0.659 0.331 0.362 0.675 0.571 0.491 0.797
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ABSTRACT 
One of the most challenging issues for online courseware 
engineering is to maintain the quality of instructional components, 
such as written text, video, and assessments. Learning engineers 
would like to know how individual instructional components 
contributed to students’ learning. However, it is a hard task because 
it requires significant expertise in learning science, learning 
technology, and subject matter pedagogy. To address this 
challenge, we propose an innovative application of reinforcement 
learning (RL) as an assessor of instructional components 
implemented in given online courseware. After students activities 
are converted into Markov decision process (MDP), a collection of 
actions (each corresponds to an instructional component) suggested 
as a policy is analyzed. As a consequence, the usefulness of 
individual actions with regards to achieving ideal learning 
outcomes will be suggested. The proposed RL application is 
invented for human-in-the-loop learning engineering method called 
RAFINE. In the RAFINE framework, a machine generates a list of the 
least contributing instructional components on the given online 
courseware by interpreting the whole policy. The courseware 
developers modify those suggested components. As a proof of 
concept, this paper describes an evaluation study where online 
learning was simulated on hypothetical online courseware. The 
results showed that over 90% of ineffective instructional 
components were correctly identified as ineffective on average. 

Keywords 

Automated Learning Engineering, Evidence-based learning 
Engineering, Iterative Courseware development, Reinforcement 
Learning 

1. INTRODUCTION 
With the rapidly growing popularity of online courses, there has 
been a heavy demand for practical learning engineering methods 
for designing effective online courseware [18]. Even though there 
are known design principles that provide theoretical insights into 
designing effective online courses [e.g., 5, 6, 10], such principle-

based approaches still require iterative engineering for practical 
courseware development at scale [8].  

One of the challenges in the principle-based iterative learning 
engineering is to identify issues with the courseware. After an 
initial version of courseware is used by students, instructors (or 
learning engineers) analyze the interaction and learning outcome 
data to improve the quality of the courseware. However, 
interpreting those data to determine actual refinement plans is 
extremely challenging and requires significant expertise in learning 
science, learning technology, and the subject matter pedagogy [5, 
20]. The commonly used analytic techniques are the learning curve 
analysis [14] and the assessment items analysis [16]. However, 
these techniques only apply to assessment items while other types 
of instructional components such as video clips and written texts 
must also be included in the analysis.  

There is therefore a gap between an ideal learning-engineering 
model to efficiently build effective online courseware and the actual 
technology infrastructure available for building online courseware. 
To fill this gap, evidence-based learning engineering method that 
identifies deficits of the given online courseware is needed. 

Our solution is an innovative application of the reinforcement 
learning (RL) technique that we call RAFINE (Reinforcement 
learning Application For INcremental courseware Engineering). 
RAFINE identifies instructional components that have relatively less 
contribution to students’ learning in the given courseware. RAFINE 
is a building block for the evidence-based, human-in-the-loop, 
iterative learning engineering method that we call the RAFINE 
method. Figure 1 shows how a human and a machine collaborate to 
iteratively improve the quality of courseware in the RAFINE method.  

Given a record of individual students’ learning trajectory logs on 
particular online courseware, RAFINE first converts learning 
trajectories into a state transition graph. Here, states represent 
students’ intermediate learning status and the transition is caused 
by taking an instructional component (i.e., watching a video). All 
students’ state transition graphs are then consolidated into a single 
Markov decision process (MDP) by merging the same states. 
RAFINE then applies a variant version of value iteration technique 
commonly used for RL to compute a converse policy that represents 
the least optimal instructional components to be taken at any given 
moment to achieve students’ ideal learning goals. The entire policy 
actions will be then analyzed to identify instructional components 
that have relatively less contributions to students’ learning. The list 
of detected less-effective components is provided to instructors as 
a recommendation for courseware refinement. Any type of 
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instructional components such as lecture videos, assessment 
quizzes and hints can be analyzed by the RAFINE method.  

As a proof of concept, the goal of the current paper is to conduct a 
study to evaluate the validity of implementation of the RAFINE 
method. We conducted a simulation study where learning log data 
were generated by simulating learning activities in mock online 
courseware. The result showed that the RAFINE method correctly 
identified over 90% of ineffective instructional components in the 
given mock courseware. 

The primary contributions of the current work are essentially 
theoretical yet have the potential for practical use: 
(1) We proposed RAFINE as a building block for evidence-based, 
human-in-the-loop, iterative online courseware learning 
engineering method. RAFINE analyzes complicated learning 
trajectory data and suggests deficits of the courseware by 
evaluating a broader range of instructional components. The 
evaluation study showed the theoretical effectiveness of RAFINE. 
(2) We innovated a technique to interpret a policy induced by 
reinforcement learning as a whole to detect a relative weakness 
among available actions (which correspond to instructional 
components) with regard to achieving ideal goals. 

The rest of the paper is structured as follows. Section 2 discusses 
related work on evidence-based learning engineering and the 
applications of reinforcement learning for education. Section 3 
technically elaborates how RL works on learning trajectory data 
and describes how RAFINE interprets the converse policy. Section 4 
introduces research questions. Then, section 5 explains how 
simulation data were created for the evaluation study. Section 6 
reports results of the evaluation study along with the research 
questions, and section 7 discusses the results and limitations. 
Finally, section 8 concludes that RAFINE serves as a building block 
for the evidence-based iterative learning engineering method. 

2. RELATED WORK 
2.1 Evidence-based Learning Engineering 
The process of learning engineering includes cognitive task 
analysis, designing and delivering instructional components, 
measuring students’ understanding, and evaluating the courseware 
design [6]. Quickly cycling through these tasks is a key for 
successful iterative improvement of online courseware. Since each 
of these tasks is considerably labor intensive, the automatization of 
the engineering process is an important research agenda.  

One of the most actively studied areas of learning engineering is 
student modeling [14]. Both a representation (to understand what 
must be modeled) and a recognition (to understand how to gauge 
students’ competency with the proposed representation) are 
important research topics. Cen et al. [3] proposed Learning Factors 
Analysis (LFA) for semi-automated evaluation and improvement 
of knowledge component (KC) models that represent a set of latent 
skills and knowledge that students are supposed to learn [12]. LFA 
performs a combinational search for a KC model that best fits 
students’ learning data across existing KC models. Although LFA 
requires “seed” KC models, some more recent works reported 
automatic discovery of KC models from students’ learning data [9, 
13]. 

Another actively studied area of learning engineering is an 
automated question generation. Du and Cardie [7] proposed a 
method for automatically generating questions. The method 
identifies the question-worthy sentences from a passage using a 
hierarchical neural model with a sentence-level sequence tagging. 
Mazidi and Tarau [15] introduced a method to classify sentences 
based on what the sentence is communicating as a basis for 
generating questions. The type of syntactic and semantic 
constituents of sentences and their arrangement were analyzed in 
the study. 

Automation of assessment grading is also an important part of 
learning engineering in particular for online courses to be scaled. 
Zhang et al. [25] tackled the task of Automatic Short Answer 
Grading (ASAG). Short answer questions ask students to answer in 
natural language with the length of one phrase to one paragraph. 
The authors compared Deep Belief Networks (DBN) against five 
machine learning techniques (Naïve Bayes, Logistic Regression, 
Decision Tree, Artificial Neural Network, and Support Vector 
Machine) for automatically grading short answer questions.  

Yet another essential part of practical learning engineering is to 
identify deficits of courseware content to be revised. RAFINE 
focuses on this aspect of the learning engineering. As far as the 
authors are aware, there have been very few studies in this line of 
research. Bodily et al. [2] mentioned the lack of efforts to use 
learning analytics as a basis for redesigning an online course. The 
authors proposed the RISE framework for redesigning instructional 
components in online courseware. This framework provides a 
metric that combines the usage of instructional components and 
students’ grades to identify instructional components that are good 
candidates for improvement efforts. The goal of the RAFINE method 
is also to detect instructional components that were not very useful 
for learning. Unlike the RISE framework, however, RAFINE 
evaluates a potential contribution of implemented instructional 
components to students’ learning and provides a list of instructional 
components as a recommendation for refinement. 

2.2 RL for Decision Making in Education 
Reinforcement Learning (RL) has been used in education 
applications in particular to compute optimal pedagogical strategies 
for adaptive tutoring. 

Shen and Chi [19] applied RL to induce the policy on whether the 
intelligent tutoring system should propose worked example (WE) 
or problem solving (PS) to students for the next activity. The 
authors induced policies using two different rewards: Immediate 
and Delayed. The policy was computed based on the number of 
problems solved, the average time taken, the difficulty of the 
problem, and students’ performance on the past PS. The result 

 
Figure 1 : Overview of the RAFINE method 
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showed that immediate policies give more WE while delayed 
policies give more PS.  

Rafferty et al. [17] used the partially observable Markov decision 
process (POMDP) framework to formulate the process of teaching. 
The authors applied RL to induce optimal teaching actions such as 
a quiz or an example to minimize the amount of time spent on 
learning materials. They found that students who learned with RL 
induced teaching actions spent less time than students who did not.  

Iglesias et al. [11] applied RL to induce a policy on teaching 
decisions such as which topic students should do next and which 
task students should do on the topic. They conducted an evaluation 
study in a database design course for undergrad students in 
Computer Science. In the evaluation study, they found that students 
with the machine generated policy spent less time on the adaptive 
and intelligent educational system, but they could not find a 
significant difference in the students’ final level of knowledge. 

In addition to inducing the sequence of instructional components, 
RL has been applied to induce dialog moves or narrative events. 
Chi et al. [4] applied RL to induce pedagogical policies that decide 
whether the tutor should ask students to justify the answer, tell the 
next step directly, or elicit the next step information from a student 
in a dialogue-based tutor. Tetreault and Litman [21] estimated the 
reliability of a policy derived from a spoken dialog tutoring system. 
Wang et al. [22] applied deep RL for interactive narrative 
generators that tailor each player’s story in an educational game. 
The authors prepared several events of a story and induced policies 
on how event sequences should unfold based on player interaction 
logs. 

The applications of reinforcement learning to induce pedagogical 
strategies are widely studied in various subjects from middle school 
math to college-level database design, and in various kinds of 
tutoring systems such as task-based, dialog-based, and game-based 
systems. The effects of educational RL policy have been tested both 
with real and simulated data. Some showed positive effects of the 
policy while others did not. 

What makes our study different from these studies is the way we 
use the induced policy. In the previous studies mentioned above, 
the induced policy is directly used to provide an optimal action at 
each learning status. On the other hand, RAFINE does not use the 
policy to make a decision on which instructional component 
students should take next. Instead, RAFINE interprets the induced 
policy as a whole to identify instructional components that have 
relatively less contribution to learning. More specifically, RAFINE 
focuses on how often each instructional component is suggested by 
a policy (we call this the frequency heuristic as described in section 
3.5). In RAFINE, the induced policy is not utilized as an educational 
strategy for students, but an analysis of the policy is used for 
courseware developers to improve courseware. 

3. TECHNICAL DETAILS OF RAFINE 
3.1 Overview of the RAFINE Method 
In the RAFINE method, an initial version of the online courseware 
is used by students and their activities are logged. These activity 
data consist of standard clickstream data including students’ 
responses for formative assessments and their correctness. We call 
these activity data the learning trajectory data. 

The right side of Figure 1 shows how learning trajectory data are 
processed. The learning trajectory data from all students are first 
consolidated into a single state transition graph called learning 
trajectory graph (LTG). The LTG is a Markov decision process 

(MDP) where states represent students’ intermediate learning status 
and actions represent instructional components taken. LTG is 
annotated with predefined rewards that represent quantitative 
benefits of the learning activity that causes transition from one state 
to another in the LTG. Finally, a value iteration technique is applied 
to compute a converse policy that shows the worst action to be 
taken at each state to achieve the expected learning outcome 
(represented as a table in Figure 1). As a consequence, a collection 
of actions suggested by a converse policy corresponds to a set of 
instructional components that have the least likelihood at each state 
to contribute to the ideal learning outcome. We call this collection 
of actions the policy action set.  

To create a recommendation for refinement based on the induced 
policy, RAFINE interprets the policy as a whole. That is, all actions 
in a policy action set is analyzed. Note that in most cases, the 
number of states in the LTG gets larger than the number of 
instructional components available on the given online courseware. 
This implies that all instructional components are likely to be 
included in a policy action set. The relative effectiveness of 
individual instructional components is therefore analyzed based on 
the frequency. We call this heuristic the frequency heuristic, which 
is detailed in section 3.5.  

Given the recommendation for refinement, courseware developers 
revise the courseware. The RAFINE method can be iteratively 
applied to the revised courseware by collecting a new batch of 
learning trajectory data to further improve the courseware. 

3.2 Model Representation 
The unit of analysis of the RAFINE method is an instructional 
component implemented in the online courseware. Instructional 
components include video, quiz, hint, written paragraph or any 
other components used in the courseware. We assume a presence 
of a skill model that contains a set of skills each representing a piece 
of knowledge that students must learn (aka, knowledge 
component), and each instructional component is tagged with a 
single skill. Under this assumption, RAFINE will be applied for each 
skill separately. This constraint is rooted in our design decision for 
a state representation described later that involves a measure of 
proficiency per skill.  

Let 𝐿𝑇#
j be a given learning trajectory for student i regarding skill 

j. Let 𝑎#%be an instructional component taken (e.g., watching a 
video or answering a quiz) by student 𝑖  at time T. A learning 
trajectory for student i on skill j,	𝐿𝑇#

j, is represented with 𝑎#%as 
follows: 

𝐿𝑇#
j =	)𝑎#*, … , 𝑎#

-.
j

/	𝑎#% 	∈ Φj		, 𝑇 = 1,… , 𝑛#
j}. 

𝐿𝑇#
j: learning trajectory for student i regarding skill j	

𝑎#%: an instructional component taken by student i at time T 
Φj: a set of instructional components regarding skill j	
𝑛#
j: number of activities taken by student i regarding skill j 

 

To make the explanations simple, without a loss of generality, let’s 
assume that there is only one skill	j in our target online courseware 
(recall that RAFINE will be applied for individual skills separately). 
We therefore eliminate the skill index from Φj  and 𝐿𝑇#

j  in the 
following descriptions unless otherwise desired.	

All learning trajectories 𝐿𝑇# for all students 𝑖 in the given log data 
are consolidated into a single learning trajectory graph (LTG), 
which is an MDP. In the LTG, states represent learning status and 
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edges represent learning activities taken that caused a change in 
learning status. To consolidate individual students’ learning 
trajectories into a single LTG, each student’s learning trajectory 
𝐿𝑇#	is first converted into a learning trajectory path. This is done 
by chronologically traversing a learning trajectory 𝐿𝑇#  while 
creating states that represent intermediate learning status.  

A learning status consists of a pair of action history and mastery 
level; <ahi,T, 𝑝#,%(j)>. Action history ahi,T is a binary vector <ahi

1, 
…, ahi

K> where ahi
m shows whether student	𝑖 has taken the m-th 

instructional component in 	Φj  by time T (assuming the 
instructional components are ordered and |Φj| = 𝐾) . Mastery 
level 𝑝#,%(j) is a scalar value showing a predicted probability of 
student	𝑖 applying skill j at time T correctly. The value of mastery 
level is rounded to the nearest multiple of 0.05 (e.g., 0.12 becomes 
0.10) to reduce the number of states in the LTG (which will be 
otherwise intractable).  

Mastery level is computed based on the history of learning 
activities. An underlying assumption is that commitment to a 
particular type of learning activity would increase the mastery level 
by a specific amount. There are several known techniques available 
to achieve this goal including Bayesian models and regression 
models. As long as masterly level is monotonically updated, any 
student-modeling technique would work for the RAFINE method. 

While traversing the learning trajectory, ahi,T and 𝑝#,%(j)  are 
updated accordingly. For example, assume there are six 
instructional components; Video1, Video2, Quiz1, Quiz2, Hint1, 
and Hint2. A state 𝑠 <101000, 0.4> indicates that a student had 
watched Video1 and took Quiz1 before reaching the state 𝑠. It also 
indicates that a predicted mastery level for skill j at the time of 
arriving at the state 𝑠 was 0.4. Assume that the student answered 
Quiz1 incorrectly to reach the state 𝑠. Now, the student needed to 
review Hint1, which caused a transition from 𝑠 to 𝑠’ where 𝑠’ is 
<101010, 0.45> with an assumption that reviewing a hint increased 
the master level by 0.05.  

A learning trajectory path is a linear graph. It might have a loop 
back to the same state when a certain instructional component was 
taken more than once with the increase of mastery level less than 
0.05. As a side note, moving between pages in the courseware is 
not encoded in the LTG, because it is not considered as a learning 
activity. 

All individual students’ learning trajectory paths are then 
aggregated into an LTG by merging the same states. As a 
consequence, the states in an LTG generally have multiple 
incoming and outgoing edges. Note that in an LTG, student and 
time (i.e., the parameters i and T in an individual student’s learning 
trajectory path) are abstracted. Therefore, in the following 
explanations, a tuple representing a state is denoted as <ah, p(j)>. 

In an LTG, the states where the value of the mastery level, p(j), is 
greater than a pre-defined threshold (which is usually 0.85) are 
called terminal states—meaning that students became proficient in 
applying skill j . All outgoing edges at terminal states are 
discarded. 

3.3 Reward 
A reward value of a particular state depends on the mastery level, 
p(j), both at the current and successor states. As an example, 
consider two students who landed on the same state s, but then took 
different learning activities. One student reached a successor state 
by answering an assessment quiz incorrectly (i.e., p(j) was not 
increased) whereas the other student watched a video (i.e., p(j) was 

increased). In our model, a reward for state 𝑠 where the student 
took a learning activity a to reach a successor state 𝑠′ is defined as: 

𝑅(𝑠, 𝑎, 𝑠′) = ?
−0.14					(𝑚𝑙(𝑠) = 𝑚𝑙(𝑠E) < 0.85)
−0.05					(𝑚𝑙(𝑠) < 𝑚𝑙(𝑠′) < 0.85)
0.95					J0.85 ≤ 	𝑚𝑙(𝑠E)L										

 

In the equations above, 𝑚𝑙(𝑠) returns the mastery level at the state 
𝑠. A reward at the state 𝑠 becomes the greatest when the successor 
state is a terminal state. Otherwise, the rewards are set to be small 
negative values to reflect students’ time commitment while 
computing a policy as shown in the next section. We assume that 
the mastery level grows monotonic, i.e., students never unlearn. 
Therefore, a reward where ml(s) > ml(s’) is undefined. 

3.4 Converse Policy 
Given the reward function R, a value function for state 𝑠 under a 
policy p is defined as follows, where 𝑺 is a set of all states in a given 
LTG: 

𝑉O(𝑠) = P𝑇(𝑠, 𝜋(𝑠), 𝑠′){R(s, 𝜋(𝑠), sE) +γ𝑉O(𝑠′)}
VE∈𝑺

 

In the current implementation, the discount factor g is arbitrarily set 
to be 0.9. A transition model T(s, a, s’) is derived from the collected 
learning trajectory data of actual students as the probability of 
students reaching state 𝑠′ when they took a learning activity 𝑎 at 
state 𝑠. 

In general, a policy suggests an action to be taken in a certain state 
to maximize the value function [23]. However, considering the 
purpose of RAFINE, we need to know which instructional 
components should not be taken—i.e., we need to know which 
action has the least expected reward. Therefore, through the value 
iteration, the value function is updated as follows where A(s) shows 
a set of actions available at state s (i.e., instructional components 
taken by students at state s): 

𝑉(𝑠) ← min
[∈\(V)

P 𝑇(𝑠, 𝑎, 𝑠′){𝑅(𝑠, 𝑎, 𝑠E) + 𝛾𝑉(𝑠′)}
VE∈𝑺

 

After the value function is converged, the action that minimizes the 
value function for state s is identified. We shall call this policy the 
converse policy: 

𝜋(𝑠) = argmin
[∈\(V)

P 𝑇(𝑠, 𝑎, 𝑠′){𝑅(𝑠, 𝑎, 𝑠E) + 𝛾𝑉O(𝑠E)}
Va∈𝑺

 

3.5 Frequency Heuristic 
Because of the binary vector and mastery level in the state 
representation, the number of states in any given learning trajectory 
graph (LTG) is many times more than the number of available 
actions (i.e., instructional components). Hence it is often the case 
that each of the instructional components in the courseware is 
selected as a policy action many times. Therefore, whether the 
instructional component has been selected as an action is not a 
sufficient criterion to decide the component should be included in 
a recommendation for refinement. 

To create a recommendation from the induced converse policy, 
RAFINE interprets the collection of policy actions over all states in 
the LTG based on a frequency— actions that frequently appear in 
the converse policy action set will be included in a recommendation 
as culprit for poor performance. We call this heuristic the frequency 
heuristic. The frequency heuristic is based on the hypothesis that 
relatively ineffective instructional components tend to appear in a 
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policy action set of a given converse policy more frequently than 
effective ones. We will verify this hypothesis by comparing the 
mean normalized frequency of ineffective and effective 
components in the policy action set. 

The empirical question is then “how frequent is frequent?” We 
examined two frequency cut-offs through an evaluation study as 
described in the results section. 

4. RESEARCH QUESTIONS 
Our central question is whether RAFINE can suggest deficits of the 
courseware based on the students’ learning trajectory data. To 
address this question, we divide it into the following two research 
questions: 

RQ1: How robust is the converse policy as a detector for relatively 
ineffective instructional components against different conditions of 
learning data? 

RQ2: How accurately does the frequency heuristic compose a 
recommendation for courseware refinement?  

To answer these questions, and also as a proof of concept for 
RAFINE, we conducted an evaluation study as described in the next 
section. 

5. EVALUATION STUDY 
For a rigorous evaluation of the RAFINE method, it is necessary to 
conduct a study with learning data collected from students working 
on actual online courseware. As mentioned earlier, the online 
courseware must be structured with a skill model tagged to 
individual instructional components to apply RAFINE. To the 
authors’ knowledge, however, no such online courseware is 
available at this moment and building RAFINE compatible online 
courseware requires a considerable amount of time. Therefore, we 
conducted a simulation study as a proof of concept towards an 
evaluation with actual students. The current evaluation study uses 
hypothetical learning trajectories in mock online courseware.The 
results from the current simulation study justify future efforts of 
building an RAFINE compatible online courseware or tagging a KC 
model to individual instructional components in existing 
courseware. 

In this evaluation study, we address the research questions 
mentioned in section 4. We created mock online courseware where 
there was only one skill involved. As described above, when there 
were multiple skills involved, RAFINE had to be applied separately 
to each skill. Therefore, this assumption does not harm the 
generality of the study.  

All instructional components in mock online courseware were 
tagged as either effective or ineffective. In the current simulation 
study, we included three types of instructional components: (1) 
videos, (2) formative assessments (aka quizzes), and (3) hint 
messages associated with formative assessments. Learning 
trajectories were generated by simulating students’ learning 
activities. For the sake of explanation, we use a phrase ‘simulated 
students’ to refer to hypothetical students in the simulation. 

In the real world, the growth of mastery level depends on the 
learning activities actually taken and students’ latent traits of 
learning. In the current simulation, the masterly level shows a 
probability of answering a quiz correctly and the simulated students’ 
performance on a quiz was determined by the masterly level. The 
growth of the mastery level, 𝑝#,%,	was simulated using a logistic 
regression model as shown below: 

 

𝑝#,% = b
1

1 + 𝑒de.,fg	 

𝑍#,% = 	𝑍#,%d* + 𝛿*J𝑐, 𝑒(𝑎#,%d*)L + 𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))   

The [𝑋]	operator is to round the value X to the nearest multiple of 
0.05 and 𝑎#,%d*	 is an instructional component that a simulated 
student i took at time T-1.  

Logit 𝑍#,%  was directly increased with 𝛿*(𝑐, 𝑒(𝑎#,%d*)) +
𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*)).  𝛿*	and	𝛿k  model learning gain obtained by 
taking an action 𝑎#,%d*.  𝛿*(𝑐, 𝑒(𝑎#,%d*))	 is a rectified random 
variable that follows a normal distribution with mean 𝜇* and 
standard deviations 𝜎*, i. e. ,max	(0,𝒩 (𝜇*	, 𝜎*k)). 	𝜇*  and 𝜎*  are 
given a priori based on 𝑐 and 𝑒(𝑎#,%d*). 

c and 𝑒(𝑎#,%d*) that represent contrast and effectiveness 
respectively were the parameters controlled to create several online 
learning scenarios for research question RQ1. We controlled the 
difference in impact on students’ learning (i.e., masterly level) 
between effective and ineffective instructional components using 
two parameters: (i) c that represents the contrast in the increase of 
logit between effective and ineffective instructional elements—
large vs. moderate vs. small, and (ii) 𝑒(𝑎#,%d* ) that represents the 
effectiveness of the instructional element 𝑎#,%d* —effective vs. 
ineffective.  

The fundamental assumptions were that (1) the larger the contrast, 
the larger the differences of 𝜇*  when effective vs. ineffective 
instructional components were taken, and (2) the larger the contrast, 
the smaller the 𝜎* was. For example, if 𝑐 = “large”, (𝜇*, 𝜎*)	was 
(0.5, 0.01) vs. (-0.1, 0.01) for 𝑒(𝑎#,%d* ) =	  “effective” vs. 
“ineffective.” However, they were (0.3, 0.1) vs. (0.1, 0.1) if 𝑐 = 
“small.” Table 1(a) shows 𝜇*  and 𝜎*	 for different contrast and 
effectiveness. 

𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))	is also a rectified random variable that follows 
a normal distribution with mean 𝜇k and standard deviations 𝜎k. The 
variable 𝛿k was set to be zero if 𝑎#,%d* was not a quiz. Otherwise, 
𝜇k and 𝜎k were determined a priori based on a student’s response 

Table 1: The means 𝜇 and standard deviations 𝜎 used for the 
simulation study to model the growth of mastery level. 

(a)  
The	value	of	(𝜇*	, 	𝜎*)	where 
𝛿*(𝑐, 𝑒(𝑎#,%d*))		~	max	(0,𝒩(𝜇*	, 𝜎*k)) 

 Contrast: c 
Effectiveness: e(𝑎#,%d*) Large Moderate Small 

Effective 0.5   0.01 0.4  0.05 0.3  0.10 
Ineffective -0.1   0.01 0.0  0.05  0.1  0.10 

 

 
(b)	 
The value of (𝜇k	, 	𝜎k) where 
𝛿k(𝑟𝑠𝑝𝑛𝑠(𝑎#,%d*))~max(0,𝑁(𝜇k, 𝜎kk)), or 0 if 𝑎#,%d*	was not a 
quiz. 
𝑟𝑠𝑝𝑛𝑠(𝑎#,�d* ∈ 𝑞𝑢𝑖𝑧) 𝜇k		𝜎k 

Correct 0.05  0.01 
Incorrect 0.03  0.01 

 

Table 2: The means and standard deviations used for computing 
the initial logit 𝑍#,�. 

The value of (𝜇�, 𝜎�) where 𝑍#,� ~ max(0, 𝒩(𝜇�	, 𝜎�k)) 
 Contrast: c 
 Large Moderate Small 

𝜇�, 𝜎� -0.95   0.01 -0.95   0.10 -0.95   0.20 
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rate, rspns=correct/incorrect. We assume that when a student was 
able to answer the quiz correctly, logit 𝑍#,%  increases more than 
when the student was not able to answer it. Table 1(b) shows 
𝜇k	and	𝜎k for correct and incorrect responses respectively.  

Student’s initial logit 𝑍#,�  also followed a rectified normal 
distribution with 𝜇�	and 𝜎�k. These were given a priori based on the 
contrast parameter, c, as shown in Table 2. 

In addition to three learning scenarios with different contrasts, we 
also created three versions of mock online courseware with 
different qualities. The quality of courseware was operationalized 
as the ratio of a number of effective to ineffective instructional 
components in the courseware. Three types of qualities are 
implemented in this study: High, Medium and Low. The higher the 
quality, the larger the proportion of effective instructional 
components. In the simulation study, each page in the mock online 
courseware included 3 lecture videos, 3 quizzes, and 3 hint 
messages each associated with a quiz. The low, medium, and high-
quality courseware included 80-90%, 50-60%, and 10-20% 
ineffective instructional components. 

Two instances of mock courseware (with a different number of 
pages) were created for each level of quality. Those six instances 
of courseware were crossed with three levels of contrast, resulting 
in 18 different simulated-learning scenarios. In each scenario, 
simulated students took a total of 10 to 30 instructional components. 

Learning trajectories of students were randomly generated as 
follows. At first, for each simulated student, the number of 
instructional components to be taken was randomly decided. Either 
a video or a quiz was then randomly selected as the first learning 
activity. If it was a quiz, the student might show a hint before trying 
to answer the quiz at 0.05 probability. When the student answered 
a quiz, the correctness of the quiz response was determined 
randomly using the mastery level as the probability distribution. 
When the response was incorrect, either requesting a hint or 
retaking the same quiz (as a next instructional component) was 
randomly determined based on the probability distribution reported 
in [1]. Let quiz�	be a quiz with an ID 𝑥  that student answered 
incorrectly. The probability distribution is as follows: (i) Try quiz� 
at 0.78 probability, (ii) show hint� at 0.20, (iii) give up and move 
to different quiz or video at 0.02 (these two are randomly selected). 
The same distribution is applied when the student showed hint�. 
This process was repeated for the number of instructional 
components to be taken. Simulated students were able to retake the 
same instructional components. 

For each of 18 learning scenarios, 100 course offerings were 
created each with 1,000 simulated students. In other words, this 
simulation study modeled a large-scale field trial as if 1800 
instances of online course offerings were tested each with 1,000 
student participants. 

For each course-offering simulation, the learning trajectory data 
were converted into a learning trajectory graph (LTG). As a 
consequence, 1,800 instances of LTGs were generated. The 
manipulation of logit described above was used to estimate mastery 
level in LTG. For each of the 1,800 LTGs, the value iteration 
technique was applied to compute a converse policy. From each 
converse policy, the frequency heuristic was applied to generate a 
recommendation for refinement for a corresponding instance of 
online courseware. 

6. RESULTS 
6.1 Overview of the Data 
To verify the feasibility of the simulation data, we computed a 
correlation between the ratio of effective to ineffective instructional 
components taken by a student and the final mastery level. The data 
showed a strong positive correlation, r = 0.70, t(1799998) = 
1314.56, p < 0.001, suggesting that the final mastery level was 
significantly higher when simulated students took relatively more 
effective instructional components than ineffective ones.  

6.2 Converse Policy-based Recommendation 
6.2.1 Frequency Heuristic 
The hypothesis under the frequency heuristic is that relatively 
ineffective instructional components tend to appear in a policy 
action set of a given converse policy more frequently than effective 
ones. To verify this hypothesis, we first compare the normalized 
frequency of ineffective components in the policy action set with 
that of effective ones. We also answer RQ1: How robust is the 
converse policy as a detector for ineffective instructional 
components against different conditions of learning data?  

The frequency of an instructional component i selected as a 
converse policy action was normalized as follows. Let p be a 
converse policy and S be the set of states in the LTG. The 
normalized frequency of an instructional component 𝜄 is calculated 
by the following equation. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐹𝑟𝑒𝑞𝑒𝑛𝑐𝑦(𝜄) = 𝑁𝐹(𝜄) =
|𝐒O(𝜄)|
|𝐒𝒜(𝜄)| 

 

𝐒O(𝜄) = {𝑠|𝜋(𝑠) = 𝜄} : A set of states in the LTG where i is the 
converse policy action. 
𝐒𝒜(𝜄) = {𝑠|𝜄 ∈ 𝒜V} (where 𝒜V is a set of actions available from 
state s): A set of states where the instructional component i was 
taken. 
|𝑋|:	Number	of	elements	in	𝑋 
Also notice that 𝐒O(𝜄) ⊂ 𝐒𝒜(𝜄). 
 
We then tested if there was a significant difference in the mean 
normalized frequencies between effective and ineffective 
instructional components. Table 3 shows the mean normalized 
frequencies of ineffective and effective instructional components 
and those standard deviations. The effect size is a ratio of the 
difference between two means to the standard deviation. Table 3 
suggests that regardless of the quality and contrast, ineffective 
instructional components were selected as a converse policy action 
notably many times more than effective ones. The differences were 
all statistically significant using t-test (p<<0.01). The data also 
suggest that the difference in the frequencies between ineffective 
and effective components becomes the smallest (as indicated by the 
smallest effect size) when contrast is small and quality is high, as 
we expected. 

These results support the hypothesis that relatively ineffective 
instructional components tend to appear in a converse policy 
action set more frequently than effective instructional components. 
It is also shown that the converse policy is robust enough to 
discriminate the effectiveness of the instructional component 
regardless of the quality (operationalized as the ratio of effective 
vs. ineffective components) and the contrasts (operationalized as 
the difference in the growth of logit between effective and 
ineffective components).  
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6.2.2 Accuracy of recommendation 
We next evaluate the precision and recall scores of 
recommendations created by frequency heuristic to answer RQ2: 
How accurately does the frequency heuristic compose a 
recommendation? 

To compose a recommendation, we need to define a cut-off value. 
As a reminder, those instructional components whose normalized 
frequency is more than a pre-defined cut-off are labeled as 
“ineffective” and included in the recommendation. What the cut-
off value should be is an empirical call.  

In the current study, we compared two cut-off values using mean 
(M) and standard deviation (SD) of the normalized frequency: 
M+SD vs. M–SD. To evaluate the accuracy of recommendation, 
we computed Precision and Recall as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|Φ�����

� |
|Φ�|  

𝑅𝑒𝑐𝑎𝑙𝑙 =
|Φ�����

� |
|Φ#����|

 

𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

|Φ�����
� |:	Number of ineffective instructional components included 

in a recommendation 
|Φ�| : Number of total instructional components included in a 
recommendation 
|Φ#����|:  Number of ineffective instructional components in 
courseware 
 
We investigated how precision and recall scores vary depending on 
the cut-off and the condition of the learning data (contrast, quality). 
Figure 2 shows precision and recall scores comparing M-SD and 
M+SD cut-offs for each quality of the courseware. For each data 
point, three levels of contrasts are aggregated, because there was no 
notable difference among them. The figure show that when the 
quality of courseware is low to medium, the M-SD cut-off had 
better recall and precision scores than M+SD. F1 score for M-SD 
was 0.99 and 0.92 for low and medium qualities respectively. On 
the other hand, when the quality is high, the M+SD cut-off 
outperformed M-SD. F1 scores of M+SD for high quality 
courseware was 0.88.  

In sum, the frequency heuristic adequately works to determine 
which instructional components must be taken into a 
recommendation for courseware refinement. In the current 
simulation study, over 90% of ineffective instructional components 

were correctly taken into a recommendation when an appropriate 
cut-off was used based on the maturity of the courseware. When 
the courseware is newly built (which is usually in a low to medium 
quality), the M–SD cut-off should be used, whereas the M+SD cut-
off should be used for matured (high-quality) courseware. In the 
current study, even with the high-quality courseware where only 
10-20% of all instructional components in the courseware are 
ineffective, RAFINE was able to correctly include ineffective 
components in the recommendation with the M+SD cut-off.  

7. DISCUSSION AND LIMITATIONS 
In the evaluation study, we had two research questions. RQ1: How 
robust is the converse policy as a detector for relatively ineffective 
instructional components against different conditions of learning 
data? RQ2: How accurately does the frequency heuristic compose 
a recommendation? 

First, the comparison of the normalized frequency revealed that 
relatively ineffective instructional components tend to appear in a 
policy action set significantly more frequently than effective ones 
regardless of the contrast and the quality of courseware. This 
suggests that the converse policy as a detector for relatively 
ineffective instructional components is robust enough against 
different conditions of learning data (RQ1) 

Second, we evaluated the accuracy of the recommendation created 
by the frequency heuristic to answer RQ2. The results showed that 
when we use a different cut-off depending on the maturity of 
courseware, the recommendation created by the frequency heuristic 
accurately includes ineffective instructional components. 

The results from the evaluation study showed that RAFINE can find 
deficits of the existing courseware by analyzing learning trajectory 
data on behalf of human experts. Although videos, quizzes and 
hints are evaluated in the evaluation study, RAFINE could also 
analyze other types of instructional components such like written 
paragraphs, tables, figures, etc. However, accurately tracking how 
students review these instructional components while learning is 
not straightforward—e.g., the ordinal clickstream data do not 
convey whether a student was reading a text instruction or not. 

Table 3: Comparison of the mean normalized frequency between 
ineffective (Inef.) and effective (Ef.) instructional components. A 

number in the parentheses shows an effect size. 
  Contrast 

  Large  Moderate  Small 

Quality  Inef.  Ef.  Inef.  Ef.  Inef.  Ef. 

High  0.7±0.2  0.2±0.1  0.7+0.1  0.1±0.1  0.5±0.1  0.2±0.1 
  (4.0)  (5.7)  (3.1) 

Med.  0.4±0.1  0.1±0.05  0.4±0.1  0.1±0.04  0.4±0.1  0.2±0.1 
  (7.9)  (8.5)  (3.6) 

Low  0.4±0.1  0.04±0.04  0.4±0.1  0.04±0.03  0.4±0.1  0.1±0.1 
  (9.2)  (10.0)  (4.5) 

 

 
Figure 2 : Precision and recall of a recommendation. The X-axis 
represents the quality of the courseware. Red dashed lines show 

results from M+SD and blue solid lines show M–SD. 
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One limitation of this study is that there are several assumptions 
about learning trajectory data. First, we assume the presence of the 
KC model. Instructional components should be tagged with a KC 
to apply the RAFINE method. Therefore, the recommendation 
created by RAFINE changes depending on a KC model. Methods to 
build a good cognitive model that captures the fine KC model are 
studied as mentioned in the related works.  

Second, we also assume that the students’ masterly level is 
measured correctly. Since the reward function depends on the 
change of masterly level from the current state to the next state, it 
is essential that the measured masterly level is not far from the 
actual level of students’ understanding on a skill.  

Third, variations in the learning trajectory graph are critical when 
applying the RAFINE method. To get better performance, RAFINE 
must be fed a learning trajectory graph that contains diverse 
learning activities. If there is only one path in a learning trajectory 
graph, for example, the converse policy has no choice but to select 
an instructional component that appears in the path as a converse 
policy action. 

One question that is not addressed in the current study is about the 
students’ differences—how much the students’ individual 
differences affect the “effectiveness” of each instructional 
component. Instructional components that are quite effective for 
one group of students may not be as effective for another group of 
students. Although it is out of the scope of the current paper, we 
have two working hypotheses for future studies. One hypothesis is 
about the majority rule—the big data overrides the individual 
human factors and detects the latent trends. Another hypothesis is 
about the individualized student model—entering individual 
student factors into the student model used to compute the mastery 
level, e.g., the individualized additive factor model [24]. Further 
studies will be necessary to address these issues in detail. 

8. CONCLUSION 
We found that the RAFINE method could serve as a building block 
for the evidence-based, human-in-the-loop, iterative online 
courseware learning engineering method by detecting the deficits 
of the courseware. RAFINE analyzes learning trajectory data 
collected from existing online courseware using the reinforcement 
learning technique and identifies ineffective instructional 
components. The detected components are provided to courseware 
developers as a recommendation for refinement. Given the 
recommendation, courseware developers can efficiently improve 
the courseware by modifying the listed instructional components. 

In addition to providing a new evidence-based learning engineering 
method, we also proposed a technique called the frequency 
heuristic and contributed to the community of applications of 
reinforcement learning (RL). The frequency heuristic is a novel 
way of interpreting the policy for evaluating the actions in MDP. It 
operates differently from the conventional applications of RL in 
which the policy is used for optimization. In RAFINE, the frequency 
heuristic is applied to the converse policy to detect ineffective 
instructional components (i.e., action) that had relatively less 
contribution to learning. In the evaluation study, we demonstrated 
that the frequency heuristic over the converse policy is potentially 
a powerful analytic tool to detect a relative weakness among 
available actions. 

For future studies, it is crucial to measure the actual effectiveness 
of the proposed method in authentic learning settings and apply the 
method to real students’ learning data. 
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ABSTRACT
Assessment plays a vital role in learning, as it provides both
instructors and students with feedback on the overall ef-
fectiveness of their teaching or learning. However, when
a student fails to correctly answer certain questions in an
assessment (such as a quiz), the student needs specific rec-
ommendations that are tailored to their learning needs and
to the knowledge deficiency exposed by the assessment out-
comes. In this paper, we explore the methods for automat-
ically identifying the recommended textbook materials that
are most relevant and suitable to the student. In particular,
we conducted experiments on how to incorporate students’
current knowledge state on domain concepts associated with
the activity to recommend personalized remedial sections to
each student. The results show that incorporating student
knowledge states can significantly improve the quality of rec-
ommendations as compared to traditional content-based rec-
ommendations.

Keywords
Remedial Recommendation, student Modeling, domain con-
cepts, dynamic student knowledge

1. INTRODUCTION
Along with the rapid development of internet and communi-
cation technologies, as well as the increasing amount of on-
line materials in diverse formats, online learning and its sup-
porting platforms have become vital for learning various new
subjects. Regardless of if it is a self-regulated platform or
instructor-regulated platform, learners are provided with di-
verse types of content, which may include notes, textbooks,
videos, and other lecture material. Similar to traditional
learning, in order to evaluate a learner’s progress through
course materials, various forms of assessments are embedded
in the online learning process. For example, course platforms
integrate quizzes and exams at the end of each learning mod-
ule (section, subsection, or part). This is particularly impor-
tant in self-regulated online courses, since these assessments

help learners to reflect on the content and estimate their
learning progress. A complete learning loop should incor-
porate the provision of providing learners’ relevant remedial
content materials to compensate for the knowledge deficit
exposed by the assessment. In classic computer-assisted in-
struction (CAI), where the course content and assessments
were created either by the same author or by a team, links to
remedial content were created manually. However, modern
online learning extensively uses open educational resources
and question banks created by many independent authors.
In this context, an automatically generated remedial recom-
mendation of learning content after a failed assessment is
vital to the success of online learning.

A natural approach for an educational recommender sys-
tem is to use content similarity as the basis for remedial
recommendation [36]. This approach recommends remedial
content that is similar to the assessed content. However,
deficiencies in student knowledge that are exposed by the
assessment might not be limited to the most similar con-
tent. Thus, a content similarity-based approach could lead
to a recommendation of materials that have either already
been mastered by the student, or a recommendation of ma-
terial for which students lack the prerequisite knowledge.

Figure 1: Quiz example

The goal of this study is to explore the method of remedial
recommendation that dynamically address student needs.
The proposed approach is to focus on modeling the domain-
relevant concepts that the student is learning. The mo-
tivation for using domain-specific concepts in representing
recommended documents is illustrated by Figure 1. The
figure shows an example question from the “information re-
trieval” course. A term-based recommendation (keyword-
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based) could count repeated words in the question and bring
up documents related to “Michael Jordan” or “Sport”. How-
ever, these documents may be irrelevant and thus would not
be helpful for remediation. In contrast, a recommendation
algorithm that attends to domain-specific concepts would
select documents that are related to “Google search engine”
or “information need”, which can cause the recommended
documents to be more directly relevant to the knowledge
assessed in the question.

We believe that a beneficial remedial recommendation also
needs to dynamically model the student’s knowledge of the
domain-specific concepts. A content-based or domain concept-
based static remedial recommendation would provide the
same recommendation to different students, regardless of the
individual students’ different levels of knowledge deficiency
exposed by the assessment outcomes. For instance, still con-
sidering the example in Figure 1, students who are already
familiar with the concept of “search engine” but are strug-
gling with the concept of “information need” would need dif-
ferent remedial recommendations than those who are strug-
gling with the concept of “search engine”.

As a result, in this paper we will investigate the effects of in-
corporating both domain knowledge and student knowledge
in remedial recommendations. More specifically, we aim to
address the following research questions:

• RQ 1: Does the domain-based representation of ed-
ucational content help perform remedial recommenda-
tion, either by acting alone or in combination with the
content-based recommendation?

• RQ 2: Can we use automated keyphrase extraction
techniques to generate domain-based representation ?

• RQ 3: Does the augmentation of student knowledge
on domain-based recommendation help in providing
dynamic remedial recommendations?

To address the research questions, we proposed a concept-
level static remedial recommendation (StatRemRec) and a
knowledge-level dynamic remedial recommendation (Dyn-
RemRec). To conduct this research, we used an online read-
ing platform (ReadingCircle) [13]. The system provided the
students with a platform to read their course textbook. In
ReadingCircle, every subsection contains a quiz to test stu-
dent performance (for details 4.1). Data obtained from the
ReadingCircle platform was used to investigate and evaluate
the proposed recommendation approach. We hypothesize
that the StatRemRec and DynRemRec approaches will pro-
vide better recommendations than state-of-the-art recom-
mendation models that completely ignore both the domain
and student dynamic knowledge states.

We also released a dataset of annotated questions in our
existing online textbook with relevant sections. This data
can work as a benchmark for content recommendation and
linking task1. The code and student model are available
at: https://github.com/khushsi/RemRec

1https://pslcdatashop.web.cmu.edu/Project?id=637

2. RELATED WORK
Despite their overall similarity, the roots of both static and
dynamic remedial recommendation approaches can be traced
to two different research areas. The static recommendation
of educational resources does not depend on the state of an
individual student, and as a result, can be generated be-
fore a student starts working with learning content. Histor-
ically, static recommendations were explored in the field of
educational hypermedia and called “intelligent hypertext”,
since this approach recommended resources that were not
connected by a human-authored link. Research on intelli-
gent hypertext started in the early days of this field and
originally focused on linking resources using term-based re-
source similarity [22, 41]. Simple keyword-based approaches
have been gradually replaced by semantic-level similarity,
based on concepts of semantic web and domain ontology [8,
28], and later by modern text-processing approaches, such
as topic modeling and concept extraction [24, 1, 37, 14].

The emergence of MOOCs and the online accumulation of
large volumes of educational content encouraged a new wave
of research on “intelligent” linking focused on connecting
primary learning content, such as textbooks and MOOCs,
with different external learning resources, such as videos,
Wikipedia pages, or research papers [1, 18, 20].

In contrast, the dynamic recommendation model of educa-
tional content has to be generated on the fly, based on the
current knowledge or interest of the learner. Dynamic rec-
ommendations could be traced back to the classic works on
adaptive course “sequencing” [23] and generation [10]. The
first generation of this work focused on adaptation to stu-
dent levels of knowledge and used different student modeling
approaches from the field of intelligent tutoring [35]. The
emergence of recommender systems encouraged a different
generation of research on dynamic recommendation that fo-
cused on learner interests and used techniques from the areas
of recommender systems [21]. Due to its popularity, the term
“recommendation” is now used to refer to both knowledge-
based and interest-based recommendations. Recent work
on educational recommendation frequently combines both
knowledge and interest adaptation and supports a range
of needs, such as fine-grained resource recommendation for
practice activities [2, 37], reading materials [29], and videos,
as well as coarse-grained recommendation of courses [30, 7]
or textbooks [31].

The majority of research on educational recommendation
has focused on recommending students’ next thing to do
and assumes that the student’s overall progress is good. A
different recommendation approach, known as remedial rec-
ommendation [3], has focused on recommending resources
that can help a student to learn a concept in which a stu-
dent is weak, in order to improve understanding or resolve
misconceptions. Konstantin et al. [4] proposed a knowledge-
gap based remedial recommendation approach. The method
considers learners’ previous success rates and categorize learn-
ers as expert, intermediate, or unknown. They found that
this coarse-grained categorization may help in providing rec-
ommendations based on student needs. Although such a
coarse-grained categorization is beneficial, it assumes that
there is a single learning rate for all students. However, the
existing advancement in education technologies have ways
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to infer students’ individualized levels of knowledge [32] and
learning rates [9, 11], called student models. In our work, we
used student models to define fine-grained student knowl-
edge states and explored the possibility of using them in
remedial recommendations.

3. METHODOLOGY
In this paper, we investigated the effect of dynamically in-
corporating domain knowledge and student knowledge for
remedial recommendation. The intuition is that this dy-
namic incorporation can enable more relevant and suitable
resources to help students recover from failure within the
assessment.

3.1 Problem Description
Formally, the research problem can be described as: for
a given student S, who was recently assessed on question
q; if student S failed on question q, we want to provide
student S with a recommended reading from a content set
T = t1, t2, . . . , tc to help the student to grasp the knowledge
that would be required to succeed on question q.

The vector representation of texts T and question q are
constructed using domain concepts, the recommendation is
computed based on the cosine similarity between the vectors
of text T and question q, and the top five most similar texts
are selected for the recommendation.

3.2 Static Remedial Recommendation
(StatRemRec)

StatRemRec targets remedial recommendation based on in-
corporating semantic knowledge or domain knowledge of the
content. To build a domain-based representation of educa-
tion material, we used domain concepts. The approach of
a domain concept-based representation of education mate-
rial is commonly found in intelligent tutoring systems, which
focus on problem-solving support and where every practice
problem is associated with a set of domain knowledge com-
ponents (concepts) [17]. In our case, concepts are expressed
as key phrases. Each key phrase depicts a fragment of do-
main knowledge, a semantic entity, or a fine-grained topic.
Each target education material, textbook section, and ques-
tion (in our case) are annotated with domain concepts. Fig-
ure 2 shows an example output of these annotated domain
concepts mapped to both a text and a question.

Once we have obtained a domain concept for both texts and
questions, we build a representation of texts and questions as
a frequency-based vector representation, based on the pres-
ence of domain concepts for each text and each question.
For recommending texts for a particular question, we apply
cosine similarity between question q and all the available sec-
tions in the text T and rank the top five most similar texts
{R1

q , R
2
q , R

3
q , R

4
q , R

5
q} that share the same domain concepts

with the questions q

3.3 Dynamic Remedial Recommendation
(DynRemRec)

StatRemRec accounts for semantic knowledge in the docu-
ment for recommending remedial materials. Although this is
an improvement on a purely keyword-based content recom-
mendation system, StatRemRec still recommends the same

content for each student, regardless of the student’s real-
time content requirement. For example, a student failing on
a question that asks about “Multiplication” will always be
given recommendations for readings related to “Multiplica-
tion”with StatRemRec. For instance, if a student’s skills are
weak in a prerequisite concept, e.g. “Addition”, it is crucial
to support that student’s current needs.

In education systems, intelligent tutoring systems account
for this student-specific information to provide students with
adaptive practices and has been shown to help with effec-
tive and efficient learning [38]. To provide adaptation, the
tutors maintain dynamically changing student knowledge
states while the student uses the tutoring system.

In DynRemRec, we maintained dynamically changing stu-
dent knowledge states and used students’ real-time knowl-
edge states to generate a personalized remedial recommen-
dation for each student. The following subsections provide
details about student knowledge state generation and our
approaches to integrating them into our remedial recom-
mendation.

3.3.1 Student Knowledge State Generation
For generating students’ knowledge state, we used a tra-
ditional and widely accepted student modeling framework,
performance factor analysis (PFA) [34]. This model relies
on expert annotated skills (also known as knowledge com-
ponents or concepts). Skills are knowledge units associated
with student activities, steps, and questions on which stu-
dents’ knowledge and performance are tested [17]. In our
work, we considered domain concepts as skills, which has
been shown to work in previous work on student modeling
in online textbooks. [40, 16, 42]. At the base of the model is a
Qmatrix, a binary matrix where columns represent concepts
or skills and rows represent questions. Each cell is a binary
value, where 1 in the cell with row r and column c repre-
sents that question r is an application of concept c. PFA
represents the student’s probability of success in answering
a question as a function of the student’s previous success-
ful and failed attempts on the concept associated with the
question, as shown in Equation 1

PFA: ln
psq

1− psq
= αs

+
∑
c

βcQcq +
∑
c

Qcq(µcSsc + ρcFsc) (1)

where, s is a student and q is a question. c is a concept
(skill or knowledge component). αs is a coefficient associ-
ated with learner s (regression intercept) and represents the
proficiency of learner s. Q is a Qmatrix and Qcq is the Qma-
trix cell associated with question q and Concept c. βc are
coefficients associated with concept c. βc represents the diffi-
culty of concept c, while µc and ρc are coefficients associated
with Ssc and Fsc. Ssc and Fsc are the number of success and
failure attempts, respectively, of learner s on concept c. We
consider PFA, as PFA provides granular evaluation based on
individual students’ prior success and failure on a particular
skill [34].
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Figure 2: An example of domain concepts annotated to both a text and a question. This is just for example
purposes and is not part of our study. The domain concepts are marked with a link

To obtain the knowledge of a student s on a concept c when
the student failed on question q, we generate the probability
of failure on a concept PFsc. We assumed that there ex-
ists an item c annotated with concept c, and generated the
probability of failure as:

PFsc =

{
1− (αs + βc + (µcSsc + ρcFsc)) c ∈ q
0 c /∈ q

(2)

where αs is ability of student s and βc is difficulty of concept
c. Ssc and Fsc are previous success and failed attempts of
student s on concept c, after the student failed on question
q.

To generate the student knowledge state vector, we repre-
sented each domain concept associated with the question q
with weight value PFsc. The knowledge state consists of
the probability of failure to make sure that a greater weight
is given to domain concepts (skills) where the student has
a high probability of failure (where they might lack suffi-
cient knowledge). For the concepts that are not associated
with question q, we made the probability to be zero, as the
goal is to recommend material related to concepts that are
associated with the question.

The representation of text (documents or textbook sections)
is the same for both DynRemRec and StatRemRec (i.e. rep-
resentation based on frequency on domain concepts, as dis-
cussed in Section 3.3). The change is in question represen-
tation, which is based on the presence of domain concepts in
StatRemRec and is based on the dynamic knowledge state
of domain concepts in DynRemRec.

4. EXPERIMENTS
The dataset from ReadingCircle [13] was used for explor-
ing DynRemRec and StatRemRec. In this section, we will
introduce the dataset before presenting the details of our
experiments.

4.1 Student Dataset
ReadingCircle [13] is an online reading platform. It provides
an online reading environment to students in a course where
they read assigned textbook materials to prepare for class.

There are quizzes of questions embedded in each section
of the assigned readings to assess the progress of student
learning on the content.

ReadingCircle keeps extensive logs for events associated with
student reading and assessment. The dataset used in the ex-
periments is collected from a version of ReadingCircle that
has been adapted for supporting a graduate-level course on
information retrieval at an University of Pittsburgh in spring
2016. There was no restriction on the number of attempts
to the questions. ReadingCircle logs each and every attempt
made by the student. This data set contains 9006 quiz in-
teractions from 22 students and 4273 interactions of student
failure on quizzes (for more details, refer to Table 1). The
student dataset can be obtained from Datashop2.

Table 1: ReadingCircle data details
Number of documents (sections) 66
Number of questions 89
Number of students 22
Average per student questions attempted 91
Student practice interactions 9006
Number of failure interactions 4273

4.1.1 Ground Truth
To evaluate the effect of recommendations on questions, we
require a mapping of questions to sections. Each question
maps to the section where it appears. This assumption holds
as each quiz is created by subject experts (instructors and
teaching assistants) to assess student knowledge in a par-
ticular section. In a few cases, a quiz will assess multiple
sections. In this case, we map the questions appearing in
those quiz to multiple sections. For more details on the
question-to-section mapping dataset, please refer to Table 2

Table 2: Ground truth for recommendation
Number of (sections) 66
Number of questions 89
Number of questions per section 1.93
Number of questions linked to single section 81
Number of questions linked to multiple sections 8

2https://pslcdatashop.web.cmu.edu/Project?id=637

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 236



4.2 Domain Concept
Concept-based textbook representation was introduced by
early projects that focused on adaptive textbooks [15, 43].
Adaptive textbooks associated every section of a digital text-
book with a set of domain concepts (called outcomes) that
are present in that section. In this work, we investigated
both expert-annotated domain concepts [42] and automated
extracted domain concepts [26, 6, 25].

• Expert-based concepts (EBC): For EBC, we used
concepts that were generated by Wang et al [42]. Wang
et al. [42] developed comprehensive expert-based an-
notation rules and proposed a two-step concept anno-
tation system with three subject experts. [42]. The
concepts are available for sections in the “Introduc-
tion of Information Retrieval” book, which is the same
book that students are reading in the online course in
ReadingCircle.

In order to conduct the experiment, we want both
questions and the text that are associated with the
concepts. However, EBC is only available for textbook
sections. In order to associate concepts with questions,
we created a list of domain concepts using concepts in
all sections, and performed a simple lookup on the con-
cept list to find the domain concepts in the question
and answer text. More details about the EBC concepts
is mentioned in Table 3.

Table 3: EBC Concepts
Number of unique concepts 1047
Average number of concepts per section 30.83
Average number of concepts per quiz 6.52

To check if questions have concepts only from related
sections, we plotted the distribution that depicts the
number of unique sections that share concepts with
questions, as shown in Figure 3. These statistics show
that questions share concepts with an average of 24.3
sections.
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Figure 3: Distribution of number of unique sections
sharing domain concepts per question.

• Automated concept extraction (ACE):
StatRemRec and DynRemRec represent text with concept-
level representation. In the case of DynRemRec, the
student model is also trained using concepts associ-
ated with student practice activities. However, tra-
ditional expert-based concept generation is time con-
suming and hard to obtain with the incorporation of
open-source course materials. Hence, it is impracti-
cal if time-consuming expert concepts becomes a nec-
essary step in student recommendation on education
resources. To prove the ease of incorporating Sta-
tRemRec and DynRemRec, we dedicated this set of
experiments to test the feasibility of concept-level re-
medial recommendations (RQ 2). The experiment was
designed to test StatRemRec and DynRemRec on con-
cepts that were automatically extracted through key-
phrase extraction techniques [6, 25, 26]. It is debat-
able if keyphrase extraction techniques extract domain
concepts and could be used as knowledge components
or skills on which students’ knowledge is measured.
For evidence of using concepts as skills, we relied on
evidence from work by Thaker et al. [40] and Huang
et al. [16], in which student models are trained on
keyphrases in education content for adaptive textbooks.

To perform the experiment and explore research ques-
tion RQ-2, we selected three state-of-the art keyphrase
extraction techniques, as discussed below:

1. TextRank: TextRank [26] is a classic unsuper-
vised keyphrase extraction technique. TextRank
converts each document into a graph of words,
based on word co-occurrence criteria. The algo-
rithm then applies the page rank algorithm to the
graph and extracts the important keyphrases.

2. CopyRNN: CopyRNN [25] is a supervised deep-
learning based sequence-to-sequence keyphrase gen-
eration technique. CopyRNN is one of the state-
of-the-art supervised keyphrase extraction tech-
niques. This will help us evaluate our model for
supervised keyphrase extraction.

3. TopicRank: TopicRank [6] is a graph-based unsu-
pervised keyphrase extraction technique. The dif-
ference is TopicRank focuses on finding keyphrases
that belong to the topic of the document. As a re-
sult, this technique can provide more insight into
topic-based concept extraction.

.

Table 4 shows more details of the concepts extracted by
different ACE methods. The table indicates that dif-
ferent algorithms will choose a different domain space
for representing the domain.

4.3 Term-Based Recommendation Baseline
(TextRec)

For our baseline, we used a simple term-based recommen-
dation approach. TextRec finds the similarity between two
documents (section text and quiz text) based on words that
are present in the text. Each term in the document is used
as a semantic unit and the document is represented as a
vector of the TF-IDF weights [39]. Such a TF-IDF based
document similarity was recently found to be effective for
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Table 4: Statistics of ACE datasets
Average no of Concepts Unique Overlap

Model Section Quiz Concepts Sections

CopyRNN 14.56 2.32 558 2.29
TextRank 27.39 7.53 698 28.88
TopicRank 96.01 7.85 2469 32.94

finding similar education resources [37]. Although state-of-
the-art recommendation techniques use advanced semantic
representations that use both word and document embed-
dings [27], we did not explore much in this area, as our focus
is in understanding the effectiveness of including domain and
student knowledge in recommending remedial resources.

4.4 Experiment Steps
To address the research questions mentioned in Section 1,
we conducted the following experiments:

1. Term vs Concept Representation: To understand
if domain-based representation is effective (RQ 1), we
compared the concept-level techniques of StatRemRec
and DynRemRec to the term-based approach TextRec.

2. Fusion experiment: As the TextRec approach has a
term-based representation of education material, while
StatRemRec and DynRemRec use concept-level rep-
resentation, to leverage both types of representation
(RQ 1), we fused the term-based approach with do-
main concept-based approaches. The fusion of term-
based methods with concept-based methods is done by
simple linear interpolation, as specified in Equation 3

Simfused
qi,tj

= α · Simconcept
qi,tj

+ (1− α) · Simtext
qi,tj (3)

where Simqi,tj is the similarity between question qi
and section tj . To determine the interpolation coeffi-
cient α in Equation 3, we selected the α that gave the
best result for TextRec + StatRemRec on expert-based
concepts and used it in all of our experiments.

3. Experiment with ACE: To address research ques-
tion RQ 2, we performed remedial recommendation by
using keyphrases as domain concepts.

4. Knowledge Augmentation: To address research ques-
tion RQ 3, this experiment investigated differences in
the recommendations generated from both StatRem-
Rec and DynRemRec.

Figure 4 provides a complete picture of the experiment set
up with all of the resources that were used for the exper-
iment. Student interaction data is divided into students
stratified in ten random folds. The training folds are used for
training the student model, with available concept indexing
for each question. The recommendation is evaluated on the
test fold. The student model is used to generate dynamic
knowledge-based concept representations for DynRemRec,
and the results reported in Section 5 are averaged over 10
test folds.

4.5 Evaluation Metric
As discussed in Section 4.1.1, the question to section map-
ping is one to many, so we adopted mean reciprocal rank
(MRR) and mean average precision (MAP) to evaluate the
recommendations [33]. MRR is a good metric to understand,
on average, the position on which a relevant recommenda-
tion is obtained, and MAP@5 will generally prefer the algo-
rithm that recommends more relevant sections at the top of
the list. Here, the wrong recommended section is considered
not to be relevant and the correct section is considered to
be relevant.

5. RESULTS AND DISCUSSION
5.1 Term vs Concept-Based Recommendation
Table 5 shows the performance of the term-based approach
TextRec the and domain concept-based approaches StatRem-
Rec and DynRemRec. Both StatRemRec and DynRemRec
performed lower than the baseline TextRec. One potential
reason for this finding is that TextRec relies on the keywords
from the whole content of both the quiz and the section,
while both StatRemRec and DynRemRec only index based
on on a small number of identified concepts. Based on our
calculation, the average length of sections in our dataset is
1, 345 words, whereas the average number of concepts anno-
tated by experts in each section is only 13.5, which indicates
that the concept-based representation relies on a compara-
tively few number of concepts.

These results show that, despite the importance of domain-
specific concepts in explaining the content in education, con-
fining the representation of text with only concept-level con-
tent could cause too much loss in useful textbook content.

5.2 Fusing Term and Concept-Based Recom-
mendations

As Meng et al. [24] pointed out, term-based content repre-
sentations of education materials can provide fine-grained
term level information and statistics, while concept-based
representation works on both a coarse-grained topic and se-
mantic level. Consequently, it is beneficial to have informa-
tion from both these representations when recommending a
relevant document to a student. As term-based representa-
tion identifies the content similarity based on shared terms,
concept-level representation provides emphasis on seman-
tics and the knowledge that is represented by the concepts.
To leverage the combined power of these two representa-
tions, we conducted fusion experiments on both the term-
and concept-level approaches, as mentioned in Section 4.4.
As Table 5 shows, there is a clear indication that fusion (Tex-
tRec + StatRemRec) surpasses the baseline TextRec and
benefits from concept-level representation. To investigate
this effect in detail, we plotted the performance of StatRem-
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Figure 4: Experiment Setup

Table 5: Remedial recommendation performance on failed questions in ReadingCircle system in terms of
MRR. * denotes a significant performance change of metric over text-based recommendation TextRec using
a non-parametric Wilcoxon signed rank test. Numbers shown in bold indicate the top two best perfor-
mance. The performance is based on expert annotated EBC. Parameter α for TextRec + StatRemRec and
TextRec + DynRemRec is 0.60 based on MAP@5

student
Model knowledge MRR MAP@5

TextRec - 83.00 74.01
StatRemRec - 73.47 68.40

DynRemRec ! 71.05 66.06
TextRec + StatRemRec - *91.01 *86.18

TextRec + DynRemRec ! *89.53 *83.90

Rec for different values of the interpolation co-efficient α, as
shown in Figure 6.

Figure 6 and Figure 5 display some important characteristics
of these recommendations. The curve of TextRec + Sta-
tRemRec starts with the performance of TextRec at the
value of α = 0. Initially, along with α increases from α = 0
to α = 0.3, the performance of the fusion-based approach
TextRec + StatRemRec increases both in MRR and MAP@5,
which shows the benefit from the inclusion of concept-based
representation. Next, MRR performance stabilizes for a pe-
riod from α = 0.3 to α = 0.6, which shows no obvious
change in the position of the top-ranked relevant documents
in rank lists. In this interval, MAP@5 (Figure 6) keeps in-
creasing, which shows that concept-level representation are
helping in either recommending new relevant documents or
bringing already ranked relevant documents up at a higher

ranked position. The performance of MAP, which looks at
all the recommendations, is best at α = 0.60. Since the
performance improvement comes with the increasing weight
on StatRemRec, it provides evidence that recommendation
benefits more from the domain-specific concept-based repre-
sentation. Fusion improved the performance of recommen-
dation by 16% (significantly, with significance tested using
Wilcoxon signed rank test), providing an answer to our re-
search question RQ 1 that StatRemRec improves recommen-
dation quality when augmented with a traditional content-
based recommendation system.

5.3 Performance with ACE
In research question RQ 2, the goal is to understand the
feasibility of using ACE as a domain concept and to use
it in providing remedial recommendations. Table 6 com-
pares the performance of some traditional ACE techniques.
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Figure 5: Threshold based recommendation values in terms of MAP with change in α values

We experimented with both supervised and unsupervised
keyphrase extraction techniques. It is apparent from the
performance of ACE that these techniques beat traditional
content-based recommendation systems. TextRank does not
improve much on content-based recommendation, but both
TopicRank and CopyRNN surpass content-based recommen-
dation. TopicRank is a winner among three methods and
beats the recommendations that are based on EBC. A possi-
ble reason could be the difference between keyphrase extrac-
tion methods. TextRank and CopyRNN focus on extracting
important keyphrases from a document, while TopicRank
is focused on extracting keyphrases that are related to top-
ics discussed in a document. Thus keyphrase extracted by
TopicRank is more analogous to concepts discussed in the
course. We experimented with comparatively few and some-
what simple keyphrase extraction techniques, as we aim to
provide a piece of simple evidence for the feasibility of our
approach (RQ 2). We leave for future work to perform a
more comprehensive experiment with automated concept ex-
traction, which extracts more advance domain knowledge
like prerequisites and outcomes within a textbook [12, 19].

5.4 Augmenting Knowledge in Concept-Level
Representation

The main goal of DynRemRec is to provide students with
personalized remedial recommendations based on their real-
time information needs. As Table 5 shows, DynRemRec
performed worse than both TextRec and concept-based Sta-
tRemRec in MRR and MAP@5. As with StatRemRec, we
fused DynRemRec with TextRec. The fusion of DynRem-
Rec with term-based representation (TextRec + DynRem-
Rec) revealed a similar output as TextRec + StatRemRec.
This fusion improved the performance of recommendations
by 13%, as compared to TextRec.

Although the fusion (TextRec + DynRemRec) improved the
results in the case of DynRemRec, it is evident from Figure 6
that TextRec + DynRemRec was not able to improve over
the performance of TextRec + StatRemRec. An explanation

of this output is that DynRemRec addresses the need of
students at each recommendation, while StatRemRec pro-
vides the same static recommendation to each student. This
means that there may be cases in which experts think that a
student will benefit from reading a particular section, but ac-
tual student needs might differ. Our current gold standard is
expert-based, which does not target real-time student needs.

5.4.1 Effectiveness of augmenting knowledge
The goal of DynRemRec is to tailor the recommendations to
student needs. Figure 7 shows the distribution of a unique
set of recommendations generated against each question by
TextRec + DynRemRec. As presented in the distribution
in Figure 7, except for 12 questions, all the questions gener-
ated more than one distinct ranked list of recommendations.
The results indicate that knowledge augmentation helps in
providing an adaptive recommendation.

To understand the difference between StatRemRec and Dyn-
RemRec, we further investigated the cases where the recom-
mendation of StatRemRec was different from DynRemRec.
In our online textbooks, students read one to two chapters
every week. The course instructors predefined the course
sequence. We divided the course sections into three cate-
gories: previous sections, current sections, and future sec-
tions, based on the section of the question for which a stu-
dent received the remedial recommendation. Previous sec-
tions can be considered as prerequisite sections, while the
current section is the one for which the student is assessed.
Future sections are advanced topics in which students lack
complete knowledge. Figure 8 shows the distribution of rec-
ommended sections based on the three remedial recommen-
dation techniques of TextRec, TextRec + StatRemRec, and
TextRec + DynRemRec. A good remedial recommendation
algorithm will recommend resources from current sections
and previous sections, as understanding concepts explained
in both previous and current sections will help students to
solve the failed question. As Figure 8 shows, TextRec’s rec-
ommendation is distributed in all the categories, while both
TextRec + StatRemRec and TextRec + DynRemRec have
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Figure 6: Threshold based recommendation metric in terms of MRR with change in α values

Table 6: Remedial recommendation performance on failed questions in an ReadingCircle system, in terms of
MAP@5. The performance compares EBC with ACE-based methods for both StatRemRec and DynRemRec
with an alpha value of 0.60, determined by experiment, in Figure 6. The performance is mean on 10 folds.
Bold indicates the performance, which is as good as EBC.

Model TextRec + StatRemRec TextRec + DynRemRec
MAP@5 MAP@5

ACE
TextRank 83.14 83.97
CopyRNN 84.66 84.05
TopicRank 89.90 88.85
EBC 86.81 84.11

more recommendations in current sections and fewer recom-
mendations in future sections. This result shows the clear
benefit of the addition of domain knowledge, which helps
in recommending the sections that are appropriate for the
learner.

Augmenting student knowledge (TextRec + DynRemRec),
on the other hand, further decreased the recommendation
of future sections. However, DynRemRec also decreased
the current section and provided more recommendations in
previous sections than StatRemeRec. Recommendations on
previous section can be the consequence of students’ knowl-
edge state. If a student is still weak in a prerequisite concept,
StatRemRec will not consider those cases, while DynRem-
Rec, which provides adaptive remedial recommendation, will
make recommendations that are based on students’ needs.
This gives indirect evidence about the effectiveness of aug-
menting student knowledge in recommending resources.

6. CONCLUSIONS AND FUTURE WORK
This paper investigated the value of using domain and stu-
dent knowledge for the remedial recommendation of reading
resources.

We found that the use of domain knowledge significantly im-
proves recommendation performance when fused with tra-
ditional content-based recommendations. The model Tex-

tRec + StatRemRec, which augments content-based recom-
mendation with domain concept-based recommendations, sig-
nificantly outperformed the traditional content-based rec-
ommender TextRec. Currently, fusion is achieved with a
simple linear interpolation; we would like to investigate other
fusion techniques in future studies.

While domain knowledge improves the quality of recommen-
dation, it doesn’t account for the knowledge and needs of
individual students when recommending remedial reading.
To address this, we tried to use dynamic student models
that represent students’ current knowledge state on domain
concepts for providing truly personalized recommendations.
TextRec + DynRemRec, which augments student knowledge
with a content-based recommender, provided evidence to
support the benefits of adding students’ knowledge state for
an adaptive recommendation. Although we provided some
preliminary evidence for a personalized recommendation, it
would be necessary to conduct a comprehensive study with
real-time student feedback on recommendation. In future
work, we will further investigate this phenomenon by incor-
porating different recommendation techniques to our online
course platform. Such a study will provide a more accu-
rate evaluation based on students’ learning gain and overall
system usage.

To address research questions RQ 1 and RQ 3, we used
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Figure 7: Distribution of unique lists of recommen-
dations per quiz by TextRec + DynRemRec
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Figure 8: Category of recommended sections. The
graph only plots for top recommended section. Pre-
vious, current, and future sections are categorized
according to the sequence of the course.

expert-annotated domain knowledge (EBC) for building our
recommender. As expert-provided concept indexing is ex-
pensive in terms of both time and resources, we further in-
vestigated traditional concept extraction approaches, such
as ACE, to make our approach more feasible in practice. The
performance of domain and knowledge augmented recom-
mender on ACE proves that the technique is easy to adapt
to new course content, for which expert-based concept in-
dexing may not be available. A good future direction for this
work is to investigate the importance of ACE by incorporat-
ing advanced semantic topic modeling [5] and prerequisite
extraction techniques [19, 12]. A better representation of
domain knowledge can lead to a more reliable knowledge
unit generation for pedagogical design.

This work represents a first exploration of the power of con-
sidering students’ knowledge state in recommending person-
alized remedial readings. The present work provides an in-
teresting insight into automated remedial recommendation.
We believe these types of models could play a more promi-

nent role in future models of online learning where immedi-
ate or individualized instructor feedback is not available.
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EDM 2019, Montréal, Canada, July 2-5, 2019.
International Educational Data Mining Society
(IEDMS), 2019.

[31] R. Nagata, K. Takeda, K. Suda, J. Kakegawa, and
K. Morihiro. Edu-mining for book recommendation for
pupils. In T. Barnes, M. C. Desmarais, C. Romero,
and S. Ventura, editors, Educational Data Mining -
EDM 2009, Cordoba, Spain. Proceedings of the 2nd
International Conference on Educational Data Mining,
pages 91–100, 2009.

[32] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In P. D. Bra,
A. Kobsa, and D. N. Chin, editors, User Modeling,
Adaptation, and Personalization, 18th International
Conference, UMAP 2010, Big Island, HI, USA,
volume 6075 of Lecture Notes in Computer Science,
pages 255–266. Springer, 2010.

[33] D. Parra and S. Sahebi. Recommender systems:
Sources of knowledge and evaluation metrics. In
Advanced Techniques in Web Intelligence-2: Web User
Browsing Behaviour and Preference Analysis, pages
149–175, Berlin, Heidelberg, 2013. Springer.

[34] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis - A new alternative to
knowledge tracing. In V. Dimitrova, R. Mizoguchi,
B. du Boulay, and A. C. Graesser, editors, Artificial
Intelligence in Education: Building Learning Systems
that Care: From Knowledge Representation to
Affective Modelling, Proceedings of the 14th
International Conference on Artificial Intelligence in
Education, AIED, Brighton, UK, volume 200 of
Frontiers in Artificial Intelligence and Applications,
pages 531–538. IOS Press, 2009.

[35] M. C. Polson and J. J. Richardson. Foundations of
intelligent tutoring systems. Lawrence Erlbaum, 1988.

[36] B. Pursel, C. Liang, S. Wang, Z. Wu, K. Williams,
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ABSTRACT
Front camera data from tablets used in educational settings
offer valuable clues to student behavior, attention, and affec-
tive state. Due to the camera’s angle of view, the face of the
student is partially occluded and skewed. This hinders the
ability of experts to adequately capture the learning process
and student states. In this paper, we present a pipeline and
techniques for image reconstruction of front camera record-
ings. Our setting consists of a cheap and unobtrusive mirror
construction to improve the visibility of the face. We then
process the image and use neural inpainting to reconstruct
missing data in the recordings. We demonstrate the applica-
bility of our setting and processing pipeline on affective state
prediction based on front camera recordings (i.e., action units,
eye gaze, eye blinks, and movement) during math-solving
tasks (active) and emotional stimuli from pictures (passive)
shown on a tablet. We show that our setup provides compa-
rable performance for affective state prediction to recordings
taken with an external and more obtrusive GoPro camera.

Keywords
Front Camera Setup, Inpainting, Affective Computing, Clas-
sification, Deep Learning

1. INTRODUCTION
Tablet computers have found quick application in educa-
tion [14] as the technology offers new opportunities to stu-
dents and teachers. It has been shown that tablets can influ-
ence learning pathways [19] and improve digital skills [47].
Moreover, tablets typically have built-in cameras, which can
be used to unobtrusively record the student during the learn-
ing. Such data offers valuable clues to experts about the
student’s learning behavior and attention. Student observa-
tion has been implemented in studies with external camera
setups [56]. Such frontal-view camera data can also be used
for predictions of the affective states of a student based on

facial feature extraction [46], which works robustly even with
low-resolution recordings [43]. Affective states are psycho-
physiological constructs describing emotions (short-term)
and moods (long-term) elicited by a stimulus [36, 51], and
their impact on learning has attracted considerable attention
in research on intelligent tutoring systems and education [3,
13, 41]. For example, Craig et al. [12] have found a posi-
tive correlation between learning and flow and a negative
correlation between learning and boredom.

Using external cameras for frontal view recordings of students
provides an optimal viewing angle for robust facial feature
extraction and affective state prediction. However, such se-
tups require externally positioned cameras, which can be
obtrusive and further depend on timestamp synchronization
with the digital learning environment. Using tablet comput-
ers for learning circumvents these problems, as the built-in
camera can be leveraged and timestamps are inherently in
sync. Built-in cameras have, however, a sub-optimal viewing
angle, leading to partially occluded and skewed faces in the
recordings that makes it difficult to robustly extract facial
features for affect prediction.

In this paper, we therefore propose a camera setup for
tablet computers and a deep learning-based image process-
ing pipeline to reconstruct high-quality facial recordings of
students. The setup requires a small mirror to be attached
to the camera to improve the visibility of the face. Then, the
image is reconstructed using a neural inpainting approach.
We demonstrate the advantage of this setup and our recon-
struction by an application for predicting affective states.
The high quality of the reconstructed image enables facial
feature extraction, such as head pose, eye gaze, and facial
landmarks. We compare our method with an external cam-
era setup (GoPro camera) and show that we can achieve
a similar performance for predicting two levels (high and
low) of valence and arousal for students performing active
tasks, i.e., solving math tasks (up to 0.73 AUC) and students
performing passive tasks, i.e., exposed to emotional stimuli
from pictures (up to 0.80 AUC).

2. RELATED WORK
Inpainting. Image inpainting is an image processing method
to reconstruct missing or corrupted regions of an image.
Common application areas include image restoration (e.g.,
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removing scratches and text) [34], photo-editing (e.g., object
removal) [50], and image coding and transmission (e.g., recov-
ering the missing blocks) [54]. In this work, we focus on the
specific task of face completion. Popular non-learning based
approaches applied to faces consist of patch-based methods,
where image patches are copied to missing areas. Similar
patches can be identified by using a face image dataset [58].
We refer to Guillemot and Le Meur [21] for a complete
overview of non-learning based models.

While non-learning based methods can have difficulties to en-
sure consistent image structures [24, 45, 55], learning-based
approaches typically generate smoother results. A popular
line of learning-based methods uses generative adversarial
networks (GAN) to inpaint missing regions of an image.
GANs consist of a generative network to create a new image
and a discriminator network to distinguish the new image
from actual ground truth images. Using such a GAN ap-
proach, Malesevic et al. [37] reported a peak signal-to-noise
ratio (PSNR) of up to 20.57 for inpainting missing regions in
faces. A similar performance of up to 20.2 PSNR and 0.84
structural similarity (SSIM) was achieved by Li et al. [31]
using an encoder-decoder network as the generator, a local
and global loss function and a semantic regularization term.
On the other hand, Liao et al. [32] used a collaborative model
by training a GAN simultaneously on multiple tasks (i.e.,
face completion, landmark detection, and semantic segmenta-
tion). Using this knowledge-sharing approach, they reported
a PSNR of up to 31.5 and an SSIM of 0.97 on face inpainting.

Convolutional neural networks (CNN) have been used for
image inpainting as well. The encoder compresses the image
with convolutional operations into a latent space, and the
decoder reconstructs the image from the compressed represen-
tation. Guo et al. [22] proposed an encoder-decoder network
using full-resolution residual blocks. For face inpainting, they
reported a PSNR of 29 and an SSIM of 0.95. On the other
hand, Liu et al. [35] achieved a PSNR of 34.69 and an SSIM
of 0.99 by adding a coherent semantic attention layer to the
encoder. One disadvantage of this method is its long runtime
of 0.82 seconds per image of size 256 × 256 rendering this
method inapplicable for real-time video processing with more
than one frame per second. Another problem with existing
CNN-based methods is that the convolution operations are
applied both to the valid and missing pixels at the same time,
which can lead to visual artifacts (e.g., color discrepancy and
blurriness). To overcome this issue, Liu et al. [34] proposed
partial convolutions, where the convolution operations are
only applied to valid pixels by masking regions that need
to be inpainted. The mask is updated during training of
the network, including newly inpainted values. The authors
demonstrated that the approach could produce semantically
meaningful predictions also for inpainting regions with dif-
ferent shapes and sizes, achieving a PSNR of up to 34.34
and an SSIM of up to 0.95. We use this partial convolution
approach to inpaint missing regions in images from front cam-
era recordings. The dataset used for training the network is
tailored to our use case.

Affective State Prediction. In our work, we focus on the
prediction of affective states in the educational domain, such
as in classroom settings and online courses. It was shown that
affective states have an impact on learning gain in general,

and during math learning in particular [29, 44]. For example,
Csikszentmihalyi [13] showed that engaged concentration
has a positive effect on learning, while boredom negatively
influences learning. Affective states are often grouped into
basic emotions identified by Ekman [16] (i.e., anger, disgust,
fear, happiness, sadness, and surprise) or described by the
valence and arousal dimensions [40]. Valence indicates if
an emotion is perceived as positive or negative, and arousal
represents the intensity of an emotion.

Different modalities have been used to predict affective
states using the valence-arousal space in educational settings.
Acoustic features from student voices during interaction with
tutors have been used to predict three levels of valence [33].
On the other hand, bio-sensors (i.e., skin conductance, heart
rate, and skin temperature) and handwriting data have been
successfully used to predict affective states in the valence-
arousal space during math solving tasks [53]. Another line
of research predicted valence and arousal using mouse and
keyboard interaction data collected during text writing [49].
Multi-modal approaches fusing different modalities have also
been introduced for the prediction of affective states. We
refer to D’Mello et al. [15] that provides a concise overview
of such methods.

Prediction of affective states from video recordings is one of
the most popular approaches nowadays as it allows different
features to be exploited, such as body language and posture,
head movement, eye gaze and facial expressions [57]. Bosch
et al. [6] calculated statistics (i.e., maximum, median and
standard deviation) of the frame-level likelihood values of 19
different action units (AU) (i.e., facial muscle movements),
the head position and gross body movement from webcam
video recordings of students playing an educational physics
game. They predicted two levels of boredom (0.61 AUC),
confusion (0.65 AUC), delight (0.87 AUC), engagement (0.68
AUC) and frustration (0.63 AUC). Based on this work, Kai
et al. [26] found that an interaction-based model using tim-
ing and counting-based features performs worse than the
video-based model. Similarly, using a math tutor, Arroyo
et al. [2] found facial expressions to be more predictive for
confidence, frustration, excitement, and interest than con-
ductance bracelets, pressure mice, and a posture analysis
seat. Also in other domains facial expressions have found to
be a good predictor for affective states. In text comprehen-
sion tasks, confusion (0.64 AUC), engagement (0.55 AUC),
and frustration (0.61 AUC) have been successfully predicted
using 20 different AUs [11]. On the other hand, Grafsgaard
et al. [20] found upper face movements predictive for engage-
ment, frustration, and learning in a setting consisting of a
programming tutor and a webcam. Finally, based on eye
gaze features (e.g., fixation and view angle) extracted from
a specialized eye capturing device, boredom (69 %) and cu-
riosity (73 %) have been successfully predicted on two levels
each [25]. A survey of different video-based approaches for
predicting affective states is provided by Zeng et al. [57].

A majority of the existing vision-based approaches use ex-
ternal devices, such as webcams, and rely on posed facial
expressions to predict basic emotions [57]. In contrast, we
present a novel setup for reliably recording the face of users
based on the front camera of tablet computers only, and
hence without the need for expensive devices or synchroniza-

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 246



tion between the devices. We demonstrate the usefulness
of our setting by predicting affective states in terms of va-
lence and arousal using data from an experiment containing
spontaneous (non-posed) facial expressions. Finally, for our
vision-based model, we fuse different existing approaches
with novel features.

3. CAMERA SETUP
We present a low-cost hardware setup for recordings from the
integrated front camera of a tablet computer, maximizing the
visibility of the face of the users. Videos and images captured
by the front camera are preprocessed, and missing parts are
inpainted using a deep learning model to reconstruct the
face of the users. Our approach is image-based and processes
captured videos frame by frame.

3.1 Hardware Setup
While working on a tablet (e.g., writing with a stylus) it
is convenient to have the device lying on the table (see
Figure 1a). Due to the field of view of the front camera,
only part of a users’ face is visible. To adjust the field of
view of the front camera, we attached a circular mirror (3 cm
radius) to the tablet using a hinge (see Figure 1b). The
hinge was fixed with glue so that the mirror would remain
in a stable position. The mirror was mounted with an angle
of 75 degrees relative to the tablet. This angle was chosen
so that the visibility of the face was maximized. Due to
the mirror setup, the upper part of the recordings is mirror-
inverted (see Figure 1c). Depending on the conditions of the
illumination of the recording environment, the exposure time
of the camera of the recording device (e.g., tablet) needs
to be adapted accordingly so that the camera focuses on
the face instead of the background. This adjustment of the
exposure time can lead to an overexposed background (see
Figure 1c).

3.2 Image Processing Pipeline
A raw image captured by the front camera is split by the
mirror into two parts with the upper part of the image being
mirror-inverted (see Figure 2A). To reconstruct the image, we
propose a series of processing steps applied to the image (i.e.,
flattening the splitting boundary, face composition, image
rotation, and extracting the face area). Image rotation and
extraction of the face area are conducted as a preprocessing
step for inpainting. Further, to train our inpainting model
at a later stage, we assume that we have access to a dataset
Ψ of square-shaped face images.

Splitting boundary. We apply a transformation to flatten
the splitting boundary of the image (green line in Figure 2A),
which simplifies image processing in the later stages and
improves the final results qualitatively. We divide the image
into 16 rectangles with equal width. An example of such
a rectangle is shown in purple in Figure 2A. For each such
rectangle, we transform the region defined by the vertices
p1, p2, p3, and p4 into the region defined by the vertices p1,
p2, p5, and p6 using a perspective transformation with linear
interpolation. The location of these points can be calculated
beforehand (or read from the image) because the mirror
remains in a fixed position. The result of the transformation
is shown in Figure 2B, where the splitting boundary (green)
is a straight line.

Face composition. We rearrange the image by moving
the part below the splitting boundary to the top and the
flipped upper part to the bottom (see Figure 2C). The cut
line defined by the mirror is shown in black. In addition, we
adapt the height of this cut line because depending on the
distance of the face, the missing part is increasing (increasing
distance) or decreasing (decreasing distance). As a next step,
we push the bottom corner of the upper face towards the
middle by applying a second perspective transformation to
the image so that the upper and lower part of the face are
matching (see Figure 2D).

Image rotation. We then rotate the front camera image so
that the eyes are horizontally aligned (see Figure 2E). Using
dlib [28], we extract the coordinates of the facial landmarks
belonging to the left and right eye. From these landmarks,
we calculate the position of the center of each eye and rotate
the image around the midpoint between the eye centers so
that the line connecting the center of the eyes is horizontally
aligned.

Face area. We extract the face area by computing a square
bounding box encompassing the face (see the orange box in
Figure 2E). This bounding box is defined by the vertices
p7 = (x7, y7) and p8 = (x8, y8) and is given by

x7 = cx,I −
wIΨ

2
∗ δI
δIΨ

(1)

x8 = cx,I +
wIΨ

2
∗ δI
δIΨ

(2)

y7 = cy,I −
cy,IΨ

hIΨ

∗ (x8 − x7) (3)

y8 = cy,I +
hI − cy,IΨ

hIΨ

∗ (x8 − x7), (4)

where I and IΨ denote an image of the front camera and an
image in the dataset Ψ, respectively. The width and height
in pixels of an image are given by w and h. The x- and
y-coordinate of the midpoint between the left and right eye
are denoted by cx and cy, respectively, and δ is the distance
between the eyes. Here, we assume that the origin is located
at the top left of the image.

The part of the front camera image I outlined by the orange
bounding box is then resized to the resolution wIΨ × hIΨ

using bilinear interpolation. If the head of the user is close
to the mirror, the face covers the full height of the image,
and the bounding box might go over the upper and/or lower
image borders. In such a case, we fill the parts overlapping
the image with black pixels to get consistently sized bounding
boxes (note that for visualization purpose only, the orange
box in Figure 2E does not reflect this but instead is cut at
the image border). We use the face detector of dlib [28]
to test if a face and hence the landmarks of the eyes are
identified in the image. In cases where the face cannot be
detected, we use the landmarks of the eyes of the last image
where the face could be identified (assuming that we have a
video recording available, i.e., a series of images).

Inpainting missing area. As the last step in our image
preprocessing pipeline, we inpaint the missing parts in the
bounding box of the image (black region of the orange box
in Figure 2E) with the neural inpainting approach of Liu
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a) Overall Setup b) Camera Setup c) Front Camera Recordinga) Experimental setup b) Camera setup c) Front camera recordings

Figure 1: The hardware setup. A user is working on the tablet (a). A mirror is attached to the tablet using
a hinge (b). Due to the mirror reflections, the field of view of the front camera is changed so that the face
of the participant is visible (c).

et al. [34] described in Section 3.3. We apply the neural
inpainting only to the bounding box because it contains
the important parts of the face (i.e., eyebrows, eyes, and
mouth). We inpaint other parts of the image outside the
bounding box using a simple Navier-Stokes based inpainting
method provided by OpenCV [8] which is based on a circular
neighborhood of three pixels for each inpainted pixel. Finally,
we rotate the image back to its original orientation. This then
leads to the final reconstructed image shown in Figure 2F.

3.3 Neural Inpainting
For the neural inpainting approach, we use the dataset Ψ of
square-shaped face images with customized missing regions
tailored to our application of tablet front camera recordings
and then train the network on this dataset.

Training dataset. The model is trained on a large corpus
of images from the dataset Ψ together with a mask for each
image indicating the missing parts (a mask is a matrix with
the same size as the image having a ′1′ entry for missing pixels
and a ′0′ entry otherwise). We create the corresponding mask
randomly and similar in shape (rectangle) to the expected
mask in our front camera recordings (see Figure 3 for an
example of two such masks applied to two images from the
CelebA-HQ dataset [27]). Note that the mask (missing image
region) is not necessarily horizontal but rotates if a user is
rotating the tablet or the head (vertical in the extreme).

Inpainting method. Liu et al. [34] use a neural network
that consists of an encoder E and a decoder D. The en-
coder network transforms the input image I∈RM×N into a
low-dimensional (latent) space z = E(I). The decoder then
reconstructs the original image based on this low-dimensional
representation Î = D(z). The encoder and decoder networks
consist of n = 8 partial convolutional layers denoted as
E1, . . . , En and D1, . . . , Dn for the encoder and decoder net-
works, respectively. Before each convolution operation, the
image is constrained by the mask to condition the operation
on only valid pixels. The mask is updated for the next layer re-
moving masking for pixels where the convolutional operation
operated on unmasked values. In addition, each layer in the

encoder network Ei is connected to the corresponding layer
in the decoder network Di,∀i ∈ {1 . . . , n} using skip links.
These skip links allow for copying unmasked pixels directly
from the encoder to the decoder without passing the bottle-
neck (latent space). To direct the training of the network
towards semantically meaningful inpaintings, a combination
of four loss functions is used (i.e., per-pixel loss, perceptual
loss, style loss, and total variation loss). Using these loss
functions smooth transitions of the predicted masked values
into their neighboring pixels is also taken into account. As
activation functions Rectified Linear Unit (encoder) and a
leaky version of a Rectified Linear Unit (decoder) are used.

4. AFFECTIVE STATE PREDICTION
We present the prediction of affective states as an example
application of our mirror setup and image processing pipeline.
Our classification pipeline can be generally applied to any
recordings captured with a tablet front camera or an external
camera (such as a GoPro). Our method assumes that we
have access to reports of affective states of users based on
the circumplex model of affect [48]. The circumplex model
defines affective states in a two-dimensional space spanned by
valence and arousal. The classification task then amounts to
preprocessing the camera recordings to adjust the brightness
and the frame rate and predicting valence and arousal based
on features extracted from the adjusted camera recordings.
Affectiva [39] provides out of the box predictions of the basic
emotions and valence based on images and video recordings.
However, initial tests revealed that these predictions are not
of sufficient quality when applied to our use case. Thus,
we developed our own set of features incorporating some
additional features not taken into account by Affectiva, such
as movement and fidgeting. Moreover, by using our own
extracted features, we can predict arousal in addition to
valence.

4.1 Preprocessing
First, we resample the camera recordings using FFmpeg [5]
to a constant frame rate close to the mean frame rate. De-
pending on the recording device, the frame rate can vary
(e.g., the frame rate can drop due to the higher load of the
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Figure 2: The main inpainting steps. The splitting boundary of front camera recordings (A) is flattened using
a perspective transformation (B). The face is reconstructed from the upper and lower parts (C) and warped
so that the upper and lower part match (D). Finally, after horizontally aligning the eyes (E), the missing
regions (black) are inpainted (F).

Figure 3: Two example masks applied to images of
the CelebA-HQ dataset [27].

device). A constant frame rate facilitates the extraction of
the features and the processing of the recordings in later
stages. In addition, we adjust the brightness of the record-
ings based on the brightness estimation of Affectiva [39] to
improve the lighting of the face for the analysis. Depending
on the conditions of illumination at recording time the face
can be underexposed (too dark) or overexposed (too bright,
e.g., when the camera is directed towards a lamp). This
can hinder the accurate detection and extraction of facial
features such as landmarks.

4.2 Feature Extraction
From the camera recordings, we extract several different
feature types. We design all features such that they are inde-
pendent of the frame rate (e.g., using percentages instead of
absolute positions) to support cameras with different frame
rates. To extract facial landmarks, eye gaze, and head po-
sition from the camera recordings, we rely on OpenFace [4]
using static extraction (i.e., per frame without calibrating
to a person). OpenFace also provides a confidence value
c(i) ∈ [0, 1] for each frame i indicating the confidence in
the landmark detection estimate. If c(i) < 0.82, we discard
the frames i− 5, . . . , i+ 5 (i.e., 11 frames). The number of

frames to discard (11) and the threshold (0.82) were heuris-
tically determined. All features are computed over a window
containing N frames. If, after considering the confidence
value, less than 80 % of the frames are remaining, we discard
the window and the corresponding data point. Again, this
threshold was determined heuristically. Where appropriate,
we calculate for the different feature types basic statistics
over the window (i.e., maximum, minimum, relative position
of minimum and maximum, mean, standard deviation, and
the slope of a fitted linear regression line), providing 282 fea-
tures in total. In addition, to correct for differences between
individuals related to facial expressions and posture, we nor-
malize each feature according to a baseline by subtracting
the feature calculated over a baseline period (e.g., watching
a nature video putting the individuals in a relaxed state).

Action units. Facial action units (AUs) are based on the
Facial Action Coding System (FACS) and identify indepen-
dent motions of the face [17]. We extract basic statistics of
the intensity (from 0 to 5) of 17 AUs covering motions in
the eye, cheek, nose, mouth, and chin region. In addition,
for each AU, we calculate the percentage of the presence
(absent versus present) in the window. Moreover, the AUs
can be directly mapped to the six basic emotions identified by
Ekman [16]. Thus, for each basic emotion, we also calculate
the basic statistics of the corresponding added up AUs.

Eye blinks. Researchers have found a correlation between
eye blink frequency and stressful situations in a car driving
simulation [23]. Similarly, a correlation between eye blinks
and affective states in learning environments was found [38].
Here, we base the eye blink detection on the signal from
the AU that represents eye closure as a continuous signal
(from 0 to 5) with peaks indicating potential eye blinks. We
detect peaks belonging to an eye blink by thresholding the
signal according to the ratio between the prominence (how
much a peak stands out measured as the vertical distance
between the peak and its lowest contour line) and width of a
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Figure 4: Eye gaze regions and mouth aspect ra-
tio (MAR). The gaze angle is discretized into nine
different gaze regions, including the center (gazing
towards the camera lens) (a). MAR is calculated
based on the height and width of the mouth (b).

peak. Heuristically, we found a threshold of 0.026 to provide
the best results. We found that taking into account the
width of the peaks is necessary to accurately detect peaks
belonging to eye blinks because the prominence of the peaks
differs among users and head pose. We extract the number of
blinks and the basic statistics of the duration between blinks,
the prominence, and the width of each blink. In addition,
inspired by interbeat intervals (time interval between indi-
vidual heartbeats) and the calculation of heartbeats thereof,
we linearly interpolate the duration between two consecutive
peaks surviving the threshold (i.e., eye blinks) to infer a con-
tinuous signal. We then calculate the number of eye blinks
for every frame by taking the inverse of this interpolated
signal. Subsequently, we again calculate the basic statistics
over the number of eye blinks.

Eye gaze. The intention behind features related to eye
gaze is that individuals might look away when thinking while
solving math tasks or when looking at emotionally disturbing
pictures. Thus, we compute the basic statistics on the angle
in the x-direction (looking left-right) and y-direction (looking
up-down) of the eye gaze averaged for both eyes and measured
in radians in world coordinates. In addition, we discretize
the eye gaze angle by defining nine different gaze regions (see
Figure 4a). The center corresponds to a line of gaze directed
towards the camera lens. For each of the nine regions, we
count the number of occurrences and normalize it over s∗ fps,
where s is the window size and fps is the frame rate per
second (so that it is independent of the used camera, i.e., the
frame rate).

Mouth aspect ratio. Previously, the mouth aspect ratio
(MAR) was used to detect driver drowsiness [52]. It is defined
by the ratio between the height and the width of the mouth,
which is increased when opening the mouth (see Figure 4b):

MAR =
‖p2 − p8‖+ ‖p3 − p7‖+ ‖p4 − p6‖

3 ∗ ‖p5 − p1‖
. (5)

Each point pi,∀i ∈ {1, . . . , 8}, is defined as the average of
the inner and outer mouth landmarks. From the MAR, we
calculate the basic statistics.

Head Movement. From the longest head moving sequence
of an individual in the window, we extract the position of the
first frame of the sequence in relation to the beginning of the
window, the duration of the movement, and the total distance
of the movement. The position of the first frame and the
duration are normalized by s ∗ fps. We also sum up the total

A) Original B) Fidgetinga) Original b) Fidgeting

Figure 5: Fidgeting of a user. From the original
image (a), the fidgeting image (b) is calculated by
pixel-wise thresholding the difference of the current
(a) to the past grayscale images.

distance moved over the entire window to capture individuals
continually moving back and forth. In addition, we calculate
the basic statistics of the velocity and acceleration of the head
movements in the window. All these features are extracted
for the x-axis, y-axis, and z-axis separately. Finally, we also
extract the basic statistics of the distance of the head to the
camera in the three-dimensional space.

Fidgeting. Navarathna et al. [42] introduced a fidgeting
index for predicting movie ratings from audience behavior
by calculating the total energy individuals are using for the
movement. In contrast to features related to the head move-
ment, fidgeting captures all the movement in the video (i.e.,
also body and face). First, we define the grayscale adaptive
background bgray, which is a weighted average of past frames.
To calculate the energy E for a new frame fgray (converted
into grayscale), we subtract the adaptive background bgray

from fgray, binarize the image by thresholding it, and then
calculating the percentage of surviving pixels with respect to
the camera resolution (see Figure 5b). We have chosen the
threshold such that noise from the background is minimized,
and the visibility of movements is maximized. Finally, the
adaptive background is updated using

bgray = (1− a) ∗ bgray + a ∗ fgray, (6)

where a is a weight term (we found a = 0.2 to provide the
qualitatively best results). From the energy E of each frame
in the window, we calculate basic statistics, sum up the
energies over all frames and use the position of the frame
with minimum and maximum energy normalized by s ∗ fps.

4.3 Classification
We build the ground truth for our classifiers by splitting
valence and arousal into two levels (high and low). We then
use classifiers to predict these levels based on the features ex-
tracted from the camera recordings. In addition, we remove
features having a correlation greater than a threshold, select
features based on the ANOVA F-value between the class
labels and the features, and standardize the features to have
zero mean and unit variance. We use four different classifiers
(i.e., Random Forest, Support Vector Machine, k-Nearest
Neighbors and Gaussian Naive Bayes) because these classi-
fiers have been most promising in initial tests and they have
shown to provide good results for predicting affective states
from video data in other works [25, 10, 6]. We use leave-
one-user-out cross-validation to evaluate our models, which
ensures that data of a participant is not used for training and
testing at the same time. Finally, we optimize the hyperpa-
rameters (i.e., number of selected features, the threshold for
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removing correlated features, and parameters of the model)
using random search with nested cross-validation.

5. RESULTS
We conducted a qualitative and quantitative evaluation of
our mirror setup and image processing pipeline with neural
inpainting and investigated the applicability of our setup to
predict affective states during math-solving tasks (active)
and during exposure to emotional stimuli from images (pas-
sive). For training the neural inpainting model, we have
used the celebA-HQ dataset [27] consisting of 30000 face
aligned colored images from celebrities with a resolution of
1024× 1024 pixels (we downsampled the images to 512× 512
pixels). We split the dataset into a training set of 25000
images, a test set of 2500 images and a validation set of 2500
images. We set the parameters for the network in the same
way as proposed by Liu et al. [34]. The results of the affective
state prediction are based on a Random Forest classifier since
this was the best performing model. Hyperparameters were
optimized using random search with 50 iterations. Finally,
for measuring the performance of our model, we used the area
under curve (AUC) of the receiver operating characteristic
curve and accuracy (chance level = 0.5).

5.1 Experiment
We reused a dataset that we collected in a controlled lab
experiment [53]. The dataset consists of data from 88 par-
ticipants (45 female) from age 18 to 29 (mean = 22.1,
standard deviation SD = 2.0) of university students in the
bachelor program. The participants used a Huawei Media-
Pad M2 10.0 tablet running Android 5.1 during the experi-
ment. They were recorded by the front camera (resolution
of 1280× 720 pixels) using our proposed mirror construction
setup and a GoPro HERO3 camera (frame rate per second
FPS of 59.94 and a resolution of 1920× 1080 pixels) (see the
setup in Figure 1a). Due to the varying load of the tablet
during the experiment, the fps was variable (mean = 20.02,
SD = 1.92). We resampled the recordings from the tablet
and the GoPro to an fps of 25 and 60, respectively. To syn-
chronize the timestamps between the GoPro and the tablet,
a beep signal was played on the tablet before the start of
each session.

The study procedure consisted of three main steps conducted
on the tablet to collect baseline data and trigger different
affective states. First, each participant was watching a seven
minutes nature video, which served as a baseline. Second,
the participants were presented 40 pictures in random order
from the International Affective Picture System (IAPS) [30]
for around 20 minutes. The IAPS is a collection of 1182
pictures standardized in terms of valence and arousal and
is widely used in psychological research for the study of
emotions. Each image was shown for ten seconds and was
followed by a ten seconds fixation cross. The 40 images have
been selected from the IAPS dataset such that a wide range
of the valence-arousal space was covered.

Finally, each participant solved multiple-choice math tasks
for approximately 30 minutes. The math tasks were selected
from a collection of math tasks provided by ACT [1] and
divided into three different conditions varying in difficulty
level, available completion time, and monetary reward (par-
ticipants were rewarded and penalized depending on the

correctness of the solution and started with a credit of CHF
40). In the repetitive condition, easy and repetitive (i.e.,
similar) tasks were presented with more than enough avail-
able time to solve the tasks and a minor reward (+CHF 0.2)
and penalty (−CHF 0.2). In the challenge condition, tasks
with medium difficulty levels were shown with sufficient time
to solve the tasks, and a large monetary reward (+CHF 2)
but an only minor penalty (−CHF 0.2). The overchallenge
condition consisted of tasks with a high difficulty level, insuf-
ficient time to solve the tasks and a small monetary reward
(+CHF 0.2) but a large penalty (−CHF 2). The tasks were
presented in six blocks. Each block contained tasks from a
specific condition, and each condition was assigned randomly
to two blocks.

After each image and math task, participants were asked
to fill in the self-assessment manikin (SAM) [7] to judge
their current valence and arousal level on a 9-point Likert
scale. To build our affective prediction model, we split the
valence and arousal ratings of the participants into two classes
(low ∈ {1, . . . , 3} and high ∈ {7, . . . , 9}). For IAPS, the
number of data points amounted to 843 (1206) and 1218
(982) for low and high valence (arousal), respectively. On
the other hand, for math tasks, the number of low and high
valence (arousal) ratings amounted to 724 (1380) and 1422
(726), respectively.

5.2 Face Recognition
We provide qualitative and quantitative results of our setup
using neural inpainting. In particular, we compare our results
to recordings taken by the GoPro camera.

Qualitative evaluation. Figure 6 shows the facial land-
marks detected by OpenFace for three participants from the
front camera without inpainting, using neural inpainting, and
from the GoPro. The positions of the detected landmarks
without inpainting are inferior compared to neural inpainting.
For participant 3, the landmarks at the upper face (eyebrows,
eyes, and nose) are misaligned without inpainting. Often
no facial landmarks could be detected (see Figure 6 partici-
pants 1a and 2a). With our neural inpainting approach, we
achieved a qualitatively good recovered image independent
of the position of the missing region (e.g., eyes and mouth).
It is noteworthy that the inpainting and facial landmark
detection also worked for participants wearing glasses. The
detected landmarks after neural inpainting are similar to the
landmarks detected from the GoPro recordings (see Figure
6c). Depending on the position of the head, the landmarks of
the eyes and the mouth can become locally condensed in the
GoPro recordings, and it might be hard to distinguish slight
facial movements. On the other hand, from the front camera,
the recordings are frontal, and the variations of facial parts
(e.g., eye and mouth) are better visible.

Quantitative evaluation. Table 1 presents the average
confidence in landmark detection of OpenFace over all frames
for the IAPS and math-solving tasks and the full recordings
(including also parts not belonging to the IAPS and math
tasks). Reported confidence values by OpenFace are between
0 (not confident) and 1 (fully confident). Without inpainting,
the confidence values are low, and standard deviations are
high due to the imperfect recognition of landmarks. With-
out inpainting landmarks were often only detected correctly
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Figure 6: Recordings of three participants. The facial landmarks were detected from the front camera
recordings without inpainting (a) and with neural inpainting (b) and from the external GoPro camera (c). If
no landmarks are visible, no landmarks were detected by OpenFace.

Table 1: Means of framewise confidence in landmark
detection for different camera sources, tasks (math
and IAPS) and the full recordings. Confidence val-
ues range from 0 (not confident) to 1 (fully confi-
dent). Standard deviations are given in brackets.

Source IAPS Math Complete

Front (no inpainting) 0.79 (0.36) 0.48 (0.45) 0.68 (0.42)
Front (inpainting) 0.94 (0.14) 0.90 (0.22) 0.93 (0.18)
GoPro 0.97 (0.08)) 0.93 (0.17) 0.95 (0.12)

when the missing regions were situated above the eyebrows
(i.e., no landmarks have been affected). After applying neu-
ral inpainting, the confidence values increased by 19 % and
88 % during IAPS and math sequences, respectively. When
considering the full video recordings, the increase amounts to
37 %. In addition, the standard deviation decreased substan-
tially. This increase of the confidence leads to an increase
in the number of samples (if a window used during feature
extraction contained less than 80 % frames with a confidence
value above 0.82 we discarded the corresponding data point).
For IAPS, this lead to 348 and 383 additional samples for
valence and arousal, respectively. For the math tasks, this
amounted to 1233 and 1179 additional samples for valence
and arousal, respectively. Finally, the confidence in landmark
detection of the GoPro recordings is comparable to the front
camera recordings with neural inpainting. In general, for
recordings taken during exposure to a stimulus set of images

Table 2: Performance of Random Forest on the math
and IAPS data from two levels (low and high) of va-
lence and arousal based on the front camera record-
ings with neural inpainting and the GoPro record-
ings. The chance level for accuracy and AUC is 0.5.

Source Data AUC Accuracy

Front camera Math (valence) 0.73 68 %
Math (arousal) 0.54 57 %
IAPS (valence) 0.80 73 %
IAPS (arousal) 0.70 66 %

GoPro Math (valence) 0.76 72 %
Math (arousal) 0.58 62 %
IAPS (valence) 0.78 72 %
IAPS (arousal) 0.73 67 %

the mean confidence is higher than during math tasks. This
can be attributed to the fact that while solving math tasks,
participants were moving more, which leads more often to
suboptimal head positions for landmark detection. This find-
ing is also reflected in the higher standard deviations of the
confidence values for math tasks.

5.3 Classification Performance
Before predicting the affective states, the reconstructed front
camera recordings and the GoPro recordings were prepro-
cessed (see Section 4.1). Features were extracted using a ten
seconds window encompassing the on-screen time of each pic-
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Table 3: Number of occurrences of each feature
type in the ten most predictive features. The
numbers are provided for each of the four models
(MV = math valence, MA = math arousal, IV =
IAPS valence, IA = IAPS arousal).

Feature Type MV MA IV IA

Action units 0 2 2 3
Eye blinks 1 4 0 1
Eye gaze 1 2 2 0
Mouth aspect ratio 0 0 0 0
Head Movement 5 2 5 6
Fidgeting 3 0 1 0

ture and the last ten seconds of each math task because each
picture was presented for ten seconds and the minimum task
duration was ten seconds (see Section 4.2). Table 2 presents
the performance of our model for predicting two levels (low
and high) of valence and arousal. Based on the findings that
the confidence in landmark detection increased up to 88 %
with neural inpainting, we used only the front camera record-
ings with neural inpainting. Using these recordings, our
model achieved a performance of 0.73 AUC and 0.80 AUC
for predicting valence on math tasks and IAPS, respectively.
For predicting arousal, the performance drops and is only at
random level for math tasks (0.54 AUC), while for IAPS it
is above random (0.70 AUC). A similar pattern is visible for
the GoPro recordings. While for predicting arousal based
on the math tasks, the performance is close to random (0.58
AUC), all other predictions are above random. In summary,
the predictions using the front camera are comparable to
using the GoPro recordings with a maximum difference of
0.04 AUC. For predicting valence based on IAPS, the perfor-
mance from the front camera recordings (0.80 AUC) exceeds
the performance achieved by using the GoPro (0.78 AUC).

Feature importance. Table 3 presents the number of
occurrences of each feature type in the ten most important
features for each of the four models. We analyzed the feature
importance using the Gini importance measure provided
by the Random Forest classifier. Features related to head
movement contributed the most for predicting valence based
on math tasks (five features) and valence and arousal based
on IAPS (five and six features). For predicting arousal based
on math tasks, eye blinks provided four out of the ten most
important features. There were no MAR features among the
top ten features for any model. However, all feature types
appeared in the top 30 ranked features of each model. For
the model based on the math tasks, the maximum moved
distance in the x-direction and the number of eye blinks
were the highest scoring features for predicting valence and
arousal, respectively. For the model based on IAPS, the
mean acceleration in the x-direction and mean velocity in the
x-direction were most important for predicting valence and
arousal, respectively. Interestingly, head movement along
the x-axis (left and right) was more informative than along
the z-axis (forward and backward).

5.4 Runtime
We conducted a runtime analysis of the different parts of our
inpainting pipeline and affective state prediction model. Our
computing environment consisted of an Intel R© CoreTM CPU

i9-9900K @ 3.60GHz and an NVIDIA GeForce R© RTX 2080
Ti. Processing one frame consisted of flattening the splitting
boundary, face composition, image rotation and extracting
the face area (mean = 17.07 ms, SD = 4.74 ms), detecting
the position of the eyes using dlib (mean = 74.66 ms, SD =
6.43 ms), using the deep learning model to inpaint missing
regions in the face (mean = 76.25 ms, SD = 13.81 ms) and
inpainting the background of the image (mean = 47.01 ms,
SD = 11.87 ms). Summing up these values leads to a process-
ing time for one frame of 214.99 ms. Prediction of a new data
point consisted of feature extraction (mean = 16.37 ms, SD =
2.18 ms) and using the Random Forest classifier for predict-
ing valence and arousal (mean = 6.43 ms, SD = 10.52 ms),
leading to a total prediction time of 22.8 ms.

6. DISCUSSION
Our findings show that it is possible to use our tablet-based
front camera setup and processing pipeline to accurately
capture users for extracting features such as facial landmarks
and movement of the head and body. Our neural inpaint-
ing pipeline provides a qualitatively accurate restoration of
missing regions caused by our mirror construction setup and
increases the confidence in landmark detection by up to 88 %.
Compared to recordings from a GoPro camera, our setup pro-
vides better results in terms of face visibility (frontal view).
Thus, it potentially facilitates the recognition of minor facial
movements (e.g., mouth and eyes). In particular, for solving
math tasks we found the recording conditions of the GoPro
more challenging due to the viewing angle (participants were
bending over the tablet). This resulted in lower confidence
in landmark detection (0.93 for math tasks versus 0.97 for
IAPS). Similarly, the front camera recordings with neural
inpainting showed higher confidence in landmark detection
during IAPS (0.94) compared to solving math tasks (0.90).
During the exposure to a stimulus set of images from the
IAPS dataset, participants were sitting straight, implicat-
ing that the splitting boundary was located at the forehead,
which made inpainting easier. In contrast, during solving
math tasks, the splitting boundary was often located in the
middle (eye) or lower part of the face (mouth), creating a
more challenging situation for our neural inpainting model.

We showed the applicability of our setup for predicting affec-
tive states during active (math-solving) and passive (exposure
to pictures) tasks based on the recordings from the front cam-
era. Our model achieved better performance on IAPS (up to
0.80 AUC) than on the math tasks (up to 0.73 AUC). Due
to the active involvement of the participants while solving
math tasks, participants were moving more, which made ac-
curate tracking of facial landmarks, AUs, and eye gaze more
demanding. In addition, our model performed better for
predicting valence (0.73 AUC and 0.80 AUC) than arousal
(0.54 AUC and 0.70 AUC). One-third of the participants
rated arousal constantly as low or high without showing
much variation. This finding can affect the generalization of
our model to other participants for predicting arousal. In
addition, although affective states are universal, they also
have components that are individual to a person [18]. This
makes it harder to predict an affective state of a person
without having training data available of that person. Com-
paring the performance of our affective prediction pipeline
to other research is difficult because most existing work [10,
57] predicted basic emotions and used other settings.
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Our analysis of the feature importance showed that head
movement is a predictive feature in contrast to MAR. Some
AUs capture movements of the mouth. Thus, we analyzed
the correlation between MAR and AUs specific to the mouth
region. The correlations between the MAR feature and the
AUs specifying lip corner puller (−0.15, p-value = 0.15),
opening the mouth (0.25, p-value = 0.13) and jaw drop
(0.045, p-value = 0.26) have all been low and not significant.

In comparison to recordings from the GoPro, our model
based on front camera recordings performed equally well and
even better for predicting valence on IAPS (0.80 AUC versus
0.78 AUC). This renders our setup a viable alternative to
more expensive equipment such as a GoPro. Our setup comes
at low costs (CHF 5), is unobtrusive, can easily be mounted,
is flexible in the application (e.g., in classrooms or at home),
and eliminates the need for synchronizing different devices. In
contrast to external cameras, the camera (i.e., the lens) in our
setup is small and unobtrusive. Some participants reported
after the experiment that they got slightly distracted by the
GoPro but not by our mirror setup. Similarly, in the video
recordings, we recognized that participants were sometimes
glancing at the GoPro. Finally, with a processing time of
214.99 ms per frame, our pipeline can handle four frames
per second. Our affective prediction pipeline is capable of
making 43 new predictions every second.

Limitations. We acknowledge potential limitations to our
approach presented in this paper. Our setup is constrained
by the lighting conditions, head pose, and occlusions from
hand movement. We believe that other camera setups suffer
from the same constraints. Further, our mirror construction
is a prototype and not yet ready for production. Although
during the experiment the construction proved to be stable,
it can be improved in terms of stability and flexibility. Neural
inpainting provided qualitatively satisfactory results for most
facial parts. However, if the splitting boundary is covering the
eyes (i.e., both eyes are occluded), it is hard for the inpainting
model to reconstruct the eyes at a qualitatively high level.
Consequently, the landmark detection cannot recover eye
gaze and eye blinks, but still detects other facial features.
In addition, although the CelebA-HQ dataset consists of
facial images from celebrities with diverse ethnicity, age
and facial characteristics (e.g., glasses and facial hair), our
inpaining method might be less appropriate for students who
are underrepresented in the CelebA-HQ dataset. We further
acknowledge that our experiment is restricted to math tasks
and exposure to emotional stimuli from pictures in a lab
environment with bachelor students. We are optimistic that
our approach generalizes to a broader population and to
other tasks given that we used active (math-solving) and
passive (exposure to pictures) tasks and assuming a proper
baseline normalization of the features. Finally, we have
predicted valence and arousal on two levels omitting data
points in the medium range (4 to 6). Our main contribution
is the novel mirror construction and the processing pipeline.
We have mainly built our affective prediction model for
demonstrating the applicability of our setup. Nevertheless,
we believe that our features and pipeline can be interesting
for other researchers predicting affective states based on
video data.

Future work. Future research comprises refining and ex-
tending our hardware setup and inpainting pipeline, as well
as evaluating our affective prediction model in other domains.
In particular, realtime performance would be desirable for
on-the-spot assessment of a student’s affective state. The
CelebA-HQ dataset, which we used to train our inpainting
model, contains only images with a frontal view of faces. In
our recordings, individuals are captured at different angles.
Thus, rotation of the recordings or using a dataset providing
faces at different angels can improve the neural inpainting
model. In addition, a deep learning model could be trained
on our features for affective prediction, and the feature set
could be extended by gesture-based features. Such features
have shown to be promising for predicting affective states [9].

7. CONCLUSION
In this paper, we presented a hardware setup consisting of a
cheap and unobtrusive mirror construction to improve the
visibility of the face in tablet-based front camera recordings.
Recordings were processed using an inpainting pipeline con-
sisting of a neural network for reconstructing missing data
in the recordings. We showed that the mirror construction
improved the visibility of the face in situations where ex-
ternal cameras (e.g., GoPro) struggle. With a qualitative
and quantitative evaluation, we demonstrated that we could
achieve results comparable to a GoPro camera. In particular,
neural inpainting improved confidence in facial landmark
detection by up to 88 %. We showed the applicability of our
setup and processing pipeline on affective state prediction
based on front camera recordings. Our model consisted of
features capturing information from movement, eyes, and
face. We evaluated our affective prediction model on data
from a lab experiment with 88 participants using leave-one-
user-out cross-validation. Participants were solving math
tasks (active) and were exposed to emotional stimuli from
pictures (passive). Our model accurately predicted two levels
(low and high) of valence (up to 0.80 AUC) and arousal
(up to 0.73 AUC) using data from the front camera. These
results were comparable to results obtained using recordings
from a GoPro camera (up to 0.78 AUC for valence and up
to 0.73 AUC for arousal). The novelty of our contribution
consists of the hardware setup and processing pipeline. In
addition, we proposed features for affective state prediction,
which can be useful for other researchers. Our setup is cheap
(CHF 5), easy to mount, and can be used in classrooms or
at home. Besides affective state prediction, it can be used
to monitor students or analyzing attention. Most existing
approaches use external cameras such as GoPros or webcams,
which are more expensive, more difficult to handle, and are
exposed to time synchronization problems. In our setup, the
camera data is recorded on the same device as the task is
conducted, and thus we circumvent such time synchroniza-
tion issues in an elegant way. The findings of this work are
important because they support the emerging trend of using
tablet computers in the classroom and for learning at home
by simplifying student recording and assessment.
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ABSTRACT
Item Response Theory (IRT) is a ubiquitous model for under-
standing humans based on their responses to questions, used
in fields as diverse as education, medicine and psychology.
Large modern datasets offer opportunities to capture more
nuances in human behavior, potentially improving test scor-
ing and better informing public policy. Yet larger datasets
pose a difficult speed / accuracy challenge to contemporary
algorithms for fitting IRT models. We introduce a variational
Bayesian inference algorithm for IRT, and show that it is
fast and scaleable without sacrificing accuracy. Using this in-
ference approach we then extend classic IRT with expressive
Bayesian models of responses. Applying this method to five
large-scale item response datasets from cognitive science and
education yields higher log likelihoods and improvements in
imputing missing data. The algorithm implementation is
open-source, and easily usable.

1. INTRODUCTION
The task of estimating human ability from stochastic re-
sponses to a series of questions has been studied since the
1950s in thousands of papers spanning several fields. The
standard statistical model for this problem, Item Response
Theory (IRT), is used every day around the world, in many
critical contexts including college admissions tests, school-
system assessment, survey analysis, popular questionnaires,
and medical diagnosis.

As datasets become larger, new challenges and opportuni-
ties for improving IRT models present themselves. On the
one hand, massive datasets offer the opportunity to better
understand human behavior, fitting more expressive mod-
els. On the other hand, the algorithms that work for fitting
small datasets often become intractable for larger data sizes.
Indeed, despite a large body of literature, contemporary
IRT methods fall short – it remains surprisingly difficult
to estimate human ability from stochastic responses. One
crucial bottleneck is that the most accurate, state-of-the-art
Bayesian inference algorithms are prohibitively slow, while

faster algorithms (such as the popular maximum marginal
likelihood estimators) are less accurate and poorly capture
uncertainty. This leaves practitioners with a choice: either
have nuanced Bayesian models with appropriate inference or
have timely computation.

In the field of artificial intelligence, a revolution in deep gen-
erative models via variational inference [25, 37] has demon-
strated an impressive ability to perform fast inference for
complex Bayesian models. In this paper, we present a novel
application of variational inference to IRT, validate the re-
sulting algorithms with synthetic datasets, and apply them
to real world datasets. We then show that this inference
approach allows us to extend classic IRT response models
with deep neural network components. We find that these
more flexible models better fit the large real world datasets.
Specifically, our contributions are as follows:

1. Variational inference for IRT: We derive a new
optimization objective — the Variational Item response
theory Lower Bound, or VIBO — to perform inference
in IRT models. By learning a mapping from responses
to posterior distributions over ability and items, VIBO
is “amortized” to solve inference queries efficiently.

2. Faster inference: We find VIBO to be much faster
than previous Bayesian techniques and usable on much
larger datasets without loss in accuracy.

3. More expressive: Our inference approach is naturally
compatible with deep generative models and, as such,
we enable the novel extension of Bayesian IRT models
to use neural-network-based representations for inputs,
predictions, and student ability. We develop the first
deep generative IRT models.

4. Simple code: Using our VIBO python package1 is
only a few lines of code that is easy to extend.

5. Real world application: We demonstrate the im-
pact of faster inference and expressive models by ap-
plying our algorithms to datasets including: PISA,
DuoLingo and Gradescope. We achieve up to 200 times
speedup and show improved accuracy at imputing hid-
den responses. At scale, these improvements in effi-
ciency save hundreds of hours of computation.

1
http://github.com/mhw32/variational-item-response-theory-public

Mike Wu, Richard Davis, Benjamin Domingue, Chris Piech and
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As a roadmap, in Sec. 2 we describe the item response theory
challenge. In Sec. 3 we present a main algorithm. Finally, in
Sec. 4 and 5 we show its impact on speed and accuracy.

2. BACKGROUND
We briefly review several variations of item response theory
and the fundamental principles of approximate Bayesian
inference, focusing on modern variational inference.

2.1 Item Response Theory Review
Imagine answering a series of multiple choice questions. For
example, consider a personality survey, a homework assign-
ment, or a school entrance examination. Selecting a response
to each question is an interaction between your “ability”
(knowledge or features) and the characteristics of the ques-
tion, such as its difficulty. The goal in examination analysis
is to gauge this unknown ability of each student and the
unknown item characteristics based only on responses. Early
procedures [11] defaulted to very simple methods, such as
counting the number of correct responses, which ignore dif-
ferences in question quality. In reality, we understand that
not all questions are created equal: some may be hard to
understand while others may test more difficult concepts.
To capture these nuances, Item Response Theory (IRT) was
developed as a mathematical framework to reason jointly
about people’s ability and the items themselves.

The IRT model plays an impactful role in many large in-
stitutions. It is the preferred method for estimating abil-
ity in several state assessments in the United States, for
international assessments gauging educational competency
across countries [18], and for the National Assessment of
Educational Programs (NAEP), a large-scale measurement
of literacy and reading comprehension in the US [35]. Be-
yond education, IRT is a method widely used in cognitive
science and psychology, for instance with regards to studies
of language acquisition and development [19, 28, 14, 7].
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Figure 1: Graphical models for the (a) 1PL, (b) 2PL, and (c)
3PL Item Response Theories. Observed variables are shaded.
Arrows represent dependency between random variables and
each rectangle represents a plate (i.e. repeated observations).

IRT has many forms; we review the most standard (Fig. 1).
The simplest class of IRT summarizes the ability of a person
with a single parameter. This class contains three versions:
1PL, 2PL, and 3PL IRT, each of which differ by the number
of free variables used to characterize an item. The 1PL IRT
model, also called the Rasch model [34], is given in Eq. 1,

p(ri,j = 1|ai, dj) =
1

1 + e−(ai−dj)
(1)

where ri,j is the response by the i-th person to the j-th
item. There are N people and M items in total. Each

item in the 1PL model is characterized by a single number
representing difficulty, dj . As the 1PL model is equivalent
to a logistic function, a higher difficulty requires a higher
ability in order to respond correctly. Next, the 2PL IRT
model2 adds a discrimination parameter, kj for each item
that controls the slope (or scale) of the logistic curve. We
can expect items with higher discrimination to more quickly
separate people of low and high ability. The 3PL IRT model
further adds a pseudo-guessing parameter, gj for each item
that sets the asymptotic minimum of the logistic curve. We
can interpret pseudo-guessing as the probability of success if
the respondent were to make a reasonable guess on an item.
The 2PL and 3PL IRT models are:

p(ri,j |ai,dj) =
1

1 + e−kjai−dj
or gj +

1− gj
1 + e−kjai−dj

(2)

where dj = {kj , dj} for 2PL and dj = {gj , kj , dj} for 3PL.
See Fig. 1 for graphical models of each of these IRT models.

A single ability dimension is sometimes insufficient to capture
the relevant variation in human responses. For instance, if
we are measuring a person’s understanding on elementary
arithmetic, then a single dimension may suffice in capturing
the majority of the variance. However, if we are instead
measuring a person’s general mathematics ability, a single
real number no longer seems sufficient. Even if we bound
the domain to middle school mathematics, there are several
factors that contribute to “mathematical understanding” (e.g.
proficiency in algebra versus geometry). Summarizing a per-
son with a single number in this setting would result in a
fairly loose approximation. For cases where multiple facets
of ability contribute to performance, we consider multidi-
mensional item response theory [1, 36, 29]. We focus on 2PL
multidimensional IRT (MIRT):

p(ri,j = 1|ai,kj , dj) =
1

1 + e−aTi kj−dj
(3)

where we use bolded notation ai = (a
(1)
i , a

(2)
i , . . . a

(K)
i ) to

represent a K dimensional vector. Notice that the item
discrimination becomes a vector of equal size to ability.

In practice, given a (possibly incomplete) N ×M matrix
of observed responses, we want to infer the ability of all
N people and the characteristics of all M items. Next, we
provide a brief overview of inference in IRT.

2.2 Inference in Item Response Theory
Inference is the task of estimating unknown variables, such
as ability, given observations, such as student responses.
We compare and contrast three popular methods used to
perform inference for IRT in research and industry. Inference
algorithms are critical for item response theory as slow or
inaccurate algorithms prevent the use of appropriate models.

Maximum Likelihood Estimation A straightforward
approach is to pick the most likely ability and item features

2We default to 2PL as the pseudo-guessing parameter in-
troduces several invariances in the model. This requires far
more data to infer ability accurately, as measured by our own
synthetic experiments. For practitioners, we warn against
using 3PL for small to medium datasets.
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given the observed responses. To do so we optimize:

LMLE = max
{ai}Ni=1,{dj}

M
j=1

N∑
i=1

M∑
j=1

log p(rij |ai,dj) (4)

with stochastic gradient descent (SGD). The symbol dj rep-
resents all item features e.g. dj = {dj ,kj} for 2PL. Eq. 4 is
often called the Joint Maximum Likelihood Estimator [3, 12],
abbreviated MLE. MLE poses inference as a supervised re-
gression problem in which we choose the most likely unknown
variables to match known dependent variables. While MLE is
simple to understand and implement, it lacks any measure of
uncertainty; this can have important consequences especially
when responses are missing.

Expectation Maximization Several papers have pointed
out that when using MLE, the number of unknown parame-
ters increases with the number of people [5, 17]. In particular,
[17] shows that in practical settings with a finite number
of items, standard convergence theorems do not hold for
MLE as the number of people grows. To remedy this, the
authors instead treat ability as a nuisance parameter and
marginalized it out [5, 6]. Brock et. al. introduces an
Expectation-Maximization (EM) [10] algorithm to iterate
between (1) updating beliefs about item characteristics and
(2) using the updated beliefs to define a marginal distribu-
tion (without ability) p(rij |dj) by numerical integration of
ai. Appropriately, this algorithm is referred to as Maximum
Marginal Likelihood Estimation, which we abbreviate as EM.
Eq. 6 shows the E and M steps for EM.

E step : p(rij |d(t)
j ) =

∫
ai

p(rij |ai,d(t)
j )p(ai)dai (5)

M step : d
(t+1)
j = arg max

dj

N∑
i=1

log p(rij |d(t)
j ) (6)

where (t) represents the iteration count. We often choose
p(ai) to be a simple prior distribution like standard Normal.
In general, the integral in the E-step is intractable: EM uses
a Gaussian-Hermite quadrature to discretely approximate

p(rij |d(t)
j ). See [20] for a closed form expression for d

(t+1)
j

in the M step. This method finds the maximum a posteri-
ori (MAP) estimate for item characteristics. EM does not
infer ability as it is “ignored” in the model: the common
workaround is to use EM to infer item characteristics, then
fit ability using a second auxiliary model. In practice, EM
has grown to be ubiquitous in industry as it is incredibly fast
for small to medium sized datasets. However, we expect that
EM may scale poorly to large datasets and higher dimensions
as numerical integration requires far more points to properly
measure a high dimensional volume.

Hamiltonian Monte Carlo The two inference meth-
ods above give only point estimates for ability and item
characteristics. In contrast Bayesian approaches seek to cap-
ture the full posterior over ability and item characteristics
given observed responses, p(ai,d1:M |ri,1:M ) where ri,1:M =
(ri,1, · · · , ri,M ). Doing so provides estimates of uncertainty
and characterizes features of the joint distribution that can-
not be represented by point estimates, such as multimodality
and parameter correlation. In practice, this can be very
useful for a more robust understanding of student ability.

The common technique for Bayesian estimation in IRT uses
Markov Chain Monte Carlo (MCMC) [21, 15] to draw sam-
ples from the posterior by constructing a Markov chain care-
fully designed such that p(ai,d1:M |ri,1:M ) is the equilibrium
distribution. By running the chain longer, we can closely
match the distribution of drawn samples to the true pos-
terior. Hamiltonian Monte Carlo (HMC) [33, 32, 23] is an
efficient version of MCMC for continuous state spaces. We
recommend [23] for a good review of HMC.

The strength of this approach is that the samples gener-
ated capture the true posterior (if the algorithm is run long
enough). Bute the computational costs for MCMC can be
very high, and the cost scales at least linearly with the num-
ber of latent parameters — which for IRT is proportional
to data size. With new datasets of millions of observations,
such limitations can be debilitating. Fortunately, there exist
a second class of approximate Bayesian techniques that have
gained significant traction in the machine learning commu-
nity. We provide a careful review of variational inference.

2.3 Variational Methods Review
Variational inference (VI) first appeared from the statistical
physics community and was later generalized for many prob-
abilistic models by Jordan et. al. [24]. In recent years, VI
has been popularized in machine learning where it is used to
do inference in large graphical models decribing images and
natural language. The main intuition of variational inference
is to treat inference as an optimization problem: starting
with a family of distributions, the goal is to pick the one
that best approximates the true posterior, by minimizing
an estimate of the mismatch between true and approximate
distributions. We will first describe VI in the general context
of a latent variable model, and then apply VI to IRT.

Let x ∈ X and z ∈ Z represent observed and latent vari-
ables, respectively. (In the context of IRT, x represents
the responses from a single student and z represents ability
and item characteristics.) In VI [24, 42, 4], we introduce
a family of tractable distributions over z such that we can
easily sample from and score. We wish to find the mem-
ber qψ∗(x) ∈ Q that minimizes the Kullback-Leibler (KL)
divergence between itself and the true posterior:

qψ∗(x)(z) = arg min
qψ(x)

DKL(qψ(x)(z)||p(z|x)) (7)

where ψ(x) are parameters that define each distribution. For
example, ψ(x) would be the mean and scale for a Gaussian
distribution. Since the “best” approximate posterior qψ∗(x)

depends on the observed variables, its parameters have x as
a dependent variable. To be clear, there is one approximate
posterior for every possible value of the observed variables.

Frequently, we need to do inference for many different values
of x. For example, student A and student B may have picked
different answers to the same question. Since their responses
differ, we would need to do inference twice. Let pD(x) be an
empirical distribution over the observed variables, which is
equivalent to the marginal p(x) if the generative model is cor-
rectly specified. Then, the average quality of the variational
approximations is measured by

EpD(x)

[
max
ψ(x)

Eqψ(x)(z)

[
log

p(x,z)

qψ(x)(z)

]]
(8)

259 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



In practice, pD(x) is unknown but we assume access to a
dataset D of examples i.i.d. sampled from pD(x); this is
sufficient to evaluate Eq. 8.

Amortization As in Eq. 8, we must learn an approximate
posterior for each x ∈ D. For a large dataset D, this can
quickly grow to be unwieldly. One such solution to this
scalability problem is amortization [16], which reframes the
per-observation optimization problem as a supervised regres-
sion task. Consider learning a single deterministic mapping
fφ : X → Q to predict ψ∗(x) or equivalently qψ∗(x) ∈ Q as
a function of the observation x. Often, we choose fφ to be a
conditional distribution, denoted by qφ(z|x) = fφ(x)(z).

The benefit of amortization is a large reduction in compu-
tational cost: the number of parameters is vastly smaller
than learning a per-observation posterior. Additionally, if
we manage to learn a good regressor, then the amortized
approximate posterior qφ(z|x) could generalize to new obser-
vations x 6∈ D unseen in training. This strength has made
amortized VI popular with modern latent variable models,
such as the Variational Autoencoder [25].

Instead of Eq. 8, we now optimize:

max
φ

EpD(x)

[
Eqφ(z|x)

[
log

p(x,z)

qφ(z|x)

]]
(9)

The drawback of this approach is that it introduces an amor-
tization gap: since we are technically using a less flexible
family of approximate distributions, the quality of approxi-
mate posteriors can be inferior.

Model Learning So far we have assumed a fixed gener-
ative model p(x,z). However, often we can only specify a
family of possible models pθ(x|z) parameterized by θ. The
symmetric challenge (to approximate inference) is to choose
θ whose model best explains the evidence. Naturally, we do
so by maximizing the log marginal likelihood of the data

log pθ(x) = log

∫
z

pθ(x,z)dz (10)

Using Eq. 9, we derive the Evidence Lower Bound (ELBO)
[25, 37] with qφ(z|x) as our inference model

log pθ(x) ≥ Eqφ(z|x)

[
log

pθ(x,z)

qφ(z|x)

]
, ELBO (11)

We can jointly optimize φ and θ to maximize the ELBO.
We have the option to parameterize pθ(x|z) and qφ(z|x)
with deep neural networks, as is common with the VAE [25],
yielding an extremely flexible space of distributions.

Stochastic Gradient Estimation The gradients of the
ELBO (Eq. 11) with respect to φ and θ are:

∇θELBO = Eqφ(z|x)[∇θ log pθ(x,z)]] (12)

∇φELBO = ∇φEqφ(z|x)[log pθ(x,z)] (13)

Eq. 12 can be estimated using Monte Carlo samples. However,
as it stands, Eq. 13 is difficult to estimate as we cannot
distribute the gradient inside the inner expectation. For
certain families Q, we can use a reparameterization trick.

Reparameterization Estimators Reparameterization
is the technique of removing sampling from the gradient

computation graph [25, 37]. In particular, if we can reduce
sampling z ∼ qφ(z|x) to sampling from a parameter-free
distribution ε ∼ p(ε) plus a deterministic function application,
z = gφ(ε), then we may rewrite Eq. 13 as:

∇φELBO = Ep(ε)[∇z log
pθ(x,z(ε))

qφ(z(ε)|s)
∇φgφ(ε)] (14)

which now can be estimated efficiently by Monte Carlo (the
gradient is inside the expectation). A benefit of reparameter-
ization over alternative estimators (e.g. score estimator [30]
or REINFORCE [44]) is lower variance while remaining unbi-
ased. A common example is if qφ(z|x) is Gaussian N (µ, σ2)
and we choose p(ε) to be N (0, 1), then g(ε) = ε ∗ σ + µ.

3. THE VIBO ALGORITHM
Having rehearsed the major principles of VI, we will adapt
them to IRT. In our review, we presented the ELBO that
serves as the primary loss function to train an inference
model. Given the nuances of IRT, we can derive a new loss
function specialized for ability and item characteristics. We
call the resulting algorithm VIBO since it is a Variational
approach for Item response theory based on a novel lower
BOund. While the remainder of the section presents the
technical details, we ask the reader to keep the high-level
purpose in mind: VIBO is an objective function that if we
maximize, we have a method to predict student ability from
his or her responses. As a optimization problem, VIBO is
much cheaper computationally than MCMC.

To show that doing so is justifiable, we prove that VIBO
well-defined. That is, we must show that VIBO lower bounds
the marginal likelihood over a student’s responses.

Theorem 3.1. Let ai be the ability for person i ∈ [1, N ]
and dj be the characteristics for item j ∈ [1,M ]. We use
the shorthand notation d1:M = (d1, . . . ,dM ). Let ri,j be the
binary response for item j by person i. We write ri,1:M =
(ri,1, . . . ri,M ). If we define the VIBO objective as:

VIBO , Lrecon + Eqφ(d1:M |ri,1:M )[Dability] +Ditem

where

Lrecon = Eqφ(ai,d1:M |ri,1:M ) [log pθ(ri,1:M |ai,d1:M )]

Dability = DKL(qφ(ai|d1:M , ri,1:M )||p(ai))
Ditem = DKL(qφ(d1:M |ri,1:M )||p(d1:M ))

and assume the joint posterior factors as qφ(ai,d1:M |ri,1:M ) =
qφ(ai|d1:M , ri,1:M )qφ(d1:M |ri,1:M ), then log p(ri,1:M ) ≥ VIBO.
In othe words, VIBO is a lower bound on the log marginal
probability of person i’s responses.

Proof. Expand marginal and apply Jensen’s inequality:

log pθ(ri,1:M ) ≥ Eqφ(ai,d1:M |ri,1:M )

[
log

pθ(ri,1:M ,ai,d1:M )

qφ(ai,d1:M |ri,1:M )

]
= Eqφ(ai,d1:M |ri,1:M ) [log pθ(ri,1:M |ai,d1:M )]

+ Eqφ(ai,d1:M |ri,1:M )

[
log

p(ai)

qφ(ai|d1:M , ri,1:M )

]
+ Eqφ(ai,d1:M |ri,1:M )

[
log

p(d1:M )

qφ(d1:M |ri,1:M )

]
= Lrecon + LA + LB
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Rearranging the latter two terms, we find that:

LA = Eqφ(d1:M |ri,1:M ) [DKL(qφ(ai|d1:M , ri,1:M )||p(ai))]

LB = Eqφ(d1:M |ri,1:M )

[
log

p(d1:M )

qφ(d1:M |ri,1:M )

]
= DKL(qφ(d1:M |ri,1:M )||p(d1:M ))

Since VIBO = Lrecon + LA + LB, and KL terms are non-
negative, we have shown that VIBO bounds log pθ(ri,1:M ).

Thm. 3.1 leaves several choices up to us, and we opt for the
simplest ones. For instance, the prior distributions are chosen
to be independent standard Normal distributions: p(ai) =∏K
k=1 p(ai,k) and p(d1:M ) =

∏M
j=1 p(dj) where p(ai,k) and

p(dj) are N (0, 1). Further, we found it sufficient to assume

qφ(d1:M |ri,1:M ) = qφ(d1:M ) =
∏M
j=1 qφ(dj) although nothing

prevents the general case. Initially, we assume the generative
model, pθ(ri,1:M |ai,d1:M ), to be an IRT model (thus θ is
empty); later we explore generalizations.

Algorithm 1: VIBO Forward Pass

Assume we are given observed responses for person i, ri1:M ;

Compute µd, σ
2
d = qφ(d1:M );

Sample d1:M ∼ N (µd, σ
2
d);

Compute µa, σ
2
a = qφ(ai|d1:M , ri,1:M );

Sample ai ∼ N (µa, σ
2
a);

Compute Lrecon = log pθ(ri,1:M |ai,d1:M );

Compute Dability = DKL(N (µa, σ
2
a)||N (0, 1));

Compute Ditem = DKL(N (µd, σ
2
d)||N (0, 1));

Compute VIBO = Lrecon +Dability +Ditem

The posterior qφ(ai|d1:M , ri,1:M ) needs to be robust to miss-
ing data as often not every person answers every question.
To achieve this, we explore the following family:

qφ(ai|d1:M , ri,1:M ) =

M∏
j=1

qφ(ai|dj , ri,j) (15)

If we assume each component qφ(ai|dj , ri,j) is Gaussian, then
qφ(ai|d1:M , ri,1:M ) is Gaussian as well, being a Product-Of-
Experts [22, 45]. If item j is missing, we replace its term
in the product with the prior, p(ai) representing no added
information. We found this design to outperform averaging
over non-missing entries: 1

M

∑M
j=1 qφ(ai|dj , ri,j).

As VIBO is a close cousin of the ELBO, we can estimate its
gradients with respect to θ and φ similarly:

∇θVIBO = ∇θLrecon

= Eqφ(ai,d1:M |ri,1:M ) [∇θ log pθ(ri,1:M |ai,d1:M )]

∇φVIBO = ∇φEqφ(d1:M |ri,1:M )[Dability] +∇φDitem

= ∇φEqφ(ai,d1:M |ri,1:M )

[
p(ai)p(d1:M )

qφ(ai,d1:M |ri,1:M )

]
As in Eq. 14, we may wish to move the gradient inside the
KL divergences by reparameterization to reduce variance.
To allow easy reparameterization, we define all variational
distributions qφ(·|·) as Normal distributions with diagonal
covariance. In practice, we find that estimating ∇θVIBO and
∇φVIBO with a single sample is sufficient. With this setup,

VIBO can be optimized using stochastic gradient descent
to learn an amortized inference model that maximizes the
marginal probability of observed data. We summarize the
required computation to calculate VIBO in Alg. 1.

4. DATASETS
We explore one synthetic dataset, to build intuition and
confirm parameter recovery, and five large scale applications
of IRT to real world data, summarized in Table 1.

Table 1: Dataset Statistics

# Persons # Items Missing Data?

CritLangAcq 669498 95 N
WordBank 5520 797 N
DuoLingo 2587 2125 Y
Gradescope 1254 98 Y
PISA 519334 183 Y

Synthetic IRT To sanity check that VIBO performs as
well as other inference techniques, we synthetically generate
a dataset of responses using a 2PL IRT model: sample ai ∼
p(ai), dj ∼ p(dj). Given ability and item characteristics,
IRT-2PL determines a Bernoulli distribution over responses
to item j by person i. We sample once from this Bernoulli
distribution to “generate” an observation. In this setting, we
know the ground truth ability and item characteristics. We
vary N and M to explore parameter recovery.

Second Language Acquisition This dataset contains
native and non-native English speakers answering questions
to a grammar quiz3, which upon completion would return a
prediction of the user’s native language. Using social media,
over half a million users of varying ages and demographics
completed the quiz. Quiz questions often contain both visual
and linguistic components. For instance, a quiz question
could ask the user to “choose the image where the dog is
chased by the cat” and present two images of animals where
only one of image agrees with the caption. Every response is
thus binary, marked as correct or incorrect. In total, there
are 669,498 people with 95 items and no missing data. The
creators of this dataset use it to study the presence or absence
of a “critical period” for second language acquisition [19]. We
will refer to this dataset as CritLangAcq.

WordBank: Vocabulary Development The MacArthur-
Bates Communicative Development Inventories (CDIs) are
a widely used metric for early language acquisition in chil-
dren, testing concepts in vocabulary comprehension, produc-
tion, gestures, and grammar. The WordBank [14] database
archives many independently collected CDI datasets across
languages and research laboratories4. The database consists
of a matrix of people against vocabulary words where the
(i, j) entry is 1 if a parent reports that child i has knowledge
of word j and 0 otherwise. Some entries are missing due
to slight variations in surveys and incomplete responses. In
total, there are 5,520 children responding to 797 items.

3The quiz can be found at www.gameswithwords.org. The
data is publically available at osf.io/pyb8s.
4github.com/langcog/wordbankr
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DuoLingo: App-Based Language Learning We ex-
amine the 2018 DuoLingo Shared Task on Second Lan-
guage Acquisition Modeling5 [38]. This dataset contains
anonymized user data from the popular education applica-
tion, DuoLingo. In the application, users must choose the
correct vocabulary word among a list of distractor words.
We focus on the subset of native English speakers learning
Spanish and only consider lesson sessions. Each user has a
timeseries of responses to a list of vocabulary words, each of
which is shown several times. We repurpose this dataset for
IRT: the goal being to infer the user’s language proficiency
from his or her errors. As such, we average over all times
a user has seen each vocabulary item. For example, if the
user was presented “habla” 10 times and correctly identified
the word 5 times, he or she would be given a response score
of 0.5. We then round to 0 or 1. We revisit a continuous
version Sec. 7. After processing, we have 2587 users and 2125
vocabulary words with missing data as users frequently drop
out. We ignore user and syntax features.

Gradescope: Course Exam Data Gradescope [39] is
a course application that assists teachers in grading student
assignments. This dataset contains 105,218 reponses from
6,607 assignments in 2,748 courses and 139 schools. All
assignments are instructor-uploaded, fixed-template assign-
ments, with at least 3 questions, with the majority being
examinations. We focus on course 102576, randomly chosen.
We remove students who did not respond to any questions
and round up partial credit. In total, there are 1254 students
with 98 items, with missing entries.

PISA 2015: International Assessment The Programme
for International Student Assessment (PISA) is an interna-
tional exam that measures 15-year-old students’ reading,
mathematics, and science literacy every three years. It is
run by the Organization for Economic Cooperation and De-
velopment (OECD). The OECD released anonymized data
from PISA ’15 for students from 80 countries and education
systems6. We focus on the science component. Using IRT to
access student performance is part of the pipeline the OECD
uses to compute holistic literacy scores for different countries.
As part of our processing, we binarize responses, rounding
any partial credit to 1. In total, there are 519,334 students
and 183 questions. Not every student answers every question
as many versions of the computer exam exist.

5. FAST AND ACCURATE INFERENCE
We will show that VIBO is as accurate as HMC and nearly
as fast as MLE/EM, making Bayesian IRT a realistic, even
preferred, option for modern applications.

5.1 Evaluation
We compare compute cost of VIBO to HMC, EM7, and MLE
using IRT-2PL by measuring wall-clock run time. For HMC,
we limit to drawing 200 samples with 100 warmup steps
with no parallelization. For VIBO and MLE, we use the
Adam optimizer with a learning rate of 5e-3. We choose to
conservatively optimize for 10k iterations to estimate cost.

5sharedtask.duolingo.com/2018.html
6oecd.org/pisa/data/2015database
7We use the popular MIRT package in R for EM with 61
points for numerical integration.
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Figure 2: Performance of inference algorithms for IRT for
synthetic data, as we vary the number of people, items, and
latent ability dimensions. (Top) Computational cost in log-
seconds (e.g. 1 log second is about 3 seconds whereas 10 log
seconds is 6.1 hours). (Middle) Correlation of inferred ability
with true ability (used to generate the data). (Bottom)
Accuracy of held-out data imputation.

However, speed only matters assuming good performance.
We use three metrics of accuracy: (1) For the synthetic
dataset, because we know the true ability, we can measure
the expected correlation between it and the inferred ability
under each algorithm (with the exception of EM as ability
is not inferred). A correlation of 1.0 would indicate perfect
inference. (2) The most general metric is the accuracy of
imputed missing data. We hold out 10% of the responses,
use the inferred ability and item characteristics to generate
responses thereby populating missing entries, and compute
prediction accuracy for held-out responses. This metric is
a good test of “overfitting” to observed responses. (3) In
the case of fully Bayesian methods (HMC and VIBO) we
can compare posterior predictive statistics [40] to further
test uncertainty calibration (which accuracy alone does not
capture). Recall that the posterior predictive is defined as:

p(r̃i,1:M |ri,1:M ) = Ep(ai,d1:M |ri,1:M )[p(r̃i,1:M |ai,d1:M )]

For HMC, we have samples of ability and item characteristics
from the true posterior whereas for VIBO, we draw samples
from the qφ(ai,d1:M |ri,1:M ). Given such parameter samples,
we can then sample responses. We compare summary statis-
tics of these response samples: the average number of items
answered correctly per person and the average number of
people who answered each item correctly.

5.2 Synthetic Data Results
With synthetic experiments we are free to vary N and M
to extremes to stress test the inference algorithms: first, we
range from 100 to 1.5 million people, fixing the number of
items to 100 with dimensionality 1; second, we range from
10 to 6k items, fixing 10k people with dimesionality 1; third,
we vary the number of latent ability dimensions from 1 to 5,
keeping a constant 10k people and 100 items.
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(b) Real World: Posterior Predictive Checks

Figure 3: (a) Accuracy of missing data imputation for real world datasets plotted against time saved in seconds compared to
using HMC. (b) Samples statistics from the predictive posterior defined using HMC and VIBO. A correlation of 1.0 would be
perfect alignment between two inference techniques. Subfigures in red show the average number of items answered correctly for
each person. Subfigures in yellow show the average number of people who answered each item correctly.

Fig. 2 shows run-time and performance results for VIBO,
MLE, HMC, EM, and two ablations of VIBO (discussed in
Sec. 5.4). First, comparing parameter recovery performance
(Fig. 2 middle), we see that HMC, MLE and VIBO all recover
parameters well. The only notable differences are: VIBO
with very few people, and HMC and (to a lesser extent) VIBO
in high dimensions. The former is because the amortized
posterior approximation requires a sufficiently large dataset
(around 500 people) to constrain its parameters. The latter
is a simple effect of the scaling of variance for sample-based
estimates as dimensionality increases (we fixed the number
of samples used, to ease speed comparisons).

Turning to the ability to predict missing data (Fig. 2 bottom)
we see that VIBO performs equally well to HMC, except in
the case of very few people (again, discussed below). (Note
that the latent dimensionality does not adversely affect VIBO
or HMC for missing data prediction, because the variance
is marginalized away.) MLE also performs well as we scale
number of items and latent ability dimensions, but is less
able to benefit from more people. EM on the other hand
provides much worse missing data prediction in all cases.

Finally if we examine the speed of inference (Fig. 2 top),
VIBO is only slightly slower than MLE, both of which are
orders of magnitude faster than HMC. For instance, with
1.56 million people, HMC takes 217 hours whereas VIBO
takes 800 seconds. Similarly with 6250 items, HMC takes 4.3
hours whereas VIBO takes 385 seconds. EM is the fastest
for low to medium sized datasets, though its lower accuracy
makes this a dubious victory. Furthermore, EM does not
scale as well as VIBO to large datasets.

5.3 Real World Data Results
We next apply VIBO to real world datasets in cognitive
science and education. Fig. 3(a) plots the accuracy of imput-
ing missing data against the time saved vs HMC (the most
expensive inference algorithm) for five large-scale datasets.
Points in the upper right corner are more desirable as they
are more accurate and faster. The dotted line represents 100
hours saved compared to HMC.

From Fig. 3(a), we find many of the same patterns as we
observed in the synthetic experiments. Running HMC on
CritLangAcq or PISA takes roughly 120 hours whereas VIBO
takes 50 minutes for CritLangAcq and 5 hours for PISA,
the latter being more expensive because of computation
required for missing data. In comparison, EM is at times
faster than VIBO (e.g. Gradescope, PISA) and at times
slower. With respect to accuracy, VIBO and HMC are
again identical, outperforming EM by up to 8% in missing
data imputation. Interestingly, we find the “overfitting” of
MLE to be more pronounced here. If we focus on DuoLingo
and Gradescope, the two datasets with pre-existing large
portions of missing values, MLE is surpassed by EM, with
VIBO achieving accuracies 10% higher.

Another way of exploring a model’s ability to explain data, for
fully Bayesian models, is posterior predictive checks. Fig. 3(b)
shows posterior predictive checks comparing VIBO and HMC.
We find that the two algorithms strongly agree about the
average number of correct people and items in all datasets.
The only systematic deviations occur with DuoLingo: it is
possible that this is a case where a more expressive posterior
approximation would be useful in VIBO, since the number
of items is greater than the number of people.

5.4 Ablation Studies
We compared VIBO to simpler variants that either do not
amortize the posterior or do so with independent distributions
of ability and item parameters. These correspond to different
variational families, Q to choose q from:

• VIBO (Independent): We consider the decomposition
q(ai,d1:M |ri,1:M ) = q(ai|ri,1:M )q(d1:M ) which treats
ability and item characteristics as independent.

• VIBO (Unamortized): We consider q(ai,d1:M |ri,1:M ) =
qψ(ri,1:M )(ai)q(d1:M ), which learns separate posteriors
for each ai, without parameter sharing. Recall the
subscripts ψ(ri,1:M ) indicate a separate variational pos-
terior for each unique set of responses.

If we compare unamortized to amortized VIBO in Fig. 2
(top), we see an important efficiency difference. The number
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of parameters for the unamortized version scales with the
number of people; the speed shows a corresponding impact,
with the amortized version becoming an order of magnitude
faster than the unamortized one. In general, amortized
inference is much cheaper, especially in circumstances in
which the number of possible response vectors r1:M is very
large (e.g. 295 for CritLangAcq). Comparing amortized
VIBO to the un-amortized equivalent, Table 2 compares the
wall clock time (sec.) for the 5 real world datasets. While
VIBO is comparable to MLE and EM (Fig. 3a), unamortized
VIBO is 2 to 15 times more expensive.

Exploring accuracy in Fig. 2 (bottom), we see that the un-
amortized variant is significantly less accurate at predict-
ing missing data. This can be attributed to overfitting to
observed responses. With 100 items, there are 2100 possi-
ble responses from every person, meaning that even large
datasets only cover a small portion of the full set. With
amortization, overfitting is more difficult as the deterministic
mapping fφ is not hardcoded to a single response vector.
Without amortization, since we learn a variational posterior
for every observed response vector, we may not generalize
to new response vectors. Unamortized VIBO is thus much
more sensitive to missing data as it does not get to observed
the entire response. We can see evidence of this as unamor-
tized VIBO is superior to amortized VIBO at parameter
recovery, Fig. 2 (middle), where no data is hidden from the
model; compare this to missing data imputation, where un-
amortized VIBO appears inferior: because ability estimates
do not share parameters, those with missing data are less
constrained yielding poorer predictive performance.

Finally, when there are very few people (100) unamortized
VIBO and HMC are better at recovering parameters (Fig. 2
middle) than amortized VIBO. This can be explained by
amortization: to train an effective regressor fφ requires a
minimum amount of data. With too few responses, the
amortization gap will be very large, leading to poor inference.
Under scarce data we would thus recommend using HMC,
which is fast enough and most accurate.

Table 2: Time Costs with and without Amortization

Dataset Amortized (Sec.) Un-Amortized (Sec.)

CritLangAcq 2.8k 43.2k
WordBank 176.4 657.1
DuoLingo 429.9 717.9
Gradescope 114.5 511.1
PISA 25.2k 125.8k

The above suggests that amortization is important when
dealing with moderate to large datasets. Turning to the
structure of the amortized posteriors, we note that the fac-
torization we chose in Thm. 3.1 is only one of many. Specifi-
cally, we could make the simpler assumption of independence
between ability and item characteristics given responses in
our variational posteriors: VIBO (Independent). Such a
factorization would be simpler and faster due to less gra-
dient computation. However, in our synthetic experiments
(in which we know the true ability and item features), we
found the independence assumption to produce very poor
results: recovered ability and item characteristics had less
than 0.1 correlation with the true parameters. Meanwhile

the factorization we posed in Thm. 3.1 consistently pro-
duced above 0.9 correlation. Thus, the insight to decom-
pose q(ai,d1:M |ri,1:M ) = q(ai|d1:M , ri,1:M )q(d1:M |ri,1:M )
instead of assuming independence is a critical one. (This
point is also supported theoretically by research on faithful
inversions of graphical models [43].)

6. DEEP ITEM RESPONSE THEORY
We have found VIBO to be fast and accurate for inference
in 2PL IRT, matching HMC in accuracy and EM in speed.
This classic IRT model is a surprisingly good model for
item responses despite its simplicity. Yet it makes strong
assumptions about the interaction of factors, which may
not capture the nuances of human cognition. With the
advent of much larger data sets we have the opportunity to
explore corrections to classic IRT models, by introducing
more flexible non-linearities. As described above, a virtue
of VI is the possibility of learning aspects of the generative
model by optimizing the inference objective. We next explore
several ways to incorporate learnable non-linearities in IRT,
using the modern machinery of deep learning.

6.1 Nonlinear Generalizations of IRT
We have assumed thus far that p(ri,1:M |ai,d1:M ) is a fixed
IRT model defining the probability of correct response to
each item. We now consider three different alternatives with
varying levels of expressivity that help define a class of more
powerful nonlinear IRT.

Learning a Linking Function We replace the logistic
function in standard IRT with a nonlinear linking function.
As such, it preserves the linear relationships between items
and people. We call this VIBO (Link). For person i and
item j, the 2PL-Link generative model is:

p(rij |ai,dj) = fθ(−aTi kj − dj) (16)

where fθ is a one-dimensional nonlinear function followed by a
sigmoid to constrain the output to be within [0, 1]. In practice,
we parameterize fθ as a multilayer perceptron (MLP) with
three layers of 64 hidden nodes with ELU nonlinearities.

Learning a Neural Network Here, we no longer pre-
serve the linear relationships between items and people and
instead feed the ability and item characteristics directly into
a neural network, which will combine the inputs nonlinearly.
We call this version VIBO (Deep). For person i and item j,
the Deep generative model is:

p(rij |ai,dj) = fθ(ai,dj) (17)

where again fθ includes a Sigmoid function at the end to
preserve the correct output signatures. This is an even
more expressive model than VIBO (Link). In practice, we
parameterize fθ as three MLPs, each with 3 layers of 64
nodes and ELU nonlinearities. The first MLP maps ability
to a real vector; the second maps item characteristics to a
real vector. These two hidden vectors are concatenated and
given to the final MLP, which predicts response.

Learning a Residual Correction Although clearly a
powerful model, we might fear that VIBO (Deep) becomes
too uninterpretable. So, for the third and final nonlinear
model, we use the standard IRT but add a nonlinear residual
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component that can correct for any inaccuracies. We call
this version VIBO (Residual). For person i and item j, the
2PL-Residual generative model is:

p(rij |ai,kj , dj) =
1

1 + e−aTi kj−dj+fθ(ai,kj ,dj)
(18)

During optimization, we initialize the weights of the residual
network to 0, thus ensuring its initial output is 0. This
encourages the model to stay close to IRT, using the residual
only when necessary. We use the same architectures for the
residual component as in VIBO (Deep).

6.2 Nonlinear IRT Evaluation
A generative model explains the data better when it as-
signs observations higher probability. We thus evaluate gen-
erative models by estimating the log marginal likelihood
log p(r1:N,1:M ) of the training dataset. A higher number
(closer to 0) is better. For a single person, the log marginal
likelihood of his or her M responses can be computed as:

log p(ri,1:M ) ≈ logEqφ(ai,d1:M |ri,1:M )

[
pθ(ri,1:M ,ai,d1:M )

qφ(ai,d1:M |ri,1:M )

]
(19)

We use 1000 samples to estimate Eq. 19. We also measure
accuracy on missing data imputation as we did in Sec. 5. A
more powerful generative model, that is more descriptive of
the data, should be better at filling in missing values.

6.3 Nonlinear IRT Results
The top half of Table 3 compares the log likelihoods of ob-
served data whereas the bottom half of Table 3 compares
the accuracy of imputing missing data. We include VIBO
inference with classical IRT-1PL and IRT-2PL generative
models as baselines. We find a consistent trend: the more
powerful generative models achieve a higher log likelihood
(closer to 0) and a higher accuracy. In particular, we find very
large increases in log likelihood moving from IRT to Link,
spanning 100 to 500 log points depending on the dataset.
Further, from Link to Deep and Residual, we find another
increase of 100 to 200 log points. In some cases, we find
Residual to outperform Deep, though the two are equally
parameterized, suggesting that initialization with IRT can
find better local optima. These gains in log likelihood trans-
late to a consistent 1 to 2% increase in held-out accuracy
for Link/Deep/Residual over IRT. This suggests that the
datasets are large enough to use the added model flexibility
appropriately, rather than overfitting to the data.

We also compare our deep generative IRT models with the
purely deep learning approach called Deep-IRT [47] (see
Sec. 8), that does not model posterior uncertainty. Unlike
traditional IRT models, Deep-IRT was built for knowledge
tracing and assumed sequential responses. To make our
datasets amenable to Deep-IRT, we assume an ordering of
responses from j = 1 to j = M . As shown in Table 3, our
models outperform Deep-IRT in all 5 datasets by as much
as 30% in missing data imputation (e.g. WordBank).

6.4 Interpreting the Linking Function
With nonlinear models, we face an unfortunate tradeoff be-
tween interpretability and expressivity. In domains like ed-
ucation, practitioners greatly value the interpretability of
IRT where predictions can be directly attributed to ability

or item features. With VIBO (Deep), our most expressive
model, predictions use a neural network, making it hard to
understand the interactions between people and items.

(a) (b) (c) (d) (e)

Figure 4: Learned link functions for (a) CritLangAcq, (b)
WordBank, (c) DuoLingo, (d) Gradescope, and (e) PISA.
The dotted black line shows the default logistic function.

Fortunately, with VIBO (Link), we can maintain a degree
of interpretability along with power. The “Link” generative
model is identical to IRT, only differing in the linking func-
tion (i.e. item response function). Each subfigure in Fig. 4
shows the learned response function for one of the real world
datasets; the dotted black line represents the best standard
linking function, a sigmoid. We find three classes of linking
functions: (1) for Gradescope and PISA, the learned function
stays near a Sigmoid. (2) For WordBank and CritLangAcq,
the response function closely resembles an unfolding model
[27, 2], which encodes a more nuanced interaction between
ability and item characteristics: higher scores are related to
higher ability only if the ability and item characteristics are
“nearby” in latent space. (3) For DuoLingo, we find a piece-
wise function that resembles a sigmoid for positive values
and a negative linear function for negative values. In cases
(2) and (3) we find much greater differences in log likelihood
between VIBO (IRT) and VIBO (Link). See Table 3. For
DuoLingo, VIBO (Link) matches the log density of more
expressive models, suggesting that most of the benefit of
nonlinearity is exactly in this unusual linking function.

7. POLYTOMOUS RESPONSES
Thus far, we have been working only with response data
collapsed into binary correct/incorrect responses. However,
many questionnaires and examinations are not binary: re-
sponses can be multiple choice (e.g. Likert scale) or even real
valued (e.g. 92% on a course test). Having posed IRT as a
generative model, we have prescribed a Bernoulli distribution
over the i-th person’s response to the j-th item. Yet nothing
prevents us from choosing a different distribution, such as
Categorical for multiple choice or Normal for real-values.
The DuoLingo dataset contains partial credit, computed as
a fraction of times an individual gets a word correct. A more
granular treatment of these polytomous values should yield
a more faithful model that can better capture the differences
between people. We thus modeled the DuoLingo data using
for p(ri,1:M |ai,d1:M ) a (truncated) Normal distribution over
responses with fixed variance. Table 4 show the log densities:
we again observe large improvements from nonlinear models.

Item Response Theory can in this way be extended to work
of all kinds (imagine students writing text, drawing pictures,
or even coding), encouraging educators to assign open-ended
work without having to give up proper tools of assessment.

8. RELATED WORK
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Table 3: Log Likelihoods and Missing Data Imputation for Deep Generative IRT Models

Dataset Deep IRT VIBO (IRT-1PL) VIBO (IRT-2PL) VIBO (Link-2PL) VIBO (Deep-2PL) VIBO (Res.-2PL)

CritLangAcq - −11249.8± 7.6 −10224.0± 7.1 −9590.3± 2.1 −9311.2± 5.1 −9254.1± 4.8
WordBank - −17047.2± 4.3 −5882.5± 0.8 −5268.0± 7.0 −4658.4± 3.9 −4681.4± 2.2
DuoLingo - −2833.3± 0.7 −2488.3± 1.4 −1833.9± 0.3 −1834.2± 1.3 −1745.4± 4.7
Gradescope - −1090.7± 2.9 −876.7± 3.5 −750.8± 0.1 −705.1± 0.5 −715.3± 2.7
PISA - −13104.2± 5.1 −6169.5± 4.8 −6120.1± 1.3 −6030.2± 3.3 −5807.3± 4.2

CritLangAcq 0.934 0.927 0.932 0.945 0.948 0.947
WordBank 0.681 0.876 0.880 0.888 0.889 0.889
DuoLingo 0.884 0.880 0.886 0.891 0.897 0.894
Gradescope 0.813 0.820 0.826 0.840 0.847 0.848
PISA 0.524 0.723 0.728 0.718 0.744 0.739

Table 4: DuoLingo with Polytomous Responses

Inf. Alg. Train Test

VIBO (IRT) −22038.07 −21582.03
VIBO (Link) −17293.35 −16588.06
VIBO (Deep) −15349.84 −14972.66
VIBO (Res.) −15350.66 −14996.27

We described above a variety of methods for parameter esti-
mation in IRT such as MLE, EM, and MCMC. The benefits
and drawbacks of these methods are well-documented [26], so
we need not discuss them here. Instead, we focus specifically
on methods that utilize deep neural networks or variational
inference to estimate IRT parameters.

While variational inference has been suggested as a promising
alternative to other inference approaches for IRT [26], there
has been surprisingly little work in this area. In an explo-
ration of Bayesian prior choice for IRT estimation, Natesan
et al. [31] posed a variational approximation to the posterior:

p(ai,dj |ri,j) ≈ qφ(ai,dj) = qφ(ai)qφ(dj) (20)

This is an unamortized and independent posterior family,
unlike VIBO. As we noted in Sec. 5.4, both amortization and
dependence of ability on items were crucial for our results.

We are aware of two approaches that incorporate deep neural
networks into Item Response Theory: Deep-IRT [46] and
DIRT [8]. Deep-IRT is a modification of the Dynamic Key-
Value Memory Network (DKVMN) [47] that treats data as
longitudinal, processing items one-at-a-time using a recur-
rent architecture. Deep-IRT produces point estimates of
ability and item difficulty at each time step, which are then
passed into a 1PL IRT function to produce the probability of
answering the item correctly. The main difference between
DIRT and Deep-IRT is the choice of neural network: instead
of the DKVMN, DIRT uses an LSTM with attention [41]. In
our experiments, we compare our approach to Deep-IRT and
find that we outperform it by up to 30% on the accuracy
of missing response imputation. On the other hand, our
models do not capture the longitudinal aspect of response
data. Combining the two approaches would be natural.

Lastly, Curi et al. [9] used a VAE to estimate IRT parameters
in a 28-question synthetic dataset. However, this approach
modeled ability as the only unknown variable, ignoring items.
Our analogue to the VAE builds on the IRT graphical model,

incorporating both ability and item characteristics in a prin-
cipled manner. This could explain why Curi et. al. report
the VAE requiring substantially more data to recover the
true parameters when compared to MCMC whereas we find
comparable data-efficiency between VIBO and MCMC.

9. BROADER IMPACT
We briefly emphasize the broader impact of efficient IRT in
the context of education. Firstly, one of the many difficulties
of accurately estimating student ability is cost: attempting
to use MCMC on the order magnitude required by large
entities like MOOCs, local and national governments, and in-
ternational organizations is impossible. However with VIBO,
doing so is already possible, as shown by the PISA results.
Second, efficient IRT is an important and necessary step to
encourage the development of more complex models of stu-
dent cognition and response. Namely, it will at least enable
faster research and iterative testing on real world data.

10. CONCLUSION
Item Response Theory is a paradigm for reasoning about
the scoring of tests, surveys, and similar measurment in-
struments. Notably, the theory plays an important role in
education, medicine, and psychology. Inferring ability and
item characteristics poses a technical challenge: balancing
efficiency against accuracy. In this paper we have found that
variational inference provides a potential solution, running
orders of magnitude faster than MCMC algorithms while
matching their state-of-the-art accuracy.

Many directions for future work suggest themselves. First,
further gains in speed and accuracy could be found by explor-
ing more or less complex families of posterior approximation.
Second, more work is needed to understand deep generative
IRT models and determine the most appropriate tradeoff
between expressivity and interpretability. For instance, we
found significant improvements from a learned linking func-
tion, yet in some applications monotonicity may be judged
important to maintain – greater ability, for instance, should
correspond to greater chance of success. Finally, VIBO
should enable more coherent, fully Bayesian, exploration of
very large and important datasets, such as PISA [13].

Recent advances within AI combined with new massive
datasets have enabled advances in many domains. We have
given an example of this fruitful interaction for understanding
humans based on their answers to questions.
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ABSTRACT
In the learning sciences, heterogeneity among students usu-
ally leads to different learning strategies or patterns and
may require different types of instructional interventions.
Therefore, it is important to investigate student subtyp-
ing, which is to group students into subtypes based on their
learning patterns. Subtyping from complex student learn-
ing processes is often challenging because of the informa-
tion heterogeneity and temporal dynamics. Various inverse
reinforcement learning (IRL) algorithms have been success-
fully employed in many domains for inducing policies from
the trajectories and recently has been applied for analyzing
students’ temporal logs to identify their domain knowledge
patterns. IRL was originally designed to model the data by
assuming that all trajectories have a single pattern or strat-
egy. Due to the heterogeneity among students, their strate-
gies can vary greatly and the design of traditional IRL may
lead to suboptimal performance. In this paper, we applied
a novel expectation-maximization IRL (EM-IRL) to extract
heterogeneous learning strategies from sequential data col-
lected from three simulation environments and real-world
longitudinal students’ logs. Experiments on simulation en-
vironments showed that EM-IRL can successfully identify
different policies from the heterogeneous sequences with dif-
ferent strategies. Furthermore, experimental results from
our educational dataset showed that EM-IRL can be used
to obtain different student subtypes: a “learning-oriented”
subtype who learned the material as much as possible re-
gardless of the time in that they spent significantly more
time than the other two subtypes and learned significantly;
an“efficient-oriented”subtype who learned efficiently in that
they not only learned significantly but also spent less time
than the first subtype; a “no learning” subtype who spent
less amount of time than first subtype and failed to learn.

Keywords
Subtyping, learning progression modeling, Student strategy,
Inverse reinforcement learning

1. INTRODUCTION
With the rapid development of educational technologies,
longitudinal students’ learning progression trajectories are
readily available. It is often challenging to analyze large-
scale heterogeneous progression trajectories to infer high-
level information embedded in student subgroups. This chal-
lenge motivates the development of student modeling [1, 2,
3, 4] and instructional intervention [5, 6, 7, 8].

Student subtyping, which seeks student groups with sim-
ilar learning progression trajectories, is crucial to address
the heterogeneity in the students, which ultimately leads to
personalized instruction where students are provided with
interventions tailored to their unique learning status. Stu-
dent subtyping facilitates the investigation of different types
of pedagogical strategies. From the data mining perspec-
tive, student subtyping is posed as an unsupervised cluster-
ing task of grouping students according to their historical
records. Since these records are longitudinal and interre-
lated, it is important to capture the dependencies among
the elements of the recorded sequence to learn more effec-
tive and robust representations, which can be utilized in the
clustering stage to obtain the student subgroups.

This work aims at investigating student subtyping based on
their pedagogical strategies, which can be seen as a process
of self-regulated learning [9, 10, 11, 12, 13] by setting one’s
learning goals and ensuring the goals to be attained. Specif-
ically, we focus on students’ pedagogical decision-making
strategies during their interactions with an intelligent tutor-
ing system (ITS) to learn the probability. In this ITS, once a
problem is presented, the students will decide whether they
want the ITS to tell them how to solve the next problem
or complete the next step, by presenting a worked exam-
ple, or they want the ITS to elicit the next problem or
take the next step themselves, by requiring problem solv-
ing. When making pedagogical decisions, the students have
to self-regulate their own learning process which may change
the learning outcomes even though the instructional content
is controlled. We believe that students’ pedagogical strate-
gies are closely related to metacognition, i.e., the processes
involved in thinking about thinking [14].

Reinforcement learning (RL) offers one of the most promis-
ing approaches to induce effective pedagogical strategies di-
rectly from data. A number of researchers have studied ap-
plying RL to improve the effectiveness of ITSs, e.g. [15, 7,
16, 17, 18, 19, 20, 8, 21, 22], and much of the prior work fo-
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cused on inducing effective policies that determine the best
action for the ITS to take in any given situation so as to
maximize a cumulative reward, which is often the student
learning gain. On the other hand, in this work, our goal
is to infer students’ pedagogical strategies based on their
behaviors and decisions while interacting with the ITS.

To do so, we applied inverse reinforcement learning (IRL).
Unlike RL, where the reward function is explicitly given as
input, IRL takes a bunch of trajectories as input and from
which a reward function will be inferred. Given this inferred
reward function, the RL can be further deployed to induce
the decision-making policy. Since the students’ decisions are
generally made based on a trade-off among various complex
factors, e.g., time, learning gain, difficulty of problems, etc.,
merely taking the learning gain as the reward cannot re-
flect the actual decision-making patterns. As a result, we
employed IRL to learn students’ strategies based on their
behavioural data. Recently, IRL has been widely employed
in various domains to understand how decisions are made in
the given trajectories [23, 24]. Specifically, it has been em-
ployed in educational domains to analyze students’ temporal
log data to identify their domain knowledge patterns [25,
26]. However, IRL was originally designed to model the
data by assuming that all trajectories share a single pattern
or strategy. Considering the heterogeneity among students,
their pedagogical strategies can vary greatly and the de-
sign of traditional IRL may lead to suboptimal performance.
Though we can apply IRL individually for each student, it
will forfeit our goal of revealing some general and meaning-
ful patterns from students’ trajectories in consideration of
the heterogeneity among subgroups of students.

We employed a novel expectation–maximization IRL (EM-
IRL) algorithm [27] to model the heterogeneity among stu-
dent subtypes by assuming that different student subtypes
have different pedagogical strategies and students within
each subtype share the same strategy. The EM-IRL would
recursively cluster students into different subgroups and in-
duce a policy for each group by IRL until both clusters and
policies get converged. In the original EM-IRL work, it re-
quires the number of clusters to be pre-defined [27]. How-
ever, when applying it to student subtyping in education, it
is often hard to figure out beforehand how many types of
strategies are involved in students’ trajectories. Therefore,
we embedded the original EM-IRL into a general framework
which can automatically determine the optimal number of
clusters from the data.

In this work, we evaluated our general framework on three
simulation environments: Grid World, Highway, and Moun-
tain Car, and on real-world longitudinal students’ logs col-
lected from an ITS. Our results in three simulation envi-
ronments showed that EM-IRL could accurately cluster the
data with different decision-making strategies. In addition,
the experimental results showed that EM-IRL could be eas-
ily employed to obtain the student subtypes. Specifically, we
got three student subtypes: a “learning-oriented” subtype
who try to learn the material as much as possible regardless
of the time spent and they learned significantly from pre-
to post-test; an “efficient-oriented ” subtype who learn effi-
ciently in that they not only learned significantly but also
spent significantly less time than the first subtype; a “no

learning” subtype who spent the less time and failed to learn.
The clustering results suggested the potential of targeting
the students who are not using effective pedagogical strate-
gies, adapting the interventions, and offering the students
effective pedagogical skill training through the ITS.

The remaining parts are organized as follows. In Section 2,
related works are reviewed. Section 3 presents the methods,
including the RL, IRL, and EM-IRL. Section 4 displays pre-
liminary results we got in three simulation environments.
Section 5 details data collected from the ITS. In Section
6, we discuss the experimental setup for EM-IRL and some
other clustering methods. Section 7 presents the experimen-
tal results. Finally, Section 8 summarizes the paper.

2. RELATED WORKS
2.1 Students’ Subtyping
Previous research has widely explored modeling of student
subtyping to assist teachers in providing more targeted in-
terventions at the right time. Generally, student subtyp-
ing was analyzed via unsupervised clustering methods. For
example, Lopez et al. employed an expectation maximisa-
tion clustering method to determine if the students’ partic-
ipation in course Moodle forum could be a good predictor
of the final marks [28]. Durairaj and Vijitha applied K-
means clustering to predict the pass/fail percentage of the
students who appeared for a particular examination [29].
Khalil and Ebner clustered the students into appropriate
categories based on their level of engagement [30], so that
the teachers could increase retention and improve interven-
tions for specific sub-population. All of these methods were
based on the static data, without considering the dynamic
properties during learning.

With the rapid development of e-learning, an increasing
amount of sequential data was collected via ITSs. In general,
the clustering methods to handle sequential data could be
generalized into three categories: proximity-based, feature-
based, and model-based [31]. More specifically, proximity-
based methods measures the similarity between the pair-
wise data via the distance calculated by the longest com-
mon subsequence, dynamic time warping, etc. For exam-
ple, Shen and Chi proposed a temporal clustering frame-
work which measured pair-wise distance between the stu-
dents by dynamic time warping and then clustered them by
hierarchical clustering [32]. Their method identified some
distinctive patterns among the clusters, which could pro-
vide benefits to the personalized learning. Feature-based
approaches would first compress the sequential data to be
static, then the clustering methods taking static data as in-
put could be further employed. For example, in [33] and [34],
the authors aggregated the students’ activities to a feature
vector and then applied K-means clustering to recognize
learner groups in exploratory learning environments. In the
model-based methods, the similarity of two data could be
calculated based on the likelihood of one of them given the
model derived from the other. For example, Li and Yoo
proposed to use a Markov chain based clustering methodol-
ogy to model the students’ online learning behaviors col-
lected during the learning process for more effective and
adaptive teaching [31]. Additionally, Kock and Paramythis
proposed a method combining K-means clustering with dis-
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crete Markov models to identify new, semantically meaning-
ful problem-solving styles of the learners [35].

2.2 Students’ Pedagogical Strategies
A number of researchers have investigated students’ peda-
gogical decision-making [36, 37, 38, 39, 40, 41]. Previous
research has shown that students make pedagogical deci-
sions strategically. For example, Aleven et al. conducted
a study to investigate students’ hint usage behavior [36].
Results showed that students used the easy-to-apply intelli-
gent help more often than the Glossary. However, students
often waited long before asking for a hint. When requesting
hints, they often skipped the intermediate hints to reach the
bottom-out hint which showed the solution directly. The
results suggested that students preferred less effort-taking
help (intelligent help and bottom-out hint), and oftentimes,
they used the help less than they needed.

Additionally, prior research showed that providing students
with pedagogical decision-making assistance could result in
better decision-making skills or learning performance. Roll
et al. [37] examined the relationship between students’ help-
seeking patterns and learning performance. They found
that asking for help on challenging steps was generally pro-
ductive while help abusing behaviors were correlated with
poor learning. Mitrovic et al. [38] compared three types
of decision-making modes: system control, student control,
and faded control. Under the faded control, the system se-
lected the problem for the student at the beginning of the
training and gave explanations of why the problems should
be selected. As the training proceeded, the control was given
to the students. Results showed that the faded control group
demonstrated improved problem selection skill and achieved
better learning gain than the other two groups. Long et
al. [39] compared an assistance condition, where problem se-
lection assistance was provided, with standard condition (no
assistance). Their results showed the assistance condition
achieved significantly better learning performance and bet-
ter declarative knowledge of a key problem-selection strategy
comparing to the standard condition.

2.3 Learning From Demonstrations
Learning from demonstrations [42], also known as imitation
learning [43] or apprenticeship learning [44], is a process to
reproduce the decision-making behaviors in demonstrated
trajectories. Generally, the methods in this area can be cat-
egorized into two groups: 1) directly learning a policy as a
state-action mapping by parroting the demonstrated behav-
iors, which is typically done via supervised learning; and 2)
inferring rewards from the demonstrations and then apply-
ing reinforcement learning (RL) to induce the policy, which
is called inverse reinforcement learning (IRL). The latter is
generally preferred because the reward is a more robust, suc-
cinct, and transferable definition for a task [45]. Specifically,
comparing to supervised learning, IRL has higher general-
ization ability to robustly learn from smaller size trajectories
collected from larger state spaces, and the succinctly repre-
sented reward function can be handily transferred to other
agents in different scenarios.

Based on how the rewards are inferred, existing IRL algo-
rithms can be generalized into two categories: maximum
margin-based methods and probabilistic model-based meth-

ods. Specifically, maximum margin-based methods infer re-
wards by finding a model to maximizes the margin between
the demonstrated trajectories and other alternative behav-
iors [44]. However, it is often suffers from the ill-posed issue
with non-uniqueness [45], i.e., there can be multiple reward
functions to explain the demonstrated behaviors. Proba-
bilistic model-based methods, on the other hand, are able
to handle this issue by using probability distributions to in-
troduce preferences over reward functions [46]. In this cat-
egory, Ramachandran and Amir [47] proposed a Bayesian
IRL, which combined prior knowledge and evidence from the
demonstrated trajectories to derive a probability distribu-
tion over the reward functions. Similarly, Ziebart et al. pro-
posed a maximum entropy IRL which results in the least bi-
ased estimation of the reward function [23]. Babes-Vroman
et al. [27] proposed a maximum likelihood IRL (MLIRL),
which finds the reward function that maximize the proba-
bility to observe the demonstrated behaviors. Their experi-
mental results showed that the MLIRL outperformed some
other IRL methods, including the linear programming based
maximum margin IRL and maximum entropy IRL.

All the above methods assume a single reward function for
all demonstrations. Some other approaches have been pro-
posed to handle the multiple reward functions. Dimitrakakis
and Rothkopf [48] proposed a Bayesian multi-task IRL, which
learns a reward function for each individual trajectory us-
ing the same prior distribution. Choi et al. [49] proposed a
method based on nonparametric Bayesian IRL in which the
prior of mixing distribution of different rewards was modeled
by the Dirichlet process. Babes-Vroman et al. [27] proposed
an EM-based framework, which iteratively computes the
probabilities that the demonstrations belong to each clus-
ter and updates the cluster-wise rewards based on MLIRL.
Considering the efficiency and good performance EM-based
method, we adapted it for analysis in this work.

Recently, IRL has been widely applied in various domains.
Ziebart et al. [23] employed it in driver route modeling for
predicting driving behaviors as well as for route recommen-
dation. Asoh et al. [24] applied IRL to medical records and
explored the potential rules in doctors’ diagnosis. Of most
relevance, IRL also showed effectiveness in educational do-
main. Rafferty et al. applied IRL in education applica-
tions to automatically infer learners’ beliefs in an education
game [25]. They demonstrated that IRL could recover the
participant’s beliefs towards how their actions could affect
the environment, which indicated the potential to utilize IRL
to interpret data from interactive educational environments.
Then in another of their work, IRL was further employed to
assess learners’ mastery of some skills in solving algebraic
equations. Based on the learned IRL results, some skills the
learners misunderstood could be detected and personalized
feedback for improving the skills were further rendered [26].

3. METHOD

3.1 Reinforcement Learning
Markov decision process (MDP) was widely utilized to model
the user-system interactions. The central idea behind re-
inforcement learning (RL) is to transform the problem of
inducing effective policies into a computational problem of
finding an optimal policy for choosing actions in MDP. An
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MDP describes a stochastic control process using a 5-tuple
< S,A, T,R, γ >. Taking the pedagogical policy induction
as an example, S indicates the learning environment states,
which is often represented by student-system interaction fea-
tures. A denotes the tutor’s possible actions, such as elicit or
tell. The reward functionR is generally assigned as students’
learning performance. The transition probability T can be
estimated from training data. γ ∈ [0, 1) denotes a discount
factor for the future rewards. Given a defined MDP, we can
transform our student-system interaction logs into trajecto-

ries as: s1
a1,r1−−−→ s2

a2,r2−−−→ · · · sn
an,rn−−−−→. Here si

ai,ri−−−→ si+1

indicates that at the ith turn, the learning environment was
in state si; the tutor executed action ai and received reward
ri; then the environment transferred into the state si+1.

In traditional RL, the reward function R serves as a guidance
to praise or punish the agent’s behaviors to fulfil a certain
task when interacting with the environment. Therefore, it
is essential and needs to be elaborately hand-crafted in ad-
vance to reflect the task. In ITS, the reward is generally for-
mulated as the students’ learning performance, e.g., learn-
ing gains, since the intention of tutor’s decision-making is to
promote students’ learning. However, the reward function in
students’ decision-making is more complex to be determined:
students may have various learning patterns, e.g., finishing
the process as quick as possible or working hard regardless
of the time, which is cumbersome to be manually encoded in
a reward function. The different reward functions reflected
the different strategies students employed during the train-
ing process. Therefore, if student’s reward function can be
learned in a data-driven manner, we can better understand
their pedagogical decision-making strategies.

3.2 Inverse Reinforcement Learning
3.2.1 General IRL

The difficulty of the reward function design triggered the de-
velopment of the inverse reinforcement learning (IRL). IRL
follows a reverse procedure comparing to the traditional RL:
in RL, given the reward function, the agent will learn an op-
timal policy; while in IRL, the trajectories derived from the
optimal policy are given, from which the agent will learn the
reward function. It can be described as a stochastic control
process using a 4-tuple MDP\R =< S,A, T, γ > where the
reward function is missing.

In general framework of IRL, the input is a MDP\R to-
gether with some demonstrated trajectories T . The reward
function Rθ parameterized by θ can be modeled as either a
linearly weighted sum of feature values or belonging to a cer-
tain distribution. Most of the existing IRL methods follow 3
steps: in step 1, the parameter θ is randomly initialized; in
step 2, given the Rθ, general RL methods can be applied to
induce the policy; In step 3, the divergence of the behaviors
regarding to the learned policy and the given trajectories
is minimized to update the θ. The step 2 and step 3 are
repeated until the divergence is reduced to a desired level.

To investigate students’ pedagogical strategy, we can feed
their decision-making trajectories into the IRL model. Once
the reward function is learned, the strategy can be fur-
ther induced via traditional RL methods. Herein, we com-
pared some most commonly utilized IRL methods including:
quadratic programming based maximum margin IRL [44],

General Process of IRL

Input MDP\R =< S,A, T, γ > and trajectories T
Output Rθ
step 1 Initialize the parameter θ in reward function
step 2 Solve the MDP to learn the policy π
step 3 Update the optimization θ to minimize the diver-
gence between T and behaviors following the π
Repeat step 2 and step 3 until convergence

maximum entropy IRL [23], Bayesian IRL [47], and maxi-
mum likelihood IRL (MLIRL) [27] over three online simula-
tion environments (i.e., Grid World, Highway, and Mountain
Car). We found MLIRL always outperformed others and it
is also most time-efficient. As a result, we take MLIRL for
the IRL-based analysis hereinafter.

3.2.2 Maximum Likelihood IRL
To formally define the maximum likelihood IRL, we denote
the input N demonstrated trajectories as T = {ξ1, ..., ξN}
and each trajectory is composed of a set of state-action pairs:
ξi = {(s1, a1), (s2, a2), ...}. The reward function is defined
as the linear function of feature vector for state-action pairs:
rθ(s, a) = θTφ(s, a). Then the Q-value can be calculated as:

Qθ(s, a) = θTφ(s, a) + γ
∑
s′

T (s, a, s′)
⊗
a′

Qθ(s
′, a′), (1)

where
⊗
a

Qθ(s, a) =

∑
aQθ(s, a) exp(βQθ(s, a))∑

a′ exp(βQθ(s, a′))
(2)

Eq. 2 shows the Boltzmann exploration. Comparing to stan-
dard Bellman equation, it enables the likelihood to be differ-
entiable, thus the objective function can be easier optimized.
β represents the degree of confidence and it is set as 0.5 in
our experiments. The Boltzmann exploration policy param-
eterized by θ is:

πθ(s, a) =
exp(βQθ(s, a))∑
a′ exp(βQθ(s, a′))

(3)

Then the log-likelihood of trajectories T is calculated as:

L(T |θ) = log

N∏
i=1

∏
(s,a)∈ξi

πθ(s, a)ωi =

N∑
i=1

∑
(s,a)∈ξi

ωilogπθ(s, a)

(4)

Herein, ωi denote the weight for ξi, which can be estimated
by its frequency of the occurrence. By maximizing the Eq. 4,
the parameter θ enables the trajectories T to have highest
probability to be observed given the reward function Rθ.
Once the reward function is learned, the strategy followed
by T can be further induced by any RL method, e.g., policy
iteration that we employed in this work.

In general, IRL methods assume the reward function to be
unique for all input trajectories. However, it is often the
case that the trajectories are heterogeneous and have various
reward functions. For example, in ITS, students’ decision-
making behaviors can have different patterns which cannot
be easily captured by a single IRL model. As a result, a
model suitable for multiple reward functions is favored.
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Algorithm: MLIRL

Input MDP\R, trajectories T , trajectories’ weights ωi,
i = 1, ..., N , learning rate α
Initialize reward parameter θ randomly
Repeat

Learn the policy πθ
Compute L =

∑
i

∑
(s,a)∈ξi ωilog(πθ(s, a))

Update θ = θ + α5 L
Until target number of iterations completed

3.3 Expectation–maximization IRL
To deal with trajectories with multiple reward functions,
i.e., multiple strategies, Babes-Vroman et al. [27] proposed a
straight-forward expectation–maximization IRL (EM-IRL).
Herein, we adapted the original EM-IRL to automatically
determine the optimal number of clusters. Instead of di-
rectly assigning the cluster number, we considered a possi-
bly maximal number of clusters, i.e., Kmax, and a variable
k initialized as 2 indicating the current cluster number.

Specifically, to determine the optimal number of clusters,
starting from the cluster number k = 2, we iteratively imple-
mented the EM procedure, until a pre-defined stop criteria
was met. The stop criteria was defined as: either there were
some empty clusters generated or the log-likelihood (LL) of
the clustering results defined in Eq. 5 varied smaller than a
pre-defined threshold comparing to the last iteration, which
we set as 10. The LL reflected the clustering performance by
measuring the accordance of learned clusters with the cor-
respondingly induced cluster-wise strategies. In Eq. 5, Nj
stands for the number of trajectories in cluster j.

LL =

k∑
j=1

Nj∑
i=1

log(zij) (5)

zij = Pr(ξi|θj) =
∏

(s,a)∈ξi

πθj (s, a)ρj

Z
, (6)

Before the EM loop, parameters ρj and θj , j = 1, .., k, which
denoted the estimated prior probability and reward param-
eter for the jth cluster were randomly initialized.

In the E step, the probability that trajectory i belongs to
cluster j was calculated by Eq.6, in which Z is a normaliza-
tion factor; In the M step, the prior probability of cluster is
updated by Eq. 7. Meanwhile, the reward parameter θj can
be learned by any IRL and herein we employed the MLIRL
with weights of trajectories being zij .

ρj =
∑
i

zij
N

(7)

The E step and M step will be iteratively executed until a
target number of iterations is completed, which was set as 80
in this work to ensure the convergence. Finally, we found k
clusters when LL got converged, with each cluster standing
for a group of trajectories with an unique reward function.
Based on these reward functions, we could further induce
the cluster-wise strategies.

4. SIMULATION ENVIRONMENTS

Algorithm: EM-IRL

InputMDP\R, trajectories T , maximal number of clus-
ters Kmax

Initialize k = 2
While k 6 Kmax

Initialize ρj and θj , j = 1, ..., k, randomly
Repeat

E Step: Compute the zij , i = 1, ..., N
M Step: Update the prior probability ρj ; and

Learn reward parameter θj via MLIRL
Until target number of iterations completed

If stop criteria is True: Break; Else: k = k + 1

Since the ground-truth of students’ subtypes were unknown
in advance, it is difficult to directly evaluate the EM-IRL
learned clusters from the students’ data. Thus, we first car-
ried out EM-IRL in three simulation environments which
had decided ground-truth. If different strategies could be ac-
curately distinguished by EM-IRL in simulations, we would
be more confident to further deploy it in ITS environment.

4.1 Environment Settings
We explored three simulation environments including Grid
World, Highway, and Mountain Car, as shown in Figure 1.

Grid World: adapted from [27], in which three grids were
randomly chosen as puddles indicated by bricks in Figure 1(a).

• States (25) 5×5 grid-size.

• Actions (4) Moving to up, down, left, or right.

• Strategies (3) Moving to the 1) upper-right corner; 2)
lower-left corner; or 3) lower-right corner.

The rewards are designed for the three strategies: 1) Upper-
right corner has the reward of 10; 2) Lower-left corner has
the reward of 10; 3) Lower-right corner has the reward of
10. Otherwise, each state was punished -1.

Highway: adapted from a three-lane highway scenario in-
troduced in [50], in which the agent controlled a blue car
with three speed levels, which could switch between the
three lanes or go off-road on either side. At all timestamps,
there would be a red car in one of the three lanes.

• States (729) the blue car’s speed had 3 levels and could
move horizontally in 9 locations; the red car could move
vertically in 9 locations and horizontally in 3 locations.

• Actions (5) Staying at the current state, speeding up,
slowing down, moving left, or moving right.

• Strategies (2) 1) Keeping off the left lane (suppose it is
under construction); 2) Driving at the fastest speed.

The rewards are designed for the two strategies: 1) Driving
on the left lane has the reward of -10; 2) Driving with the
lowest level of speed has the reward of -10. In both strate-
gies, off-road is punished -0.5, collision is punished -5, and
maintaining the state has no reward.

Mountain Car: adapted from the MountainCar-v0 in Ope-
nAI Gym [51], in which a car was on a one-dimensional track
and moves between two mountains.

• States (80) 10 horizontal positions with 8 levels of speed.
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Figure 1: Three simulation environments: (a) Grid World; (b) Highway; (c) Mountain Car.

Table 1: Cluster-wise and overall purities by EM-
IRL clustering in three simulation environments.

Environment
Cluster-wise Overall

Strategy Idx Purity (%) Purity (%)

Grid World

1 100

1002 100

3 100

Highway
1 100

100
2 100

Mountain Car
1 100

96.4
2 93.2

• Actions (3) Pushing left, no pushing, or pushing right.

• Strategies (2) 1) Reaching to the right mountain top
(the car needs to drive back and forth to build up enough
momentum to push up); 2) Parking at the valley bottom.

The rewards are generated for the two strategies: 1) Right
mountaintop has the reward of +10; 2) Valley bottom has
the reward of +10. Otherwise, each state is punished -1.

In each environment, the initial states were randomly as-
signed, the transitions between states were stochastic and
estimated from the data. For each strategy, we induced a
policy via policy iteration and employed it to collect trajec-
tories. Specifically, the number of collected trajectories for
each strategy was 500, 1000, and 1000 in three environments,
respectively. In each environment, trajectories with various
strategies were mixed together and fed into the EM-IRL.

Given the ground-truth of cluster-belongings in simulation
environments, the results of EM-IRL were evaluated by the
purity of each cluster and across overall clusters. Denote the
size of ith cluster as Ni with ground-truth labels Li, then the
cluster-wise purity is calculated as the number of majority

labels divided by the cluster size, i.e., purityi = majority(Li)
Ni

;

and the overall purity is calculated by the mean of purity
among all clusters, i.e., purity = 1

k

∑k
i=1 purityi.

4.2 EM-IRL Results in Three Simulations
The EM-IRL clustering results for the three simulation envi-
ronments are shown in Table 1, in which the first column is
the environment; second and third columns show the index

of strategy and the corresponding cluster-wise purity; the
last column show the overall purity among all clusters.

In Grid World, all strategies could be accurately clustered by
EM-IRL. Specifically, both cluster-wise purities and overall
purity were 100%. Likewise, in Highway, the two strate-
gies were accurately clustered with the purity of 100%. In
Mountain Car, a few trajectories of driving to right moun-
taintop (Strategy 0) were mis-clustered to the parking at
valley (Strategy 1). This is because the mis-clustered tra-
jectories tried to move to left to collect enough momentum,
which showed very similar behaviors to reaching the valley.
Overall, the results suggested the effectiveness of EM-IRL in
accurately distinguishing subtypes of trajectories with dif-
ferent strategies in all three simulation environments.

5. ITS LEARNING ENVIRONMENT
Our data was collected by letting students work on a web-
based ITS, which taught college students probability, e.g.,
Addition Theorem and Bayes’ Theorem. The instruction
was conducted by guiding students go through training prob-
lems. For each problem, the tutor provided step-by-step in-
struction, immediate feedback, and on-demand help. The
help was provided via a sequence of increasingly specific
hints. The last hint in the sequence, i.e., the bottom-out
hint, told the student exactly what to do. During training,
the students could make pedagogical decisions on whether
to solve the next step by themselves or observe the tutor to
solve it. If they choose to solve by themselves, the tutor will
elicit the solution from them by asking questions; otherwise,
the tutor will show or tell them the solution directly.

5.1 Data Collection
All students participating in our data collection went through
four phases: textbook, pre-test, training, and post-test. Dur-
ing textbook, all students studied the domain principles from
a probability textbook. They read a general description of
each principle, reviewed some examples of it, and solved
some single- and multiple-principle problems. Then the stu-
dents took a pre-test which contained 14 problems. During
this phase, they would not be given feedback on their an-
swers, nor be allowed to go back to earlier questions (this
was also true for the post-test). During the ITS training
procedure, students received 12 problems in the same order.
Each main domain principle was applied at least twice. The
minimal number of steps needed to solve each training prob-
lem ranged from 20 to 50. Such steps included variable def-
initions, principle applications, and equation solving. The
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number of domain principles required to solve each problem
ranged from 3 to 11. Finally, all students took the post-test
which contained 20 problems in total. 14 of the problems
were isomorphic to the problems given in the pre-test phase,
while the remaining 6 were harder non-isomorphic multiple-
principle problems.

The pre- and post-tests required students to derive an an-
swer by writing and solving one or more equations. We used
three scoring rubrics: binary, partial credit, and one-point-
per-principle. Under the binary rubric, a solution was worth
1 point if it was completely correct or 0 if not. Under the
partial credit rubric, each problem score was defined by the
proportion of correct principle applications evident in the so-
lution. A student who correctly applied 4 of 5 possible prin-
ciples would get a score of 0.8. The one-point-per-principle
rubric in turn gave a point for each correct principle applica-
tion. All of the tests were graded in a double-blind manner
by a single experienced grader. The results we presented
were based upon the partial-credit rubric but the same re-
sults hold for the other two. For comparison purposes, all
test scores were normalized to the range of [0, 100].

We measure students’ learning performance using normal-
ized learning gain (NLG), which measured their gain irre-
spective of their incoming competence. It is calculated as:
NLG = post−pre

100−pre , where pre and post refer to the students’
test scores before and after the ITS training respectively and
100 is the maximum score. Herein, for the post-test, we con-
sidered all 20 problems that are either isomorphic and non-
isomorphic. In addition, an isomorphic NLG (Iso NLG) was
also measured. Unlike NLG, the Iso NLG was calculated
based on the pre- and isomorphic post-test scores, which
contained only 14 isomorphic multiple-principle problems.

5.2 States & Actions
Our dataset contains 127 students. Each student spent ∼ 2
hours on the system and completed around 400 steps.

States 142 state features were extracted from the student-
system interaction log data. Specifically, the features can be
grouped into five categories:

• Autonomy (10 features): the amount of work done by a
student, such as the number of elicits since the last tell;

• Temporal (29): time related information about the stu-
dent’s behavior, such as the average time per step;

• Problem Solving (35): information about the current
problem solving context, such as problem difficulty;

• Performance (57): information about the student’s per-
formance so far, such as the percentage of correct entries;

• Hints (11): information about the student’s hint usage,
such as the total number of hints requested.

For each category, we employed K-means clustering to get
the discretized states. By selecting an elbow of errors when
the clustering results got converged, the number of states
for each category of features was determined as follows: Au-
tonomy (3 states), Temporal (4), Problem Solving (3), Per-
formance (4), and Hints (3). As a result, we got 432 discrete
states totally. Based on the discretized states, we estimated
the transition probabilities from all available data.

Actions The students can take two action of elicit/tell, i.e.,
to elicit the solution by themselves through asking questions,
or to let the tutor tell them the solution directly.

6. EXPERIMENTAL SETTINGS
6.1 Student Subtyping by EM-IRL
Based on the EM-IRL learned clusters, we conducted anal-
yses by checking the statistical significance among different
clusters’ learning performance, including the pre-test scores,
isomorphic NLG (Iso NLG), NLG, students’ learning time
on the training task (Time), and the percentage of elicit in
students’ decisions (Elicit Perc).

6.2 Student Subtyping by Other Methods
6.2.1 Clustering by Traditional Methods

To evaluate the clustering performance of EM-IRL, we com-
pared it with three other clustering methods: two K-means
based approaches that took the pre-test scores and the learn-
ing state in the final step as the input respectively and a
K-medoids based approach that took dynamic time warping
(DTW) [52] distance between trajectories as the input. The
K-means based approaches were static-information-based clus-
tering while the K-medoids based DTW considered dynamic
state transitions in the trajectories. In our experiments, each
of these methods generated three clusters and for each clus-
ter, the MLIRL was employed to learn a strategy. Based on
the learned strategies, we calculated the log-likelihood (LL,
referring to Eq. 5) of observing such clustering results.

6.2.2 Clustering by Matching RL / IRL Policies
We further explored whether RL or IRL policies could model
the heterogeneity in student decision-makings. The inducing
of these two policies are detailed as follows.

Inducing the RL policy: To investigate whether students’
learning strategies could be distinguished from the tutor’s
perspective, we compared students’ decisions to a RL in-
duced pedagogical policy and clustered the students based
on the matching rate. Since the RL policy was induced with
the goal of improving students’ learning performance, it is
expected that the group with a higher matching rate with
the RL policy would have better learning performance.

Specifically, we applied RL to learn a pedagogical policy
that determines whether the next step should be elicit or tell
(the same decisions students made in our ITS). The training
data set contained 1,118 students’ interaction logs collected
from a series of seven prior studies which followed the identi-
cal procedure and learning materials as the students in this
study described in Section 5. The same 142 features used
by EM-IRL were extracted from the logs and used to in-
duce the policy. In an empirical classroom study, the policy
was compared with a deep Q-network (DQN) induced pol-
icy and a random policy. Results showed that the RL policy
significantly outperformed both of them [21].

Once the RL policy was induced, we applied it on the student
decision-making data (127 students) to see what decision the
RL policy would make on each step. Then, we calculated
the matching rate between students’ decisions and the RL
policy individually for each student. Based on the matching
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rates, the students were split into three groups via K-means
clustering, denoted as High, Medium, or Low based on the
average matching rate of the group.

Inducing the IRL Policy: Similarly, to investigate whether
students’ learning strategies could be distinguished from their
own perspective, we applied IRL to induce a policy from stu-
dent decision-making data and compared students’ decisions
with the IRL policy. Given that our data analysis showed
that most of students learned significantly from ITS training,
herein, we assumed that a majority of students completed
the training with the goal to learn. Thus, we expected that
the group with a higher matching rate with the the IRL
policy would have better learning performance.

The IRL policy was induced from the 127 students who were
given the opportunities to make pedagogical decision during
training. Herein, the MLIRL algorithm [27] was utilized for
policy induction. Similar to the RL based method, the IRL
policy was applied back to students’ data to calculate the
matching rate between students’ decisions and the IRL pol-
icy. Then, K-means clustering was applied on the matching
rate to cluster students into High, Medium, or Low groups.

7. RESULTS
7.1 Student Subtyping by EM-IRL
Fitting students’ data to the EM-IRL framework in Sec-
tion 3.3, when stop criteria was met, we got three clusters.
Table 2 shows the EM-IRL subtyping results. From left to
right, it shows the students’ subtypes, number of students
(# Stu), pre-test score (Pre), isomorphic NLG (Iso NLG),
NLG, time on the training task (Time), and percentage of
elicit in students’ decisions (Elicit Perc). Based on sta-
tistical analysis, we named the three resulting clusters as:
learning-oriented, efficient-oriented, and no learning.

A one-way ANOVA analysis on pre-test scores showed no
significant difference among the three clusters: F (2, 124) =
1.36, p = 0.260, η = 0.022. This suggested that students
in the three clusters were balanced in incoming competence.
To measure students’ learning gain in training, we conduced
analyses on their Iso NLG and NLG. A one-way ANOVA
analysis on Iso NLG showed a significant difference among
the three clusters: F (2, 124) = 3.24, p = 0.042, η = 0.050.
Subsequent contrast analysis revealed that learning-oriented
> no learning : t(124) = 2.54, p = 0.012, d = 0.75 and
efficient-oriented > no learning : t(124) = 2.19, p = 0.030,
d = 0.54. Similar results were found for NLG in that a one-
way ANOVA analysis showed a significant difference among
the three clusters: F (2, 124) = 3.73, p = 0.027, η = 0.057.
Subsequent contrast analysis revealed that learning-oriented
and efficient-oriented significantly outperformed no learn-
ing : t(124) = 2.73, p = 0.007, d = 0.77 and t(124) = 2.15,
p = 0.033, d = 0.52 respectively.

In terms of time on task, a one-way ANOVA analysis showed
a significant difference among the three clusters: F (2, 124) =
5.81, p = 0.004, η = 0.086. Subsequent contrast analysis
indicated that learning-oriented took longer time on task
than the other two clusters: t(124) = −3.11, p = 0.002,
d = 0.58 for efficient-oriented and t(124) = 2.37, p = 0.019,
d = 0.63 for no learning. A contrast analysis on the per-
centage of elicit in students’ decisions revealed that learning-

oriented took significantly more elicit actions than no learn-
ing : t(124) = 2.24, p = 0.027, d = 0.70.

To summarize, the learning-oriented subtype spent signifi-
cantly more time than the other two groups on the training
task and achieved the best performance on both Iso NLG
and NLG (signifiantly higher than no learning). This sug-
gested that learning-oriented students mainly focused on
learning the materials, regardless of the time they may spend.
The efficient-oriented subtype significantly outperformed no
learning on learning performance and at the same time spent
significantly less time than learning-oriented. This suggested
that efficient-oriented students could balance learning gain
and time on task. Finally, the no learning subtype achieved
the lowest learning outcomes.

7.2 Student Subtyping by Other Methods
7.2.1 Clustering by Traditional Methods

We compared our EM-IRL with three traditional baseline
clustering methods, namely K-means on the pre-test score
(K-means on Pre); K-means on the learning state (142 fea-
tures) in the final step (K-means on Final Step); K-medoids
on the DTW distance among trajectories [52], which is calcu-
lated based on the 142 features (K-medoids on DTW). The
results are shown in Table 3, with the two columns being
clustering method and the resulting log-likelihood (LL).

Overall, results showed that the dynamic-information-based
clustering approaches (K-medoids on DTW and EM-IRL)
performed better than static-information-based approaches
(K-means on Pre and K-means on Final Step). Between the
two static-information-based approaches, K-means on final
Step performed better than K-means on pre-test. This is not
surprising because the state in the final step included infor-
mation generated during training while the pre-test score
only included information till the end of pre-test. Between
the two dynamic-information-based approaches, EM-IRL out-
performed K-medoids on DTW. A possible reason is that
EM-IRL took both states and actions into account while K-
medoids on DTW considered only the states in trajectories.

7.2.2 Clustering by Matching RL / IRL Policies
Results of Matching with the RL Policy: Based on
the matching rate with the RL policy, we got three clus-
ters by K-means: High (M = .84, SD = .05), Medium
(M = .70, SD = .05), and Low (M = .52, SD = .07). A one-
way ANOVA analysis over the matching rate showed a signif-
icant difference: F (2, 124) = 339.87, p < 0.0001, η = 0.846.
Subsequent contrast analysis showed that: High > Medium:
t(124) = 4.38, p < 0.0001, d = 0.99 and Medium > Low:
t(124) = 8.01, p < 0.0001, d = 1.70.

A one-way ANOVA analysis on pre-test showed there was no
significant difference among the three groups: F (2, 124) =
0.26, p = 0.771, η = 0.004. Analyses on Iso NLG (calcu-
lated based on pre-test and isomorphic post-test) and NLG
(calculated based on pre-test and full post-test, which con-
tains six additional hard problems) also showed no signifi-
cant difference among the three groups. In terms of time on
the training task, there was a significant difference among
the three groups: High (M = 2.40, SD = .50), Medium
(M = 2.42, SD = .66), and Low (M = 1.88, SD = .40).
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Table 2: EM-IRL clustering results in ITS environment.

Subtype #Stu Pre Iso NLG NLG Time Elicit Perc (%)

learning-oriented 50 73.9(16.8) 55.9(45.3) 23.4(53.6) 2.52(.70) 87.53(13.40)

efficient-oriented 64 76.2(14.5) 43.9(92.4) -4.4(127.2) 2.18(.45) 84.93(15.02)

no learning 13 81.9(17.4) -21.1(212.1) -98.4(340.4) 2.10(.50) 77.06(20.04)

Table 3: Comparison of the log-likelihood (LL) for
different clustering methods

Method LL (×103)

K-means on Pre -10.68

K-means on Final Step -9.60

K-medoids on DTW -8.83

EM-IRL -6.36

A one-way AVONA on time shows: F (2, 124) = 9.21, p =
0.0002, η = 0.129. Subsequent contrast analysis revealed
that the High and Medium groups spent significantly more
time than the Low group: t(124) = 3.85, p = 0.0002,
d = 1.11 and t(124) = 3.99, p = 0.0001, d = 0.92, re-
spectively. An analysis on the percentage of elicit in stu-
dents’ decisions showed a significant difference among the
three groups: F (2, 124) = 66.97, p < 0.0001, η = 0.519.
Subsequent contrast analysis revealed that High > Medium:
t(124) = 4.38, p < 0.0001, d = 0.99 and Medium > Low:
t(124) = 8.01, p < 0.0001, d = 1.70.

The results showed that by matching with the RL strategy,
we could differentiate students’ time-consuming strategies
from time-efficient strategies. However, it was not able to
identify the student subtypes that made a difference in the
learning performance. This suggested the presence of a gap
between tutor’s and students’ strategies. Specifically, com-
paring to taking actions following the tutor’s decisions pas-
sively, the students might prefer actively direct their own
learning process. Therefore, when deploying the tutor’s
strategy to students, it might not promote the learning per-
formance as expected.

Results of Matching with the IRL Policy: Based on
the matching rate with the IRL policy, we got three clusters
by K-means: High (M = .86, SD = .05), Medium (M =
.71, SD = .05), and Low (M = .54, SD = .06). A one-way
ANOVA analysis over the matching rate showed a significant
difference among the three groups: F (2, 124) = 360.99, p <
0.0001, η = 0.853. Subsequent contrast analysis showed
that: High > Medium: t(124) = 15.92, p < 0.0001, d = 3.37
and Medium > Low: t(124) = 13.52, p < 0.0001, d = 3.23.

A one-way ANOVA analysis on pre-test showed there was no
significant difference among the three groups: F (2, 124) =
1.17, p = 0.314, η = 0.019. Analyses on the Iso NLG
and NLG also showed no significant difference among the
three groups. In terms of time on the training task, there
was a significant difference among the three groups: High
(M = 2.44, SD = .54), Medium (M = 2.27, SD = .68),
and Low (M = 2.08, SD = .42). A one-way AVONA on
time shows: F (2, 124) = 3.11, p = 0.048, η = 0.048. Sub-

sequent contrast analysis showed that the High group spent
significantly more time than the Low group: t(124) = 2.43,
p = 0.017, d = 0.70. An analysis on the percentage of elicit
in students’ decisions showed a significant difference among
the three groups: F (2, 124) = 93.92, p < 0.0001, η = 0.602.
Subsequent contrast analysis revealed that High > Medium:
t(124) = 7.95, p < 0.0001, d = 1.83 and Medium > Low:
t(124) = 7.08, p < 0.0001, d = 1.43.

The results showed that IRL based policy matching was able
to cluster the students’ strategies different in time. However,
it was unable to learn specific subtype of students whose
strategy will lead to better learning outcomes. One possible
reason that the IRL-based analyses could not identify the
learning-performance-impactful strategies is that a single
policy was insufficient to effectively generalize the decision-
making patterns for the overall students. Different students
might follow heterogeneous decision-making strategies.

In summary, the results suggested that EM-IRL could effec-
tively conduct student subtyping reflecting different decision-
making strategies. As a contrast, clustering by traditional
methods or by matching RL/IRL policies could not find de-
sired student subtypes.

8. CONCLUSIONS
In this paper, we investigated students’ subtyping via EM-
IRL. By analyzing students’ subtyping, we aimed at putting
ourselves in the shoes of students to better understand their
decision-making. To evaluate the performance of EM-IRL,
we first applied it to three simulation environments, where
the EM-IRL displayed robust performance to accurately clus-
ter the trajectories with different strategies. Given the ac-
curate clustering results in simulators, we were more confi-
dent to further apply EM-IRL to real world longitudinal stu-
dents’ logs collected from an ITS. The results suggested that
the EM-IRL could effectively group students with different
subtypes, e.g., learning-oriented, efficient-oriented, and no-
learning. As a contrast, clustering by traditional methods
or by matching RL/IRL policies could not find desired sub-
types. The subtyping results showed the potential of provid-
ing tutors evidence to give more customized interventions to
better assist students’ learning. In the future, we will con-
duct early clustering to detect students’ strategies as early
as possible. Besides, empirical studies will be carried out to
evaluate the effectiveness of subtyping-based interventions
to improve the targeted group of students.
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ABSTRACT
Student procrastination, as the voluntary delay of intended
work despite expecting to be worse off for the delay, is an
important factor with potentially negative consequences in
student well-being and learning. In online educational set-
tings such as Massive Open Online Courses (MOOCs), the
effect of procrastination is considered to be even more preva-
lent and detrimental, as online courses are often self-paced
and self-directed, where higher levels of self-regulated learn-
ing are expected from the students. Past research has mainly
described students’ procrastination by either static time-
related measures (e.g. averaged starting time over all as-
signments per student), or by temporal models’ parameters,
under the assumptions that student activities take place at a
constant rate (e.g. Homogeneous Poisson models), and that
student interactions with one learning material are indepen-
dent of interactions with another. In this work, we propose
to consider the interdependence between the students’ tem-
poral activities while modeling their sequences in a continu-
ous time scale. To this end, we propose to model the interac-
tion sequence between each student and each course module,
i.e. each module-student pair, as Multi-dimensional Hawkes
processes, which not only capture the relationship between
students’ learning activities and their exogenous stimuli such
as assignment deadlines, but also capture the endogenous
responses within and between types of learning materials.
Our experiments show that not only there exists dependen-
cies between students’ historical activities and the future
ones when different types of learning materials are involved,
such dependencies also provide meaningful interpretations
in terms of students’ procrastination behaviors. Further-
more, our findings show that in addition to association with
delay, the parameters learned by multi-dimensional Hawkes
processes provide more procrastination-related information
and can improve our explanation of student grades.

Keywords
Procrastination, MOOCs, Student Modeling, Multivariate
Hawkes Process, Clickstream Data

1. INTRODUCTION
Student academic procrastination has shown to have nega-
tive effects on students’ learning and well-being. Procrasti-
nation is prevalent in different academic settings like tra-
ditional classrooms, and could be even more widespread
in online learning environments, as higher levels of time-
management and self-regulated learning (SRL) skills are re-
quired [47, 3, 16]. To describe and measure student procras-
tination, past research has been mainly relying on either self-
reported surveys (e.g. [27]) or time-related features that are
associated with students dilatory behaviors (e.g. [10]). As
procrastination is inherently subjective, self-reported sur-
veys have been heavily used in earlier research, to differenti-
ate procrastinators and non-procrastinators by emphasizing
on measuring the perceptions of the students. Although
self-report survey measures capture students’ retrospective
reports of their studying and delaying behaviors, they are
administered in a cross-sectional manner, rely on students’
memory, and are usually static point estimates that summa-
rize students’ average degree of procrastination.

Considering the noises of self-reported data [37], in more re-
cent studies, more focus has been given to the behavioral side
of the procrastination, where time-related measures were
proposed and used as the representation of students’ pro-
crastination. For example, measures such as students’ av-
erage delays in starting coursework, the average time they
spent in doing assignments, students’ average paces of view-
ing lectures have been studied as factors of procrastina-
tion [2, 10, 15, 6, 22]. However, these measures lack the
ability to describe students’ continuous behaviors within a
period of time. An analogy to such methods is to describe
the entire distribution using the sample mean, without fully
knowing the distribution. To tackle this limitation, more
recently, emphasis has been on modeling the time points of
student activities that are extracted from students’ learning
trajectory data (e.g. log or click-streams of student histor-
ical actions), via stochastic models. For example in [33],
Park et al. modeled students’ per-day activity counts dur-
ing each week of the course via a Poisson mixture model,
which models the entire trajectory of each student activities
during a weekly module. Other factors that have been con-
sidered to be important in describing procrastination in the
past research are the effects of different learning materials
(e.g. forums and quizzes) as well as students’ interactions
with them (e.g.[1, 28]). However, to the best of our knowl-
edge, no past work has considered the possible time depen-
dencies within and between students’ interactions with dif-
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ferent learning material types. For example, viewing video
lectures more intensively mostly before the first attempt of
an assignment may suggest that a student prefer to learn the
materials first before trying the assignment. On the other
hand, watching lecture videos dominantly after the first at-
tempt of an assignment may suggest that the student prefer
to try the assignment first and then go through the video
lectures if they encountered any problems.

To summarize, past research has attempted to describe pro-
crastination using static time measures, or measures sum-
marized from more sophisticated temporal models, based
on students’ interactions with one or more learning materi-
als. However, two important factors of student behaviors
and their association with procrastination have not been
fully explored: (1) the dependencies between students’ past
and future interactions within each learning material type
(e.g. knowing a student has looked at lecture slides at some
time, how and when are they going to have the next ac-
tivity?) and (2) the dependencies between students’ inter-
actions with different types of learning materials (e.g. are
watching video lecture usually followed by a submission of
an assignment?) In this work, we aim to address these two
factors by answering the following questions: within each
learning module, that is the unit of a course that learn-
ing materials are provided, (Q1) are the past activities in-
dependent of future ones? Or some activities can trigger
other ones to arrive within a short period of time (i.e. time
dependencies between activities)? And (Q2), are students’
interactions with one type of learning material (e.g., video
lectures) independent from another type (e.g., discussion fo-
rums)? Furthermore, (Q3) if such dependencies exist, how
are they associated with student procrastination? (i.e. the
dependencies between a student’s past and future activities
as well as dependencies a student’s interactions with one
learning material with another.)

As a result, our goal is to find the missing link between stu-
dents’ procrastination and students’ activities within and
between different types of online learning materials. To
achieve this goal, we propose to use multi dimensional Hawkes
processes as a powerful tool that addresses the above men-
tioned concerns in student procrastination analysis. Par-
ticularly, we represent all activities on one type of learning
material as one dimension in the multi-dimensional Hawkes
model. We show that this model better fits our data, in
comparison to baseline temporal processes. Also, to answer
Q1 and Q2, we demonstrate that it can capture both stu-
dents’ reactions to the deadlines as action-triggering factors
that come externally (i.e. exogenous stimuli), and students’
responses to the previous interactions with different types of
learning materials, such as video lectures, assignments, and
discussions (i.e. self-excitement). By doing so, we can un-
derstand students’ procrastination behavior from a stochas-
tic process point of view, with two main stimuli: (1) some
of the students’ activities can be viewed as a response to
an external stimulus, e.g. deadlines of the assignments (2)
some other student activities can be viewed as the results of
previous interactions that the student had with the same or
other learning material types. Based on the model parame-
ters, to answer Q3, we also propose a measure that not only
describes student procrastination but also is able to explain
student performance better than the static delay measure.

The outline of this paper can be summarized as follows:
In Section 2, we go over three main bodies of the related
work; in Section 4 we go over the details of the dataset
that we use; in Section 4, we provide the intuition of using
the Hawkes model, then statistically and visually show that
a Hawkes process is a proper choice for modeling module-
student interactions; in Section 5, we formally define our
problem and introduce the multi-dimensional Hawkes model
that we use in this study. We perform various experiments
in section 6, to analyze the model parameters, explain their
interpretation, and associate them with procrastination as
well as students’ assignment grades. Finally, the conclusion
of this work is summarized in Section 7.

2. RELATED WORK
Students’ procrastination In the past research on stu-
dent procrastination, the main focus has been on the mea-
sures that capture either students’ perceptions (e.g. self-
reported surveys on procrastination [35, 41, 40, 12, 23]),
or static measures that describe students’ dilatory behav-
iors as the representation of procrastination [15, 11, 44,
33]. For example, in [10], Cerezo et al. studied 140 un-
dergraduate and used measures such as students’ delay and
time-spent variables to describe procrastination. For an-
other example, in [2], Asarta and Schmidt studied students’
behaviors in accessing lecture notes of a blended-learning
course, and proposed to use features such as pacing, anti-
cramming, and consistency in reviewing course materials.
A few recent works have tried to model student activities
to provide a temporal perspective of procrastination behav-
ior. For example, Backhage et al. proposed a model that
captures procrastination-deadline cycles of all students in
the course using a stochastic temporal model [4]. However,
this model assumes that all students follow the same pro-
crastination behavior during the course and does not distin-
guish the differences between student behaviors. In [33],
Park et al. assumed that students’ daily activity counts
follow a mixture Poisson distribution, which is a mixture
of a procrastination component and a non-procrastination
component. Particularly, by assuming the independence be-
tween students’ past and future activities, they proposed to
model each day of the week by a Poisson with a constant
rate for all weeks. In the end, they described procrastina-
tors as the ones with a dominant procrastination component
versus the non-procrastination one, i.e. the students who
have a fast-increasing activity counts towards the end of the
week. Moon et al. assumed that procrastination behavior
over time can be described by a curvilinear growth curve
and modeled it using latent growth curve modeling. To val-
idate this assumption, they compared the curvilinear model
with a non-growth and a linear model and showed that their
model has a better goodness-of-fit than the baseline mod-
els [30]. In contrast with the existing research that either
uses summary variables or ignores the dependence between
different student activities, in this paper we aim to model
the temporal activity interrelationships and associate them
with student procrastination.

Modeling students’ engagement using their learning
trajectories. Other relevant studies to our work are the
ones that model student learning trajectories to understand
other aspects of their behaviors, such as student engage-
ment in online learning environments. While many past
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studies focused mostly on utilizing cumulative factors such
as frequency of watching videos or using discussion forums
[39, 17, 34, 13], more recent work attempted to build more
complex models of student behaviors. For example, in [46],
Zhu et al. constructed students’ social connection networks
based on students’ weekly post-reply dynamics, along with
node attributes, such as assignment scores. Particularly,
they used an exponential random graph model to compute
the structural features of the social connection networks,
to understand the relationship between students’ engage-
ment in the forums and their performances in the assign-
ments. In another example, Lan et al. proposed a sta-
tistical model, which consists of two components: a learn-
ing model and a response model [25]. These two models
represent nine behavioral features extracted from students’
video-watching clickstreams and in-video quiz responses in
one MOOC course, with the aim to find the behavioral fea-
tures that lead to high levels of student engagement. Simi-
larly, Kizilcec et al. classified students’ behaviors based on
binary features extracted from students’ log data (1 if a stu-
dent had any activities that are associated with a learning
material, 0 otherwise, for all learning materials) [24]. As a
result, they identified 4 behavioral types: completing, audit-
ing, disengaging, and sampling, from these binary features.
For another similar example, Gelman et al. extracted stu-
dent features from students’ log data as well and applied
Nonnegative Matrix Factorization to find 5 types of stu-
dent behaviors - deep, consistent, bursty, introduction, and
sampling [18]. Particularly, the authors used a procrastina-
tion indicator as a feature, that is, the average amount of
time left before the deadline when a student submits their
assignments. In summary, past research on modeling stu-
dent engagement is similar to our study in the sense that
the models utilize students’ activities that were extracted
from students’ log data. However, it differs to ours in the
following two ways: (1) the models usually define students’
engagement levels based on the counts of students’ historical
actives, without directly modeling students’ learning trajec-
tories as stochastic processes, (2) the aim is usually to model
or predict students’ future engagement levels, rather than
studying students’ procrastination and its association with
students’ performance.

Hawkes in education. Hawkes processes, a family of
stochastic point processes, have been frequently used to model
complicated time-stamped events in continuous time. Due
to Hawkes process’s capability to model scenarios where
historical events influence future activities, it has been fre-
quently used in finance [5] and seismology [32] and has been
gradually becoming a useful modeling tool in the domain
of social media [7, 36, 29], as well as recommendation sys-
tems [14, 43, 21, 38]. In the education domain, a few works
have used Hawkes processes so far, especially to model so-
cial and interaction data among students [19, 20, 26]. For
example, Lan et al. proposed a single-dimensional Hawkes
model to recommend relevant discussion threads to students
according to their historical interactions with course forums.
In a similar application, a Hawkes model is suggested by Von
Davier et al. to model the collaboration dynamics between
students within and between groups [42]. Along this line,
Halpin et al. used multi-dimensional Hawkes processes to
understand students’ collaboration with each other [19, 20].
Another interesting application of the Hawkes process in the

education domain is the work by Boerner et al. that ana-
lyzed the association between student skills and the skills
required by professional jobs [8]. In another recent work,
Cai et al. used Hawkes processes as a step in their model to
predict which video a student will watch next based on their
historical interactions with the videos in an edX course [9].
They use long and short multi-dimensional Hawkes processes
that differentiates the long-term and short-term temporal
dependencies between video-watching actions. None of the
above works uses the Hawkes processes to model the pro-
crastination behavior, nor considers course deadlines and
milestones in their application of the Hawkes process.

3. DATASET
Our dataset is publicly collected from the Canvas Network1

MOOC platform [31], which is an online platform that hosts
various open online courses in different academic disciplines,
such as Computer science, Social Science, and Business man-
agement. These courses have multiple types of learning re-
sources, including Wiki pages, assignments (or quizzes), and
discussions. Assignments can be quiz-style or in a longer
format where students need to upload a file to complete the
submission. Each learning module is associated with one
Wiki page. In total, CANVAS data contains 389 anonymized
courses where the names of students and courses along with
the contents of discussions and assignment (or quiz) submis-
sions are not available.

In this work, we mainly focus on exploring the student learn-
ing trace data. Specifically, we select a computer science
course (course id: 770000832960058) that best fits the fol-
lowing criteria: (1) having a large number of students2;
(2) including multiple types of learning materials (such as
video lectures, assignments, discussions); and (3) containing
a large number of student historical learning activities. To
obtain student learning activity data, we use Canvas logs
files (Pageview requests). We divide the learning activities
into three types. Specifically, we consider viewing the lec-
tures, downloading the attached files, and previewing the
attached files as the activities associated with video lectures
(L). Activities that include viewing, creating, saving, up-
dating, and submitting each assignment attempt are asso-
ciated with assignments (A). Finally, we consider reading
(marking as read), subscribing, creating, replying, and edit-
ing discussion entries, discussion topics, and direct messages
as discussion-related activities (D).

We separate the data in module-student pairs, as we aim
to model each student’s interactions with each individual
learning module. As each module has its specific deadlines
according the course design, we choose each module rather
than the whole course as the unit of our study. Also, differ-
ent modules usually have different learning objectives, which
will possibly trigger different behaviors. By doing so, we are
able to capture a finer granularity of the data. Finally, we
have 731 students and ∼ 946K learning activities in the se-
lected course.

1http://canvas.net
2Enrolled students who have missed more than 50% of the
assignment submissions during the courses, along with those
who did not receive a final grade, are considered as dropouts
and are disregarded in this study.
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4. BACKGROUND: HAWKES PROCESS AS
A FIT TO STUDENT ACTIVITIES

Since we want to study the interactions between students
and modules from a temporal aspect, point processes are
one of the best choices for our application. Additionally, be-
cause of the interaction irregularities in our application, we
must select a point process that can handle this type of infor-
mation. Specifically, past studies have shown that students’
activities can take place in an irregular manner during var-
ious periods of a course, particularly affected by milestones
such as assignment deadlines and exam dates [16]. As a re-
sult, the point processes that follow a constant rate, such as
Poisson processes, are not the appropriate model for our ap-
plication. In Poisson processes, the main assumption is the
independence between past and future occurrences of the
events, which can not be met in student studying behaviors.
Not only some student activities happen in response to the
course milestones, but also a part of these activities can be
interrelated with each other. For example, a student whose
goal is to start discussing a topic in the discussion forum may
watch a video lecture about the same topic before posting
in the forum. To meet the temporality and interdependence
assumptions of our application, we choose to model student
activities during course modules with Hawkes processes.

One of the most important properties of the Hawkes pro-
cess is its ability to deal with the interrelationships between
future and past activities. This is in contrast with the mem-
oryless Poisson process where all activities are assumed to be
independent of each other. More importantly, the Hawkes
process allows the activities to be excited both exogenously
(by external stimuli, similar to the Poisson process) and en-
dogenously (self-excitement, by internal stimuli). In other
words, the Hawkes process has a branching process point of
view. It assumes that some activities arrive as a result of
exogenous stimuli (i.e. immigrant activities). Then, the im-
migrant activities can trigger their following activities (i.e.
offspring activities), and those offspring activities can fur-
ther trigger their own offspring activities, and so on. That
is, the offsprings of an immigrant activity are structured into
a latent cluster because they are all triggered by the same
immigrant and arrive more closely to each other than the
activities that are in other clusters.

As a result, the Hawkes process can capture more informa-
tion than the Poisson process or other point processes that
use the average base rate as the only model parameter. This
can be very helpful when modeling processes that have the
same number of activities, but with different activity occur-
rence distributions. To demonstrate this ability in Hawkes
processes, we show the event occurrence patterns of two sim-
ulated Hawkes processes with the same number of activities,
but different parameters in Figure 1. We can see that process
1 has more bursty but less regular occurrences compared to
process 2, in which less burstiness but a higher regularity is
observed. Since both simulated Hawkes processes have the
same number of activities in the history, a Poisson model is
not able to capture such differences because the base rates
of the two processes would be the same in a Poisson process.

For an educational application, there is a natural mapping
between student activity events and Hawkes processes. The
smaller student activity chunks toward a goal or deadline can

Figure 1: An illustration of two different processes
that have the same number of occurrences. The x-
axis is the time and the y-axis is the intensity of
event occurrences per time unit. Both processes
have 29 occurrences but with very different charac-
teristics that will be ignored by Poisson processes.

be examples of an immigrant’s offsprings: students break
down the big tasks (the whole process) into small sub-tasks
(latent clusters). The deadline (external stimuli) of a big
task, such as an assignment deadline, can trigger subsequent
activities that are associated with the small tasks. These ac-
tivities arrive closely one after another in a so-called bursty
manner (self-excitement) 3. We demonstrate that Hawkes
processes are a good fit to our application by showcasing
two examples. First, we show that the module-student pair
interactions can not be properly modeled by processes that
only model an average base rate, such as Poisson processes.
To do this, we conduct a goodness of fit test on the inter-
arrival times of module-student pairs in our dataset against
the inter-arrival time distribution of a Poisson process, which
is exp(1). We use the Kolmogorov-Smirnov test to evaluate
the fit’s significance. The mean p-value of this test among
all module-student pairs in our dataset is 2.77E − 6 with a
standard deviation of 6.41E − 5, which shows that module-
student pairs do not fit Poisson processes.

Second, we empirically demonstrate the burstiness of module-
student interactions. To do this, we show that the Pois-
sonian property of only having a constant base rate is not
present in the observed activities of a sample module-student
pair from our dataset. Specifically, we use the 1-lag au-
tocorrelation of activity inter-arrival times to conduct our
test. The inter-arrival time is defined as the difference be-
tween the arrival times of two consecutive activity occur-
rences. We first simulate a Poisson process with the base
rate equal to the average number of activities in our sample
activity sequence. Then, we compare the 1-lag autocorrela-
tion in this simulated sequence with the autocorrelation of
our sample sequence. Since all inter-arrival times in Pois-
son processes follow exp(1), we expect the autocorrelation
of the simulated Poisson process to be 0 (no correlation).
In contrast, we expect to see a non-zero autocorrelation in

3It is worth noting that in regular applications of Hawkes
processes an activity at time t can trigger later activities at
times τ > t. However, in our application, student activities
are triggered by the upcoming deadlines in the future. Sim-
ilarly, earlier chunks of studying sub-tasks at times τ < t
can be offsprings of future studying tasks at time t towards
a deadline. As a result, to make the Hawkes process appli-
cable to our problem, we use a reversed activity timeline for
our data. This does not affect our model, optimization, or
learned parameters.
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a bursty self-exciting sequence. Figure. 2 shows the scatter
plot of activity inter-arrival times in the original sequence vs.
the sequence with lag 1 for each of the two sequences. As we
can see, little autocorrelation is spotted in the Poisson pro-
cess, whereas the pattern of autocorrelation in real data is
shown to be not random. Specifically, we can see that most
of the lag-1 vs. original inter-arrival times for the sample
sequence are scattered around the axes, meaning that dense
activities are often followed by long pauses, and vice versa.

Figure 2: A demonstration of burstiness presented
in the interactions of a sample module-student pair:
1-lag autocorrelation scatter plots shows that long
pauses are often observed after dense and bursty
activities.

It is worth mentioning that our goal is not to directly com-
pare to Poisson models. Rather, we are demonstrating here
that we must model the data in a way that captures long-
term temporal properties of the processes and their irreg-
ularities, rather than static measures such as the count or
average number of activities that only provide one facet of
the whole picture.

5. METHOD: MULTI-DIMENSIONAL
HAWKES PROCESSES TO MODEL
ACTIVITY-TYPE RELATIONS

In this section, we introduce the method we use in this study
to model student behaviors. More specifically, we illustrate
multi-dimensional Hawkes processes and how we apply them
to our application. The previous section illustrated how
Hawkes process is a good fit for student activities as fu-
ture activities in module-student pairs could be related to
the past activities. In those illustrations, all activities in a
module-student pair are considered to be homogeneous or
of one single type. In other words, the self-exciting prop-
erty of the interactions between students and module are
assumed to be uniform throughout different kinds of activ-
ities, whether it is watching a video lecture, participating
in a discussion, or attempting to submit a solution to an
assignment. However, in reality, students might exhibit dif-
ferent learning behaviors or use different learning strategies
towards different types of learning materials. For example,
some students may have more intense and frequent activities
when viewing module lectures but less frequent pace when
it comes to the discussions. Furthermore, when a student
is interacting with two different types of learning materials,
different time dependencies may exist between student’s in-

Figure 3: Hawkes processes in module-lecture di-
mension L, module-assignment dimension A, and
module-discussion D, and their mutual excitation.
A vertical bar is the representation of an activity
occurrence and a red arrow shows the influence of
one activity (head) on another (end).

teractions with the two. For example, a student may of-
ten visit discussion forums very closely after viewing lecture
slides, i.e. strong time dependency between lectures and
discussions (more specifically, discussion after lectures), but
such dependencies may be less obvious for another student.

To address this challenge, we model the students’ activities
on one type of learning material as an individual Hawkes
process, and model all such processes simultaneously as multi-
dimensional Hawkes Processes. In particular, in the rest of
this study, we refer the collection of activities that asso-
ciate with one type of learning material as a Hawkes process
dimension. A multi-dimensional Hawkes model not only al-
lows dependency between past and future activities within
each dimension (i.e. self-excitation) to be modeled, it is also
able to capture the possible dependencies between different
types of activities (i.e. excitation between dimensions). For
example, scenarios such as submitting the first attempt of
an assignment and then starting the second attempt (self-
excitation), or, posting a question in the discussion forum
after watching a video lecture (excitation between dimen-
sions) can be well described by multi-dimensional Hawkes
processes.

In this study, based on the learning material types presented
in our dataset, we consider 3 dimensions to analyze stu-
dents’ learning behaviors, namely video lecture dimension
L, assignments dimension A and discussions dimension D.
To illustrate how multi-dimensional Hawkes processes work
in modeling between-dimension excitation, in Figure 3, we
show 3 sample Hawkes processes that respectively comes
from dimensions L, A, and D. Within each dimension, we
use vertical dashed lines to represent the occurrences of ac-
tivities that take place in that dimension4. Activities in one
dimension can trigger other activities in another dimensions.
This constitutes the influence between different dimensions.
We indicate the between-dimension triggers by the red ar-
rows that point from the parent activity to the offspring.
For example, the third activity in dimension D in this figure
triggers the fifth activity in dimension A as well as the sixth
activity in dimension L.

We now formally explain the multi-dimensional Hawkes model
and how it can be interpreted according to our application.
Suppose that for each module-student pair (m,u), we are

4The height of each bar does not represent intensity and
does not have any particular meaning in this figure
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given a sequence of arrival times for Nmu number of activi-
ties that are associated with module m and student u. We
represent the sequence of each module student pair as in
(m,u) = {τi}Nmu

i=1 , where τi = (ti, di) corresponds to the ar-
rival time of ith activity and the dimension (activity type) di
to which activity i belongs. For example, suppose student u
has 3 total activities in module m. If u submitted an assign-
ment at time 1, then checked a lecture’s slides at time 5, and
had some discussion posted at time 8, then (m,u) = {(t1 =
1, d1 = A), (t2 = 5, d2 = L), (t3 = 8, d3 = D)}, with A,
L and D representing assignments, video lectures, and dis-
cussions respectively. For each dimension d ∈ [L,A,D] and
each module-student pair (m,u), we further use the sequence
Td(τi) = {ti ∈ τi|τi ∈ (m,u), di = d}, to represent the type
d learning activities that student u performs in module m
as a process. According to the multi-dimensional Hawkes
model, we can explain the intensity of Td(τj) according to
the following function:

λd(t) = µd +
∑

d′,tj<t

φdd′(t− tj), (1)

where µd describes the average number of activities occurred
per unit time that are triggered by exogenous stimuli (the
process’s base rate in dimension d); and φ (the kernel func-
tion) represents the function that explains the endogenous
stimuli, or the triggering effects from the previous (tj < t)
activities in the same dimension or another dimension (d′).
In other words, φdd′ controls the total influence that dimen-
sion d exerts on dimension d′, as a function of activity inter-
arrival times (t − tj). Using an exponential kernel function
for φ, the multi-dimensional Hawkes model can be rewritten
as in Equation 2.

λd(t) = µd +
∑
d′

αdd′
∑
tj<t

β exp(−β(t− tj)). (2)

The term αdd′ and the term β exp(−β(t − tj)) can be con-
sidered as the decomposition of kernel function φdd′ , which
respectively describe the influence weight of dimension d
on dimension d′ (including αdd, the self-excitation of di-
mension d itself) and an exponential decay function g(t) =
β exp(−β(t)). Putting together all activity types’ parame-
ters, we use a d-dimensional vector µ = [µd] to represent the
base rates of the processes in all dimensions, and a d×d ma-
trix Φ = [φdd′ ] to represent the between and within dimen-
sion triggering effects. From here, we can write Φ = I ◦ G,
where we have influence matrix I = [αdd′ ] and exponen-
tial decay kernel G = [

∑
tj<t

(−β exp(−β(t − tj))]. Based

on that, we can also describe the aggregated influence of di-
mension d on other dimensions using the following equation:

αd =
1

|{d}|
∑
d′

αdd′ , (3)

which is simply the average influence of dimension d over
all dimensions. A summary of all notations used so far are
shown in Table 1.

This intensity function λd(t) has an intuitive meaning: all
the future activities in dimension d, apart from those that
are triggered by external stimuli, can be triggered by the
previous activities that belong to each of the dimensions d′

(including d itself) according to the influence weight αdd′
(the outer summation). The ones that are triggered by ex-

Notation Description Formula
L Dimension module lectures
A Dimension module assignments
D Dimension module discussions

(tj , di) activity j in dimension di
τi arrival time (ti, di)

(m,u) module m, student u pair {ti}
Td(τi) activities in dimension d {ti ∈ τi|di = d}
µd base rate in dimension d
αdd′ influence of d to d′

αd Influence of dimension d 1
|{d}|

∑
d′ αdd′

β decay parameter
g(t) decay kernel function β exp(−β(t))
φdd′(t) Hawkes kernal function αdd′g(t)
I influence matrix [αdd′ ]
G decay kernel matrix [

∑
tj

(−β exp(−β(t− tj))]
Φ Hawkes kernel matrix I ◦G
λd intensity in d Equation 1

Table 1: Notations and their descriptions.

ternal stimuli take places with rate µd. Furthermore, as a
past activity becomes distant (larger t − tj), its effect on
the occurrence probability of a new event decreases expo-
nentially (i.e. the inner summation). From the branching
process point of view, the kernel function φdd′ is designed in
this way so that αdd′ is the branching ratio. By computing

1
1−αdd′

, we can obtain the expected number of future activ-

ities in dimension d′ that are triggered by an immigrant in
dimension d. This represents the size of an offspring cluster.

To avoid possible confusions, we also want to clarify that by
saying one activity i in dimension d′ triggers another activity
j in dimension d, we mean that the probability of activity j
in the result of activity i is higher than j coming from base
rate µd or triggered by other activities. To see this, one can
interpret Equation 1 as follows: in dimension d, a sequence
of activities come from the base rate µd and each summation
leads to a sequence of activities with parameter φdd′ . Then,
the probability of j being triggered by i is

P (j child of i) =
φdd′(tj − ti)

µd +
∑
ti<tj

φdd′(tj − ti)
. (4)

Parameter Estimation. A common way to find the best
parameters of Hawkes model, given the observed activity ar-
rival times, is to minimize the negative log-likelihood of the
data. Particularly, given the sequence {(ti, di), ...(tN , dN )}
till some time T , the log-likelihood of having influence ma-
trix I and base rate vector µ is of the following form:

L(I, µ) =

N∑
i=1

log
(
µd +

∑
tj<t

αdd′g(ti − tj)
)
− T

n∑
d=1

µd−

∑
d

∑
d′

αdd′

∫ T−tj

0

φ(T − tj)dtj . (5)

In order to find Hawkes parameters that models each module-
student pair, we adopted algorithm ADM4 [45], which made
use of a mix of Lasso and nuclear regularization on top of
the negative log-likelihood. Specifically, Accelerated Pro-
jected Gradient Descend method was used to meet the non-
negative constraints on I and µ as Hawkes parameters only
have realistic meanings when the parameters are non-negative5.
When it comes to the selection of global parameter β, for

5We made our implementation available at
https://github.com/ssahebi/EDM2020-Hawkes.
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each module-student pair, we use grid search with cross val-
idation on the interval [0, 10] with step size 1.

6. EXPERIMENTS
6.1 Testing the Goodness of Fit
To test the goodness-of-fit of the model, in Table 2, we com-
pare the RMSE of the intensity for all dimensions, com-
puted based on the observed module-assignment pairs, for
multi-dimensional Hawkes model (i.e. Equation 1), single-
dimensional Hawkes model and a Poisson model. Specif-
ically, for single-dimensional Hawkes, we treat all activi-
ties as in one dimension, and estimate the intensity of each
dimension using the uni-variate parameters α, β, and µ.
For the Poisson model, in each dimension, we use the aver-
age activity arrival rate as the base rate, and compute the
RMSE for each dimension respectively. As we can see in

L A D
Hawkes (Multi) 0.56 2.34 1.37
Hawkes (Single) 0.71 2.57 1.95

Poisson 3.22 6.91 3.73

Table 2: The goodness of fit to true data for each
model in terms of intensity RMSE.

Table 2, Poisson has the worst fit in all dimensions, possi-
bly caused by the non-Poissonian nature we showed from
the real data. Single-dimensional Hawkes has comparable
but slightly worse performance. One possible reason is that
there might exist differences in terms of base rate and bursti-
ness between dimensions and by modeling all types of learn-
ing materials as one activity type, the model can only cap-
ture the average trend in all dimensions. To visualize how
the multi-dimensional Hawkes processes fit the real data, we
also present in Figure 4 the estimated intensity (blue) and
true intensity (black) of a sample module-student pair. As
we can see in this figure, the model mostly has a good fit to
the real data Only at some time points, it underestimates
the expected number of activities that are about to happen.

6.2 Model Parameter Analysis: Trends and
Differences Between Dimensions

In this section, we analyze the estimated Hawkes parame-
ters within and between different dimensions, to show their
general trends and differences across different dimensions.

We start this part with a correlation analysis of all Hawkes
Parameters, to show the general trends and possible differ-
ences between dimensions. Particularly, we calculate the
Spearman rank correlation coefficients between the parame-
ters that are learned for all module-student pairs as is shown
in Figure 5. Recall that parameters αdd′ , µd, β and αd re-
spectively is the between-dimension (or within if d = d′ ex-
citation, base rate, decay rate (Equation 2) and aggregated
influence of dimension d (Equation 3) for d ∈ [L,A,D].

We can see that self-excitation within dimensions (i.e.αdd)
are generally negatively correlated with base rates µd of the
same dimensions and decays β. This means that as the ex-
ternal stimuli leads to more and more expected arrivals, i.e.
when regular activities come from the base rate, the effect
of each previous activity on the future ones tends to de-
crease, i.e. self-excitation gets weaker. In other words, in

Figure 4: Estimated and true intensity of a sample
module-student pair, modeled by multi-dimensional
Hawkes.

sequences with higher regularity, less burstiness is observed.
Also, it means that activities that have a slower decay rate
usually arrive in a more bursty manner. Mapping to our
application of students interacting with learning modules,
by using the branching process point of view, higher α sug-
gests higher expected number of activities in a latent cluster
as sub tasks. On the other hand, the negative correlation
also means a lower base rate and lower number of immi-
grants. In other words, the number of such latent clusters
are also fewer. One possible interpretation is that in each
dimension, students divide their big learning task into sub
tasks and work for each individual sub task in a relatively
bursty manner. This also suggests that students barely have
behaviors that are both highly intense and highly frequent
(i.e. large µd and αdd). Similarly, both highly sparse and
highly mediated activities (i.e. small µd and αdd) are rarely
observed neither, as the correlation between µd and αdd is
positive for all d ∈ [L,A,D].

Comparing the parameter correlations across different ac-
tivity types, we can see that dimensions L and D, have
high within and between-dimension influence correlations.
For example, the correlation between αLL and αLA is 0.97
in dimension L and correlation between αDL and αDA is
0.96. This implies that the influence of discussion and video
lecture activities on other dimensions are almost consistent.
For example, if the influence of video lectures on assignments
is high, it is likely that the influence of video lectures on dis-
cussions is high too. Similarly, if the pattern of interacting
with video lectures in a module is bursty (high αLL), it is
likely that other activity types triggered by video lectures
are also bursty. However, the influence of assignment activ-
ities on discussions and video lectures are not significantly
associated with assignment activity’s self-excitement. That
could mean that after a student has a bursty set of assign-
ment activities in a module, the student is less likely to have
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a bursty video lecture activities. Similarly, the influence of
assignment activities on discussions has a low correlation
with the influence of assignment activities on video lectures.
For instance, if a student starts an assignment intensively
very closely after some intensive watching of video lectures,
the student is less likely to have high intense discussion ac-
tivities after assignments. We can also see that assignment-
triggered activities’ burstinesses are less correlated with the
base rates (i.e. αAD vs. µd). This means that the frequency
of activities that come from external stimuli does not affect
the influence of assignment activities on consequent activi-
ties in other dimensions. Taken altogether, it is interesting
to see that activities that are associated with assignments
tend to have different exciting patterns compared to video
lectures and discussions. This can show the influence of
deadlines, as the assignments are the only activity type that
have deadlines and are going to reflect student grades in this
dataset.

Figure 5: Spearsman Rank Correlation Coefficients
between Hawkes Paramters.

6.3 Student Behaviors Characterized by Model
Parameters

In the previous part, we were interested in showing the cor-
relation between Hawkes parameters that represented within
and the between-dimension relationships. In this part of the
analysis, we focus on the different behaviors that are ob-
served according to the learned parameters for each module-
student pair. Additionally, we are interested to see if these
learned Hawkes parameters are proper representatives for
student procrastination. To do so, we first define a measure
that can represent student procrastination in the absence of
self-reported data. In the following, we go over some impor-
tant assumptions, definitions and time measures that we use
for procrastination.

Defining Delay as a Procrastination Measure. We
assume that each student works on one module at a time,
meaning that they do not work on several modules at the
same time. Furthermore, we assume that submitting the last
attempt of the module’s assignment marks the end of study-

Figure 6: Illustration of delay measures. As in Fig-
ure 3, we use blue, green and yellow dashed lines
to represents activities from dimension L, A and D
respectively.

ing this module. According to these assumptions, we define
module i’s end time for student j, teij as the time stamp
when the last module assignment was submitted. We then
define the start time tsij as the earlier time stamp between
tei−1,j and the available time for module i. In other words,
when student j finishes learning module i−1, if module i has
already been made available, then their end time on module
i−1 is defined as the start time for module i. Otherwise, the
start time is going to be the time when module i becomes
available or is published online. In each dimension d, we use
tdij to denote action time, which is defined as the time that
the first activity in dimension d takes place between start
time tsij and end time teij .

Having the module start time and student action time in
dimension d, we can calculate how late a student started
working on activity of type d in the module using tdij − tsij .
To factor in the duration differences between different mod-
ules, we normalize this value by the module duration. Even-
tually, we define the following measure to quantify student
j’s normalized delay in dimension d that is associated with
module i:

delayd =
tdij − tsij
teij − tsij

(6)

One of the motivations to define the delay according to start
time tsij is that, sometimes module i + 1 is available before
the assignment deadline in module i. By this time, student
j might still be working on module i. So, it would be un-
fair to count the time after module i + 1 is available and
before student j’s assignment submission as the procrasti-
nating time for student j on starting module i+ 1. On the
other hand, if student j finishes the assignment in module i
earlier than the deadline of the assignment, this extra time
they earned from the early submission can be used toward
the next available module. If the student does not use this
time, it will be considered as a cramming behavior toward
the next module i+ 1. An illustration of these definitions is
presented in Figure 6.

Observing Two Behavior Groups. We now focus on
the distribution of the learned Hawkes parameters to see
if we can observe any behavioral patterns across different
student-module pairs. Specifically, in Figure 7 we present
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the distribution of the learned αLL, αAA, and αDD. We
can clearly observe two spikes in the density distribution of
influence parameters, more prominently in αLL and αAA.
Combining this observation with the correlation analysis
in previous section, we can see that there are two types
of module-student interactions: the ones with higher fre-
quency and lower burstiness versus the ones with lower fre-
quency and higher burstiness. To statistically show the dif-

Figure 7: Density distribution of αM , αA, αD.

ference between these two types of interactions, we first clus-
ter student-modules according to their αLL and αAA, into
two groups using the K-means clustering algorithm. Then,
we test to see if the learned Hawkes parameters, i.e. ex-
citation parameters αdd′ , base rate µd, decay β and aggre-
gated influence αd for d ∈ [L,A,D], are statistically different
across the two groups. Particularly, we conduct the Kruskal-
Wallis test on each learned parameter between the two clus-
ters. The average values of the parameters for each of the
two clusters are shown in Table 3. Since the p-values for all
tests are smaller than 0.0001, we do not show them in the
table. These small p-values suggest that the differences be-
tween clusters are statistically significant for all parameters
between the two types. This indicate that the differences
between the two types are meaningful.

Examining both groups more closely, we can see that, the
aggregated influence of dimension A, i.e. αA, is the high-
est among all 3 for both type 1 and type 2 groups. With
that being said, this influence majorly comes from the self-
excitement in dimension A, i.e. αAA. µA is also the highest
among all 3 dimensions. Combining these observations, we
can see that assignment-related activities arrives more fre-
quently and are highly influential in triggering consequent
activities, especially the assignment-related ones. Also, we
can see that on average type 2 group has a much smaller base
rate for video lectures (µL) and discussions (µD), meaning
less density and regularity in those activities compared to
type 1. However, In assignment-related activities, the base
rate (µA) as well as aggregated influence in dimension A
(αA), are higher in type 2 group, which suggests an over-
all denser and more intense assignment-related activities ar-
rivals comparing to type 1 group.

Now if we look at the differences between two groups in
terms of between-dimension relationships, we can see that
αAL, i.e. the triggering effect of assignment to consequent
video lecture activities (and similarly, αAD: the assignment-
triggered discussion activities) is much lower in type 1 group
compared to type 2 group. This difference is also notable

in other between-dimension αs. For example, the influence
of assignments on video lectures (αAL) is way less than the
influence of video lectures on discussions (αLD) in type 2
group, while this difference is less in the type 1 group. This
suggests that the interaction patterns with assignments in
type 2 group are almost inconsistent with other dimensions.
We note that, although the type 1 and type 2 clusters are
created according to αLL and αAA parameters only, we see
significant differences in all other parameters of the two
groups.

Delay in the Discovered Groups. Here, we aim to
understand if the two behavior types that we discovered in
the previous part are associated with measures of procras-
tination. Particularly, we evaluate the differences observed
in the delay measures defined in Equation 6 for the two
clusters. The results are presented in Table 4. Again, all
p-values are smaller than 0.0001. A major observation is
that type 1 and type 2 have very different delays in all di-
mensions. Specifically, the delay of each dimension in type
1 group is much less than the corresponding delays in type
2 group. As a result, we can call type 2 group as the de-
lay group and type 1 group as the non-delay group. Given
that the type 1 and type 2 behavioral clusters are formed
based on Hawkes model parameters only, this important ob-
servation demonstrates that the learned Hawkes parameters
can clearly represent delay as a procrastination measure.
Also, we can see that in delay (type 2) group, on average,
students start the first discussion way after the first assign-
ment activity takes place (delayD > delayA). However, in
the non-delay (type 1) group, on average the first assignment
activity happens after some discussion (delayD < delayA).
We can see that in both groups, the video lecture activities
come before discussions or assignments.

Combined with our observations from the previous analysis,
we see that not only the delay group start the first activity
in each dimension much later than the other group, they also
have a much less base rate µL and µD. Consequently, we
can see that the delay group (type 2) has less frequent but
more bursty discussion and lecture-related activities, while
the non-delay group activities arrive in a less bursty but
more frequent manner in these two dimensions. On the
other hand, assignment activities are denser and more in-
tense for the delay group. This combined observation shows
that the Hawkes parameters can represent more informa-
tion about student procrastination, compared to the delay
measure alone.

6.4 Student Grades Associated with Model Pa-
rameters

In the previous section, we concluded that the learned Hawkes
model parameters not only represent delays, but also can
capture more procrastination-related behaviors. In the rest
of this section, we are interested in exploring if the additional
trends captured by the Hawkes model can be more mean-
ingful in association with student grades, compared to the
delay parameter. In particular, we are interested in the asso-
ciation between delay and student grades from the Hawkes
processes point of view.

Recall that delayd defined in Equation 6 measures the nor-
malized delay of the first activity in dimension d of the
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d αdL αdA αdD αd µd β

Type 1
L 0.558±0.149 0.263±0.178 0.289±0.185 0.381±0.524 0.0003±0.0006
A 0.107±0.272 0.820±0.125 0.101±0.264 0.462±0.459 0.0003±0.002 0.663±0.692
D 0.322±0.393 0.305±0.393 0.790±0.151 0.394±0.325 5.52E-5±1.8E-4

Type 2
L 0.874±0.108 0.823±0.135 0.816±0.134 0.795±0.582 4.82E-5±9.86E-5
A 0.019±0.124 0.864±0.061 0.018±0.124 0.799±0.582 0.0004±0.004 0.425±0.249
D 0.699±0.429 0.696±0.430 0.936±0.092 0.590±0.238 1.19E-5±5.92E-5

Table 3: Statistics of Hakwes parameters αdd′ , µd, β and αd for d ∈ [L,A,D] in the two clusters.

delayL delayA delayD
Type 1 0.08±0.228 0.575±0.411 0.338± 0.385
Type 2 0.108±0.274 0.722±0.360 0.819±0.337

Table 4: Statistics of delay measures delayL, delayA
and delayD in two clusters identified by Hawkes pa-
rameters.

student-module pair. Here, we define a new delay measure
based on both learned parameters of the Hawkes process and
delayd. We then study if this newly defined delay measure
performs better in association with student grades, com-
pared to delayd. Specifically, after showing the between-
dimension excitation interrelationships, it is reasonable to
assume that these interrelationships are important in the ac-
tivity delays as well. For example, knowing that assignment-
related activities can trigger followup activities in all 3 di-
mensions, delaying the assignment-related activities also po-
tentially causes consequent delays in other dimensions. Mo-
tivated by this, we propose delayHd by combining delayd and
between-dimension Hawkes parameters as follows:

delayHd = delayd +
1∑

d′ 6=d
1

1−αdd′

(7)

As we mentioned in Section 5, 1
1−αdd′

can be seen as the

statistically expected number of activities in a latent cluster
that are triggered by an immigrant. The second term in
Equation 7 basically quantifies the potential loss per time
unit in terms of triggering other dimensions’ activities by
delaying in dimension d. Taken altogether, delayHd describes
the total delays in all 3 dimension that are associated with
delay in dimension d.

To see if delayHd provides more grade-related information
compared to delayd, we look at the Spearman’s correla-
tion between these two measures and students’ assignment
grades. The result of this correlation analysis is presented
in Table 5. Our first observation is that the correlations
between both delay measures with student grade are neg-
ative. However, this correlation is not as significant for
delayd, compared to delayHd . This is specially stronger in
the assignment dimension. The reason for this can be two-
fold: (1) comparing to delayd, delay

H
d not only captures

how late the action was taken in each dimension, it also pro-
vides some insights on the student behavior trends through-
out their learning process, and (2) as delayHd describes the
time-dependencies between dimensions, it is more power-
ful in explaining student activities in all dimensions as a
whole, compared to the point estimate summaries of pro-
crastination. Particularly, one may overlook the importance
of delaying the discussion-related activities on assignment
grades when considering the delayD measure only. However,
a stronger correlation between delayHD and grades suggests
that early start of the discussion-related activities is almost
equally important as starting the video lectures early, prob-
ably because of the triggering effect of dimension D and the

d L A D avg.

delayHd -0.339*** -0.125* -0.329*** -0.264**
delayd -0.240** -0.070. -0.114* -0.141*

Table 5: Spearman’s correlation with respect to as-
signment score for each delay measure. Significance
level is denoted as follows: p<0.001*** p<0.01 **
p<0.05* p<0.1.

potential loss that its delay causes to all 3 dimensions.

7. CONCLUSION
In this work, we proposed to use the multi-dimensional Hawkes
processes to model procrastination in student learning be-
havior. We showed that multi-dimensional Hawkes processes
have a better fit to student activity counts in comparison
with their single-dimensional version and the Poisson pro-
cesses. By analyzing the correlations between the learned
parameters in the Hawkes processes, we concluded that more
bursty student sequences have less regular activities in them,
the burstiness of video lecture and discussion-related activ-
ities vary similar to each other, and the deadlines highly
affect the arrival times of assignment-related activities. We
showed that Hawkes parameters can reveal two types of be-
haviors in the data that are associated with different delays
- the delay group tends to have high within and between-
dimension excitation but low base rate, and the non-delay
group have a high base rate and a lower excitation in all
dimensions. According to the branching processes point of
view, we gave a realistic interpretation on these types of
behaviors: non-delay group divide big tasks into many sub-
tasks (high base rate) which leads to more frequent and less
dense activities throughout the learning process. On the
other hand, delay group tend to intensively work in one di-
mension for a shorter period of time, followed by long pauses
(high excitation but low base rate). We also showed that the
Hawkes model parameters represent richer information com-
pared to the delay measure alone by defining a new Hawkes-
based delay measure and associating it with student grades.
Our experiments demonstrated that the between-dimension
dependencies in the multi-dimensional Hawkes model better
explain student grades.

This study is limited in the number and variety of the datasets
that we have experimented on. In the future, we plan to ex-
plore more datasets from various disciplines and platforms.
Another limitation is the single measure that we use to eval-
uate procrastination (delayd). As a followup to this study,
we aim to define and use more procrastination indicators,
including the self-reported procrastination measures.
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ABSTRACT
In higher education, predictive analytics can provide action-
able insights to diverse stakeholders such as administrators,
instructors, and students. Separate feature sets are typi-
cally used for different prediction tasks, e.g., student activ-
ity logs for predicting in-course performance and registrar
data for predicting long-term college success. However, lit-
tle is known about the overall utility of different data sources
across prediction tasks and the fairness of their predictions
with respect to different subpopulations. Using data from
over 2,000 college students at a large public university, we
examined the utility of institutional data, learning manage-
ment system (LMS) data, and survey data for accurately
and fairly predicting short-term and long-term student suc-
cess. We found that institutional data and LMS data both
have decent predictive power, but survey data shows very
little predictive utility. Combining institutional data with
LMS data leads to even higher accuracy than using either
alone. In terms of fairness, using institutional data con-
sistently underestimates historically disadvantaged student
subpopulations more than their peers, whereas LMS data
tend to overestimate some of these groups more often. Com-
bining the two data sources does not fully neutralize the bi-
ases and still leads to high rates of underestimation among
disadvantaged groups. Moreover, algorithmic biases affect
not only demographic minorities but also students with ac-
quired disadvantages. These analyses serve to inform more
cost-effective and equitable use of student data for predictive
analytics applications in higher education.

Keywords
Predictive analytics; Machine Learning; Higher education;
Fairness; Student data

1. INTRODUCTION
The most common application of learning analytics in higher
education is using predictive modeling to understand criti-
cal factors contributing to student success, or to identify
students who need support in a timely manner. Predictive
analytics have been used within a course [2] or while using
tutoring software [38]. They have also been used to op-
timize student success in the longer term, for example to
predict graduation rates [3] or to make course recommen-
dations [26]. Different data sources can be used to build
these predictive models, with varying trade-offs. For exam-
ple, when making predictions at the course level, log data
from learning management systems (LMS) are often used.
These systems allow for automated and scalable recording
of hundreds of learner actions in every single minute, but
they require robust and efficient data management systems.
When making longer-term predictions, on the other hand,
institutions can use data typically stored in student informa-
tion systems (SIS), including prior academic history, stan-
dardized test scores, and demographic information. While
this data source might be readily available to college admin-
istrators, it might be more difficult to access, due to ethical
concerns or logistic barriers, for individual instructors or re-
searchers trying to build such models for particular use cases.
In some cases, both data sources are further combined with
assessments or surveys that measure students’ metacognitive
abilities or other non-cognitive attributes that might predict
college success [35]. However, collecting and managing these
data is often costly for institutions if they are not already
doing so. Given all these trade-offs, it is necessary to exam-
ine the utility of different student data sources for building
predictive analytics-based solutions to guide instructors, ad-
ministrators and education policy makers on the costs and
benefits of utilizing different data sources.

To date, research that systematically compares data sources
and predictions is underrepresented in the literature [14].
To respond to this call for research, this study evaluates the
usefulness of three common student data sources for two
representative prediction tasks. These three data sources,
including institutional data, LMS data, and survey data,
are all widely used across research settings and have been
shown to predict various measures of college success. Given
the different use cases of short-term and long-term predic-
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tions as discussed above, we construct two success measures:
individual course grades (short-term success) and yearly av-
erage GPA (long-term success). The usefulness of each data
source is determined by its contribution to overall predic-
tion accuracy and to prediction fairness across student sub-
populations. The focus on fairness arises from the concern
that predictive models trained on the entire student pop-
ulation may perform systematically worse on selected sub-
populations than other others, which may have unintended
negative effects for vulnerable students [6]. For instance, if
models are less confident in identifying struggling students
among an already underrepresented group, this bias may
eventually amplify existing achievement gaps.

In short, our research aims to identify what combinations
of student data (a) more accurately predict different success
measures; and (b) more fairly predict these measures. The
remainder of this paper is organized as follows: Section 2
summarizes the related work on college success prediction
and fairness of predictive models; Section 3 describes the
data and methods we use to construct and evaluate predic-
tion models; Section 4 presents the results from various pre-
dictions; Section 5 reflects on the findings and discusses the
practical implications for stakeholders; Section 6 concludes
the study with limitations and future work.

2. RELATED WORK
2.1 Predicting College Success Using Student

Characteristics
Although college is a complicated ecosystem with numerous
factors shaping student outcomes, prior research has iden-
tified several groups of student characteristics across insti-
tutional data, LMS data, and survey data that consistently
predict commonly used measures of success.

2.1.1 Personal Background - Institutional Data
Student success in higher education is often stratified by
students’ demographic, socioeconomic and academic back-
ground prior to college experience. For example, college
graduation rates substantially differ by students’ race/ethnicity.
National data indicates that Hispanic students are 15% less
likely to graduate college within six years than their white
counterparts, and this gap is 25% between black and white
students [33]. Such inequalities are particularly pronounced
in STEM fields, where even more underrepresented students
drop out of their college careers [1]. Also, student perfor-
mance prior to entering college (e.g., on standardized tests)
has often been found to strongly predict college performance
across different subpopulations [9]. These overall trends sug-
gest that what happens before college remains predictive of
student success in higher education settings. Of course, this
could be due to a variety of factors, such student background
being correlated with patterns of historical and institution-
alized oppression as well as other barriers that students from
different backgrounds might face both before and during col-
lege.

2.1.2 Learning Behavior - LMS Data
In contrast to latent psychological states, learning behav-
ior is a more extrinsic and observable predictor of academic
success [7]. Behavioral patterns capture variations in col-
lege experience that may be orthogonal to students’ incom-

ing characteristics, allowing for insights into the mechanism
of academic success at a day-to-day granularity. With the
prevalence of digital learning platforms, learning behavior
can be authentically recorded in the form of clickstream
data. These time-stamped data record learner’s interactions
with LMSs. This allows researchers to create measures that
look into the “black box” of study behaviors [5]. For exam-
ple, how students allocate their study time is a consistent
predictor of performance. Those who have more regular en-
gagement patterns and who space out their study effort (in-
stead of cramming) are more likely to be high-achieving [27].
Similarly, students who strategically regulate their learning
effort (e.g., starting from exercise-oriented tactics and mov-
ing to other tactics based on encountered challenges) per-
form equally well but with less effort, compared to simply
hard-working students [23].

2.1.3 Non-Cognitive Abilities - Survey Data
There is emerging evidence that non-cognitive factors, such
as personality traits, task values and self-efficacy, are as-
sociated with positive academic outcomes even after con-
trolling for cognitive factors measured by intelligence tests
as well as various background characteristics [8]. Among
these factors, researchers seem to have reached consensus
that self-regulated learning skills are essential because un-
like in K-12 schooling, college students have the flexibility
as well as responsibility to actively and constantly moni-
tor, reflect on, and adjust their motivation, cognition, and
study behavior [37]. To better describe and measure a stu-
dent’s ability to regulate their learning process, [29] divided
it into three subcomponents with two cognitive components
(the use of cognitive strategies and the use of metacogni-
tive strategies) and one non-cognitive component (resource
management, including skills of time and study environment
management, effort regulation, peer learning, and help seek-
ing). A systematic literature review focused on online learn-
ing contexts found consistent evidence that resource man-
agement skills, especially time management skills and effort
regulation skills, are predictive of performance [10]. While
new technologies are creating novel measurement tools for
these intangible qualities, the “ground truth” mostly comes
from validated surveys.

2.2 Comparison of Different Data Sources
Previous work has examined combining various data sources
for predictive analytics in higher education. For example,
[2] combined institutional data, course performance data
and LMS data to predict students’ within-course success.
However, there has been little work comparing the impact
of various data sources on student success. [3] compared
the impact of different types of institutional variables, in-
cluding demographic variables, prior academic achievement,
student majors, and academic achievement in college courses
on predicting graduation and re-enrollment rates. [36] com-
pared the impact of virtual learning environment (VLE)
data, course assessment data, and a demographic variable
on predicting whether a student’s performance will drop in
a course and whether a student will pass or fail a course.
They generally found that using VLE data in conjunction
with assessment data was seemingly better than using ei-
ther alone. In what is perhaps the closest study to ours,
[35] compared the impact of learning behavioral features,
student background, and non-cognitive features measured
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by a socio-emotional skill assessment on predicting within-
course success.Our study differs from theirs in that we look
at long-term outcomes as well as short-term outcomes, we
analyze the fairness of predictive models, and we fit models
that span across several courses.

2.3 Fairness of Predictive Analytics in Educa-
tion

In recent years, the fairness and biases of machine learn-
ing algorithms and systems have developed into a focused
research area in the general machine learning research com-
munity1. Research efforts encompass developing statistical
measures of fairness, evaluating existing algorithms/systems,
and correcting for biases in algorithmic pipelines, among
others. As fairness is a concept rooted in a variety of disci-
plines, it has been a consensus that there is no single “cor-
rect” definition of fairness. Rather, what is fair is highly
dependent on the specific application scenarios [6]. As such,
contextualizing the fairness research in different fields is crit-
ical to improving real-world applications.

In earlier education research, there has been a focus on het-
erogeneous effects across student subpopulations in the con-
texts of testing [34], observational studies [39] and program
evaluation [31]. These earlier perspectives resonate with the
current theme of fairness, but as the adoption of predictive
analytics systems in education for high-stakes purposes has
a comparatively shorter history, formalized research on fair-
ness in such contexts has been somewhat limited. Among
the handful of empirical papers that have directly evaluated
this aspect of predictive analytics in education, [13] showed
through a simulation study that misspecified student models
in intelligent tutoring systems could leave “slow” learners at
lower mastery levels than“faster” learners; [16] examined the
ROC curves from MOOC dropout prediction models, and
identified significant gaps between gender groups through
slicing analysis; and [19] used college application materials
to predict on-time graduation and, employing the same slic-
ing analysis, concluded that their model could make fair
predictions across five sociodemographic groups.

As [6] points out, while the biases of predictive systems may
be attributed to unfair algorithms, they can also arise from
biased data which “reflect historical prejudices against cer-
tain social groups, prevailing cultural stereotypes, and ex-
isting demographic inequalities”. Therefore, unlike the pre-
vious studies described above, this paper examines fairness
as an attribute of data sources rather than of algorithms.
We look at fairness with respect to between-groups differ-
ences in three metrics: accuracy, false positive rate, and
false negative rate. These metrics are among the many fair-
ness metrics that have been proposed in the literature [6].
For example, having an equal false negative rate between
subgroups has been called “equality of opportunity” in the
context of giving everyone an equal opportunity to receive
a positive intervention (e.g., being part of the university’s
honor roll for having a high GPA) [17].

3. DATA AND METHODS
3.1 Data Sources
1https://facctconference.org/

Following Section 2.1, this study compares the three widely
available data sources in higher education settings: institu-
tional data, Canvas LMS log data, and survey data. Specif-
ically, we drew the sample of all students who enrolled and
received final grades in ten fully online, introductory STEM
courses taught from 2016 to 2018 at a large, public research
university in the United States. Six of the courses were
in public health while the remaining four were distributed
across biology, chemistry and physics. These courses were
the subject of a large research project, where our research
team administered a series of standard survey questions about
students’ motivation, self-regulation and other psychological
constructs before, during and/or after each course. There-
fore, we had valid survey data across multiple courses. Also,
looking at online courses ensured that LMS data can pro-
vide holistic representations of learning behavior. A total of
2,244 students were in the original dataset, and after data
cleaning as described below in Section 3.2, the final sam-
ple size was 2,093. Traditionally underrepresented groups in
STEM fields made up a large portion of the sample: 72%
were female, 48% came from low-income families, 54% were
first generation college students, 33% were underrepresented
minorities (URM)2, and 13% were transfer students.

3.2 Features and Outcomes
From each of the three data sources, we constructed a sep-
arate feature set in line with the literature. Table 1 gives a
summary of these features. Institutional features included
student demographics and academic achievement prior to
college. Click features were derived from the LMS data and
only included general measures of behavioral engagement to
accommodate the variances in course design. Specifically, for
each student in each course, we calculated the total number
of clicks and total time spent over the first half of the course
period. Time spent was calculated as the time lapse between
adjacent click events. For the last click event of a student
(with no subsequent event) or exceptionally lengthy lapses,
we set a heuristic value of 90 seconds. The click counts
and time spent were also broken down by categories, which
were defined based on the URLs that click events pointed
to, including “portal”, “tasks”, “content”, “communication”,
“performance” and “miscellaneous.” Restricting to the first
half of course period speaks to the scenario of early identi-
fication of at-risk students for instructors. Survey features
included four constructs of self-regulated learning skills and
self-efficacy [29] from pre-course surveys launched during the
first week of these courses. The completion rates of these
surveys ranged from 65% to 93% across the ten courses. All
survey items were adapted from Motivated Strategies for
Learning Questionnaire (MSLQ), a popular questionnaire to
measure self-regulation skills in online learning [30]. Each
of the four constructs was measured by the average of cor-
responding survey items (Table 2).

As for outcomes, we defined two success measures. Short-
term success was defined as a binary indicator of whether
a student’s final course grade was above the class median.
Predicting this within-course outcome aligns with the needs
of instructors to recognize struggling students in a timely
manner [15]. Similarly, long-term success was defined as

2This includes African American, Hispanic, and Native
American students.
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Table 1: Features derived from the three data sources

Institutional Click Survey
Female Total clicks Effort regulation
Transfer Total clicks by category Time management

Low income Total time Environment management
First-gen Total time by category Self-efficacy

URM (All above for the first 5 weeks)
SAT total score

High school GPA

Table 2: Details of survey features. Each feature was calculated as the average of its associated items.

Feature Items (5-point Likert scale)

Effort regulation

I often feel so lazy or bored when I study that I quit before I finish what I planned to do (reverse coded).
I work hard to do well in courses even if I don’t like what I am doing.
When coursework is difficult, I give up or only study the easy parts (reverse coded).
Even when course materials are dull and uninteresting, I manage to keep working until I finish.

Time management
I keep a record of what my assignments are and when they are due.
I plan my work in advance so that I could turn in my assignments on time.

Environment management
I usually work in a place where I can read and work on assignments without distractions.
I can ignore distractions around me when I study.

Self-efficacy
I’m certain I can master the skills taught in this course.
I’m certain I can figure out how to learn even the most difficult course material.
I can do almost all the work in class if I don’t give up.

whether a student’s average GPA in the year that followed
the course was above the median of their classmates in that
course. Predicting this longer-term outcome is of interest to
academic advisors and institutional policymakers because
it can help them make appropriate policy changes early in
students’ academic careers to increase student success and
graduation rates [22]. We used class medians to construct
these outcomes instead of certain grade thresholds in order
to better compare short-term and long-term results.

We examined all possible combinations of the three feature
sets (23 − 1 = 7) regarding their ability to predict the two
success measures. Therefore, a total of 14 binary classi-
fication problems were formulated. To fairly compare the
prediction performance of these feature sets, students with
missing values on more than 25% of all the individual fea-
tures in Table 1 were dropped, which accounted for the de-
crease in sample size from 2,244 to 2,093. All continuous
numerical features were standardized by centering to the me-
dian and scaling according to the interquartile range (IQR)
to better handle outliers. For the remaining missing values,
we performed multivariate imputation, i.e., modeling each
feature with missing values as a function of other features.

3.3 Predictive Models
For each classification problem, we employed three common
classification algorithms: logistic regression, support vector
machines (SVM), and random forests. Course-level leave-
one-group-out cross validation was used. In other words,
the algorithm looped through the ten courses, and in each
iteration used one course as the test set for the model trained
on the remaining nine courses. Predicted values for each
course were then put together from the ten iterations to
evaluate the overall prediction performance. As our focus
was the predictive power of different feature sets instead of
models, we chose the classifier that produced the highest
F-score for each combination of feature set and outcome.

Because we used median splits to construct outcomes, class
imbalance was not a concern and therefore no resampling
was performed. The entire predictive modeling process was
implemented using the scikit-learn Python library [28].

3.4 Evaluation
We evaluated the prediction results via three metrics. Ac-
curacy measures the overall predictive power of the fea-
tures used. False positive rate (FPR) reflects the probability
of missing out “at-risk” students or “overplacing” students.
False negative rate (FNR), on the other hand, captures the
chances of “underplacing” students [32]. These metrics can
shed light on potential consequences of using certain data
source(s) in different applications. From there, we can com-
pare the utility of different data sources in a holistic manner.

We further evaluated each data source’s contribution to the
fairness of prediction results. Fairness was conceptualized as
the performance parity across student subpopulations when
the prediction was performed on the entire student sample.
Specifically, we focused on an array of historically disad-
vantaged subpopulations and compared each of them with
a corresponding reference group on the three metrics. For
example, we compared the accuracy, FPR and FNR within
Latinx students with those within white students. Figure 1a
and 1b plot the group size and outcome distribution of these
selected groups, where the last group under each category
was the reference group.

Statistically, we computed the following disparity metrics
for each disadvantaged group g:

acc disparity = accref/accg (1)

fpr disparity = fprg/fprref (2)

fnr disparity = fnrg/fnrref (3)
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(a) Short-term success (b) Long-term success

Figure 1: Outcome distribution within different student subpopulations. Short-term success: whether a student’s final course
grade was above the class median. Long-term success: whether a student’s average GPA in the following academic year was
above the class median.

and separately tested whether each of this disparities was
significantly larger than 1 using one-sided two proportion
z-test. The larger these ratios were, the more this student
group was “discriminated against” by the prediction model.
We used the less flexible one-sided test because of the con-
sistent evidence that traditionally underrepresented groups
experience more inequities than their counterparts in aca-
demic settings [1]. All these ratios combined would charac-
terize the comparative utility of different data sources for
fair predictions of college success.

4. PREDICTIVE UTILITY OF DIFFERENT
DATA SOURCES

4.1 Overall Prediction Performance
Table 3 presents the prediction results on our full student
sample across different feature and outcome combinations.
In each column, the best-performing model is in bold to in-
dicate which feature set(s) best predicted the corresponding
outcome in the column header in terms of the given metric.
Among the final sample of 2,093 students, 1,062 (50.7%)
had short-term and 1,048 (50.1%) had long-term outcomes
above their class median3. These numbers serve as the näıve
baselines of prediction accuracy where all the students were
simply predicted to be in the upper half (majority class).

3The slight deviation from 50% was due to the drop of stu-
dents with too much missing information on predictors, as
described in Section 3.2.

When the three data sources were used separately, institu-
tional features and click features both achieved an overall
accuracy of around 0.6 for either short-term or long-term
outcomes, which was significantly higher than the baseline
(p < 0.001 for all four cases). Specifically, institutional
features appeared to be slightly more predictive of short-
term success and click features predicted long-term success
a little better, but neither of these comparisons was sta-
tistically significant. On the contrary, survey features had
much weaker predictive utility because they predicted both
outcomes with significantly lower accuracy than the worse
of the other two features (p < 0.001 for short term and
p = 0.005 for long term). When these feature sets were
combined in different ways, we mostly saw improvement in
the overall accuracy. The combination of institutional and
LMS data led to the most noticeable accuracy increase in
predicting both outcomes (∆ = 0.052, p < 0.001 for short
term and ∆ = 0.037, p = 0.014 for long term), evidencing
complementary signals of student success in these two data
sources. Survey data provided limited marginal utility as
adding survey features to other feature sets never led to a
statistically significant increase in accuracy and sometimes
even had negative effects. However, the highest accuracy
in predicting the short-term outcome was achieved when all
three feature sets were used together.

Given the tradeoff between false positives and false nega-
tives, overall best-performing feature sets did not necessarily
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Table 3: Prediction performance on the entire student sample (N = 2, 093). The best result in each column was in bold.
Short: predicting whether a student’s final course grade was above the class median; long: predicting whether a student’s
average GPA in the following academic year was above the class median.

Feature
Accuracy FPR FNR

Short Long Short Long Short Long
Institutional 0.618 0.599 0.467 0.412 0.299 0.389
Click 0.602 0.613 0.485 0.385 0.313 0.389
Survey 0.534 0.557 0.599 0.385 0.336 0.502
Institutional+Click 0.670 0.650 0.351 0.330 0.310 0.370
Institutional+Survey 0.633 0.608 0.398 0.397 0.337 0.386
Click+Survey 0.609 0.604 0.431 0.457 0.353 0.335
Institutional+Click+Survey 0.675 0.638 0.348 0.402 0.303 0.323

have the lowest error rates. Among the three cases using a
single data source, institutional features had both the low-
est FPR and the lowest FNR for the short-term outcome
(p = 0.402 for FPR and p < 0.001 for FNR compared to
the second lowest). The same features also tied with click
features for the lowest FNR in predicting the long-term out-
come, while the latter led to the lowest FPR in the long
term (tied with survey features). Combining these two data
sources significantly lowered FPR (∆ = −0.116, p < 0.001
for the short term and ∆ = −0.055, p = 0.009 for the long
term) but not FNR. As for survey data, the patterns of error
rates were more complicated than of overall accuracy. When
used alone, survey features mostly led to higher error rates
than the other two feature sets, except for FPR in the long
term. On the other hand, adding survey features to other
feature sets largely decreased FNR for long-term and FPR
for short-term success predictions despite the fact that these
metrics were exceptionally high in the case of using survey
data alone.

4.2 Fairness of Predictions
Following Section 3.4, we computed and tested the extent
to which each disadvantaged student subpopulation suffered
discriminatory predictions (i.e., algorithmic bias) compared
to their reference group under each combination of feature
set and outcome. Figure 2a and 2b illustrate these results for
short-term and long-term success prediction, respectively.
Each cell colors a bias against a certain student subpopu-
lation in a specific model. Darker cells suggest larger bi-
ases and crossed out cells represent those that were statis-
tically significant (p < 0.05) after correcting for multiple
testing within each background attribute. Subpopulations
with fewer than 10 students were omitted as the error rates
were less reliable.

Overall, there was no feature set that was entirely free from
biased predictions. Across both outcomes, institutional fea-
tures consistently led to higher FNR within various disad-
vantaged student subpopulations than within their peers.
In other words, these students were more likely to be under-
estimated by the prediction model. This finding resonates
with previous research that being aware of protected at-
tributes (e.g., ethnicity) might induce identity-based biases
in predictive analytics [6]. Adding other features to institu-
tional ones alleviated some of these biases only in a marginal
sense. That is, inclusion of institutional features seemed to
largely determine the discriminatory behaviors of the model.
Identity-blind LMS data was a fairer data source as the num-

ber of discriminated subpopulations was smaller. Compared
to their reference groups, click features on their own signifi-
cantly overestimated female students for both outcomes and
Asian, Hispanic and first-generation college students for the
long-term outcome. Survey data turned out to be neither
accurate nor fair. When used alone, survey features led to
significant biases against certain subpopulations across all
metrics and outcomes. When combined with other feature
sets, they did little to offset existing biases in most cases,
except when they were used together with click features to
predict long-term success. However, this latter case may
suggest that survey data had equally low predictive utility
for long-term success across different student subgroups.

The plots also allowed for insights into the extent to which
different student subpopulations were exposed to algorith-
mic biases across different scenarios. Ethnic minorities, stu-
dents from low-income families and first-generation college
students were more prone to underestimation. Female stu-
dents were more likely to be overestimated than male stu-
dents especially in the long term. Moreover, international
students and students with lower high school GPAs suffered
both more underestimation and less accurate predictions
compared to their peers. Note that unlike other variables in
the plots, high school GPA is an acquired attribute. Hence,
our evidence of algorithmic bias implied that a student can
be stigmatized due not only to their demographic attributes
but to their past (academic) experience as well.

4.2.1 A Closer Look into Institutional Data
Reflecting on the consistent biases against disadvantaged
student subpopulations when using institutional data, we
also tested if removing a specific institutional feature (e.g.,
gender) would eliminate the bias against the corresponding
disadvantaged group (e.g., female). Surprisingly, all the re-
sults looked qualitatively similar regardless of which feature
we removed. This suggested the intersectionality of minor-
ity identities, i.e., a student from one disadvantaged group
tended to have another disadvantaged characteristic as well.
As such, simply removing individual background variables
would not necessarily make the predictions fairer.

5. DISCUSSIONS
5.1 Reflections on the Results
Our results shed light on the predictive validity of different
sources of student data on college success. Our overall re-
sults agree well with those of [35], where features from an
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(a) Short-term success

(b) Long-term success

Figure 2: Illustration of prediction fairness. Each cell represents the algorithmic bias against a historically disadvantaged
student subpopulation (compared to the corresponding reference group) in the specific scenario. Crosses represent statistically
significant biases (p < 0.05) after correcting for multiple testing. Short-term success: whether a student’s final course grade
was above the class median. Long-term success: whether a student’s average GPA in the following academic year was above
the class median.

assessment of socio-emotional skills were least predictive of
course success, which is similar to the ineffectiveness of our
survey data. On the other hand, they found that models
using institutional variables and clickstream features per-
formed better and comparably to one another, as we did.
They also discovered that combining clickstream behaviors
with socio-emotional skills outperformed institutional data
alone, which we also saw with the FNR for the long-term
outcome. Interestingly, they did not find additional pre-
dictive utility of higher-level behaviors (sequential features)
from clickstream data, which we did not further investigate.

The limited ability of pre-course survey data to accurately
predict either short-term or long-term success may suggest
that self-reported measures of self-regulated learning are not
key factors of online learning processes or performance. How-
ever, as suggested by previous research [12], it may also sug-
gest that students tend to overestimate their use of learning
strategies in online courses. This is likely because students
make estimations of their future behaviors based on mem-
ories of similar past events that are usually unreliable [21].

Thus, more research is needed to understand how to help
students provide valid data of their learning skills as well as
other psychological attributes in surveys [25].

When it comes to fairness, several interesting trends emerge.
First, predictions using institutional data, which had the
lowest FNR overall, were actually discriminatory when it
comes to FNR for both outcomes. In particular, institu-
tional data discriminated against students from underrepre-
sented minority groups, low-income students, first-generation
college students, and students with low high school GPA.
This suggests that these models tend to disproportionately
label students from these subpopulations as having below-
median performance. In order to achieve higher overall ac-
curacy, these models appear to be using a heuristic of clas-
sifying students as above or below median based on the ma-
jority class within the subpopulations that they belong to
(see Figure 1). Therefore, one of the main sources of un-
fairness may just be the original class imbalance in different
student subpopulations. When this imbalance results from
historical inequities, the model will simply replicate those
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inequities and produce unfair predictions.

On the other hand, we found that using click features tended
to be fair with respect to FNR, but instead somewhat dis-
criminatory with respect to FPR, for several student sub-
populations. Contrary to the discrimination brought by in-
stitutional features, this form of discrimination could occur
just because the model is blind to individual background.
More specifically, students coming from different backgrounds
may on average exhibit similar learning behaviors, but their
likelihood to succeed might differ due to factors that corre-
late with their socio-economic status. Since the click fea-
tures do not have access to students’ background informa-
tion, they may predict that students from disadvantaged
backgrounds are likely to succeed at a disproportionately
high rate.

One specific and possibly counterintuitive trend is seen when
it comes to gender biases. While none of the feature sets dis-
criminated against female students in terms of FNR, almost
all of the feature sets discriminated against them in terms of
FPR for at least one of the two outcomes. In fact, female stu-
dents tend to have higher GPA than their male peers in the
dataset (see Figure 1). This reinforces the inference that for
institutional features, the models classify students into the
majority class of their subpopulations in order to maximize
accuracy. On the other hand, the fact that using only LMS
and/or survey data is also biased against female students in
terms of FPR might be due to something else. This sug-
gests that female students might (a) exhibit different click
behaviors and survey responses from men, which tend to be
predictive of better performance; or (b) have different base-
line levels of engagement (e.g., likelihood of clicking on LMS
pages) independent of their likelihood of success. If the for-
mer is true, click behaviors and/or survey responses could
act as a weak proxy for gender, even though gender is not
encoded in these features.

5.2 Practical Implications
In general, prediction errors are inevitable, but it is impor-
tant to be aware of and minimize potential misplacement
that may result in severe negative consequences. Below, we
discuss three major scenarios where prediction models are
used for educational decision making and the implications
of our findings in these cases.

First, higher education has a long history of screening appli-
cants for desirable educational opportunities such as merit-
based scholarships, where the award is based on the predic-
tion of student future performance. In this case, underes-
timating student performance may limit their educational
development. While institutional data is one of the most
widely used data sources for these purposes, our results sug-
gest that institutional data alone might be more likely to
underestimate achievement of students from disadvantaged
background as compared to their peers. Moreover, these
systematic biases do not go away easily even when other
common data sources are added. Therefore, it is important
for policymakers to cautiously employ predictive analytics
for selecting students since it may result in unfair exclusion
of already disadvantaged students from critical educational
opportunities and access to social mobility through educa-
tion [18].

In community college settings, institutional data has also
been used to evaluate students’ readiness for college-level
courses and assign students into remediation [32], as well
as to understand the impact of remedial and preparatory
courses on subsequent college success [24]. Put in this sce-
nario, our results would suggest that students from histor-
ically disadvantaged subpopulations are more likely to be
misplaced into remediation than their counterparts when
they are actually capable of taking advanced courses. While
remedial courses are designed to help academically under-
prepared students, they also increase students’ cost and may
delay student progression towards their degree goal [4]. For
both this and the previous application scenarios, a potential
algorithmic solution might be setting separate thresholds for
different subpopulations to ensure fairness, as [20] suggested.

Finally, in the recent research and practice of online learn-
ing, LMS data have been commonly used to predict student
performance and identify at-risk students [36]. Students who
are identified as being at risk of low performance or dropout
will often be placed into light-touch or optional academic
support, such as receiving email reminders and tutoring ser-
vices [11]. In this context, it might be more concerning
to overestimate student performance and ignore students in
need than to underestimate student performance and place
them to educational resources that they could opt out of.
Our findings indicate that compared to males, female stu-
dents would be especially likely to experience overestimation
and therefore would not receive academic resources that they
need. In this case, incorporating institutional data into the
prediction might not be as problematic in order to leave no
student behind.

6. CONCLUSION
In this paper, we responded to the call for research to evalu-
ate and compare the utility of common student data sources
(i.e., institutional data, LMS data and survey data) for build-
ing predictive analytics applications in the context of higher
education [14]. We aimed to find out what data sources and
their combinations predicted short-term and long-term col-
lege success both accurately and fairly across different stu-
dent subpopulations. Our results suggest that overall, insti-
tutional data and LMS data on their own have decent pre-
dictive utility for either instructors’ or policymakers’ needs
to identify students in need. Using them together further
strengthens that predictive power. Survey data alone poorly
predicts student success and only marginally helps alleviate
some of the prediction errors in the presence of other data
sources. With regard to fairness, institutional data consis-
tently leads to higher false negative rate (underestimation)
within historically disadvantaged students subpopulations
than within their peers. LMS data, on the other hand, tends
to overestimate some of these disadvantaged groups (e.g., fe-
male students) more often than their counterparts and these
biases would be overridden by institutional data when the
latter is added. Survey data makes very limited contribution
to fair predictions. Interestingly, all sources of student data
tend to overestimate female students who perform better
than male students on average in our case. Also, students
with lower prior achievement are no less affected by under-
estimation than underrepresented demographic groups.

These results combined suggest that using multiple data
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sources in college success prediction is beneficial for insti-
tutional stakeholders from both technical and ethical per-
spectives. Specifically, given the infancy and decent pre-
dictive utility of LMS data, institutions should feel encour-
aged to invest in the infrastructure to store, manage and
analyze such data and integrate LMS-based behavioral mea-
sures into the routines of institutional research. On the other
hand, utilizing multiple data sources still cannot guarantee
fair predictions of college success especially for students who
have less competitive academic records and who are histor-
ically disadvantaged in higher education. Therefore, it is
advisable to combine the intelligence of experienced practi-
tioners and data-driven applications for decision-making in
the wild, in hopes of minimizing the risk that students are
unfairly excluded from their optimal pathways due to biased
algorithms or human judgement.

Our work has a few limitations which point to meaning-
ful future work. First, the scope of our feature sets was
limited and not representative of the full potential of differ-
ent data sources. For example, for survey features we only
used measures of self-regulation, but there are other psy-
chological constructs that play equally important roles in
learning processes. Therefore, our findings should be taken
as a proof of concept in terms of systematically evaluating
different data sources. Future work will extend the current
piece to more comprehensive data sources that institutions
have good control over [19, 3] and to broader feature sets
informed by existing research. Second, while we briefly re-
flected on the prediction results and practical implications,
we did not formally examine how the biases illustrated in
Figure 2 permeate through the predictive analytics pipeline.
Future work will examine this aspect more thoroughly, as
well as how to convey these sources of bias to stakeholders
for more prudent decision-making on student data usage.
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ABSTRACT
The 2nd Annual WPI-UMASS-UPENN EDM Data Min-
ing Challenge required contestants to predict efficient test-
taking based on log data. In this paper, we describe our
theory-driven and psychometric modeling approach. For
feature engineering, we employed the Log-Normal Response
Time Model for estimating latent person speed, and the
Generalized Partial Credit Model for estimating latent per-
son ability. Additionally, we adopted an n-gram feature ap-
proach for event sequences. For training a multi-label clas-
sifier, we distinguished inefficient test takers who were going
too fast and those who were going too slow, instead of us-
ing the provided binary target label. Our best-performing
ensemble classifier comprised three sets of low-dimensional
classifiers, dominated by test-taker speed. While our classi-
fier reached moderate performance, relative to competition
leaderboard, our approach makes two important contribu-
tions. First, we show how explainable classifiers could pro-
vide meaningful predictions if results can be contextualized
to test administrators who wish to intervene or take action.
Second, our re-engineering of test scores enabled us to incor-
porate person ability into the estimation. However, ability
was hardly predictive of efficient behavior, leading to the
conclusion that the target label’s validity needs to be ques-
tioned. The paper concludes with tools that are helpful for
substantively meaningful log data mining.

Keywords
Log Files, Psychometrics, Theory-Driven Feature Engineer-
ing, Process Data

1. INTRODUCTION
With the 2nd Annual WPI-UMASS-UPENN EDM Data Min-
ing Challenge,1 the organizing consortium continued a young
series of data competitions featured by the Educational Data
Mining Society. The data challenge consisted in predict-
ing students’ behavior in a second test part using the log
data produced in a first test part. The organizer’s goal
was to identify students who will act inefficiently by rush-
ing through the second test half or not reaching the end of
the test [19]. Another central, and noticeably constraining,
secondary goal was that accurate classification should be
reached as early as possible during test administration (i.e.,
with as little log data as possible) [19].

In this paper, we report details on our theory-driven psy-
chometric contribution to the competition.2 Opposed to
data-driven analyses, a theory-driven one is characterized
by identifying potential mechanisms at play and an accord-
ing selection of methods, features, or both. The focus on
a theory-driven feature-engineering access rather than some
presumably more powerful deep-learning or other black-box
methodology traces back to our team’s psychometric back-
ground with strong experience in log data analysis. We be-
lieve that the theoretical understanding of underlying be-
havioral and cognitive processes that drive characteristics of
test-taking behavior such as efficiency is crucial for build-

1http://tiny.cc/CompAIED [2020-02-29]; also called Na-
tion’s Report Card Data Mining Competition 2019
2Our competition contributions have been submitted under
the name Team TBA (Centre for Technology-Based Assess-
ment | DIPF).
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ing predictive models as requested in the given competi-
tion. Otherwise, the risk of integrating spurious associa-
tions into productive classifiers is high. Moreover, in the
present paper, we provide evidence that the validity of the
data challenge’s target label needs to be reassessed since
we could show that students’ ability was hardly associated
to the target label. Ability estimation was enabled by the
re-engineering of scores from the log data—a unique contri-
bution of the present paper. We suggest potential solutions
for identified issues.

Efficiency can be defined as the characteristic of producing
desired results without waste [13]. In the context of efficient
test taking, this corresponds to successful test taking with
minimum effort or time. Obviously, efficiency involves two
components, namely goal-reaching and resource-saving. As
we elaborate on in detail throughout the following sections,
the competition’s operationalization of efficiency strongly
emphasizes the latter component, but largely neglects the
former. This consideration is emblematic and shows the
value of a theory-driven and psychometric access to the
matter. We regard log data that is captured during test
administration as process data, which means it constitutes
“empirical information about the cognitive (as well as meta-
cognitive, motivational, and affective) states and related be-
havior that mediate the effect of the measured construct(s)
on the task product” [7]. Thus, log data from assessment
contexts is not just a by-product which is nice to have, but
it carries relevant information and can be drawn on for pur-
poses such as the one promoted in the competition.

With respect to classification performance, our competition
contribution ended up in the top quarter of leaderboard sub-
missions and was ranked eighth within the teams that sub-
mitted their code in time [20].

The paper first describes the setup provided by the compe-
tition organizers, then focuses on our approach for feature
engineering as well as classifier training, and closes with re-
porting and discussing results on the classifier’s performance
level as well as single features’ predictivity. The Conclusion
Section elaborates on the definition of efficient test taking
and discusses the state of the art for corresponding opera-
tionalizations. Please note that we use the terms task and
item interchangeably here, in accordance with each commu-
nity’s practice.

2. COMPETITION SETUP
2.1 Data
The competition data set [19] comes from the National As-
sessment of Educational Progress (NAEP), which is a US
national assessment conducted across 4th-, 8th-, and 12th-
grade students, including tests on a variety of subjects every
two years. Specifically, the data set provided for analysis
within the competition comes from the 2017 test for 8th-
grade students in mathematics. The test comprised two test
blocks (Block A and B) that were time limited to 30 min per
block.

The NAEP 2017 mathematics assessment was digitally ad-
ministered on tablet computers with keyboards [15]. The
test items covered several domains such as algebra or geom-
etry and were either presented as pure mathematics tasks or

as tasks applied in an everyday context. The items included
stimulus material (text and/or figures) and either a list of
responses to choose from (multiple choice), drag and drop
response elements, or one or more text fields for constructed
responses. The students were able to navigate between items
within the same test block. For some items, a virtual cal-
culator was available. The test environment also included a
virtual drawing tool, which allowed students to freely draw
and make handwritten annotations, a text-to-speech feature,
which could be used to listen to the tasks’ written materials,
and a help button offering the students information about
the handling of the test environment. Before the first item,
a screen with general instructions was presented, called di-
rections. After the last item, a review screen was presented
indicating the end of the test block. The students could
navigate from the review screen back to the items and on-
ward to the next test block. Students’ actions in this virtual
environment (i.e., clicking on elements or keystrokes when
typing a response) were recorded as log data events. The
data provided 42 different events (e.g., Enter Item, Click
Choice, Back), From this log data, it is possible to recon-
struct the course of each student’s test completion behavior.

For the competition, the organizers arranged the log data
into two sets. The first one was a training set, taken from
Block A with log data for ntrain = 1232 students across the
whole 30 min of Block A. The data set was accompanied
by the target label indicating whether students behaved ef-
ficiently in Block B (see next section). The second data set
was an evaluation set for which efficiency labels had to be
predicted by the contestants. This evaluation set comprised
log data stratified into three conditions: i) n10min = 411
students with 10 min of log data from the start of Block A;
ii) n20min = 411 students with 20 min of log data from the
start of Block A; iii) n30min = 410 students with complete
30 min of Block A. The competition organizers halved the
evaluation set so that the leaderboard displayed the teams’
prediction accuracy on one half of the evaluation set, and
the final evaluation was carried out on the remaining half.
The training and evaluation sets consisted of 438,291 and
301,924 event logs, respectively.

2.2 Target Label: Efficiency
The competition organizers categorized the students into
two groups. The value True indicated that a student com-
pleted Block B efficiently, while False indicated inefficient
student test-taking behavior in Block B. Students were la-
beled efficient when they met two criteria: “1) being able
to complete all problems in Block B, and 2) being able to
allocate a reasonable amount of time to solve each problem”
[19].

The definition of efficiency captures two key test-taking be-
haviors: students who go too slow, and as such fail to com-
plete all the items in a block, and students who go too fast
through the test, therefore not spending enough time on each
question. Students who are inefficient through being too
slow can easily be identified due to their failure to complete
all tasks. However, for students going too fast, “a reason-
able amount of time” can be difficult to operationalize. As
such, the organizers chose to impose an arbitrary threshold
for which students were evaluated on the total time taken
on a task, with “the 5th percentile as the cut-off for the
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’reasonable amount of time’” [19]. This operationalization
led to labeling 39.6% of the students in the training data as
inefficient.

2.3 Evaluation Metrics
The objective of the competition was to develop a classifier
model that would predict student efficiency. The prediction
was evaluated against two key measures, the adjusted AUC
and an adjusted kappa. The AUC stands for Area Under
the Curve and comes from ROC analysis [4]. It compares
the false positive rate to the true positive rate of the model,
measuring how well the model predicts the correct outcome
versus an incorrect prediction. A value of AUC ≤ .5 would
indicate a model performing no better than random chance.
As such, the competition used an adjusted AUC measure,
AUCadj = (AUC− 0.5) ∗ 2.

The second measure, kappa, also captures classifier perfor-
mance by comparing how much two raters agree in classify-
ing a given set of data beyond chance. Conceptualized by
Cohen [3], it compares the observed accuracy to the expected
accuracy between two classifiers. As such, the value of kappa
needs to be above zero to indicate performance above ran-
dom chance. The competition utilized an adjusted kappa
value, κadj , in that they set the lower limit of kappa to 0.
For the evaluation of the models within the competition, an
aggregated score was made from AUCadj and κadj .

3. METHODS
In this section, we first describe a data transformation step
of splitting the three temporal conditions for feature ex-
traction and training. This turned out to be essential for
achieving appropriate classifier generalizability to the test
set. Next, we describe our feature engineering as well as
restrictive feature selection, and we close the section with
outlining how the strings were pulled together for building
an ensemble classifier for prediction.

All statistical analyses have been carried out using R 3.6.1
[16], with the package mlr 2.17.0 [2] for machine learning,
TAM 3.3-10 [18] for item difficulty and person ability es-
timation, and LNIRT 0.4.0 [6] for item time intensity and
person speed estimation.

3.1 Improving Generalizability by Separating
Conditions

Our early submissions of predictions to the leaderboard re-
vealed that the classifiers’ performance—though evaluated
by stratified, repeated cross-fold validation—would always
decrease substantially when being evaluated on the test set.
That is, the generalizability of these classifiers to the test
set was low, even when cross-validations testified to stable
out-of-sample classification.

The primary reason that we identified was that the train-
ing set contained 30 min of log data, whereas the test set
was split into three conditions with only the first 10 min,
20 min, or the full 30 min of log data available (see Section
2.1). Obviously, it is reasonable that feature realizations
and their indication for one class vary over (testing) time.
As an example, the time students take to work on single
tasks does not only vary by task characteristics, but is also

influenced by the task’s position within the test. Another
example is the log event of the timeout screen that limits
students’ time to 30 min. Naturally, this event is reasonably
predictive, but while it is available in the 30 min condition,
it is not in the 10 min or 20 min condition. Therefore, train-
ing sets for each condition were necessary for the classifiers
to generalize more properly to the test set.

For this purpose, we created three data sets: (i) the first
10 min of log data from the 10, 20, and 30 min conditions
for predicting test set cases with 10 min of log data, (ii) the
first 20 min of log data from the 20 and 30 min conditions
for test-set cases with 20 min of log data, and (iii) the full
30 min of log data for test-set cases with 30 min of log data.
For feature extraction, we combined the respective training
and test (sub)sets. This way, we maximized the available
information for norm-referenced features and parameter es-
timation procedures. Since we employed supervised learning
methods, the test sets were excluded from classifier training.

The result of splitting the conditions was that we constructed
three classifiers for each learning method and set of features.
Each case in the test set, however, was classified by only one
model, determined by the condition the test case belonged
to.

3.2 Feature Engineering
In this section, we describe the selection of engineered fea-
tures of which some ended up in at least one of the base
classifiers that formed the final ensemble bag. We start with
the two crucial psychometric models used for estimating stu-
dents’ speed and ability. Then we describe our approach of
extracting features from log data and deriving simple in-
dicators that we assumed would indicate efficient or inef-
ficient test behavior, using the software package LogFSM.
Finally, we describe the concept and operationalization of
rapid guessing as well as an adopted technique for repre-
senting log event sequences.

3.2.1 Latent Test-Taker Speed
Efficient test taking as operationalized in the competition
(see Section 2.2) is mainly characterized by test takers’ time
handling. If a student went relatively quickly through the
test (in Block B), they were labeled as inefficient. If a stu-
dent spent too much time on some tasks (in Block B), they
would not be able to complete all tasks and thus be labeled
as inefficient, too. Therefore, the most evident feature is
test-taker speed.

Test-taker speed can be inferred from the time spent on tasks
in a test. However, the time spent on a task is determined
by the characteristics of the task and the test-taker. On the
one hand, task characteristics, such as complexity, require
and evoke a shorter or longer time on task due to the task’s
inherent time intensity. On the other hand, some test takers
will have the tendency or skill to move faster through a
test than others; this characteristic is called test-taker speed.
Both time intensity and test-taker speed are not directly
observable and can only be estimated as latent variables.

A model that allows the separation of time on task into item
and person parameters is the Lognormal Response Time
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Model [22]:

f(tip; τp,αi,βi) =
αi

tip
√

2π
exp

{
−1

2
[αi(ln tip − (βi − τp))]2

}
(1)

Response time distributions take values in the positive reals
and typically have long tails. The log-transformation hence
is a sensible way to approximate normality and is expected
to lead to better fit than a normal model on the raw response
times [22]. The lognormal model takes three parameters into
account and is based on the log-transformed time tip that
person p spent at item i. Item time intensity βi captures
item i’s tendency to evoke more or less time spent for com-
pleting it. Test-taker speed τp is a person’s tendency and
ability to spend more or less time on item completion. Be-
cause some items will show more homogeneous time distri-
butions than others, the dispersion parameter αi estimates
an item’s discriminatory power.

The parameters of interest are estimated in a Bayesian frame-
work using a Markov Chain Monte Carlo method with a
Gibbs sampler [22, 6]. We used expected a posteriori (EAP)
estimators of test-taker speed τp as features for predictive
modeling.

3.2.2 Latent Test-Taker Ability
The provided log data did not include task scores, so scores
were re-engineerd based on the log data and information
from released items available through the NAEP questions
tool [5]. To do this, unique item identifiers were mapped
to example items provided in the NAEP questions tool, a
public query tool used to showcase NAEP questions. The
mapping was verified by text-to-speech contents in the log
data. From this, the correct responses to items could be
coded for 14 of the 19 items included in the competition
data set. Using the 14 scored items, we estimated an inter-
mediate ability score for test takers. By identifying the top
100 test takers across the 14 items, we then used their re-
sponses to the remaining 5 unreleased items to identify the
most likely correct answer, thus inferring the correct scoring
for the data. With this complete set of scores, we applied a
Generalized Partial Credit Model [14] for estimating person
ability. Theoretically, such ability estimates together with
the speed estimates should be reasonably predictive of effi-
ciency as efficiency is defined by a trade-off between perfor-
mance and effort (see Section 1). The model is represented
by the following equation [14]:

Pjk|k−1,k (θp) =
exp [aj (θp − bjk)]

1 + exp [aj (θp − bjk)]
(2)

The equation models the probability of a person p with the
latent ability θp to respond to an item j by choosing the
kth response category. In this model, subsequent response
categories are ordered by their difficulty. The parameter bjk
represents the difficulty of an item’s response category and
aj constitutes the item discrimination (i.e., the degree to
which the item is capable of distinguishing between more or
less able test takers). We used Marginal Maximum Likeli-
hood for estimating model parameters. For person ability,
Weighted Likelihood Estimators [24] were used. This way,
test-taker ability θp can be directly used as a feature for

predictive modeling.

3.2.3 Simple Indicators of Students’ Work Process
The analysis of process indicators is based on the assump-
tion that latent characteristics of a test taker can be inferred
from attributes of their work process [7]. However, the cre-
ation of indicators is often retrospective, depends on the
specific assessment system employed, and is based on plau-
sibility and expert opinion about which indicators might be
of potential interest for a particular research question (e.g.,
time on task, number of page visits, or switching between
environments). With the intent to provide a tool to facil-
itate the creation of process indicators from log data, the
software package LogFSM [9] has been developed that can
be used in R. Instead of providing a list of generic indicators,
LogFSM requires the formulation of one or multiple theoret-
ical models that a test developer or researcher has about the
work process in a task. Afterwards, LogFSM reconstructs a
given set of log data according to the predefined theoretical
model(s). Attributes of the reconstructed work process then
serve as process indicators.

The procedure of LogFSM utilizes the concept of finite state
machines [10]. The work process is decomposed into a finite
number of states which represent sections of the theoreti-
cally defined response process. For example, a researcher
who wishes to distinguish process components in a math
assignment might define the states Task Reading, Task Pro-
cessing, Responding, and Reviewing that could alternatively
be collapsed into states of lower granularity like Stimulus
Processing and Task Answering. Practically, states are iden-
tified by events that represent test-taker interactions with
the assessment platform (i.e., log events). The occurrence
of such events can serve as the conditions that must be met
in order to change from one state to another one, which
is called transition. The interpretation of an event might
differ from state to state, which may result in differences
as to whether or not a transition is triggered. Depending
on the previous state of a test taker, for example, a radio
button click event might be interpreted as a first-time re-
sponse (Responding) or an edited response (Reviewing). In
summary, the interpretation of states and state sequences
is constituted by the interplay of visible components of the
assessment system (e.g., texts, images), the possibilities for
interactions (e.g., buttons, text fields), the contexts in which
events take place (e.g., accessing a calculator before or after
a response was given), and—most importantly—the prede-
fined assumptions about test-taking behavior and cognitive
operations (e.g., reading instructions, reconsidering an an-
swer) [10].

Finally, process indicators can be derived as attributes of
the reconstructed states (or the reconstructed sequence of
states) from log data that contextualize test-taking behavior
according to the theoretically assumed test-taking process.
The integration of the characteristics of a task, the available
log events, and the theoretical expectations about the test-
taking behavior assign a substantive meaning to an indicator
[10]. For example, an indicator that reflects how long a
student actually spends reviewing and checking a particular
response again can be defined as the total time in a state
Reviewing aggregated over multiple revisits of the task and
cleaned for the time in other states such as Responding.
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For the competition’s data analysis, we specified five FSMs
to represent different attributes of students’ work process.
The states of theses FSMs represented students’ on-screen
page (26 states); attempting, processing or reviewing of one
of the 14 multiple-choice tasks (46 states) and tasks with
other response formats (19 states); students’ use of the text-
to-speech tool (4 states); and their use of the calculator and
the drawing tool (5 states). Figure 1 shows the last men-
tioned model as an example. We distinguished between hav-
ing the calculator active (state CalcOn), having the drawing
tool active (state textit), and both tools being inactive (state
textit). Transitions between states were triggered by the
log events described in Section 2.1. For example, the state
CalcOn was transferred to the state ToolsOff when the cal-
culator was closed. That is, when the student pressed the
calculator button (CloseCalculator), the drawing tool was
activated (ScratchworkModeOn), or the item was left (Exi-
tItem). Vice versa, when the drawing tool was activated,
students’ could not open the calculator, allowing for the
modeling of distinct states. Self-transitions were specified
to deal with, for example, double-clicks.

Several simple indicators were then derived as aggregated
attributes of the reconstructed states or sequence of states.
For example, the number of occurrences of the state CalcOn
across items reflects how often a student opened the calcula-
tor during the assessment. A summary of the derived simple
indicators and their descriptions is provided in Table 1.

3.2.4 Rapid Guessing
Compromised effort and persistence have been shown to be
identifiable by investigating rapid guessing behavior [25].
The concept of rapid guessing behavior is based on the as-
sumption that the amount of time that a test taker spends
on a task before responding is not sufficient to perceive the
task and develop a serious solution [21]. A rapid guess is
therefore defined as a response to a task with a response
time below a certain threshold.

For the definition of the thresholds, multiple approaches are
possible [26]. Following the competition’s operationalization
of inefficient test-taking behavior [19], the present work iden-
tified task-specific response time thresholds for rapid guesses
based on a 5th percentile cut-off value. This implies the as-
sumption that the slowest 5 percent of test takers on each
item showed rapid guessing behavior. This was in line with
the competition’s definition of inefficient test-taking behav-
ior and, thus, necessary for predicting the accordingly con-
structed target label. However, this is not state of the art
and the Discussion Section reviews alternative approaches.

On the basis of the identified rapid guesses, a response ma-
trix Xpj was constructed, indicating whether a response to
task j by person p was observed and identified as a rapid
guess. The entries in this matrix are specified as follows:

xpj =


NA if no response is observed

0 if a response is observed & a rapid guess

1 if a response is observed & no rapid guess

(3)

Xpj was then used to extract several rapid guessing indi-
cators. The indicators encompass a dichotomous grouping-

Table 1: Simple Indicators Serving as Features or
Used for Derived Feature Modeling

Indicator Description
Time on Screen Time a student spent on each task

within the test. This included the
directions, review, and help screens.

Tasks Attempted A count of the number of tasks at
which a student showed behavior
indicating they were attempting to
complete the task.

Tasks Completed A count of the number of tasks a
student had completed such that it
could be scored.

Tasks Incomplete A count of the number of tasks
which a student attempted, yet left
the response area with incomplete
information; e.g., only placing 3 out
of 4 drag-and-drop boxes into the re-
sponse area.

Timeout A binary variable indicating
whether a student received the
time-out screen, typically indicat-
ing that they failed to complete
all tasks within the time limit of
30 min.

Reviews A count variable indicating the
number of times a student visited
the review screen.

Too Fast A count variable indicating the
number of times a student was in
the fastest 5% of test respondents
for a given task.

Viewed/No Attempt A count variable for the number
of times a student viewed an item
without interacting with the item in
any meaningful manner.

Time on Directions A time variable capturing the total
amount of time spent on the direc-
tions screen.

Text to Speech A count variable indicating the
number of times a student utilized
the text-to-speech feature.

Help A count variable for the number of
times a student opened the help di-
alogue to seek assistance.

Calculator A count variable for the number of
times a student opened the calcula-
tor feature.

Drawing Tool A count variable for the number of
times a student opened the drawing
tool.
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Figure 1: Exemplary Finite State Machine for Reconstructing Information from the NAEP Log Data

variable (whether a person showed at least one rapid guess),
the sum of rapid guesses, and an estimation of a latent rapid
guessing propensity [11]. For the estimation of the latent
rapid guessing propensity, a Rasch model [17] was selected:

P(Xpj = 1) =
exp (θp − σj)

1 + exp (θp − σj)
(4)

The Rasch model is similar to the GPCM presented in Sec-
tion 3.2.2, just reduced to the dichotomous case and keeping
the discrimination parameter constant. While the notation
of symbols and indices is generally continued here, σj repre-
sents an item’s difficulty (or propensity to evoke rapid guess-
ing) and Xpj denotes the observed response correctness (or
rapid guessing behavior), with x ∈ {0, 1}. For person pa-
rameter estimation, Expected A Posteriori estimates were
used.

3.2.5 n-Grams of Log Events
The occurrence of certain log events can indicate behaviors
or unobservable meta-cognitive, cognitive, or affective states
of interest. This is also true for combinations of such. In the
context of the competition, disengaged behavior might be a
precursor or indicator for (later) inefficient test taking. For
example, (a) whether a student uses the assessment system’s
drawing tool in a task that does not require its usage could
be indicative of inefficient test taking as could be (b) the
playing-around with the text-to-speech feature. For incor-
porating such predictive features, we adopted an approach
by He and von Davier [8] that borrows techniques from nat-
ural language processing and information retrieval.

At the core of the procedure [8], a student’s log events are
considered as n-grams of a sequence. n-grams constitute
all possible tuples of subsequent log events within a stu-
dent’s complete sequence of log events. For computational
as well as sample size reasons, it is common to limit anal-
yses to uni-, bi-, and trigrams. Hence, a sequence such as
ACAD (representing four log events) would be decomposed
into four unigrams (2 × 〈A〉, 〈C〉, 〈D〉), three bigrams (〈AC〉,
〈CA〉, 〈AD〉), and two trigrams (〈ACA〉, 〈CAD〉). We decided to
make each event task-specific; that is, the event Draw was
captured together with the task ID, for example, DrawTask4.
This way, events were contextualized. Varying by the 10, 20,
and 30 min conditions, we obtained 7448, 13,482, and 17,553
n-grams, excluding sequences that occurred in less than 15
students’ sequences.

Next, the frequency sfij of each n-gram i is computed for
each student j (i.e., sequence frequency). These frequencies
are then weighted by inverse sequence frequency (borrow-
ing from the term inverse document frequency), ISFi =
log(N/sfi), with N representing the total number of se-
quences, and log-normalized; that is (1 + log(sfij)) ∗ ISFi.
This way, sequences occurring across many test administra-
tions are scaled down in their importance and vice versa.
Also, higher frequencies are dampened by the log-transfor-
mation.

The weighted n-gram frequencies can then be checked for
their predictivity of, for example, efficiency, using a χ2-dis-
tributed statistic (details at [8, 12]). This revealed 841, 1259,
and 1190 significantly predictive n-grams (α = .05) for the
respective condition.

In a last step, we compressed the selected features in a
principal component analysis. Due to the need for a low-
dimensional feature space (see Section 3.3), we extracted
only a few components, retaining only 5% of the original
information. This resulted in 6, 9, and 14 components, re-
spectively, for the three conditions.

3.3 Feature Selection
We applied several different feature selection strategies. First,
we used random forests to obtain features’ importance for
predicting students’ efficiency in Block B. Second, we evalu-
ated the accuracy of predictions using different combinations
of features. Both strategies showed speed to be the most pre-
dictive feature in all conditions. However, the importance
of the other features differed depending on the data set and
combination of features.

Moreover, we frequently observed that if the addition of a
feature improved the classification performance on the train-
ing data substantially (evaluated by stratified, repeated ten-
fold cross-validation), it reduced the performance on the test
data significantly. Thus, low-dimensional models were al-
ways to be favored over high-dimensional ones. For our final
ensemble bag, the 10 and 20 min classifiers indeed turned
out—with one exception—to work best with only one single
feature: latent person speed. In the 30 min condition, more
features were selected for the final prediction. For a list of
the resulting features for all conditions, see the following
Section 3.4.2.
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Table 2: Three Sets of Base Classifiers

Classifier Set (1): Speed & Test Completion
ML Speed #Complete #Incomplete #TooFast n-grams

10min SVM +
20min SVM + +
30min SVM + + + +

Classifier Set (2): Multiclass Speed & Test Completion
ML Speed #Complete #Incomplete #TooFast n-grams

10min mSVM +
20min mSVM +
30min mSVM + + + +

Classifier Set (3): Speed, Test Completion, & n-Grams
ML Speed #Complete #Incomplete #TooFast n-grams

10min JRip + +
20min SVM + +
30min SVM + + + + +

3.4 Prediction
3.4.1 Harvesting More Information: Multi-Label Clas-

sification
The binary target label split students into efficient and in-
efficient test takers. However, the competition’s definition
of inefficient behavior mixed two types of test takers: those
who are going too fast and those who are going too slow.
Since the two types have different feature realizations, the
learning algorithms have to optimize towards at least two
different conditions for the same class. Most algorithms’
optimization works better if they have less conditions to op-
timize for within each class.

Therefore, we used the latent test-taker speed feature for
further splitting the inefficient category into Going Too Slow
and Going Too Fast. This new target label with now three
instead of two classes was used for one set of classifiers (see
Section 3.4.2). For doing so, the latent speed estimated by
the Lognormal Response Time Model (see Section 3.2.1) dis-
tinguished between students going too fast and going too
slow. An analysis showed that substantial rapid guessing
behavior started at a threshold of about τ = 0 and, thus,
optimally divided the two inefficient groups. The resulting
target label identified about 23% of the test takers as go-
ing too fast and about 17% as going too slow, keeping the
original share of 60% of efficient test takers.

3.4.2 Three Sets of Base Classifiers
For the final prediction, we created three sets of base clas-
sifiers that were to be merged in an ensemble bag. Each
set followed a different idea, incorporated different features,
and was trained by a different learning algorithm. In turn,
each set contained three classifiers, with one of them tai-
lored to the 10, 20, and 30 min condition, respectively. We
experimented with different feature sets, learning algorithms
(common ones such as support vector machines, AdaBoost,
J48, neural nets, and others), and hyperparameters for each
base classifier. Table 2 shows which features and learning
algorithms were used in which classifier. Which features
were included and which learning algorithm was employed
was determined by resulting performance with respect to the
leaderboard. Due to the unstable performance in the test
set, no systematic hyperparameter tuning was carried out.

Our first set of classifiers used support-vector machines with
a radial kernel and C-classification for all three conditions

(with C = 1, γ = 1/n, ε = 0.001, shrinking). In the 10 min
condition, only speed was used for the prediction. In the
20 min condition, the number of completed items was added.
In the 30 min condition, all features that got through feature
selection (except n-grams, on purpose) were incorporated:
speed, number of completed items, number of incompleted
items, and items completed too fast.

Our second set of classifiers was designed similarly to the
first one, but with a multiclass support-vector machine and
the multiclass label distinguishing going-too-slow and going-
too-fast students (see Section 3.4.1). In the 10 and 20 min
conditions, speed was the only predictor of importance ac-
cording to the feature selection procedure. In the 30 min
condition, again, all features (except n-grams) were incor-
porated.

Our third set of classifiers differed from the other two sets in
that it incorporated one principal component of the n-grams
of event sequences (see Section 3.2.5). Apart from that, the
same set of features were used like in the second classifier
set. The 10 min condition made use of a propositional rule
learner instead of the otherwise employed support-vector
machine. The rule learner’s parameters were set to F = 3
folds, N = 2 as the minimal weight, maximum error rate of
included rules ≥ .5, and pruning was used.

3.4.3 Ensemble Bag
The three described sets of classifiers were combined in a
final ensemble classifier. We used the bagging approach by
averaging probabilities of a condition’s three base classifiers,
but favoring inefficient classifications. We chose to favor
inefficient classification since our base classifiers produced
not enough inefficient classifications. Therefore, we ended
up with one ensemble bag of classifiers for the 10, 20, and
30 min condition each.

4. RESULTS
The final evaluation of our prediction resulted in AUCadj =
0.27 and κadj = .19. In the leaderboard with all 82 com-
petitors, this corresponded to rank 25, with several teams
having submitted multiple results. In the final table, which
only included 13 teams that submitted their code in time,
our contribution was ranked eighth. The winner achieved
AUCadj = 0.34 and κadj = .22. The rather low performance
values, even for the winners, were accompanied with cor-
responding differences between the test and evaluation set,
resulting in substantial changes in the ranking and indicat-
ing rather unstable models being prone to changes in the
evaluation data. This is in line with the wavering perfor-
mance during testing we observed.

With respect to single features, two of them draw particular
interest: test-taker speed and ability. Figure 2 shows their
ROC curves. Obviously, the latent speed feature taken alone
predicts efficient test taking noticeably well (AUCadj = 0.36,
κ = .30 in a single-feature support-vector machine3). In
contrast, students’ ability does not capture a lot of relevant
information for predicting efficient test taking (AUCadj =
0.16, κ = .07 in a single-feature support-vector machine3).

3based on the 30 min training data and a stratified 10-times
tenfold cross-validation
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Figure 2: ROC Curves of Two Features: Speed (left)
and Ability (right)

The large overlap of distributions between efficient and in-
efficient test takers for the ability feature further shows that
the efficiency label does not contain much information about
test takers’ ability (right part of Figure 3). There is a small
difference in that inefficient students have lower ability val-
ues on average (∆ = −0.08, Cohen’s d = −0.20). While
the overlap of distributions appears somewhat similar for
the speed feature (left part of Figure 3), the long right tail
and prominence of faster inefficient test takers makes the
feature space more easily separable. The effect size of the
subgroups’ difference is remarkably higher (∆ = 0.12, Co-
hen’s d = 0.57).

Finally, the feature space which is formed by ability and
speed is plotted in Figure 4. The large majority of test takers
builds an indistinguishable cloud. The other main message
of this plot is, first, that very fast and less able test takers
were consequently classified as inefficient in Block B. More
surprisingly, second, a few test takers who were relatively
fast, but answered correctly (and were thus estimated as
relatively able) were classified as inefficient in Block B. It is
possible that these students changed their behavior in the
second test block. The other possibility is that the efficiency
label classifies these instances erroneously as inefficient.

5. DISCUSSION
In this paper, we present a theory-driven psychometric mod-
eling approach to predicting efficient test taking behavior in
the context of the NAEP Data Mining Competition for 2019.
The paper makes two important contributions, one to our
understanding of the data, another to the structure of the
competition.

The first major contribution is the value of theory-driven
psychometric modeling for feature engineering. Referring
back to Merriam Webster’s bipartite definition of efficiency
as the characteristic of producing desired results without
waste [13], it is interesting how task success is not incorpo-
rated into the competition’s conceptual specification of test
takers. The data patterns mirror the lack of the desired
results in the competition’s operationalization of the target
label, demonstrating the prominence of speed as the sole de-
terminant for the classification as efficient test taking. Re-
markably, the outstanding speed feature serves as the only
feature in some classifiers of our final ensemble bag that only

falls short of the winning contribution by ∆AUCadj = .07
and ∆κ = .03. Empirically, ability did not provide any
incremental increase in kappa or AUC beyond the speed
feature. As a result, the ability feature was not included
in any of the base classifiers after feature selection. It has
to be noted that, at the theoretical level, the definition of
efficiency only incorporates ability indirectly. That is the
case because students who do not reach the end of the test
cannot solve the corresponding items. Students who are go-
ing too fast are likely to fail as well. The resulting ability
estimates, which are based on item success, hence, are in-
directly incorporated in the efficiency label that is actually
based on speeding criteria exclusively. Nevertheless, this in-
direct impact was not large enough for granting substantial
predictivity to students’ ability for inferring their test-taking
efficiency as specified by the competition.

It is apparent that the presented predictive modeling’s per-
formance does not exceed a moderate level, if at all. This is
similarly true for the competition winners. While behavioral
predictions with temporal delay can always be excepted to
be weak, there seem to be multiple reasons inherent to the
provided data set and challenge behind the moderate pre-
dictive classification performance. From our point of view,
there are three major points that are worth following-up on
in discussions. The most prominent one is the data reduc-
tion to twenty and ten minutes of log data for two thirds
of the test data. The resulting leaderboard data evaluation
was dominated by the secondary goal of predictions with less
data. Also, since the different conditions shape the data and
derived features quite differently, the training of classifiers
had to be tailored to those.

The second important contribution is that the paper pro-
vides evidence that questions the target label’s validity. Us-
ing additional data sources from outside the information pro-
vided by the competition, we were able to re-engineer scores
for estimating test taker ability. Importantly, feature se-
lection led to excluding the ability feature, as it failed to be
predictive of the efficiency label. This was a strong indicator
for the suboptimal operationalization of efficiency.

This especially relates to the labeling of students as going too
fast. To identify test takers spending a reasonable amount
of time on a task, the competition organizers chose the 5th
percentile of response times within an item as the thresh-
old. Such a norm-oriented classification leads to labeling
a fixed number of test takers as inefficient at each item,
even when there are none or substantially less than 5 per-
cent. Instead, criterion-based classification would be worth-
while. However, if corresponding criteria are not available,
norm-oriented approaches would need to be combined with
a dynamic threshold to be determined for each item, as the
response time distributions of items typically differ consid-
erably. The high ratio of 40 percent of students labeled as
inefficient, which seems unreasonably high, is probably the
result of this purely norm-based decision.

One option for identifying an appropriate threshold consti-
tutes the visual inspection of distributions if little informa-
tion about items are available. Often, response time dis-
tributions are bimodal. The first, very early peak is then
typically associated with rapid guessing, while the second

309 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



−0.5 0.0 0.5 1.0 1.5

0
1

2
3

Latent Person Speed by Efficiency

Speed

D
en

si
ty

Inefficient
Efficient

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Latent Person Ability by Efficiency

Ability

D
en

si
ty

Inefficient
Efficient
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peak corresponds to the actual response time mean of those
test takers who did not exhibit rapid guessing behavior.
The threshold would be set after the obvious extinction of
the first peak [27]. For setting an actually accurate thresh-
old, methods that combine response time, item information,
and response accuracy are considered state of the art. For
an overview see for example [26]. Further, the identifica-
tion of thresholds should be guided by contextual consider-
ations, judging for example whether false-positives or false-
negatives are more acceptable in the context of the test.

An additional area of interest was that the binary label for
efficiency mixes two types of students within its inefficient
value: going too fast and going too slow. This has impli-
cations for the learning algorithms that have to optimize
their parameters towards two different conditions within one
class. Moreover, from a substantive perspective, this mixes
at least two types of students: those who are disengaged—
thus, either rushing or meandering pointlessly through the
test—and those who are too thoroughly working, poorly
monitoring their progress, or who are just less able.

6. CONCLUSION
One of the central messages of the competition is that pre-
dictions of test-taking efficiency are highly dependent on the
definition, measurement, and evaluation of efficiency itself.
That is true for the presented approach, as well as for other
competition entrants, as seen through the leaderboard test
set evaluation phase. In such a case, and if classifiers are
meant to be put into productive usage, it is even more im-
portant from our point of view to have comprehensible mod-
els. Imagine a hypothetical situation when a teacher sees a
student being flagged on a dashboard after 20 min of test-
ing. The flag indicates the risk for inefficient test taking
later on, but we know that the flag’s accuracy is fairly low.
It is vital that the teacher is informed about the basis of the
flag’s decision criteria. As we have shown, the competition’s
target label classified some of the most able students as in-
efficient who by ability are reasonably quick in completing
the tasks. The consequences of a teacher going to a success-
ful, engaged student and telling them they should aim at
being more engaged or efficient in their test taking, would
be reasonably disruptive. It can be assumed that such an
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invasive and intrusive test administrator behavior would be
counterproductive and decrease, rather than improve data
quality. If however, the included features for predictions are
transparent, known, and understandable, the teacher could
communicate those and contextualize the flag accordingly.
A risk of more powerful black-box deep-learning classifiers is
that a small to medium share of more accurately classified
cases does not necessarily outweigh the resulting obscurity
of classification mechanisms. More generally, the effects of
the invasive disruption of a test administrator proactively
trying to motivate test takers on the standardization of the
assessment setting need to be studied. Moreover, before
using such a measure, classifiers would need to be checked
for biases towards certain subgroups in order to still ad-
here to standards of standardized assessments [1]. Overall,
we would recommend to refrain from using such predictions
with low to moderate accuracy in productive assessments as
long as the effects of changes in the test administration are
unknown.

Instead, the discussion section gives some insights into what
could improve the setup of a more proper training data set
for predictions. Mainly, a more representative definition of
efficiency might be necessary, one that reflects the current
scientific state of the art which factors in students’ ability.
Furthermore, the described psychometric and theory-driven
perspective, together with the referenced tools, can be help-
ful for mining log data from assessments at the large scale
while retaining the individual perspective. With the illus-
trated software package LogFSM, for example, we were able
to identify test takers who clearly showed consistent ineffi-
cient behavior, but were labeled as efficient, and vice versa.
These observations are constrained by the fact that the log
data of Block B was not available, yet served as the ba-
sis for the evaluation of the efficiency label. However, we
think that the number of these cases is too large for being
an effect of temporal instability only. We believe that these
analyses combined with more innovative machine learning
designs that the educational data mining community can
provide are promising for further improving the predictions
of test-taking efficiency.

7. LIMITATIONS
The paper already highlighted the presented study’s limi-
tations over the course of the different sections. On top of
the challenges inherent to the data competition, this study’s
main limitation constitutes the employment of baseline ma-
chine learning. Moreover, speed and ability have been esti-
mated separately, whereas a simultaneous estimation might
have been possible as well [23]. The selection of feature
sets and learning algorithms was optimized towards the test
set which turned out to provide rather unstable evaluations.
The conclusion of this paper is that the NAEP Data Mining
Competition for 2019 provided an important opportunity
to further develop complex conversations about how educa-
tional data mining and psychometric modeling can support
data quality of assessments by identifying disengaged test
taking behavior.
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ABSTRACT
Students acquire knowledge as they interact with a vari-
ety of learning materials, such as video lectures, problems,
and discussions. Modeling student knowledge at each point
during their learning period and understanding the contri-
bution of each learning material to student knowledge are
essential for detecting students’ knowledge gaps and recom-
mending learning materials to them. Current student knowl-
edge modeling techniques mostly rely on one type of learn-
ing material, mainly problems, to model student knowledge
growth. These approaches ignore the fact that students also
learn from other types of material. In this paper, we pro-
pose a student knowledge model that can capture knowledge
growth as a result of learning from a diverse set of learn-
ing resource types while unveiling the association between
the learning materials of different types. Our multi-view
knowledge model (MVKM) incorporates a flexible knowl-
edge increase objective on top of a multi-view tensor fac-
torization to capture occasional forgetting while represent-
ing student knowledge and learning material concepts in a
lower-dimensional latent space. We evaluate our model in
different experiments to show that it can accurately predict
students’ future performance, differentiate between knowl-
edge gain in different student groups and concepts, and un-
veil hidden similarities across learning materials of different
types.

Keywords
knowledge tracing, domain modeling, tensor factorization,
multi-view learning

1. INTRODUCTION
Both student knowledge modeling and domain knowledge
modeling are important problems in the educational data
mining community. In this context, student knowledge trac-
ing and knowledge modeling approaches aim to evaluate stu-
dents’ state of knowledge or quantify students’ knowledge in

∗First two authors contributed equally to this work.

the concepts that are presented in learning materials at each
point of the learning period [15, 6, 51, 25, 53, 32, 14, 47].
Domain knowledge modeling, on the other hand, focuses on
understanding and quantifying the topics, knowledge com-
ponents, or concepts that are presented in the learning mate-
rial [7, 12, 27]. It is useful in creating a coherent study plan
for students, modeling students’ knowledge, and analyzing
students’ knowledge gaps.

A successful student knowledge model should be personal-
ized to capture individual differences in learning [51, 28],
understand the association and relevance between learning
from various concepts [42, 53], model knowledge gain as
a gradual process resulting from student interactions with
learning material [21, 38, 18], and allow for occasional for-
getting of concepts in students [14, 32, 18]. Despite recent
success in capturing these complexities in student knowledge
modeling, a simple, but important aspect of student learning
is still under-investigated: that students learn from differ-
ent types of learning materials. Current research has focused
on modeling one single type of learning resource at a time
(typically, “problems”), ignoring the heterogeneity of learn-
ing resources from which students may learn. Modern online
learning systems frequently offer students to learn and assess
their knowledge using various learning resource types, such
as readings, video lectures, assignments, quizzes, and dis-
cussions. Previous research has demonstrated considerable
benefits of interacting with multiple types of materials on
student learning. For example, worked examples can lead to
faster and more effective learning compared to unsupported
problem solving [33]; and enriching textbooks with addi-
tional forms of content, such as images and videos, increases
the helpfulness of learning material [2, 1]. Ignoring diverse
types of learning materials in student knowledge modeling
limits our understanding of how students learn.

One of the obstacles in considering the combined effect of
learning material types is the lack of explicit learning feed-
back from all of them. Some learning material types, such
as problems and quizzes, are gradable. As students interact
with such material types, the system can perceive student
grade as an explicit feedback or indication of student knowl-
edge: if a student receives a high grade in a problem, it
is likely that the student has gained enough knowledge re-
quired to solve that problem. On the other hand, some of
the learning materials are not gradable and their impact on
student knowledge cannot be explicitly measured. For exam-
ple, we cannot directly measure the consequent knowledge
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gain from watching a video lecture or studying an example.

As an alternative for quantifying student knowledge gain,
the system can measure other quantities, such as the binary
indication of student activity with a learning material or the
time they spent on it. However, this kind of measure may
result in contradictory conclusions [8, 23, 22]. For example,
spending more time to study the examples provided by the
system may both increase the student’s knowledge, and at
the same time, be an indicator of a weaker student, who
does not have enough knowledge in the provided concepts.
These weaker students may select to study more examples to
compensate for their lower knowledge levels. Consequently,
the knowledge gain of studying these auxiliary learning ma-
terials is usually overpowered by the student selection bias
and is not represented correctly in the overall dataset.

A similar issue exists in the current domain knowledge mod-
els. The automatic domain knowledge models that are based
on students’ activities mainly model one type of learning ma-
terial and ignore the relationship between various kinds of
learning materials [17, 12]. Alternatively, an ideal domain
knowledge model should be able to model and discover the
similarities between learning materials of different types.

In this paper, we simultaneously address the problems of
student knowledge modeling and domain knowledge model-
ing, while considering the heterogeneity of learning material
types. We introduce a new student knowledge model that is
the first to concurrently represent student interactions with
both graded and non-graded learning material. Meanwhile,
we discover the hidden concepts and similarities between dif-
ferent types of learning materials, as in a domain knowledge
model. To do this, we pose this concurrent modeling as a
multi-view tensor factorization problem, using one tensor for
modeling student interactions with each learning material
type. By experimenting on both synthetic and real-world
datasets, we show that we can improve student performance
prediction in graded learning materials, as measured by the
Root Mean Squared Error (RMSE) and Mean Absolute Er-
ror (MAE).

In summary, the contributions of this paper are:
1) proposing a personalized, multi-view student knowledge
model (MVKM) that can capture learning from multiple
learning material types and allow for occasional student for-
getting, while modeling all types of learning materials;
2) conducting experiments on both synthetic and real-world
datasets showing that our proposed model outperforms con-
ventional methods in predicting student performance;
3) examining the resulting learning material and student
knowledge latent features to show the captured similarity
between learning material types and interpretability of stu-
dent knowledge model.

2. RELATED WORK
Knowledge Modeling Student knowledge modeling aims
to quantify student knowledge state in the concepts or skills
that are covered by learning materials at each learning point.

Pioneer approaches of student knowledge modeling, despite
being successful, were not personalized, relied on a prede-
fined (sometimes expert-labeled) set of concepts in learning

material, did not allow for learned concepts to be forgotten
by students, and modeled each concept independently from
one another [19, 15, 36, 45]. Later, some student knowl-
edge models aimed to solve these shortcomings by learning
different parameters for each (type of) student [35, 51, 26],
including decays to capture forgetting of concepts in learner
models [39, 29, 31] and capturing the relationship between
concepts that are present in a course [44, 21]. Yet, these
models assume that a correct domain knowledge model, that
maps learning material into course concepts, exists.

In recent years, new approaches aim to learn both domain
knowledge model and student knowledge model at the same
time [28, 20, 42, 48, 53, 18]. Our proposed model falls into
this latest category as it does not require any manual la-
beling of learning materials, while having the ability to use
such information if they are available. It is personalized by
learning lower-dimensional student representations, allows
forgetting of concepts during student learning by adding a
rank-based constraint on student knowledge, and models the
relationship between learning material.

Learning from Multiple Material Types In the edu-
cational data mining (EDM) literature, learning materials
are provided in various types, such as problems, examples,
videos, and readings. While there have been some stud-
ies in the literature on the value of having various types
of learning materials for educating students [2, 8, 33], the
relationship between these material types, and their com-
bined effect on student knowledge and student performance
is under-investigated.

Multiple learning material types have been studied in the lit-
erature in finding insights into different activity distributions
or cluster patterns between high-grade and low-grade stu-
dents [46, 49], have been used as contextual features in scaf-
folding or choosing among the existing student models [52,
43], have been added to improve existing domain knowledge
models only for graded material types while ignoring student
sequences [10, 13, 16, 30, 34, 41, 37], or have been classified
into beneficial or non-beneficial for students [3]. However,
to the best of our knowledge, none of these studies have ex-
plicitly modeled the contribution of various kinds of learning
materials on student knowledge during the learning period,
the interrelations among these learning materials, and their
effect on student performance. The Bayesian Evaluation and
Assessment framework found that assistance promoted stu-
dents’ long-term learning. More recently, Huang et al. dis-
covered that adaptation of their framework (FAST) for stu-
dent modeling by including various activity types may lead
researchers to contradictory conclusions [23]. More specifi-
cally, in one of their formulations student example activity
suggests a positive association with model parameters, such
as probability of learning, while in another formulation this
type of activity has a negative association with model pa-
rameters. Also, Hosseini et al. concluded that annotated
examples show a negative relationship with students’ learn-
ing, because of a selection effect: while annotated examples
may help students to learn, weaker students may study more
annotated examples [22]. The model proposed in this paper
considers student interactions from multiple learning mate-
rial types, mitigating over-estimation of student knowledge
by transferring information from interactions with graded
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material, while accounting for knowledge increase that hap-
pen as a result of student interaction with non-graded ma-
terial.

3. MULTI-VIEW KNOWLEDGE MODELING
3.1 Problem Formulation and Assumptions
We consider an online learning system in which M students
interact with and learn from multiple types (r ∈ R) of learn-
ing materials. Each learning material type r includes a set
of P [r] learning materials. A material type can be either
graded or non-graded. Students’ normalized grade in tests,
success or failure in compiling a piece of code, or scores in
solving problems are all examples of graded learning feed-
back. Whereas, watching videos, posting comments in dis-
cussion forums, or interacting with annotated examples are
instances of non-graded learning feedback that the system
can receive. We model the learning period as a series of stu-
dent attempts on learning materials, or time points (a ∈ A).
To represent student interaction feedback with learning ma-
terials of each type r during the whole learning period A,
we use a M × P [r] × A three-dimensional tensor X [r]. The
ath slice of tensor X [r], denoted by X

[r]
a , is a matrix repre-

senting student interactions with the learning material type
r during one snapshot of the learning period. The sth row

of this interaction matrix x
[r]
a,s shows feedback from student

s’s interactions with all learning materials of type r at at-

tempt a; and the tensor element x
[r]
a,s,p is the feedback value

of student s’s activity on learning material p of type r at
learning point a.

We use the following assumptions in our model: (a) Each
learning material covers some concepts that are presented
in a course; the set of all course concepts are shared across
learning materials; and the training data does not include
the learning materials’ contents nor their concepts.(b) Dif-
ferent learning materials have different difficulty or help-
fulness levels for students. For example, one quiz can be
more difficult than another one, and one video lecture can
be more helpful than the other one. (c) The course may fol-
low a trend in presenting the learning material: going from
easier concepts to more difficult ones or alternating between
easy and difficult concepts; despite that, students can freely
interact with the learning materials and are not bound to a
specific sequence. (d) As students interact with these ma-
terials, they learn the concepts that are presented in them;
meaning that their knowledge in these concepts increases.
(e) Since students may forget some course concepts, this
knowledge increase is not strict. (f) Different students come
with different learning abilities and initial knowledge values.
(g) The gradual change of knowledge varies among different
students. But, students can be grouped together according
to how their knowledge changes in different concepts, e.g.,
some students are fast learners compared to others. (h)
Eventually, a student’s performance in a graded learning
material, represented by a score, depends on the concepts
covered in that material, student’s knowledge in those con-
cepts, the learning material difficulty/helpfulness, and the
general student ability.

In addition to the above, we have an essential assumption (i)
that connects the different parts of our model: a student’s
knowledge that is obtained from interacting with one learn-
ing material type is transferable to be used in other types of
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Figure 1: Decomposing student interaction tensors
with two learning material types X [1] and X [2].

learning materials. In other words, students’ knowledge can
be modeled and quantified in the same latent space for all
different learning material types. In the following, we first
propose a single-view model for capturing the knowledge
gained using one type of learning material (MVKM-Base)
and then extend it to a multi-view model that can represent
multiple types of learning materials.

3.2 MVKM Factorization Model
The Proposed Base Model (MVKM-Base). Follow-
ing the mentioned assumptions in Section 3.1, particularly
assumptions (a), (g), and (h), and assuming that students
interact with only one learning material type, we model stu-
dent interaction tensor X as a factorization (n-mode tensor
product) of three lower-dimensional representations: 1) an
M × K student latent feature matrix S, 2) a K × C × A
temporal dynamic knowledge tensor T , and 3) a C ×P ma-
trix Q serving as a mapping between learning materials and
course concepts. In other words, we have x̂s,a,p ≈ ss ·Ta ·qp.
Matrix S here represents students being mapped to latent
learning features that can be used to group the students (as-
sumption (g)). Tensor T quantifies the knowledge growth
of students with each learning feature in each of the con-
cepts while attempting the learning material. Accordingly,
the resulting tensor from product K = ST represents each
student’s knowledge in each concept at each attempt.

To increase interpretability, we enforce the contribution of
different concepts in each learning material to be non-negative
and sum to one. Similarly, we enforce the same constraints
on each student’s membership in the student latent features.
Since each student can have a different ability (assumption
(f)) and each learning material can have its own difficulty
level (assumption (b)), we add two bias terms to our model
(bs for each student s, and bp for each learning material p)
to account for such differences. To capture the general score
trends in the course (assumption (c)), we add a parameter
ba for each attempt. Accordingly, we estimate student s’s
score in a graded learning material p at attempt a (x̂a,s,p)
as in Equation 1. Here, Ta is a matrix capturing the rela-
tionship between student features and concepts at attempt
a, ss represents student s’s latent feature vector, qp shows
material p’s concept vector.
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x̂s,a,p ≈ ss · Ta · qp + bs + bp + ba (1)

We use a sigmoid function σ(·) to estimate student inter-
action with a non-graded learning material, or graded ones
with binary feedback:

x̂s,a,p ≈ σ(ss · Ta · qp + bs + bp + ba)

Modeling Knowledge Gain while Allowing Forget-
ting. So far, this simple model captures latent feature vec-
tors of students and learning materials, and learns T as a
representation of knowledge in students. However, it does
not explicitly model students’ gradual knowledge gain (as-
sumption (d)). We note that students’ knowledge increase
is associated with the strength of concepts in the learning
material that they interact with. As students interact with
learning materials with some specific concepts, it is more
likely for their predicted scores in the relevant learning ma-
terials to increase. With a Markovian assumption, we can
say that if students have practiced some concepts, we expect
their scores in attempt a+ 1 to be more than their scores in
attempt a:

ss · Ta+1 · qp − ss · Ta · qp ≥ 0

However, this inequality constraint is too strict as the stu-
dents may occasionally forget the learned concepts (assump-
tion (e)). To allow for this occasional forgetting and soften
this constraint, we model the knowledge increase as a rank-
based constraint, that allows for knowledge loss, but penal-
izes it. We formulate this constraint as maximising the value
for L2 in Equation 2. Essentially, this penalty term can be
viewed as a prediction-consistent regularization. It helps to
avoid significant changes in students’ knowledge level since
their performance is expected to transit gradually over time.

L2 =

a−1∑
j=1

∑
s,p

log (σ(ss · Ta · qp − ss · Tj · qp)) (2)

The Proposed Multi-View Model (MVKM). We rely
on our main assumption (i) to extend our model to cap-
ture learning from different learning material types. So far,
we have assumed that course concepts are shared among
learning materials (assumption (a)). With the knowledge
transfer assumption (i), all learning materials of different
types will share the same latent space. Also, we represent
student knowledge and student ability as shared parameters
across all different learning material types. Consequently,
for each set of learning materials of type r ∈ R, we can
rewrite Equation 1 as:

x̂[r]s,a,p ≈ ss · Ta · q[r]
p + bs + b[r]p + ba

An illustration of this decomposition, when considering two
learning material types, is presented in Figure 1. Note that
we represent one shared matrix student S and one shared
knowledge gain tensor T in both types of learning materials.

We can learn the parameters of our model by minimizing

the sum of squared differences between the observed (x
[r]
s,a,p)

and estimated (x̂
[r]
s,a,p) values over all learning material types

r ∈ R. For the learned parameters to be generalizable to un-
seen data, we regularize the unconstrained parameters using
their L-2 norms. As a result, we minimize the objective func-
tion in Equation 3, in which γ[r] are hyper-parameters that
represent the relative importance of different learning mate-

rials types. λt and λs are hyper-parameters to control the
weights of regularization term of T and S.

L1 =
∑

r,s,a,p

γ[r](x̂[r]s,a,p − x[r]s,a,p)2 + λt‖Ta‖2F + λs‖ss‖2F

s.t. ∀r,c,p q[r]c,p ≥ 0 ,
∑
c

q[r]c,p = 1
(3)

Similarly, the knowledge gain and forgetting constraint pre-
sented in Equation 2 can be extended to the multi-view
model. Eventually, we use a combination of the recon-
struction objective function (Equation 3) and the learning
and forgetting objective function (Equation 2) to model stu-
dents’ knowledge increase, while representing their personal-
ized knowledge and finding learning material latent features,
as in Equation 4. Note that, since our goal is to minimize L1

and maximize L2, we use −L2 to minimize L . To balance
between the accuracy of student performance prediction and
modeling student knowledge increase, we use a nonnegative
trade-off parameter ω:

L = L1 − ωL2 (4)

We use stochastic gradient descent algorithm to minimize
L in Equation 4. The parameters need to learn are stu-
dents’ latent feature matrix (S), dynamic knowledge in each
concept at any attempt (T ), importance of each concept in

every learning material (Q[r]), each student’s general abil-

ity (bs), each learning material’s difficulty/helpfulness (b
[r]
p ),

and each attempt’s bias (b
[r]
a ).

4. EXPERIMENTS
We evaluate our model with three sets of experiments. First,
to validate if the model captures the variability of observed
data, we use it to predict unobserved student performances
(Sec. 4.3). Second, to check if our model represents valid
student knowledge growth, we study the knowledge increase
patterns between different types of students and across dif-
ferent concepts (Sec. 4.4). Finally, to study if the model
meaningfully recovers learning materials’ latent concepts,
we analyze their similarities according to the learned latent
feature vectors (Sec. 4.5). Without loss of generalizability,
although the model is designed to handle multiple learn-
ing material types, we experiment on two learning material
types. Before the experiments, we will go over our datasets,
and experiment setup.

Dataset
material
type 1 (#)

material
type 2 (#)

#stu
act.
seq.
len.

#rcds.
avg.
sco.

Synthetic NG quiz (10) discussion (15) 1000 20 19991 0.6230
Synthetic NG2 quiz (10) discussion (15) 1000 20 19991 0.6984

Synthetic G quiz (10) assignment (15) 1000 20 19980 0.6255
MORF QD assignment (18) discussion (525) 459 25 6800 0.8693
MORF QL assignment (10) lecture (52) 1329 76 58956 0.7731
Canvas H quiz (10) discussion (43) 1091 20 13633 0.8648

Table 1: Statistics for each datasets, where #stu is
number of students, act. seq. len. is the maximum
activity length, #rcds. is number of records that
student interact with learning materials and avg.
sco. is graded learning material’s average score.

4.1 Datasets
We use three synthetic and three real-world datasets (from
two MOOCs) to evaluate the proposed model. Our choice
of real-world datasets is guided by two factors, aligned with
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Figure 2: Histogram of graded materials’ Scores in Synthetic Data and Real-World Data.

our assumptions: that they include multiple types of learn-
ing material, and that they allow the students to work freely
with the learning material in the order they choose. In
the real-world datasets, we select the students that work
with both types of learning materials, removing the learn-
ing materials that none of these students have interacted
with. General statistics of each dataset are presented in
Table 1. Figure 2 shows score distributions of the graded
learning material types in these datasets.

Synthetic Data. We generate three synthetic datasets ac-
cording to two characteristics: (1) if both learning material
types are graded vs. if one of them is non-graded (or has
binary observations); (2) if the student scores are capped
and their distribution is highly skewed vs. if the score dis-
tribution in not capped and less skewed.

For creating the datasets, we follow similar assumptions as
to the ones made by our model. Expecting P [1] learning ma-
terials of type 1, and P [2] materials of type 2, we first gener-
ate a random sequence Ls for each student s, which repre-
sents the student’s attempts on different learning materials.
Considering C latent concepts, we then create two random

matrices Q[1] ∈ RC×P [1]

and Q[2] ∈ RC×P [2]

as the mapping
between the learning material and the C underlying con-
cepts, such that the sum of values for each underlying learn-
ing material is one. For the student knowledge gain assump-
tion, we represent each student’s knowledge increase sepa-
rately. Hence, we directly create a student knowledge tensor
K, instead of creating S and T , and multiplying them. To
generate K, we first generate a random matrix K1 that rep-
resents all students’ initial knowledge in all C concepts. For
generating the knowledge matrix in the next attempts (Ka),
we use the following random process. For each student s, we
generate a random number α representing the probability of
forgetting. If α > θ (forgetting threshold), we assume no for-
getting happens and increase the value in the knowledge ma-
trix according to the learning material that the student has

interacted with: ks,a = ks,a−1+βq
[r]

Ls[a]
. Here, β is a random

effect of increasing and Ls[a] is the learning material that
student has selected to interact with at timestamp a. Other-
wise (α < θ, or forget), we set ks,a,c = ks,a−1,c − rand(0, ε),

for ∀c ∈ C. we use n-mode tensor product to build X [1]

and X [2], where X [1] = KQ[1], X [2] = KQ[2]. Finally, ac-
cording to the student learning sequences Ls, we remove the
“unobserved” values that are not in Ls from X [1] and X [2].

To create different data types according to the first charac-
teristic above, for the graded learning material type r, we
keep the values in X [r]. For the non-graded ones, we use
the same process as above, except that in the final step we

set x
[r]
s,a,p = 1 according to the student sequence Ls. How-

ever, in many real-world scenarios, the score distribution of
students is highly skewed especially towards higher scores
(Figure 2 show it). To represent this skewness, in some of

the generated datasets, we clip all x
[r]
s,a,p > 1 to 1.

Then, we create following three datasets according to above
process: Synthetic G, in which both learning material types
are graded and scores are skewed; Synthetic NG, in which
one of the learning material types is graded and scores are
skewed; and Synthetic NG2, in which one of the learning
material types is graded and scores are not skewed. We
generate all synthetic data with 1000 students, P [1] = 10
learning materials of type 1, P [2] = 15 learning materials
of type 2, C = 3 latent concepts, and maximum sequence
length of 20 for students.

Canvas Network [11]. This is an online available dataset
collected from various courses on the Canvas network plat-
form 1. The available open online course data comes from
various study fields, such as computer science, business and
management, and humanities. For each course, its general
field of study is presented in the data. The rest of the dataset
is anonymized such that course names, discussion contents,
student IDs, submission contents, or course contents are not
available. Each course can have different learning material
types, including assignments, discussions, and quizzes. We
experiment on the data from one course in this system, with
course id 770000832960975, which is in the humanities field
(Canvas H dataset). We use quizzes as the graded learning
material type and discussions as the non-graded one.

MORF [4]. This is a dataset of the “educational data
mining” course [5] at Coursera2, available via the MOOC
Replication Framework (MORF). The course includes vari-
ous learning material types, including video lectures, assign-
ments, and discussion forums. Students’ history, in terms of
their watched video lectures, submitted assignments, and
participated discussions, in addition to the score they re-
ceived in assignments, is available in data. In this course, we
experiment with two datasets, each focusing on two sets of
learning material types: one with assignments as the graded
type and discussions as the non-graded type (MORF QD),
another with assignments as the graded type and video lec-
ture views as the non-graded type (MORF QL).

4.2 Experiment Setup
We use 5-fold student-stratified cross-validation to separate
our datasets into test and train. At each fold, we use interac-
tion records from 80% of students as training data. For the

1http://canvas.net
2https://www.coursera.org/
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rest (20%) of the students (target students), we split their
attempt sequences on the graded learning material type into
two parts: the first 50% and the last 50%. For performance
prediction experiments, we predict the performance of the
graded learning material type in the last 50%, given the first
50%. In order to see how the proposed model captures the
knowledge growth, we do online testing, in which we pre-
dict the test data attempt by attempt (next attempt predic-
tion). Eventually, we report the average performance on all
five folds. For selecting the best hyper-parameters, we use
a separate validation dataset. Our code and synthetic data
are available at GitHub3.

4.3 Student Performance Prediction
In this set of experiments, we test our model on predicting
student scores on their future unobserved graded learning
material attempts. More specifically, we estimate student
scores on their future attempts, and compare them with
their actual scores in the test data.

4.3.1 Baselines
We compare our model with state-of-the-art student perfor-
mance prediction baselines:
Individualized Bayesian Knowledge Tracing (IBKT)
[24, 51]: This is a variant of the standard BKT model, which
assumes binary observations and provides individualization
on student priors, learning rate, guess, and slip parameters 4.
Deep Knowledge Tracing (DKT) [38]: DKT is a pio-
neer algorithm that uses recurrent neural networks to model
student learning, on binary (success/failure) student scores.
Feedback-Driven Tensor Factorization (FDTF) [40]:
This tensor factorization model decomposes the student in-
teraction tensor into a learning material latent matrix and
a knowledge tensor. However, it only models one type of
learning material, does not capture student latent features,
and does not allow the students to forget the learned con-
cepts. It assumes that students’ knowledge strictly increases
as they interact with learning materials.
Tensor Factorization Without Learning (TFWL): This
is a model similar as FDTF, the only difference is TFWL
does not have constraint that student knowledge is increas-
ing.
Rank-Based Tensor Factorization (RBTF) [18]: This
model has similar assumptions to FDTF. Except, it allows
for occasional forgetting of concepts and has extra bias terms.
Compared to MVKM, it does not differentiate between dif-
ferent student groups. It only uses student previous scores in
graded learning materials to predict students’ future scores,
and it has a different tensor factorization strategy.
Bayesian Probabilistic Tensor Factorization (BPTF)
[50]: This is a recommender systems model has a smoothing
assumption over student scores in consecutive attempts.
AVG: This baseline uses the average of all students’ scores
for all predictions.

As mentioned before, one major issue in real-world datasets
is their skewness, meaning that, on average, student grades
are skewed towards a full (complete) score on quizzes/assign-
ments. This skewness adds to the complexity of predicting
an accurate score for unobserved quizzes: only using an over-
all average score will provide a relatively good estimate of

3https://github.com/sz612866/MVKM-Multiview-Tensor
4The code is from https://github.com/CAHLR/pyBKT

the real score. As a result, outperforming a simple average
baseline is a challenging task.

The mentioned baselines all work on one type of learning ma-
terial. Since our proposed MVKM model works with more
than one learning material type, to be fair in evaluations,
we run baseline algorithms in a multi-view setup. To do
this, we aggregate the data from all learning material types
and use that as an input to these baselines. In those cases,
we add a “MV” to the end of their names. For example,
FDTF MV represents running FDTF on aggregation of stu-
dent interactions with multiple learning material types. In
addition, for knowledge tracing algorithms (BKT and DKT)
which are designed for binary student responses (correct or
incorrect), we modify their settings to make them predict
numerical scores as described below. First, we binarize stu-
dents’ historical scores based on median score. Specifically,
if the score is greater than the median, it will be set to 1,
and 0 otherwise. Then, we use the probability of success
generated by BKT and DKT as the probability of student
receiving a score more than median score. Eventually, the
numerical predicted scores can be obtained by viewing the
probability output as the percentile of students’ score on
that specific question. Moreover, since these models require
pre-defined knowledge components (KCs), we assume that
each learning material is mapped to one KC in these models.

In addition to the above, we compare our multi-view model
with its basic variation (MVKM-Base) using the data from
graded materials only, and its multi-view variation without
the learning and forgetting constraints (MVKM-W/O-P).

4.3.2 Performance Metrics and Comparison
In this task, our target is to accurately estimate the ac-
tual student scores. To evaluate how close our predicted
values are to the actual ones, we use Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) between
the predicted scores and the actual scores for students. Ta-
ble 2 and 3 show the results of performance among different
methods on synthetic data and real data, respectively. We
can see that our proposed model outperforms other base-
lines on synthetic data, and has the best performance on
real datasets in general.

MVKM-Base vs. Single Material Type Baselines.
Comparing MVKM-Base with other algorithms that use stu-
dent scores only, shows us that MVKM-Base has consistently
lower error compared to most baselines, in both synthetic
and real-world datasets. This result demonstrates the abil-
ity of MVKM-Base in capturing data variance and validity
of its assumptions for real-world graded data. Compared
to AVG, MVKM-Base can represent more variability; com-
pared to RBTF, the student latent features in MVKM-Base
leads to improved results; compared to FTDF, the forget-
ting factor results in less error; and compared to BKT and
DKT, modeling the learning material concepts in Q and hav-
ing a rank-based constraint to enforce learning improves the
performance. The only baseline algorithm that outperforms
MVKM-Base in some setups is BPTF. Particularly, BPTF
has a lower RMSE and MAE in Synthetic NG and Syn-
thetic G datasets that are skewed. In real-world datasets,
it performs better than MVKM-Base in MORF-QD dataset
that is more sparse and has a slightly higher average score
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Methods
Synthetic NG Synthetic NG2 Synthetic G

RMSE MAE RMSE MAE RMSE MAE
AVG 0.3084±0.0072 0.2820±0.0093 0.5059±0.0115 0.4005±0.0115 0.3070±0.0039 0.2811±0.0050

RBTF 0.2515±0.0126 0.2027±0.0081 0.3374±0.0234 0.2681±0.0146 0.2628±0.0113 0.2103±0.0080
FDTF 0.4906±0.0172 0.4410±0.0207 0.6588±0.0215 0.5529±0.0226 0.5041±0.0184 0.4537±0.0213
TFWL 0.5283±0.0168 0.4632±0.0178 0.6919±0.0132 0.5883±0.0156 0.5490±0.0053 0.5130±0.0076
BPTF 0.1675±0.0048 0.1256±0.0061 0.3454±0.0140 0.2589±0.0072 0.1825±0.0064 0.1381±0.0050
IBKT 0.4744±0.0118 0.4197±0.0140 0.6630±0.0122 0.5494±0.0152 0.4748±0.0076 0.4233±0.0098
DKT 0.2694±0.0275 0.1911±0.0241 0.4536±0.0404 0.3569±0.0413 0.2716±0.0209 0.2047±0.0178

RBTF-MV 0.2920±0.0069 0.2305±0.0078 0.4064±0.0213 0.3227±0.0147 0.2618±0.0155 0.2126±0.0130
FDTF-MV 0.4078±0.0168 0.3402±0.0167 0.5861±0.0211 0.4688±0.0135 0.4888±0.0112 0.4538±0.0131
TFWL-MV 0.4337±0.0139 0.3896±0.0133 0.6386±0.0161 0.5450±0.0194 0.5312±0.0137 0.4626±0.0145
BPTF-MV 0.1718±0.0037 0.1457±0.0055 0.3438±0.0158 0.2603±0.0120 0.1533±0.0055 0.1184±0.0044
IBKT-MV 0.4257±0.0142 0.3585±0.0155 0.6019±0.0124 0.4892±0.0165 0.4844±0.0068 0.4275±0.0089
DKT-MV 0.4278±0.0313 0.3613±0.0318 0.6399±0.0515 0.5320±0.0526 0.3390±0.0252 0.2892±0.0245

MVKM-Base 0.2007±0.1069 0.1498±0.0809 0.3026±0.0697 0.2273±0.0356 0.2097±0.0485 0.1565±0.0348
MVKM-W/O-P 0.1714±0.0089 0.1306±0.0089 0.2817±0.0316 0.2213±0.0245 0.1796±0.0345 0.1357±0.0190

Our Method (MVKM) 0.1388±0.0048 0.1049±0.0056 0.2221±0.0074 0.1739±0.0048 0.1532±0.0128 0.1171±0.0097

Table 2: Performance Prediction results on synthetic datasets, measured by RMSE and MAE, shown with
variance in 5-fold cross-validation

Methods
MORF QD MORF QL CANVAS H

RMSE MAE RMSE MAE RMSE MAE
AVG 0.2410±0.0227 0.1913±0.0161 0.2420±0.0108 0.1957±0.0067 0.0767±0.0121 0.0555±0.0040

RBTF 0.2711±0.0229 0.2132±0.0147 0.2572±0.0114 0.1980±0.0074 0.1571±0.0172 0.1235±0.0103
FDTF 0.3081±0.0437 0.2401±0.0329 0.3006±0.0194 0.2324±0.0151 0.1395±0.0259 0.0929±0.0119
TFWL 0.2750±0.0529 0.2003±0.0249 0.3090±0.3090 0.2237±0.0099 0.2377±0.0803 0.1186±0.0513
BPTF 0.2172±0.0128 0.1776±0.0082 0.2302±0.0068 0.1953±0.0048 0.1114±0.0120 0.0946±0.0082
IBKT 0.2756±0.0070 0.2281±0.0053 0.2646±0.0147 0.2174±0.0096 0.0856±0.0105 0.0692±0.0042
DKT 0.3169±0.0374 0.2498±0.0313 0.2859±0.0061 0.2158±0.0075 0.0911±0.0322 0.0616±0.0173

RBTF-MV 0.2814±0.0282 0.2177±0.0222 0.2624±0.0193 0.1977±0.0136 0.1484±0.0098 0.1171±0.0054
FDTF-MV 0.3138±0.0441 0.2453±0.0387 0.2398±0.0137 0.1866±0.0091 0.1149±0.0085 0.0907±0.0068
TFWL-MV 0.2919±0.0275 0.1975±0.0160 0.3222±0.0208 0.2178±0.0165 0.1748±0.0600 0.0784±0.0269
BPTF-MV 0.2615±0.0129 0.2286±0.0114 0.2313±0.0070 0.1960±0.0041 0.1452±0.0100 0.1343±0.0081
IBKT-MV 0.2774±0.0204 0.2177±0.0099 0.2904±0.0098 0.2137±0.0062 0.0834±0.0125 0.0425±0.0049
DKT-MV 0.2938±0.0310 0.2352±0.0236 0.2540±0.0065 0.2185±0.0047 0.079±0.0247 0.0496±0.0065

MVKM-Base 0.2242±0.0328 0.1669±0.0207 0.2277±0.0119 0.1724±0.0081 0.0666±0.0159 0.0411±0.0040
MVKM-W/O-P 0.2385±0.0196 0.1771±0.0104 0.2450± 0.0145 0.1814±0.009 0.0649±0.0111 0.0388±0.0027

Our Method (MVKM) 0.2088 ± 0.0229 0.1603±0.0142 0.2150±0.0127 0.1654±0.0104 0.0613±0.0112 0.0362±0.0028

Table 3: Performance Prediction results on real-world datasets, measured by RMSE and MAE, shown with
variance in 5-fold cross-validation.

compared to the other two. This shows that BPTF is better
than MVKM-Base in handling skewed data. One potential
reason is BPTF’s smoothing assumption, in contrast with
MVKM-Base’s rank-based knowledge increase, that results
in a more homogeneous score predictions for each student.

MVKM: Multiple vs. Single Material Types. Com-
paring MVKM’s results with MVKM-Base model, we can
see that using data from multiple learning material types
improves performance prediction results. It verifies our as-
sumptions regarding knowledge transfer in different learn-
ing material types through the knowledge gain in shared
concept latent space. This is given that in other models,
e.g., all models except DKT in MORF-QD, adding different
learning material types increases the prediction error. This
error increase is particularly happening with BPTF model in
real-world datasets and DKT model in synthetic ones. This
shows that merely aggregating data from various resources,
without appropriate modeling, can even harm the prediction
results. This difference between MVKM and other baselines
is in its specific setup, in which each learning material type is
modeled separately, while keeping a shared knowledge space,
student latent features, and knowledge gain.

Learning and Forgetting Effect. To further test the
effect of our knowledge gain and forgetting constraint, we
compare MVKM with MVKM-W/O-P, a variation of our

proposed model without the rank-based constraint in Equa-
tion 2. We can see that MVKM outperforms MVKM-W/O-
P in all datasets. This shows that the soft knowledge in-
crease and forgetting assumption is essential in correctly
capturing the variability in students’ learning. Particularly,
comparing MVKM-W/O-P’s results with MVKM-Base, the
single-view version that includes the rank-based learning
constraints, we can measure the effect of adding multiple
learning material types vs. the effect of adding the learning
and forgetting constraints in MVKM model. In CANVAS H
dataset, adding multiple learning material types is more ef-
fective than learning constraint, and in MORF datasets, re-
alizing learning constraint is more important than modeling
multiple types of learning materials. Nevertheless, they are
not mutually exclusive and both are important in the model.

Hyper-parameter Tuning Using a separate validation
set, we experiment with various values (grid search) for
model hyper-parameters to select the most representative
ones for our data. Specifically, we first vary the student
latent feature dimension K in [1, 5, 10, · · · , 40, 45], the ques-
tion latent feature dimension C in [1, 2, · · · , 9, 10], the penalty
weight ω in [0.01, 0.05, 0.1, 0.5, 1, 2, 3], the Markovian step
m in [1, 2, · · · , 10], and the learning resource importance pa-

rameter γ[r] in [0.05, 0.1, 0.2, 0.5, 1, 2]. Once we found a good
set of hyper-parameters from coarse-grained grid search, we
search the values close to the optimal values to find out the
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best fine-grained values for these hyper-parameters. The
best resulting hyper-parameter values for each dataset are
listed in table 4. We use γ[1] as the trade-off parameter for
graded learning material, γ[2] for anther learning material.
As we can see, in both the synthetic and real-world data, the
learning and forgetting constraint is more important (larger
ω) when having a non-graded learning material type. This
shows that binary interaction data, unlike student grades
(or scores), is not precise enough to represent the students’
gradual knowledge gain in the absence of a learning and for-
getting constraint. Also, comparing γ[2] in MORF QD vs.
MORF QL we can see that the importance of video lectures
is more than discussions in predicting students’ performance.

Dataset K C ω γ[1] γ[2] η m λt λs

Synthetic NG 3 3 0.2 1 0.1 0.1 1 0.01 0.001
Synthetic NG2 3 3 0.2 1 0.1 0.1 1 0.001 0.001

Synthetic G 3 3 0.1 1 0.4 0.1 1 0.001 0.001
MORF QD 39 5 1 1 0.05 0.1 1 0 0
MORF QL 35 9 0.6 1 0.5 0.1 1 0 0
Canvas H 28 7 2.0 1 0.5 0.01 1 0 0

Table 4: Hyperparameters of our model for each
dataset

4.4 Student Knowledge Modeling
In this set of experiments, we answer two main research
questions: 1) Can our model’s learning and forgetting con-
straint capture meaningful knowledge trends across concepts
for students as a whole? and 2) Are the individual student’s
knowledge growth representative of their learning? To an-
swer these questions, we look at the estimated knowledge
tensor of students (K = ST ).

Figure 3: Average knowledge gain of concepts across
all students.

To answer the first question, we check the average student
knowledge growth on different concepts. Figure 3 shows
the average knowledge of all students in different concepts
(represented with different colors) during the whole course
period (X-axis) for MORF QL, and CANVAS H datasets
(MORF QD has similar patterns as MORF QL, we don’t
show it due to the page limitation). Notice that, for a
clear visualization, we only show 3 out of 9 concepts from
MORF QL dataset in the figure. We can see that, on av-
erage, students’ knowledge in different concepts increase.
Particularly, in MORF QL, the initial average knowledge
on concept 3 is less that concepts 5 and 7. However, stu-
dents learn this concept rapidly as shown by the increase of
knowledge level around the tenth attempt. As the knowledge
growth is less smooth in this concept, compared to the other
two (e.g., the drop around the 15th attempt), students are
more likely to forget it rapidly. Eventually, the average stu-
dent knowledge in all concepts are close to each other. On

the other hand, in CANVAS H, the average initial knowl-
edge in different concepts are relatively close. However, stu-
dents end up having different knowledge levels in different
concepts at the end of the course, especially in concepts 0
and 4. Also, all six concepts show large fluctuations across
the attempts. Overall, the students have a significant knowl-
edge gain at the first few attempts and the knowledge gain
slows down after that. This is aligned with our expectation
on students’ knowledge acquisition through out the course.

Figure 4: Average knowledge gain of each concept
across all students.

To show the effect of the learning and forgetting constraint
in MVKM, we look at the student knowledge acquisition
in the MVKM-W/O-P model, that removes this constraint.
The MVKM-W/O-P’s average student knowledge in differ-
ent concepts throughout all attempts is shown in Figure 4.
We can see that despite its acceptable performance predic-
tion error, MVKM-W/O-P’s estimated knowledge trends are
elusive and counter-intuitive. For example, many concepts
(such as concept 3 in MORF QL) show a U-shaped curve.
This curve can be interpreted as the students having a high
prior knowledge in these concepts, but forgetting them in the
middle of the course, and then re-learning them at the end of
the course. In some cases, such as concept 1 in CANVAS H,
students lose some knowledge and forget what they already
knew, by the end of the course. This demonstrates the ne-
cessity of learning and forgetting penalty term in MVKM.

For second question, we check if there are meaningful differ-
ences between knowledge gain trends of different students.
To do this, we apply spectral clustering on students’ latent
features matrix S to discover different groups of students.
Then, we compare students’ learning curves from different
clusters. The number of clusters is determined by the signif-
icance of difference on average performance in each cluster.
We obtained 3 clusters of students for MORF QD course,
and 2 clusters for MORF QL and CANV AS H courses
based on students’ latent features from our model.

To see the differences in these groups, we sample one stu-
dent from each cluster in each real-world dataset. Figure 5
shows these sample students’ knowledge gain, averaged over
all concepts, in datasets MORF QD and MORF QL (CAN-
VAS H is not showed due to the page limitaion, it has simi-
lar patterns as MORF QD). The figures show that different
students start with different initial prior knowledge. For ex-
ample, in MORF QL, student #5 starts with a lower prior
knowledge than student #100 and ends up with a lower final
knowledge. Also, the figure shows that different knowledge
gain trends across students, particularly in MORF QD. For
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Figure 5: Sample students’ knowledge gain across
all concepts in two different courses.

example, student #0 starts with a lower prior knowledge
than the other two students, but has a faster knowledge
growth, and catches up with them around attempt 8. How-
ever, this student’s knowledge growth slows down after a
while end up to be lower than the other two at the end of
course. To see if the quantified knowledge is meaningful, we
compare student’s knowledge growth with their scores. Stu-
dents #0, #8, and #189 in MORF QD have average grades
0.202, 0.636, and 0.909, in MORF QL, #5 and #100 have
average grades 0.9 and 0.98. This align with the knowl-
edge levels shown in the figure. These observations show
that MVKM can meaningfully differentiate between differ-
ent students’ knowledge growth.

4.5 Learning Resource Modeling
In this section, we evaluate our model on how well it can
represent the variability and similarity of different learn-
ing materials. We mainly focus on two questions: 1) Are
the learning materials’ biases consistent with their difficulty
levels? 2) Are the discovered latent concepts for learning

materials (matrix Q[r]) representative of actual conceptual
groupings of learning materials in the real datasets?

Bias Evaluation. For the first question, since we do not
have access to the learning materials’ difficulty levels, we use
average student scores on them, as a proxy for difficulty. As
a result, we only use graded learning materials for this anal-
ysis. We calculated the spearman correlation between ques-
tion bias captured by our model and average score of each
question. The spearman correlation on MORF QD is 0.779,
on MORF QL is 0.597, and on CANVAS H is 0.960.We find
that question bias derived from MCKM is highly correlated
with average question score, where the lower the actual av-
erage grades are, the lower the bias values are learned.

Within-Type Concept Evaluation. For the second ques-
tion, we would like to know how much the learning materials’
discovered latent concepts resemble the real-world similar-
ities in them. To evaluate the real-world similarities, we
rely on two scenarios: 1) the learning material that are ar-
ranged closely to each other in the course structure, either in
same module or in consequent modules, are similar to each
other (course structure similarity); 2) the learning materials
that are similar to each other have similar concepts and con-
tents (content similarity). Since only one of our real-world
datasets, MORF QL, includes the required information for
these scenarios, we use this dataset in the continuation of
this paper. For first scenario, the course includes an ordered
list modules, each of which include an ordered list of videos,

in addition to the assignments associated with each module.

For the second scenario, because our learning materials are
not labeled with their concepts in our datasets, we use their
textual contents (not used in MVKM) as a representation of
their concepts. Particularly, we have subscripts for 40 video
lectures, and text of questions for 8 quizzes. We note that
if two learning materials present the same concepts, their
textual contents should also be similar to each other. As
a result, we build content-based clusters of learning mate-
rials, each of which containing the learning materials that
are conceptually similar to each other. Specifically, to clus-
ter the learning material according to their contents, we use
Spectral Clustering on the latent topics that are discovered
using Latent Dirichlet Analysis (LDA)[9] on the learning
material’s textual contents. In the same way, we can cluster
the learning materials according to their discovered latent
concepts by MVKM. Similar to the textual analysis, we use
spectral clustering on the discovered Q[r] matrices to form
clusters of learning materials. To do this, we first consider
only one learning material type (the video lectures) and then
move on to the similarities between two types of learning
materials (both video lectures and assignments).

The results are shown in Figure 6 for within-type learning
material similarity in video-lectures. Figure 6(a) shows the 8
clusters that were discovered using MVKM, and Figure 6(b)
shows the 8 clusters that were discovered using video-lecture
transcripts. Each cluster is shown within a box with a num-
ber associated with it. Each video-lecture is shown by its
module (or week in the course), its order in the module se-
quence, and its name. For ease of comparison, we colored the
video names according to their LDA content clusters. Look-
ing at the LDA content clusters, we can see that although
some lectures in same module fit in same cluster (e.g., videos
1, 2, 3, and 4 from week 7 are all in cluster 7), some of the
lectures do not cluster with other videos in their module.
For example, video 5 in week 7 is in cluster 2, with pioneer
knowledge tracing methods. This shows that in addition
to structural similarities, content similarities also exist in
learning materials. Looking at MVKM clusters, we can see
that the clusters mostly represent the course structure sim-
ilarity: learning materials from same module are grouped.
For example, all videos of week 3 are grouped in cluster 2.
However, we can see that in many cases, whenever the struc-
ture similarity in clusters are disrupted, it is because of the
content similarity in video lectures. For example, video 5 in
week 7 that was clustered with pioneer knowledge tracing
method in LDA content clusters is also clustered with them
in MVKM clusters.

Between-Type Concept Evaluation. To evaluate MV-
KM’s discovered similarities between different types of learn-
ing materials, we evaluate assignments’ and video lectures’
in MORF QL. To do this, we build LDA-based clusters us-
ing assignment texts and video lecture transcripts. These
clusters are shown in Figure 7(b). We also cluster the learn-
ing materials using spectral clustering on the concatenation
of their Q[r] matrices (Figure 7(a)). Because the assign-
ments bring more information to the clustering algorithms,
the clustering results are different from the clusters of video
lectures only. Similar to within-type concept evaluation re-
sults, we can still see the effect of both content and structure

321 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



W1 V4: Classifiers Part 2 - RapidMiner
W2 V6: Types of validity
W4 V1: Knowledge Inference
W4 V2: Bayesian Knowledge Tracing
W4 V3: Performance Factors Analysis  
W7 V3: Advanced Clustering Algorithms
W7 V4: Clustering Examples
W7 V5: Factor Analysis 
W8 V1: Discovery with Models
W8 V2: Discovery with Models - Case Study
W8 V4: Hidden Markov Models
W8 V5: Conclusions and Further Directions

Week 1 Introduction
W1 V1: Big Data in Education

W1 V3: Classifiers Part 1W1 V6: Case Study - San Pedro

W1 V2: Regressors
W3 V1: Ground Truth for Behavior Detection
W3 V2: Data Synchronization and Grain Sizes
W3 V3: Feature Engineering
W3 V4: Automated Feature Generation
W3 V5: Knowledge Engineering

W2 V2: Diagnostic Metrics, part 1
W2 V3: Diagnostic Metrics, part 2

W1 V5: Classifiers Part 3

W2 V1: Detector Confidence
W4 V4: Item Response Theory
W4 V5: Advanced BKT
W5 V1: Correlation Mining
W5 V2: Casual Mining
W5 V3: Association Rule Mining
W5 V4: Sequential Pattern Mining
W5 V5: Network Analysis
W6 V1: Learning Curves
W6 V3: Scatter Plots
W6 V4: State Space Diagrams
W6 V5: Other Awesome EDM Visualizations
W7 V1: Clustering
W7 V2: Validation and Selection of K
W8 V3: Text Mining

4
5

6

7

8
3

2

1

(a)

Week 1 Introduction
W1 V1: Big Data in Education
W1 V2: Regressors
W1 V4: Classifiers Part 2 - RapidMiner
W1 V6: Case Study - San Pedro
W2 V1: Detector Confidence
W2 V6: Types of validity
W3 V2: Data Synchronization and Grain Sizes
W5 V5: Network Analysis
W6 V1: Learning Curves
W6 V5: Other Awesome EDM Visualizations
W8 V1: Discovery with Models
W8 V5: Conclusions and Further Directions

W2 V2: Diagnostic Metrics, part 1
W3 V5: Knowledge Engineering
W4 V1: Knowledge Inference

W2 V3: Diagnostic Metrics, part 2
W5 V1: Correlation Mining
W6 V4: State Space Diagrams

W1 V5: Classifiers Part 3
W3 V4: Automated Feature Generation
W5 V2: Casual Mining

W4 V2: Bayesian Knowledge Tracing
W4 V3: Performance Factors Analysis 
W4 V4: Item Response Theory
W7 V5: Factor Analysis 
W8 V4: Hidden Markov Models

W3 V1: Ground Truth for Behavior Detection
W5 V3: Association Rule Mining
W5 V4: Sequential Pattern Mining
W8 V2: Discovery with Models - Case Study
W8 V3: Text Mining

W1 V3: Classifiers Part 1
W3 V3: Feature Engineering

W4 V5: Advanced BKT
W6 V3: Scatter Plots
W7 V1: Clustering
W7 V2: Validation and Selection of K
W7 V3: Advanced Clustering Algorithms
W7 V4: Clustering Examples

1

2

3

4

5

6

7

8

(b)
Figure 6: Clusters that were discovered by using MVKM (a), clusters discovered by using video-lecture
transcripts (b).
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Figure 7: Clusters discovered by using MVKM (a), clusters discovered by using video-lecture transcripts and
assignment texts(b).

similarities in video lectures that are clustered together by
MVKM. For example, videos 1 and 3 of week 2 are clus-
tered with later weeks’ videos because of content similarity
(cluster 1 in Figure 7(a)). While videos 2 of week 2 is also
clustered with them because it comes between these two
videos in course sequence.

Additionally, between video lectures and assignments, the
clusters closely follow the course structure. The assignments
in this course come at the end of their module and right be-
fore the next module starts. For example, “Assignment 3”
appears after video 5 at week 3 and before video 1 at week
4. We can see that all assignments, except “Assignment 1”
that is the first one, are clustered with their immediate next
video lecture. Moreover, we can see the effect of content sim-
ilarity between assignments and video lectures in differences
of Figures 6(a) and 7(a). For example, without including
assignments, “Week 1 Introduction” and “W1 V1: Big Data
in Education” were clustered together in cluster 7 of Fig-
ure 6(a). However, after adding assignments, because of the
content similarity between “Assignment 3” and “Week 1 In-
troduction” ( Figure 7(b) cluster 2), “Week 1 Introduction”
and “W1 V1: Big Data in Education” are clustered with
video lectures that are structurally close to “Assignment 3”.

Altogether, we demonstrated that learning materials’ bias
parameters in MVKM are aligned with their difficulties;
learning materials’ latent concepts discovered by our model
well represent learning materials’ real-world similarities, both
in structure and in content; and MVKM can successfully
unveil these similarities between different types of learning
materials, without observing their content or structure.

5. CONCLUSIONS
In this paper, we proposed a novel Multi-View Knowledge
Model (MVKM) that can model students’ knowledge gain
from different learning materials types, while simultaneously
discovering materials’ latent concepts. Our proposed ten-
sor factorization model explicitly represents students’ knowl-
edge growth and allows for occasional forgetting of learned
concepts. Our extensive evaluations on synthetic and real-
world datasets show that MVKM outperforms other base-
lines in the task of student performance prediction, can ef-
fectively capture students’ knowledge growth, and represent
similarities between different learning materials types.
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ABSTRACT
Predicting student success in a data science degree program
is a challenging task due to the interdisciplinary nature of
the field, the diverse backgrounds of the students, and an
incomplete understanding of the precise skills that are most
critical to success. In this study, the applicant’s future aca-
demic performance in a Master of Data Science program is
assessed using information from the admission application,
such as standardized test scores, undergraduate grade point
average, declared major, and school ranking. Simple data
analysis methods and visualization techniques are used to
gain a better understanding of how these variables impact
student performance, and several classification algorithms
are used to induce models to distinguish between students
that will perform very well and those that will perform very
poorly. Historical admissions and grading data are used to
perform these analyses and build the classification models.
The analyses and predictive models that are generated pro-
vide insight into the factors that identify good and poor
candidates, and can aid in future admissions decisions.

Keywords
Admission decision making, Master’s program, data science,
learning assessment, machine learning.

1. INTRODUCTION
Data mining methods are now in widespread use in many
industries, from healthcare[10] to business[15]. Data mining
is increasingly applied to education [3][8][14] and includes
many diverse applications, all of which fall under the area
of educational data mining (EDM). A particular focus of

such applications is the college admissions process and its
effectiveness, since this process directly affects the reputa-
tion of the institution as well as its financial well-being.
Examples of work in this area include predicting college
admissions yield [5], student retention[11], and enrollment
management[1]. Another related area of EDM relates to
predicting student performance. One such study used stu-
dent personal and social factors, along with academic per-
formance data, to identifying poor performers early on[2],
while another study used similar information to predict third
semester academic performance [13]. One more study used
student course data during the semester (attendance, home-
work scores, etc.) to predict the student score on the end of
the semester examination[18].

In this paper we investigate the problem of identifying a
good admissions strategy for a Master’s of Science program
in Data Science (MSDS), so that the students that are ad-
mitted into the program will perform well. This problem
is generally related to the EDM admissions topic, but also
to the topic of predicting student performance. This prob-
lem is interesting, and distinctive, for a variety of reasons.
One reason is that the vast majority of applications of data
mining to college admissions deals with undergraduate ad-
missions. That admissions process is very different from
the process for our MSDS program, since undergraduate ad-
missions is controlled by full-time admissions professionals,
whereas admissions for our MSDS program is controlled by
faculty with little time to devote to admissions, and who
lack specialized admissions training. This is true for most
graduate programs, except for possibly the large professional
schools (e.g., law, medicine) that may admit many more
students and have deeper resources. Determining admission
to MSDS programs is especially challenging since it is an
interdisciplinary field that attracts applicants from diverse
backgrounds, and because MSDS programs were introduced
only recently and hence have limited historical knowledge to
leverage. Furthermore, even experts in the area do not fully
understand exactly which undergraduate skills are most crit-
ical to success, so it is hard to know which students to admit
or reject.
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The goal of this data mining task is to determine if, using
only information available in the admissions application, a
student will perform very well in the program, and hence
deserve merit-based aid, or perform very poorly and hence
should not be admitted. At this time only structured data is
utilized in order to simplify the classification task. Thus ex-
ternal recommendations, personal statements, and resumes
are not considered. However, there is still a wealth of infor-
mation that is available, which includes prior degrees and
associated grades, the name and country of the prior ed-
ucational institutions, standardized test scores such as the
GRE (Graduate Record Examination) and TOEFL (Test of
English as a Foreign Language), and personal information
about the applicant such as age, nationality, work history,
and whether they ask for merit-based financial aid.

The purpose of this study is not just to identify which stu-
dents will perform very well or very poorly, but to better
understand the relevant factors. Thus, the predictive model
that we build will most likely not be used for automated
decision making, but instead will be used to educate the ad-
missions committee about which factors are most relevant
for success in the program. As mentioned earlier, this is
especially important for the MSDS degree because the ap-
plicants have such different backgrounds and because the
degree is relatively new.

A practical issue that impacts this study is that because
the offered degree was launched only a few years ago, the
data is quite limited. Compounding this issue is the fact
that we do not have outcomes for students who are accepted
but do not attend the university, and worse yet, we cannot
know anything about how students who are rejected from
the program would perform. One of our long term goals is
to fully utilize this unlabeled data to improve the admissions
process. This is discussed later in this paper as future work.

The rest of the paper is organized as follows. We present
the details of our dataset in Section 2. The design of our
experiments and associated methodology are presented in
Section 3. Section 4 presents our experimental results and
predictive factor analysis. We conclude and suggest future
work in Section 5.

2. THE DATA
This section describes the data utilized in this study. Sec-
tion 2.1 describes the data at a high level and includes some
summary statistics, while Section 2.2 describes the features
included in each application record. Section 2.3 then de-
scribes the distribution of feature values for key features,
while Section 2.4 describes how these feature values relate
to student performance in the MSDS program.

2.1 Overview
The data in this study is extracted from the application data
provided by each applicant to Fordham University’s MSDS
program. The application process is completely electronic,
so the underlying data was already in electronic form. Much
of this data is structured data (e.g., student GRE scores)
that is already parsed and readily available for extraction.
However, other information, such as the student’s required
statement of purpose and external recommendations, are un-

structured text and would require substantial effort to ex-
ploit. This study is limited to structured data.

The data set is comprised of 826 applicant records. Of this
total, 503 (60.9%) applicants were accepted into the program
and 323 (39.1%) were rejected. Of the 503 accepted appli-
cants, 132(26.2%) enrolled in the program while 371 (73.8%)
did not enroll. Since only students who enrolled have grade
information, the main analyses presented in this paper are
based on only 132 records. Note that the data used in these
analyses depends on our current admissions strategy, since
it is possible that some of the students who were denied ad-
mission into the program could have performed well in the
classes. The best we can do with respect to the popula-
tion of students who were denied admission is to compare
their characteristics with those of the students who enrolled
and performed poorly; if it turns out that the factors used
to determine admission into the program differ from those
that tend to predict good performance, then the current ad-
missions strategy should be modified. The characteristics
of each student population are explored and compared in
Section 2.3.

2.2 Features and Feature Generation
The features that are extracted from the student applica-
tions and used in this study are listed in Table 1, along with
sample values. The first three features describe the Grad-
uate Record Examination (GRE) standardized test scores
and are encoded using the score percentile. The fourth fea-
ture describes the Test of English as a Foreign Language
(TOEFL) total score. The next field specifies the number
of months from the time of completion (or projected com-
pletion) of the last degree to the time the current appli-
cation was submitted. For students who plan to start the
MSDS program immediately following the graduation from
their current program, this value is typically a negative six
months. Student age is at the time of application and mar-
ital status is single, married, divorced, domestic partner, or
blank (unspecified). Gender is either male or female and
citizenship specifies the country of citizenship. The next
six features relate to the last degree program (i.e., school)
that the student attended. They include the student’s GPA
(Grade Point Average), major and degree, the country that
the school resides in, the primary language of instruction,
and the school ranking. The MSDS GPA uses a 4-point
scale, and is based on the student’s performance after en-
rolling in the program. This attribute is utilized to generate
the class value, as described in Section 3.1.

School rank is the only feature in Table 1 that is not a feature
from the student application. Instead, the ranking is gen-
erated from the school name via a multi-step process. The
first step involves matching the school name against the US
News and World Report “Best Global Universities” rank-
ing (usnews.com/education/best-global-universities),
which includes 1500 universities from eighty countries and
is based on academic research performance and global and
regional reputation. If a match is found, then this global
ranking is used; otherwise the US News and World Re-
port“Best Colleges”ranking is searched (usnews.com/best-

colleges). This is restricted to colleges in the United States
and includes separate rankings for national universities (ma-
jor research institutions), liberal arts colleges, and regional
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Table 1: Data Set Features and Sample Values
# Feature Name Sample Value
1 GRE Verbal % 52
2 GRE Quantitative % 95
3 GRE Writing % 34
4 TOEFL Total 105
5 Months since Degree 6
6 Student Age 22
7 Marital Status Married
8 Gender M
9 Citizenship China
10 School GPA 3.7
11 School Major Chemical Engineering
12 School Degree BS
13 School Country China
14 School Language Mandarin
15 School Rank 85
16 MSDS GPA 3.5

colleges and universities. If a match is found in one of these
rankings, then the ranking is converted to a global ranking
by adding 1200 if the match was for a national ranking, and
1400 if the match was for a regional ranking. This process of
assigning a global ranking is a very rough heuristic method,
but generally provides reasonable values. If a school is not
found on any of these rankings then a global ranking of 9999
is used.

There are a number of features that are available from the
original application information but are not used in this
study and do not appear in Table 1. For example, the Total
TOEFL score is included but the four TOEFL subscores are
not included, since preliminary analysis indicated that these
subscores did not provide much benefit. Additionally, if the
applicant attended multiple institutions of higher education,
then information for more than one school was provided.
However, since providing additional schools for only some
applicants would substantially complicate the analysis, this
information was dropped, so only the most recent degree
granting school was included.

2.3 Distribution of Feature Values
In any applied data mining study, it is important to un-
derstand the data. In this section, we provide information
about the distribution of feature values. Since the focus of
this study is in identifying students who will perform well
or poorly in the program, we begin with the feature distri-
bution of the students who enrolled in the MSDS program.
This information is provided in Figure 2.2. The figure pro-
vides a good overview of the demographics of the applicants:
males outnumber females by a ratio of almost 2 to 1, nearly
90% are single, and based on citizenship, about 74% are
foreign nationals, while 21% are US citizens, and 5% are
permanent residents. Clearly the MSDS program attracts a
large international contingent. As expected, most students
are young, although about 6% are over 30, suggesting that
they likely have substantial industry experience. Overall,
more than 80% are within two years of their last degree.

The TOEFL scores, which are only required for international
students who have not completed two years of instruction

at an English-language university, show that most students,
but not all, have good English language skills. According to
the testing agency, the average TOEFL score is 84, and any
such score is generally considered good. For the MSDS pro-
gram, a score of 80 or above is generally required, and hence
our admitted students tend to have good English language
skills.

A feature that is critical to the admissions decision is the
student’s prior major discipline. The program is geared to-
wards students who have substantial mathetmatics back-
ground and at least some experience in computer science
and programming. While computer science and mathemat-
ics majors are thought to have an advantage, students in
any science or quantitative discipline are encouraged to ap-
ply. Figure 2.2 shows the distribution of major over all ap-
plicants, and further shows the number in each major that
were admitted and rejected. The statistics show that the
largest number of admitted students have a background in
computer science or a highly related field, with mathematics
and statistics a close second.

Although this study focuses on enrolled students, it is useful
to understand the characteristics of the students who were
rejected from the program, or were admitted and did not
enroll, and how they compare to students who did enroll.
Displaying this information graphically for all three popula-
tions would take up too much space, so the key observations
are summarized below.

• Applicants who were rejected are much more likely to
have a GPA under 3.0 (41%) than those who enrolled
(14%) or were admitted and did not enroll (17%).

• Applicants who were rejected are more likely to have a
degree from an institution not ranked in the top 2000
(30.7%) than those who enrolled (25.8%) or were ad-
mitted but did not enroll (20.2%).

• Applicants who enrolled were about 6% more likely to
have completed a graduate degree (21.2%) than those
who were admitted but did not enroll (15.1%) or were
rejected (14.6%).

• Applicants who enrolled were less likely to be female
(35.6%) than those who were admitted but did not
enroll (47.4%) or were rejected (39.6%). Female appli-
cants who are admitted are less likely to enroll than
their male counterparts.

• Foreign nationals made up 74% of enrolled students,
79% of those admitted who did not enroll, and 77% of
those rejected. As might be expected, foreign nationals
who are admitted are somewhat less likely to attend.

• The age profile does not vary much between those ap-
plicants who enroll and are rejected. However, appli-
cants who enroll are much more like to be older and
between the ages of 24 and 30 (33%) than those were
who are admitted but do not enroll (22%).

• Those who apply more than two years after completing
their last degree are more likely to be rejected from the
program (33.3%) than those who either enroll (17%)
or are admitted and do not enroll (19%).
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Figure 1: Feature Statistics

Figure 2: Major Distribution

2.4 Features and MSDS Performance Groups
In Section 2.3 the distribution of feature values was exam-
ined for the population of enrolled students, and then the
key differences between the features for the three admission
categories (enrolled, admit but not enrolled, rejected) was
analyzed. In this section, we compare the feature values
with respect to student performance in the MSDS program
to provide insight into the factors that influence student per-
formance. As will be discussed in Section 3.1, our focus in
this study is to identify the students who enroll in the MSDS
program that will perform in the top 20% and the bottom
20%. Thus, in this section, we examine the feature val-
ues for three performance groups: the bottom 20%, middle
60%, and top 20%. In order to simplify the comparison, the
mean values of numerical features are considered. Table 2
provides the relevant information. The features values that
differ substantially between the bottom and top 20%, and
we believe are of predictive value, are underlined.

Table 2: Mean Values for MSDS Performance
Groups

Bottom Middle Top
Feature 20% 60% 20% All
GRE Verbal % 42.5 48.6 57.0 49.4
GRE Quantitative % 79.0 81.9 82.8 81.6
GRE Writing % 32.5 31.2 34.0 32.0
TOEFL Total % 96.1 96.1 96.6 96.2
Foreign National % 59.1 74.4 85.7 74.2
Graduate Degree % 18.2 19.5 28.6 21.2
Married % 22.7 9.8 14.3 12.9
Female % 22.7 39.0 35.7 35.6
Months Since Degree 12.8 13.6 22.8 15.4
Age 25.5 24.7 24.6 24.8
School Rank 1005 1005 1082 1005
School GPA 3.17 3.29 3.53 3.32

The three GRE test score percentiles in Table 2 show the
expected trend: the scores improve as we move up the per-
formance groups. The one exception is that there is a slight
dip in the GRE writing score when moving from the bottom
group to the middle group, but even in this case the writing
scores for the top group outperform the bottom group. Our
admissions committee normally places the most weight on
the quantitative score and generally does not consider the
writing score. What is most interesting is that the difference
in the quantitative scores between the bottom and top 20%
is only 3.8% (79.0% vs. 82.8%), even though quantitative
abilities are generally thought to be critical for data sci-
entists. The modest difference may reflect the fact that the
GRE exam only tests fundamental mathematical skills. The
TOEFL score barely differs between the three performance
groups; however, this may not be surprising since the mean
values are quite high, indicating that most students have
more than sufficient English language skills.
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There is an obvious pattern with respect to the percentage
of foreign nationals—the percentage of foreign nationals in-
creases from 59.1% for the bottom 20% to 85.7% for the top
20%. This marked difference occurs even though we showed
in Section 2.3 that the percentage of foreign nationals is rel-
atively constant across the three admissions categories. It is
worth mentioning that many of the foreign nationals com-
pleted their undergraduate education in the United States.
The data also shows that a higher percentage of students in
the top 20% previously earned a graduate degree. This may
seem intuitive, but since these degrees are generally in very
different disciplines, the relationship is not obvious. Such
students will have demonstrated the prior ability to com-
plete graduate work and perhaps the maturity associated
with this is a significant factor. A graduate degree is con-
sidered quite favorably in the admissions process, and also
enables a student to compensate for a low undergraduate
GPA.

Students in the top 20% are less likely to be married than
those in the bottom 20%, but the trend is not consistent
through the middle 60%, so we tend not to place too much
weight on these differences. The students in the top 20%
are more likely to be female than those in the bottom 20%
(35.7% versus 22.7%) and this suggests that there is a real
gender difference. The explanation for these gender differ-
ences is not obvious, but at the undergraduate level we have
observed that academically weak female students tend not
to major in Computer Science due to the societal pressure
that already discourages them from majoring in scientific
and technical disciplines.

The next two features show that higher performing students
tend to have more time since the granting of their last degree
(about one more year), but are still approximately the same
age. This could reflect the fact that students who immedi-
ately proceed from an undergraduate degree to the MSDS
program have not thought as deeply about their desire to
become a data scientist and hence may not be as commit-
ted. The school rank does not differ significantly between
the performance categories, suggesting that the reputation
of the prior school is not a key factor in student performance
in the MSDS program. Finally, there is a very clear trend
that the higher the GPA in the prior degree, the higher
performing the student. This is perhaps the most obvious
indicator of future achievement and the values support that:
the prior GPA of those that are in the top 20% of the MSDS
program is 3.53 versus 3.17 for those in the bottom 20%.

3. EXPERIMENT METHODOLOGY
This section describes the experiments related to predict-
ing student academic performance in the MSDS program.
Section 3.1 precisely defines the problem as a classification
problem. Section 3.2 provides a brief description of the eight
classification algorithms utilized in this study. The details
concerning the design of the experiments are provided in
Section 3.3.

3.1 Problem Formulation
We are primarily interested in identifying the applicants that
will perform very well and will have GPAs within the top
20% of enrolled MSDS students, or will perform poorly and
fall within the bottom 20%. The reason for this is that

we want to deny admission to those who we anticipate will
perform in the bottom 20% and may want to provide merit-
based aid to those we expect to perform in the top 20%.
Note that this does not mean we only deny admittance to
the bottom 20%, since admission will already be denied to
those who do not meet our general admissions requirements
(e.g., GPA above 3.0, TOEFL above 80, etc.). We therefore
build two classification models: one that distinguishes the
top 20% from the bottom 80% and one that distinguishes
the bottom 20% from the top 80%. The minority class is
always considered the positive class. The performance of
these two models is described in Section 4.

3.2 Classification Algorithms
This section provides brief descriptions of the established
machine learning algorithms that are employed in this study.
A heterogeneous ensemble approach is also described.

3.2.1 Logistic Regression
Logistic Regression [12] is a type of generalized linear model
(GLM) that studies the association between a categorical
response variable Y and a set of independent (explanatory)
variables X = {X1, X2, . . . , Xn}. In particular, the Y vari-
able is first modeled as a linear function of X, and then
the numerical predictions of Y are transformed into prob-
ability scores using a sigmoid function. In a binary classi-
fication task, the scores indicate a corresponding instance’s
likelihood of belonging to the positive class. Thus, a cutoff
(usually 0.5) can be established as a decision boundary to
further categorize the instances into the more likely class.

3.2.2 Support Vector Machines (SVM)
SVM [6] performs classification tasks by constructing a de-
cision boundary in a multidimensional space that separates
instances of different class labels. SVM strives to maximize
the distance between the hyperplane and the data points
of both classes. Maximizing the margin distance reinforces
that future data points can be classified with more confi-
dence. SVM is capable of transforming the data into a higher
dimensional space using various kernel functions to enhance
data separability. In this study linear SVM is used to facil-
itate risk factor analysis.

3.2.3 Decision Trees
A Decision Tree [16] model uses a tree structure to model
the data in which each leaf node corresponds to a class label
and attributes are represented as the internal nodes of the
tree. Each branch represents a potential value of its parent
node (i.e., an attribute). The major challenge in building a
Decision Tree model is to choose the attribute for each node
in each level. In our study we use the Gini Index as our
criterion for attribute selection.

3.2.4 Random Forest
Random Forest [4] is a collection of decision trees, where
each tree is trained with a subset of training instances and
a subset of attributes. By pooling predictions from multiple
decision trees, Random Forest reduces the variance of each
individual tree and achieves a more robust and superior per-
formance.
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3.2.5 Neural Network
A Neural Network [9] is a computational model that is in-
spired by the way biological neural networks in the human
brain process information. It consists of an input layer, one
or more hidden layer(s), and one output layer. The adjacent
layers are connected by transferring the values in one layer to
a new set of values in the next layer with a set of weights and
an activation function. “Training” is the process of adjusting
the network weights using a back propagation algorithm to
achieve the highest consistency (i.e., cross entropy) between
the model outputs and the true class labels.

3.2.6 Naive Bayes
A Bayes classifier belongs to the family of probabilistic gen-
erative models. The algorithm differs from discriminative
models in that, instead of finding a functional form, it mod-
els the probability distributions of the data. In a binary clas-
sification task, predictions are set to the larger of P (y = i|X)
where i ∈ {0, 1} and X = {x1, x2, . . . , xd}. A Naive Bayes
classifier further assumes that features are independent of
each other given the class, which simplifies the evaluation of

P(X|y=i) to
d∏

j=1

p(xj |y = i).

3.2.7 K-Nearest Neighbor (KNN)
KNN is an effective classification algorithm that does not
require pre-training of a model. Classification decisions are
based on a majority vote on k empirically observed instances
that are most similar to the instance in question. The re-
semblance is typically measured by a distance metric such
as Euclidean distance operated on the attributes describing
the two instances.

3.2.8 Ensemble Learner L
In addition to individual machine learning algorithms, we
explored ensemble techniques [7] to integrate information
from different classifiers. Ensemble learning is a family of
algorithms that seek to create a “strong” classifier based on
a group of “weak” classifiers. In this context, “strong” and
“weak” refer to how accurately the classifiers can predict the
target variable. Ensemble learning has been proven to have
improved and more robust performance than a single model.
Specifically, multiple base classifiers are built for the original
classification task with the training data. A meta-learner L
is constructed by combining the outcomes from the base
classifiers to improve predictive accuracy. In this study we
combine the predictions from the base classifiers using an
unweighted majority vote and our base learners consists of
seven single models described in Sections 3.2.1 - 3.2.7.

3.3 Experiment Design
All experiments in this study utilize 10-fold cross validation.
In addition to reporting overall predictive accuracy, the re-
sults in Section 4 and Table 3 report the performance on
the positive/minority class via the sensitivity metric, which
is also known as recall and true positive rate, and the per-
formance on the majority/negative class via the specificity
metric, which is also known as true negative rate. For both
classification tasks, there is class imbalance since the ratio of
the positive to negative class is approximately 1:4. Bagging
is used to address this class imbalance; at training time five
bags of balanced training data are created where each bag

consists of all minority-class examples and an equal number
of randomly selected majority-class examples. The class for
each test example is based on a majority vote of the five
models built using the data from each bag.

The parameters of the models are selected experimentally
using the training data using a grid search. Both the train-
ing and test accuracies are reported in Table 3. Specifically,
for the SVM model, the trade-off parameter C = 0.1. For
the KNN algorithms, the number of nearest neighbors k = 3.
For the neural networks model, we used a 3-layer architec-
ture with (128, 256, 512) nodes in identifying the bottom
20% of the students, and a two-layer architecture with (128,
256) nodes in identifying the top 20% of the students. For
the rest of the algorithms, including the depth of the de-
cision tree, the number of trees in the random forest, etc.,
we applied the default parameters provided by the Python
scikit-learn package.

4. EXPERIMENT RESULTS
This section presents the results of the classification exper-
iments. The accuracy results for identifying the top and
bottom performing students are presented, as are the top
predictors for identifying these two populations.

4.1 Analysis on Performance Measures
Table 3 presents all of the performance results for the two
classification tasks. This analysis focuses exclusively on the
performance on the test data. The results in the table show
that Random Forest and the ensemble learner L achieve the
two best overall predictive accuracy values for both classifi-
cation tasks. For the tasking of identifying the bottom 20%
of students, L achieved an 86% overall accuracy compared
to 83% for random Random Forest. When these results are
broken down into performance on the bottom 20% and the
rest, L achieved results of 90% and 83%, respectively, versus
91% and 75% for Random Forest. It should be noted, how-
ever, that although Decision Tree has only the third best
overall performance, it has the best performance at identi-
fying the bottom 20% of the students (94% versus 91% for
Random Forest and 90% for L). However, Decision Tree
performs very poorly at classifying the remaining 80%, with
a specificity of 65%.

For the classification task of identifying the top 20% of stu-
dents, Random Forest delivered an overall accuracy of 86%,
while L achieved an overall accuracy of 85%. When these re-
sults are broken down into performance on the top 20% and
the rest, Random Forest achieved results of 94% and 79%,
respectively, versus versus 92% and 79% for L. In this case
Decision Tree again did very well when just evaluated on the
minority class, with a performance of 94% for the top 20%,
equalling the performance of Random Forest on this pop-
ulation. Note that since Random Forest is a collection of
decision trees, it belongs to the family of homogeneous en-
semble methods. Thus, we conclude that ensemble learners
are the best machine learning models for the two classifica-
tion tasks.

4.2 Analysis on Predictive Features
An additional motivation of our research is to identify the
top predictors for the successful and struggling students.
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Table 3: Performance Comparison Over Eight Models

Bottom 20% vs. Rest Top 20% vs. Rest

Test Training Test Training

Models Bot20 Rest Overall Bot20 Rest Overall Top20 Rest Overall Bot20 Rest Overall

SVM 0.74 0.62 0.68 0.85 0.69 0.77 0.68 0.54 0.61 0.75 0.58 0.67

Decision Tree 0.94 0.65 0.80 0.95 0.80 0.87 0.94 0.67 0.80 0.96 0.80 0.88

Random Forest 0.91 0.75 0.83 0.96 0.94 0.95 0.94 0.79 0.86 0.96 0.85 0.90

Logistic Regression 0.71 0.63 0.67 0.84 0.74 0.79 0.71 0.63 0.67 0.86 0.75 0.81

KNN 0.93 0.63 0.78 1.00 0.82 0.91 0.90 0.58 0.73 0.98 0.70 0.84

Naive Bayes 0.83 0.54 0.68 0.91 0.58 0.74 0.58 0.58 0.58 0.72 0.67 0.70

Neural Network 0.34 0.80 0.57 0.39 0.83 0.61 0.52 0.53 0.53 0.59 0.57 0.58

Ensemble (L) 0.90 0.83 0.86 0.96 0.92 0.94 0.92 0.79 0.85 0.96 0.87 0.91

Table 4: List of Top 10 Predictive Features in Identifying Bottom 20% of Students

Predictors of the Bottom 20% vs. Rest Models

Rank SVM Logistic Regression Random Forest Decision Tree

1 Economics1 Economics1 GRE Verbal % GRE Verbal %

2 China2 Environmental Studies1 Months since Degree Months since Degree

3 Communications1 US3 GRE Quantitative % GRE Writing %

4 Environmental Studies1 CS/EECS1 GRE Writing % Economics1

5 Psychology1 Business1 School Rank GRE Quantitative %

6 CS/EECS1 Communications1 Student Age School Rank

7 Applied Math/Stats1 FN3 Overall GPA Business1

8 Masters4 Biochemistry/Biology1 Psychology1 FN3

9 FN3 Bachelors4 Economics1 Overall GPA

10 Bachelors4 Architecture1 FN3 Student Age

Predictors of the Top 20% vs. Rest Models

Rank SVM Logistic Regression Random Forest Decision Tree

1 Business1 Business1 Overall GPA Months since Degree

2 Engineering1 International Studies1 GRE Verbal % GRE Verbal %

3 Overall GPA Bachelors4 GRE Writing % Overall GPA

4 CS/EECS1 US3 Student Age Student Age

5 Bachelors4 Chemistry1 GRE Quantitative % GRE Quantitative %

6 International Studies1 Humanities1 School Rank School Rank

7 China2 Accounting1 Months since Degree TOEFL Total

8 Accounting1 Finance1 Business1 Business1

9 United States2 Applied Math/Stats1 TOEFL Total Engineering1

10 US3 Engineering1 CS/EECS1 GRE Writing %

1: School major

2: Country of last school

3: Citizenship code. Values include PR (permanent resident), FN (foreign), and US.

4: Last school degree.
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The findings will help the admission committee to focus on
more effective rubric measures and assign merit-based finan-
cial aid. Table 4 presents the top-10 predictors for the four
classification algorithms: Linear SVM, Logistic Regression,
Random Forest, and Decision Trees. These algorithms are
selected because the rankings of predictive features are well-
defined. In particular, for linear models the importance of a
feature is proportional to the magnitude of its coefficients,
while for tree-based models the ranking follows the order of
the attributes used to partition the data (i.e., the attribute
used to split the root node has highest rank).

Our first observation is that the SVM and Logistic Regres-
sion models rely heavily on applicants’ background data in-
cluding their undergraduate major, level of education, and
country of origin. On the other hand, Decision Trees and
Random Forest models utilize quantitative attributes such as
GRE quantitative/verbal/writing scores, overall GPA, stu-
dent age, and undergraduate school rankings. The supe-
rior performance of the Random Forest model compared to
other standalone algorithms suggests quantitative measures
are more reliable metrics in predicting a student’s potential
success in the MSDS program.

Our next analysis involves distinguishing the positive and
negative predictors among the highly ranked predictive fea-
tures. To this end, we resort to the magnitude of posi-
tive and negative weights provided by the linear classifiers
(i.e., SVM and Logistic Regression) together with our first-
hand experience in overseeing our MSDS program. Our
findings suggest that students with an undergraduate ma-
jor in Business, Economics, International Studies, Humani-
ties, and Communications are poor candidates for an MSDS
program, while applicants with Computer Science, Electri-
cal Engineering, (Applied) Mathematics or Statistics back-
grounds are more likely to succeed in the program. High
GRE scores, Overall (undergraduate) GPA, and School Rank-
ing, are positive indicators for success. We find these dis-
coveries of important practical values because of the inter-
disciplinary nature of a data science program. Because data
science programs attract students from diverse backgrounds,
our studies suggest that a solid mathematics, computer sci-
ence, or engineering background is essential for a student to
be highly successful in an MSDS program.

5. CONCLUSION
Graduate admissions is a challenging task because it is gen-
erally controlled by faculty that have other responsibilities
and priorities, and have limited training in the admissions
process. The admissions process for a graduate data sci-
ence program has even more challenges because it is in-
terdisciplinary, most students do not have undergraduate
backgrounds in data science, and the degree program has
not existed long enough so that there is significant institu-
tional knowledge about what applicants make the best (and
worst) data science students. Thus this is an area that can
benefit from data mining. The results in this paper show
that mining a combination of admissions application data
and student performance data can help to identify those
students who are likely to do well, as well as those that are
likely to struggle in their studies.

The results in this study demonstrate that our models can
effectively identify both top students, who could then be of-
fered the merit-based aid that is allocated to the MSDS pro-
gram, and the bottom-performing students, who then could
be denied entry into the program. The results show that
our best-performing algorithms can achieve an accuracy of
about 90% when identifying either the top or bottom per-
forming students. We feel that these results are sufficiently
strong that it is reasonable to take action based upon them.

The data analyses conducted in this study, as well as the ex-
amination of the features that are most important for some
of the classification models, both provide valuable insight
into the factors that influence success in the data science pro-
gram. The key conclusions are summarized below. However,
in viewing these, it is important to understand that these
conclusions are based on the performance of enrolled stu-
dents, so those students with weak backgrounds (e.g., very
low GRE scores) will have already been excluded. Our anal-
ysis shows that the GRE quantitative score and, to a lesser
extent, the GRE verbal score, do impact performance in the
program, but only to a modest degree— perhaps to a lesser
extent than we expected. The TOEFL score has almost no
impact (partially due to the fact that all admitted students
have satisfactory TOEFL scores). However, the GPA from
the last degree, which is usually an undergraduate degree,
has a very strong impact on performance in the program.
The major associated with the last degree also plays a sig-
nificant role, with computer science, mathematics, and engi-
neering degrees positively impacting success in the program,
while business, communications, economics, psychology, and
humanities degrees negatively impacting performance. Stu-
dents who are foreign nationals, female, hold prior graduate
degrees, or who have been out of school for more than a year
also tend to perform well.

There are many ways in which this study can be extended.
The most straightforward is to utilize more data. Given that
the current MSDS program is thriving, we expect in a few
years there will be substantially more labelled data, as well
as more unlabelled data since many students will either be
rejected or will choose not to enroll. We believe that we
can leverage this unlabelled data to improve the results via
the use of semi-supervised learning algorithms. During this
study, we tried to leverage the existing unlabelled data, but
there simply was not enough to have a significant impact
given the diversity of the applicant pool. We also tried to
use our domain knowledge to form data subgroups to fine-
tune the model. We hypothesize that students with different
backgrounds warrant different treatment, but currently we
have too little data and too many feature values to lever-
age this information. Exploring algorithms such as SVM+
[17], which facilitates learning with heterogeneous data, can
further improve the efficacy of our models. Finally, we are
very interested in extending this work to other STEM grad-
uate programs, including the MS in Cybersecurity and MS
in Computer Science degree programs that currently reside
in our department.
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ABSTRACT
Response time has been used as an important predictor of
student performance in various models. Much of this work is
based on the hypothesis that if students respond to a prob-
lem step too quickly or too slowly, they are most likely to be
unsuccessful in that step. However, something that is less
explored is that students may cycle through different states
within a single response time and the time spent in those
states may have separate effects on students’ performance.
The core hypothesis of this work is that identifying the dif-
ferent states and estimating how much time is devoted to
them in a single response time period will help us predict
student performance more accurately. In this work, we de-
compose response time into meaningful subcategories that
can be indicative of helpful or harmful cognitive states. We
then show how a model that is using these subcategories as
predictors instead of response time as a whole outperforms
both a linear and a non-linear baseline model.

Keywords
Response time, student modeling, regression models, on-
task and off-task behaviors

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) help students learn a
wide variety of skills from problem solving [23] to reading
[22, 19]. To improve ITS designs, researchers often study
students’ learning patterns to identify their relationship to
performance and target them for intervention. Within this
context, response time has been widely used to predict stu-
dent performance [39, 40] and to interpret cognitive and
motivational states during ITS use [39, 3, 7].

Much of the research involving response time is based on

∗These authors contributed equally to this work.

the hypothesis that the relationship between response time
and student performance is non-linear [9]. Fast or slow re-
sponse times may be indicative of both helpful and harmful
cognitive states. For example, a fast response time could be
a result of either mastery of a skill or guessing. Likewise,
a long response time could be because of struggling or be-
ing off-task. Contextual information surrounding response
time is often used in identifying the correct cognitive or mo-
tivational states. For example, a long response time after
reading a bug or a hint message can be linked to reflection
[32], whereas a short response time after such actions can be
a sign of gaming the system [4]. Thus, previous literature
has focused on identifying students’ cognitive states based
on sequences of actions and the time spent between them
[4, 2, 7, 5]. However, students may go through different
cognitive states even within a time period between consecu-
tive actions [32]. Despite a large body of research dedicated
to studying students’ cognitive states, little is known about
the different states a student might be in during a single re-
sponse time and how time spent in those states would affect
learning.

We hypothesize that response time can be divided into sub-
categories that can be indicative of some helpful and harm-
ful cognitive states, and that identifying time spent on these
states within one response time can improve student perfor-
mance prediction. In our previous work [35], we divided re-
sponse times during a reading comprehension task into two:
reading and thinking time. Results of a piecewise regres-
sion model revealed that thinking time could include four
states: gaming, productive thinking, wheel spinning, and
mind wandering. With the insight from these results, we
further investigate the different states that could occur in
one response time. We compare a model that is based on
decomposition of response time to a linear baseline model
which only uses average response time, and also to a non-
linear baseline (a piecewise regression). By decomposing the
response time, we show that students can go through multi-
ple cognitive states in between log events. We also show that
by identifying how much time is devoted to these states, we
can improve the predictive models of student performance.

2. RELATED WORK
2.1 Cognitive and Motivational States

Zhila Aghajari, Deniz Sonmez Unal, Mesut Erhan Unal, Ligia
Gómez and Erin Walker "Decomposition of Response Time to
Give Better Predictions of Children's Reading Comprehension"
In: Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 334 - 341
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Within this section we review the cognitive states that are
related to productive thinking, gaming the system, and un-
productive thinking. We extract these states from the broader
research literature, although it should be noted that these
states were also identified by teachers as important [13].

We gather learning events that are associated with robust
learning under productive thinking behaviors. [17] di-
vided these events into three categories: understanding and
sense-making processes, induction and refinement processes,
memory and fluency-related processes. Some example be-
haviors that fall under understanding and sense-making pro-
cesses and induction and refinement processes that could be
relevant in a reading domain are self-explanation and self-
reflection. These behaviors are shown to be positively re-
lated to learning [32, 8].

Gaming the system is an undesirable cognitive state wherein
students try to reach the correct answers and advance in the
lesson by systematically misusing the features of the system
[3]. It is linked to short response times and rapid actions [3].
[29] divides gaming into two main types: systematic guess-
ing and help abuse. Systematic guessing could be inferred
from short response times between step attempts [12, 28, 2],
entering the same answer in multiple contexts, and entering
similar answers [29]. Help abuse was defined as searching
for bottom-out hints, asking for help without any reflection
on the help, and entering multiple incorrect answers despite
receiving help.

Within unproductive thinking states, we review wheel
spinning and mind wandering. Wheel spinning occurs
when the student makes an effort but does not succeed. It
is linked to long response times and many help requests. [7]
illustrates that if students need help solving the first twenty
problems they are in wheel spinning phase, and presenting
them with more problems will not be helpful. [5] showed
wheel spinning is negatively correlated with flow, positively
correlated with gaming and confusion, and not correlated
with boredom. Mind wandering occurs when students in-
voluntarily shift their attention to task-unrelated thoughts
[15, 14, 34], and is associated with distraction or boredom.
This cognitive state occurs 20-40% of the time during read-
ing [30] and causes students to fail in gaining reading com-
prehension skills [33, 36]. As mind wandering occurs in-
voluntarily, it is very difficult to measure, and it is often
measured using self-reported approaches [24].

2.2 Response Time in Student Modeling
Response time has been widely used in different kinds of stu-
dent models, and can improve the accuracy of those models
[39, 20]. For example, [4] presents a model that uses response
time to detect shallow learning, and [11] predicts student
performance in transfer learning using response time. [6]
developed an item response theory (IRT) model to show an
overall level of students engagement by analyzing response
times, problem difficulty, and correctness of responses. [16]
also presents an IRT-based model to estimate student profi-
ciency and motivation level where motivation was measured
based on time spent between actions and a short response
time was an indicator of unmotivated behavior.

In this paper, we are inspired by work that centers response

time as a non-linear predictor of students’ performance. [9]
suggests that the relationship between time and student suc-
cess is not linear, and there is an ideal range of time for stu-
dents to respond to a problem. In [10], they further support
this non-linear relationship by showing that including time
as a quadratic predictor instead of linear yields to a better
prediction of students’ performance. These studies support
the intuition that accounting for the activities in different
ranges of response time can give a better prediction of stu-
dent performance.

Other efforts have shown success in estimating time spent
on the activities that occur within a single response time.
These efforts involved decomposing response time. [32] pre-
sented a model that predicts student performance relying
on estimation of activities that cannot be directly observed
from the log data such as thinking about hints, entering an
answer, and reflecting on the hints. The preliminary results
of our previous work that decomposes response times in a
reading comprehension domain also revealed that students
may go through multiple cognitive states during a single re-
sponse time period [35].

In this work, we aim to show that identifying time spent
on different cognitive states within the response time will
provide better predictions of student performance.

3. CORPUS AND MEASURES
The datasets used in our work are log data collected during
two studies with an iPad application called EMBRACE [38].
EMBRACE is designed to help young dual-language learn-
ers improve their reading comprehension in English. The
students read interactive story books divided into chapters
and they answer 3 to 9 multiple choice questions about the
text at the end of each chapter. Books consisted either of
narrative stories or of informational texts. Students see the
text they should read in a box and they press a button la-
beled “Next” at the bottom of the screen to move from one
sentence to another. They also see images representing what
is depicted by the text.

In the full versions of EMBRACE, students are asked to
either imagine the highlighted sentences or move the im-
ages on the screen to enact these sentences. They can get
feedback based on how they are moving the images. Some
features that are in the full versions of EMBRACE are not
provided in the control version. Students still see the images
in this version as well as the highlighted sentences, however,
the only actions that they can perform are tapping on words
to hear their pronunciations, and pressing the “Next” button
to move to the next sentence. In this work, we are particu-
larly interested in the control version as it gives us a more
restricted set of student actions, which better enables us to
focus on the role response time plays in reading comprehen-
sion. In the control version, we use the following measures:

1. Student performance: The proportion of correctly
answered questions at the end of the chapters.

2. Response time: The time spent between when the
sentence is first loaded and when the student presses
the ‘Next’ button to proceed to the next sentence.

3. Help requests: The frequency of tapping on an un-
derlined word to hear its pronunciation in a sentence.
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Figure 1: The protocol of designing productive vs. unproductive thinking portions in students learning.

4. Frequency of gaming: The “Next” button is dis-
abled for 1 to 3 seconds depending on the length of
the sentence to encourage the students to read the sen-
tence completely. However, students might try to skip
the current sentence and press this button while it is
disabled. Frequency of this behavior within a sentence
is our indicator of gaming since systematic and rapid
actions to advance in the curriculum has been identi-
fied as gaming in previous research [3]. Note that this
metric is not available in the second dataset.

5. Decoding ability: Decoding is defined as the ability
to correctly pronounce written words. Our decoding
measure is the student’s score on the decoding part
of Qualitative Reading Inventory (QRI) [18] that is in
range [0, 40].

6. Sentence difficulty: We used the Flesch-Kincaid read-
ability grade level (FK) [21] to measure sentence dif-
ficulty. It is based on number of words in the sen-
tence, and syllables in words. This measure represents
the grade level required to understand a certain text.
The difficulty of each chapter is calculated based on
the average difficulty of the sentences in the chapter.
FK is often used for long texts rather than single sen-
tences. To confirm this measure is also appropriate
for computing sentence level difficulty, we also com-
puted chapter difficulty by applying FK on complete
chapter texts. We did not observe a noticeable dif-
ference between computing sentence level difficulties
per chapter(M = 4.81, SD = 1.39) and applying FK
on complete chapter texts (M = 4.64, SD = 1.35) as
RMSE = .37.

In our datasets, data points are distinct student-chapter
pairs as student performance can only be calculated in chap-
ter level. The first dataset includes 22 students who are
native Spanish speakers from second to fourth grade with
mean QRI score 34.71 (SD = 5.19). One student is ex-
cluded from the dataset due to having scored less than 50%
on the QRI test, and thus being unable to effectively use
the application. We also excluded the first chapters of the
books that were read out loud to the student by the applica-
tion. Finally, some of the student-chapter pairs are excluded
from the dataset due to logging errors such as unrealistic re-
sponse times or not completing the chapter. In total, we
had data from 21 students, and 716 distinct student-chapter
pairs. The mean number of book chapters per student is

Table 1: Descriptive statistics of time (in seconds)
subcategories across student-chapter pairs in the
first dataset (Spanish)
Measurements Mean SD Min Max

Reading Time 6.04 1.67 1.11 11.44
Productive Thinking 2.18 1.72 0 7.84
Unproductive Thinking 1.68 4.01 0 39.47
Gaming Time 0.21 0.44 0 5.36
Time Spent on Help 0.15 0.09 0.07 0.33
Time Spent on Sentence 10.12 6.02 2.75 51.5

Table 2: Descriptive statistics of time (in seconds)
subcategories across student-chapter pairs in the
second dataset (Mandarin)
Measurements Mean SD Min Max

Reading Time 4.40 0.65 2.67 6.12
Productive Thinking 2.68 1.07 0.01 4.09
Unproductive Thinking 1.45 3.08 0 27.79
Gaming Time 0.08 0.38 0 4.09
Time Spent on Help 0.84 0.60 0.06 3.61
Time Spent on Sentence 9.17 4.29 2.81 39.56

34.09 (SD = 2.3) with mean sentence difficulty 4.82 (SD =
2.84) across 7 story books.

In the second dataset, collected from an earlier experiment,
we had 24 native Mandarin speaker students from seventh to
ninth grade with mean QRI score 37.42 (SD = 1.79). Only
one student-chapter pair was excluded from the dataset as
the student in that pair did not complete the assessment
task for the chapter. In this dataset we had 479 distinct
student-chapter pairs. The mean number of book chapters
per student is 19.95 (SD = 0.20) with mean sentence diffi-
culty 4.14 (SD = 1.06) across 4 story books.

4. RESPONSE TIME DECOMPOSITION
Figure 1 visualizes how we decompose response time at a
high level. In the following subsections we describe how each
time subcategory was computed in detail. The descriptive
statistics of the time subcategories for the datasets are given
in Tables 1 and 2.

4.1 Time Spent on Gaming
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For each sentence, if the student never pressed “Next” when
it was disabled, the gaming time on that sentence is 0. Oth-
erwise, we first calculate how long the student waited after
the last time they pressed “Next” when it was disabled until
they actually passed the sentence. We calculated gaming
time by subtracting this waiting time from total time spent
on sentence. A student who waited for a long time to pass
the sentence after pressing “Next” when it was disabled will
have a low gaming time estimate. Note that, in the second
dataset, since our gaming indicator was not available, we
did not include gaming time in our analyses.

4.2 Time Spent on Reading
We first estimated how many words students should read per
minute based on their grade according to [25]. For example,
if a student is in third grade, they should be able to read be-
tween 120 to 170 words per minute. To give a more specific
estimate for reading rate, instead of using only the student’s
grade, we include their ability in decoding English words and
sentence difficulty, as students with a higher decoding abil-
ity may read more words. Similarly, in more difficult texts,
students may read fewer words per minute. We first divide
the normalized decoding score by the normalized sentence
difficulty for each student and sentence pair. Let [a, b] be the
interval representing the possible values of this measure. We
create another interval [c, d], by getting the possible values
of how many words students should read per minute within
our students’ grade levels from [25]. We simply map inter-
val [a, b] on interval [c, d] using the linear mapping formula
below:

f(x) = c+ ((d− c)/(b− a)) ∗ (x− a) (1)

Here, x is one specific decoding/difficulty score for a student-
sentence pair and f(x) will give an estimate for how many
words this student should read adjusted by the student’s
decoding ability and the difficulty of the sentence. Then, we
simply calculated the time spent on reading for each sentence
based on the student’s reading rate and the word count in
the sentence. For example, if a student is estimated to read
120 words per minute, their reading time estimate for a 6-
word sentence is 3 seconds.

Treadu,s =
sw

uwpms

∗ 60s (2)

Here Treadu,s denotes the time estimate for student u to read
sentence s, sw denotes the number of words in sentence s
and uwpms

denotes the rough estimate of the reading rate
for student u while reading sentence s.

4.3 Time Spent on Help Requests
We computed the exact time it takes to play the help au-
dios. Then we computed the time spent on help requests by
multiplying the time it takes to play the tapped words by
two as each word is played twice.

4.4 Time Spent on Thinking
Finally, we calculate the thinking time by simply subtracting
gaming time, reading time and time spent on help requests
from total time spent on one sentence.

Tthinku,s = Ttotalu,s − (Tgameu,s
+ Treadu,s + Thelpu,s

) (3)

Following this procedure, thinking time was estimated to
be negative for 34% of the data points as the reading time

Figure 2: Example student-level thresholds for a
high decoding (left) and a low decoding student
(right).

estimate was higher than the total time spent on sentence.
In that case, we simply adjust reading time estimate so that
the time spent on sentence would be equal to reading time,
and thinking time would be assigned to 0, which means that
the time spent on sentence was devoted to reading and/or
gaming. Even though zeroing-out negative thinking times
seems to remove the variance that could be indicative of
student performance, we did not observe any difference in
terms of model performance. Moreover, doing so resulted in
thinking time estimates becoming more interpretable.

4.5 Distinguishing Between Productive and Un-
productive Thinking Time

To distinguish between productive and unproductive think-
ing, we use a data-driven method to find a threshold in
thinking time for a student and chapter where spending
more time on thinking after passing that threshold will be
unhelpful. We first estimate that threshold at the student
level and then similarly at the chapter level. We then com-
bine the two thresholds to estimate one threshold for each
student-chapter pair.

To find student level thresholds, using the segmented func-
tion in R [26, 27], we fit a separate piecewise regression
model with our performance measure as the outcome and
the mean time spent on thinking as the predictor for each
student (R2 = 0.24). There will be one breakpoint in think-
ing time for each student which will be independent of the
chapter. Similarly, to estimate the thresholds at the chapter
level, we fit one piecewise regression model with the perfor-
mance measure as the outcome and the mean time spent on
thinking as the predictor for each chapter (across all stu-
dents) (R2 = 0.23). The breakpoints represent the thresh-
olds distinguishing between productive and unproductive
thinking times for chapters. Figure 2 shows example thresh-
olds returned from the piecewise regression models for a high
decoding and a low decoding student, and Figure 3 shows
example thresholds for an easy and a difficult chapter. High
and low decoding students and easy and difficult chapters
were decided based on median splits.

Although the separate thresholds we found are reasonable
estimates, we do not use them directly when deriving the
time spent on productive thinking, for two reasons. First,
the threshold between productive and unproductive think-
ing time should be adjusted to both student and chapter
characteristics in the same way that we adjusted time spent
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Figure 3: Example chapter-level thresholds for an
easy chapter (left) and a difficult chapter (right).

Figure 4: The relationship between decoding
score and estimated student-level thresholds (left),
and chapter difficulty and estimated chapter-level
thresholds (right).

on reading. Second, we estimated these points by building
a model which predicts the student performance, the vari-
able that we would like to predict. Time spent on produc-
tive and unproductive thinking will be used as predictors in
the model that we propose in this work. While extracting
these features, leaking information from our outcome mea-
sure may cause overfitting in the final model. Therefore, we
combine the thresholds found from separate regression equa-
tions. We build two separate linear regression models to pre-
dict the ‘true’ student and chapter level thresholds. Then
we combine the two equations by taking their weighted av-
erage. This allows us to have one threshold estimate for an
arbitrary student-chapter pair based on the decoding ability
of the student and the difficulty of the chapter.

Figure 4 shows the relationship between QRI and ‘true’
student-level thresholds, and the relationship between chap-
ter difficulty and ‘true’ chapter level thresholds. As seen in
the figure, the estimated student-level thresholds are nega-
tively correlated with decoding ability. This indicates that
segregates productive and unproductive thinking regions oc-
curs earlier for the students who scored better in the de-
coding test. The same figure also shows that chapter-level
thresholds and chapter difficulties are far less correlated,
which suggests that in estimating a threshold based on both
student and chapter characteristics, the student character-
istic (decoding score) is more important than the chapter
characteristic (difficulty).

To combine these thresholds, we first find the equation for
chapter difficulty and thinking time thresholds.

λchapter = B̂0 + B̂1 ∗DIFFchapter (4)

Here DIFFchapter denotes the chapter difficulty, and B̂1 and

B̂0 are the estimated slope and y-intercept of the linear equa-
tion respectively. Similarly, we learn an equation for think-
ing time threshold in student level as follows:

λstudent = Ĉ0 + Ĉ1 ∗QRIstudent (5)

where QRIstudent denotes the student’s decoding score, and

Ĉ1 and Ĉ0 denote the estimated slope and y-intercept of this
linear equation respectively. We combine these two sepa-
rate thresholds by taking the weighted average of them. We
weigh the equations by the correlation coefficient between
the QRI score and the estimated student level thresholds
(x), and the correlation coefficient between chapter difficulty
and the estimated chapter level thresholds (y). We find the
combined threshold as follows:

λcombined =
x ∗ λchapter + y ∗ λstudent

|x|+ |y| (6)

where x = 0.05 and y = −0.39. Using this equation, we have
one estimate for thinking time threshold for a given student
and chapter based on both decoding ability of the student
and chapter difficulty.

Finally, productive thinking time is defined as time spent on
thinking before this threshold. If the time spent on thinking
is less than this threshold for a given student and chapter
pair, all thinking was productive and time spent on unpro-
ductive thinking is 0. If the time spent on thinking is larger
than the threshold, time spent on thinking until the thresh-
old will be counted as productive thinking time and any
time beyond the threshold will be counted as unproductive
thinking time.

5. PREDICTING COMPREHENSION
The core hypothesis in our work is that dividing response
time into subcategories in a way that could be indicative
of some helpful and harmful cognitive states will improve
predictive models of student performance. To test this hy-
pothesis, we compared the proposed linear model (Decom-
posed RT) to two baselines: one that uses response time as
whole (Baseline 1), and another that uses response time as
a non-linear predictor (Baseline 2) to show that we are not
simply accounting for non-linearity in response time but we
show identifying the states within response time will help
us predict comprehension more accurately. We report AIC
[1] and BIC [31] to show the improvement in the model is
not because of the increased number of predictors. Table 3
summarizes the feature sets we used in the 3 models we com-
pare.We performed a cross-validation at the student level
within a scheme for 50 iterations in which each time we left
out a unique student pair from the whole procedure (decom-
position of response time and training the models) and used
their data for testing.

Table 4 shows the average RMSE, R2, AIC and BIC values
of the 50 iterations. For both datasets, we randomly flip
the sign of the difference between paired model outcomes to
conduct a paired-sample permutation test [37] to compare
the mean of differences in evaluation metrics between our
model and each baseline. We performed 1000 permutation
trials in total. For the first dataset, we found significant
improvements against both baselines in RMSE (p < 0.005),
in AIC (p < 0.001), and in BIC (p < 0.001).
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Table 3: Feature sets used in the models: Decomposed RT, Baseline 1, and Baseline 2. † indicates being a
significant predictor (p < 0.05) of student performance in more than 80% of the folds.
Decomposed RT (Linear regression) Baseline 1 (Linear regression) Baseline 2 (Piecewise regression)

1. Frequency of gaming1

2. Frequency of help requests

3. Chapter difficulty †

4. Student decoding score †

5. Time spent on reading †

6. Time spent on gaming1

7. Time spent on productive thinking †

8. Time spent on unproductive thinking

1. Frequency of gaming1 †

2. Frequency of help requests †

3. Chapter difficulty †

4. Student decoding score †

5. Time spent on sentence †

1. Frequency of gaming1 †

2. Frequency of help requests

3. Chapter difficulty †

4. Student decoding score †

5. Time spent on sentence † (as the
non-linear parameter)

Table 4: Comparison of evaluation metrics for proposed model and baselines on the first (Spanish) and second
(Mandarin) dataset

Model RMSE R2 AIC BIC

F
ir
st

D
a
ta
se
t Decomposed RT (Linear regression) .267 (.027) .220 (.013) 80.242 (14.441) 124.988 (14.446)

Baseline 1 (Linear regression) .275 (.034) .160 (.013) 122.399 (16.785) 153.721 (16.796)
Baseline 2 (Piecewise regression) .273 (.031) .193 (.012) 100.868 (16.259) 141.139 (16.276)

S
ec
o
n
d

D
a
ta
se
t Decomposed RT (Linear regression) .268 (.034) .131 (.014) 58.350 (10.521) 91.027 (10.521)

Baseline 1 (Linear regression) .274 (.034) .093 (.015) 73.090 (10.301) 97.599 (10.301)
Baseline 2 (Piecewise regression) .271 (.033) .133 (.012) 57.508 (10.067) 90.185 (10.068)

For the second dataset, while decomposing response time,
we made two adjustments. Firstly, since the students in this
dataset were older (from 7th to 9th grade), their reading
rates were adjusted for their grade level when calculating
reading time. Secondly, the version of EMBRACE that was
used to collect this data was not tracking when the stu-
dents were pressing the “Next” button when it was disabled.
Therefore, we discarded gaming time from our model. The
remaining subcategories are calculated the same way as we
did in the first dataset. The improvement in RMSE was
significant against both Baseline 1 (p < 0.001) and Baseline
2 (p < 0.005). The improvement in AIC and BIC was sig-
nificant against Baseline 1 (p < 0.001) while Baseline 2 was
significantly better than Decomposed RT (p < 0.05).

Overall, Decomposed RT outperformed both baselines both
in prediction error and the model fit criteria in the first
dataset. However in the second dataset, although we see
an improvement in prediction errors in favor of Decomposed
RT, Baseline 2 had significantly better AIC and BIC values
than Decomposed RT.

6. CONCLUSION
Within this paper, we proposed a new methodology to de-
compose response time so that time spent on gaming the sys-
tem, productive thinking, and unproductive thinking states
within a single response time can be accounted. Results
showed that, using the time spent on these states as sepa-
rate predictors rather than using response time as a whole
gave better predictions of student performance. Compari-
son against another baseline that employs response time as
a non-linear predictor also revealed that the improvement
was not due to addressing the non-linearity in response time,

1This measure is available only in the first dataset (Spanish).

and using the decomposition of response time to explain how
much time was spent on different cognitive states indeed
yielded better predictions. Moreover, comparison of AIC
and BIC values supported that the improvement in the pre-
dictions were not due to introducing more predictors. How-
ever, we could not observe the same results for AIC and BIC
between the proposed model and the non-linear baseline on
the Mandarin dataset. A possible explanation is that we
were not able to estimate the time spent on gaming in this
dataset, thus time estimates for the other states were not as
accurate as in the first dataset.

There are several other limitations of the work that need to
be noted. Firstly, our estimation of reading time might not
be the most accurate as there may be more factors influ-
encing reading time than we addressed such as frequency of
words and familiarity with the topic. Secondly, our model
does not distinguish between the unproductive thinking be-
haviors (mind wandering and wheel-spinning) in its current
stage. We plan to further explore how we can capture these
different kinds of unproductive thinking.

In conclusion, we proposed a new method to use response
time as a predictor in student modeling. The results show a
promising improvement in predictive models of student per-
formance when response time is decomposed into subcate-
gories that can be indicative of the possible cognitive states
students engage in. Future work should further assess this
method’s generalizability to different student profiles and
different domains.
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ABSTRACT
Word vectors are widely used as input features in natural
language processing (NLP) tasks. Researchers have found
that word vectors often encode the biases of society, and
steps have been taken towards debiasing the vectors them-
selves. However, little has been said about the fairness of the
methods used to evaluate the quality of vectors. Analogical
and word similarity tasks are commonplace, but both rely
on purportedly ground truth statements about the semantic
relationships between words (e.g. “man is to woman as king
is to queen”). These analogies look reasonable when only
taking into account the literal meanings of words, but two
issues arise: (1) people don’t always use words in a literal
sense, and (2) the same word may be used differently by dif-
ferent groups of people. In this paper, we split a dataset of
over 800,000 college admissions essays into quartiles based
on reported household income (RHI) and train sets of word
vectors on each quartile. We then test these sets of vectors
on common intrinsic evaluation tasks. We find that vec-
tors trained on the essays of higher income students encode
more of each task’s target semantic relationships than vec-
tors trained on the essays of lower income students. These
results hold even when controlling for word frequency. We
conclude that the tasks themselves are biased towards the
writing of higher income students, and we challenge the no-
tion that there exist ground truth semantic relationships
that word vectors must encode in order to be useful.

1. INTRODUCTION
Text analysis has grown into an important topic, with re-
searchers from education, industry, social sciences, humani-
ties, and traditional STEM programs harnessing large amounts
of textual data that is widely available and relatively easy to
access. Text data is usually very sparse (as most words do
not appear in most documents) and difficult to use as input
for mathematical models. This has given rise to a variety
of vectorization methods that include simple word counting,
statistical methods like TF-IDF, and neural methods used
to generate dense representations called word vectors. Word

vectors have been shown to produce high quality results in a
variety of machine learning (ML) and natural language pro-
cessing (NLP) tasks, but this potentially comes with a social
cost. Research has shown that word vectors propagate the
gender and racial biases found in society [19, 7, 10]. How-
ever, little has been said about the fairness of the methods
that we use to evaluate vectors.

After a set of word vectors has been trained on a corpus, re-
searchers and engineers want to evaluate the quality of the
vectors. As a result, a standard set of word vector evalua-
tion tasks [41] has been developed in order to measure how
useful and generalizable a given set of vectors is. When re-
searchers propose new methods for training word vectors,
they demonstrate the performance of their methods by eval-
uating the resulting vectors on these tasks. Furthermore,
when NLP systems are built, vectors that perform well on
these tasks are most likely to be chosen.

Word vector evaluation tasks are either intrinsic (performed
directly on the vectors) or extrinsic (performed by using the
vectors as inputs for a downstream task). Intrinsic evalua-
tion is popular because it is very inexpensive, but it relies on
having some secondary notion of what makes vectors useful.
The most popular methods assume that there are “ground
truth”semantic relationships that a set of word vectors must
encode in order to be useful. However, due to sociolinguistic
variation, not all language communities share the same se-
mantic relationships [4]. As a result, in order for these tasks
to be fair, they need to use semantic relationships that are
universal: if semantic relationship R holds in the language
patterns of group G but not group H, then the usage of R
in an intrinsic evaluation task will bias researchers towards
sets of vectors that model group G’s language usage better
than group H’s. We use this framework to evaluate the fair-
ness of two popular forms of intrinsic evaluation, analogical
tasks and word similarity tasks.

When working with large text corpora, especially in educa-
tional contexts, it is important to consider the role of soci-
olinguistic variation [27]. In particular, students have been
punished and targeted for their language practices if they
are perceived to be different from the “mainstream” [38, 42].
Understanding how social variation in language affects word
vectors is necessary in order to tackle two critical issues.
The first is the question, “whose language is being modeled?”
Word vectors are meant to capture something about the se-
mantics of each word. If theories of sociolinguistic variation
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tell us that people from different groups use language in dif-
ferent ways, then we must wonder if standard word vector
sets like GloVe [35] are serving everyone equally. Second,
we must ask, “how does fairness change across contexts?” In
NLP, word vectors that perform well on intrinsic evaluations
are used across many different contexts. However, if fairness
involves taking sociolinguistic variation into account, it may
not be the case that vectors that are unbiased in one context
are biased in another.

Educational agencies and institutions are also increasingly
relying on algorithms to help with decision-making processes.
College admissions offices have been pushed to use AI [3] but
have legal and ethical mandates to ensure process fairness
for applicants based on their demographics and/or protected
statuses, like race, gender, and religion. As the number
college applications rise and the need to hire reviewers in-
creases, applicant admissions essays are a likely candidate
for some form of automation. Research on the essays en-
code some degree of applicant gender and social class [2],
making careful adoption of AI necessary. If sociolinguistic
variation is not taken into account, algorithms have a high
chance of reproducing social inequalities.

We address these issues by analyzing a corpus of over 800,000
college admissions essays (CAE) submitted to a selective,
multi-campus university system. In addition to the essays,
we have a variety of author metadata, including each stu-
dent’s reported household income (RHI). We split the dataset
into quartiles by RHI and train one set of word vectors from
scratch on each quartile. After training, we find that on both
the analogy and similarity tasks, the vectors trained on the
writing of higher income students encode more of the target
semantic relationships than vectors trained on the writing
of lower income students. This indicates that the tasks can
be biased against the writing of lower income students.

Our contributions are:

• to challenge the paradigm of “ground truth” labels for
intrinsic evaluation by starting with the premise that
language distributions vary along demographic char-
acteristics.

• to provide a method for auditing the fairness/bias of an
evaluation task, complementing existing methods for
auditing the fairness/bias of word vectors themselves.

• to contribute to the educational scholarship of higher
education by characterizing sociolinguistic variation in
college admissions essays using established AI tech-
niques.

2. BACKGROUND
2.1 Word Vectors
In NLP, word vectors (or word embeddings) are the stan-
dard way translate words into input features for machine
learning models. Popular word vector training algorithms
like word2vec [30] and GloVe [35] are based on the distri-
butional hypothesis, the idea that a word’s meaning is en-
coded in its co-occurrences with other words. In particular,
word2vec tries to learn features which can be used to predict

Figure 1: Illustration of simple vector operations
modeling semantic (left) and syntactic (right) rela-
tionships in vector space from [32]

a word from its context (or vice versa), and GloVe trains di-
rectly from a co-occurrence matrix. Both models take in
large corpora of texts and create a dense representation of
every word, usually in 100- to 300-dimensional space.

2.2 Word Vector Evaluation
As described above, vectors can be evaluated intrinsically
or extrinsically. Intrinsic evaluation, which is the focus of
this study, involves directly examining the relationships be-
tween vectors. Intrinsic evaluation has the advantage of be-
ing much faster and more lightweight, but it comes with
two downsides. The first is that intrinsic tasks do not re-
semble the use cases of word vectors as much as extrinsic
tasks do. The second is that intrinsic tasks rely on “ground
truth” human judgments about what the relationships be-
tween vectors should be.

The word analogy task is based on the idea that analog-
ical relationships between words (e.g. “man is to woman
as king is to queen”) should be encoded in word vectors
as parallelograms (i.e. the vector that connects “man” to
“woman” would be the same as the one that connects “king”
to “queen”). Mathematically, this means that:

vqueen − vwoman ≈ vking − vman

This kind of relationship has been found to hold for both for
semantic (meaning-based) and syntactic (grammar-based)
relationships (left and right sides of figure 1). The idea for
the analogy task dates back to the 1990’s [17], but it was not
proposed as a word vector evaluation technique until 2013
[31, 30]. Since then, it is common practice to compare sets
of vectors on their ability to “solve” word analogies.

Word similarity is based on the idea that similar words (i.e.
words that are used in similar contexts) should have similar
word vectors. The word similarity task starts with a list
of word pairs and involves finding the correlation between
ground truth similarities between the words in each pair and
the similarities between their corresponding vectors. The
similarity between two vectors is in practice measured by
taking their cosine similarity. The cosine similarity of two

vectors ~a and ~b is defined as:

~a ·~b
‖~a‖2‖~b‖2
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which is equal to 0 if ~a and ~b are orthogonal, 1 if they are in
the same direction, or (most of the time) something in be-
tween. The ground truth similarities, on the other hand, rely
on human judgment. This task remains largely unchanged
since its first iteration in 1965, when Rubenstein and Goode-
nough [39] set out to test the distributional hypothesis. The
big difference is that modern datasets for this task starting
in 2002 with WS-353 [18] involve larger numbers of word
pairs.

Both of these tasks require “ground truth” labels of some
sort. The analogy task requires a list of analogies that
the vectors are being tested for, while the similarity task
requires ratings of the similarities between many pairs of
words. These labels are problematic for two reasons. First,
it has been pointed out that the labels for these tasks do not
take into account the fact that words can take on many dif-
ferent meanings depending on context (polysemy). Second,
word use and semantic intent vary along social dimensions,
meaning that labels may reflect the language use of some
groups better than others, thus creating bias. This second
issue is the focus of our study.

2.3 Word Vector Critiques
It has been found that word vectors encode the biases present
in their training data [7], and word vectors have been used
to quantify the biases that exists in society [19]. Two meth-
ods have emerged for reducing bias in word embeddings: we
can change our training process in order to penalize biased
vectors [7], or we can identify and remove the training doc-
uments that are the source of the most bias [8].

Intrinsic evaluation methods have also fallen under scrutiny.
Both the analogy task [14, 37] and the similarity task [16]
have been criticized for relying on the fuzzy relationship be-
tween word similarity and vector similarity, and for not tak-
ing polysemy into account. Lastly, both tasks have been
found to be poor predictors of extrinsic performance [11].

Although there have been numerous critiques of the bias
encoded in word vectors and numerous critiques of intrin-
sic evaluation tasks, little has been said about whether or
not intrinsic evaluation is biased in theory or practice. This
study answers that question by identifying whether the“ground
truth” semantic relationships prescribed by intrinsic evalua-
tion tasks are shared by students of all income levels.

2.4 Sociolinguistic Variation
Language variation across spatial, demographic, and tempo-
ral dimensions is the bedrock theory behind sociolinguistics.
Applied research in sociolinguistics often seeks to amelio-
rate systems and processes mediated through language, es-
pecially law [23] and education [36]. Relevant to this study,
Bamman et al. showed significant regional variation in co-
sine similarity of word vectors for common words, such as
“wicked” and “city” [4]. Sociolinguists are using computa-
tional methods to investigate language variation [33], but a
general integration of sociolinguistics into NLP could help
researchers identify and address biases.

A more equitable educational data science using text should
therefore consider linguistic variation at the forefront of anal-
ysis. ML models and systems that do not account for this

risk classifying everyday language practices as hate speech,
as was found to be the case with tweets written by AAVE
users [40, 12]. Large datasets with student level metadata,
like the data analyzed in this paper, will become increas-
ingly common in education. Even basic sociolinguistic prin-
ciples could help researchers address linguistic variation, use
variation as a dependent variable, or explain how and why
certain data correlates along various social dimensions to
address the complicated relationship with student charac-
teristics and language.

2.5 Household Income and College Admissions
Research on college admissions consistently shows that the
college admissions process is easier for students from high
income households. Studies have shown that standardized
testing is strongly correlated with household income and
other proxies for wealth [13], especially for black and white
students. Other elements of the college application, such as
financial aid forms [6] and the steps of the entire application
process [26] are also more easily navigated by wealthy fam-
ilies than students from lower socioeconomic backgrounds.
Family wealth is itself reflective of many racial and gender
inequalities in the US [24].

The college admissions essay (CAE), has faced less scrutiny
than standardized testing but some research has shown re-
lationships to student identity and essay content. Using
a corpus of CAE written by applicants in Britain, Jones
[22] found that students from higher social classes wrote
longer essays, had fewer spelling and grammatical errors,
and tended to invoke markers of their higher social standing,
such as the name of their elite school. Research by Kirkland
& Hansen [25] found similar differences along income in di-
versity statement essays. They found that students from
different racial backgrounds but similar socioeconomic lev-
els wrote similar essays. Other studies have tested writing
interventions with lower income students to teach them the
genre of the CAE [15]. They found when students from a
low income high school were explicitly trained on what they
should include in their CAE, the average score of their es-
says on a rubric-based rating was higher than students that
did not receive the intervention.

As universities move towards test optional admissions, fair
analysis of CAE will become even more critical. If student
backgrounds are not explicitly considered when using ML
on CAE, new forms and abstractions of bias could be in-
troduced into college admissions. However, computational
methods can also shed light on potential issues of fairness in
the essays. For example, Pennebaker et al. found that in-
creased usage of function words (eg. pronouns and articles)
and less personal narrative writing was positively correlated
with college GPA [34].

3. DATA
The data for this study were 826,624 CAE submitted by
applicants to a multi-campus, US public university system.
The CAE were written across three academic years: 2015-
2016, 2016-2017, and 2017-2018. These CAE were required
components of the application, not additional essays sub-
mitted for honors programs, scholarships, or anything else
peripheral to the main application. For this study, we re-
moved essays that were under 100 characters and/or were
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(a) (b) (c)

Figure 2: (a) Histogram of student RHI’s with quartile boundaries marked. 8420 students with RHI >$350k
not included in plot (but included in this study). (b) Proportion of essays written for each prompt by income
quartile. (c) Frequency of word usages from different subsets of the Google Analogy Test Set by income
quartile. Each frequency is compared to the global mean. Total refers to all of the words in the dataset.

written by students who did not report their household in-
come. After this filtering step, 812,020 essays remained.

3.1 Reported Household Income
A variety of metadata about each applicant and document
were included as part of the dataset, but this study focuses
on the reported household income (RHI) provided by each
applicant. It is important to note that RHI is not an objec-
tive measure of a family’s household income. When students
are accepted to a university, they provide any pertinent in-
formation and documentation (such as tax return forms, W-
2, etc.). However, when the application is under review be-
fore any official admission decision is made, the only income
and wealth information available to a reader is the RHI.

RHI was chosen as the variable of interest for several rea-
sons. First, language variation along class and income lines
has been well established in sociolinguistic literature [5, 29].
Splitting by quartile is also a relatively crude metric, and if
qualitatively and quantitatively different results emerge in
the vectors across quartiles then the problem could be both
fundamental and grave. For example, we might expect that
the top and bottom quartile have noticeable, measurable
differences, but we would not expect the second and third
quartiles to be substantively different. Finally, if there are
correlations between CAE and income similar to other com-
ponents of the application and income, new approaches and
understanding of fairness and college admissions should be
considered, as well as the role of CAE in decision-making.
This would push ML fairness research in college admissions
to think carefully and critically about data and outcomes, as
language variation is not as neat as racial or gender parity
but almost always arises.

In the dataset, the average RHI is $96,746, the median is
$53,000, and the standard deviation is $125,000. Figure 2(a)
shows distribution of income levels as well as the boundaries
between the quartiles.

3.2 Prompt Choice
In 2015-2016, students had to write two personal statements
to the same two prompts, meaning every applicant wrote two
essays. In 2016-2017 and 2017-2018, students selected four
prompts to write for from eight possible choices (70 possible
combinations of prompts). The eight prompts were distinc-

tive in theme, and if students from a certain quartile were
responding to a prompt or group of prompts at significantly
higher rates than students from other quartiles, our analysis
could be skewed. However, figure 2(b) demonstrates that
there are only mild differences in prompt choice across the
income quartiles.

3.3 Word Distribution Variation
One possible source of error in this dataset is the difference in
word usage between students of different backgrounds. This
is a source of error because word vector training algorithms
rely on large sample sizes in order to properly learn the con-
texts in which a given word appears. Our quartiles contain
about 70 million tokens each, which is on the low end for
word2vec datasets. This means that the quality of a given
vector is very sensitive to that word’s frequency within the
data, a well-known issue that is an active topic of NLP re-
search [20]. Practically speaking, if the word vectors trained
on one quartile are able to solve an analogy that the vectors
trained on another quartile fail to solve, then this could be
due to the relevant words appearing more often in the first
quartile.

Figure 2(c) shows the difference in word frequencies by quar-
tile for three different subsets of the Google Analogy Test Set
(GATS) [30]. We find that low income students use words
from the analogy task more often overall, but this does not
tell the whole story. We find that low income students use
“family” words more often than high income students by a
large margin, and we find (not too surprisingly) that high
income students name foreign currencies more often than
low income students by an even larger margin. This means
that the vectors trained on the essays of low income stu-
dents have an advantage on the “family” analogies, while
the vectors trained on the high income students have an ad-
vantage on the“currency”analogies. We will take these word
distribution-based advantages into account when analyzing
the results of the analogy task.

4. METHODOLOGY
4.1 Vector Training
As mentioned above, we separately trained one set of word
vectors on the writing from each income quartile. We chose
to train our vectors using a word2vec Skip-Gram model in
order to stay in line with Allen [1] who showed mathemati-
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“Viable” Analogies “Q1 Advantage” Analogies
GATS Subset n Q1 Q2 Q3 Q4 n Q1 Q4
Family 420 0.629 0.733 0.702 0.681 348 0.672 0.710
Semantic 2446 0.191 0.222 0.233 0.242 391 0.609 0.645
Syntactic 9553 0.382 0.381 0.407 0.451 3307 0.433 0.488
Total 11999 0.343 0.349 0.372 0.408 3698 0.451 0.505

Table 1: Accuracy of each income quartile’s vectors on different subsets of the Google Analogy Test Set.
“Viable” refers to analogies whose words appeared at least once in each training set. “Q1 Advantage” refers
to viable analogies whose words appeared more often in Q1 (the essays of the lowest income students) than
in Q4 (the essays of the highest income students).

cally that vectors trained in this manner would find analogies
that exist in the training data.

We trained vectors of size 100 for 20 epochs using a window
size of 5. We made all letters lowercase before training, but
did not filter stopwords or punctuation. It is possible that
changes to these hyperparameters would change the results
of the study, but we feel that these are all reasonable choices
given the dataset that we started with.

4.2 Vector Evaluation
For the analogy task, we use the Google Analogy Test Set
(GATS) [30], which contains 19544 analogies, 8,869 of which
are semantic, and 10,675 of which are syntactic. We consider
a set of vectors to have “solved” the analogy “A is to B as C
is to D” if the closest vector by cosine similarity to C−A+B
is D.

We evaluate our vectors on three similarity datasets, all of
which are standard intrinsic evaluation tasks:

1. WS-353 [18] consists of 353 pairs of words along with
their similarities rated on a scale from 0 to 10 by 13-16
subjects.

2. MEN [9] consists of 3000 word pairs whose similarities
were determined by having subjects make binary com-
parisons between pairs of pairs of words rather than
rating similarity directly.

3. SimLex-999 [21] consists of 999 pairs of words whose
similarity was rated on a scale from 1 to 7 by 500
subjects. As opposed to the first two sets, SimLex-999
explicitly tries to avoid assigning high similarity scores
to pairs of words that are associated but not similar
(e.g. “coffee” and “cup”).

We measure similarity task performanace using Spearman
correlation.

5. RESULTS
5.1 Analogy Results
Table 1 shows the accuracy of each income quartile’s vectors
on different subsets of GATS. The “Family” subset (as it is
called in the original dataset) contains analogies between
pairs of words that differ according to gender (e.g. “hus-
band is to wife as grandpa is to grandma”). We chose to look
at this subset in particular because it is the only semantic
section of GATS whose words were used frequently by stu-
dents of all four quartiles. The other semantic sections of

GATS (e.g. identifying currencies and world capitals) con-
tained words used very infrequently by lower RHI students.
We also split the entire dataset into semantic relations and
syntactic relations. Semantic relations rely on word mean-
ing (including the“Family” subset), while syntactic relations
rely on morphological/grammatical differences (e.g. “bad is
to worse as big is to bigger”). Finally, “Total” refers to the
use of GATS in its entirety.

The first time we performed this experiment, we included
all “viable” analogies (presented on the left side of Table
1). A viable analogy is one where all four words appear
in each of the four sets of word vectors. With this setup,
the Q1 vectors performed worst on all subsets, while the Q4
vectors performed best on all subsets except for “Family.”
The difference in performance between Q1 and Q4 is very
similar (5-7% of all analogies) between the semantic and
syntactic subsets. This indicates that the differences we are
observing are not only limited to word meaning, but to word
usage as well.

Figure 2(c) shows that low RHI students use the words from
GATS more frequently than high RHI students. This indi-
cates that word distribution variation generally favors the
lower RHI vectors, meaning that the higher RHI vectors
performed better despite these variations. However, overall
average word usage does not necessarily tell the whole story.
It might still be the case, for example, that high RHI stu-
dents use more of the words in the dataset more frequently
than low RHI students. In order to more convincingly deal
with the word distribution variation problem, we ran this
experiment again, including what we call “Q1 advantage”
analogies (presented on the right side of Table 1). An anal-
ogy has “Q1 advantage” if it is viable and its words appear
more frequently in Q1 than in Q4 (i.e. the words are used
more often by low RHI students).

Even when restricting ourselves to“Q1 advantage”analogies,
the Q4 vectors outperform the Q1 vectors on each subset of
the data, and by margins only slightly smaller than in the
first experiment. This convincingly shows that word distri-
bution variation is not to blame for the difference in perfor-
mance we originally observed, as even when we only tested
on analogies where Q1 has a word frequency advantage, the
Q4 vectors solved far more of the analogies in GATS. This
indicates that the observed differences in performance are
due to the relationship between the analogies in GATS and
the ways in which students of different quartiles use words
differently.
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Dataset Q1 Q2 Q3 Q4

WS-353 0.594 0.615 0.619 0.583
MEN 0.592 0.625 0.650 0.666
SimLex-999 0.336 0.344 0.346 0.352

Table 2: Spearman correlation of each income quar-
tile’s vectors on three word similarity tasks. Agree-
ment with “ground truth” scores rises as income
rises.

5.2 Similarity Results
Table 2 shows the results of each quartile’s vectors on each
of our three word similarity tasks. Performance is reported
using Spearman Correlation, although the results looked
largely the same using Pearson Correlation. Note that with
the exception of WS-353 (the smallest dataset), similar-
ity task performance increased monotonically with income.
This indicates that the similarity scores generated for these
evaluation tasks are more in line with the way that high in-
come students use language than the way that low income
students use language. We did not filter the similarity tasks
according to word frequencies, as the overall frequencies of
the words in each task were very similar across the four
training sets.

5.3 Qualitative Results
Word vectors by their nature pick up on semantic relation-
ships between words [1]. It then follows that the underlying
cause of these differences in intrinsic evaluation performance
is a difference in word meaning between the RHI quartiles.
Word vectors allow us to measure the similarity in meaning
between two words in a dataset by using the cosine similarity
of those two words’ vectors.

Table 3 shows the words most similar to “money” according
to the Q1 and Q4 vectors. We find that while low RHI
students are talking about “rent”, “expenses”, and “bills”
when they talk about money, the high RHI students are
talking about “savings”, “donations”, and their “allowance.”1

This shows how a student’s experience influences the way
they use language. There are probably many other words
that demonstrate similar qualitative difference and variation
across quartiles, but an exhaustive search through them will
be considered for future study. Importantly, human readers
would be able to detect the differences between the most
similar vectors between Q1 and Q4, even if those differences
might be subtle. For both vectors, there are clear connec-
tions to money, but the differences in how a high income stu-
dent writes about money and a low income student writes
about money is also clear from our qualitative assessment.

For many scholars, especially sociolinguists, the differences
seen in the qualitative results alone would be firm evidence
of socio-semantic variation in CAE. Research in education
have consistently found that students from different social
classes experience and navigate schools differently and there-
fore rely on different language practices to negotiate their
pathways in school [28]. Sociolinguistic variation in edu-
cation has therefore been widely used to study and under-

1Though not included in the table, we found that Q2’s words
were very similar to Q1’s and Q4’s words were very similar
to Q3’s.

Q1 Q4
Rank Word Similarity Word Similarity
1 cash 0.768 funds 0.811
2 funds 0.754 fund 0.771
3 savings 0.724 monies 0.755
4 earnings 0.710 profits 0.744
5 rent 0.709 dollars 0.738
6 payment 0.705 savings 0.724
7 groceries 0.672 donations 0.701
8 expenses 0.669 donate 0.698
9 bills 0.6659 allowance 0.689
10 pay 0.659 goods 0.687

Table 3: Bills vs. Allowance: the words most (co-
sine) similar to “money” according to the Q1 (low
income) and Q2 (high income) word vectors.

stand larger processes of social stratification and inequality.
Though our qualitative analysis might not possess the depth
of ethnographic research, it could still provide useful insights
into how student background and experiences shape their
language practices.

6. CONCLUSION
We have found that two standard intrinsic evaluation tasks
(similarity and analogy) are biased against the writing of
lower income students. Word vectors trained on the writing
of lower income students systematically perform worse on
similarity and analogy tasks than the vectors trained on the
writing of higher income students. These findings do not
indicate anything about writing quality. Rather, our results
indicate that the “ground truth” semantic relationships in-
cluded in these tasks are not the ground truth for everyone.

If analogies arise naturally in word vectors, then we could
view the analogy task as a way of measuring what analogies
exist for a given training set. If an analogy does not exist
in the vectors of a given quartile, then we might say that
the students who wrote those essays do not see those words
as analogous. Under this perspective, our results can also
serve as a way of quantifying the patterns in word usage
between students of different income levels. If these patterns
are not considered in large scale text analyses in education,
word vectors and the many downstream tasks that use them
as input could systematically bias the language practices of
students based on their social class.

7. FUTURE WORK
We hope that these techniques will be used to audit other
word vector evaluation tasks, both intrinsic and extrinsic.
We also hope that there will be more discourse surround-
ing the fairness of evaluation tasks, especially given the in-
creased use of word vectors in educational contexts. How-
ever, more work needs to be done in order to determine
whether and how it is possible to debias intrinsic evaluation
of word vectors with respect to various social dimensions.
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ABSTRACT
Online Peer Instruction has become prevalent in many“flipped
classroom” settings, yet little work has been done to exam-
ine the content students generate in such a learning envi-
ronment. This study characterizes a dataset generated by
an open-source, web-based homework system that prompts
students to first answer questions, and then provide expla-
nations of their reasoning. Of particular interest in this
dataset, is that students are also prompted to evaluate a
subset of peer explanations based on how convincing they
are, as part of the Peer Instruction learning script. Since
these student“votes”are then used in the selection of what is
shown to future learners, we cast this as an instance of learn-
ersourcing, a paradigm that presents new research opportu-
nities for the Learning Analytics community. This study
characterizes a dataset from one Peer Instruction tool, that
includes not only the student generated answers and expla-
nations, but this novel “vote” attribute, which aims to cap-
ture how convincing each explanation is to other learners.
The dataset includes longitudinal observations of student re-
sponses over the course of a semester, following groups from
three STEM disciplines. The data is made available to in-
terested researchers1.

Keywords
datasets, learnersourcing, peer instruction

1. INTRODUCTION
The effectiveness of Peer Instruction on learning [4] [25] in-
class, and the success of Intelligent Tutoring Systems and
MOOCs outside of class, have in part, led to the devel-
opment of web-based platforms for asynchronous Peer In-
struction [6][27]. Recently, other similar learning environ-
ments have been developed, centred on having students ex-
plain their reasoning, and then evaluate the explanations of

1account required at https://myDALITE.org/signup

their peers[22][5]. The increasing use of this form of online
learning exercise implies that a new type of data is being
generated, wherein lie opportunities to examine theories of
how self-explanation and comparative peer assessment may
impact learning.

There are several pragmatic motivations for extending Peer
Instruction to out-of class activities. First, when scaling-up
Just-in-Time-Teaching environments, a web-based platform
for asynchronous peer instruction can substantially reduce
the time teachers’ spend searching the data to identify stu-
dent misconceptions. Second, when students are asked to
compare answers with peers, they receive a form of immedi-
ate feedback on their own explanation. Last, when posting
threads and sub-threads to large scale on-line discussions,
such as MOOCs, an asynchronous Peer Instruction platform
offers a more structured alternative and ties student expla-
nations to an answer choice, allowing for more organized
aggregation of ideas [2].

These platforms open new research questions and opportu-
nities for the Educational Data Mining community. First,
these systems capture new modalities of data, specifically,
the written explanations for answer choices, which acts as
proxy data: representing the cognitive reflections elicited in
conversations students have with peers during small- group
in-class Peer Instruction discussions. Second, these environ-
ments introduce challenges common to any platform centred
on user generated content: quality control and recommenda-
tion. The power of having students generating the explana-
tions to different answer choices, and then rating them, en-
ables scaling up of technologies that facilitate flipped teach-
ing practices[14]. However, once these tools do scale, sheer
volume requires automatic approaches for filtering out low-
quality content. Once filtering is complete, recommendation
algorithms need to be in place to most effectively help cur-
rent students navigate the large volume of content generated
by past students, with the ultimate objective of optimiz-
ing individual learning gains. Further research is needed on
learnersourced data sets so as to develop best practices that
leverage the effectiveness of student written and ranked ex-
planations for adaptive learning experiences, while avoiding
the pitfalls that can lead to the valuable data drowning in
noise.

2. OBJECTIVES

Sameer Bhatnagar, Michel Desmarais, Amal Zouaq and Elizabeth
Charles "A Dataset of Learnersourced Explanations from an
Online Peer Instruction Environment" In: Proceedings of The
13th International Conference on Educational Data Mining
(EDM 2020), Anna N. Rafferty, Jacob Whitehill, Violetta
Cavalli-Sforza, and Cristobal Romero (eds.) 2020, pp. 350 - 355
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This paper characterizes a dataset generated inside one on-
line platform for asynchronous Peer Instruction, with the
aim of identifying the potential research questions and lim-
itations afforded by this novel application. The use of the
tool is growing, now reaching over 50 course offerings across
at least 5 undergraduate institutions in different science dis-
ciplines. The contexts are varied, but the common thread
is that instructors are all using the tool as an attempt to
increase in-class student engagement with pre-instructional
quizzes, and tailoring their lectures based on the free-text
explanations students provide for their answers. Thus, the
ultimate goal of this study is two-fold:

• introduce a novel source of data to the Educational
Data Mining research community, which has the po-
tential to open new lines of inquiry based on the unique
“voting” attribute. Students not only write explana-
tions to justify their answer choice to conceptual sci-
ence questions, but they are asked to choose which of
a subset of their peers’ explanations are most convinc-
ing.
• identify opportunities and challenges related to the de-

sign of platforms that rely on learnersourced content,
such as choosing the most effective content to foster
learning; filtering weak or irrelevant student explana-
tions; categorizing and summarizing student explana-
tions for teacher reporting in large classes.

3. BACKGROUND AND RELATED WORK
3.1 Peer Instruction
The interactive engagement technique most relevant to our
work here is Peer Instruction: a method for promoting class-
room discussion that has been shown to enhance learning [8].
In this common classroom practice, teachers

1. poll their students on a multiple-choice item, using
some form of Audience Response System (e.g. click-
ers),

2. collect the distribution of answers, and maybe even
share back with the students,

3. without revealing the correct answer, prompt students
to explain their reasoning for their answer choice to
a peer nearby, ideally with someone with a different
perspective

4. re-poll the students after the small group discussions.

The platform at the centre of this study facilitates an asyn-
chronous version of the above script.

3.2 Comparison-based peer assessment
There are other systems similar in design to asynchronous
peer instruction; they differ in that the items prompt for
open-ended responses, as opposed to multiple-choice ques-
tions. However these systems still include a similar review -
step after submission of an answer, where students are asked
to compare and evaluate the quality of the explanations sub-
mitted by peers who had already answered the item.

For example, in the ComPAIR system [22], students first
submit their written answer to a prompt. They are then
shown pairs of their peers’ answers, prompted first to give
feedback to each of the answers in the pair, and then choose

one as the better response. The pairwise comparison at the
heart of this tool leverages learners’ inherent ability to make
judgments regarding an answer’s quality relative to another,
to make up for the lack of expertise usually needed to provide
useful feedback on content in isolation. JuxtaPeer [5] is a
similar system, where the pairwise comparisons are anchored
on one object at a time, and have been shown to improve the
quality of feedback that peers can provide to one another.

3.3 Explanations Datasets
Two of the most prominent sources of learning analytics
datasets are from the ASSIStments platform[15], and PSLC
DataShop[19]. They both provide significant contributions
to Learning Analytics and Educational Data Mining researchers,
by making available a wide variety of data from different on-
line learning tools. They include datasets with free text re-
sponses, including math hints generated by students in AS-
SISTments, and student explanations to science questions
inside the Andes project (hosted in Datashop).

If casting student explanations as short arguments in favour
of their answer choice, we can look to the Argumentation
Mining research community for sample datasets. For ex-
ample, a dataset of persuasive student essays that are fully
annotated for argumentative relations was recently released
[26]. The International Corpus of Learner English[12] is used
extensively to model how students make arguments.

Another sign of the growing interest in analyzing student
generated text are the Automated Essay Scoring[16] and
Automatic Short Answer Scoring [17] competitions hosted
on the data science platform, kaggle.com. These datasets
are still freely available as well.

To the best of our knowledge, none of the above data sources
include all of the defining characteristics that are gener-
ated by online Peer Instruction, such as the student’s initial
answer choice and explanation, a student’s second answer
choice after having reviewed peer explanations, and most
importantly, the peer explanation the student found most
convincing.

3.4 Learnersourcing explanations
Web-based homework systems are effective because students
get immediate feedback as to whether they answered cor-
rectly. However, as the number of question items grows, as
well as associated answer choices, generating high quality
explanations that help different types of learners resolve dif-
ferent sets of misconceptions, is impractical for teachers [14].
Moreover, explanations written by content experts may also
suffer from the expert blind spot, wherein their high level
of familiarity with the subject matter actually might actu-
ally make their explanations more difficult to understand to
novices [20].

The concept of learnersourcing is a sub-type of crowdsourc-
ing, wherein domain novices contribute to the human com-
putation workflow as part of their learning process [28].
PeerWise [10] is an environment within which students make
their own questions, and share them with peers, along with
accompanying solutions. RiPPLE is a tool that follows the
same model, but adds an adaptive recommendation engine
[18].The AXIS system [29] prompts students to provide ex-
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Figure 1: Asynchronous Peer Instruction - Step
1, screenshot of student answering multiple-choice
question, and explaining their thinking inside a text
box

planations to their answers, rate the explanations of their
peers, and then machine learning to curate these to a con-
stantly evolving set of explanations that optimize for pro-
moting student learning. ASSISTments, another widely used
learning platform, developed the PeerASSIST plugin [24],
which asked students to write explanations to their answer
submissions, to be used as hints for future students.

4. MYDALITE: PLATFORM AND DATA
4.1 The Platform
dalite-ng is an open-source project [23] that has been in ac-
tive development since 2013, and has been used in MOOCs
as well as on campus course offerings. myDALITE.org is
one instance of this code-base, offered as a hosted service
that is free to all teachers and students. It is maintained by
a network of learning science researchers and practitioners,
whose mission is to promote the uptake of student-centred
active learning pedagogical practices. Teachers sign up, au-
thor their own questions, and distribute to their students
at their discretion. The script for the student completing a
question item in dalite-ng is:

1. Question start: student is presented with a multiple-
choice question. They are asked to choose an answer
choice and enter a free text response to explain their
reasoning.

2. Question review: without indicating whether the
student chose the correct answer, the tool reflects back
to the student their own choice, and the explanation
they just entered. They are then prompted to re-
consider their answer, by reading the explanations of
other students. In the top half of the page, they are
shown up to 4 other explanations by students who
chose the same answer choice. In the second half of
the page, they are then shown up to 4 more expla-
nations to a different answer choice. Students must
indicate which is their second answer choice in this re-

Figure 2: Asynchronous Peer Instruction - Step 2 ,
screenshot of student choosing a peer’s explanation
of a different answerchoice

view step, by selecting one of these explanations. They
also have the option of selecting their own explanation
as the most convincing. There are several factors that
go into the selection of what the students are shown
here:
• if the student answered incorrectly on the first

step, the explanations in the second half of the
page will be for the correct choice
• if the student did in fact answer correctly on the

first step, the explanations in the second half of
the page will be for the most popular incorrect
answer.
• There are two different heuristics for the selection

of explanations for each answer choice:
– Random, which is useful for when a question

is newly introduced to the database, and not
enough students have answered to reliably es-
timate which answers are most convincing

– preferentially selecting from explanations that
have already been chosen as convincing

3. Question summary The entire flow of information
is reflected back to the student for review: their first
answer, their own explanation, their second answer
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choice and the associated explanation that they chose
as most convincing. The correct answer is also finally
revealed.

4.2 Data Collection
The data in this study comes from the 2018-2019 academic
year, wherein the platform was more heavily used than ever
before, due to additional on-boarding support offered to
teachers by the host network. All teachers who make ques-
tion items on the platform must release their content under
Creative Commons licenses, and are made aware that the
learning-data generated by the students in their groups may
be used for academic research. Students are advised upon
signing in, that their learning traces, in anonymized form,
may be used for research, and that if they do not wish to
share their data, they can revoke their consent at any time,
without any impact on academic standing in their courses.
The data gathered for this study spans three STEM disci-
plines where there happened to be the most activity: Bi-
ology, Chemistry, and Physics. There are many different
groups of students in Physics and Chemistry, each with a dif-
ferent teacher (although all in undergraduate level courses),
while all of the data in Biology comes from one large fresh-
man group that used the tool very heavily. In the case of
a few groups, the items were assigned by teachers as op-
tional, not-for-credit items, meant to provide extra practice
study exercises (this information is provided in the meta-
data file of the dataset). For those cases when myDALITE
was used for credit, students received 0.5 marks for choosing
the correct answer on their first attempt, and 0.5 marks for
choosing the correct answer choice after the review step. No
credit was ever assigned based on a formal expert evaluation
of the student explanations.

4.3 Dataset
Each record in the dataset is comprised of the following
fields:

• anonymized student identifier
• anonymized group/course identifier (with meta-data

on whether the activities were assigned for credit of
not)
• question prompt text (and any associated images)
• student’s first answer choice
• student’s explanation for their first answer choice
• peer explanations shown to student on second step
• student’s second answer choice
• the peer explanation they selected as most convincing

for their second answer choice
• timestamps associated with

– when the student first opened the problem
– when the student entered their first answer choice,

and associated explanation
– when the student entered their second answer choice,

and associated peer explanation

Certain filters were applied for the purposes of data extrac-
tion for this study. The only groups that were retained were
those having 10 students or more, each of whom having an-
swered at least 10 questions. The only disciplines that were
included in the current dataset were ones with over 10,000
student responses.

Table 1: Size of dataset across disciplines

Ng N Nq Na Na

Biology 1 346 232 19653 57
Physics 16 1250 572 50286 40
Chemistry 16 1055 532 28319 27

Table 2: Relative number of answer transitions,
from step 1 to step 2

1stC ∆ ∆e∑
r→w w→r

Biology 0.70 0.10 0.01 0.09 0.40
Physics 0.79 0.09 0.01 0.07 0.44
Chemistry 0.69 0.12 0.01 0.11 0.38

5. DESCRIPTIVE STATISTICS
As can be seen in Table 1, there are relatively similar num-
bers of responses across the three disciplines.

Ng : number of groups
N : number of unique students
Nq : number of items
Na : total number of answers by all students
Na : average number of items completed by each student

This table demonstrates the valuable longitudinal nature of
the dataset, in that across the disciplines, there are, on av-
erage, more than 25 observations per student, which could
help building a more robust learner models.

In Table 2, we see the proportion of times students changed
their answers on the answer review step.

• 1stC : fraction of responses where students chose the
correct answer choice on their first attempt
• ∆ : fraction of responses where students switch their

answer choice on review step
–

∑
: total fraction of answers where students changed

their answer choice from step 1 to step 2
– r → w : fraction of responses where students

switch their answer choice on review step, going
from right to wrong

– w → r : fraction of responses where students
switch their answer choice on review step, go-
ing from wrong to right, presumably after reading
their peers’ explanations

• ∆e : fraction of responses when students do not change
their answer choice on review step, but choose an ex-
planation other than their own as most convincing

Across the disciplines, the items in this dataset are easy
enough for students to choose the correct answer choice on
their first attempt almost three out of four times. The expla-
nations of their peers are almost never able these convince
students to switch from the right answer choice to a wrong
one. However of the students who choose the wrong answer
on their first attempt, after having access to the explanation
of their peers, these students switch to the correct answer
choice at the review step almost one out of three times.These
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Figure 3: Visualizing student transitions in asyn-
chronous peer instruction with a Sankey diagram

Table 3: Descriptive statistics on explanation word
counts

WC WC < 5 ∆elongest

Biology 7 0.63 0.19
Physics 15 0.42 0.23
Chemistry 19 0.19 0.18

relative transitions are visualized in the Sankey diagram in
Figure 3.

In table 3,

• WC is the average word count of the explanations
• WC < 5 is the proportion of explanations that have

less than 5 words
• ∆elongest the proportion of times students selected the

peer explanation that had the most words amongst
those that they were shown.

Here in Table 3, we see that many students write explana-
tions that are too short to form a sentence in the Biology
subset, and that even in the other disciplines, the explana-
tions are not long-form persuasive essays, but likely closer to
short answers. However, students seem to show a preference
for explanations that are longer in length when “voting” for
the most convincing explanation on the review step.

6. DISCUSSION
Learnersourcing shows immense potential for scaling up on-
line Peer Instruction, but also presents new challenges com-
mon to contexts centred on user-generated content.

A quick sampling of the large number of explanations with
less than 5 words likely indicates that students do not see
the value of writing explanations, unless they will receive
course credit for the task. Work from the argument mining
community may be useful here to automatically assess the
quality of explanations. Under study is the impact of web-
based reputation systems on increasing student engagement,
which have been shown to increase engagement in learn-
ing environments by offering virtual achievement rewards,

such as badges and leaderboards[9]. Another open research
question is in automatic quality control, given that the first
few students who complete a question, and submit an ex-
planation, will have their work shown to many subsequent
students. Work that has been done on automatic filtering
[11] of explanations based on unsupervised clustering could
prove beneficial here.

The value and uniqueness of this dataset remains in the
“voting” data: modelling what linguistic properties and con-
ceptual constructs students find convincing, in the language
of their peers, is fertile ground for research. The longitudinal
data also allows for modelling the evolution of how students
start integrating domain specific concepts into their expla-
nations across a semester, as well as “voting” for them in the
peer-explanations they find most convincing.

6.1 Future Work
Work must now be done on better understanding how to op-
timize the heuristics that select what peer explanations are
shown to students in order to enhance learning. This will re-
quire building student models of ability and models of item
difficulty. The linguistic properties are also of key interest:
can this mode of comparative peer assessment data be used
to inform our models of whether students have attained do-
main literacy? Finally, how do such environments promote
student engagement in flipped classroom contexts? We look
forward to collaborating with the community through this
novel source of data to along these lines of research.

Many of the design/implementation decisions for these plat-
forms are made with pragmatic motivations in mind and
need to be better informed by learning analytics theory. The
platform at the center of this study is a model to examine
more closely also because it is an open-source project, de-
veloped as part of Research Practice Partnership [7], where
learning analytics researchers are actively working with in-
structors using the tool to better align teaching practices
with sound pedagogical design.
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ABSTRACT
Despite several advantages of online education, lack of effec-
tive student-instructor interaction, especially when students
need timely help, poses significant pedagogical challenges.
Motivated by this, we address the problems of automat-
ically identifying posts that express confusion or urgency
from Massive Open Online Course (MOOC) forums. To
this end, we first investigate the extent to which the tasks
of confusion detection and urgency detection are correlated
so as to explore the possibility of utilizing a multitasking
set-up. We then propose two LSTM-based multitask learn-
ing frameworks to leverage shared information and trans-
fer knowledge across these related tasks. Our experiments
demonstrate that the approaches improve over single-task
models. Our best-performing model is especially useful in
identifying posts that express both confusion and urgency,
which can be of particular relevance for forum curation.

1. INTRODUCTION
Massive online courses have changed the academic landscape
of today, offering convenient alternatives to learners at sig-
nificantly reduced costs, compared to traditional educational
institutions. With more than six million students taking at
least one online course as part of their degree program [16],
online education has already become one of the most popu-
lar higher education supplements.

Despite several advantages associated with online education,
such as diversity of programs, lower cost, and more flexible
learning environment, factors such as lack of personalization
and low instructor-student ratio pose significant challenges
to this learning environment. For the most part, discussion
forums continue to be the sole platform for student interac-
tion with others (students and instructors), where learners
share their ideas, opinions, or even express their concerns
and questions about the course material. Unfortunately, in
a typical online class, these forums can quickly get difficult

to manage with few instructors and several learners getting
involved and posting their concerns. This situation can ham-
per the instructors’ ability to gauge students’ comprehen-
sion of course materials and address students’ concerns in
a timely manner, ultimately reducing learning effectiveness
for students.

One way of bringing about the much needed immediacy is
by way of automatic curation of the forums, where posts
related to confusion about the course material, or those
that raise urgent issues are automatically identified. For in-
stance, identifying posts that express confusion (Confusion
Detection) could help instructors in adapting their teaching
strategies during the course by employing more examples,
altering the course syllabus or slowing down the pace of in-
struction. Likewise, automatically identifying urgent posts,
i.e. posts which need an immediate response (Urgency De-
tection) and resolving them in a timely manner is impor-
tant for keeping students engaged. The two types of posts
are related but different in the sense that posts that express
confusion seek help about the content of the course mate-
rial while posts that express urgency also seek help but not
necessarily directly about the course content. Nevertheless,
the ultimate goal of both types of posts is to seek help from
others and so there is promise in designing methods that can
learn them simultaneously in a multi-tasking set-up.

While previous works have focused on addressing a single fo-
rum curation task [1, 20, 21, 22], other studies [24, 25] have
also shown that learning features that help address one task
may be gainfully used for other tasks–an aspect central to a
multi-task learning framework. Another reason for exploring
multi-task learning in this domain is the limited availabil-
ity of labeled data. The use of supervised machine learn-
ing approaches requires labeled data annotated by experts,
which can be time-consuming, costly, and difficult to obtain
in this domain. Unlike single-task frameworks which often
suffer from insufficient annotated data, the proposed multi-
task framework can share information between related tasks
leveraging beneficial information, thus avoiding the need to
have large amount of labeled data for individual tasks. How-
ever, this comes at the cost of increased model-parameters,
which can instead hurt the model. Also, if the jointly learned
tasks are weakly correlated, it might be more fruitful to fo-
cus on one task at a time since multi-tasking might intro-
duce more noise than useful signals. Despite these issues,
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the potential gains via an implicit increase in the sample
size for training our model by making it learn related tasks
has the promise of averaging the noise of each task and thus
improving generalization.

In this paper, we propose two multi-task learning architec-
tures, namely Shared-BiLSTM and Specific-Shared Multi-
Task, based on Long Short Term Memory (LSTM) networks.
Our goal is to use these architectures for forum curation by
jointly learning the tasks of Confusion detection and Ur-
gency detection. To investigate the potential promise of our
approaches, in light of the concerns mentioned above, we de-
sign experiments to answer the following research questions:

RQ1: To what extent are different tasks in this domain cor-
related?
RQ2: What is an effective multi-task learning architecture
for this problem?
RQ3: Can the proposed multi-task learning model leverage
the shared signals between the correlated tasks?
RQ4: How does adding more tasks affect the model’s per-
formance in the primary tasks?
RQ5: Does an already trained multi-task model help in im-
proving recall in a specific subset of data that could be of
particular interest to the instructors? 1

Our experiments show that automatic forum curation ben-
efits from sharing signals between Confusion and Urgency
detection, and our proposed multi-task learning architecture
improves on the individual tasks by learning shared and mu-
tually beneficial features between the tasks. We summarize
our contributions as follows:

• We empirically explore the extent to which confusion
and urgency detection are correlated using representa-
tive MOOC forum posts.

• We propose two multi-task learning architectures that
share information between related tasks.

• Using representative forum posts, we empirically demon-
strate that multi-task models improve over single-task
models. Our proposed model is especially useful in de-
tecting posts that express both confusion and urgency,
which can be particularly relevant for forum curation.

2. RELATED WORK
As MOOCs have attracted millions of users worldwide, an-
alyzing big data from online courses have become an indis-
pensable means towards understanding students’ learning
patterns. In this regard, previous research has proposed
models to predict dropout or success [7, 13, 14, 18], to mea-
sure the impact of social factors in attrition prediction [15],
and to automatically curate discussion forums [2, 3, 4]. For
example, Ramesh et al. [14] proposed a latent representation
model which could be used to abstract student engagement
types and to predict dropouts. Wang et al. [19] adopted a
content analysis approach to investigate the relationship be-
tween students’ cognitive behavior in MOOCs forums and
their learning gains. Chaturvedi et al. [4] proposed chain-
based models that incorporate meta-data along with course
information and content of the posts to identify the posts

1These are instances where posts are labeled as both Urgent
and Confusion.

Figure 1: Single-Task Bidirectional LSTM Model.

that require instructor’s attention. Chandrasekaran et al.
[3] demonstrated the importance of prior knowledge about
forum types in enhancing the predictive performance on
the instructor’s intervention task. Chandrasekaran et al. [2]
proposed a supervised classifier which makes use of an au-
tomatic discourse parser for robust instructor intervention
prediction.

Previous work has also focused on using behavioral and
community-related cues to provide an insight into students’
intentions, performances, and comprehension levels [21, 21].
Zeng et al. [22] and Agrawal et al. [1] investigated linguistic
features along with structural features (e.g., the number of
times a post has been read or the number of up-votes) to
detect confusion. As identified by previous works [1, 22],
one of the primary challenges in this area, is the lack of la-
beled instances and previous methods have explored the use
of domain adaptation for addressing this challenge [23].

To address the problem of labeled data scarcity and leverage
the relatedness between tasks, we propose to use multi-task
learning which has been proven to perform well in many
NLP tasks that include sequence labeling [5], text classifica-
tion [10], machine translation [6]. For example, Liu et al. [9]
proposed different architectures to control the information
flow between shared or specific embedding and LSTM layers
for text classification. However, multi-task learning has not
been effectively explored for the online education domain. In
this paper, we propose two multi-task frameworks to jointly
learn related tasks (confusion and urgency detection) from
the shared signals.

3. METHODOLOGY
We first define our task in Section 3.1 and in the following
sections, we describe the Single-Task (ST), Shared-BiLSTM,
and Specific-Shared Multi-Task (SSMT) models.
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Figure 2: Shared-BiLSTM Model Architecture.

3.1 Problem Formulation
Our training dataset is D = {(Xi, Y i)}Ni=0, where Xi rep-
resents the ith instance, and Y i = {yi

1, y
i
2, ..., y

i
M} denotes a

set of M labels for the instance, one corresponding to each
task2. We assume that each task is a binary classification
problem (yi

j ∈ {0, 1}), but the proposed method can also
work for multi-class classification tasks. In the following
sections, we describe our different architectures.

3.2 Single-Task (ST)
We first create single-task models with identical architec-
tures, to address the individual tasks of detecting confusion
and urgency separately. The architecture is depicted in Fig-
ure 1. Given a forum post instance as a sequence of tokens
Xi = {x1, x2, ..., xT }, and the class label Y i, we first use an
embedding layer to get the vector representation of each to-
ken xt, followed by a BiLSTM layer and a linear layer with
softmax activation to obtain class probabilities. The model
is trained to minimize the cross-entropy loss for each task:

L = −
N∑
i=1

yi log(ŷi) (1)

Where y and ŷ are the ground-truth and predicted labels
(for a particular task) respectively.

3.3 Shared-BiLSTM
We now describe our first multi-task model that uses a shared
BiLSTM encoder between different tasks to capture related
information. The shared encoder has its architecture nearly
identical to the single-task model except that it has an ex-
tra linear layer with ReLU activation between the BiLSTM
and the Linear (with softmax) layers. Figure 2 shows the
model architecture for two tasks, however; it can be eas-
ily extended for M tasks. Note that in this (and the next)

2In our case, we chose M = 2, where each label indicates if
a post pertains to confusion and urgency.

Figure 3: Specific-Shared Multi-Task (SSMT)
Model Architecture

figure certain layers are collapsed into one single layer for
simplicity. For instance, we depict Linear and Softmax as
Linear+Softmax in Figure 2 and 3. We experimented with
two main variations of this architecture: (1) Without feed-
back, and (2) With feedback. The first variation, without
feedback, is the part of the model shown below the dotted
line in Figure 2. The second variation, with feedback, has
the class probabilities of each task concatenated with the
dense hidden states (the entire Figure 2). Given the train-
ing pairs of a post sequence Xi = {x1, x2, ..., xT }, and the
class label Y i, the parameters of the model are updated to
minimize total cross-entropy loss for the M tasks:

Ltotal = −
N∑
i=1

M∑
j=1

yi
j log(ŷi

j) (2)

3.4 Specific-Shared Multi-Task (SSMT)
We now describe our second multi-task model, Specific-Shared
Multi-Task SSMT, that unlike the Shared BiLSTM model,
first models task-specific characteristics and then shares in-
formation between the tasks. This model has task-specific
components, with architectures identical to that of single-
task models, to learn task-specific features (shown in high-
lighted parts of Figure 3)3. Thereafter, the model shares
information across tasks by concatenating the predictions of
the task-specific components followed by a fully connected
layer (with softmax activation) to make predictions for the
various tasks. Given the training pairs of post sequence
Xi = {x1, x2, ..., xT }, and corresponding class labels Y i, we
first trained two separate single-task models, and used them
to initialize the task-specific components of the multi-task
network. We then trained the entire network to minimize
the total cross-entropy loss defined in Equation 2. Note
that during training, task-specific BiLSTM parameters get
updated along with other model parameters.

4. EVALUATION
In this section, we evaluate the utility of the proposed multi-
task models to address our primary tasks: Confusion and

3Like before, Figure 3 shows the architecture for two tasks,
but can be easily extended for more tasks.
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Figure 4: Label Distribution for the Stanford
MOOC Posts Corpus

Urgency detection. Following previous works, we measure
performance using Precision, Recall, and F1 scores of the
positive class (confusion or urgency). This is because from
the perspective of forum curation and helping students, pos-
itive class is more important than the negative class.

Dataset. We perform our experiments on the Stan-
ford MOOC Posts Corpus [1]. The dataset contains 29, 604
anonymized forum posts from 11 Stanford University pub-
lic online classes spanning three broad domains: Humani-
ties/Sciences, Medicine and Education. While this dataset
has several labels, we primarily focus on two labels: Confu-
sion and Urgency, labeled on a scale of 1− 7. The confusion
rating is based on the extent to which the post expresses
confusion, such as an inability to understand some concept
that is taught in the class. Similarly, the urgency rating is
based on how urgent it is that the instructors respond to the
post. Although these labels are on a scale of 1−7, following
previous work [1], we convert these labels to binary values –
posts with a score greater than 4 are categorized as Confu-
sion (or Urgency), and those with a score equal or less than
4 as Not Confusion (or Not Urgency). Additionally, in some
of our experiments, we use an additional label – Question,
indicating whether the post was a question or not. Figure 4
shows the dataset’s label distribution. We can see that only
15.19% of posts are labeled as Confusion, which shows a se-
vere class imbalance in this dataset. We use an 80− 10− 10
split for training, validation, and test data.

Training Details. For all our models, we initialized the
embedding matrix with pre-trained 100-dimensional GloVe
vectors [12]. We use a one-layer BiLSTM network with 80
hidden units. We experimented with using more layers and
hidden units. However, that led to over-fitting possibly be-
cause of the relatively smaller size of the dataset. We ap-
plied dropout [17] of rate 0.2 between the BiLSTM hidden
layers and the output layers for regularization, and did not
fine-tune the word embeddings during training to avoid over-
fitting. Finally, we optimized using the Adam optimizer [8],
with a learning rate of 0.001.

Correlation Analysis. We performed inter-label cor-
relation analysis prior to our main experiments. First, we
visualize the relationship between Confusion and Urgency
(considering the original (1 − 7) Likert scale) in the boxen

plot shown in Figure 5. We can see that there can be dis-
agreement between confusion and urgency labels especially
around the threshold rating of 4. For example, there are
several posts with confusion rating of 4.5 which would be la-
beled as Confusion but not Urgency (because their urgency
ratings are less that 4). However, we observe a relatively
high correlation between the two tasks for the most part.

Next, we also analyze the Spearman correlation between
confusion and urgency (Table 1). We consider both orig-
inal as well as the binary labels based on the threshold de-
scribed earlier. We observe a moderate correlation between
Confusion and Urgency (0.570). We also report correlations
of these labels with respect to Question to explore whether
it can be additionally used in the multi-task setup to im-
prove the performance of Confusion and Urgency detection
(the two primary tasks we are interested in). We also find
that using binary labels increases the inter-label correlation
for all cases. Note that inter-label correlation suggests but
does not guarantee or quantify improvement in predictive
performance with multi-task learning. Hence, in the follow-
ing section, we design a new experiment where we consider
three single-task models (confusion, urgency, and question)
and explore the utility of each to predict Confusion and Ur-
gency (RQ1). We then conduct other experiments to further
investigate the utility of multi-tasking for these problems.

Figure 5: Inter-label correlation distribution be-
tween ordinal Confusion and Urgency label; the
Spearman correlation value is 0.481.

4.1 Experimental Results
In our experiments, we implemented a single-task architec-
ture mentioned in Section 3.2 to create models for each
of the three tasks by training them on labeled data from
the respective tasks: Single-Task Confusion detection (ST-
C), Single-Task Urgency detection (ST-U), and Single-Task
Question detection (ST-Q). These form our baselines. We
follow a similar naming convention for the Shared-Specific
Multi-Task model. For example, we refer to the Shared-
Specific Multi-Task model to predict confusion and urgency
together as SSMT-CU.

As a preliminary experiment, we compare the performances
of our neural Single-Task models with Logistic Regression
(LR) using Bag-of-Words and tf-idf features. Comparing the
results in Table 2 with those in Rows 1 and 4 of Table 3, we
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Labels Confusion(1-7) Confusion(1/0) Urgency(1-7) Urgency(1/0) Question(1/0)
Confusion(1-7) 1.0 0.722 0.481 0.545 0.510
Confusion(1/0) 0.722 1.0 0.603 0.570 0.567
Urgency(1-7) 0.481 0.603 1.0 0.852 0.671
Urgency(1/0) 0.545 0.570 0.852 1.0 0.690
Question(1/0) 0.510 0.567 0.671 0.690 1.0

Table 1: Spearman correlation between all labels

Model Task predicted F1 Precision Recall
LR-C+BOW Confusion 0.45 0.56 0.38
LR-C+tf-idf Confusion 0.38 0.68 0.27
LR-U+BOW Urgency 0.61 0.67 0.57
LR-U+tf-idf Urgency 0.59 0.76 0.48

Table 2: Performance evaluation of single-task mod-
els with Logistic Regression as baseline

can see that ST-U and ST-C outperform Logistic Regression
based models on both the tasks. So, henceforth we use our
neural models for all single task experiments.

RQ1: To what extent are different tasks in this do-
main correlated?
The goal of our first experiment is to find out if the tasks are
correlated enough that model trained on one task can yield
reasonable predictive performance on the other task. This
would indicate if multi-tasking can help for jointly learning
these tasks. For this purpose, we first evaluate ST-C, ST-U,
and ST-Q on the task of confusion detection. Even though
ST-U and ST-Q were not trained on this label (confusion),
we posit that since the tasks of urgency and question detec-
tion are correlated with that of confusion detection, these
models could have learned signals commonly shared with
the confusion detection task. We perform a similar experi-
ment to find correlations with urgency detection. All results
are reported in Table 3.

The experiment indicates that the strongest correlation ex-
ists between the primary tasks: Confusion and Urgency de-
tection. When used to predict the confusion label, ST-U
obtains an F1 score of 0.47, which is only slightly lower than
that obtained by ST-C (0.50). Similarly, ST-C performs rel-
atively well in the urgency detection task suggesting that
ST-U and ST-C have learned mutually beneficial signals,
and can be used in a multi-task setup.

On the other hand, according to row 3 of Table 3, ST-Q has
not learn enough mutually beneficial signals for the confu-
sion detection task , suggesting that confusion and urgency
are more useful for each other than question.

RQ2: What is an effective multi-task learning archi-
tecture for this problem?
We experimented with various versions of the two multi-
tasking architectures proposed in Section 3. Here, we sum-
marize these architectures and their performances.

For the Shared-BiLSTM model, we consider a variation with-
out feedback (see Section 3.3) and three others with feed-
back. For the variations with feedback, we experimented

Model Task predicted F1 Precision Recall
ST-C Confusion 0.50 0.68 0.40
ST-U Confusion 0.47 0.46 0.48
ST-Q Confusion 0.32 0.39 0.27
ST-U Urgency 0.67 0.72 0.62
ST-C Urgency 0.44 0.67 0.33
ST-Q Urgency 0.44 0.60 0.47

Table 3: Performance evaluation of single-task mod-
els when used to predict Confusion or Urgency

with (1) Initializing the entire network randomly, (2) Pre-
training and then freezing the shared encoder, and (3) Pre-
training the shared encoder but further tuning the entire
model to minimize total loss. Together these make up a
total of 4 variations of the Shared-BiLSTM model. The
performances are reported in the top half of Table 4. We
can see that the variations which performed the best are the
one that includes feedback with random initialization and
the one with feedback, pre-training and freezing.

We also experimented three variations of SSMT: (1) Adding
an extra Linear layer with ReLU activation between BiL-
STM and final Linear Layers, (2) Including single-task losses
in Equation 2 when fine-tuning the entire network, and (3)
The model described in Section 3.4 without any changes.
The results are summarised in lower half of Table 4. We
can see that the model without any changes (as described
in Section 3.4) outperforms its other two variations as well
as all variations of the Shared-BiLSTM architecture. For
the rest of our experiments we use SSMT as our final multi-
task setup and we discuss its performance in the rest of the
research questions.

RQ3: Can the Specific-Shared Multi-Task model
leverage the shared signals between the correlated
tasks?
We evaluate our Specific-Shared Multi-Task model for pre-
dicting Confusion and Urgency (SSMT-CU). Table 5 shows
that SSMT-CU outperforms both ST-C and ST-U on the
two primary tasks. Comparing Rows 1 and 3, there is an
increase in F1 score for the confusion detection task from
0.50 to 0.56. Comparing Rows 4 and 6 shows that we also
obtain a boost in F1 score of the urgency detection task
from 0.67 to 0.69. These results are statistically significant
(p < 0.001) [11], and indicate that SSMT-CU has learned the
shared signals between the two tasks. Also, we see that ur-
gency has helped to identify confusion more than vice versa.
This can also be observed in Table 3: the drop in perfor-
mance when using ST-U instead of ST-C for confusion de-
tection was much smaller than the drop resulting from using
ST-C instead of ST-U for urgency detection. This also hints
that urgency signals are more useful for confusion detection
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Confusion Urgency

F1 Precision Recall F1 Precision Recall

Shared-BiLSTM (w/o fb) 0.50 0.64 0.41 0.66 0.65 0.68
Shared-BiLSTM (+fbrandom-initialization) 0.53 0.67 0.44 0.63 0.70 0.57
Shared-BiLSTM (+fb+pre-training+freeze) 0.53 0.67 0.43 0.67 0.69 0.66
Shared-BiLSTM (+fb+pre-training+tune) 0.48 0.72 0.35 0.63 0.72 0.57
Specific-Shared Multi-Task (+dense) 0.52 0.62 0.44 0.68 0.66 0.70
Specific-Shared Multi-Task (+st-losses) 0.52 0.66 0.42 0.68 0.70 0.67
Specific-Shared Multi-Task 0.56 0.66 0.49 0.69 0.70 0.69

Table 4: Results of different variations of our two multi-task architectures. We indicate feedback with “fb”,
and single-task with “st”. Bold fonts denote best performances among top and bottom halves of the table.

Model Task predicted F1 Precision Recall
ST-C Confusion 0.50 0.68 0.40
SSMT-CUQ Confusion 0.52 0.71 0.41
SSMT-CU Confusion 0.56 0.66 0.49
ST-U Urgency 0.67 0.72 0.62
SSMT-CUQ Urgency 0.69 0.71 0.67
SSMT-CU Urgency 0.69 0.70 0.69

Table 5: Performance evaluation of single-task and
multi-task models; MT-CU and SSMT-CUQ outper-
form ST-C and ST-U in the primary tasks.

than confusion signals for urgency detection.

RQ4: How does adding more tasks affect the model’s
performance in the primary tasks?
To investigate if adding the task of Question Detection can
supplement the primary tasks, we introduce the SSMT-CUQ
model and compare it with the existing models. Compar-
ing Row 1 with 2, and 4 with 5 in Table 5, we find that
SSMT-CUQ has a better F1 score than both ST-C and ST-
U. This shows that adding an extra task still yields better
performance than single-task models for the primary tasks.

To evaluate whether it further enhanced the SSMT-CU model,
we compare Rows 2 with 3 and 5 with 6. SSMT-CU obtains
a higher F1 score (0.56) than SSMT-CUQ (0.52) for the con-
fusion detection task. We attribute the drop in performance
of SSMT-CUQ for the confusion task to the relatively weaker
correlation between the question detection and confusion de-
tection tasks (also observed in our earlier experiment when
comparing Rows 1 and 3 of Table 3). The introduction of
question detection task might have introduced more noise
and weakened the shared signals of confusion and urgency.

On the other hand, SSMT-CUQ and SSMT-CU have iden-
tical F1 scores (0.69) on the urgency detection task (Rows 5
and 6 of Table 5). Despite question detection being as useful
for urgency detection as confusion detection (shown in Ta-
ble 3), SSMT-CUQ did not improve over SSMT-CU because
it might have received similar signals from both confusion
detection and question detection tasks.

RQ5: Does an already trained multi-task model help
improving recall in an specific subset of data that
could be of particular interest to the instructors?
We now turn our attention to a specific subset of our dataset
– posts labeled as both urgent as well as expressing confu-

Model Confusion Recall Urgency Recall
SSMT-CU 0.59 0.70

ST-C 0.49 -
ST-U - 0.59

Table 6: Performance evaluation for the subset of
confused and urgent posts

sion – for their potential to impact learner satisfaction 4.
In this experiment, the models are not trained on this sub-
set. Instead, we analyze the performance of the (already
trained) multi-task model on this subset. Since all the posts
in this subset are labeled as Confusion and Urgency, any
model will have a precision of 1 leading to a less informative
F1 score. So, in this experiment, we focus on Recall values.
Table 6 shows that the Specific-Shared Multi-Task model
significantly outperforms the single-task models in the sub-
set for both confusion and urgency (p < 0.001).

These results indicate that by leveraging correlated tasks in
the multi-task setting, the SSMT model has learned hidden
abstractions which help it to outperform single-task models
trained solely on confusion or urgency not just in general,
but also in the more important subset of the data.

5. CONCLUSION
In this paper, we hypothesize that inter-label correlation or
co-occurrence counts suggest but do not guarantee or quan-
tify improvement in predictive performance with multi-task
learning. This prompts us to design several experiments to
explore the benefits of multi-task learning for confusion and
urgency detection in MOOCs forums. We propose the SSMT
model, a multi-task learning framework, to facilitate forum
curation. We demonstrate that our proposed model outper-
forms single-task models consistently across both tasks. The
multi-task framework takes advantage of the shared signals
to yield not only superior performance in general, but also
in the subset of the data that is most important for curation:
posts that express both confusion and urgency. Future work
can extend multi-task learning to explore its generalization
performance across various course offerings. More specifi-
cally, it can investigate whether a multi-task learner trained
on one course, can be effectively used for prediction in other
related courses. In this regard, multi-task-based unsuper-
vised domain adaptation can be applied to jointly learn the
source and target course classifiers.

4We created this subset from test set of our data.
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ABSTRACT 

Discussion forums are used to support socio-collaborative learning 

processes among students in online courses. However, complex 

forum structures and lengthy discourse require that students spend 

their limited time searching and filtering through posts to find those 

that are relevant to them rather than spending that time engaged in 

other meaningful learning activities (i.e., discussion). Moreover, 

existing adaptive systems do not accommodate individual learner 

needs in these contexts. In this work, we propose a multi-relational 

graph-based recommendation approach that mines student 

interaction logs to address the above problems within discussion-

based socio-collaborative online courses. To account for the social 

aspects of learning, our approach incorporates learner modeling, 

social network analysis, and natural language processing 

techniques; it offers tailored recommendations of forum posts for 

learners with different types of interaction behaviors. In our 

experiments with small online courses, our approach outperformed 

competitor approaches in terms of recommendation precision while 

meeting expectations with respect to diversity and novelty. The 

results illustrate the proposed algorithm’s effectiveness in 

predicting student preferences, suggesting its potential to increase 

student participation in discussion-related learning activities.   

Keywords 

Recommender systems, Discussion forums, Computer-supported 

collaborative learning, Online learning. 

1. INTRODUCTION 
Asynchronous online discussion forums are widely used to support 

online courses in higher education [5, 23, 25]. In these forums, 

many instructors post discussion topics and encourage students to 

expand so that knowledge can be co-created and developed through 

progressive discussion. In such socio-collaborative learning 

contexts, students' active participation and production of learning 

resources is essential, as less discussion could result in less sharable 

knowledge and thus less learning within a course [37, 81]. However, 

forums’ complex thread structure and information-heavy posts tend 

to have a negative impact on student engagement, because much of 

their time is spent locating relevant forum posts, rather than 

focusing on core tasks such as debating, reflecting, and learning 

from each other [1, 37]. To alleviate this type of information 

overload problem, deploying recommender systems to recommend 

posts of interest or content generated by others could be beneficial.  

Many recommender systems have been used to support learning 

across varied domains and contexts. For example, data mining 

approaches were used to suggest course improvements in learning 

management systems [33], and a workplace learning support 

system paired users with knowledgeable peers to enable knowledge 

sharing processes [8]. More recently, other systems have 

recommended courses to university students [7, 29, 65].   

While these examples show the prior success of recommender 

systems in educational contexts, few have solved the problem of 

recommending socio-collaborative learning materials in discussion 

forums for smaller online courses. To fill this gap, we present a 

novel graph-based recommender system approach. This approach 

mines learner interaction data using both modelled learner types 

and natural language processing techniques that were specifically 

designed for this application domain of smaller discussion-based 

socio-collaborative learning environments. In our research, we 

posed the following question: How do traditional recommender 

algorithms and those that incorporate principles from socio-

collaborative learning perform when suggesting posts in small 

online socio-collaborative learning contexts? 

2. Related Work 

2.1 Socio-collaborative Learning 
Socio-collaborative learning, also known as collaborative learning, 

refers to a class of learning methods in which learners cooperate in 

a group, relying on each other, being responsible for each other, and 

accomplishing a common task together [75]. This approach can be 

traced back to Vygotsky who pointed out that those who are more 

able can help others perform better [83]. Piaget claimed that the 

cognitive conflicts generated during social interaction could help 

the learner reflect on their original point of view, thus enhancing 

their understanding [44]. Subsequently, collaborative learning has 

become a widely used pedagogical theory that is also a target of 

many online learning environments, where it is called computer-

supported collaborative learning (CSCL). 

CSCL often occurs through online discussion-based forums [17, 

26, 39] where information is transmitted through posts to enable 

knowledge sharing or co-construction among learners. The systems 

and mechanisms used to support CSCL are grounded in theories 

such as knowledge building: a specific knowledge co-construction 

process that emphasizes the creation of ideas through discussion 

[70, 71]. Many of the proposed knowledge building principles (e.g., 

diverse and improvable ideas or symmetric knowledge 

advancement [69]) provide theoretical support for our research. 

2.2 Recommenders for Educational Forums 
Most work has focused on supporting question and answer (Q&A) 

forums in university courses [34], MOOCs [49, 53, 87] or other 

online educational platforms [41, 80] when recommending forum 

posts. These systems typically aim to reduce the number of 

unanswered questions by recommending 1) unanswered questions 
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to students who are able to answer them, and 2) similar questions 

that have already been answered to users who are about to ask one. 

Using a similar recommender system design in smaller-scale socio-

collaborative settings is inappropriate because the contexts differ in 

terms of size and pedagogical purpose. In contrast to MOOCs, these 

contexts suffer from both a lack of data and the cold start problem. 

Different from Q&A forums, developing knowledge sharing 

processes in discussion forums requires the algorithm support 

increased connectivity among users to facilitate communication 

[45]. It is also necessary to include posts containing diverse and 

novel ideas from students who express different points of view so 

that they might learn from each other [70]. 

Few studies have investigated how to deal with these challenges. 

Those that have depend on a priori domain knowledge (e.g., rules 

[2] or ontologies [18]) which is time-consuming to obtain and has 

limited generalizability to unseen cases [43]. Given increases in 

online course delivery and a desire to support students’ socio-

emotional development and collaborative learning [3, 24], we need 

approaches that can be used in the absence of domain expertise.  

Many have also argued that CSCL personalization technologies 

should consider the social [42, 66] and other needs of learners [12, 

51, 68, 79]. One study investigated learners’ knowledge sharing 

behaviors in closely-knit communities to generate tailored 

notifications [45]. The notifications aimed to foster knowledge 

sharing processes within a learning community composed of 

different learner types. To extend this idea to the context of a forum 

post recommender system, we set out to develop recommendation 

algorithms that also consider learner socio-behavioral patterns and 

created customized strategies for each behavior pattern.  

3. Recommender Algorithm: CSCLRec1 
The target users of this system are students or learners. We will use 

these terms interchangeably. Our proposed algorithm, CSCLRec, 

relies on 3 types of data that are available in any educational forum: 

user interactions with forum posts which we call user-to-post (U2P) 

interactions; communication between users, such as reading, that 

we call user-to-user (U2U) interactions; and the textual content of 

forum posts. Using this data, it recommends posts to learners. 

CSCLRec has four modules (see Figure 1): a personalized 

PageRank graph, a learner interaction profiler that analyzes U2U 

interactions, a content analyzer, and a post filtering module.  

3.1 Personalized PageRank Graph 
The core of the system is a modified personalized PageRank (PPR) 

graph [35]. As shown in Figure 2, the PPR has nodes for users, 

posts, and hypernyms. A hypernym is a superordinate word whose 

semantic meaning includes a set of other words. For example, 

“flower” is the hypernym for “rose” or “daisy”. Multiple types of 

relationships including U2P interactions, inter-user relationships, 

and posts’ relationship with hypernyms are computed by other 

modules and represented as edges in the graph. The weight of user-

to-post edges in the graph is biased by a temporal decay rate. Edges 

representing U2P interactions in the past have lower weights so that 

the algorithm can focus on the user’s recent interests. 

We refer to the user who is receiving the recommendations as the 

active user. To recommend posts to an active user, the algorithm 

performs a random walk starting from their user node and its 

 

1 Code is available at https://github.com/EdTeKLA/CSCLRec 

connected post nodes. When sufficient iterations have been 

completed, the nodes’ probabilities of being visited by the random 

walk agent will converge to a steady state. Posts with the highest 

probability of being visited are presented as the recommendations. 

We used power iteration [60] to approximate the stationary 

probabilities and avoid poor computational performance. 

3.2 Learner Interaction Profiler 
The learner interaction profiler uses a bidirectional social network 

graph, which consists of different types of U2U interactions (e.g., 

replies and reads). Each user is a node in this graph and the 

interactions among users are edges. In Figure 3, the thin grey link 

from user U1 to user U2 indicates that U1 has read U2's post.  

Students who have many interactions with the active user are their 

peer learners. The rich interaction history, whether in discussion or 

debate, indicates the active user’s interest in interacting with those 

peers. This group of users share many outward edges with the 

active user in the social network graph. The inclusion threshold for 

number of edges required between users is set via grid search. As a 

result, the module generates links connecting the active user to 

those peer learners (the green edges in Figure 2) in the PPR graph.  

The analyses over the graph also output a participation level (i.e., 

number of outgoing edges of reply, like, and link types from its user 

node) and a degree of centrality (i.e., the in-degree of a node) for 

each student. The more frequently other students interact with the 

active user’s posts, the more they can increase the active user's 

degree of centrality. The participation level indicates the extent to 

which the student is actively engaging in the discussion. We used 

the two measures to identify four types of learners (new user, 

listener, single-pass user, and peripheral user) that may need 

differentiated recommendation strategies. These user types are 

identified using simple heuristics based on the literature. 

 
Figure 1. Overall workflow of CSCLRec 

 
Figure 2. The modified PPR graph has 3 node types (user - 

green, post - red, and hypernym - yellow) and 3 edge types 

(user-to-user - green, user-to-post - red, and post-to-hypernym 

- yellow). Edges without arrows are bidirectional and edge 

width indicates number of occurrences. 
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New users are learners who have just joined the discussion. They 

have not created any resources nor do they have any other logged 

interactions. Consequently, these users are subject to the cold-start 

problem, which makes it difficult for the algorithms to provide 

suggestions because of the lack of data  [10]. New users may 

experience greater information overload because they face many 

posts at once and  may need tailored recommendations to help them 

filter information, identify their interests early, and contribute their 

own voices. To prevent narrow recommendations, new users are 

connected to every other user in the PPR graph.   

Listeners read many posts but rarely post themselves [86]. The 

knowledge building principle of collective responsibility and 

symmetric knowledge advancement suggests that encouraging 

posting is critical to fostering activity and promoting knowledge 

co-construction [69]. Listeners are identified as those who have not 

created posts. To reduce the number of persistent listeners, we 

adopt the same recommendation strategy as that employed for new 

users since exposing these learners to different topics may increase 

the possibility of their expressing opinions [46].  

Peripheral users are those whose centrality score is decreasing due 

to lost interactivity in their readership. The module aims to recover 

peripheral users and listeners to promote the knowledge-sharing 

process [47, 48] and prevent the loss of these readers’ activity and 

interest. The learner profiler monitors the number of interactive 

readers for each learner: those who reply, like, or link. When the 

profiler detects the user’s interactive reader count has dropped by 

half from one week to the next, that user is marked as a peripheral 

user. This value was tuned during the evaluation. The algorithm 

takes note of the lost readers and introduces connections between 

the peripheral user and the lost readers in the PPR graph to 

strengthen their connections.  

Single-pass users only read new posts and ignore older posts [38]. 

Their widespread presence undermines socio-collaborative 

learning approaches because these learning processes require topics 

to be progressively discussed and deepened [69]. To alleviate this 

behavior, some have suggested encouraging students to revisit 

earlier posts [38]. Inspired by this idea, the learner interaction 

profiler identifies students who have only read posts from the 

previous week. For example, those who have not read posts created 

before week 7 are marked as single-pass users in week 8. The 

modified PPR graph decreases the temporal decay exerted on older 

posts for single-pass users so earlier posts are down-weighted less, 

increasing the likelihood of their recommendation to these learners. 

3.3 Content Analyzer 
Forum posts are hierarchically structured. Posts on the same topic 

have similar interaction records because users are accustomed to 

browsing the entire topic structure when reading a post. Therefore, 

algorithms based on interaction records (i.e., collaborative filtering, 

ordinary personalized PageRank bipartite graph) may only 

recommend posts that are locationally similar to those that users 

often interact with. Consequently, students may lose the 

opportunity to read posts that match their current interests because 

they are located elsewhere. These algorithms also bias towards post 

popularity [77] causing the “long-tail” problem: unpopular posts 

are not considered for recommendation [21, 62], which could 

decrease student exposure to diverse perspectives. To overcome 

these challenges, the content analyzer module applies natural 

language processing (NLP) techniques to the content of forum 

posts and enables links to be created between posts based on the 

concepts discussed rather than user interactions (as shown in Figure 

2). Its workflow is shown in Figure 4. The preprocessing stage 

removes all html mark-up and punctuation. It also tokenizes 

sentences into individual words. Lemmas are extracted for nouns 

and verbs, and stop words are removed. To protect user privacy, 

person names, usernames, web URLs, and email addresses are also 

removed. Each post is then organized as a bag-of-words (BoW).  

TF-IDF was chosen for keyword extraction following a preliminary 

evaluation that compared several potential methods (i.e., RAKE 

[67], TextRank [54]) on independent data from the same system. 

TF-IDF scores are computed for each lemma to choose keywords 

that best differentiate the current post from others. The keywords 

with the top 1/5 TF-IDF scores are used to represent the post.  

The extracted keywords are used to measure thematic similarity 

across posts. Instead of matching keywords using text similarity 

approaches (i.e., sentence embeddings or topic distribution vectors 

in vector space models), we consider two posts thematically similar 

provided they mentioned similar concepts regardless of student 

opinion towards a topic. The tools used to measure similarity 

included the WordNet semantic network and its collection of 

hypernyms [55]. We query each post in WordNet and use Lesk [50] 

to disambiguate hypernyms. The hypernyms are added as nodes in 

the PPR graph - see the yellow nodes in Figure 2. When a post 

contains a keyword that belongs to this hypernym, a link from the 

post node to the hypernym node is constructed. As a result, posts 

that share more concepts will share more hypernym nodes. 

3.4 Post Filtering 
This module analyzes, sorts, filters, and re-ranks the results 

produced by the recommender which may otherwise include less-

informative posts that will not advance student knowledge.  Posts 

like, “Thank you for the clarification, [name]” may be output by the 

algorithm if this filtering is not performed. The post filtering 

module refines the recommendations using two filters: one extracts 

verb and noun phrases as trigram models and excludes posts with 

fewer than 3 phrases, and the other compares post content with the 

Academic Word List (AWL) [20]. Posts with fewer than 3 AWL 

words are removed.   

4. METHODS 
We evaluated the performance of CSCLRec, its precursor, and 

other widely-used algorithms using a similar protocol to that 

advised by recommender system researchers [28, 73]. In each week, 

we recommend 10 posts to each user. Posts were selected from a 

candidate list consisting of those the active user has not yet read 

and all posts created by others in the current (evaluation) week. We 

hide this user ’s activities from the evaluation week and use forum 

 
Figure 4. The workflow of the content analyzer module 

 
Figure 3. The workflow of the learner interaction profiler. 

Edge widths in the graph indicate the number of interactions. 
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activities from prior weeks to train the recommenders. We start 

from week 2 since there are no learner posts prior to week 1.  

4.1 Dataset 
The evaluation used historical data from six postgraduate courses 

offered through an asynchronous discussion platform (PeppeR) at 

the University of Toronto. PeppeR provides a collaborative 

learning space to discuss and share ideas, making this system an 

ideal testbed to evaluate the proposed recommender system.  

Archival data from fully online courses were used. Of the six test 

courses, three were regular-length courses (13-weeks long) and the 

others were short courses (6-weeks long). User activity statistics for 

each course are summarized in Table 1. The data includes forum 

posts and all kinds of user interactions with posts (i.e., posting, 

replying to others' posts, inserting hyperlinks to other posts, liking 

posts, and reading posts). The interactions were categorized into 7 

types: create, reply, like, link, revisit, read, and anonymously read.   

The large variability in student interactions (see Table 1) is 

consistent with the different types of users identified: Some had  

many forum activities, while others seldom interacted with posts. 

This suggests the necessity of distinguishing different learner types 

and employing user-specific recommendation strategies. 

4.2 Recommender Algorithms 
CSCLRec’s performance was compared against that of 7 other 

recommenders. Due to the limited number of students, the diversity 

of student interaction behaviors, and the inter-dependence of time-

series data, random cross validation was not appropriate. We  tuned 

the hyperparameters using last block validation [9]: For each 

weekly evaluation, we used the prior week to validate the current 

weeks’ recommendations. We used grid-search on the 

hyperparameters and trained the recommenders using data from 

before the validation week. Testing used data from the validation 

week. Using precision, the best performing hyperparameters were 

selected to build the recommenders for subsequent evaluations. For 

CSCLRec, we tuned temporal decay and the number of peer 

learners. All PPR-based algorithms had their damping factor tuned.  

The algorithms we tested CSCLRec against are listed below. 

Hyper-parameter values are reported in the repository1.  

• Co-occurrence graph-based personalized PageRank (CoPPR) is 

another original method we developed. It uses the same learner 

profiler and post filtering modules as CSCLRec. Different from 

CSCLRec, Co-PPR uses the extracted keywords as nodes. Two 

keyword nodes are connected if they co-occurred at least once in 

a post. A post is connected to a keyword node if that post contains 

the keyword at least once. Edge weights are determined using the 

posts’ keyword occurrence count. CoPPR helps identify the 

contribution of the content analyzer to CSCLRec. We tuned 

temporal decay, the damping factor, and number of peer learners. 

• Personalized PageRank (PPR) is a widely used graph-based 

recommender [15, 58]. It uses a bipartite graph with user-to-post 

interactions as the only input.  

• Matrix factorization collaborative filtering (MCF) represents a 

family of model-based collaborative filtering algorithms, which 

are commonly used in educational recommender systems [27, 

78]. We used the version proposed by Hu and colleagues [40]. 

We tuned its confidence factor which specifies the negative 

weight attributed to unseen interactions. 

• Keyword-based content-based recommender system (KCB) is 

frequently used to personalize discussion forums [4] and help-

seeking platforms [52]. KCB relies on latent semantic indexing 

to create vectors from posts. Users are represented as the average 

of the post vectors they have interacted with before. It 

recommends candidate posts which are nearest to the active user 

in the vector space. The hyperparameters include the dimension 

of post vectors and the ratio of content words as the keywords 

(i.e., 1/7 of the content words are treated as keywords).  

• Sentence embedding-based content-based recommender (SCB) 

relies on the semantics of post content [16].  

• Popularity-based recommender (PPL) recommends popular 

posts. Every user receives the same recommendations. This 

unpersonalized algorithm is used as a baseline. 

• The random recommender (RND) randomly draws posts from the 

candidate list. This algorithm is also used as a baseline. 

We did not test all well-known recommendation algorithms as 

some structural aspects and requirements of the algorithms make 

them a poor fit given the nature of our dataset. For example, deep 

learning-based methods (i.e., autoencoders) are data-hungry and 

can easily overfit due to the size of our dataset [88]. 

4.3 Measures 
Since accuracy is insufficient for determining the quality of 

educational recommender systems [30], we measured 3 dimensions 

of performance: accuracy, diversity, and novelty. 

For accuracy, we report both Precision at K (P@K) and Recall at 

K (R@K), where k is the number of recommendations. The R@K 

measure is affected by the number of available relevant items [73] 

so we report the maximum (max) R@10 to aid interpretation. Max 

R@10 is the average of the largest possible R@10 in each user's 

recommendations. We adopted the commonly used intra-list 

diversity (ILD) indicator which measures the average pairwise 

distance between recommended items [14, 76]. We used pre-

trained Universal Sentence Encoder [16] embeddings to represent 

the posts and the cosine distance to compute ILDs. The mean 

inverse user frequency (MIUF) indicator is used to measure 

recommendation novelty [11]. The fewer people who have 

interacted with the post, the higher the novelty and IUF of that post. 

To reflect the consistency of algorithm performance, we report the 

Table 1. Student and instructor interactions through the course forum as a raw count (#) or M (SD). 

Course Weeks 

(#) 

Students 

(#) 

Instructors 

(#) 

Posts 

(#) 

Interacted posts/ 

student 

Interactions/ 

student  

Reads/ 

student 

Likes/ 

student 

Links/ 

student 

LA 13 26 1 1751 1176 (550.18) 1628 (1010.30) 

(1010.30) 

1314 (719.23) 

(719.23) 

76 (61.16) 1.19   (2.98) 

LB 13 19 4 809 358 (245.96) 441   (298.75) 365 (247.00) 21 (24.96) 0.05   (0.23) 

LC 13 30 4 2090 1212 (686.41) 1373   (732.37) 1226 (698.94) 29 (23.88) 10.06 (15.20) 

SA  6 23 1 627 362 (219.05) 505   (417.60) 405 (290.29) 15 (19.45) 0.26   (1.25) 

SB  6 24 1 1142 616 (269.83) 731   (281.87) 635 (270.13) 8   (9.97) 0.25   (1.03) 

SC  6 20 1 869 507 (223.65) 631   (269.11) 521 (223.42) 44 (44.63) 0.55   (1.57) 
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mean and standard deviation of measures. The results were 

averaged over those of each student in each week. 

5. RESULTS 
Table 2 shows that both CSCLRec and CoPPR achieve high 

prediction accuracy, while maintaining acceptable diversity and 

novelty. They outperform their competitors according to precision 

for both 13-week and 6-week courses. Except for the very similar 

CoPPR algorithm, CSCLRec’s precision is more than 18% higher 

than that of other recommenders. According to R@10, there is no 

measurable performance difference among the various algorithms. 

Considering the maximum possible recall is capped at 35.1% and 

30.3%, CSCLRec’s R@10 performance (21.9% and 18.8%) 

suggests it successfully identifies most of the relevant items. 

In short courses, two of the best performers according to ILD are 

the unpersonalized baseline recommenders (RND and PPL) largely 

due to their introducing randomness. Apart from these random 

methods, those that emphasize interactions (i.e., MCF and PPR) 

had better diversity. As a tradeoff to accuracy, CSCLRec’s 

diversity was acceptable - it was somewhere in the middle (3rd of 

6 personalized recommenders in ILD) when baseline approaches 

(RND and PPL) are excluded because they have low precision.  

As another tradeoff to high precision, novelty is not best achieved 

with CoPPR or CSCLRec. Content-based algorithms (i.e., KCB 

and SCB) performed well from a novelty perspective as shown 

through their average MIUF scores. However, they had low 

diversity scores (ILD); they ranked last or second last. 

To illustrate differences in performance over time, we use the LA 

course as an example (Figure 5). Note similar patterns were present 

in other courses and the change at week 10 coincides with the term 

break. In general, CSCLRec and CoPPR remained the best 

performing recommenders for precision throughout the semester.  

Our proposed algorithm, CSCLRec, beats its competitors in 

precision from weeks 2 or 3 onwards (Figure 5). In contrast, when 

few inputs from students were available at the beginning of courses, 

the performance of content-based approaches was worse than the 

baselines. These results suggest the inclusion of socio-collaborative 

elements helps address the cold-start problem.  

6. DISCUSSION 

6.1 Recommender Algorithm Performance 
The good performance of content-based recommender algorithms 

(CB) such as KCB and SCB in recommendation novelty highlights 

their ability to discover unpopular posts. It implies these 

approaches are better at helping students more quickly locate 

difficult-to-find but conceptually related discussions when the goal 

is to develop narrow but deep knowledge. This class of approaches 

may also increase forum equity by increasing the visibility of posts 

made by students with minority opinions that may otherwise go 

unnoticed in a popularity-based recommender scheme. However, 

CB algorithms’ poor diversity performance suggests they suffer 

from the over-specialization problem because they only care about 

content similarity. This makes them unable to recommend 

semantically diverse resources. Since discussions on the same 

thread usually have similar content, the suggestions provided by 

CB recommendation algorithms are likely to direct users to a few 

specific threads, which may prevent exposure to new ideas. This 

goes against the general teaching goals of learning contexts where 

students are expected to discuss and debate different topics.  

The family of collaborative filtering algorithms (CF), represented 

by MCF, showed relatively poor novelty when compared with the 

CB algorithms. This lack of novelty may discourage the 

participation of students who hold minority opinions, as has been 

seen in other investigations [64]. When comparing with PPR, 

CSCLRec’s considerable enhancement in precision demonstrates 

the effectiveness of its three add-on modules. CoPPR also performs 

well, but its recommendation diversity appears to be lower. This 

finding indicates that the design of CSCLRec's content analyzer 

module benefits recommendation diversity as it is the only 

Table 2. Summary of evaluation results as M (SD) 

 Long courses (LA, LB, LC)  Short courses (SA, SB, SC) 

Algorithm P@10 R@10 ILD MIUF  P@10 R@10 ILD MIUF 

CSCLRec 0.729 (0.319) 0.219 (0.305) 0.274 (0.125) 0.612 (0.360)  0.751 (0.310) 0.188 (0.254) 0.191 (0.059) 0.482 (0.140) 

CoPPR 0.718 (0.324) 0.221 (0.304) 0.222 (0.110) 0.638 (0.380)  0.731 (0.315) 0.177 (0.243) 0.156 (0.048) 0.502 (0.137) 

PPR 0.537 (0.408) 0.178 (0.310) 0.390 (0.162) 0.466 (0.251)  0.566 (0.383) 0.142 (0.248) 0.244 (0.106) 0.407 (0.144) 

MCF 0.484 (0.391) 0.180 (0.313) 0.449 (0.192) 0.837 (0.532)  0.449 (0.406) 0.130 (0.265) 0.357 (0.151) 0.801 (0.485) 

SCB 0.294 (0.355) 0.158 (0.313) 0.075 (0.047) 1.216 (0.453)  0.400 (0.378) 0.117 (0.247) 0.079 (0.019) 0.927 (0.251) 

KCB 0.289 (0.359) 0.150 (0.315) 0.221 (0.105) 1.053 (0.490)  0.397 (0.369) 0.115 (0.247) 0.188 (0.072) 1.038 (0.311) 

RND 0.307 (0.335) 0.157 (0.312) 0.406 (0.174) 1.174 (0.404)  0.350 (0.336) 0.113 (0.248) 0.350 (0.130) 1.197 (0.385) 

PPL 0.407 (0.407) 0.177 (0.310) 0.417 (0.164) 0.420 (0.243)  0.480 (0.402) 0.140 (0.249) 0.311 (0.136) 0.353 (0.135) 

1. The best performing algorithms are bolded as determined via a 2-Way ANOVA and post-hoc Tukey HSD tests (p < .05). No interactions 

between week and algorithm were found. Full results of statistical testing are available in the repository1. 

2. Max R@10 as M (SD): long courses - 0.351 (0.343), short courses - 0.303 (0.317) · Sample size: long courses - 825, short courses - 268. 

 

 

 
Figure 5. Weekly recommendation results for the LA course. 
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difference between CSCLRec and CoPPR. The outstanding 

performance of CSCLRec makes it the most appropriate choice to 

provide personalized suggestions in small-scale socio-collaborative 

learning contexts. However, we expect CoPPR to work better than 

CSCLRec in environments where the domain of discussion topics 

is narrower than those in our dataset as the use of hypernyms in 

CSCLRec is prone to mis-classification due to the granularity of 

the WordNet ontology. For example, in Chemistry, both “Sodium 

chloride” and “Copper(II) sulfate” are a “chemical compound”, but 

it makes little sense to link these two terms together as students 

might be talking about different things.  

In contrast to traditional algorithms, CSCLRec and CoPPR 

integrate pedagogical considerations. The learner interaction 

profiler module is an obvious case. Unlike the one-size-fits-all 

recommendation strategy in other algorithms, it employs different 

strategies (i.e., adding more user-to-user edges) depending on 

learner type. Compared with the results of other approaches, the 

user-centered recommendation algorithm design of CSCLRec 

provided better prediction results by taking advantage of socio-

collaborative learning principles.  
While CSCLRec tended to perform well in recommendation 

accuracy, we should acknowledge that such support is not always 

what is needed for some learner types. For example, listeners not 

actively engaging in the discussions could be attributed to the 

recommendation lacking diversity. In this case, collaborative 

filtering approaches such as MCF might be a better choice. 

Moreover, new users may benefit from unpersonalized 

recommenders. For example, PPL could be used when we lack 

information about that learner because popular discussions may 

pique newcomer’s interest and encourage them to participate.  

6.2 Recommender Support for Learning  
The evaluations confirmed that our recommender system can 

forecast student behavior and give recommendations that match 

students’ preferences, as represented through their behaviors, in an 

e-learning discussion forum. Here we discuss the system’s potential 

to enhance students’ learning processes and outcomes in socio-

collaborative learning spaces.  

Rooted in learner interest, the generated recommendations can help 

reduce the time students spend searching for useful resources, 

thereby increasing the proportion of time dedicated to learning 

activities (i.e., discussing and sharing). The increased interaction 

should enable more knowledge-construction within the forum [37, 

72], benefiting every learner with more opportunities to review and 

increase their understanding of the knowledge they have learned 

[85]. Many empirical studies have also found that student’s active 

participation in sharing can develop their critical thinking abilities 

[13] and benefit their overall course performance [19, 61, 84]. 

At the same time, pedagogical research shows that the diversity and 

novelty of ideas are critical to learning outcomes, especially during 

the process of knowledge co-construction. According to the theory 

of social constructivism, learner exposure to diverse perspectives 

can help them experience the types of cognitive conflict that lead 

to knowledge gain [32, 44]. Knowledge building principles also 

emphasize the importance of diversity and novelty of ideas to the 

knowledge scaffolding process [69]. Fortunately, CSCLRec’s 

novelty and diversity performance demonstrated the algorithm’s 

potential to support various collaborative learning activities in 

small discussion-based e-learning forums. 

6.3 Potential Expansions 
There are many ways to further improve the system’s performance 

when it is deployed online. First, real-time feedback from students 

can be collected and used to steer the strategies for the next round 

of recommendations. Second, the system could allow instructor and 

student configuration. This would allow users to refine the quality 

of recommendations and offer increased transparency to improve 

user satisfaction and trust in the recommendation mechanism 

[82]. In the future, we may adopt a human-in-the-loop approach 

and let course instructors adjust recommender parameters so they 

are more consistent with desired teaching plans. 

More advanced NLP methods could also be used. For example, 

using knowledge graphs could benefit graph-based recommenders 

[56, 57, 59, 63]. Using such approaches could extend the semantic 

network in the content analyzer. Knowledge graphs relying on 

Linked Open Data usually have a wider coverage of entities which 

may allow them to overcome the current algorithms’ lack of 

phrases for representing key domain-specific concepts [74]. We 

had tried to use entity linking tools (e.g., DBpedia spotlight [22] 

and TagMe [31]), to query post content so that key phrases could 

be linked to entities in the knowledge base which would have 

replaced the hypernym portion of the PPR graph. However,  their 

performance seemed poor in our context: many key phrases were 

not linked to the correct knowledge graph entities. The main reason 

may be that forum posts present disambiguation challenges to 

entity linking tools [36]. Moreover, some knowledge bases, such as 

DBpedia [6], have a limited number of verb entities because most 

verbs are treated as relations. Thus, building a knowledge graph 

specifically for an individual course seems to be the only realistic 

approach even though it would require considerable effort. 

Lastly, while the proposed recommender performed relatively well, 

the ability of this recommender to support socio-collaborative 

learning processes within discussion forums still needs to be 

validated through in-vivo studies. Due to the limitations of using 

historical data, the present evaluation does not allow the direct 

observation of how learners will respond to the recommendations 

nor does it allow the measurement of the recommendations’ effect 

on learning processes [28, 30, 51]. 

7. CONCLUSIONS 
In this paper, a novel recommendation approach that accounts for 

socio-collaborative learning principles in small discussion forums 

was proposed. This multi-relational graph-based recommendation 

scheme, CSCLRec, incorporates social network analysis, learner 

categorization, and natural language processing techniques. A 

similarly structured recommender, CoPPR, was also introduced for 

potential use in socio-collaborative learning contexts.  

The performance of these proposed algorithms was evaluated in an 

offline experiment where they were compared against six other 

recommendation algorithms. The results from this evaluation show 

our approaches outperform others. Going beyond these measures, 

we discussed CSCLRec’s potential to help socio-collaborative 

learning processes, as well as its use cases and potential expansions 

from the perspective of a variety of measures (e.g., precision, 

diversity) and learning goals. As future work, we plan to deploy the 

system to examine its influence on student behaviors and learning.   
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ABSTRACT
We introduce DeepPerfEmb, or DPE, a new deep-learning
model that captures dense representations of students’ on-
line behaviour and meta-data about students and educa-
tional content. The model uses these representations to pre-
dict student performance. We evaluate DPE on standard
datasets from the literature, showing superior performance
to the state-of-the-art systems in predicting whether or not
students will answer a given question correctly. In partic-
ular, DPE is unaffected by the cold-start problem which
arises when new students come to the system with little to
no data available. We also show strong performance of the
model when removing students’ histories altogether, rely-
ing in part on contextual information about the questions.
This strong performance without any information about the
learners’ histories demonstrates the high potential of using
deep embedded representations of contextual information in
educational data mining.

1. INTRODUCTION
The testing effect, the effect of including practice assess-
ments as part of a students’ learning phase, is known to
have a strong positive influence on the knowledge acquisi-
tion process [2].

While the importance of regular practice and question an-
swering is established, it is essential to balance it against
the time constraints that students and instructors are fac-
ing [11]. The issue of having to teach and evaluate“too much
[...] in too short a time” [10] is long-standing and leads to
teachers having to make instructional choices with the in-
formation they have available [12]. It is thus important to
identify factors that could help intelligent systems to ask
the right question to the right students to maximise their
knowledge gain in a limited time.

Extensive research has focused on building better student
modeling to work towards this goal. Most of these ap-
proaches focus on extracting information from individuals’

histories of answers given, both right and wrong, to ques-
tions evaluating certain skills [4, 19, 18, 7]. Recent work has
taken into account other factors, such as item-skills relation-
ships, the relationship between a question and the skill it is
meant to evaluate citedas3h, or individual item difficulty [17]
in predicting student performance .

Deep knowledge tracing, which represents the state of the
art in student performance, does not take into account the
wealth of instance-specific interactions a student has with
a given question, such as requesting assistance before at-
tempting to answer it or the amount of time taken before
answering.

We propose DeepPerfEmb, a deep learning model whose aim
is to learn dense representations of this information and use
it to improve the task of performance prediction. Our con-
tribution is two-fold: we firstly argue that instance-specific
information can be leveraged by such a model to reach a very
high level of performance on predicting student correctness.
We also introduce a variant of the model using exclusively
contextual data, showing its ability to learn dense represen-
tations of these data points and perform strongly on the
same task, despite having very limited information about
the students’ actions.

2. BACKGROUND
In the educational data mining field, there has been exten-
sive research on attempting to model a learner’s understand-
ing of defined skills. Generally, this task is achieved through
using observations related to a student’s question-answering
history. This information is used to estimate the student’s
mastery of the skills evaluated by the questions and is gen-
erally evaluated by using the model to predict whether or
not they will answer a given question correctly. Such mod-
els are known as Knowledge Tracing (KT) models. Bayesian
Knowledge Tracing (BKT), one of the most widespread clas-
sical method, models each students’ knowledge as the latent
variable of a Hidden Markov Model built using students’
answering histories [4]. Such methods also rely on an evalu-
ation of the probability of slipping, when a student answers
incorrectly despite having mastered the skill, and guessing,
when a correct answer is given without having mastered it.

More recently, many different approaches to knowledge trac-
ing have been researched, mainly relying on extracting in-
formation from a vast amount of students’ attempts at an-
swering questions [7, 18]. Some of these models occasionally
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focus on or integrate other factors, such as modelling stu-
dent forgetting [23] and estimated difficulty of question [15]
or the possibility for a single question to relate to multi-
ple, distinct types of knowledge [3]. These approaches often
serve as the basis to intelligent learning schedulers, aiming
to optimise the distribution of questions asked to students
to maximise their knowledge gain [22, 25].

In recent years, deep learning has been utilised in order to
produce better-performing variants of previous approaches.
Notably, DeepIRT [27] and Deep Knowledge Tracing [19],
have been introduced. These techniques, themselves a re-
finement on previous models, replace some of the prior build-
ing blocks with deep neural architectures while retaining the
same foundational approach. Unlike more traditional meth-
ods, deep-learning based approaches rarely explicitly model
the impact of forgetting, guessing or slipping, instead rely-
ing on the model to capture implicit information about these
factors.

Online intelligent tutoring systems, such as the Assistment
platform[20], have been invaluable in providing a large amount
of data to train and evaluate such models. In addition to the
information about students’ attempts, failures and successes
in answering questions, they generate a wealth of data about
other aspects of the tutoring system. Notably, such systems
may provide the user with the possibility of requesting assis-
tance in answering the question, in the form of hints. It has
been noted that such additional features are under-utilised
in KT models and improve their performance when taken
into account [26].

The focus of most of this prior work has been on exploiting
the history of user answers, both right and wrong, in order to
predict the likelihood that they have mastered a given skill.
Such approaches reach a high level of performance and can
accurately model the relationships between the skills evalu-
ated [19, 16]. However, they encounter issues with students
with relatively little or no interaction, and some of them ex-
clude any student who has attempted to answer fewer than
10 questions [15, 3]. This issue is known as the cold start
problem.

However, point-of-time snapshots of data contain a lot of ad-
ditional information that has known little exploration. Such
information, which we broadly refer to as contextual in-
formation, includes data directly related to the students’
context, such as their school, the question they are solving,
and the time it takes them to attempt to answer a ques-
tion. We believe that such a method is complementary to
approaches focusing on students’ history in understanding
the cognitive process of learning through assessment.

Prior work on deep neural networks has highlighted their
ability to learn good embedding representations for discrete
data [6]. This paper demonstrates that a modified version
of this approach is able to outperform state-of-the-art KT
model in the specific task of predicting student correctness.
We show that our model learns a powerful representation of
the data it receives as input, outperforming the state of the
art, leading to a better understanding of how the questions
asked to students can affect their performance.

3. PROPOSED METHOD
Our goal is to highlight how contextual data can be lever-
aged to improve question-correctness prediction. In order
to do so, we use a deep learning model whose main purpose
is to learn representations of this data in order to predict
question-correctness. We then set out to leverage interpre-
tation methods in order to understand which factors are
considered important in making these predictions.

3.1 Data
We use two widely used public datasets made available by
the Assistments online tutoring platform [20]: ASSIST2009
[5] and ASSISTChall [1].
Each dataset is composed of hundreds of thousands of stu-
dent interaction, with each interaction corresponding to a
snapshot taken at the moment a student attempts to an-
swer a question. Each snapshot contains a large amount of
information, represented by multiple variables.

Two categories of data are present in each snapshot:

• Meta-data, or contextual data: Information about
the overall context around the student and the ques-
tion they are currently taking. Broadly, these are:

– Information about the student’s background (school
ID, teacher ID...)

– Information about the current question (problem
set ID, question ID, skill evaluated ID, whether
or not the question can be scaffolded...)

• Current instance-specific data: Information about
the question the student is currently attempting. Broadly,
these are:

– Information about the student’s help requests (hints
requested, whether he has seen the final hint, where
the questions stands in a scaffolding...)

– Information about the time spent on the current
question (time before first interaction, total time
with question...)

Both datasets do not contain exactly the same information.
ASSIST09 contains additional information in the form of
both interaction data, such as time-to-first action and to-
tal time on question, and contextual meta data, notably
relative to individual students’ background, such as the spe-
cific assignment set they are working on or the ID of their
class. Additionally, ASSISTChall is notable due to the pres-
ence of scaffolded questions. Scaffolding is an alternative
to hints in making it simpler for a student to answer a harder
question [21]. A scaffolded question is a question that can
be decomposed into simpler questions (the scaffolding ques-
tions). The data contains variables describing the scaffold-
ing status of an interaction: whether a question is the start
of a scaffolding and whether it is part of one.
For the purpose of our experiments, we consider scaffold-
ing to be a type of contextual data as an attribute of the
question being asked.

Due to the nature of the information contained in our snap-
shots, they contain both categorical and continuous vari-
ables:
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Figure 1: Simplified view of full model

Figure 2: Simplified view of meta-data only model

Categorical variables, in this case, represent information
that belongs to a finite number of defined categories, such
as the skill being evaluated, the ID of the problem set the
student is working through or the first action that they took
on the current question (whether he requested a hint or at-
tempted to answer it).
Continuous variables, on the other hand, represent infor-
mation that can be measured, such as how long it takes for
the user to first interact with the question after seeing it.
For this work, ordinal variables, such as how many hints
a student has received, are treated the same as continuous
variables.

3.2 Preprocessing
We apply four major preprocessing steps to the data. For
all of them except the removal of non-attempt snapshots, we
use the data preprocessing utilities in the fastai2 library [8].

3.2.1 Removal of information leaks
Both datasets contain some variables that are perfectly cor-
related with student correctness. These are values such as
the hint variable, which indicates that this interaction re-
sulted in the user requesting a hint instead of trying to an-
swer the question. The system will automatically label this
interaction as ”incorrect”, although no attempt was made.
As we do not want the model to learn incorrect information
from this data and reach an artificially high score, these in-
teractions are removed from the data.

Additionally, we also remove the variables that could lead
to our model learning about an individual’s student history.
This includes the user ID, the total count of attempts by
a user, the exact timestamp of interactions as well as ad-
ditional information contained in ASSISTChall, such as a
student’s career path, final test score or emotional state.

3.2.2 Standardisation of Continuous Data
All the continuous variables are normalised before being fed
to the model.

3.2.3 Handling Missing Continuous Value

In some cases, all continuous variables are not available in a
given snapshot. In order to account for this factor, we cre-
ate a categorical variable corresponding to each continuous
variable. This variable represents whether the information
is present in the current snapshot or not. This allows the
model to potentially capture the meaning of the absence of
a given observation in a snapshot.

3.2.4 Pre-encoding of Categorical Data
Prior to being passed as input to the model, all categorical
variables are ordinally encoded. This means that each pos-
sible value is replaced by an integer representing it. This
step is crucial in ensuring the model can learn a dense rep-
resentation of each possible value during training.

3.3 Model
Predicting the performance of a student based on a stu-
dent’s previous answers on questions meant to evaluate de-
fined skills has been widely explored in work on Knowledge
Tracing. Our aim is to build a model learning good rep-
resentations of data without individual students’ histories
to predict whether or not a student will answer a question
correctly.

Our model is a variant of the model presented in [6] with
several modifications. The overall architecture can be de-
scribed as follows.

3.3.1 Architecture
Structure
Embeddings: We create an embedding layer for each of
the categorical variables we are processing. This embedding
process uses a function ei, which maps each possible cate-
gorical input xi to a corresponding dense vector Xi:

ei : xi 7→ Xi (1)

This means that each of the categorical variables C will be
mapped to a vector space. Each embedding is learned during
the model training, and our aim is for the model to learn a
representation of the categorical variables describing a given
snapshot.
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This step is the key step of our network, as the embeddings
are trained alongside the full network during model train-
ing. With the task of predicting student correctness as its
final objective, the model will use these embeddings layer to
learn a representation for each of the variables it is given as
an input.
Finally, the embedded representation of all the categori-
cal variables are concatenated together into a single vector.
This vector is then passed to a single feedforward layer, as
defined below.

Bilinear Layer: The authors of [6] concatenated the nor-
malised continuous inputs with the previously generated con-
catenation of the categorical variables. This approach re-
sulted in unstable training and overfitting on ASSIST09.
To alleviate this and allow our model to better weigh both
types of features, we introduce a Bilinear layer.
The Bilinear layer takes two vectors as input, x and y, and
turns them into a single output vector by multiplicating
them with a learned weight w and adding a learned bias b.
The activation function and batch normalisation functions
are both applied to this and every subsequent layers:

BatchNorm(Mish(x ∗ w ∗ y + b)) (2)

FeedForward layers: The inputs are then passed through
a classical feedforward architecture made up of linear layers
which multiply the single input vector x by a learned weight
w and add a learned bias b:

BatchNorm(Mish(x ∗ w + b)) (3)

Output layer: Our output layer is a normal feedforward
layer with two output nodes, representing the prediction
made by the model (correct or incorrect).

For the experiments exploiting both interaction and meta-
data, we use the full version of our model as presented in Fig-
ure 1. When using only the meta-data, which is expressed
through categorical variables exclusively, we do not need the
weighing introduced by the Bilinear layer to allow the model
to converge. As a result, in this situation, we use a simplified
architecture presented in Figure 2.

Information
Activation: Our model uses the Mish activation function,
which has been shown to consistently outperform common
activation functions such as ReLU [14].
Batch Normalisation: It has previously been demonstrated
that batch normalisation helps in both stabilising and speed-
ing up the training of neural networks [9]. As such, we apply
batch normalisation to our continuous input and to the out-
put of every other layer.
Dropout: To prevent overfitting, which happens when the
model learns too much about the training data and fails
to generalise, dropout [24] is applied after every layer. We
applied a dropout value of 0.4 during our experiments.

4. EXPERIMENTAL SETTING
We separate our experimentation into two parts. Firstly, we
will use both of the data types we defined earlier, meta-
data and instance specific data. This experiment will
serve as a first indicator of our model’s ability to extract

information from the data and build efficient representation.
We will then perform feature importance analysis on the
models’ predictions to understand what variables have the
strongest impact on its predictions.

Following this, we will attempt to predict question-correctness
using exclusively meta-data. The aim of this experiment
is to highlight how much the model can learn while using
no information about the current assessment session or the
learner’s history. We will then study the model to under-
stand what representation of the data it has learned and
how it impacts its performance.

We evaluate our model by performing 5-fold cross-validation
and training the model for 100 epochs on each of the steps,
saving and reporting the result obtained for the best epoch.
For both datasets, we use the LAMB optimiser [29], which is
better suited to large-batches training than other optimisers.
In order to minimise training time, batch size is set to 24
000 and a maximum learning rate of 10−1 is used. In both
models, we set the hidden dimensions of all layers to 100.
These hyperparameters were obtained by a search using the
first fold of the cross-validation set.

Due to the imbalanced distribution of our data, we report
prediction results using the Area Under the receiver-operator
Curve (AUC) metric, widely used in the literature for sim-
ilar tasks [19, 3, 28].
For reference purposes, we have included results from the
two most widespread implementations of Knowledge Trac-
ing, BKT and DKT (here, DKT+ [28], a slight refinement of
standard DKT) as well as from the current state-of-the-art,
SAKT [16] in the comparison tables. For BKT, we use the
best results reported in the paper introducing DKT [19].
Although the original data used by DPE and KT models is
the same, we use different information found in the datasets.
KT models use individual students’ interaction histories in
order to predict performance and discard the rest of the
information. On the other hand, DPE focuses on the con-
textual data and explicitly avoids the use of any student
history data. As such, the scores are given in order to com-
pare their results when focusing exclusively on the task of
predicting question-correctness, but are not directly compa-
rable as KT models leverage this task as a way to model
student behaviour whereas our aim is to evaluate the im-
portance of other, individual-unrelated features.

4.1 Using Instance Specific and Meta-Data
We first attempt to build a performance predictor using the
two types of data we defined earlier, contextual meta-
data and instance specific data. This model is likely to
perform well, as it has access to a vast array of information
about the current question as well as instance information
such as the amount and type of help requested, the time
before an action is taken as well as the total time spent on
the current question.

4.2 Using Meta-Data
Our second experiment focuses on using exclusively the data
we defined earlier as meta-data. This means that we re-
move interaction data from the input data.
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Table 1: Results
All-data Meta-data

Model ASSIST2009 AUC ASSISTChall AUC ASSIST2009 AUC ASSISTChall AUC
DPE (Ours) 0.87 0.76 0.75 0.63

BKT (reference) 0.69 N/A 0.69 N/A
DKT+ (reference) 0.82 0.73 0.82 0.73
SAKT (reference) 0.84 0.73 0.84 0.73

Figure 3: SHAP Values for ASSIST09 (all data) Figure 4: SHAP Values for ASSISTChall (all data)

We do so in order to force the classifier to learn strong rep-
resentations of contextual meta-data about the student and
the question themselves. Reaching a good level of perfor-
mance using such limited data would suggest that these
representations could be exploited to discover new insights
about assessment and be combined with traditional knowl-
edge tracing techniques to develop better assignments.

4.3 Interpreting Results And Feature Impor-
tances

Following the evaluation of the classifiers, we will attempt
to extract information about the factors that strongly influ-
ence our model.
We will interpret the model’s predictions using Deep Shap-
ley Additive Explanations (DeepSHAP) [13]. By randomly
replacing the values of subsets of the input features by unin-
formative values, DeepSHAP measures the influence of each
input feature on different parts of a deep neural network and
produces SHAP values for each prediction examples. SHAP
values are an estimation of the importance of the feature in
the prediction of each label made by the model.
We run DeepSHAP on randomly selected representative ex-
amples from the validation set and report the mean SHAP
values of the features over all the examples, providing a visu-
alisation of the features used by the model in its prediction.
In all figures, class 0, the negative class, refers to a student
answering a question incorrectly while class 1 refers to them
having successfully answered the question. Although deep
learning models remain black boxes and such interpretation
techniques are vulnerable to adversarial examples, they pro-
vide a solid base towards making sense of model predictions.

5. RESULTS AND DISCUSSION
The results for this experiment are presented in Table 1, with
BKT, DKT+ and SAKT results also presented for reference
purposes.

When using all the available data, our approach performs ex-
tremely well in predicting question-correctness on ASSIST2009,
reaching an AUC of 0.87 on ASSIST2009 and 0.76 on AS-
SISTChall, slightly outperforming state-of-the-art KT ap-

proaches for this task.
Our approach also reaches relatively high AUCs scores of
0.75 and 0.63 on ASSIST09 and ASSISTChall, respectively,
when removing the instance-specific interaction data and
using meta-data exclusively. This suggests that the mod-
els, while not outperforming student history-based meth-
ods, are able to extract enough information from contextual
meta-data to reach a good level of performance, even out-
performing the reported BKT results for ASSIST2009.
In order to better understand what factors drive the models’
performance, we will compute the SHAP value correspond-
ing to an estimate of the importance of each feature.

The SHAP values for the models exploiting the full data are
presented in Figure 3 and 4. In ASSIST09, the temporal
features, detailing how long the student has been interact-
ing with the current question and how long until they first
interact with the question, are of high importance.
More notably, on both datasets, the features that appear to
be the most influential focus measuring the amount of help
a student has needed to answer the current question. Fea-
tures related to hints, such as the amount of hints requested
for the current question (hint count and hint total), have a
very strong influence on predictions. As hints are automat-
ically given in case of failure, the hint-related features also
capture information about the number of attempts made on
the current question during the current question.
In ASSISTChall,features related to scaffolding, another
form of assistance the student can receive, also have strong
influence on the prediction, further supporting the impor-
tance of assistment factors.
The figure also shows that the other variables which we de-
scribed as meta-data, such as the problem ID, do play a
role predicting question-correctness, with a stronger impact
on the likelihood of a question being answered incorrectly
than correctly. We explore the influence of these factors fur-
ther in Figure 5 and 6, showing SHAP values for the models
which only use contextual meta-data.

In the case of ASSISTment, we notice that problems with
the ability to end in auto-scaffolding are a strong predictor
on whether or not a student will correctly answer a question.
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Figure 5: SHAP values for ASSIST09 (meta-data) Figure 6: SHAP values for ASSISTChall (meta-data)

This is on par with our previous results, having shown the
importance of assistance in predicting correctness. A pos-
sible explanation to this high impact on prediction is that
questions with built-in scaffolding are likely to be of a higher
difficulty level, leading the instructor to include scaffolding
questions. Likewise, original, indicating a question isn’t part
of a scaffolding, has a moderately strong impact.
Besides scaffolding, both models rely on contextual informa-
tion about the questions, such as the ID of the problem set
or the ID of the problem itself. In ASSIST09, the additional
information about the students’ background, represented by
their class and teacher IDs, is shown to be important to the
predictive ability of the model.

The strong results achieved by these models, with very little
information about the user’s studies and history of previ-
ous answers, highlight the value of the representations the
model learned. Without relying on user-success history, this
contextual meta-data only model is able to reach a high
AUC score, even outperforming the classical BKT approach
on ASSIST09. This further reinforces the potential of inte-
grating novel techniques to leverage contextual information
when evaluating student mastery rather than relying solely
on students’ answers history.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a novel deep learning model
able to efficiently learn deep representations of contextual
assessment information.
We showed that the proposed model reaches a very high level
of performance when using both meta and instance-specific
data on predicting whether a student will correctly answer
a question or not.
We further showed that we can reach a relatively high level
of performance on the same task while using exclusively con-
textual meta-data and very limited student-related informa-
tion.
Additionally, our analysis of the information learned by the
model shows that there is valuable insight to be extracted
from analysing its predictions.
This work highlights the potential of learning from contex-
tual data on top of user-history data and could be extended
in several ways.
Future work should focus on integrating such learned repre-
sentations within traditional knowledge tracing systems and
learning schedulers and comparing their predictions to those
of DPE. Contextual information is complementary to the in-
formation these systems exploit and could lead to improve-
ments in the learning process. We also intend to investigate
how the results we have obtained could be used to enrich

theory-grounded models such as DeepIRT [27].
Furthermore, such an approach opens the way to extending
current systems with additional external information, such
as information about a user’s interaction with course mate-
rials surrounding the knowledge evaluated.
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ABSTRACT
Building and especially improving a classification kernel rep-
resents a challenging task. The works presented in this paper
continue an already developed semi-supervised classification
approach that aimed at labelling transcripts from educa-
tional videos. We questioned whether the size of the ground-
truth data-set (Wikipedia articles) or the quality of the key-
words used in the semi-supervised labelling have a significant
impact on the accuracy metrics of the final obtained data
model. Experimental results took into consideration three
Wikipedia data-sets of Small, Medium and Large sizes. For
each data-set there were used three sets of keywords: offered
by video authors, determined by rake-nltk on available tran-
scripts and determined by rake-nltk on Wikipedia articles
that serve as training and testing data for the LDA model
that determine keywords on the transcripts. Experiments
show that the size of the data-set has little importance, while
the quality of the keywords has a more significant impact.
Therefore, an improved version of the previously developed
classifier has been obtained by improving the quality of the
keywords involved in semi-supervised training. This result
paves the way towards further improvements that may fi-
nally be deployed as within a recommender system of edu-
cational videos at the Universitat Politècnica de València.

Keywords
classification, educational transcripts, keywords, data-set size

1. INTRODUCTION
Over the last few years, the quantity of online learning ob-
jects (LO) [6] and Massive Online Learning Courses (MOOCs)
have increased dramatically representing a real boom in on-
line learning. This boom of online learning resources has
caused a problem for students, as they have hundreds of
thousands of online documentation. At the same time, dif-
ferent approaches to discover topics and hidden semantic
structures in text have been proposed with the goal of go

forward on topic modelling which has been a challenging
and critical issue for information retrieval. Therefore, tak-
ing into account all of this, topic modelling has become in a
trending topic for the e-learning research community. Fol-
lowing that trend, the Universitat Politècnica de València
(UPV) in Spain launched a video lectures sharing website,
called Polimedia1, and a MOOC platform, called UPV[X]2,
which is powered by the edX MOOC platform3.

Both proposals have a basic search engine allowing students
to search for videos (learning objects) by simply using a set
of keywords. Current solutions compare these keywords with
some typical metadata of the videos (title, authors, ...) and
returns the set of videos that match with this data. Obvi-
ously, this basic retrieval solution overlooks any semantics,
which produces incomplete results that do not take into ac-
count some videos that are relevant for the student but that
do not include any of the keywords in their titles.

The MOOCs we are using in this work consists of a set of
educational videos that have an automatic transcription of
the lectures that is going to be used as part of the input
data for this proposal. The motivation of this work is to use
this information to help students to find more suited learn-
ing objects, personalized to their interests, in these massive
online platforms where the number of learning objects grows
quickly and they usually are not tagged correctly.

According to this, this paper focuses on the improvement
of this search engine proposing a new retrieval method that
uses a dataset extracted from Wikipedia articles and that
is trained to classify keywords based on the topic of the
available educational videos. This proposed model is an
improvement of a previous work presented in [14], where
pre-tagged wikipedia articles were used as ground-truth. In
this work we improve this semi-supervised method by: 1)
automatically tagging Wikipedia articles and using them to
create an extended dataset for training the semi-supervised
method, and 2) proposing an improved pipeline for cleaning
the data, extract keywords and obtain a better classification
model that improves the precision of the student’s searches.

The rest of the paper is structured as follows: Section 2
presents some works related to the topic of this paper; Sec-

1UPV Media, https://media.upv.es
2UPV[X], https://www.upvx.es/
3edX MOOC platform, https://www.edx.org/
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tion 3 details the approach proposed by the authors; Section
4 presents some experimental results; and finally, Section 5
shows the conclusions of this work.

2. RELATED WORK
The problem of the correct keyword extraction is a recur-
rent problem over the last few years. Different works have
appeared trying to solve this problem using different ap-
proaches. At the end, the idea is to have a solid set of words
that concisely represent the content of a text (in this case
the content of a learning object).

Most of the last approaches on document-oriented meth-
ods of keyword extraction use natural language processing
(NLP) techniques mainly based on machine learning algo-
rithms and statistical methods. One of the most well-known
approaches is the work presented in [17] where authors pro-
pose the use of Support Vector Machines as a way to extract
the most important keywords.

On the other hand, the work in [9] presents a solution based
on the graph-based syntactic representation of text and web
documents that combines supervised and unsupervised learn-
ing. In a similar way, the work presented in [7] proposes an
unsupervised keyword extraction technique including sev-
eral different ways of the conventional TF-IDF model with
reasonable heuristics. Other approaches, like the work pre-
sented in [12] called Rapid Automatic Keyword Extraction
(RAKE), employ unsupervised methods for extracting key-
words which are domain-independent, and also, language-
independent.

The latent Dirichlet allocation (LDA) model is one of the
most used techniques to classify documents according to a
set of topics. One example is the work presented in [1] that
automatically captures the thematic patterns and identi-
fies emerging topics using a non-Markov on-line LDA Gibbs
sampler topic model. In the online educational field, the
LDA model has been used in works such us the presented
in [16] where the authors use topic detection for the analy-
sis of the feedback submitted by students in online courses.
The work in [10] tries to solve the problem of topic detection
by identifying words that appear with high frequency in the
topic and low frequency in other topics.

Some works face the keyword extraction problem in learning
objects through the use of other approaches such as ontolo-
gies like the work presented in [8] that aims to improve the
effectiveness of retrieval and accessibility of learning objects
integrating semantic knowledge through domain-specific on-
tologies. In [4] authors use Wikipedia to associate learning
objects to Wikipedia pages, specifically with the topics of
those pages, trying to find relationships among learning ob-
jects.

Finally, recent work also uses intelligent algorithms and method
to face other challenges of efficient videolecures manage-
ment, such as video shots skimming [15] and supervised
multi-class classification [5].

Opposite to most related works, our method is fully semi-
supervised, with no need for a previously tagged database
nor an ontology, that can act as ground truth to train the

models. Also, to the best of our knowledge, there are no
other intelligent systems trained to automatically classify a
Spanish database of educational videos.

3. PROPOSED APPROACH
From a classification perspective, the first issue is to clearly
state the actual number of topics (i.e., labels) that exist in
available transcripts. Since all transcripts come from educa-
tional videos from UPV, it certainly means that the number
of topics is represented by the domains from which videos
come from, that is biology & sciences (BS), engineering(E)
and humanities & arts (HA). BS topic considers aspects
of bacteria, diseases, bio-engineering, bio-medicine, E topic
considers aspects of computers, electrical, architecture, civil,
aerospace. In contrast, HA considers aspects of laws, arts,
social and economic.

The proposed approach extends the semi-supervised method
described in a previous paper-work[14]. It improves the data
analysis pipeline in terms of accuracy of classification on the
videos currently available in the database. As in the ini-
tial approach, the training on Wikipedia articles uses the
SVM[3] classification algorithm, which used a Radial Basis
Function (RBF) kernel from the sklearn library[11]. The val-
idation approach uses the same two steps: 1) train on 70% of
Wikipedia articles and cross-validate with 15%, 2) train on
labelled transcripts and validate on remaining unseen 15%
of Wikipedia articles.

Internally, the semi-supervised training has been performed
on a set of labelled Wikipedia articles by building a data
model that has been used for classifying educational tran-
scripts and their associated keywords. The transcripts which
had the same label as the keywords were considered cor-
rectly labelled and therefore were added to the initial train-
ing dataset. The newly obtained dataset is used in an itera-
tive semi-supervised set up for training in an attempt to tag
as many educational transcripts as possible.

One limitation of previous works is that HA items were
mislabeled as E. This flaw may be caused by the fact that
videos about HA reach more various subjects, that are not
so domain-specific. Mathematics videos with proofs demon-
stration and analysis are also not correctly labelled as there
is a large number of words that are not mathematics domain-
specific. Many videos about the economy and economic envi-
ronments tend to be categorised as E, as many explanations
heavily use mathematics and calculus. A positive aspect is
that the classification for BS items is acquiring excellent re-
sults, there are no confusions made for this domain. This be-
haviour is expected as this domain has many specific terms
and principles, so videos from this area are easily classifiable
and do not create confusions.

As a first step to improve the previous work[14] was to ex-
tend the Wikipedia articles data-set for training the semi-
supervised method. This was done progressively, as we com-
pared results with the previous ones and checked manually
if the videos that were badly classified have been classi-
fied correctly. The decision about the amount and about
which Wikipedia articles categories should be downloaded
was made by manually analysing the clustering results from
previous work. By doing so, we obtained best results with
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three versions of datasets: a Small data-set (3747 Wikipedia
articles), a Medium dataset(6373 Wikipedia articles) and a
Large dataset (18527 Wikipedia articles).

Secondly, we focused on the importance of relevant key-
words to obtain a good classification result. There were
provided three sets of keywords supplied by three different
methods. The first set was obtained using the same process
from the previous paper[14] by using the keywords provided
by the videos’ authors. However, we observed inconsisten-
cies as some videos do not offer keywords in their metadata.
The second set of keywords was obtained by using rake-
nltk [13] tool for extracting the keywords directly from the
transcripts’ text. Finally, the third set was obtained by us-
ing rake-nltk tool for getting keywords from the Large data-
set of Wikipedia articles to use them as training and testing
data for an LDA (Latent Dirichlet Allocation)[2] model that
will extract domain-specific tags from the transcripts.

3.1 Training on more Wikipedia articles
Intuitively, more data should help to improve the accuracy,
but in practical situation this may not happen. An issue that
currently occurs in machine learning systems is whether or
not the size of the data-set is too small for the classification
problem. Proper debugging of the data analysis pipeline
should clearly point out if current accuracy results may be
improved by using a larger data-set or other leverages should
be taken into consideration.

As a first approach, we tried to detect a pattern in the clas-
sification errors and download the appropriate Wikipedia
articles to cover the subjects in the videos that were mistak-
enly classified. Consequently, when choosing the Wikipedia
articles, not only the covering of the topics was taken into
consideration but also the quantity of the articles about that
subject was an important factor.

In response to this, additionally to the initial Small dataset
used in the previous work[14] we obtained two new datasets:
Medium dataset with a total of 6373 articles (i.e., 1219 BS
articles, 2737 HA articles, and 1626 E articles), and a Large
dataset with 18526 Wikipedia articles (including 5830 BS
articles, 5882 E articles and 6814 HA articles).

3.2 Determining better keywords
The transcripts’ keywords represent a key-point for the clas-
sification algorithm, as the quality of the classification may
be directly influenced by the relevance and quality of the
keywords.

A second solution was represented by the rake-nltk tool, as
it supports the Spanish language and it provides good re-
sults for this language, too. Rake-nltk tool is a domain-
independent keyword extraction algorithm which tries to
determine key phrases in a body of text by analyzing the
frequency of word appearance and its co-occurrence with
other words in the text.

After trying to classify the videos in 3 clusters (BS, E and
HA) using three different sized data-sets (i.e., Small, Medium
and Large) for training and two different methods for as-
signing keywords to each transcript (the manually provided
keywords by authors and the keywords extracted with rake-

nltk), we finally use the third method of providing more
domain-specific keywords for every transcript: we used LDA
as business logic for the implementation of transcript key-
words recommendation system and used rake-nltk for pro-
viding keywords for Wikipedia articles to obtain training
and testing data.

As the transcripts and the keywords from the metadata (i.e.
authors’ keywords) do not represent a valid data-set (the
words used as keywords are either ambiguous, either too
name specific and they often induce classification errors).

The limitation of the second method consists from the fact
that the keywords provided by rake-nltk from transcripts
were large and with numerous phrases without a focus on
the essential subject of the video, also causing classification
errors in some cases. So, a third solution was needed: there
were used Wikipedia articles and keywords extracted with
rake-nltk as training and testing data set for the LDA model
to extract domain-specific keywords from the transcripts.
The third solution is combining the rake-nltk tool with the
LDA model. Rake-nltk will be used to extract keywords
from the Wikipedia articles resulting in a labelled dataset
that will serve later as training and testing dataset for the
LDA model to extract domain-specific keywords from the
transcripts.

The second approach provides new keywords for every tran-
script by using rake-nltk. The keywords extracted with this
tool were also pre-processed by eliminating stop words and
lowering all the letters. However, there still is one disad-
vantage for this method: the keywords extracted are large
phrases that are not necessarily very domain-specific. More-
over, the extracted sentences are ambiguous in some cases,
lacking the essential subject of the transcript. This error is
most likely to be caused by the fact that the transcripts are
not always subject-focused, they usually have an introduc-
tion about the teacher, the subject in general, many exam-
ples are provided. Hence, there is a broad set of words that
may induce errors.

The third approach used rake-nltk tool, not for extracting
keywords directly for our transcripts, but for extracting key-
words for each article from the Wikipedia articles Large
data-set (18526 articles). The tagged Wikipedia articles
using rake-nltk will be used as training data for assigning
keywords to the video transcripts employing LDA.

Figure 1 presents in detail the data analysis pipeline for the
third method of providing keywords. This method is being
described in this section in particular.

The following steps were followed for obtaining the domain-
specific transcript tags recommendation algorithm utilizing
LDA:
Create a balanced and large data-set of Wikipedia
articles in Spanish. By saying to have a balanced data-
set, there are supposed to be enough BS articles to obtain
a set of keywords for BS, enough E articles to get a set of
keywords for this domain, and most important enough HA
articles to form a set of tags for this domain, too. The diffi-
cult part was to get a good set of keywords for HA domain, as
this cluster covers a wide range of fields like Economy, Law,
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Figure 1: Pipeline for extracting keywords from Wikipedia articles

Arts, Architecture, Language learning, Politics, Social Sci-
ences, Philosophy, Psychology and basically anything that
does not fit in the other two clusters.
Clean the text from the downloaded Wikipedia arti-
cles by lowering text, removing undesirable marks and stop
words, using the singular form of the word. Append each
Wikipedia article tags using rake-nltk tool and also clean
(lower text, remove undesirable marks, remove stop words,
use the singular form of the word) these tags. For better
results, there are also tags extracted from the titles of the
Wikipedia articles. That means that we pull tags for 18526
x 2 items.
Add all these tags in a set to have only unique appear-
ances of the extracted tags.
Count how many Wikipedia articles were assigned to
each tag from the set.
Get top 5000 most occurred tags (having less tags, it
means that only the most occurred tags from each domain
will be kept, and in this way, a classification with the semi-
supervised method will be simpler to perform with a smaller
training data-set)
Keep only the top 5000 occurring tags for each Wikipedia
article.
Keep only the articles that are still labelled. After
these operations, we end up with 21743 labelled items out
of 37092 items.
Create the TF-IDF matrices by splitting our obtained
data set in 80%/20%.
We try to train various LDA models using sklearn4 im-
plementation [18], by assigning each of them a different topic
number, then the different models are evaluated on the test
set using the metric perplexity. By definition, the lower the
perplexity, the better the model.
Showing the perplexity score for several LDA models
with different values for n components parameter, and print-
ing the top words for the best LDA model (the one with the
lowest perplexity).
Now that we have designed the workflow, we focus on the
keywords recommendation algorithm for the transcripts, which
is based on two main aspects:

4https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.LatentDirichletAllocation.html

• Score = probability that document is assigned to a
specific topic, represents the topic’s probability of gen-
erating the word.

• A word is considered as a relevant tag, when its score
is superior to a defined threshold. After testing dif-
ferent values for the threshold, we decided to choose
the threshold to 0.008, that is because, for this value,
because with a threshold equals to 0.008 more than 95
percents of the transcripts have recommended tags.

Also, an advantage for obtaining keywords for every tran-
script employing rake-nltk combined with LDA would be
that all the videos will be classified. In the original method,
only the videos that were provided keywords by authors
could have been taken into consideration. Now, as we offer
keywords to every transcript, all the videos with an avail-
able transcript may be taken into consideration. An even
bigger advantage is the fact that the training set contains
articles about well-defined domains, their subject is focused
on a small range of ideas, so the set of most frequently used
tags will be very domain-specific, a fact that will be helpful
for the classification algorithm.

4. EXPERIMENTAL RESULTS
After running the semi-supervised learning method for the
Small, Medium and Large data-sets, and also with the three
sets of keywords, the best results were obtained by train-
ing the semi-supervised method with the Small data-set
of Wikipedia articles and the keywords provided employ-
ing rake-nltk for obtaining training and testing data and
LDA to obtain the proper transcript’s tags. The results are
presented in Table 1. This table also provides a detailed
insight of the semi-supervised training process results along
with the number of transcripts added to the model in every
iteration and with the classification accuracy obtained for
each label. The computation of the classification accuracy
metrics is done on the validation data-set, which contains
only unseen data in the training step.

Analysis of the iterative semi-supervised training process in
all nine scenarios (i.e., for three data-set sizes and for three
methods of obtaining the keywords) revealed several pat-
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Iteration (valid /available) Accuracy Class Precision Recall F1-score

#1 (8487 / 14395) 0.92 (+/- 0.01)
Biology&Sciences

Engineering
Humanities&Arts

0.95
0.88
0.95

0.93
0.92
0.93

0.94
0.90
0.94

#2 (2375 / 5908) 0.96 (+/- 0.02)
Biology&Sciences

Engineering
Humanities&Arts

0.92
0.87
0.95

0.94
0.88
0.93

0.93
0.87
0.94

... ... ... ... ... ...

#8 (9 / 1940) 0.94 (+/- 0.05)
Biology&Sciences

Engineering
Humanities&Arts

0.90
0.85
0.93

0.94
0.86
0.90

0.92
0.85
0.92

Table 1: Validation scores for each iteration in the pipeline with the Small Wikipedia articles data-set and
the keywords provided by means of rake-nltk for obtaining training and testing data and LDA to obtain the
proper transcript’s tags.

terns. The first observation regards the fact that the num-
ber of iterations has low variance. So, irrespective of the
size of Wikipedia data-set and the method for obtaining the
keywords the number of iterations is in the range from six
to twelve. This observation represents a clear indication
that the size of the training data-set of Wikipedia articles
does not highly influence the semi-supervised learning. An-
other observation is that each step in the semi-supervised
training keeps unchanged or slightly decreases the F1 score,
while slightly increasing the accuracy of the 10-fold cross-
validation on the Wikipedia test data-set. This observation
shows that all experiments are consistent and produce simi-
lar behavioural patterns in terms of accuracy, precision, re-
call and F1-score measures evolution in terms of evolution
during semi-supervised training.

Table 2 presents the validation scores for all the three data-
sets (i.e., Small, Medium and Large) and all three keywords
data-sets.

The first observation regarding the validation results from
table 2 regards the fact that there are no big differences in
terms of overall accuracy and F1-scores for the three data-
sets of keywords and for each training data-set. Still, the
method with rake-nltk for Wikipedia articles keywords and
LDA for obtaining transcript keywords generally has better
scores than the other two methods for cluster 2. Still, it
has usually lower scores for cluster 1. This pattern shows an
indication that improvements in classification metrics should
focus on classes where poorly results occur.

We further observe that scores tend to slightly decrease as
the data-set is getting larger. Therefore for the Medium
data-set, only the method with rake-nltk for extracting tran-
script keywords provides better results than it does with the
Small data-set. A particular result consists in major score
decreases for cluster 1 for the Medium data-set. This is
mainly due to the unbalance of this data-set regarding the
items from labelled in class 1. The imbalance of class 1
is also signalled by the excellent results for classes 0 and
1 in the experiment with Large data-set and the method
with rake-nltk for Wikipedia articles keywords and LDA for
transcript keywords.

Despite the Large data-set used for training the model, com-
paring the time required to train the model with the Small

data-set and the time necessary to train the model with
the Large data-set with all three sets of keywords, we have
noticed that the time has doubled in the worst case, even
though the data-set used is 6 times larger than the initial
one.

Besides, the method to obtain keywords employing rake-nltk
and LDA transcript keywords provide a better running-time
execution for the Small and Large data-sets than the original
keywords set as the number of iterations is also smaller.

The method with rake-nltk and LDA transcript keywords
provides best result for the Small data-set, though the rake-
nltk transcript keywords methods has the best results for
the Medium and Large data-sets. For the method to obtain
domain-specific keywords for transcripts employing rake-nltk
to extract Wikipedia articles keywords and LDA to extract
the proper keywords for transcripts, the tags distribution
per the 10 topics of the model is presented in Table 3. We
also notice that the 10 topics do not mix the three domains
that we are interested about: E tags are found only in topics
that do not contain tags from the other two domains, and
the same for BS tags and HA tags. There can be easily
noticed the domain that each topic covers: the topics with
indexes 1, 2, 5, 9 and 10 are focused on HA domain, the
topics with indexes 4, 6 and 8 are focused on E domain, and
finally, the topics 3 and 7 are focused on BS domain.

Furthermore, the topic order shows that the first three most
important topics are 4, 3 and 9, where 4 is focused on the
E domain, 3 is concentrated in BS tags, and 9 is focused on
HA tags. Considering that the first three most important
topics contain one topic for each of the three domains that
we are interested in, ultimately confirms that the model is
suitable for our purpose. In addition, the following 3 topics
in the topic order are also distributed equally across the
three domains.

We can notice that the original keywords provided by au-
thors are provided in different styles: some of them are too
specific(tool names that are not so common), some of them
too ambiguous to be categorised to a domain, and some of
them provide domain-specific terms, but those terms may
not be so standard in that domain in such a way to be cor-
rectly categorised by put semi-supervised method that is not
trained on a massive data-set.
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Table 2: Validation scores for all data-sets and keywords sets
Data-set Keywords Accuracy/Avg F1 Class Precision Recall F1-score

Small

Original keywords 0.94/0.88
0 0.96 0.86 0.91
1 0.84 0.86 0.85
2 0.86 0.90 0.88

rake-nltk transcript keywords 0.94/0.88
0 0.96 0.86 0.91
1 0.84 0.87 0.86
2 0.86 0.90 0.88

rake-nltk and LDA transcript keywords 0.95/0.89
0 0.91 0.92 0.91
1 0.81 0.91 0.86
2 0.93 0.84 0.88

Medium

Original keywords 0.94/0.86
0 0.93 0.83 0.88
1 0.75 0.92 0.83
2 0.93 0.82 0.87

rake-nltk transcript keywords 0.96/0.88
0 0.93 0.85 0.89
1 0.80 0.90 0.85
2 0.93 0.87 0.90

rake-nltk and LDA transcript keywords 0.94/0.85
0 0.93 0.84 0.88
1 0.72 0.91 0.80
2 0.93 0.79 0.85

Large

Original keywords 0.95/0.86
0 0.95 0.82 0.88
1 0.80 0.90 0.85
2 0.86 0.85 0.85

rake-nltk transcript keywords 0.96/0.86
0 0.95 0.81 0.88
1 0.82 0.88 0.85
2 0.83 0.87 0.85

rake-nltk and LDA transcript keywords 0.95/0.85
0 0.93 0.82 0.87
1 0.77 0.90 0.83
2 0.86 0.82 0.84

Table 3: Highest score tags per topics in the LDA
model

T 1 derecho / social / sociedad / poĺıtica / cultura
T 2 dato / software / aplicación / versión / código
T 3 célula / protéına / agua / animal / forma / celular
T 4 algoritmo / error / programa / memoria / ejecución
T 5 mercado / precio / economı́a / financiero / empresa
T 6 displaystyle / teoŕıa / lógica / matemática
T 7 tratamiento / ciruǵıa / médico / paciente / sindrome
T 8 ecuación / ingenieŕıa / inteligencia / artificial
T 9 poĺıtica / análisi / marketing / rama / arteria
T 10 industrial / industria / plano / internacional
Order [4, 3, 9, 8, 7, 5, 10, 6, 2, 1]

The third method, the one that uses rake-nltk for providing
keywords to the Wikipedia articles used for training and
LDA for extracting transcript tags, provides a few labels,
but they are very domain-specific. The tags that can be
resulted from this method come from a relatively small set
of possible tags (this set is formed by the most commonly
used terms in the 3 domains of our clusters), so the most
relevant tags from this set will be chosen.

This is an advantage for our semi-supervised method as we
can provide good results with a relatively small data-set for
training. The words used for tags by this method are very
likely to be well categorised by the semi-supervised method
as they are very common only in the are of one of the three
domains.

5. CONCLUSIONS
This paper has presented a method which combines the ex-
traction of keywords from a Wikipedia data-set with the
automatic classification of learning objects using LDA to ob-
tain better keywords for searching educational videos. This
will allow students to find more accurate resources for videos
that have not been appropriately tagged by authors.

Using Wikipedia for creating a labelled data-set has allowed
us to build a balanced set of articles that have been used
to train a model for extracting keywords from educational
video transcripts. However, in future works, it would be
interesting to provide an automatic mechanism for building
balanced training data-sets.

The proposed has been tested using a real environment, con-
cretely the video lectures sharing website of the Universitat
Politècnica de València, which has more than 55.000 short
videos mainly in Spanish. Results have shown the benefits
of this proposal for classifying learning objects into cate-
gories (specifically Biology&Sciences, Engineering and Hu-
manities&Arts), which will help students in their search of
appropriated learning resources.

Future works should focus on improving accuracy of the clas-
sification especially for the classes with poorer results, that
is Engineering and Humanities & arts as Biology transcripts
are correctly classified. The obtained classifier may be fur-
ther used for labeling new videos that may be added into
UPV Media site.
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ABSTRACT
Intelligent tutoring systems for programming education can
support students by providing personalized feedback when
a student is stuck in a coding task. We study the problem
of designing a hint policy to provide a next-step hint to stu-
dents from their current partial solution, e.g., which line of
code should be edited next. The state of the art techniques
for designing a hint policy use supervised learning approach,
however, require access to historical student data contain-
ing trajectories of partial solutions written when solving the
task successfully. These techniques are limited in applicabil-
ity when needed to provide feedback for a new task without
any available data, or to a new student whose trajectory
of partial solutions is very different from that seen in his-
torical data. To this end, we tackle the zero-shot challenge
of learning a hint policy to be able to assist the very first
student who is solving a task, without relying on any data.
We propose a novel reinforcement learning (RL) framework
to solve the challenge by leveraging recent advancements in
RL-based neural program synthesis. Our framework is mod-
ular and amenable to several extensions, such as designing
appropriate reward functions for adding a desired feature in
the type of provided hints and allowing to incorporate stu-
dent data from the same or related tasks to further boost the
performance of the hint policy. We demonstrate the effec-
tiveness of our RL-based hint policy on a publicly available
dataset from Code.org, the world’s largest programming ed-
ucation platform.

1. INTRODUCTION
In recent years, there has been an increasing focus on devel-
oping educational tools for STEM (science, technology, engi-
neering, and mathematics) and computing. Problem-solving
skill, i.e., ability to solve multi-step problems by deductive
reasoning, is one of the key ingredient of learning in these
domains [14, 25]. For instance, while working on a coding
task, a student iteratively writes, tests and refines the code
to arrive at the final solution [8, 23, 27, 24].

One of the difficulties in designing assistive algorithms for
these open-ended coding tasks is that the state space, i.e.,
the set of partial solutions that students might arrive at
when solving the task, is unbounded. For instance, for a sim-
ple coding task from the Hour of Code (HOC) challenge by
Code.org [5], the correct solution contains only 5 blocks (see
Figure 1), whereas students can create millions of unique
partial solutions in the process of solving the task [23]. When
solving such tasks, it is evident that students can get stuck
at a state (i.e., a partial solution) and do not know how to
proceed (i.e., which action/edit to apply). Intelligent tu-
toring systems empowered by machine learning techniques
held a great promise in supporting such stuck students by
providing personalized feedback, e.g., explaining misconcep-
tions and giving guidance on what to do next [31, 16, 2, 24].

We focus on the well-studied feedback mechanism in pro-
gramming education called next-step hints: When a student
is stuck at a given state, the system suggests the next edit
that student should make to their current code to proceed [3,
8, 16, 23, 27, 20]. In the context of block-based languages
that are extremely popular in educational tools for visual
programming [21, 5, 24], the suggested hints correspond to
one of the allowed actions from the student’s current code
(e.g., adding or removing a block, and changing a conditional
in one of the blocks), see Figure 1. Inspired by the work of
[3, 23, 20], we refer to the function that provides such hints
to the student from any partial solution as hint policy.

The key challenge in designing a hint policy is that the space
of partial solutions is unbounded even for simple coding
tasks and there is a huge variability in students’ trajectories
of partial solutions [23, 20, 34]. A number of techniques pro-
posed in the literature use a graph representation of the task
(with nodes denoting partial solutions and edges denoting
single edits that convert one partial solution to another) [3,
9, 23, 35, 27]. These techniques then use historical student
data and domain knowledge to capture the editing behavior
of capable students (or experts) on this graph. However,
these techniques face serious scaling issues as the problem
size grows and are only applicable in settings where we have
access to large volume of historic data for the task.

In recent years, new techniques have been developed using
a supervised learning approach. These techniques leverage
code embeddings to compactly represent the space of partial
solutions and can provide hints to students with trajectories
that have never been observed in the historical data [22, 20].
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(a) HOC-18 task (b) Correct solution (c) Student’s current code (d) Two subsequent next-step hints by the hint policy

Figure 1: Illustration of next-step hints feedback by our hint policy. (a) shows the HOC-18 task from the Hour of Code
(HOC) challenge by Code.org [5]. A student solves the task by starting from empty code and builds up the solution using
blocks available in the visual interface, also see [23]. (b) shows the correct solution—this is the code that solves the task with
minimal number of 5 blocks. (c) shows the current partial solution of a student who is solving this task. (d.left) shows the
next-step hint by our hint policy that will be provided as feedback to the student. (d.right) shows the subsequent next-step
hint by the policy if student were to ask another hint after receiving the first hint.

In particular, the state of the art technique by [20], Continu-
ous Hint Factory (CHF), learns a regression function as the
hint policy which can identify the most likely hint as a vector
in an embedding space and then translates this vector back
into a human-readable edit. In comparison to techniques
using graph representations, CHF is more scalable and re-
quires access to fewer samples of student data (just enough
to learn the generic editing behavior of capable students or
experts for the task).

While these state of the art supervised learning techniques
are less data-hungry and computationally more powerful,
they are still limited in applicability when needed to pro-
vide feedback for a new task without any available data,
or to a new student whose trajectory of partial solutions is
very different from that seen in historical data. Especially
with intelligent tutoring systems having the ability to gen-
erate tasks on the fly [28, 1, 12], the problem of providing
feedback to the very first student on a task is increasingly
important. In this paper, we tackle the following zero-shot
learning challenge: Can we design a hint policy for a task to
provide hints to the very first student solving the task?

1.1 Our Approach and Contributions
Our approach towards zero-shot learning of hint policy is
based on the reinforcement learning (RL) framework. In
the RL terminology, the set of all possible partial solutions
corresponds to the state space, the possible edits from a par-
tial solution defines the state-dependent actions and tran-
sition dynamics, and reaching the correct solution quickly
yields higher reward (we refer the reader to [26, 29] for a
background on RL). Our framework is inspired by recent
works [4, 11] that have shown that deep-RL techniques ap-
plied to neural embeddings of the code are effective in learn-
ing policies to synthesize new programs and to do program
repair even if no/minimal training data is available for the
task. Intuitively, the problem of providing a hint from a cur-
rent partial solution is equivalent to one-step of synthesizing
the program from this partial solution [17, 10]. However, we
note that learning hint policy using RL poses its own practi-
cal challenges because the policy needs to provide hints from
any partial solution which could be arbitrarily bad—this is
in contrast to program synthesis and program repair where
the initial starting states for RL are limited to either an
empty code [4] or a set of partial solutions which are close
to the correct solution [11], respectively. The idea of using
RL for designing hint policy is also inspired by the seminal

work on Hint Factory [3]; however, unlike [3] which relies
on historical student data and uses the graph representation
of partial solutions, our RL framework uses code embedding
and a neural network policy for efficient training.

One might ask what are the advantages of using RL com-
pared to supervised learning techniques for zero-shot chal-
lenge. First and foremost, RL enables an effective self-
exploration of the solution space by leveraging reward sig-
nals (such as receiving higher rewards when a policy can
synthesize the correct solution in a fewer steps or can re-
duce compiler errors). Furthermore, the RL framework is
amenable to several extensions for boosting the performance.
For instance, if additional student data if available from the
same or related tasks, it is possible to bootstrap by com-
bining techniques from imitation learning within RL frame-
work [19, 11]. Also, we can easily incorporate additional hu-
man knowledge or features into the policy by designing ap-
propriate reward functions [4, 11]. In summary, this power
and flexibility of the RL framework makes it especially suit-
able for zero-shot learning as it gives us the following in-
gredients: (i) automatically exploring the solution space or
generating synthetic training data [32, 11, 34], (ii) incorpo-
rating any available data or expert knowledge to bootstrap
and boost the performance [15, 34], and (iii) transferring
knowledge from one task to another [18, 6, 7]. Below, we
summarize our main contributions:

• We introduce the zero-shot challenge for learning a hint
policy to provide next-step hints to the very first student
working on a coding task.

• We propose RL framework for zero-shot learning of hint
policy. Our framework leverages the representation power
of code embedding and a neural network policy for effi-
ciently learning to provide hints. The framework is amen-
able to several important extensions, e.g., bootstrapping
via additional data if available.

• We evaluate the performance of our RL-based hint policy
on a publicly available dataset from Code.org, the world’s
largest programming education platform [5, 23]. We show
significant improvements in next-step hint accuracy w.r.t.
the state of the art supervised learning technique.

2. PROBLEM FORMULATION
In this section, we formalize the problem of learning next-
step hint policy for programming education.
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2.1 Coding Task, Partial Solutions, and Edits
We define the problem in the context of a fixed coding task
(e.g., HOC-18 task as shown in Figure 1a). We assume that
the correct solution for the task is known. For brevity of pre-
sentation, we consider that the correct solution is unique (in
fact, the uniqueness holds for HOC-18 task, see Figure 1b).
We denote all possible partial solutions for the task by the
set S. Note that S is a countable, infinite set. A partial solu-
tion s ∈ S is a piece of code, e.g., as shown in Figure 1, and
we denote the correct solution by s∗ ∈ S. For any s ∈ S, we
define the set of edits that can be applied to s by the action
set As. In block-based languages, the set As corresponds to
adding or removing a block in s, editing a conditional for
one of the blocks in s, or moving blocks within s. For a
partial solution s ∈ S and an edit a ∈ As, the next partial
solution obtained by applying a to s is denoted as s⊕ a.

2.2 Hint Policy for Next-step Edits
When a student attempts the task, they generate a trajec-
tory of partial solutions denoted as ξ = (s0, s1, s2, . . . , sk)
where k is the trajectory length. Here, s0 is the empty
code, and sk is the student’s latest/current partial solution.
Upon reaching sk, the student might be stuck and is unable
to decide how to proceed. Our goal is to help this student
by providing feedback as the next-step hint a ∈ Ask in the
form of an edit that allows the student to make progress.
Figure 1c shows one such partial solution sk and Figure 1d
(left) shows the next-step hint that could be provided.

Formally, the next-step hint policy π(· | ξ) provides a prob-
ability distribution with support over actions Ask where sk
is the last partial solution in the trajectory ξ. Note that
when a policy depends on the whole trajectory ξ, then it
can infer the knowledge of the student based on this tra-
jectory and can provide personalized hints. However, the
existing hint policy techniques discussed in Section 1 con-
sider myopic policies. A myopic policy π(· | sk) provides a
probability distribution with support over actions Ask and
takes as argument only the last partial solution sk (i.e., ig-
noring the trajectory of how student reached sk). In our
work, we also focus on learning such a myopic hint policy.

2.3 Evaluation Criteria
As an evaluation criterion, we use the standard approach
in literature (e.g., see [23, 20]) where the performance of
a hint policy is measured in terms of prediction accuracy.
We assume access to a set of expert annotations given by
Dhints = {(si, N(si)}i=1,2,...,n: here, for a partial solution
si ∈ S, the experts have annotated that the next partial so-
lution where a student should transition to should be among
the set N(si) ⊆ S. In our experiments, we will use the pub-
licly available annotation dataset from [23] for evaluating
hint policy on HOC tasks. For a policy π, we use the fol-
lowing notion of unweighted prediction accuracy:

1

n

n∑
i=1

( ∑
a∈Asi

π(a | si) · 1
(
si ⊕ a ∈ N(si)

))
(1)

where 1(.) represents an indicator function (cf. [23] which
uses a notion of accuracy weighted by frequency). Note that,
this measure of prediction accuracy does not capture the
long-term pedagogical value of providing hints to students,
and we further discuss this as future work in Section 5.

3. LEARNING HINT POLICY USING RL
In this section, we present our approach to zero-shot learning
of hint policy via reinforcement learning (RL) framework.

3.1 RL Framework
3.1.1 Hint policy learning environment as an MDP

In reinforcement learning, a learning algorithm (agent) in-
teracts with an environment typically modelled as a Markov
Decision Process (MDP). Here, we present the MDP corre-
sponding to the problem of learning hint policy. We define
the MDP M = (S,A, P,R, S0) as follows:

• S corresponds to the set of partial solutions;

• A = ∪s∈SAs is the set of all possible actions, and As is the
set of actions or edits possible in state s;

• P : S × A × S → R denotes the transition dynamics.
P (s′ | s, a) is defined only for a ∈ As. We have P (s′ | s, a) =
1 for s′ = s⊕ a, and 0 otherwise.

• R : S × A → R denotes the reward function. R(s, a) is
defined only for a ∈ As. A simple reward function could
be to set a small negative reward for every action taken
and a high reward for reaching the correct solution termed
as “goal” (i.e., when s ⊕ a = s∗). We will discuss more
about designing rewards in Section 3.3.

• S0 ⊆ S is the set of initial states. This corresponds to the
states which would be used to initialize an episode when
training the hint policy. One way to pick set S0 is to ran-
domly sample states from S, limited to some upper limit
on the code size.

We consider an episodic, finite horizon learning setting [29,
26]: A learning episode starts with an initial state s0 sam-
pled at random from the set S0, then the agent interacts
with the environment over discrete time steps t, and the
episode ends when one of the following happens: (i) either
the agent reaches goal state s∗, or the episode length exceeds
a pre-specified threshold (set to 20 in our experiments).

3.1.2 Policy gradient methods
While a variety of RL algorithms can be used to learn a pol-
icy, we consider policy gradient methods which have proven
to be highly effective for dealing with large-scale problems [29,
11, 4]. These methods learn a parametrized policy πθ(a | s)
where θ represents the parameters; then, a gradient ascent
method is employed to update parameters that would in-
crease the expected reward of the policy in the MDP. In our
work, we use a neural network to learn the policy, i.e., θ rep-
resents the weights of the network. Given a state s and ac-
tion a, the policy network parametrized by θ outputs a score
Hθ(a | s). Using these scores, we define the policy by the fol-

lowing softmax distribution: πθ(a | s) = expHθ(a | s)∑
a′∈As expHθ(a

′ | s) .

We use the classic REINFORCE policy gradient method
(see [29, 33]) to update the weights of the network. In an
episode, the RL agent performs an update as follows. First,
an initial state s0 is sampled, and then the policy πθ is exe-
cuted until the episode ends, thereby generating a sequence
of experience given by (st, at, rt)t=0,1,2,...L where L repre-
sents the episode length. Then, in this episode, for each
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Figure 3: Illustration of our approach to learning hint policy using RL. (a) shows the
module for generating neural code embedding using tree representation of code. For a
state s, the module outputs φ(s). (b) shows the module for our hint policy which uses
code embedding for state representation. Details are provided in Section 3.1 and 3.2.

t ∈ [0, L], we use the following gradient update with η as
learning rate:

θ ← θ + η ·
( L∑
τ=t

rτ

)
·
(
∇θ log

(
πθ(at | st)

))
︸ ︷︷ ︸

gradient at time step t in an episode

(2)

This gradient update can be computed efficiently for our
setting—we refer the reader to [33, 29] for detailed discus-
sion. We provide the implementation details in Section 4.2.

3.2 Efficient Learning of Hint Policy
3.2.1 Dealing with infinite state space

Figure 2 shows the number of states (unique partial solu-
tions) w.r.t. the size (number of blocks) of a partial solu-
tion. Here, for reference, we also show number of states
for a more complex language Karel [21]. Note that even
if the correct solution is of small size (e.g., 5 for HOC-18
and HOC-4 tasks), the struggling students end up writing
large partial solutions even up to 50 blocks length [23]. To
deal with this computational challenge of a very large state
space, we rely on code embeddings to have a featurized state
representation. In our work, we train code embedding in-
spired by recent developments in using structured RNNs for
embeddings, in particular Tree-RNN model by [22] used for
HCO-18 embeddings and Tree-LSTM model by [30]. We
represent the code as an Abstract Syntax Tree (AST) as
shown in Figure 3a, and then this tree structure is used to
process the blocks. When training, we require syntactic edit
distance between raw states to be preserved after the embed-
ding. In Section 4.2, we provide a more detailed description
of the process used to learn the code embedding.

3.2.2 Dealing with state-dependant action sets
In a typical RL setting, the action set A is finite, and the
standard architecture for training the network is to have φ(s)
as input and the scores Hθ(a | s) ∀ a ∈ A as output (i.e.,

output layer has R|A| size). In our setting, the action set A is
infinite, and the allowable actions from a state s given by set
As are state-dependant. To tackle this challenge, we use the
neural architecture as illustrated in Figure 3b. We train a
network which takes as input both φ(s) and φ(s⊕a). To eval-
uate the probability of taking action a from state s, we first
compute scores Hθ(a

′ | s) for all a′ ∈ As, and then probabil-
ity of action πθ(a | s) is given by the softmax distribution.

3.3 Incorporating Additional Knowledge
3.3.1 Designing rewards

We can easily incorporate additional human knowledge or
features into the policy by designing appropriate reward
functions [4, 11]. For instance, by changing the reward val-
ues R(s, a) based on the type of action a (e.g., deleting an
existing block vs. adding a new block), we can train a hint
policy that favours certain types of hints. One can further
incorporate more complex criterion such as suggesting hints
at the last line in the code to capture students’ current focus
of attention which is important for better interpretability of
hints [20]. Reward design also allows us to incorporate inter-
mediate partial solutions that serve as milestones toward the
final correct solution. By providing positive rewards for such
states representing milestones, our hint policy would auto-
matically learn to steer the students towards such states.
Furthermore, this approach can also help in speeding-up the
learning process of the RL algorithm by dealing with sparse
reward problem (see Section 4.2 on how we use this idea to
speed up the learning).

3.3.2 Bootstrapping from data when available
While we introduced RL framework to tackle the zero-shot
challenge, the proposed framework allows one to bootstrap
from additional student data if available from the same or
related tasks. In fact, the existing RL-based techniques used
in program synthesis and repair (see [4, 11]) have shown that
substantial performance gain and convergence speed-up can
be obtained by bootstrapping from available data.

We incorporate student data to bootstrap RL-based hint
policy as follows. Consider we have access to a set of tra-
jectories of successful students or experts who solved the
task, given by Ξ = {ξj}j=1,2,.... From these trajectories,
we can obtain dataset of edits made by successful students,
represented as Dtrain = {(si, si⊕ai)}i=1,2,.... The RL policy
network can be bootstrapped by additionally training from
Dtrain using cross-entropy loss. The gradient update is given
below where η′ represents the learning rate:

θ ← θ + η′ ·
( ∑

(s,s⊕a)∈Dtrain

∇θ log
(
πθ(a | s)

))
︸ ︷︷ ︸

gradient for cross-entropy loss

(3)

Further implementation details are provided in Section 4.2.
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4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our RL-based
hint policy on a publicly available dataset from Code.org [5].

4.1 Hour of Code Tasks
We consider HOC-18 and HOC-4 tasks from the Hour of
Code (HOC) challenge by Code.org, the world’s largest pro-
gramming education platform [5, 23]. HOC-18 task, shown
in Figure 1, is an advanced task in HOC challenge with 7
different types of blocks (“move forward”, “turn left”, “turn
right”, “repeat until”, and “IF ELSE” with three different
types of conditionals). HOC-4 is a simpler task with only
3 types of blocks (“move forward”, “turn left”, “turn right”).
For the zero-shot setting, we do not require availability of
any student data for comparing different hint-policy tech-
niques (see Figures 4a and 4c for x = 0 on the x-axis).
Beyond zero-shot setting, we also evaluate the performance
when additional data becomes available (see Figures 4a and
4c for x = 9, 12, 15 on the x-axis). For these experiments, we
use the trajectories of successful students from the dataset
provided by [5, 23]. We refer the reader to [5, 23] for further
details about these tasks and the available dataset.

4.2 Implementation Details
Here, we briefly provide implementation details for the fol-
lowing: (i) code embedding, (ii) RL-based hint policy, and
(iii) three baselines. Some details are omitted because of lack
of space—the source code would be made publicly available
with the final version of the paper for reproducibility.

4.2.1 Code embedding
We learn a separate embedding for HOC-18 and HOC-4
tasks, and the code embedding is learnt prior to training
the hint policy. We begin by sampling 400 random states
limited to a size up to 6 blocks, and then use pairwise syn-
tactic edit-distance between these states to generate a train-
ing dataset containing triplets of the form

(
s, s′, dsynt(s, s

′)
)
:

here dsynt(s, s
′) represents the syntactic edit-distance be-

tween s and s′ in terms of the number of edits required to
convert s to s′. Given these triplets, we train a neural em-
bedding φ(.) so the ||φ(s)−φ(s′)||2 ≈ dsynt(s, s′). As shown
in Figure 3a, we use the Abstract Syntax Tree (AST) repre-
sentation of a state s which is then traversed in a preorder
depth-first way to produce a sequence of blocks. The result-
ing sequence is passed through bi-directional LSTM where
each unique block of the HOC language is encoded differ-
ently (cf., Tree-RNN model of [22] and Tree-LSTM model
of [30]). The size of the feature representation used for our

experiments is given by dimφ = 40, i.e., φ(s) ∈ R|40|.

4.2.2 RL-based hint policy
For the policy network, we use a 5-layer fully connected neu-
ral network with the following architecture: (i) the input
layer has 2× dimφ units for φ(s) and φ(s⊕ a); (ii) the first
three hidden layers have 128 hidden units and the fourth hid-
den layer has dimφ hidden units; and (iii) the output layer
linearly aggregates dimφ values from the last hidden layer
to produce the score H(a | s). All hidden units use ReLU
activations with a dropout rate of 0.1, and we use ADAM
optimizer for training [13]. The policy actions are taken us-
ing a softmax distribution as discussed in Section 3. Below,
we discuss the rewards and stopping criteria used for train-

ing, separately for zero-shot setting and when bootstrapping
from available student data:

• Zero-shot learning setting: We set reward R(s, a) as +100
when s ⊕ a = s∗, and −1 otherwise. The training is done
until the average reward of the policy is saturated. To
further speed up the convergence, we use intermediate re-
wards in the training process by adding an additional term
of −dsynt(s⊕a, s∗) to the reward. Here, dsynt represents the
syntactic edit-distance between two states (same function
as used in generating training data for code embedding).
These intermediate rewards during the training process al-
lowed us to speed up the convergence by order of mag-
nitude, without effecting the overall performance of the
trained policy. After this speed up, the number of episodes
required until convergence varied from 5000 to 20, 000.

• Additional student data is available: We first pre-train the
network using cross-entropy loss with the data sampled
from Dtrain. This pre-training is done for 20 epochs where
each epoch consists of multiple gradient updates as follows:
A batch of data is sampled from Dtrain of size given by
batchsz = 32 and a gradient update is performed using this

batch as per Eq. 3; this process is repeated |Dtrain|
batchsz

within
an epoch. After this pre-training phase, we train the policy
network using rewards for 2000 episodes using the gradient
updates in Eq. 2. Given that the pre-training phase already
provides a good initialization of the policy network, we
used modified reward signals in this case as compared to
the zero-shot setting: (i) we set reward of +20 for reaching
the goal instead of +100 and (ii) we reduced the value of
intermediate rewards and set it to −0.05 · dsynt(s ⊕ a, s∗)
by scaling it down.

4.2.3 Baselines
We compare our RL-based hint policy Reinforce-HP w.r.t.
several baselines as discussed below. In particular, we con-
sider baseline techniques which can be implemented effi-
ciently, without requiring any explicit graph representation
of the state space which is computationally intractable (also,
see Figure 2).

As a simple benchmark, we use Random-HP: a baseline
policy that simply selects an action a ∈ As randomly when
providing a hint for state s. As another natural baseline, we
consider FreqNext-HP which uses historical student data
as follows. Based on the available data, a frequency count
count(s, a) is maintained for each (s, a) pair counting the
number of times action a was taken from state s by students
in the historical data. Then, when providing hint for a state
s, the hint is chosen from a distribution given by the follow-

ing softmax distribution: P (a|s) =
exp
(
1+count(s,a)

)
∑
a′∈As exp

(
1+count(s,a′)

) .

Next we discuss a baseline based on the state of the art
technique of Continuous Hint Factory (CHF) [20] that uses
supervised learning approach. We adapt the key ideas of
CHF to our setting and refer to the resulting hint policy as
Regression-HP—this adaption allows us to directly com-
pare Reinforce-HP with Regression-HP as both these
hint policies use the same embedding and same historical
data when available. Below, we discuss three key steps re-
quired in training Regression-HP:
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Figure 4: (a) shows prediction accuracy for HOC-18 task. x = 0 on the x-axis corresponds to the zero-shot setting.
Reinforce-HP achieves over 20% absolute improvement in the prediction accuracy compared to baselines. (b) shows results
for HOC-18 task when states are binned into “Head” and “Tail” based on frequency counts, and a moderate amount of histor-
ical student data is available (see details in Section 4.3). Reinforce-HP performance on low-frequency states is even higher
than the overall performance of any of the baselines. (c, d) shows the results for simpler task of HOC-4.

• Embedding (cf. Section 3.1 of [20]): For Regression-HP,
we use the same code embedding as used for Reinforce-
HP. Our code embedding is similar to the Euclidean em-
bedding space used by [20] which was obtained by preserv-
ing syntactic distances between raw states.

• Regression function (cf. Section 3.2 of [20]): Then, we
learn a regression function in the embedding space which
can identify the most likely hint as a vector in this space.
This step makes use of available student data Dtrain as
discussed in Section 3.3, and learns a function freg that
can map φ(s) to φ(s ⊕ a) for (s, s ⊕ a) ∈ Dtrain. We use
neural network to learn this function freg, in contrast, [20]
used Gaussian process regression. We use a 4-layer neural
network to learn freg with essentially the same architecture
as the one used to learn Reinforce-HP, except that (i)
the input layer has dimφ units for φ(s), (ii) the output layer
here has dimφ units to produce φ(s⊕ a) (this corresponds
to what was the last hidden layer in Reinforce-HP neural
architecture).

• Human-readable hint (cf. Section 3.3 of [20]): Finally,
when providing hint for a state s, we first compute the
hint in embedding space as freg(φ(s)) and then convert
this to an editable hint a ∈ As as the one that minimizes
||freg(φ(s))− φ(s⊕ a)||2.

4.3 Results
Figure 4 shows the results for HOC-18 and HOC-4 tasks, av-
eraged over 3 runs of all the hint policies. Figures 4a and 4c
show the overall average prediction accuracy. The x = 0
point in these plots corresponds to the zero-shot setting and
measures the prediction accuracy of next-step hint for the
very first student who is attempting the task. For both
HOC-18 and HOC-4 tasks, our RL-based policy Reinforce-
HP has a significant improvement over baselines by about
20% gain in absolute accuracy. For the HOC-18 task, even
when a moderate amount of data becomes available (e.g.,
see x = 9 on the plot which is equivalent to data of 511 stu-
dents), Reinforce-HP improves w.r.t. Regression-HP by
10% gain in absolute accuracy.

In Figures 4b and 4d, we further analyze the performance
of different hint policies when training using a moderate
amount of available data (corresponding to x = 9 in Fig-

ures 4a and 4c which is equivalent to data of 511 students).
In these plots, states are binned into“Head”and“Tail”based
on frequency counts as available in the dataset obtained from
[23]. Here, the bin “Head” corresponds to top 40 states and
“Tail” corresponds to bottom 40 states based on frequency.
For HOC-18 task, Reinforce-HP performance on low fre-
quency states is even higher than the overall performance of
any of the baselines: this hightlights the power of RL frame-
work that allows an efficient self-exploration of the solution
space when learning the hint policy. These plots also illus-
trate that techniques such as FreqNext-HP that rely on
frequency counts can have much worse performance on the
tail segment of states compared to head segment of states.

In summary, these results demonstrate that the proposed
RL framework enables us to learn an effective hint policy in
the zero-shot setting, and the performance can be further
improved with the availability of student data.

5. CONCLUSIONS AND FUTURE WORK
We tackled the challenge of zero-shot learning of hint policy
to be able to provide hints for the very first student working
on a coding task. Building on the recent advances in RL-
based neural program synthesis, we proposed an RL frame-
work for learning hint policy. Using a publicly available
dataset from Code.org, we showed that our policy achieves
significant improvements over state of the art supervised
learning techniques when no or very limited data is available.
Furthermore, the results demonstrated that our proposed
framework is easily amendable, e.g., it can benefit from his-
torical student data to further boost the performance.

There are several research directions for future work. As
an evaluation criterion, we used the prediction accuracy of
next-step hints based on expert annotations. In future work,
it would be important to do user studies and understand the
pedagogical value of these hints. In this work, our hint policy
provided hints based on only the current partial solution of
the student. It would be important to learn a richer hint
policy that can provide personalized hints by accounting for
the whole trajectory of the student. Finally, it would be
interesting to apply our framework to more complex learning
scenarios (e.g., with more complex coding tasks or with a
more complex language involving additional concepts such
as the ability to declare variables).
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ABSTRACT 
Reading to learn is a quintessentially self-regulated activity. In         
order to provide effective support for this activity it is necessary           
for us to understand how students adapt their self-regulation         
behaviors within disciplinary reading environments. In this       
paper, we utilize student response data from a digital literacy          
platform to examine the association of students’ behaviors with         
the difficulty of questions embedded in science texts. We         
analyzed 131 distinct physical science questions used in 641         
middle school classes within Actively Learn, a digital reading         
platform. We investigated the association of question difficulty        
and students’ behaviors, including reading, annotating,      
highlighting, and vocabulary lookups. Our findings show that        
students found multiple choice questions with multiple correct        
answers hard to answer and exhibited more reading behaviors         
when attempting them. Short answer questions appeared to be         
easier; students engaged in more annotation, highlighting       
vocabulary lookups when attempting easy short-answer      
questions compared to difficult multiple-choice questions.  

Keywords 

Question Difficulty, Student Behavior, Self-Regulated Learning 

1. INTRODUCTION 

Reading to learn, as students do when engaging with         
disciplinary texts [35], is a quintessentially self-regulated       
activity [26]. When presented with a block of text, students can           
approach it by reading end to end, make notes as they go or not.              
They can also skipp around for clues, or even explore in larger            
chunks. How they choose to do so will be driven by their own             
study habits [38], as well as the context of the assignment itself.  

 

 

Students who are trying to answer a set of questions typically            
read differently than students who are trying to master general          
material [11,18]. As the questions change, so will their         
behavior. They will, to paraphrase Karl Llewellyn, read with         
new eyes [23]. In order to effectively support students in          
reading to learn, it is necessary to understand how students adapt           
their reading and learning strategies when faced with problems         
at different perceived levels of difficulty and of different types.          
Understanding these changes will allow us to model their         
behaviors, identify successful and unsuccessful approaches, and       
provide effective interventions as necessary. 

Prior researchers have shown that reading scientific texts        
requires both reading strategies and self-regulated learning       
(SRL) strategies [14, 25, 47]. As Butler and Cartier emphasized,          
understanding SRL requires understanding students’ learning      
contexts [9]. The context of learning is nested: geographical,         
socio-economical, within-school, and within-classroom. At the      
classroom level, students’ engagement in learning is shaped by         
teacher’s instructional approaches and by interactions with the        
teacher and peers [9].  

Our goal in this study is to examine how students may perceive            
question difficulty at the class-level, and how students vary their          
individual reading and self-regulated learning activities in       
response to it. The context of our study is Actively Learn (AL)            
[1], an online reading platform that is used in schools in the            
United States. For this study, we focus on readings and test           
items in middle school science domains. We answer the         
following research questions: 

RQ 1. How does students’ performance vary with question 
difficulty? 
RQ 2. What SRL strategies do students use before and after 
each question ? 
  2a. How did SRL strategies vary with question difficulty? 
  2b. How did reading vary with question difficulty? 
 
We collected log data from 11,832 middle school physical         
science students within the AL platform. We extracted reading,         
annotating, highlighting, and vocabulary lookup events from the        
log traces and we estimated the difficulty level of questions by           
class level. We compared our difficulty level with a comparable          
analysis from item response theory (IRT) [18]. And we         
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evaluated students' reading and SRL strategy usage with        
question difficulty. 

2. LITERATURE REVIEW 
Our research draws on prior work in two primary areas: research           
on self-regulated learning activities in reading-to-learn situations       
and research on question difficulty analysis from student        
performance data. 

2.1 SRL and Science Achievement 
SRL, as described by Zimmerman, involves four regulatory        
components during learning: goal setting, self-monitoring,      
self-evaluating, and using strategies to control progress toward a         
goal [51]. Learners who are more capable at self-regulation tend          
to set more challenging goals for their academic achievement         
than those who are less capable [53]. They use self-monitoring          
strategies to monitor their time on task and to solve conceptual           
problems [8]. Self-evaluation, in this context, means being able         
to judge the outcomes of self-monitoring processes [52]. In the          
process of self-evaluation, a student changes learning strategies        
to achieve their learning goals [53]. Prior researchers have         
provided a range of SRL models, these include Pintrich’s SRL          
framework [31], Zimmerman’s cyclic phases model [50] and        
Winne and Hadwin’s model [46]. While they rely on different          
assumptions, all of them frame learning as an active process          
wherein learners set goals by understanding topics or domains,         
regulate their cognition processes, and modify behaviors to        
achieve goals in light of self-evaluation [47, 31].  

SRL strategies are linked to subject domains [48]. Researchers         
have examined SRL strategy usage and academic performance        
in science in game-based learning [37, 40], classroom settings         
[4], and in agent-based learning environments [7]. Francois et al.          
examined students' SRL usage strategies in an agent-based        
learning environment for human biology, MetaTutor [7]. They        
found high performing students both took more notes and made          
more summaries. Low performing students, by contrast,       
struggled to find relevant pages to attain their subgoals within          
the system. Andrzejewski et al. examined an SRL intervention         
in a 9th grade earth science class [4]. They found SRL           
intervention strategies had different effects on students with        
different socioeconomic status. Students from minority groups       
(non-white or economically disadvantaged) benefited more than       
those in the majority group (white and middle class). Rutherford          
examined the role of SRL within a curriculum integrated         
mathematics game, ST Math, and found that differences in         
students’ SRL monitoring was related to their academic        
performance [37].  

Our goal in this analysis is to evaluate students’ SRL usage in            
middle school science reading. Our work is situated in the          
interactions between SRL monitoring and control—as students       
engage with text and with embedded questions, they assess the          
difficulty of the task they encounter and adjust their behaviors          
accordingly. We operationalize the SRL activities related to        
reading strategies students would use during the control phase of          
SRL as annotating [24], highlighting [45], and vocabulary        
lookups, as we believe that these features serve as proxies for           
SRL behaviors, and we have studied their relation to question          
type in a prior publication [16]. Science texts involve key          
concept words and vocabulary terms. Students’ reading       
comprehension and motivation has been found to decrease due         
to introduction of concept words [22]. Vocabulary lookups can         
help students to understand concepts when they first encounter         

them. Annotation requires that students comprehend text and        
frame it in their own words [24]. Highlighting texts involve SRL           
activities through the use of monitoring information and        
connecting that information to prior knowledge [45].  

2.2 Question Difficulty from Student Data 

Understanding the difficulty level of test items has a wide range           
of applications in educational data mining (EDM); this includes         
work on the optimal arrangement of curricula [21] and on the           
design of adaptive tests or personalized learning environments        
and intelligent tutoring systems (ITS) [30]. Item difficulty can         
be assessed based upon the design of a question and its           
classroom context [20], or it can be evaluated empirically based          
on observed student performance in real contexts [28]. This         
empirical approach is particularly important for the development        
of practical adaptive learning and tutorial environments.       
Although the structure of a question specifies the knowledge         
required, the operational difficulty of a task, that is the difficulty           
for a given student, is dependent upon the class context, the           
amount of individual preparation or scaffolding provided, the        
students’ skill level, and whether they are working on it          
individually, as part of a team, or as a whole class.  

Consequently, a number of prior EDM researchers have        
developed a number of domain and student models which can be           
used to identify structural relationships between tasks and to         
assess their difficulty based upon empirical performance. These        
efforts include: work on q-matrices that map items to required          
skills and levels (e.g., [5]); learning factors analysis and other          
student performance models such as Bayesian Knowledge       
Tracing (BKT) (e.g., [10, 13]); and item response theory (IRT)          
[19]. Item Response Theory (IRT) is regarded as the “gold          
standard” of estimating question difficulties from student       
response data. The simplest version of IRT is the “Rasch          
Model” [32], which associates a skill or ability to each student           
and a difficulty level to each question.  

Different intelligent tutoring systems (ITS) [44] and other        
learning environments have utilized student-system interaction      
logs to estimate question difficulty empirically. Pardos and        
Heffernan for example, extended the BKT model to handle item          
difficulty in a mathematics tutoring system, ASSISTment [30].        
QuizGuide, an assessment system for Java programming [39],        
predicts subjective difficulty on questions from predefined       
weights and student performance. The predefined weights were        
assigned by domain experts. ELM-ART II, a web based Lisp          
programming tool [40], uses fixed difficulty and weight for each          
item. A student’s knowledge level is updated based on correct or           
incorrect attempts on each item and difficulty level. Researchers         
have further utilized student attempts coupled with IRT to         
estimate question difficulty [33]. Fouh et al., for example,         
utilized the total number of attempts and guessing behavior to          
understand difficult topics in a Data Structure course [17].         
Additionally, they compared their approach to IRT.  

As in this prior work, we focus on using student-system          
interaction logs to estimate the operational difficulty of our         
questions; however, as we are particularly interested in variation         
across instructors, we analyze our data at the class level. 
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3. DATASET 
In this section we describe the Actively Learn platform [1] and           
our dataset construction process. 

3.1 The Actively Learn (AL) Platform 
AL is a digital literacy platform aimed at students in primary           
and secondary (K-12) education. AL is designed to improve         
students’ reading proficiency. The platform allows teachers to        
assign reading texts as assignments to class with embedded         
questions, which may include optional automated feedback.       
Assignments in the AL platform can range from one page to           
multiple pages. Questions in AL can be multiple choice (MCQ)          
and short answer (SA), including free texts and fill in the blanks.            
Teachers may use predefined reading texts and questions        
available within AL or introduce their own as assignments.         
MCQs are automatically graded, whereas SAs are not. AL         
questions are graded on a scale of zero to four. Figure 1 shows a              
reading text in the AL interface. 

Physical science reading texts in the AL platform are organized          
following the Next Generation Science Standards (NGSS)       
guidelines [2]. The NGSS for middle school physical science         
(PS) has four standards: (i) PS1: Matter and its Interactions, (ii)           
PS2: Motion and Stability: Forces and Interactions, (iii) PS3:         
Energy, and (iv) PS4: Waves and their Applications in         
Technologies for Information Transfer. Students are expected to        
analyze and interpret data (PS1 standard), plan and carry out          
investigations (PS2 standard), develop and use models, analyze        
data (PS3 standard), and use mathematical thinking and        
demonstrate understanding (PS4 standard) [2].  

 

Figure 1. A reading text and embedded questions. Question         
1 is an MCQ and question 3 is a SA. 

AL’s developers state that the platform provides opportunities        
for teachers and students to deeply engage with text [34].          

Students can highlight, annotate, and look up unknown words as          
they proceed through the readings.  

3.2 Dataset Construction 
Our current study focuses on middle school science reading         
assignments in the AL platform. Our dataset includes records of          
students who completed assignments in 2018. Our dataset        
includes 17,886 student records across 1,033 classes. After        
plotting histograms of class sizes, we excluded classes with         
fewer than 10 or more than 60 students. This left us with 83.45%             
of students. We also excluded any student enrolled in multiple          
classes, as we believed these accounts could be for testing          
purposes. After selecting classes, we filtered the dataset by         
questions. We selected 131 predefined AL questions used in at          
least two classes. The final resulting dataset has 11, 832 students           
and 913 assignments used in 641 classes. We extracted students          
reading, highlighting, annotating, and vocabulary lookup events       
from log data trace. 

4. METHODOLOGY and RESULTS 
In this section we describe our methodology to answer our RQs.  

4.1 RQ1: How does students’ 
performance vary with question difficulty? 
In our study, a question can be used by different classes. As we             
do not have access to student demographics and other         
confounding variables, we opted to aggregate difficulty data at         
the level of classes. Additionally, we compared our approach         
with the IRT model. Note that estimating question difficulty is          
not the goal of our study. We aimed to investigate how students’            
reading and SRL strategy usage varies with question difficulty.         
In order to analyze how students respond to different questions,          
it is necessary to identify suitable metrics to assess question          
difficulty. First we defined metrics to assess each question         
difficulty within a class from student interaction data. We         
analyzed how a question’s perceived difficulty varies across        
classes using our defined metrics. We assessed students'        
performance on questions categorized by question difficulty.       
Next, we performed IRT analysis to examine the relationship         
between question difficulty and student performance. We       
compared findings between two approaches. 

4.1.1 Question Difficulty and Student 
Performance: Student Interaction Data 
We analyzed the students’ performance on each question to         
assess the difficulty of the question. To calculate a student’s          
performance, we took the ratio of max score achieved to number           
of attempts on a question. Questions in AL are graded on a scale             
[0-4]. For our assessment, we normalized the students’ scores to          
a range of [0-1]. We defined the performance of a student i on a              
question q as 
 

        = =     (1)ri no. of  attempts on q
scaled maximum score on  q 

no. of  attempts on q
maximum score on q/4  

 

Equation (1) computes a student’s score of a question on a scale            
of zero to one, one representing good performance and zero          
representing poor performance. 

We computed difficulty level (dl) of a question q as 
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                                       (2)                                dl  = 1 − n

∑
n

i = 1
ri

 

where n is the number of students in a class who attempted q,             
and is the students’ performance on q as defined above. A dl  r            
~ 0 value indicates an easy question and dl ~ 1 indicates a             
difficult one.  

To analyze the difficulty of a question q across classes, we           
computed difficulty ratio of q across classes as follows: 

  Difficulty ratio of question q =   (3)No. of  classes used q in assignments
No. of  classes with  dl >= 0.5 for  q  

We plotted histograms of difficulty ratio for 131 questions. After          
examining the histograms, we observed more questions with        
difficulty ratio < 0.2 and fewer questions with difficulty ratio >           
0.5. We grouped questions into three categories by their         
difficulty ratio as shown in Table 1. 

We plotted histograms of student performance on each question,         
r, for three categories of questions. Figure 2 presents the          
histograms (next page). 

4.1.2 Question Difficulty and Student Performance: 
IRT Analysis 
The IRT method estimates the probability of a student getting an           
item correct based upon the item difficulty and the students’          
ability. We applied the 1-parameter logistic IRT model (1PL)         
model, also known as the Rasch model. The 1PL model          
describes test items considering only one parameter, item        
difficulty, b. The 1PL model is a logistic curve, i.e., it evaluates            
how high the latent ability level needs to be in order to get a              
50% chance of getting the item right. Item difficulty is estimated           
from the student responses. 

Table 1: Question category by difficulty ratio (diff. ratio) 

Question  Category MCQ  SA Total 

 Easy  (diff. ratio < 0.4 ) 6 75 81 

Medium ( 0.4 <= diff. ratio <=       
0.6) 

5 26 31 

Hard  (diff. ratio > 0.6 ) 11 8 19 

 

The Rasch model assumes a boolean score for each student          
response to questions. To apply the 1PL model, we need to map            
students’ responses to 0 or 1 computed from equation (1). We           
assigned zero if r < 0.5 and 1 otherwise. We fit the 1PL model              
to 131 questions using the ‘ltm’ package in R [36].  

We plotted per-item characteristic curves (ICC) from the fitted         
model. The X axis of the ICC represents students’ latent ability           
and the Y axis represents the probability of answering the          
question correctly. The range of the X axis is [-4, 4], where zero             
indicates average ability. We plotted ICC curves for Easy,         
Medium, and Hard questions separately. We also plotted item         
information curves (IIC) from the fitted model. The IIC curves          
shows how much information about students’ ability an item         
provides. A difficult item will provide little information about a          

student with low ability and vice versa for easy items. We           
plotted IIC curves for Easy, Medium, and Hard questions         
separately. 

4.1.3 Results for RQ1 
From the student interaction results shown in Figure 2. We also           
notice the number of students receiving zero in Easy questions is           
higher than Medium and Hard ones.  

Figure 2. Student performance by question difficulty 

In Figure 3 (next page) we show our ICC results for Easy,            
Medium, and Hard questions. Each line represents the ICC         
curve of one question. We observe that the ICC curves for Easy            
questions are mostly on the left side of zero, indicating Easy           
questions required lower ability for correct attempts. Comparing        
ICC curves of Easy and Hard questions, we note that Hard           
questions have curves more on the right side of the X axis. The             
probability of answering a Hard question correctly decreases as         
curves go from left to right. 
The IIC curve shows how much information about students’         
ability a question gives. From Figure 3, we observe Easy          
questions curves provide information about students with       
average and below average abilities (the peak of curves are          
mostly on the left side of X = 0. X = 0 refers to average ability).                
Similarly, IIC curves for Hard questions provide information        
about high ability (the peak of curves are mostly on the right            
side of X = 0) levels. 

4.2 What SRL Strategies Do Students Use 
Before and After Questions? 
In this section we present our methodology and results for RQ2. 
We calculated SRLs at student-level to understand how 
students’ SRLs varied by question difficulty. 
4.2.1 Methodology for RQ2 
To investigate the association between students’ reading and        
SRL behavior with question difficulty, first we need to identify          
student sessions. The AL system does not record student         
sessions. Therefore, we relied on a data-driven approach to         
identify sessions as described by Kovanovic et al. [41] and          
Adithya et al. [3]. AL records timestamps of students’ question          
submission, reading, annotating, highlighting, and vocabulary      
lookup behaviors. We aggregated timestamps of students’       
actions into a unified log. We plotted histograms of time          
intervals between consecutive actions to identify outliers and        
estimate the last action of any time period [41].  

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 398



 

 

Figure 3. ICC and IIC plots from 1PL model 
 

 

After conducting this analysis, we selected 30 minutes as a          
session. Any time interval greater than 30 minutes was marked          
as the beginning of a new session.  

We then split students’ actions into sessions. Next, we counted          
reading and SRL activities prior and after each question         
submission. We calculated the mean and standard deviation for         
the four reading and SRL features. To test if there were           
statistically significant differences in means, we applied the        
nonparametric Kruskal-Wallis test. In cases with statistically       
significant differences in mean, we performed a post-hoc Dunn         
test with Benjamini-Hochberg correction to identify pairwise       
statistically significant groups, using the R package “dunn.test”        
[15]. Table 2 presents the mean, standard deviation, and p value           
from Kruskal-Wallis test. 

4.2.2 Results for RQ2 
In this section we present our results to answer RQ2 and the            
sub-questions: 

2a. How did SRL strategies vary with question difficulty? 

2b. How did reading vary with question difficulty? 

As Table 2 shows, the mean of all features vary at statistically            
significant levels across the three categories of questions.        
Number of reading activities is the highest for the Hard          
questions, followed by Medium, and Easy. This indicates        
students had to read more prior to attempting a Hard question.  

 

Table 2: Mean with (Standard Deviation), and p value from          
KW = Kruskal-Wallis test for student behavior features on         
Easy, Medium, and Hard questions. R = Reading, A =          
Annotating, H = Highlighting, V = Vocabulary lookups 

Feature Easy Medium Hard KW p 

R 0.684 
(0.71) 

0.814 
(0.74) 

1.27 
(0.70) 

< 0.001 

A 0.335 
(0.20) 

0.021 
(0.17) 

0.012 
(0.12) 

< 0.001 

H 0.007 
(0.10) 

0.004 
(0.06) 

0.002 
(0.05) 

< 0.001 

V 0.015 
(0.13) 

0.014 
(0.12) 

0.009 
(0.1) 

0.01 

It also indicates that they revisited the reading material after          
attempting a Hard question more frequently than they did for          
Easy and Medium questions. Annotating, highlighting, and       
vocabulary lookup counts were higher in Easy and Medium         
questions as compared to Hard ones.We report the Dunn test          
and statistically significant pairs for each feature below. We         
report effect-size (r) using a nonparametric test, Cliff's-Delta        
[12].  
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For the reading feature (R), we found statistically significant         
differences among all three pairs Easy-Hard, Easy-Medium, and        
Medium-Hard. The p values of these pairs were Easy-Hard         
(p < 0.001, r = 0.43), Easy-Medium (p < 0.001, r = 0.10),             
Medium-Hard ( p<0.001, r=0.34)  

When we consider the annotating feature (A), we also found          
statistically significant differences in means among all three        
pairs. Easy-Hard, Easy-Medium and Hard-Medium pairs had         
(p < 0.001, r = 0.02), (p < 0.001, r = 0.012), and (p = 0.018, r =                   
0.01), respectively.  

And, when considering the highlighting feature (H), we found         
two pairs differed at statistically significant levels: Easy -Hard         
(p = 0.004, r = 0.004) and Easy-Medium ( p = 0.0209, r =               
0.003). 

Finally, for the vocabulary lookup (V) feature, we found one          
pair with a statistically significant difference: Easy-Hard ( p =          
0.005, r = 0.01). 

5. DISCUSSION 
We summarize our findings and implications of results below. 

In this study we used a data-driven approach on class-level          
student response data to group questions by difficulty levels.         
Our difficulty levels are consistent with findings from IRT         
analysis. ICC curves for Easy questions require lower student         
ability (Figure 3) and vice versa for Hard questions. 

Table 1 shows 11 MCQ questions belonging to the Hard          
category. We looked into the question texts and observed 10 out           
of 11 questions required students selecting multiple options, e.g.,         
“Select all that apply.” Our analysis from RQ2 indicates students          
exhibited more reading (R) behavior prior and after answering         
Hard questions compared to Easy and Medium ones. Thus, our          
findings indicate that although students can often rule out         
distractors in MCQs [6], answering such questions is Hard when          
options involve selecting multiple correct answers. Our findings        
may be helpful for ITS designers. Developers of ITS can          
facilitate more hints on MCQ questions having multiple correct         
answers, so that students do not find those Hard. 
From Table 1, we observed 75 out of 81 Easy questions were            
SAs. Our results for RQ2 indicated that students annotated (A),          
highlighted (H), and looked up vocabulary (V) more in         
answering Easy questions. We conclude that the format of         
questions may have contributed to students' SRL usage, even if          
the difficulty level was classified as Easy. Ideally, we would          
have been able to control question format and student         
characteristics; secondary data mining allows for large-scale       
data, but precision of results can be compromised by lack of           
these details. Nevertheless, we were able to demonstrate that         
SRL behaviors covary with question difficulty and/or format. It         
seems likely that as students encountered SA questions, they         
received metacognitive signals that encouraged their use of SRL         
behaviors [27] and this resulted in the relatively greater success          
of these questions. However, we cannot disentangle this from         
difficulty in our data. Although multiple option MCQs were         
difficult for students, they may not have triggered metacognitive         
awareness of the need for SRL behaviors. This is in line with            
some prior research suggesting less confidence bias in SA         
questions than in MCQs [29].  

6. LIMITATIONS 
Our study has two limitations. First, student responses to         
assignment questions are dependent on the teacher's selection of         
questions. We do not have responses to all questions for every           
student. Thus, the latent ability analysis of IRT is limited to           
student response data. Second, we did not consider the text          
complexity of the reading article in analyzing question        
difficulty. Science reading requires analyzing information from       
texts, diagrams, mathematical equations, and videos [22, 49].        
Future research direction can investigate the association of        
question texts and the reading texts to understand text         
complexity. 

7. CONCLUSION 
In this study we investigated associations of students’ reading         
and SRL behavior with question difficulty in middle school         
science reading. We analyzed question difficulty at the class         
level and compared our analysis method with IRT. Our results          
show that MCQ with multiple correct options are generally         
harder for students in our middle-school set. And we show that           
when faced with such hard questions, irrespective of their type,          
students engage in more reading activities but not the other SRL           
actions we measured. Easy questions, by contrast, were more         
commonly SAs than MCQs. Students spent more time        
annotating, highlighting, and looking up vocabulary terms in        
Easy questions. This may reflect that the easy questions in our           
dataset are more focused on rote memorization or on localizing          
responsive passages in the larger text than on concept synthesis          
or summarization, or, alternately, SA questions may prompt        
students to engage in SRL behaviors that MCQs do not. Due to            
the confounding of difficulty and format type, we were unable to           
disentangle these reasons. We hope our work opens up further          
opportunities for researchers and ITS developers to explore        
student interaction with question difficulty.  
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ABSTRACT 

Collaborative problem solving (CPS) is considered a necessary 

skill for students and workers in the 21st century as the advent of 

technology requires more and more people to frequently work in 

teams. In the current study, we employed theoretically-grounded 

data mining techniques to identify four profiles of collaborative 

problem solvers interacting with an online electronics task. The 

profiles were created based on 11 theoretically-grounded CPS 

skills defined a priori. The resulting four profiles correlated in 

expected directions with in-task performance and had interesting 

relationships with external measures associated with prior 

knowledge and CPS skills. These results inform and partially 

replicate findings from our previous research using a similar 

approach on a smaller dataset. Implications and comparisons 

between the two studies will be discussed. 
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1. INTRODUCTION 
With the increasing need for technology in workplace contexts, 

collaborative problem solving (CPS) is considered an important 

21st century skill as workers are often required to complete complex 

tasks in teams to solve complicated, often technical problems. 

Accordingly, the need to teach and assess CPS has gained increased 

attention by researchers [4,5]. In research seeking to assess or teach 

CPS skills, researchers often employ digital technologies to capture 

evidence and improve assessment of CPS, as this skill is complex 

and includes many facets.  

In defining the facets of CPS there is little dispute that the construct 

includes social and cognitive dimensions [1,22]. The social 

dimension is meant to be interpersonal, including features such as 

sharing information and perspective taking. These types of features 

are associated with building a shared understanding among team 

members which is essential for building common ground, an 

important component of completing a task [6]. The cognitive 

dimension includes components such as planning, representing the 

problem, and formulating hypotheses. These components are 

complex in nature and therefore difficult to assess with traditional 

assessments such as multiple-choice questions without 

compromising fidelity and generalizability [7]. Therefore, 

assessment researchers have turned to online environments, 

including games and simulations, which allow for collaboration 

among team members to capture the discourse and complex actions 

necessary to evaluate CPS competency. 

To evaluate CPS competency in online environments, both a 

competency model and advanced analytic techniques are often 

needed. Specifically, a competency model is necessary to identify 

skills and features aligning to specific constructs. Analytic 

approaches are needed to deal with the large streams of data stored 

in log files while also accounting for the underlying competency 

model and theoretical explanations [12]. 

Accordingly, in an effort to assess students’ CPS skills in an online 

environment, we employ a theoretically-grounded data mining 

approach [9] incorporating a conceptual model and machine 

learning approaches in an iterative process. Specifically, we define 

a competency model based on existing literature that identifies 

features a priori.  Our competency model is based on our prior work 

[1,2,3] and used to extract features in a meaningful way, and 

machine learning algorithms are used to profile students. We then 

interpret and refine algorithms based on theoretical interpretations. 

Thus, the process is a collaborative effort between computer 

scientists, learning scientists, psychometricians, and cognitive 

psychologists. In the current study, this principled process is used 

to replicate findings from a previous study [2] by discovering 

profiles of collaborative problem solvers that are strongly grounded 

in theory associated with cognitive and social psychological 

research. We then validate these profiles with external measures 

and compare these profiles with our previous findings from 

students interacting with the same online collaborative electronics 

task.  

2. METHODS 

2.1 Participants 
Students in electronics, engineering, and physics programs were 

recruited from universities and community colleges across the 

United States to complete the study. In total, there were 378 

students who participated. Of those students who reported their 
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gender, 76% were males and 21% were females with 3% other, 

preferring not to respond, or unreported. Of those who reported 

their race, 62% were White, 7% were Black or African American, 

8% were Asian, 10% reported being more than one race, 1% 

reported Other, with 4% preferring not to answer or unreported. For 

ethnicity, 7% reported being Hispanic. The modal age range among 

students was 18 to 20 years old. 

2.2 Tasks and Measures 
To complete the study students first completed a pretest about 

electronics concepts to gather information about their content 

knowledge, next progressed to the online electronics task, and then 

completed self-report measures where they rated themselves and 

their teammates on CPS capabilities along social and cognitive 

dimensions. We will first discuss the external measures and then 

the online electronics task. 

2.2.1 External Prior Knowledge Test 
The external prior knowledge test was created by a group of 

experts concerning the series circuit problem. First a conceptual 

map of the problem was created. Then, a q matrix defining skills 

and complexity was devised to create an equal number of 

questions for each electronics skill necessary to solve the series 

circuit problem. Next, the final items were validated by experts as 

well as through psychometric analysis. As a result, the original 

test included 28 items but only 23 saliently reflected the original 

intent of the test developers based on a CFA [24]. Thus, the total 

score per student for the 23 items is the measure of prior 

knowledge.  

2.2.2 CPS Inventory 
The CPS Inventory serves as a self-report measure of CPS skills 

that aligns to a competency model of CPS (which will be discussed 

in more detail in the next section). The Inventory consists of 14 

items, seven of which correspond to social CPS behaviors (e.g., I 

tried to establish a good relationship with my teammates) and seven 

of which correspond to cognitive CPS behaviors (e.g., I helped 

develop a plan to solve the problem). There is a “self” version of 

the Inventory where participants rate their own CPS behaviors on a 

4-point Likert scale (1=strongly disagree, 4=strongly agree) and a 

“team” version where participants rate their team’s CPS behaviors 

as a whole on a 4-point Likert scale (1=strongly disagree, 

4=strongly agree). The CPS Inventory was administered after 

students completed the electronics task described next. 

2.2.3 Three-Resistor Activity 
Students solved a collaborative problem on electronics concepts 

associated with Ohm’s Law and Kirchhoff’s Voltage Law. Each 

student in a team of three worked on a separate computer, each 

running a simulation of an electronics circuit. Each student’s circuit 

was connected to form a series circuit.  

 

 

 

Figure 1. Screenshot of Three-Resistor Activity 

 

Students were randomly assigned into teams by their instructors 

and team members were anonymized with provided usernames 

(e.g., Lion, Tiger, Bear).   Within the interface, each student had a 

chat window, a digital multi-meter (DMM), probes extending from 

the DMM (red and black), a resistor, a zoom button, a calculator, 

and a submit button (See Figure 1 for a screenshot of the task 

interface). These features of the interface made it possible for 

students to communicate with teammates, take measurements, view 

and change the resistance on their boards, zoom out to view other 

teammates’ boards, perform calculations, and submit answer 

choices.  

In the task, students had the goal of reaching a specified goal 

voltage value on each of their circuit boards. Because each of the 

circuits were connected in series, any changes made on one circuit 

board would affect readings on all teammates’ circuits which 

required the need for collaboration around coordinating actions so 

that everyone could reach their goal voltage values. The task has 

four levels which increase in difficulty as one variable changes in 

the task interface. In Level 1 each student had the same goal voltage 

value to achieve and the values of the resistance (R0) and supply 

voltage (E) of an external, fourth circuit in the series that students 

could not control were provided. In Level 2 the resistance and 

supply voltage of the external, fourth circuit were still provided, but 

each teammate now had a different goal voltage to reach. In Level 

3, teammates had different goal voltages, the external resistance 

was provided, but the external supply voltage was unknown and 

needed to be found to solve the problem. In Level 4, teammates 

again had different goal voltages, but now both the external 

resistance and supply voltage were unknown and needed to be 

found. The task was designed so that students may only proceed to 

attempt the next level after completing the previous level. 

Therefore, levels attempted can be used as a proxy measure for 

performance on the electronics task. To identify the CPS skills 

exhibited while solving the Three-Resistor Activity, a CPS 

conceptual framework outlined in the form of an ontology was 

created, as described next. 

2.2. CPS Conceptual Framework 
A CPS ontology (similar to a concept map) was created using the 

In-Task Assessment Framework (I-TAF) approach [3,12]. This 

approach is an augmented version of evidence-centered design 

(ECD) that supports identification of features of complex 

constructs in online environments.  
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Creating the ontology required iterative refinement with the support 

of subject matter experts and data. The ontology was created based 

on literature from areas such as computer-supported collaborative 

learning, organizational psychology, individual problem solving, 

and linguistics [11,14,15, 18,19,20,21,22,23]. Data collected from 

the Three-Resistor Activity then informed changes to the ontology 

so that it most accurately reflects the construct as well as associated 

skills, strategies, tactics, and features based on real data collected 

from students interacting with the task.  

To visually display the various components of CPS, the ontology is 

designed hierarchically. The construct (i.e., CPS) sits at the top with 

the two dimensions of CPS (social and cognitive) as second layer 

nodes. The social and cognitive nodes are linked to CPS skills 

associated with each dimension. Specifically, there are four skills 

in the social dimension and five skills in the cognitive dimension. 

The social dimension includes maintaining communication, 

sharing information, establishing shared understanding, and 

negotiating. The cognitive dimension includes exploring and 

understanding, representing and formulating, planning, executing, 

and monitoring. For a more in- depth discussion of this work, please 

refer to [1,2,3]. 

The nine high-level CPS skills are linked to 23 sub-skills on the 

fourth and fifth layers of the ontology. These sub-skills more 

explicitly define each of the nine CPS skills. For example, the 

sharing information CPS skill includes three sub-skills, sharing 

one’s own information, sharing task or resource information, and 

sharing understanding. The sub-skills are connected to an evidence 

model which provides nodes corresponding to strategies or 

behaviors needed to indicate evidence of each sub-skill. The 

strategy nodes are then linked to tactic nodes which correspond to 

in-task affordances available to carry out a given strategy and 

subsequently feature nodes that can be inferred from individuals’ 

behaviors.  These features are identified in the log files for 

extraction and additional analysis. See Figure 2 for an example of 

the structure of a portion of the CPS ontology. 

 

Figure 2. CPS Ontology Fragment 

For this particular ontology, the majority of the skills are 

represented by discourse features associated with team members 

chatting amongst each other. As there are limited natural language 

processing tools to identify such low level and abstract features of 

CPS, qualitative coding was conducted. 

 

2.3 Qualitative Coding 
The qualitative coding was conducted on 51,805 rows of log data 

corresponding to student-generated chats and actions (e.g., resistor 

changes, calculations) to identify the 23 CPS sub-skills. 

Specifically, three raters coded each log file event, with each event 

only receiving one code. To examine inter-rater reliability, a 

random sample of 20% of the data were triple coded. The inter-rater 

reliability among the raters was found to be Kappa = .93, indicating 

substantial agreement [13]. All discrepancies among the coders 

were discussed to reach consensus for a final code. The remaining 

data were coded individually by the raters. 

During qualitative coding, raters were looking for evidence of one 

of 23 sub-skills within nine high-level CPS skills under the social 

and cognitive dimensions of CPS. We next describe each of the 

sub-skills in turn. In the social dimension, maintaining 

communication corresponds to content-irrelevant social 

communication [15,16] and includes three sub-skills, rapport 

building communication (e.g., greeting teammates), off-topic 

communication (e.g., talking about homework from another class), 

and inappropriate communication (e.g., denigrating teammates). 

Sharing information corresponds to content-relevant information 

used in the service of solving the problem [22,25] and includes 

three sub-skills, sharing one’s own information (e.g., sharing one’s 

goal voltage), sharing task or resource information (e.g., sharing 

where the calculator is located in the task interface), and sharing 

the state of one’s understanding (e.g., metacognitive statements 

such as, “I don’t know”). Establishing shared understanding 

corresponds to communication used to learn the perspective of 

others and ensure that communication is understood by others [6]. 

This CPS skill includes two sub-skills, the presentation phase (e.g., 

requests for information) and the acceptance phase which includes 

responses indicating comprehension or lack of comprehension of a 

statement. Negotiating corresponds to communication used to 

identify conflicts and resolve those that arise [11], and includes 

three sub-skills, expressing agreement (e.g., “you are right”), 

expressing disagreement (e.g., “that’s not right”), and resolving 

conflicts. 

In the cognitive dimension, exploring and understanding 

corresponds to actions used to explore the task interface and 

understand the problem [21] and includes two sub-skills, exploring 

the environment (e.g., spinning the dial on the DMM) and 

understanding the problem. Representing and formulating 

corresponds to communication used to build a mental 

representation of the problem and formulate hypotheses for how to 

solve the problem [19,21]. There are two sub-skills for this CPS 

skill, representing the problem (e.g., “this is a series circuit”) and 

formulating hypotheses (e.g., “I think if everyone has 470 ohms it 

will be 3.25”). Planning corresponds to communication used to 

develop a strategy for solving the problem [11, 21], and includes 

three sub-skills, setting goals (e.g., “We need 6.69 V across our 

resistors”), managing resources (e.g., “We need to find numbers 

and decide who does what”), and developing strategies (e.g., “Let’s 

find E first using Kirchhoffs voltage law”). Executing corresponds 

to communication and actions used in the service of carrying out a 

plan [21]. This CPS skill includes three sub-skills, enacting 

strategies (e.g., performing calculations), directing actions (e.g., 

“Adjust yours to 300 ohms”), and reporting actions (e.g., “I set 

mine to 120”). Monitoring corresponds to communication and 

actions in the service of monitoring teammates or progress toward 

the goal [21,22], and includes two sub-skills, monitoring team 

organization (e.g., checking on the status of teammates or clicking 

the Zoom button) and monitoring success (e.g., “We got it” or 

clicking submit). 
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3. ANALYSES AND RESULTS 
After completing the qualitative coding, the quantitative analyses 

were conducted in two stages: profile discovery and then 

validation. For the profile discovery, we performed a hierarchical 

cluster analysis on the frequencies of each individual’s display of 

the high-level CPS skills using the Ward method [26] as this was 

an appropriate clustering method given the sample size [17]. We 

collapsed the 23 sub-skills into the high-level CPS skills for the 

cluster analysis in order to replicate the process used in previous 

research [2]. Next, the revealed profiles were compared according 

to their task performance as identified by number of task levels 

attempted, performance on the electronics pre-test, and ratings on 

the self and team CPS Inventory with Kruskal-Wallis tests and 

Mont Carlo simulations to ensure accurate statistical significance. 

3.1 Profile Discovery 
We discovered profiles of various types of collaborative problem 

solvers based on the CPS skills as determined by the competency 

model (i.e., CPS ontology). Since two of the CPS skills (monitoring 

and executing) each had both chat and actions as features to 

determine these skills, we separated them into separate chat and 

action skills (i.e., monitoring chats, monitoring actions, executing 

chats, executing actions). Thus, the total number of CPS skills 

clustered were 11. A hierarchical cluster analysis using the Ward 

method [26] was conducted on the standardized frequencies of CPS 

skills displayed for each student. The final number of resulting 

profiles was determined based on a theoretical interpretation of 

each of the profiles. Therefore, the profiles were not chosen by fit 

metrics alone but rather how meaningful these profiles were with 

respect to social and cognitive psychological research. This was a 

similar approach to that which was used in our prior work [2].  

Although the method was similar, the resulting profiles had some 

differences. Four profiles emerged with varying sample sizes, 

which were named Social Loafers, Active Collaborators, Super 

Socials, and Low Collaborators. In our interpretation of the 

profiles, we used standardized average frequencies of the CPS 

skills to discuss patterns across the four profiles. 

3.1.1 Social Loafers 
The Social Loafers (n = 190) were a group of individuals that 

displayed below average frequencies of every CPS skill. These 

individuals did not contribute much to the team’s problem solving. 

Social loafing has a long history in social psychology as a 

phenomenon where individuals assume that other team members 

will complete the task and therefore reduce their own effort [14]. 

3.1.2 Active Collaborators 
The Active Collaborators (n = 24) displayed high frequencies on all 

of the identified CPS skills in the competency model [3] except for 

monitoring actions (z = -.28). Indeed, these individuals had z values 

greater than 1 on two of the CPS skills, and greater than 2 on 

another two CPS skills consistently indicating students being on 

average, at least an entire standard deviation above the overall 

mean.  Specifically, sharing information (z = 1.44) and establishing 

shared understanding (z = 1.08), were above the mean. 

Furthermore, executing chats (z = 2.23) and monitoring chats (z = 

2.83) were over a standard deviation above the mean. All other CPS 

skills had positive standardized values, indicating that these 

students were generally active in communicating with teammates 

and helping solve the problem.  

3.1.3 Super Socials  

The Super Socials (n = 91) showed high frequencies on the social 

dimension of CPS skills [1], but lower frequencies for the 

cognitive CPS skills in comparison (except for representing and 

formulating). Specifically, these individuals showed the highest 

demonstration of negotiating behaviors in comparison to the other 

profiles (z = 1.02) and had positive standardized values on all 

other social skills, though not quite at the level of the Active 

Collaborators. The only cognitive CPS skills with positive 

standardized values were communication-based behaviors 

representing and formulating (z = 1.08), planning (z = .51),  

executing chats (z =.21), and monitoring chats (z =.09).  

3.1.4 Low Collaborators 
The Low Collaborators profile (n = 73) consisted of individuals that 

did not appear to collaborate with their teammates based on the 

features in the competency model [3]. However, they did show high 

levels of action-based cognitive behaviors including exploring and 

understanding (z = .77), monitoring actions (z = 1.21) and executing 

actions (z = .76). The Low Collaborators had negative standardized 

values for all other CPS skills. These individuals appeared to work 

alone without communicating with their teammates which is 

different from the Social Loafers who simply did not do much work 

at all. 

3.2 Profile Validation  
The profiles were validated with both log data performance metrics 

as well as external measures. 

3.2.1 In-Task Performance and Profile Membership 
There was a significant relationship between profile membership 

and the number of task levels attempted, a proxy for performance 

in the task, (X2 (3,370) = 7.66, p =.05, partial η2 = .02). The Monte 

Carlo simulation for significance with 10,000 samples revealed a 

significance level of p = .05 (lower bound p =.047, upper bound p 

= .059). Specifically, the mean ranks, where higher values 

corresponded to more levels attempted, were the lowest for the 

Social Loafers (175.00) and highest for the Active Collaborators 

(219.88) which is similar to our previous findings [2]. The mean 

ranks for the Super Socials and Low Collaborators fell in between 

the aforementioned profiles (194.87 and 189.57, respectively). 

These patterns indicate that the Active Collaborators and Super 

Socials had higher mean ranks on performance than Social Loafers 

and Low Collaborators. 

3.2.2 Pre-Test Performance and Profile Membership 
The profiles were compared to the external electronics pre-test, a 

measure of prior knowledge. The test included 23 items that were 

summed to create a score for each student participant. Results 

revealed that there was a significant relationship between profile 

membership and performance on the electronics test (X2 (3, 370) = 

8.83, p < .05, partial η2 = .02). The Monte Carlo simulation for 

significance with 10,000 samples revealed a significance level of 

.027 (lower bound p = .021, upper bound p = .031). The highest 

mean rank for prior knowledge was for the Active Collaborators 

(212.73) and the lowest was for the Low Collaborators (172.10).  

Ranging in the middle, the Super Socials had higher mean ranks 

than the Social Loafers (209.42 and 175.45, respectively). Post hoc 

comparisons with a Bonferroni correction revealed a marginally 

significant difference between Social Loafers and Super Socials 

(p=.08). No other pairwise comparisons approached statistical 

significance (all p’s > .10).  

3.2.3 Post-Task Self-Report and Profile Membership 
The   profiles were compared to student’s ratings of their own CPS 

behaviors (Self CPS Inventory) and their team’s CPS behaviors 

(Team CPS Inventory).  
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There was a significant relationship between self-ratings of CPS 

skills (sum of ratings for Self CPS Inventory) and cluster 

membership (X2 (3,349) = 15.57, p < .05, partial η2 = .05). The 

Monte Carlo simulation with 10,000 samples revealed a 

significance level of p = .001 (lower bound p = .001, upper bound 

p = .002). Mean ranks were highest for the Super Socials (210.18) 

and lowest for the Social Loafers (160.58), with the Active 

Collaborators having higher mean ranks than the Low 

Collaborators as expected (184.96 and 162.22, respectively). Post 

hoc comparisons with a Bonferonni correction revealed a 

significant difference between Low Collaborators and Super 

Socials (p < .02) and Social Loafers and Super Socials (p = .001). 

There was a significant relationship between ratings on the Team 

CPS Inventory and profile membership as well (X2 (3,349) = 9.04, 

p < .05, partial η2 = .03). Monte Carlo simulation with 10,000 

samples revealed a significance of p = .028 (lower bound p = .024, 

upper bound p = .032). The highest mean rank was for the Super 

Socials (199.47) and the lowest was for the Social Loafers (161.53), 

with Active Collaborators having higher mean ranks than Low 

Collaborators as expected (191.74 and 171.78, respectively). Post 

hoc comparisons with a Bonferroni correction revealed a 

significant difference between the Super Socials and Low 

Collaborators (p = .02). 

4. CONCLUSIONS 
Overall, we discovered four meaningful profiles of types of 

collaborative problem solvers: Social Loafers, Active 

Collaborators, Super Socials, and Low Collaborators. These 

profiles had significant relationships with in-task performance, 

electronics prior knowledge, and self-reported CPS capabilities.  

The four profiles discovered partially replicate previous findings 

[2]. Specifically, in our previous study, Social Loafers and Active 

Collaborators also emerged as profile groups. The Social Loafers 

could also be called “Free Riders” as these individuals do not 

contribute much to solving the problem with their teammates. 

Conversely, the Active Collaborators, which were a small subset of 

the sample, performed well on all measured aspects of CPS. As 

expected, Active Collaborators showed better in-task performance 

than Social Loafers which replicates findings from our prior work 

[2].  This makes sense as the Active Collaborators displayed high 

frequencies of CPS behaviors and should therefore have performed 

well on the task. Social Loafers may have been expecting others to 

do the work and therefore should not have performed as well on the 

task.  

There were two new profiles that differed but still augmented our 

previous findings. We attribute these differences to a change in 

sample size and its diversity. The sample size was nearly three 

times the size of the previous sample and included students in a 

wider variety of domains, including electronics, engineering, and 

physics. The new profiles that emerged in this experiment included 

the third profile called the Super Socials which does align with 

other profiles that have been examined. Specifically, in prior work 

we have found what we termed a high social/low cognitive profile 

that behaved similarly in displaying high levels of social CPS 

behaviors and comparatively lower levels of cognitive CPS 

behaviors. This profile was discovered by an examination of the 

two dimensions based on means of the CPS features rather than 

cluster analysis [1]. Beyond this, other work has found a profile 

designated as “Compensating Collaborators” who had high 

collaboration actions but performed poorly on problem solving 

variables [10].  The last profile, the Low Collaborators, also did not 

emerge in our prior cluster analysis work [2] but could be usefully 

compared to the Chatty Doers from that work. Similar to the Low 

Collaborators, the Chatty Doers demonstrated a high level of 

executing actions, but in contrast, the Chatty Doers did engage in 

communication with their teammates, though most of the 

communication was in the maintaining communication category. 

Interestingly, the Low Collaborators did not seek to engage with 

their teammates and instead appeared to work alone by engaging in 

executing and exploratory actions. 

In regards to prior knowledge, Active Collaborators and Super 

Socials demonstrated the first and second highest average scores on 

the electronics pre-test. It is possible that their higher prior 

knowledge enabled them to engage in more communication 

behaviors and problem-solving behaviors (in the case of the Active 

Collaborators) to contribute to solving the problem. The opposite 

could be said for the Social Loafers and Low Collaborators, the 

latter of which had the lowest average pre-test performance. For 

example, perhaps the Low Collaborators did not want to collaborate 

with others and preferred to work alone because they were 

embarrassed of their low levels of content knowledge. On the other 

hand, perhaps the Low Collaborators already had low content 

knowledge because of their refusal to work with, and therefore 

learn from, others on previous tasks. Causality and directionality 

certainly cannot be determined by these analyses. However, these 

findings do suggest that testing these hypotheses may provide 

important insights for CPS researchers.    

The Self and Team CPS Inventories required students to rate 

themselves based on their own metacognitive judgments of their 

own CPS behaviors as well as their team’s CPS behaviors. The 

Super Socials had the highest ratings for CPS behaviors both for 

themselves and for their team while the Social Loafers had the 

lowest ratings on each inventory. These results were expected, 

though we would also expect high ratings for the Active 

Collaborators and lower ratings for the Low Collaborators (mean 

ranks showed such patterns).  

All of these findings together suggest that further research should 

be conducted to explore whether the same kinds of patterns of 

results emerge with relationships among profiles such as the ones 

observed in this study, in-task performance, and other ratings. One 

limitation of this study is that the in-task performance measure 

includes aspects of the contributions from others while the CPS 

profile is based on an individual’s contributions. Despite the 

interdependent nature of the electronics task, we are continuing 

work in developing an alternative in-task performance measure that 

potentially incorporates only individual contributions.  

Furthermore, the CPS Inventory relies on self-judgments which can 

sometimes have biases [8]; however, we did want to incorporate 

some external measure of CPS behaviors that could be compared 

to participants’ in-task CPS behaviors. Finally, the CPS skills used 

to develop the profiles included only the higher aggregate level 

CPS skills, as the sample size was not sufficient to include the lower 

level coded data. 

Overall, we found that this study, which included a larger sample 

size and new external measures relative to our previous work, 

partially replicated and informed our previous findings. Our 

theoretically-grounded data mining approach appears to reveal 

meaningful profiles on two separate data sets with students 

completing the same electronics task. We hope that this work will 

inform future work on ways to incorporate theory and data-driven 

approaches to make inferences about individuals’ CPS capabilities, 

and contribute to a better understanding of types of collaborative 

problem solvers, including how certain CPS behaviors relate to 

various relevant measures. 
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ABSTRACT
Teamwork, often mediated by version control systems such as
Git and Apache Subversion (SVN), is central to professional
programming. As a consequence, many colleges are incorporating
both collaboration and online development environments into
their curricula even in introductory courses. In this research,
we collected GitHub logs from two programming projects in
two offerings of a CS2 Java programming course for computer
science majors. Students worked in pairs for both projects (one
optional, the other mandatory) in each year. We used the students’
GitHub history to classify the student teams into three groups,
collaborative, cooperative, or solo-submit, based on the division of
labor. We then calculated different metrics for students’ teamwork
including the total number and the average number of commits
in different parts of the projects and used these metrics to predict
the students’ teamwork style. Our findings show that we can
identify the students’ teamwork style automatically from their
submission logs. This work helps us to better understand novices’
habits while using version control systems. These habits can
identify the harmful working styles among them and might lead
to the development of automatic scaffolds for teamwork and peer
support in the future.

Keywords
collaborative learning, version control, study habits, secondary
education, GitHub, team projects

1. INTRODUCTION
Teamwork is an essential component of professional software devel-
opment and CS educators incorporate it into their curricula to bet-
ter prepare students for future careers [12, 34]. Working in teams
provides students the opportunity to work on larger-scale projects
than they otherwise would, and is more consistent with industry
practice. Team projects also allow students to learn from their
peers as described by Social Learning Theory (SLT) [3]. Social
Learning Theory highlights four principal requirements for learning
in social environments - attention or the opportunity to observe
each other’s work, reproduction or the chance to implement
what they learned from observations, retention or being con-
tinuously engaged in the team, and motivation for learning [3].

Prior research suggests that having all the team members
engaged in the project is essential for success and for student
learning. Seers et al. showed that the balance of contributions in
a team is correlated with team performance and member satisfac-
tion [36]. Chen et al. argued that uneven teamwork, where one
member does the majority of the work, may limit the learning
opportunities for their peers as well as themselves [9]. Further,
students that do not contribute may become less motivated to
make genuine efforts since they can rely on their teammates to
pick up the extra work [40].

Many researchers have measured and studied effective coding
and study habits for individuals [2, 38, 37, 22, 41, 6, 5, 42, 16, 8].
However, evaluating the quality of students’ teamwork is more
complicated. Hoegl et al. defined teamwork quality metrics as
communication, coordination, balance of member contribution,
mutual support, effort, and cohesion [15]. Most of these metrics are
not easy to quantify. Some have relied on surveys [10] or supervisor
assessments [28] for the evaluation of students’ teamwork process,
but little work has been done evaluating student teamwork quality
and contribution in CS secondary education programming projects
based on online activities [31]. As a result, in this work we aim
to automatically identify the teams with weaker teamwork styles.

Teamwork in software development projects can be described in
three ways. Coman et al. address two forms of teamwork: “Collab-
orative”, where the teammates share the same goal toward solving
an issue (in their case sharing a programming task), and “Cooper-
ative”, where they support each other while working on different
goals [11]. We observed that students took similar approaches in
our group coding assignments. Some worked on similar parts of the
project (e.g. both working on implementation or both testing, etc.)
at the same time. Since each of these parts were focused on a spe-
cific goal (e.g. implementation adds program features and writing
test cases improves code coverage and finds issues), working on the
same parts means having a similar goal and these teams are sim-
ilar to Collaborating teams. In such teams all the members have
significant contributions to the same parts and they might even do
pair-programming at times. Other groups of students divided the
work by the project part (e.g. one works mostly on implementation
and the other works on testing) while all contributing significantly.
They might assist each other when necessary, but most of the
work in each part was done by one member, focusing on the
specific goal of each part. This behavior is similar to Cooperative
work as mentioned by Coman et al.. The third form of teamwork
is having a free-rider, which as mentioned by van der Duim, is
common in group projects [40]. We refer to this form of teamwork
as “Solo-submitting” where one member did most of the work.
The other members might have a few commits where they made a
quick fix, but the majority of work was done by a single member.

Niki Gitinabard, Ruth Okoilu, Yiqiao Xu, Sarah Heckman,
Tiffany Barnes and Collin Lynch "Student Teamwork on
Programming Projects. What can GitHub logs show us?" In:
Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 409 - 416

409 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



In this work, we analyzed data collected from two offerings of
a CS2 course on Java programming for CS majors. In this course,
students must complete three programming projects, one inde-
pendent assignment, one where pairing is optional, and one where
it is mandatory. The students are required to use GitHub as a
version control system and for assignment submissions. Also, their
GitHub repositories are connected to a Jenkins [1] server, which
provides them with responses from instructor-defined unit tests
every time they submit their code. We analyzed student commit
behaviors to define metrics for evaluating their contributions to
the team and to classify their work style. We tagged 400 commit
messages as referring to different parts of the student projects
(i.e. Implementation, Testing, Bugfix, Merge, Documentation,
Style, and Other) that were graded in this course. We then used
natural language processing to learn from that sample and tag
the remaining commit messages. We finally used the commits in
different categories to define several metrics for students’ contribu-
tions to the team such as the Number of implementation commits
and the Percentage of testing. In order to obtain a ground truth
metric for the teamwork style we engaged two subject matter
experts to classify 100 of the 238 team repositories in these classes
into one of the three categories: “Collaborative”, “Cooperative”,
and “Solo-submit”. Then, we used the metrics to train and test
prediction models on the teamwork styles of these projects.

To be more specific, we test the following set of hypotheses:

• H1. We can automatically classify commit messages into dif-
ferent parts of the project.

• H2. We can automatically classify student teams into Collab-
orative, Cooperative, or Solo-submit.

The findings of this study will help us to develop metrics to
evaluate the effectiveness of student project teams and eventually
provide students adaptive guidance or flag teams for instructor
intervention.

2. BACKGROUND
Prior researchers have analyzed students’ work on programming
projects with the goal of identifying good habits that are common
to higher performers and bad habits that are not [2, 38, 37, 22, 41,
6, 7, 5, 42, 16, 8]. Some researchers have also used visualization
tools to analyze students’ activity patterns and to present guidance
to the students themselves (e.g. Retina [26, 18]). One more recent
approach to analyzing students’ behavior is based upon studying
logs from version control systems [14, 34, 26, 25]. However,
prior studies in this area have primarily focused on the students’
individual work habits and not on the role that they play in a team.
While other researchers have studied teamwork in CS courses
(e.g [27, 39, 4, 30, 43, 12, 19]), these studies have generally relied
upon student surveys and evaluations to bound their performance
and only a few have considered their online behavior [18, 23,
13]. Thus, there is little prior work on detailed analyses of how
individual student features affect team performance.

While teamwork is the norm in industry, students may be
unfamiliar with norms of collaborative work and many things can
go wrong in team projects [12]. For example, some team members
may decide to “gang up” and leave others out of the decisions or
they might decide to be“free-riders” and do no work at all [35, 40].
A number of researchers have studied the impact of teamwork
on student performance and ways to enhance the experience of
collaborative class work. Higher performing students often believe
that they worked with greater initiative than their teammates,
mostly alone, and they tend to give up on collaborative work [20].
Additionally, there are users who prefer to work alone, mostly

called “lone wolves” and their inclusion in teams often has a
negative impact on the team’s overall performance on the project
[4]. Instructors could use online contributions to easily identify
some of these harmful patterns.

Another use for evaluating student contributions is to measure
their teamwork quality. Most of the prior studies in classes eval-
uate the quality of the teamwork and their satisfaction with the
teamwork experience based on the students’ final peer evaluations
[39, 43, 12, 19, 20]. While peer evaluation is a popular method
among the instructors and is often used for grading group work
[30, 19], it can be difficult to calculate student grades using their
peers’ estimations of their share of work [12]. There are also other
methods such as video-taping students while collaborating [27].
As suggested by Hoegl, the balance of students’ contributions
(i.e. having almost equal shares in the project) to the team is
also an effective measure for team quality [15]. Seers et al. also
mentioned that the balance in the team members’ contributions
is related to team performance [36]. However, measuring member
contributions to software projects is not easy.

Other approaches have also been proposed for measuring team
member contributions. One method relies on instructor qualita-
tive evaluations [24, 29, 17]. This opinion is often subjective and
non-quantitative, but can provide good gestalt insights based on
the students’ online activities which makes the evaluation easier
[18, 23, 13]. The same approach has also been used in software
development projects in industry where the managers can view
a summary of a team member’s activities while evaluating their
performance [31, 28, 21]. Kim et al. and Liu et al. suggested
generating reports for the instructors based on version control
system logs to track the students’ activities and progress and
intervene if needed [18, 23]. Such reports include information such
as: who created the document, how many students edited the
document, how many edits were made, how long the document
was edited, how many words were included [18], total number of
revisions, and the average number of work days [23]. Studies have
shown that these types of reports can be used to track student
team project progress and to intervene if necessary.

While having the instructor or team manager’s opinion is a
reliable method to evaluate the contributions of different team
members, Lima et al. noted that managers often find this evalu-
ation time-consuming and that is has no specific criteria for good
teamwork [21]. As a result, more recent studies have focused
on automatically extracting the students’ share of work from a
version control system [13]. For example, Ganapathy et al. eval-
uated group collaboration by the number of documents edited by
several group members and found that better collaboration could
predict a better outcome on the project [13]. El et al. similarly
showed that the number of commits and the amount of lines of
code added by a user are statistically significant characteristics
for identifying contributions to the team.

3. DATASET
The dataset used in this study covers two consecutive fall semesters
(2015 and 2016) of a CS2 Java programming course for majors.
The course covers topics such as object-oriented design, testing,
composition, inheritance, state machines, linear data structures,
and recursion. Both course offerings were taught by the same
instructors and were split into two on-campus sections. All sec-
tions included two midterm exams (referred to as Test 1 and Test
2), a final exam, lab sessions, and three projects. The first project
was completed individually while the students had the option to
work in pairs for the second project, and were required to do so for
the third. Students were allowed to request specific teammates or
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Table 1: Statistics of Each Class
Class Java-2015 Java-2016
On-campus Students 181 206
Teaching Assistants 9 9
On-campus Instructors 2 1
Average Grade 79.7 79.9
Project 2 pairs 36 44
Project 2 selected peers 30 39
Project 2 assigned by instructor 6 5
Project 3 pairs 73 85
Project 3 selected peers 39 56
Project 3 assigned by instructor 34 29
Avg commits per repository 109 66
Max commits per repository 317 198

have them assigned by the instructor. When assigning students to
teams, the instructor created balanced teams based upon similar
prior performance on individual work (i.e. exam 1 and project 1).
Both of the team projects included an individual component (a
high-level system design and system test plan), and a team com-
ponent (a system implementation). The system implementation
part took about two weeks and the students were not permitted
to work in a team if they failed to complete the individual task.
Once students completed the individual parts and formed teams,
an instructor-authored design was released and the students were
required to implement it for the second stage of the project.

Students used the Eclipse IDE for the project implementation
and were graded based on teaching staff and student-authored test
cases, code coverage from student-authored test cases (EclEmma),
coding style (SpotBugs, PMD, CheckStyle), and documentation
(JavaDoc). They used Moodle as a learning management system
(LMS) to access materials and Piazza as a shared discussion forum.
They also used the GitHub version control system to support
teamwork and track coding progress. Whenever a student made
changes to their project, a difference (diff) between the currently
saved version and the edited version was created showing which
files had been added or removed, and which lines of code had
been added or removed. Students could store these diff changes
by creating a “commit”, which could serve as a checkpoint for
progress. These commits were then uploaded, or “pushed”, to
GitHub, along with a commit message added by the students
explaining the changes that had been made.

Student projects were automatically evaluated using the Jenkins
continuous integration system which monitored student GitHub
repositories for changes [1]. When Jenkins detected a change, it
would download the current iteration of the repository, evaluate
the submissions via teaching staff test cases, and provide feedback
to students via a web-based platform. Students’ grades relied
both on their code passing the staff test cases as well as having
enough code coverage by writing their own tests. Staff test code
was hidden from students, but students could see the test numbers
and topics, including hints, for any failing tests. Students were
allowed to submit their code for evaluation as often as they chose.
Each repository had at least one (1) commit, at most 317 commits,
and on average 80 commits per repository over both semesters.
We focus our analysis on students’ commit history as it reflects
their coding behaviors.

As shown in Table 1, the 2015 class had 182 students and 9 teach-
ing assistants (TAs) while the 2016 class had 206 students and 10
TAs. Both these offerings included on-campus and distant educa-
tion sections but we focused on the on-campus sections for consis-

Commit Type Percentage Example
Implementation 0.33 Added Constructors for inner classes
Test Cases 0.15 More test cases
Bug Fixes 0.29 Fixed logout
Documentation 0.03 Added Javadoc to the class
Style 0.04 Fixing PMD errors
Merge 0.03 Merge branch ’master’ of ...
Other 0.11 asdf

Table 2: The distribution and an example of different
commit types among manually tagged data

tency. In 2015, for the second part of projects, there were 39 pairs
for Project 2 and 76 pairs for Project 3; the remaining students
either failed to complete the design portion of the projects and
worked alone or decided to work alone on project 2. In 2016, there
were 46 pairs for Project 2, 88 pairs for Project 3, one group of
three members for Project 2 and another group of three for Project
3, and the remaining students worked individually. Since the aim of
our study is to understand the students’ teamwork, we focused our
analysis on Projects 2 and 3 and only on teams of 2 for consistency.

4. METHODS
4.1 H1. We can automatically classify commit

messages into different parts of the
project.

Our dataset for 2015 contains a total of 4473 commits from
Project 2 and 8224 from Project 3. For 2016 we have a total of
7432 and 10430 commits for Projects 2 and 3 respectively. Since
our focus is on the students’ teamwork, we focused our analysis
on commit messages of student pairs in Projects 2 and 3.

We first randomly selected and manually tagged 400 commit
messages from our dataset classifying them into 7 different cat-
egories that described the commits. The tagging was done by a
graduate student who had acted as a TA for this course several
times before and was familiar with the structure of the projects.
The categories were Implementation (I), Writing test cases (T),
Bug fixing (B), Style fixing (S), Documentation (D), Merge (M),
and Other (O). The distribution of these commit types among the
400 manually tagged commits and one example of each category
are shown in Table 2.

In 2016, students were taught about pair-programming and were
specifically asked to mention it in their commit messages. We used
keyword matching of words (e.g. “pair” as well as the whole word
“pp”) as some students abbreviated it to identify pair programming
commits. We were able to find a total of 247 commits among
all the student commits mentioning pair programming, 137 from
Project 2 and 110 from Project 3, all in 2016 class.

For classifying the commit messages, we used a cascade model
as shown in Figure 1. Some of these categories were easily identi-
fied by specific keywords. For example, merge commits are often
auto-generated and always have the word “merge” in them, docu-
mentation commits often mention document or Javadoc keywords,
style commits often mention the static analysis tools like PMD
or CheckStyle, and commits that belong in none of our categories
often do not have meaningful words and are easily detected using
English corpus. We first removed English stop-words and lemma-
tized the text in the commit messages. We also added class-specific
keywords to the acceptable English corpus, such as BBTP (black
box test plan) or TS tests (teaching staff tests). To reduce the noise
in our data and increase the accuracy of our models, we used static
keyword matches to label merge, documentation, and style and
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English corpus label other. For the remaining tags (i.e. Implemen-
tation, Test cases, Bugfix), we used a Binary Logistic Regression
classifier for each label, using TF-IDF vector of features [33], with
a maximum of 45 features and an n-gram range of 1 to 4. Each bi-
nary classifier categorized a commit message as belonging to a cat-
egory or not. Similar to the previous stage, we identified commits
belonging in each category and removed the already-labeled com-
mits from the dataset for the next prediction task. Any commits
remaining unlabeled in the end were labeled as the Other category.
After training and testing our classifiers on our tagged sample
using 5-fold cross-validation, we used the trained models to predict
the commit types for the remaining unlabeled commit messages.

Figure 1: Cascade model for commit classification

4.2 H2. We can automatically classify student
teams into Collaborative, Cooperative, or
Solo-submit.

We labeled the teamwork style of the students who both worked
on similar parts of the project as collaborative (e.g. both doing
some implementation and some testing), while the teams where
members both had significant contributions but mostly worked on
separate parts of the project (e.g. one working on implementation
and the other one on testing) were labeled cooperative. There
were also teams where one student did the majority of work and
the other student either did no work, or made small amount of
changes. We labeled those teams solo-submitting.

To identify the teamwork styles, we randomly selected 50 repos-
itories from each offering of the course and manually tagged them
as collaborative, cooperative, and solo-submit. The tagging was
done by two subject matter experts (SME), experienced TAs
who are familiar with the course material and grading criteria,
one of whom has acted as a TA for this course multiple times.
First, a sample of 20 repositories were tagged by both SMEs with
a kappa agreement of 0.88 and then the remaining repositories
were tagged separately. As mentioned before, the students were
able to get feedback on their code by pushing it to GitHub and
checking it with the teaching staff test cases. As a result, there are
many cases where the students wanted to try different fixes and
submitted many commits with small changes continuously until
they could pass the tests. Thus, the SMEs were asked to focus
on the amount of work done by each student in each category,
rather than the number of commits. To make the tagging process
more consistent, we added more specific definitions for the dif-
ferent teamwork styles. A team where both members contributed
between 30%-70% to at least two common parts of the project
were considered collaborative. The teams where one member did
the majority of work in some parts and the other member worked
mostly on other parts were considered cooperative. If one member
did the majority of work in most parts and the other member
did not work as much, the team was labeled as solo-submit.

Identifying teamwork style by manual tagging requires a great
deal of expert time and it can be difficult to come to agreement
among different experts. As a consequence, for this part we
focused on extracting the students’ teamwork automatically by
using features from their GitHub submissions, as well as their prior
individual performance (exam 1 and project 1) and the way they
chose their team (i.e. self-selected vs. assigned by the instructor).
In discussions, one of the instructors suggested that students with
prior individual grades below 60 should be considered at-risk.
Consequently, we added new binary features reflecting the team
members’ risk as well. Overall, we calculated the following features
for each team member, sorting the team members such that the
student with fewer total added lines of code in the project would
be user 0 and the student with more would be user 1 in each team.

Our final set of features included:

• The total number of commits for each user in the whole
project as well as the number of commits in each part (Imple-
mentation, Testing, Debugging, Documentation, Merge, Style,
and Other). These features can show the students’ contribution
as the number of commits to the whole project and to the
different parts.

• The percentage of commits for each user in the whole
project and in different parts. This feature can distinguish be-
tween 2 commits in a team with a total number of 20 commits
vs. in another team with a total of 100 commits.

• The total number of additions, deletions, files changed,
and amount of change (i.e. additions + deletions) for each
user in the whole project as well as each part. Additions and
deletions in GitHub are measured by the lines of code each
user changes in a specific commit.

• The average amount of additions, deletions, files changed,
and amount of change per commit for each user in the whole
project as well as each part.

• The percentage of each students’ additions, deletions, files
changes, and amount of change in the whole project as well
as each part. Similar to the percentage of commits, this can
normalize the amount of change for each team based on their
total amount of activities.

• The total and average length of commit messages for each
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Merge Style Documentation Other
F1 score 0.98 0.99 0.99 0.95
Precision 1.00 1.00 1.00 1.00
Recall 0.96 0.98 0.99 0.90

Table 3: The performance of prediction models in find-
ing Merge, Style, Documentation, and Other commits

user in the whole project and each part. This feature can
distinguish between the members who write details about their
changes and the ones who submit quick commits without much
explanation.

• The total number of pair programming commits by each
user as well as the total for the whole project. While using the
total amount of pair programming is more intuitive, we believe
that if all the pair programming is done on one person’s com-
puter, it might provide some information about the dynamics
of the teamwork.

• Prior individual performance for each user (i.e. exam 1 and
project 1 grades). Exam 1 and project 1 take place at a similar
time and before project 2 and project 3.

• Risk label (grade<60). We added each student’s risk label
for exam 1 and project 1 as separate features, as well as one
overall risk label for the team which shows whether or not any
member of the team could be considered at-risk based on exam
1 or project 1.

• The team’s selection method as a label “selected” which shows
whether the students in this team requested working together
or they were assigned by the instructor.

After defining and standardizing each feature, we ended up
with 188 features. We used random forest feature selection as well
as the recursive feature elimination (RFE) method with logistic
regression to select the most important features for predicting
students’ teamwork style (i.e. collaborative, cooperative, or solo-
submit). Random forests in Scikit-learn library return feature
importance for all the features and we can select a desired number
of top features for our model [32]. The RFE method in Scikit-learn
library uses the coefficients of a linear model (in our case logistic
regression) to estimate feature importance and prune the least
important features until reaching the desired number of features
[32]. We tried different numbers of features to find the features that
resulted in better F1-scores. We then used cascade binary random
forest and logistic regression classifiers using the selected features
to predict each project’s teamwork style. We chose these models
because they are fast and they also provide us with information on
what features they used and how those features contributed to the
outcome, which can be useful when planning future interventions.
Similar to commit classifications, these binary classifiers were
trained based on belonging or not belonging to each category. We
tested the accuracy of these models using 5-fold cross validation.

5. RESULTS AND DISCUSSION
5.1 H1. We can automatically classify commit

messages into different parts of the
project.

We first trained classifiers for the manually tagged commit mes-
sages in the categories of Style, Documentation, Merge, and Other
using static matches. The F1-score, precision, and recall for these
predictions are shown in Table 3.

After removing these categories, we classified the remaining
tagged commits into Implementation, Tests, and Bug fixes. In
the end, any commits left in no category were categorized as

Implementation Bug Fix Tests Other
F1 score 0.84 0.92 0.92 0.78
Precision 0.88 0.87 0.86 0.64
Recall 0.82 0.97 0.98 1.00

Table 4: The performance of prediction models in
finding Implementation, Bug Fixes, Tests, and Other
commits

2015 2016
Project 2 Project 3 Project 2 Project 3

Count Ratio Count Ratio Count Ratio Count Ratio
Implementation 848 0.25 2060 0.33 2666 0.44 4317 0.49
Test Cases 298 0.09 327 0.05 637 0.10 450 0.05
Bug Fixes 767 0.22 1433 0.23 1262 0.21 2076 0.24
Documentation 117 0.03 196 0.03 464 0.08 471 0.05
Style 141 0.04 268 0.04 457 0.08 624 0.07
Merge 367 0.11 520 0.08 173 0.03 533 0.06
Other 901 0.26 1399 0.23 433 0.07 340 0.04

Table 5: The distribution of different commit types in
each year and project

Other. Since the list of Others commits changed after this stage,
we calculated the accuracy of the models for this label twice, once
based on the static analysis of the commit message as shown in
Table 3, and another time after assigning all the commits left
uncategorized to this group as shown in Table 4. The average
F1-score, precision, and recall for the 5-fold cross validation for
these predictive models are shown in Table 4. As shown in this
table, the precision of the Other category reduced as we added
the remaining uncategorized samples to this group, which means
some of these samples belonged to other categories but were
not found by them, but the high recall score shows that all the
commits in the Other category were identified successfully.

These results support H1, showing that our prediction models
are able to predict the categories of commit messages with an F1
score of 0.78 or higher. For most of the categories, the F1 score is
higher than 0.9. After this step, we trained prediction models on
all the tagged sample and used those models to predict the tags
for the remaining untagged commit messages. The distribution
of different commit messages in all the data is shown in Table
5. These distributions show us that for all the projects and all
the classes, a large portion of the students’ commits belong to
implementation and fixing bugs. Having very few style-based or
documentation and tests commits shows that the students often
fix style issues or add documentation and tests for the projects
in fewer attempts. This is likely because they can check style
errors and code coverage on their local platforms and submit once
done, while adding features to their code and getting a functional
version of the project that passes all the teaching staff test cases
is often challenging and takes many attempts. Teaching staff tests
were hidden from students and feedback was only available by
committing code to GitHub that was then automatically executed
on Jenkins. Students likely made frequent changes to address
teaching staff test failures.

5.2 H2. We can automatically classify student
teams into Collaborative, Cooperative, or
Solo-submit.

In our SME-tagged data, we identified a total of 14 solo working
teams, 55 collaborating teams and 28 cooperating teams. We
removed five teams from our analysis that had more than two
members or only one member contributing either because they
were teams of 3 or 1 or because the members changed at some
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Total 2015 2016
Count Ratio Count Ratio Count Ratio

SME tagged
Collaborative 55 0.57 18 0.39 37 0.76
Cooperative 28 0.29 18 0.39 10 0.20
Solo-submitting 12 0.14 10 0.22 2 0.04

Table 6: Distribution of the different teamwork styles

Logistic Regression
Collaborative Cooperative Solo-submit

F1 Score 0.61 0.67 0.84
Precision 0.51 0.70 0.90
Recall 0.78 0.64 0.78

Random Forest
Collaborative Cooperative Solo-submit

F1 Score 0.68 0.78 0.90
Precision 0.63 0.75 0.89
Recall 0.79 0.83 0.92

Table 7: The performance of prediction models for
students’ teamwork style

point. The detailed breakdown of the repositories into different
styles for each year is shown in Table 6. The performance of
the Random Forest classifier and the Logistic Regression with
recursive feature elimination is shown in Table 7. As shown in
this table, both models had similar performance in predicting the
students’ teamwork style, Random Forest performed slightly bet-
ter, with solo-submit being the easiest to predict and collaborative
being the most difficult.

The random forest model worked best with 12 features and
the logistic regression worked best with 26. Since random forest
performed better at predicting the teamwork style, we analyzed
the top features for these random forest models. As these features
show, the students’ activities in different parts of the project
and their prior individual performance were good predictors for
their teamwork. Most of the top 12 features selected by ran-
dom forest for the collaborative, cooperative, and solo-submit
classifiers were specific to each of the teamwork style, but some
of the features like the Average deletion per commit for user 0
were common across styles. The Percentage of commits for the
whole project for both users were the top features for predicting
Solo-submitting, while the Percentage of commits in different
categories and the Students’ prior performance were more predic-
tive for Collaborative and Cooperative. Surprisingly, the Number
of pair-programming activities were not among the top features,
which might be because the students do not always record pair
programming in their commit messages.

These prediction models show us that we can identify the
students’ teamwork style, especially solo-submitting by using
automatically generated features from their commit history and
their contributions to the different parts of the project. One might
assume that looking at the repositories and the students’ number
of commits should be sufficient for identifying solo-submitters.
However, as the SMEs noticed, deciding whether both members
had significant contributions to the team was challenging and
time-consuming, even for experienced TAs. Most of the defined
metrics such as the Amount of implementation commits or the
Percentage of commits in a repository can be extracted auto-
matically early in the semester. As a result, using predictive
models with these features could help identify the need for early

intervention, for example when teamwork habits indicate that
solo-submit may eventually happen in a team.

6. LIMITATIONS AND FUTURE WORK
There are three main limitations to our work. First, our dataset is
drawn from a single course. Thus it is possible that the observed
results will not generalize to courses with a different team structure
or grade breakdown. We do argue however that the analytical
methods we chose are general and we plan to evaluate them on
different courses in a future study. Second, our classification of
the student teams was based solely on their observable online
behavior and did not consider offline activities. It is possible
that offline behaviors such as students meeting face to face, or
exchanging code through other media, might affect our results.

7. CONCLUSION
In this study, we first hypothesized that we could automatically
identify students’ activities on different parts of development
projects based on the text of their commit messages. We later
hypothesized in H2 that we could automatically identify different
teamwork styles among students using their online submissions
and which parts they belong to. For the first part, we manually
tagged 400 commit messages as belonging to different parts of
the projects as Implementation, Testing, Debug, Style, Documen-
tation, Merge, and Other. We then used TF-IDF features and a
logistic regression to automatically label the remaining commits.
To analyze different styles in students’ teamwork, we manually
labeled 100 GitHub repositories of student projects in two offerings
of a Java introductory course for CS majors as “Collaborative”,
“Cooperative”, or “Solo-submit”. We then used several measures
based on the students’ activities on GitHub, their prior perfor-
mance, and whether they chose their teammate to automatically
label all the student repositories in these classes. We observed
that these models were able to achieve an F1 score of 0.68 or
better for different categories, which supported our hypothesis
that students’ online activities can identify their teamwork style.

The students in these classes were not graded for their amount
of contributions on GitHub. As a result, students were able to split
the work among themselves based on their choices and what we
observed here was their natural behaviors. This makes the findings
in this study more likely to apply to other classes since the students’
teamwork styles were not directed by the course structure.

The findings of this study can be used to analyze which styles
of teamwork lead to better performance in classes. Eventually, the
findings can help design adaptive support platforms for the instruc-
tors to observe a summary of the students’ activities and possible
red flags in their behavior such as solo-submitting. The instruc-
tors can then plan interventions in a timely manner to help the
students to better engage with authentic team projects in the class.
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ABSTRACT 
This paper investigates differences in students having various 
scores when designing controlled experiments in two types of 
scientific inquiry tasks (a fair test and an exhaustive test). We 
measure temporal features of preparation time and execution time, 
which reflect respectively the process of question understanding 
and answer planning and that of executing the control-of-variables 
strategy in answer formulation. We also measure mean execution 
time per answering event to reflect the efficiency of answering 
events. Results show that: in the fair test, the full score students 
showed less execution time than the lowest score ones; in the 
exhaustive test, the full score students showed more execution 
time than the lowest score ones; but in both tests, the high-
performing students had less mean execution time than the low-
performing ones. These results reveal that despite test differences, 
students who appropriately apply the control-of-variables strategy 
in these tests are more goal-directed and efficient in planning and 
executing response strategies than those who fail to do so. This 
study provides process-based features and large-scale evidence of 
scientific inquiry practice in in educational assessment. 

Keywords 

Control-of-variables strategy, preparation time, execution time  

1. INTRODUCTION 
Scientific inquiry refers to the activities by which students develop 
knowledge of scientific ideas and understand how to investigate 
the natural world in a scientific way [1]. In STEM education, 
scientific inquiry skills have been emphasized as a key goal of 
scientific literacy [2,3], and scientists and science educators have 
advocated teaching science as inquiry [4–8]. Among scientific 
inquiry activities (see [6] for overview), planning, designing, and 
carrying out investigations have long become a principal focus of 
children’s and youngsters’ scientific inquiry practices [9,10]. 
Many studies aim to investigate, based primarily on response data, 
how students design controlled experiments by constructing 
related conditions for comparison. 

Fair tests and exhaustive tests have been widely adopted to 
examine how students plan, design, and carry out controlled 
experiments. A fair test (see an example in Sec. 2.2) refers to a 
controlled investigation carried out to answer a scientific question 

about the effect of a target variable. To control for confounding 
factors and be scientifically sound, students are supposed to apply 
a control-of-variables strategy (CVS) [9,11] to ensure that: (a) all 
the other variable(s) are kept constant; and (b) only the variable(s) 
under investigation is changed across conditions for comparison. 
Only in such a fair setting, the effect of the target variable(s) can 
be explicitly observed, since the other variables remain constant 
across conditions. Students can complete the task by choosing, 
among a large number of possible combinations of variables, one 
or a few conditions that meet the fair test requirement.  

An exhaustive test (a.k.a. combinatorial test, [12,13]) (see an 
example in Sec. 2.3) requires constructing, physically or mentally, 
all possible combinations of given variables to address inquiry on 
which conditions could cause a specific outcome. Like fair tests, 
students in exhaustive tests also need to control target variables to 
construct combinations, but the number of possible combinations 
is generally smaller than that in fair tests. In exhaustive tests, 
students are asked to enumerate all combinations; in fair tests, 
students only need to select one (or a few) condition that meet the 
requirement. In this sense, exhaustive tests require more cognitive 
resources especially in situations with not easily foreseen 
combinations. How to conduct an exhaustive test is taught and 
learned late in science education, and items assessing such skill 
often lie in the 8th, 12th, or higher-grade assessments [3]. 

CVS is required in both types of tests. Among other types of 
procedural knowledge, or “process skills”, CVS is deemed central 
to early science instruction [14]. Existing research shows that 
children, adolescents, and adults with low scientific inquiry 
expertise tend to have difficulty in applying CVS [9,10,15]. 
However, due to lacking measures on processes of scientific 
inquiry, existing studies focus primarily on students’ responses.   

In modern digitally-based assessment programs (e.g., National 
Assessment of Educational Progress (NAEP)), technology-
enhanced (TE) items have been used to study scientific inquiry 
practice. The interactive nature of such items allows recording not 
only final submitted answers, but also the process whereby 
students formulate their answers via a series of drag-and-drop, 
(de)selection, or correction actions. Obtained process data can 
gather additional evidence on what students do during inquiry 
[16–18]. TE items have now touched upon many disciplines, 
including math, science, and social science [18–21], and process 
data obtained have covered not only observable behaviors of test-
takers in problem solving but also frequencies and durations of 
such actions, both contributing to illustrating the mastery phases 
in scientific inquiry and response strategies of students [22–25]. 
In addition, process-based analyses help discover the aspects 
where students of different scores differ, and lead to better 
understanding of the cognitive framework of scientific inquiry.  
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Rather than concrete events recorded in obtained process data of 
TE items, the time needed for different stages of scientific inquiry 
has been undervalued in recent research of scientific inquiry or 
problem solving [26]. Temporal information can reveal different 
stages of problem solving, clarify performance patterns of 
students with different levels of problem solving competency, and 
allow inferring something about the cognitive processes occurring 
at various phases of problem solving. 

Noting these, this study aims to investigate the scientific inquiry 
practice, to be specific, the practice of designing controlled 
experiments by applying the CVS in fair and exhaustive tests. By 
evaluating relations between defined process-based, temporal 
measures and students’ performance gauged by scores, we aim to 
address the following two research questions:  

(a) What are the process-based characteristics of the high-/low- 
performing (indicated by different scores) students in the tests?  

(b) Are these process-based characteristics consistent across the 
fair and exhaustive tests? 

Answers to these questions can benefit the general discussions on 
scientific inquiry practice, especially whether the CSV strategy 
manifest differently across various types of inquiry tasks. They 
also provide actionable feedback to teaching and learning the 
skills required in scientific inquiry tasks. Moreover, this study 
enriches the literature of using process data and derived features 
to address theoretical issues in educational assessment. 

In the rest of the paper, we describe the NAEP science fair test 
and exhaustive test used in this study, define the process-based 
measures, and describe the analysis plan. Then, we report the 
results, discuss the research questions accordingly, and conclude 
the study by highlighting theoretical or operational applications of 
process-based analyses in education and psychology research. 

2. METHORDS AND MATERIALS 
2.1 NAEP Science Tasks 
Our study uses the 2018 NAEP science pilot tasks. NAEP is a 
congressionally mandated, nationwide digital assessment project 
administered by the National Center for Education Statistics 
(NCES) in the Institute of Education Sciences of the U.S. 
Department of Education. NAEP provides large-scale, regular 
assessments on many disciplines (e.g., math, reading, writing, 
science, etc.). All the assessments are designed and updated by 
content specialists, education experts, and teachers from around 
the U.S. Participants of the tests are grades 4 (~9-year-olds), 8 
(~13-year-olds) and 12 (~17-year-olds) students. Along with the 
assessment, survey data of students, teachers, and schools are 
gathered, covering students’ demographical information (gender 
and ethnicity), special programs, self-evaluation of performance, 
etc. NAEP has now become one of the largest and most important 
national assessments of what U.S. students know and can do. 

The 2018 assessment was conducted by the NAEP field staff, who 
went into schools across the nation to administer tasks on students 
from the NAEP sample. The science tasks were administered on 
NAEP-provided tablets with an attached keyboard and earbuds. 
Students had 60 minutes to complete the questions in the given 
task. Tutorials and surveys were given throughout the test. 

A total of 32 science tasks were designed for the 2018 NAEP pilot 
test, some of which were administered on grades 4, 8, and 12 
students. Our study focuses on a fair test and an exhaustive test, 

which were administered respectively on grade 8 and 12 students. 
This choice was due to three considerations. First, lower grade 
students have not been taught how to solve both types of tests, so 
we avoid tasks administered on grade 4 students. Second, since 
fair tests were administered mostly on grade 4 and 8 students but 
exhaustive tests were administered mostly on grade 12 students, 
we could not select fair tests and exhaustive tests administered on 
students of the same grade. Third, to properly answer the two 
chosen tests, students needed to submit similar numbers of 
distinct answers, which avoided possible interference from 
cognitive load in students’ answer formulation process.  

Due to the privacy and secure nature of the NAEP data, we use 
conceptually equivalent tasks (cover tasks) to disguise the content 
and context of the real tasks. Cover tasks have similar underlying 
structures and require similar cognitive processes to solve. 

2.2 Fair Test, Scoring Rubric, Students 
This test came from an earth and space science task. Its cover test 
is as follows (see Figure 1). A city near a mountain suffers from 
north winds each year. Its government plans to test the wind-
blocking power of three types of trees, which can be planted at the 
north side of the mountain. After simple instructions of the task, 
in the fair test scene of the task, students are asked to drag each 
type of trees and drop them at one of the four virtual mountains 
resembling the real one near the city. Students can drop the trees 
at the foot (low), side (medium), or peak (high) of the north side 
of a mountain. Each mountain holds at most one type of trees, and 
each type can only be planted at one mount. Students can move 
trees from one position/mountain to another. After selecting the 
locations of the three types of trees, students can click on the on-
screen “Submit” button to trigger the experiment, and the wind 
speeds before and after passing over the mountains are shown on 
the screen. By default, one mountain is left without any tree. 

There are two types of variables in this fair test: tree type and tree 
position on mountain. To illustrate the effect of trees, students 
must control the positions of the trees to be identical across 
conditions (mountains). There are in principle 3×3×3×P(4,3) = 
648 choices for students to plant the trees, among which 3×P(4,3) 
= 72 choices meet the fair test requirement.  

Figure 1. Example answers in the fair test. “Low”, 
“Medium”, “High” denote positions (foot, side, peak) of 
trees in the north side of the mountain. “None” means no 
tree planted. In (a), the first “Low” indicates that one type 
of trees are planted at the foot of the mountain, the second 
and third “Low” indicate that the other types of trees are 
planted on the second and third mountains, and “None” 
means no trees on the fourth mountain. The scoring rubric 
ignores tree types and the mountain without trees, the 
submitted answer can thus be denoted by the positions of 
trees in three mountains. 
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Table 1 shows the scoring rubric of this test. The rubric ignores 
tree type, since students cannot put the same type of trees in two 
mountains or two positions of one mountain. It also ignores the 
mountain without trees (“None”), since this is a default condition 
of the test; no matter how to answer the test, one mountain must 
be left without trees. A complete comparison to show the effects 
of trees requires the condition without trees, but in this test, 
students are not required to set up this condition. The rubric 
focuses on the target variable of tree positions across mountains. 
Answers meeting the fair test requirement receive a full score (3), 
those partially meeting the requirement get a partial score (2), and 
those not meeting the requirement have the lowest score (1). 

Table 1. Scoring rubric of the fair test. 

Score Rubric 
3 Choices of trees have the same positions on three 

mountains (e.g., Low; Low; Low in Figure 1(a)) 
2 Two types of trees are on the same positions of 

mountains (e.g., Medium; High; High in Figure 1(b)) 
1 Positions of the three types of trees on mountains are 

all distinct (e.g., Low; High; Medium in Figure 1(c)) 

This task was administered to 1,657 (825 females) grade 8 
students. The response and process data of 1,607 (800 females) 
students were recorded in the fair test for analyses. Fifty-one 
students, due to various reasons, quit before reaching the fair test.  

2.3 Exhaustive Test, Scoring Rubric, Students 
This test came from a life science task. Its cover test is as follows. 
Farmers attempt to cultivate flowers with a special color in a 
natural way (without using any fertilizers) or using two types of 
fertilizers. After simple instructions of the task, students are asked 
to design an experiment to show which way has the highest 
probability to induce the target color. They can set up a condition 
by selecting (or not) any (or both) type of the fertilizers. After 
setting up a condition, they can click on the on-screen “Save” 
button to save the condition. They can also click on a saved 
condition and click on the “Delete” button to remove it. After 
setting up and saving many conditions, students can click on the 
“Submit” button to submit saved conditions as final answers. 

This is a typical exhaustive test with four possible combinations 
of the variables (see Figure 2). The conditions no fertilizer (Figure 
2(a)) and both fertilizers (Figure 2(d)) are not easily foreseen.  

Table 2 shows the scoring rubric of the test. It has four scales, 
among which partially high (3) and partially low (2) are classified 
by submitted saved conditions, especially whether they include 

the not-easily foreseen conditions. Whether the rubric reasonably 
classifies students’ skill levels is not the focus of this paper. 

This task was administered to 2,869 (1,360 females) grade 12 
students. The response and process data of 2,726 (1,285 females) 
students were recorded in the exhaustive test for the analyses. Due 
to various reasons (e.g., early quitting or glitches in data capture), 
the process data of 173 students were missing.  

Table 2. Scoring rubric of the exhaustive test. 

Score Rubric 
4 Saved conditions cover all four conditions in Figure 2  
3 Saved conditions do not include the condition of 

Figure 2(a), OR do not include the condition of 
Figure 2(b) or Figure 2(c) 

2 Saved conditions do not include the condition of 
Figure 2(d), OR do not include the conditions of 
Figure 2(b) or Figure 2(c), OR do not include both the 
conditions of Figure 2(a) and Figure 2(d) 

1 Saved conditions do not match the above cases 

2.4 Process-Based Measures 
The NAEP digital assessment system can recorded students’ 
process data in these interactive TE items. Such data consisted of 
a list of activity logs plus their time stamps. Activities included 
user events (e.g., drag-and-drop, save, delete, or correct, etc.) and 
system events (e.g., play instructions or video clips). They allow 
reconstructing submitted answers, tracing sequences of students’ 
drag-and-drop or saving/deletion/correction actions, and durations 
of these activities. Based on such data, we propose and measure 
three temporal measures, namely preparation time, execution time, 
and mean execution time per answering event.  

Preparation time (PT) is defined as the duration between students 
enter the test scene and make their first answer-related event, such 
as drag-and-drop one type of trees, select a fertilizer, or save a 
condition without any fertilizers. Before the test scenes, students 
were given instructions and practice trials on how to set up 
answers in the test scenes. Therefore, PT does not involve the 
time students spent on getting familiar with the system. PT 
reflects the time for students to read and understand instructions, 
as well as think and get ready to formulate their answers.  

Execution time (ET) is defined as the duration between students’ 
first and last answer-related events. The ending time point of ET 
was not when students clicked on the submission button. This is 
because we do not know exactly whether students reviewed their 
answers after making their last drag-and-drop or selection event 
before submission. If they did review and made corrections, the 
measure can certainly capture such reviewing event; if they did 
not make any changes, it is unclear whether the time between the 
last answer-related event and the submission event was spent on 
reviewing. Many students actually clicked on the “Submit” button 
immediately after the last answer-related event. 

ET is the sum of the durations of different numbers of answer 
related events. In the fair test, such events include dragging and 
dropping a type of trees to a mountain or moving one from one 
mountain to another; in the exhaustive test, such events include 
selecting one or two fertilizers, or saving a condition or cancelling 
a saved one. Students having different performances may put 
different efforts when conducting these events, and different tasks 
may require different numbers of events to formulate answers, 
which already lead to different ET. Noting these, we also calculate 

Figure 2. All combinations in the exhaustive test: (a) 
None; (b): A; (c): B; (d): A + B. 
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the mean execution time per answering event (MET). MET is 
operationalized as the execution time divided by the number of 
answering events. ET reflects the total efforts made by students to 
construct answers, including setting up, revising or (possibly) 
reviewing their choices, whereas MET reflects the average effort 
made to construct their answers, and it controls the effect induced 
by different numbers of events.  

Apart from temporal measures, one can also measure the numbers 
of answer related events made by students during the answering 
process. However, for students who conducted the same number 
of answering events, this count-based measure cannot clarify how 
much effort each event costs to these students; more events may 
not always require more efforts, since an efficient test-taker can 
conduct many events in a short period of time; and more events 
alone cannot predict performance in different tests, since some of 
the events could be answer revisions, which simply indicate low 
efficiency. The temporal measures defined in our study avoid 
these confusions and are more informative of students’ degrees of 
efficiency in designing controlled experiments in those tasks. 

2.5 Analyses 
For each dataset, we take a 98% winsorization estimation [27] to 
remove spurious outliers. We also remove the missing values. 

We conduct two types of analyses. First, we check how many 
students appropriately applied the required CVS in the tests based 
on score distributions and illustrate the frequent (top 10) correct 
or incorrect submitted answers. Second, treating score as a ranked 
variable, we conduct the Kruskal-Wallis test [28], a non-
parametric version of ANOVA test, to compare students’ scores 
and the three measures across score groups. If the omnibus test 
produces a significant p-value, we conduct the Wilcoxon signed-
rank test on pair-wised score groups to clarify which two groups 
have different population means of the measures. This test is also 
non-parametric. These two statistical tests provide direct evidence 
on the relation between students’ performance (scores) and the 
process-based measures. The tests are implemented using the 
kruskal.test and wilcox.test functions in the stats package in R 
3.6.1 [29]. For each task, there are three Kruskal-Wallis tests 
respectively on three measures, accordingly, the critical p value 
for identifying significance is set to .05/3 ≈ .0167. 

3. RESULTS 
3.1 Fair Test 
In this test, 41.4% of the students had the lowest score (1), and 
only 29.5% properly applied the CVS and got the full score (3). 
The rest (29.1%) received a partial score (2).  

Figure 3 shows the top 10 frequent answers submitted by 
students. It shows that “Low; Low; Low” is the most frequent 
correct answer, but other correct answers like “Medium; Medium; 
Medium” and “High; High; High” are less so. In addition, “Low; 
Medium; High” is the most common wrong answer. Its variations, 
such as “High; Medium; Low” or “Low; High; Medium”, are also 
frequent, but all of them receive the lowest score (1) (see Table 1). 
Answers receiving a partial score (2) (e.g., “Medium; Low; 
Medium”) are less frequent, compared to other types of answers. 
These results indicate that over 70% of students did not properly 
apply the CVS strategy in this scientific inquiry task. 

Table 3 shows the means and standard errors of the process-based 
measures in each score group. The Kruskal-Wallis tests report 
significant differences in PT (χ2 = 12.2, df = 2, p = .002), ET (χ2 = 

89.916, df = 2, p < .001), and MET (χ2 = 64.776, df = 2, p < .001) 
between score groups. Table 4 shows the Wilcoxon signed-rank 
tests results. It reveals that the full score students had significantly 
shorter PTs, ETs, and METs than the lowest and partial score 
students, but these measures were not significantly different 
between the lowest and partial score students. 

Table 3. PT, ET and MET across score groups. Numbers (in 
seconds) outside brackets are means and those inside are 
standard errors.  

Score PT ET MET 
1 85.571 (1.166) 41.330 (1.098) 5.125 (.091) 
2 85.154 (1.407) 38.807 (1.216) 4.958 (.103) 
3 79.745 (1.172) 29.082 (1.081) 4.138 (.090) 

Table 4. Wilcoxon signed-rank test results in the fair test. “1” 
to “3” in the first column denote score groups. Values outside 
brackets are test statistics, and those inside are p values. 
Significant results are marked in bold.  

 PT ET MET 
1v2 158942 (.527) 163023 (.016) 158766 (.548) 
1v3 176639 (.001) 2038350.5 (.001) 199945.5 (.001) 
2v3 120966.5 (.014) 139637.5 (.001) 136592.5 (.001) 

3.2 Exhaustive Test 
In this test, 25.2% of the students received the lowest score (1), 
and 33.9% properly applied the CVS strategy and received the 
full score (4). The rest received the partially high (3) (34.1%) and 
partially low (2) (6.8%) scores.  

Figure 4 shows the top 10 frequent answers, among which “A; B; 
A + B; None” and its variations “A; A + B; B; None” and “A + B; 
A; B; None” receive the full score (4), but they are not frequent 
compared to the answers “A + B”, “B”, “A”, and “None”, which 
are among the most frequent answers and receive the lowest score 
(1) (see Table 2). The answers having partially high (e.g., “A; A + 
B; None”) or low (e.g., “A; A + B”) scores are less frequent. 
These results show that many students did not have the required 
scientific inquiry skill. 

Figure 3. Top 10 frequent answers in the fair test. 
Numbers on top of bars are numbers of students and 
those inside brackets are proportions of students. 
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Table 5 shows the means and standard errors of the process-based 
measures in each score group. The Kruskal-Wallis test report 
significant differences in PT (χ2 = 127.69, df = 3, p < .001), ET 
(χ2= 332.88, df = 3, p < .001), and MET (χ2 = 238.93, df = 3, p < 
.001) between the score groups. Table 6 shows the Wilcoxon 
signed-rank tests results. It reveals that the lowest score students 
had significantly longer PTs than the students from other score 
groups. Unlike the fair tests, the lowest score students had 
significantly shorter ETs than the full and partial score students. 
Like the fair tests, the lowest score students had significantly 
longer METs than the full score students. 

Table 5. PT, ET, and MET across score groups. Numbers (in 
seconds) outside brackets are means and those inside are 
standard errors.  

Score PT ET MET 
1 9.056 (.325) 24.949 (.922) 5.502 (.144) 
2 6.797 (.439) 41.623 (1.804) 3.520 (.113) 
3 7.105 (.207) 31.700 (.715) 3.899 (.070) 
4 5.714 (.172） 42.523 (.763) 3.140 (.051) 

Table 6. Wilcoxon signed-rank test results in the exhaustive 
test. “1” to “4” in the first column denote score groups. Values 
outside brackets are the test statistics, and those inside are p 
values. Significant results are marked in bold. 

 PT ET MET 
1v2 75018.0 (< .001) 29065 (< .001) 83948 (< .001) 
1v3 372475.5 (< .001) 215673.5 (< .001) 400288.5 (< .001) 
1v4 422941.5 (< .001) 128978.5 (< .001) 458813.5 (< .001) 
2v3 84443.5 (.693) 11656 (< .001) 80219.5 (.147) 
2v4 98433.5 (< .005) 81207 (.284) 100851 (< .001) 
3v4 501936.5 (< .001) 274362.5 (< .001) 531023.5 (< .001) 

4. DISCUSSIONS 
Based on two NAEP science tasks (a fair test and an exhaustive 
test) and three process-based temporal features, we dig out, from 
both response and process data, the differences and similarities 
between the high-/low-performing students in those two typical 
types of scientific inquiry practice.  

As for response, the score distributions illustrate that many (over 
70%) grade 8 or 12 students failed to properly apply the control-
of-variables strategy in the fair and exhaustive tests, consistent 
with the previous literature [9]. In addition, in the fair test (see 
Figure 3), the most commonly wrong strategy is to vary both 
variables’ levels at the same time, e.g., “Low; Medium; High” and 
its variations. This is also shown in previous observations [17]. In 
the exhaustive test (see Figure 4), the most commonly wrong 
strategy is to save only one of the four possible conditions as in 
Figure 2. This indicates that the low-performing students probably 
did not have the intention or the capability to design a controlled 
experiment but simply guessed an answer. 

As for process, rather than specific actions or sequences of drag-
and-drop actions as in recent studies on TE items [30], our study 
defines temporal features and adopts non-parametric statistical 
tests on these stage-level features to reveal quantitative differences 
between the high- and low-performing students.  

The statistical tests collectively show that: in terms of preparation, 
the full score students spent less time before making their first 
answering related activity in both the fair and exhaustive tests, 
which are consistent with other studies [30]. Longer preparation 
time in the lowest score students shows that such low-performing 
students might have difficulty in quickly grasping the instructions 
or need more time to think before taking any action, whereas the 
high-performing students could efficiently grasp the instructions 
and foresee the required conditions. These results suggest that the 
different performances between the full and lowest score students 
have already manifested at the early stage of scientific inquiry 
practice, where no answer is formulated. In other words, whether 
a student can appropriately apply the control-of-variable strategy 
in a fair task could be highly correlated with whether he or she 
can efficiently grasp the instruction at the beginning of the task. 

In terms of execution time, there exist differences between the fair 
and exhaustive tests. In the fair test, the lowest score students 
spent longer time on conducting the drag-and-drop actions to 
construct answers. As shown in Figure 3, their submitted answers 
after such a long execution time still failed to meet the fair test 
requirements. This echoes the fact that these students did not 
follow the instructions nor get well prepared for the fair tests. To 
be specific, in the fair test, the minimum number of events to 
construct an answer was three (dragging and dropping each type 
of trees respectively to the same or different locations of three 
mountains). Two possible situations lead to longer execution time 
in the lowest score students: they conducted many revisions to 
their early choices, or spent more time on conducting each 
activity, indicating their hesitation or uncertainty about their 
choices, or more time needed to come up with a solution due to a 
lack of relevant domain knowledge. Here, the results of mean 
execution time per answering event (see Table 4) reveal that no 
matter how many revisions they conducted, on average, the lowest 
score students spent more time on setting up each of their answers 
than the full score students; i.e., the full score students were more 
efficient than others. 

In the exhaustive test, constructing all possible conditions is not 
trivial and requires more resources and related events. As shown 
in Table 5, the lowest score students spent shorter time in 
constructing or revising their saved conditions, whereas the full 
score students spent longer time in doing so. As in Figure 4, the 
lowest score students (and those having partial scores) did not 
save enough conditions, but the full score students submitted each 

Figure 4. Top 10 frequent answers in the exhaustive 
test. Numbers on top of bars are numbers of students 
and those inside brackets are proportions of students. 
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of the possible conditions as required by the test. Therefore, the 
longer execution time of the full score students reflects the fact 
that these high-performing students had endeavored to set up all 
required conditions before the final submission. By contrast, the 
shorter execution time of the lowest score (and partial score) 
students indicates that: (a) these low-performing students did not 
spend much time on exploring possible conditions but completed 
the test by submitting lack-of-thinking results, indicating their low 
motivation or lack of engagement in problem solving; or (b) 
throughout the test, they might not realize that they needed to save 
and submit all possible conditions, so they simply submitted one 
condition and left the test. Both cases are consistent with the 
response data of frequent wrong answers submitted (see Figure 4), 
but they point to different causes of failing the test.  

Since the numbers of conditions saved are different across score 
groups, comparing the execution time, which is the sum of the 
duration of different numbers of actions, is not enough to reflect 
whether the efficiency of high- or low-performing students is 
similar. We need to further compare the mean execution time per 
answering event. The full score students spent less time (see Table 
6) on conducting each answering related action than the low-
performing students. This implies that although the full score 
students conducted more actions, they were more efficient, by 
putting less effort on each action, than the lowest score students 
(and those having partial scores). In this sense, the results in the 
two tests are consistent: the students who properly apply the 
control-of-variable strategies show more goal-directed and 
efficient behaviors [30] than those who failed to do so.  

The contrasting results of execution time between the fair and 
exhaustive tests reveal the differences between the two types of 
scientific inquiry practice. Although both tests require controlling 
variables under investigation, the nature of control is different, so 
are the required cognitive resources to properly complete the tests. 
In the fair test, to study the effect of a target variable (tree type, 
see Figure 1), students need to keep the other variable (tree 
position) unchanged. In the exhaustive test, students need to 
combine different values (use or not use, see Figure 2) of the 
variables (fertilizers A and B) to set up a set of conditions for 
comparison. Properly completing this test requires mentally 
constructing the conditions not easily foreseen and spending time 
and energy in thinking and setting up each possible condition, 
thus requiring more cognitive resources than the fair test, the latter 
of which only requires adjusting the target variable and holding 
the other one(s) constant. These results indicate that the same 
control-of-variables strategy manifests differently in different 
scientific inquiry practices. Systematic teaching and learning of 
this strategy require task-specific training in different situations.  

All the results reveal the aspects in which high-performing 
students excel low-performing ones, including: (a) grasping 
instructions, (b) extracting requirements, and (c) constructing 
answers. Compared to high-performing students, low-performing 
students had lower efficiency in grasping necessary knowledge 
and applying required strategies in the tests. As a consequence, in 
the fair test, low-performing students struggled in selecting and 
revising answers, and ended up submitting wrong answers; and in 
the exhaustive test, they failed to envision all possible conditions, 
and failed to construct enough conditions as the final answers.  

The above discussions focus primarily on statistical differences 
between the full and lowest score students. This is because that 
our statistical analyses report consistent results between the two 

score groups. However, results are not consistent when partial 
score groups are involved. Such inconsistency could be due to 
several reasons. First, some partial score groups contained fewer 
students than the other two groups. Second, according to the 
scoring rubrics, the response difference between the full (or the 
lowest) score and a partial score is smaller than that between the 
full and lowest scores, which may cause smaller difference in 
answering events and/or their durations. Both factors reduced the 
statistical power of the analyses. Third, lacking empirical basis, 
the predefined score rubrics might not clearly differentiate 
students having different levels of problem solving competency. 
This issue is beyond the scope of the current study. Nonetheless, 
such inconsistency calls for statistically more powerful process-
based features to reveal the differences between students having 
good and poor performances in science inquiry practice and 
understand how they apply required skills in such practice. 

5. CONCLUSIONS 
This study makes use of three process-based, temporal measures 
to analyze how students conduct scientific inquiry in practice. We 
identify both the global (e.g., durations of thinking, and total 
duration of execution) differences and local (e.g., execution 
efficiency) consistency between students who can appropriately 
apply the control-of-variables strategies in scientific inquiry 
practice and those who fail to do so. The findings provide new 
evidence to the general discussions of the relations among 
individual capacity (e.g., control-of-variables strategy), nature of 
test (e.g., fair or exhaustive test), problem-solving process (e.g., 
duration and efficiency of activities), and assessment performance 
(e.g., submitted answers and scores). The process-based features 
have proven values in revealing performance differences in the 
fair and exhaustive tests. Analysis results based on these measures 
reveal the aspects or stages during the problem-solving process in 
which teachers can provide guidance or students can self-improve 
to teach the required inquiry skills or properly apply them, thus 
improving students’ performances in science inquiry practice.  
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ABSTRACT
Learning curves are an important tool in cognitive diagnos-
tics modeling to help assess how well students acquire new
skills, and to refine and improve knowledge component mod-
els. Learning curves are typically obtained from a model
estimated on real data obtained from a finite, and usually
limited, sample of students. As a consequence, there is some
uncertainty associated with estimating the model from that
sample, and a risk that the inferences made using learning
curves derived from the estimated model are over-confident
one way or another. Based on previous work modeling the
uncertainty on Additive Factors Model parameters, we de-
rive a principled way to quantify the confidence in learning
curves associated with each knowledge component. We show
that our approach leads to relatively tight bounds on the
learning curves, much tighter than a naive approach relying
only on parameter uncertainty. This also reveals a disparity
across knowledge components regarding how confident one
can be in how well these skills are mastered.

Keywords
Learning Curves, Additive Factors Modeling, Knowledge
Cognitive Diagnostics Model

1. INTRODUCTION
Learning curves are a crucial tool for cognitive diagnostics
modeling. They help build relevant competency frameworks
to accurately measure learners skills and to give them mean-
ingful guidance and feedback in intelligent tutoring systems
(ITSs). More precisely, learning curves measure the rate at
which students, or simulated artefacts [22], acquire compe-
tencies. This allows to evaluate the suitability of a com-
petency framework (aka Q-matrix) and a principled com-
parison of different learning systems. Learning curves are
“graphs that plots performance on a task versus the number
of opportunities to practice” [17]. In the educational field,
learning curves usually take as learning performance metric
the error rate (or equivalently success rate) when applying

an individual skill or a set of skills. They were empirically
found to follow a “power law of practice” [18], which means
that the error rate over time decreases roughly linearly with
the logarithm of the number of practice trials taken (aka op-
portunities). Comparing ITSs or sections of ITS can be done
by considering the steepness of the curve: A steeper curve
indicates a faster acquisition of the skills practiced [17].

However, tracking the performance of skills learned in a mul-
tidimensional learning environment can be difficult, as those
environments combine different set of skills evaluated to-
gether. In such situations, some cognitive diagnostic models
can be useful to compare learning systems but also to under-
stand the learning mechanisms at play [10]. The Additive
Factors Model (AFM) [1], a well known cognitive diagnos-
tics model, does this by assuming that each necessary skill
in an item comes with a skill-specific additive contribution
towards the probability of success on the item. Fitted AFM
parameters can also be used to draw learning curves that
compensate for the attrition bias [9]: Over time, fewer learn-
ers tend to practice some items because many of them have
learned the skill, and the curves tend to quickly degenerate,
impacting the estimates of the slopes and the diagnostics of
how much learning has occurred. In addition, when learning
curves are drawn directly from AFM parameters, the valid-
ity of the inferences that can be made will depend greatly on
the reliability of the parameters values, and ultimately on
the quality of the fitted data. More precisely, fitted parame-
ter values tend to compensate for noise, missing values (e.g.
due to attrition) or mis-specified competency models. Rupp
and Templin [21] showed for instance how the fitted values
of model parameters in DINA [11] would inflate when fit-
ted with purposely erroneous Q-matrices. We can expect a
similar impact with any model using Q-matrices, including
AFM, a situation made worse by the fact that, in reality,
perfect Q-matrices are difficult to identify [5], even when
they are retro-engineered from performance data [19]. This
motivates the necessity to estimate not only parameter val-
ues, but also the statistical confidence on those values, and
take into account this uncertainty in any model interpre-
tation, whether based on those values or on the associated
learning curves.

Previous work investigated the estimation of standard er-
rors on DINA [20] or AFM [7] parameters, and showed how
it could impact learning curves shape and utimately AFM
interpretability and usefulness [15]. Assuming independence
across parameters, they produced bounds on learning curves
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using standard confidence intervals on parameter values.
However, in practice, the AFM skills parameters (Section 2)
are clearly not independent. In this contribution, we show
how we can take into account the structure of the covariance
between the AFM parameters in order to better model and
control the uncertainty on those parameters. We describe
a technique for generating confidence intervals on the learn-
ing curves using a sampling approach. We illustrate how
this works on several competency models from a well-known
dataset obtained from a geometry tutoring course, and we
show how it allows us to compare how different competency
models may model the same skills with different confidence.

In the following Section, we quickly describe the AFM model
and introduce our method for obtaining more adequate es-
timates of the confidence intervals on the learning curves.
Section 3 quickly describes the well known EDM dataset
that we experiment with in Section 4. Section 5 discusses
the results and their impact before we conclude.

2. METHOD
The Additive Factors Model (AFM) introduced by Cen et al.
[1, 3] is used in the PSLC-Datashop [12] in order to evaluate
domain models. It models the probability of success of a
student i on item j using user and skill specific parameters:

P (Yij = 1|αi,β,γ) = σ

(
αi +

K∑
k=1

βkqjk +

K∑
k=1

γkqjktik

)
(1)

with σ(x) = 1/(1 + e−x) the logistic function, and

αi is the proficiency of student i,
βk is the easiness of skill k = 1 . . .K,
γk is the learning rate for skill k,
Q = [qjk] is the J×K Q-matrix, representing the cognitive

model mapping items to skills,
tik is the number of times student i has practiced skill k

(on any item).

Parameters θ = (α,β,γ) are estimated by maximizing the
(penalized) likelihood of the model over observed student
outcomes (see e.g. [6]). One attractive feature of AFM
is that it easily provides performance curves showing how
students acquire skills. Among the different types of learning
curves that can be derived from AFM [9, 8], we focus on the
data- and student-independent idealized learning curve [8],1

that simply traces the probability of error for an idealized
student with α = 0 proficiency, on an item with a single skill
k:

lck(t) = 1− P (Y = 1|α = 0,β,γ) = σ (βk + γkt) . (2)

Learning curves are typically computed with the maximum

penalized likelihood parameters θ̂ =
(
α̂, β̂, γ̂

)
. As noted

for example by Philipp et al. [20] and derived for AFM by
Durand et al. [7], one can also estimate the uncertainty on(
α̂, β̂, γ̂

)
, in the form of standard errors. This is relatively

straightforward as the covariance matrix on parameter esti-
mates is asymptotically equal to the inverse of the informa-

tion matrix, Cov
(
θ̂
)

= I−1

θ̂
. The information matrix Iθ̂ can

1aka Individual Learning Curve in [9].

Algorithm 1: Error bars on learning curve for skill k.

Data: Parameters θ̂, covariance Cov
(
θ̂
)

Parameters: Target skill k, simulation sample size N
Result: Error bars for the learning curve for skill k, at

a set of opportunities {t = 1 . . . T}
repeat

Sample θ(i) ∼ N
(
θ̂,Cov

(
θ̂
))

;

Compute learning curve lck
(i)(t) for target skill k

until N simulations;
For each opportunity t, compute confidence interval

[`k(t), uk(t)] using relevant quantiles2 of
{
lck

(i)(t)
}

.

be estimated from first or second order derivatives of the cost
function [20, eq. 3, 4]. This also provides a key to quanti-
fying the uncertainty on the learning curves. Using the fact
that parameters are (asymptotically) normally distributed

around θ̂ with the known covariance matrix Cov
(
θ̂
)

[7], we

can sample sets of parameters from that multivariate Gaus-
sian distribution, compute the learning curve for each set
of parameters, then empirically estimate the error bars on
the learning curve through the relevant quantile statistics,
as outlined in Algorithm 1.

Although Algorithm 1 focuses on producing error bars on
the learning curves, we can also use the simulated sample
to evaluate the stability of the entire learning curve, using
for example the average standard deviation across opportu-
nities:

σk =
1

T

T∑
t=1

st.dev.{lck(i)(t)}

Lower σk indicate that the sampled learning curves are closer
together, thus the learning curve is more stable.

3. DATA
For our experiments, we used the “Geometry Area (1996-
97)”, a public dataset from DataShop [12]. This dataset
contains 6778 observations of the performance obtained by
59 students completing 139 unique items from the“area unit”
of the Geometry Cognitive Tutor course (school year 1996-
1997). This dataset has been extensively used [1, 2, 7, 13,
14]. We selected three knowledge component (KC) models:

• hLFASearchAICWholeModel3arith0 (referred to sim-
ply as arith below),

• hLFASearchModel1-context (context below),

• Original (orig below).

These KC models were selected for their reasonable numbers
of skills and observations but also because they have distinc-
tive goodness of fit metrics, suggesting that they are high-
performing KC models. Table 1 shows that the best pre-
dictive model would be arith. The number of skills (KCs)
seems to have limited impact on the goodness of fit metrics.

2For example, the 95% confidence interval is obtained as
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Figure 1: Left: Sampled β and γ for KC#11 of the context model. Right: Corresponding learning curves (in
light gray); the LC given by the AFM model is in red, with 95% confidence intervals at opportunities up to
10 shown as red vertical bars. The 95% CI from [7] is indicated in black crosses for comparison.

Table 1: Characteristics and predictive quality of
the KC models, as computed by PSLC-Datashop.

Name KCs Stud. #Obs. AIC BIC RMSE
arith 18 59 5104 4948 5569 .397
context 12 59 5104 5030 5573 .399
orig 15 59 5104 5180 5762 .407

Another motivation for choosing these KC models is their
skills sharing as some skills have an identical mapping to
items in another model, allowing to compare the stability of
the same skill accross KC models.

4. EXPERIMENTS
In this section, we first illustrate how we derive error bars
on the learning curve for a specific KC, then show results for
an entire KC model, and finally we compare the stability of
learning curves for equivalent skills in different KC models.

4.1 Illustration
We focus on KC#11 (equi-tri-height-from-base/side)
from KC-model context. This is a relatively hard (β =
−2.97) skill, but with quick learning (γ = 1.23). Figure 1
(left) shows the values of β11 and γ11 that were sampled by
Algorithm 1 for this KC. As seen in the plot, the marginal
uncertainty on β11 and γ11 is quite high (from -4.5 to -1.5 for
β11), but they are also very correlated: samples with higher
easiness have lower learning rate.

Each of the points in Fig. 1 (left) is translated into a corre-
sponding learning curve (Eq. 2) in dotted light gray in Fig.
1 (right). Due to the correlation noted before, we can see
that the sampled learning curves are actually fairly stable,
compared to what extremes of the distributions of β11 and
γ11 would suggest (see dashed lines with crosses in Fig. 1,

[q2.5, q97.5], where qε is such that ε% of the sample is below
qε and (100− ε)% is above.

which replicates Fig. 4 from [7]). The red curve in Fig-
ure 1 (right) is the learning curve computed from the AFM
solution, with 95% confidence intervals obtained from the
sample at each opportunity indicated as red bars. We see
that although there is some uncertainty around the steep
part of the curve, the learning curve is well-controlled and
easy to diagnose, indicating that the skill is completely ac-
quired after around 5 opportunities.

4.2 Application to KC models
We now show how we can generate learning curves with con-
fidence intervals for a full KC model. The process illustrated
above is applied to each KC, producing one learning curve
with confidence bounds. For improved readability, we show
the results on KC-model context, which has the smallest
number of KCs among our three models.

Figure 2 shows the learning curves for the twelve knowledge
components. We can see that most learning curves are well-
controlled. The average standard deviation σ, depending on
the skill, ranges from 2% to 8%. ”Flat” KCs tend to have
lower uncertainty, which is understandable: when the error
rate for a skill is low and flat, this is easy for the model to
pick up with confidence by predicting high success (high β)
for that skill.

4.3 Comparison of KC models
By better estimating and controlling the uncertainty in learn-
ing curves, we can more reliably compare how skills are ac-
quired according to different KC models.

In Figure 3 we show the same skill, compose-by-multiplication,
as modeled by the 12-skill model context, and by the 15-
skill model orig. The shapes of the learning curves are very
similar, which is not surprising as both KCs are associated
to the same items, and estimated from the same student out-
comes. Despite differences due to the influence of other KCs
in the models, the resulting values of β and γ are similar.
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Figure 2: All learning curves with confidence intervals for KC model context.
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Figure 3: KC compose-by-multiplication from KC models context (left) and orig (right). σ is the average
uncertainty across opportunities (lower is better).

The error bars, however, show that the confidence is slightly
better in the orig model, showing an average dispersion of
around 3.5% error across the learning curve (versus 4.3% in
context). This shows that even in a model with more KCs,
learning curves can be modelled with higher confidence.

Our second example, in Figure 4, compares similar skills,
compose-subtract from arith, and Subtract from orig. Again,
the general shape of the learning curves are similar, due to
similar values for the estimated β and γ in each model.3

The sampled learning curves also seem quite similar, sug-

3For arith, β = .588 ± .524 and γ = .329 ± .200, while for
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Figure 4: KC compose-subtract from model arith (left) and KC Subtract from orig (right). σ is the average
uncertainty across opportunities (lower is better).
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Figure 5: Structure of the correlation between β (y-
axis) and γ (x-axis) for all KCs in model context.

esting that both KC models represent that skill with similar
levels of confidence. This is confirmed by the value of the
average dispersion, which is 5.4% for one model and 5.1%
for the other. We see again that the different number of
KCs has limited impact on how confident the models are on
a particular skill.

5. DISCUSSION
Figure 1 (left) showed that there is a strong correlation be-
tween the sampled values of β11 and γ11. The impact of this
correlation on the actual learning curve is that, according to
the model, this knowledge component can be modeled by a
higher easiness (starting with lower error) and lower learn-
ing rate (flatter curve), or by a lower easiness and higher
learning rate (i.e. starting higher but dropping faster). This
finding actually generalizes to the entire KC model, as shown
by the correlation matrix in Figure 5. We see that there is a
consistently strong negative correlation between the β and γ
parameters for each knowledge component, due to this com-
pensatory mechanism. There are also some correlations be-
tween parameters of different KC, which may suggest some
compensatory effects in the AFM model.

context, β = .576± .523 and γ = .336± .200.

One straightforward outcome of this work is that the pro-
posed method provides a much better estimate of the confi-
dence in a learning curve than the method proposed in [7],
which relied on the marginal distribution of AFM parame-
ters β and γ and used the boundaries of straight confidence
intervals on each parameter independently. We included
their 95% confidence interval as black crosses in Figure 1:
that suggests that the uncertainty on the learning curve is
high up to 8 or more opportunities. By contrast, our ap-
proach shows that the actual uncertainty is much better
controlled, and that the skill is essentially learned by op-
portunity 5 or 6.

In this paper, we have worked with the basic learning curve
called the individual learning curve in [9] or the idealized
learning curve in [8]. We note that this work can be applied
to any learning curve that relies on the parameters of the
AFM model. This includes in particular the completed learn-
ing curve [9], where empirical observations of success/failure
are completed by model estimates.

In previous work, Harpstead and Aleven [10] used empirical
learning curve analysis to inform educational game design.
They derive empirical curves and AFM-fitted curves, with
standard errors on the curves, using a completely different
approach from ours. Contrary to the approach advocated
here, which relies on the core uncertainty on model param-
eters resulting from a maximum (penalized) likelihood es-
timation, their learning curves and error bars are obtained
using non-parametric smoothing (LOESS [4], presumably
from the stat-smooth function of the ggplot2 R package).
On the empirical measurements of success, this produces
learning curves that are based on observations alone, and
therefore may not have the desirable properties enforced by
the AFM model, such as monotonicity (decreasing learning
curves). On the fitted AFM predictions, those properties
are enforced and apparent from the learning curves.4 Two
key differences with our approach, however, are:

1. The use of fitted AFM values to produce error rate

4Blue curves in [10], Figs 3, 4 and 7.
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predictions does not take into account the uncertainty
in parameter values due to estimation from a finite
sample, and

2. The width of the error bars are directly impacted by
the number of students at each opportunity, typically
resulting in widening errror bars as attrition kicks in.
By contrast our sampling-based algorithm often yields
narrowing error bars as opportunities increase and the
error rates near zero (for all sampled parameters).

A more systematic study of differences between our ap-
proach and the non-parametric smoothing of model esti-
mates would require further study. The opportunity of com-
bining both approaches in order to take into account the
uncertainty due to parameter estimation and sampling un-
certainty across the finite set of students seems particularly
promising.

6. CONCLUSION
In this contribution, we provided a principled way to esti-
mate and control the confidence in learning curves derived
from the Additive Factors Model. Error bars on the learn-
ing curves account for the statistical uncertainty associated
with estimating the AFM model from a finite set of stu-
dents. They allow to more accurately and more confidently
interpret how skills are acquired by students. We showed
how this allows to characterize learning for all skills of a
KC model of a geometry tutoring course. We also showed
how modeling the confidence of learning curves can help
compare how two different KC models represent the same
skill. Our approach was illustrated here on one type of learn-
ing curve, but it can be applied to any alternative learning
curve, as long as it can be computed from the usual AFM
parameters. In addition, the same idea can be applied in
a straightforward way to any cognitive diagnostic model for
which a covariance on parameters can be computed. This
includes in particular, models estimated by penalized maxi-
mum likelihood. For instance, the Individualized-slope Ad-
ditive Factors Model (iAFM) [16], that extends AFM with a
student learning rate, could be an excellent candidate to our
method, especially as authors noticed that iAFM ”[student]
learning rate is significantly related to estimates of student
ability”. Finally, our hope is that this work will help spread
the use of learning curves with well-controlled confidence
among practitioners of AFM.
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ABSTRACT
Over the past decade, machine learning has become an in-
tegral part of educational technologies. With more and
more applications such as students’ performance prediction,
course recommendation, dropout prediction and knowledge
tracing relying upon machine learning models, there is in-
creasing evidence and concerns about bias and unfairness of
these models. Unfair models can lead to inequitable out-
comes for some groups of students and negatively impact
their learning. We show by real-world examples that educa-
tional data has embedded bias that leads to biased student
modeling, which urges the development of fairness formaliza-
tions and fair algorithms for educational applications. Sev-
eral formalizations of fairness have been proposed that can
be classified into two types: (i) group fairness and (ii) indi-
vidual fairness. Group fairness guarantees that groups are
treated fairly as a whole, which might not be fair to some
individuals. Thus individual fairness has been proposed to
make sure fairness is achieved on individual level. In this
work, we focus on developing an individually fair model for
identifying students at-risk of underperforming. We propose
a model which is based on the idea that the prediction for
a student (identifying at-risk students) should not be influ-
enced by his/her sensitive attributes. The proposed model
is shown to effectively remove bias from these predictions
and hence, making them useful in aiding all students.

Keywords
Fairness, at-risk students detection, decision making, stu-
dent modeling

1. INTRODUCTION
Educational data mining (EDM) approaches seek to analyze
student-related data with the objective of improving learn-
ing outcomes for students. Many machine learning methods
have been proposed for student modeling and forecasting.
However, in the past few years, concerns have emerged about
the fairness of machine learning models. An investigation by

ProPublica has found that a machine learning tool COM-
PAS used to predict risk of recidivism exhibits alarming
bias against African-American defendants. It shows that the
false positive rate of African-American defendants is twice
as their white counterparts (45% vs. 23%) [1]. Buolamwini
et al. [3] observed imbalanced gender and skin type distri-
butions in facial recognition datasets. Their study shows
that facial recognition algorithms are more likely to misclas-
sify darker-skinned females with error rates up to 34.7%,
while the maximum error rate for light-skinned males is
0.8%. In health care, an algorithm used to guide health de-
cisions found that African-American patients assigned the
same level of risk are sicker than white patients [24].

In the domain of EDM, unfairness has also been observed. In
academic performance prediction systems, social indicators
have been found to predict low-performance of male students
more accurately than that of female students [29]. A study
by Doroudi et al. [7] showed that although personalized
models were more equitable than treating all students the
same, they were still not fair when relying on inaccurate
models and the inequities could cascade as the amount of
content increases.
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Figure 1: GPA distribution by gender.

Machine learning models learn from data. If bias is recorded
in data, models trained on the biased data can also be bi-
ased [3]. Bias is also observed in educational data. Figures 1
and 2 show the average GPA of students by gender and race
at George Mason University over a period of ten years. The
GPA of a student is his/her accumulative GPA as of the last
term before graduation. In Figure 1, average GPA of male
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Figure 2: GPA distribution by race.

students is skewed towards lower GPAs, while average GPA
of female students is skewed towards higher GPAs. The av-
erage GPA of overall female students is 3.15 which is higher
than that of male students 2.86. Figure 2 shows the average
GPA of African-American and non-African-American stu-
dents. From the figure, we can observe that average GPA
of African-American students leans towards left while that
of non-African-American students leans towards right. The
data shows that the average GPA of African-American stu-
dents is 2.86, while it is 3.03 for non-African-American stu-
dents.

Biased data can lead to biased machine learning models
which can be harmful to minority groups. For example,
models predicting a group of students to be at-risk or under-
performing can discourage them and undermine their learn-
ing outcomes. To resolve the harmful results brought about
by inequity of machine learning, there are critical needs to
develop fair machine learning algorithms.

In this work, we build a fair machine learning model based on
metric free individual fairness. Metric free individual fair-
ness assumes that an individual’s qualification should not
be changed if his/her sensitive attribute is changed [19]. In
this paper, without loss of generality we assume there are
two sensitive attributes. The proposed model is composed
of two classifiers. Each classifier corresponds to a sensitive
group. The classifier corresponding to the individual’s sen-
sitive attribute predicts the individual’s probability of being
positive, while the probability of the other classifier indi-
cates the individual’s probability of being positive if his/her
sensitive attribute is changed. According to the definition of
metric free individual fairness, the two probability distribu-
tions should be nearly identical. The proximity of the two
probability distributions is treated as fairness. The closer
the two distributions, the fairer the prediction is. In ad-
dition to fairness, we also care about the accuracy of the
classifier. Therefore, the overall objective we seek to opti-
mize is the accuracy of the classifier corresponding to the
individual and the proximity of the distributions of the two
classifiers.

The proposed model is evaluated on datasets collected from
George Mason University and the task is detecting at-risk
students. The experimental results show the efficacy of the

proposed model at mitigating bias. Although, the overall
data shows that female and non-African-American students
have higher overall performance, we observe that the bias is
different for different courses. Specifically, in some courses
female students belong to disadvantaged group, while in
other courses male students are in disadvantaged group.
This observation is useful for future work on developing fair
machine learning models in educational setting.

The rest of the paper is organized as following. Section 2
discusses related work on EDM and fairness. The following
section introduce preliminary on the definition of individual
fairness. In Section 4, we propose our fair model for at-
risk students detection. Datasets and experimental protocol
is described in Section 5. Section 6 presents experimental
results and analysis. The last section concludes the paper
and discusses future work.

2. RELATED WORK
In this work, we focus on mitigating bias in classification
tasks. We first describe related works in EDM that rely
on classification. Then we describe the formalizations of
fairness. Lastly, we talk about proposed methods for fair
machine learning.

2.1 Classification Problems in EDM
In educational data mining, there are many tasks that can
be formulated as a classification problem and several prior
works have been proposed in this area such as affect detec-
tion [30], dropout prediction [4], graduation prediction [20],
at-risk student detection [17, 28], knowledge tracing [31],
etc.

Affect detection is the task of classifying a student’s affec-
tive states such as boredom, confusion, delight, concentra-
tion and frustration by using sensor [26] and sensor-free
[2] data. Vinayak et al. [15] proposed to predict student
dropout using a Naive-Bayes classifier. Ojha et al. [25] pro-
posed SVMs, Gaussian Processes and Deep Boltzmann Ma-
chines for student’s graduation prediction using factors such
as pre-university preparation. A set of human-interpretable
features have been engineered by Polyzou et al. [28] for at-
risk student detection. All these tasks can be formulated as
a classification problem. However, all these works did not
consider the potential bias and discrimination of the mod-
els. In this work, we try to build a general method that can
be used for different kinds of tasks. To test the proposed
method, we focus on the task of identifying at-risk students.

2.2 Fairness Formalizations
Over the years, different formalizations of fairness have been
proposed that focus on different aspects. For example, sta-
tistical parity [11] requires that the probability of being pre-
dicted as positive across all the groups should be nearly the
same. Equal odds imposes the constraint that the true pos-
itive rate should be the same for all the groups [14]. Equal
opportunity requires a qualified individual should be pre-
dicted as qualified regardless of his/her sensitive attribute
[14]. Another type of fairness formalization focuses more
on individual level. The notion of individual fairness pro-
posed by Cynthia et al. [8] assumes that similar individuals
should be treated similarly. However, the requirement of a
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problem-specific similarity metric limits its adoption [5]. Hu
et al. [19] proposed metric free individual fairness based on
the assumption that the prediction outcome of an individ-
ual should be not be influenced by the individual’s sensitive
attribute. The elimination of similarity metric makes imple-
mentation of metric free individual fairness easier.

2.3 Fair Machine Learning Algorithms
Several algorithms have been proposed to achieve individual
fairness. Based on John Rawls’ notion of fair equality of op-
portunity, Joseph et al. [21] proposed an individual fairness
notion that a worse individual should never be favored over
a better one. The unfairness comes from the prediction’s de-
pendence on sensitive attribute. To remove the dependence,
Zemel et al. [32] proposed learning a fair representation
which does not contain sensitive information. The represen-
tation is a cluster of embedding vectors. Following the idea
of learning fair representation, Edwards [9] proposed to re-
move sensitive information from the learned representation
by using adversarial learning. The input feature vectors are
mapped to an embedding vector by an encoder. An adver-
sary tries to predict the sensitive attribute from the repre-
sentation. The encoder and the adversary plays a minimax
game to remove sensitive information. The fair representa-
tion learning algorithms achieve individual fairness by first
learning a representation and then training a classifier based
on the learned representation. Our proposed model directly
puts fairness constraints on the predictions.

3. PRELIMINARIES
In this section, we discuss the formalization of individual
fairness.

3.1 Individual Fairness
Cynthia et al. [8] introduces the concept of individual fair-
ness, which is based on the idea that similar individuals
should be treated similarly. This definition requires a simi-
larity metric measuring the similarity between two individ-
uals. Given two individuals xi and xj , a classifier H is indi-
vidually fair if the difference of the predictions between the
individuals are upper bounded by their dissimilarity. The
definition is as following

D(H(xi), H(xj)) < d(xi, xj) (1)

where D is the distance measure between the outputs of the
classifier and d is the distance metric between the two indi-
viduals. The drawback of this definition is that a similarity
metric is required. A similarity metric guaranteeing fairness
is problem specific and requires strong assumptions, which
obstructs its adoption [5].

3.2 Metric Free Individual Fairness
Hu et al. [19] proposed metric free individual fairness based
on the idea that the qualification of an individual should not
be influenced by his/her sensitive attribute. Thus, changing
an individual’s sensitive attribute should not change the pre-
diction of a classifier. The definition of metric free individual
fairness is following

D(P (Y |xi, S = si), P (Y |xi, S 6= si)) < ε (2)

where si is the sensitive attribute of individual i, D is the
distance measure of the predictions, ε is an arbitrarily small
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Figure 3: The architecture of the proposed model. The
model consists of two classifiers C0 and C1 corresponding to
sensitive attribute 0 and 1. An input vector xi is fed into the
two classifiers and the outputs are used to compute accuracy
and fairness score. Note that if the sensitive attribute si is
0, accuracy A0 and fairness F are combined to compute
objective O0 and only classifier C0 is updated; otherwise,
A1 and fairness F are combined to form objective O1 and
classifier C1 is updated.

positive number. This definition eliminates the requirement
of a similarity measure between individuals. In this work,
we develop a fair model based on this definition.

4. METHODS
4.1 Problem Statement
In this work, we focus on the task of identifying at-risk stu-
dents. Given a student i with ((xi, si), yi), xi ∈ RP encodes
the student’s grades in courses taken prior to the target
course; si ∈ {0, 1} is the student’s sensitive attribute such
as gender or race; yi ∈ {0, 1} is the ground truth label indi-
cating whether a student is at-risk (1) or not (0). We focus
on a binary sensitive attribute, though our method can be
easily extend to scenarios where the sensitive attribute is n-
ary. We want to build a classifier to predict if a student will
underperform in a future target course. The classifier needs
to satisfy two constraints: 1) make predictions as accurate
as possible and 2) the output of the classifier is individually
fair as specified by Equation 2.

The model is trained in a course-specific manner, namely, we
train a model for each target course. Given a target course,
we extract all the students who have taken it. The courses
these students have taken prior to the target course are ex-
tracted as prior courses. The students’ grades in the prior
courses are extracted to form a matrix X and the students’
grades in the target course are Y . Students’ sensitive at-
tributes are denoted as S. We train a course-specific model
on (X,Y ) to predict whether students who have not taken
the target course will fail it or not. Note that sensitive at-
tributes S are not used as features.

4.2 Proposed Algorithm
In this section, we present the proposed model, multiple
cooperative classifier model (MCCM). Figure 3 shows the

433 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



architecture of the proposed model. The model is com-
posed of two classifiers, each of which corresponds to a sen-
sitive attribute, e.g., male or female. Given an individual
((xi, si), yi), the feature vector xi is fed into the two classi-
fiers. The output of the classifier corresponding to si is the
individual’s probability of being positive, while the output
of the classifier corresponding to 1 − si is the individual’s
probability of being positive if his/her sensitive attribute is
changed. Based on the assumption of metric free individual
fairness, to be fair the difference between the outputs of the
two classifiers should be ignorable. In this work, the differ-
ence is the KL-divergence of the two outputs. In addition
to fairness, we also care about the accuracy of the classifier.
Therefore, for student i, the objective function we seek to
optimize is as following

Li = −yi log p̂si,i−(1−yi) log(1− p̂si,i)+λKL(p̂si,i, p̂1−si,i)
(3)

where λ is a hyperparameter trading off between accuracy
and fairness, p̂si,i is the probability of being positive pre-
dicted by classifier si and p̂1−si,i is the probability predicted
by classifier 1− si. Note that, for Li only the classifier cor-
responding to si is updated. The classifiers are feed-forward
neural networks with two hidden layers. The activation
function is chosen to be ReLU [12]. Dropout [16] is used
to prevent overfitting.

Algorithm 1: Multiple Cooperative Classifier Model

Input : Data D = {((xi, si), yi)}Ni=1, learning rate α,
λ, number of iterations T , classifier C0 and
C1.

1 Initialize parameters {θ00, θ01}
2 for t = 1, ..., T do
3 Sample example ((xi, si), yi) from D
4 Feed xi into classifier Csi and C1−si
5 Compute the loss Li according to equation 3

6 θt+1
si = θtsi + α ∂Li

∂θtsi

7 return {θT0 , θT1 }

5. EXPERIMENTAL PROTOCOL
5.1 Datasets
To evaluate the proposed model, we collect ten-year data
at George Mason University from Fall 2009 to Fall 2019.
We choose top five majors including Biology (BIOL), Civil
Engineering (CEIE), Computer Science (CS), Electrical En-
gineering (ECE) and Psychology (PSYC). We only choose a
course if there are at least 300 students who have taken it.
We use a student’s grade in prior courses to predict whether
a student is at-risk of failing a target course. While prepro-
cessing the data, we exclude courses that are not relevant to
a major such as elective courses. Table 1 shows statistics of
the data. From the table, we can see clear gender difference
for different majors. Female students tend to choose Biology
and Psychology majors, while male students are more prone
to engineering majors such as Civil Engineering, Computer
Science and Electrical Engineering. Overall, the proportion
of African-American students is relatively small, especially
for Civil Engineering and Computer Science.

We build course specific models, namely, for a target course
we train a classifier to predict whether a student will fail

that course in the future. We define as at-risk student if the
student’s grade is lower than 3.0. Given a target course, the
data related to that course is split into 75%, 15%, 15% for
training, validation and testing, respectively.

5.2 Baselines
As in this work we focus on individual fairness, we com-
pare our proposed model with several individually fair algo-
rithms.

5.2.1 Logistic Regression (LR)
This baseline does not have a fairness constraint. It directly
predicts if a student is at-risk or not. The input is a feature
vector encoding a student’s grades in prior courses. The out-
put is the student’s probability of failing the target course.

5.2.2 Rawlsian Fairness (Rawlsian)
The concept of Rawlsian fairness is that a worse candidate
should never be favored over a better one. Joseph et al. [21]
proposed an individually fair algorithm utilizing a contex-
tual bandits as building block to implement Rawlsian fair-
ness.

5.2.3 Learning Fair Representation (LFR)
The unfairness of a prediction comes from the correlation of
the output with the sensitive attribute. Zemel et al. [32]
proposed to remove the correlation by learning an interme-
diate representation and train a classifier on it.

5.2.4 Adversarial Learned Fair Representation (ALFR)
Edwards et al. [9] propose to remove sensitive information
from representation by adversarial learning. An encoder
maps the original feature vector to a latent embedding vec-
tor, from which an adversary tries to predict the sensitive
attribute. While the adversary tries to predict the sensi-
tive attribute, the encoder seeks to generate a representation
that prevent the encoder from predicting it.

5.3 Evaluation Metrics
To evaluate if the proposed algorithm satisfy the accuracy
and fairness constraints, we utilize three evaluation metrics
accuracy, discrimination and consistency.

The accuracy metric assesses the predictive accuracy of the
model, defined as following

acc =

∑N
i=1 1(yi = ŷi)

N
(4)

where N is the number of examples, ŷi is the prediction and
ŷ is the ground truth label.

Discrimination measures the difference between the groups’
rate of being predicted as positive, mathematically expressed
as following

discri = |
∑N
i=1 1(si = 0) ∗ ŷi∑N
i=1 1(si = 0)

−
∑N
i=1 1(si = 1) ∗ ŷi∑N
i=1 1(si = 1)

| (5)

Consistency compares the predicted results of an individ-
ual with his/her k-nearest neighbors. If the predicted results
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Table 1: Dataset Statistics

Major #S #C #G #M #F #AA #NAA

BIOL 6,127 16 124,716 1,927(31.45%) 4,200(68.55%) 759(12.39%) 5,368(87.61%)
CEIE 450 7 23,708 338(75.11%) 112(24.89%) 27(6.00%) 423(94.00%)

CS 2,430 11 90,819 1,942(79.92%) 488(20.08%) 157(6.46%) 2,273(93.54%)
ECE 671 10 65,396 575(85.69%) 96(14.31%) 66(9.84%) 605(90.16%)

PSYC 5,110 17 84,504 1,200(23.48%) 3,910(76.52%) 694(13.58%) 4,416(86.42%)

#S total number of students, #C number of courses for prediction, #G total number of grades
#M number of male students, #F number of female students, #AA number of African-American students
#NNA number of non-African-American students.

is close to the results of the neighbors, consistency is high
and the algorithm is fair. Consistency is defined as following

consist = 1−
N∑
i=1

∑K
n=1 |ŷi −

∑
j∈kNN(xi)

ŷj |
K

(6)

where kNN(xi) is the k-nearest neighbors of individual i.

We use Gower similarity [13] to measure the similarity be-
tween individuals. Gower similarity is defined as

Gower(i, j) =

∑N
k=1 wkSijk∑N
k=1 wk

(7)

where N is the number of features and wk is the weight of
the k-th variable, in this paper the weights are set to one;
Sijk is the contribution by the k-th variable. If the k-th
variable is continuous, Sijk is defined as

Sijk = 1− |xik − xjk|
rk

(8)

where xik is the value of k-th feature of i and rk is the
range of values for the k-th variable. If the k-th variable is
categorical, Sijk is 1 if xik = xjk or 0, otherwise.

6. EXPERIMENTAL RESULTS
6.1 Results and Analysis
We train a classifier for each course in a major to predict
if a student will fail that course. The predictions are evalu-
ated by using accuracy, discrimination and consistency. The
results are averaged across the courses in a major. Table 2
shows the experimental results with gender as sensitive at-
tribute. From the table, we can see that the proposed model
MCCM achieves the best performance in mitigating bias
in terms of discrimination. It is able to achieve both group
fairness and individual fairness, although, it is designed for
achieving individual fairness. The reason is that group and
individual fairness are highly correlated so that achieving
one helps achieving the other.

The predictions from LR model is highly biased as there is
no fairness constraint imposed on it, but it performs well
with respect to predicting accuracy. On average, the dis-
crimination of LR is 7.3%. Other methods achieve fairness
at the cost of accuracy. It is interesting to see that Rawl-
sian is not able to remove bias and in some cases it leads
to even more unfair predictions. Rawlsian is based on the
idea that a worse candidate should never be favored over a
better one, which is implemented by interval chaining that
is a weak fairness constraint. We can also observe from the

table that different majors have different level of bias, e.g.,
Psychology has the least bias while Computer Science has
the highest bias with respect to the predictions of LR. The
experimental results with race as sensitive attribute is shown
in Table 3. The results are similar to those with gender as
sensitive attribute.

6.2 Fine-grained analysis of the bias
To have a fine-grained view of the bias, we look at the data
and predictions at the course level. In this section, we an-
alyze the bias embedded in the data and predictions from
LR and the proposed model MCCM. Figure 4 shows the
fine-grained results with gender as sensitive attribute. For
Figure 4, the data bias is that the proportion of at-risk fe-
male students subtracts the proportion of at-risk male stu-
dents. Positive bias means female students are more likely
to be predicted as at-risk; otherwise male students are more
likely to be predicted as at-risk. For the predictions from the
models, the bias is the female students’ average probability
of being predicted as at-risk students subtract that of male
students.

First of all, as stated in Section 1, the overall data such as
overall GPA by gender shows that male is minority groups.
However, when looking at the course level, different courses
have different minority groups. Figure 4 shows that in some
courses male students are less likely to be at-risk. This in-
sights can be used to inform future fairness work in edu-
cational data mining that a course specific model is desir-
able, considering that different courses have different mi-
nority groups. From the figures, we can also observe that
data and machine learning models might have different bias
direction. For example, in Figure 4(a), for course C0 the
data bias is against male while LR and MCCM is against
female. In addition, data bias does not necessarily lead to
predictive bias. For example in Figure 4, all the courses
show data bias. However, a no-fairness-constraint classifier,
e.g., logistic regression has fair predictions in many courses.

7. CONCLUSION AND FUTURE WORK
The concerns about bias and discrimination of machine learn-
ing models are rising with the increasing of their adoption.
In educational setting, we observe bias from a real-world
dataset and machine learning models without fairness con-
straints exhibit non-ignorable biased predictions. Machine
learning models are intended to aid students with their learn-
ing. However, unfair treatment of students can undermine
their learning and graduation. To mitigate discrimination
in educational data mining, in this paper, we proposed a
fair machine learning model satisfying metric free individual
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Table 2: Experimental results with gender as sensitive attribute.

Method
BIOL CEIE CS ECE PSYC

acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑)
LR 0.7662|0.0613|0.8152 0.6761|0.0837|0.7451 0.6628|0.1007|0.7569 0.7545|0.0980|0.7655 0.7769|0.0192|0.9578

Rawlsian 0.5889|0.0807|0.8120 0.6250|0.0866|0.7052 0.5582|0.0913|0.8301 0.6660|0.1498|0.7036 0.7559|0.0960|0.9396
LFR 0.6470|0.0369|0.9691 0.6983|0.0518|0.9631 0.6004|0.0228|0.9463 0.7389|0.0273|0.9912 0.7898|0.0248|0.9865
ALFR 0.6802|0.0202|0.9675 0.7062|0.0240|0.9855 0.6124|0.0134|0.9821 0.7465|0.0114|0.9783 0.7903|0.0125|0.9878
MCCM 0.6774|0.0163|0.9401 0.6415|0.0165|0.9823 0.6180|0.0038|0.9562 0.7394|0.0061|0.9717 0.7868|0.0023|0.9958

acc = accuracy, discri = discrimination, consist = consistency.
↑ means higher is better; ↓ menas lower is better.

Table 3: Experimental results with race as sensitive attribute.

Method
BIOL CEIE CS ECE PSYC

acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑) acc(↑)|discri(↓)|consist(↑)
LR 0.7662|0.1004|0.8152 0.6761|0.1411|0.7451 0.6628|0.1085|0.7569 0.7545|0.1238|0.7655 0.7769|0.0276|0.9578

Rawlsian 0.5854|0.1129|0.7870 0.5849|0.3658|0.7349 0.5561|0.1857|0.8007 0.6999|0.1446|0.7416 0.7608|0.0776|0.9570
LFR 0.6202|0.0569|0.9051 0.7099|0.1722|0.9701 0.6107|0.0599|0.9897 0.7441|0.0800|0.9852 0.7874|0.0172|0.9933
ALFR 0.6850|0.0505|0.9504 0.7274|0.0862|0.9688 0.6129|0.0086|0.9715 0.7435|0.0384|0.9887 0.7898|0.0156|0.9882
MCCM 0.6563|0.0198|0.9340 0.7138|0.0114|0.9828 0.5895|0.0303|0.9968 0.7133|0.0013|0.9986 0.7857|0.0021|0.9974

acc = accuracy, discri = discrimination, consist = consistency.
↑ means higher is better; ↓ menas lower is better.
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Figure 4: Bias of different courses with gender as sensitive attribute.

fairness. We evaluate the model’s performance on removing
unfairness on datasets collected from an anonymous Univer-
sity. The results show the efficacy of the model on removing
bias. Compared to other domains, educational data min-
ing has its own characteristics. For example, in our dataset,
when looking at university level, male and African-American
students are biased against. However, at course level, dif-
ferent courses have different bias direction. This insights in-
form that future work on fairness in educational data mining
should design course-specific models. In this work, we treat
gender and race separately in terms of removing bias. In the
future, we want to build models that treat gender and race
as sensitive attributes simultaneously.
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ABSTRACT
National failure rates seen in undergraduate introductory
CS courses are quite high. In this paper, we develop a pre-
dictive model for student in-class performance in an intro-
ductory CS course. The model can serve as an early warning
system, flagging struggling students who might benefit from
additional support. We use a variety of features from the
first few weeks of the course such as scores on assignments,
interaction with the online textbook, and participation with
the in-class polling system in order to train our models. We
compare the performance of a number of machine learning
algorithms on predicting final exam scores as well as final
course grade. We find that the Support Vector Machine and
AdaBoost are the most effective, and that we can achieve in-
creasingly accurate predictions as we use data from further
into the course. The regression coefficients give us insights
into which features are most correlated with student suc-
cess, suggesting that certain types of assignments are more
indicative of learning than others.

Keywords
education data mining, performance prediction, early warn-
ing system

1. INTRODUCTION
An enduring challenge in higher education is student dropout.
National studies [1] have reported a relatively stable aver-
age six-year graduation of approximately 60% over the past
decade. The problem is acute in STEM (Science, Tech-
nology, Engineering and Mathematics) fields where a well-
trained and educated workforce is essential for national growth
and economy. As the volume and variety of data collected in
both traditional and online university offerings continue to
expand, educational data mining [1, 20] provides the promise
to assist students and improve overall student retention.

Close to 30% of the students who enrolled in CS 112, the
introductory CS course at George Mason University, during
the Fall 17 and Fall 18 semesters failed the course. This is
close to the national average pass rate in CS1 courses found
by Watson and Li [23].

The focus of this paper is to develop a model for predicting
student performance in a course that they are currently en-
rolled in based on performance in the first few weeks of the
course. An accurate predictive model may serve as an early
warning system which would alert the professor to students
who are struggling, at which point additional support could
be provided. Attempting to make predictions too early on
in the course would result in inaccurate predictions, while
waiting too long will mean it is too late to take any preven-
tative action. Howard et al. suggest that the optimal time
to employ such early warning systems is right around the
midway point of the course, as this provides a good balance
between reasonable predictive accuracy while still allowing
time to make corrective changes [6].

In this paper we extract features that capture student be-
haviors such as consistency, dedication, and grit, and use
these alongside the gradebook to make accurate predictions
as early as possible. We investigate various machine learning
(ML) regression algorithms including Ridge, Lasso, Elastic-
Net, Support Vector Machine, AdaBoost, Gradient Boost-
ing, Bagging, and Random Forest. Each algorithm is tuned
by applying a grid search to the parameters space. We pre-
dict both final exam scores and final course scores, compar-
ing the different models’ prediction performance on both.

Finally, we examine the coefficient weights of the most suc-
cessful models to determine which features are the most sig-
nificant in making predictions. Discovering patterns which
seem to help or hurt students could help the professor to
better structure the course in the future, as well as discover
more general trends would could be applied elsewhere.

2. PRIOR WORK
A number of attempts have been made at developing grade
prediction models and early warning systems similar to what
we wish to accomplish here. Most commonly, this has been
done in the context of massive open online courses (MOOCs)
such as in Ren et al. [19]. Li et al. [16] made an early
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prediction model for a blended course. They had access
to homework and test scores from the first 6 weeks of the
course and used this data to predict students’ final letter
grades. However, they were only able to slightly improve
upon a base model of predicting all A’s (47.8% accuracy)
by using an SVM (51.4% accuracy). This was probably
a result of the course being too easy, which resulted in a
fairly uniform data set. Elbadrawy et al. [11] looked at pre-
dicting performance on activities within a course, also using
multi-regression models. They took into account a combina-
tion of features including demographic information, histori-
cal performance and course interaction data from the LMS.
Another study done by Nam and Samson [17] investigated
the impact of student behavioral signals in early warning
system predictions. Costa et al. [4] investigated the effec-
tiveness of four algorithms in predicting student failure in
two computer science courses along with the the effect of
preprocessing data and fine tuning the algorithms on their
performance. The preprocessing and fine tuning was found
to improve performance for the most part. Ren et al. [18]
developed Additive Latent Effect Models to predict student
performance in a future course. It used factors from the stu-
dent, course, and instructor for the prediction. The model
performed better than all the baselines. Crossley et al.[5]
did a study that used click-stream, language, and demo-
graphic data to predict the performance of elementary school
students in a math course. The click-stream and language
data was from an online math tutoring system. They found
that the linguistic, click-stream, and demographic factors
explained 14% of the variance in the math score and ran-
dom factors of the student explained 30% of the variance in
the math score. Elbadrawy et al. [10] developed a person-
alized linear multiple regression (PLMR) and other models
to predict grades in a future course and grades in a future
assignment within regular courses and a massive open on-
line course (MOOC). Matrix factorization (MF) and PLMR
outperformed traditional models in predicting student suc-
cess in a future course and PLMR was useful in predicting
grades within regular courses and a MOOC.

Several papers have covered the usage of zyBooks in CS
courses, the online interactive textbook used in the course
here. Most students complete the textbook [8, 7, 9]. The
relationship between completion rate of the textbook and
percentage of the grade that the textbook work is worth
levels off at a certain point [8, 9]. The acquisition rate of
zyBooks is higher than traditional textbooks [7]. Students
mostly do not cheat when using zyBooks [8, 9]. Students’
use of zyBooks is stable throughout the semester [7].

Unlike most of the prior studies which have been done in
this area, we are exclusively using data from within the con-
text of the course itself (i.e. we don’t consider any student
demographic or background information). We do, however,
use a wider range of interaction data for students.

3. DATASET
Our data is taken from two sections of George Mason’s in-
troductory CS course, CS112. CS112 is taught in Python
and covers a range of basic programming concepts including
variables, conditionals, functions, loops, dictionaries, files,
classes, and recursion. The courses were taught during the
Fall semesters of 2017 and 2018, for an overall enrollment of
1,197 students. It includes each student’s grade book from
the semester, including scores on homework, labs, projects,
and tests. The grade book also contains additional infor-
mation such as whether or not the student was flagged for
an honor code violation and how many of their allotted late
submissions were used. CS112 was taught with an accompa-
nying interactive online textbook, zyBooks, from which we
have submission logs. Additionally an online polling system,
Pytania [21], was used routinely during lectures. The final
grade composition for the course was computed as follows:

Category Percent Notes

Projects 40% drop 1 lowest
Labs 10% drop 2 lowest

Pytania Particip. 2% up to 1% bonus for correct answers
zyBook readings 3% (drop 3 lowest-completion sub-sections)

Tests 20% (10% each test)
Final Exam 25% (must pass final to pass class)

Note that students were required to pass the final in order to
pass the course, so that even if a student’s raw score would
have given them a D or above, they ended up with an F
if they failed the final (this impacted 82 out of the 1,197
students, or about 6.85%). The overall grade distribution
across both semesters of the course can be seen in Figure 1,
which uses the following letter grade assignment to map raw
scores to letter grades.

Grade Score Grade Score Grade Score Grade Score

A+ 98% B+ 88% C+ 78% D 60%
A 92% B 82% C 72% F 0%
A- 90% B- 80% C- 70%

4. METHODS
All of the students who were flagged with an honor code
violation were removed from the data set and not consid-
ered when making predictions. We consider their data as
inaccurate records of effort, ability, and expected outcomes.

4.1 Feature Engineering
New features were engineered based on the Pytania and zy-
Book data in an attempt to capture behavioral patterns of
students. In particular, we aimed to represent qualities such
as participation, consistency, and grit, all of which may be
important factors in predicting success. Note that the Pyta-
nia data is essentially a measure of attendance and in-class
participation.

The Pytania data in its raw form consisted of rows corre-
sponding to a single question answered by a single user with
a timestamp and whether or not the question was answered
correctly. We needed to extract from this a set of features for
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each user which could be fed into our predictive model. The
first attempt was to simply add two new features for each
student, the number of Pytania questions attempted and
the number answered correctly. However we could capture
more information from the data by also taking into account
the chronology of when students were answering questions.
For example, a student who missed the first week but has
answered every question afterwards ought to be more highly
considered than one who answered everything for the first
couple of weeks but has since dropped off. To capture this in-
formation, binning was used to create multiple new features
dependent on the number of questions answered within a
certain time frame. In particular, a feature is added for the
number of question answered in each 1 week period through
the semester. For example, there is a bin for the most recent
week, and another for the week before that, and so on until
the start of the semester. In this way we expect the model
to weight more recent bins more highly as they are more
likely to predict future performance compared to using past
performance as a predictor.

We also wanted to have some measure of consistency of stu-
dent participation. This was measured by taking the stan-
dard deviation of the weekly bins. The result was added as
a new feature to the model. Students with a high amount of
inconsistency would perhaps be expected to perform worse,
or at least be more difficult to predict accurately.

The zyBook data was similar in form to the Pytania data,
recording individual attempts at a question by a student.
Unlike with the Pytania data, students could have multi-
ple attempts at each question. Across all users, the average
number of submissions per question is 1.5. The features
extracted from this data include total number of attempts
(submissions), total number of correct submissions (max one
per problem), and average earliness (measured as the differ-
ence in time between the problem due date and the first
correct submission). The correct submissions feature is di-
vided up by chapters from the textbook, and special ‘chal-
lenge’ problems, which are more difficult and involved, are
handled separately from regular ‘participation’ problems.

4.2 Normalization
Normalization was applied to ensure that no one feature
had too dominant of an impact. Each column of features
was mapped to the range 0-1 such that the max observed
value became a 1 and the min value became a 0. This had
a minimal positive effect on results.

4.3 Algorithms
After the features were generated, we ran experiments to
determine which algorithm does the best job at predicting
student performance. We tested a wide variety of regres-
sion algorithms in our experiments including Linear, Elas-
ticNet, Lasso, and Ridge regression models [24, 22, 15, 3].
We also used the support vector regression algorithm (SVR).
Finally, we used a number of ensemble algorithms including
AdaBoost, Bagging, Gradient Boost and a Random Forest
approach [12, 2, 13, 14]. We employed the Python module
sk.learn for implementations of each algorithm and each
algorithm was additionally tuned for optimal parameters us-
ing GridSearch (the final parameters can be seen in appendix
A).

4.4 Metrics
Two relevant outcomes for prediction were examined: pre-
dicting the final RAW score in the course and predicting the
score on the final exam (test 3, ”T3”). Final RAW score is
arguably more important to predict as this is what impacts
the student’s GPA and is the most commonly used metric
for success in a course. However, many of the features be-
ing used to predict RAW score are also directly correlated
with RAW scores (e.g. projects make up 40% of the final
course grade). This makes the prediction less meaningful as
the regression weights may come to simply recreate the ex-
act course weighting for assignment. Hence we also predict
scores for the final exam, a distinct assessment which is not
directly calculated from any of the other features. The final
exam is also arguably a better metric for how much of the
content a student was able to truly learn.

For regression tasks such as predicting the RAW score we
used mean absolute error (MAE), root mean squared error
(RMSE), and the coefficient of determination (R2) score as
our metrics of evaluation (as defined in figure 2). Note that
MAE and RMSE are in the range [0,∞), and lower scores are
better. The RMSE is a commonly used metric for evaluation
of regression models, which punishes big errors due to the
squared error term. The MAE on the other hand weights all
individual differences equally on a linear scale. The result
is a more interpretable score, which represents the average
error in our predictions. (e.g. a MAE of 10 while predicting
final exam scores would mean that the mean prediction was
10 points off from guessing the true value). R2 is in the
range (−∞, 1], where higher scores are better. The R2 score
compares the effectiveness of a model to a simple baseline
which predicts the mean value for each instance. A score of
0 implies a model which makes no improvement upon this
baseline, while a negative score implies a model which is
worse than the baseline. A score of 1 perfectly predicts each
true value.

5. EXPERIMENTAL RESULTS
Figure 3 shows the resulting MAE, RMSE, and R2 scores for
predicting final exam and raw scores using the first 9 weeks
of data in a 16 week course. We see that the AdaBoost re-
gressor achieved the lowest MAE score when predicting final
exam scores, with an average error of 8.02. The SVR and
Bagging regressors also performed well here. For predict-
ing the raw course score, the Ridge regressor performed the
best overall, with the top RMSE of 7.03, and an R2 score
of 0.84. The Lasso regressor outperformed Ridge slightly in
terms of MAE where it achieved a score of 5.42. For the
sake of comparison, we also present a ‘baseline’ score which
was calculated simply by predicting the mean value for each
student (note that this baseline will have an R2 score of 0
by definition).

Using the optimal algorithms for each category from above,
we ran experiments to determine how accurately we can
make predictions at various points throughout the semester.
In particular, we used the AdaBoost regressor for predicting
final exam score and the Ridge regressor for predicting final
RAW score. Figure 4 shows the results for this experiment,
plotting MAE scores as a function of the number of weeks
of data used. As expected, the accuracy of the prediction
improves as more data is available for use through the first
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Figure 1: CS112 Grade Distribution
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Figure 2: Evaluation Metrics

(where ypred and ytrue correspond to the predicted value and
the actual value respectively of a particular data point, n is the
number of samples, and summations go over all n samples)

Predict Final Exam Predict RAW
MAE RMSE R2 MAE RMSE R2

Baseline 15.12 22.48 0.0 13.07 18.25 0.0
LinearRegression 9.98 13.51 0.47 5.72 7.55 0.82

Ridge 8.86 13.11 0.47 5.68 7.03 0.84
Lasso 9.95 13.11 0.50 5.42 7.07 0.84

ElasticNet 9.76 12.96 0.51 5.77 7.37 0.83
SVR 8.31 12.47 0.55 5.57 7.63 0.81

AdaBoost 8.02 10.97 0.65 6.11 9.20 0.73
GradientBoosting 9.32 14.11 0.43 7.97 12.76 0.49

Bagging 8.76 11.76 0.60 5.91 7.96 0.80
RandomForest 9.89 14.46 0.40 7.83 12.12 0.54

Figure 3: Regression Algorithm Comparison

10 weeks of the semester. We also see that predictions of
raw score are consistently better than predictions of final
exam score. This makes sense as the raw score is in fact
calculated directly from some of the features we are using in
our predictive model, while the final exam score is not.

Figure 4: Predicting T3 score over time

Figures 6 and 7 show the values of the coefficient weights
for each feature from the optimal final exam and raw score
models run using 8 weeks of data (see figure 5 for coefficient
definitions). For final exam prediction, it is not surprising to
see that performance on the first exam, T1, is the best pre-
dictor. Next, other substantial graded assignments such as
projects 2 and 3 and lab 5 also have fairly high weights. The
Pytania features overall have small weights, suggesting that
participation in the polling system is not strongly correlated
with success. It may be the case that students did not take
Pytania participation very seriously as it only accounted for
2% of their semester grade. However, we do observe that
pwa:0 and pwa:1, which correspond to questions answered
in the most recent weekly periods, are more significant than
the earlier weeks, meaning that recent activity is a better
indication of a student doing well than activity early on in
the course. For the zyBook features we see that each chapter
has a small positive weight. The strongest positive zyBook
weights are chal acp (the number of challenge problems suc-
cessfully completed) and zy early (the average earliness of
submissions). Interestingly, zy attempt (corresponding to
the total number of attempted submissions) and extra sub

Feature Name Meaning

L1E Lab 1 Exercise
L4T Lab 4 Test
L6Q Lab 6 Quiz
P1 Project 1
T1 Test 1

chal acp Challenge zyBook problems successfully submitted
extra sub Resubmissions to a previously correctly submitted problem

pytania std Standard deviation across Pytania bins
pwa:1 Pytania participation last week
pwa:2 Pytania participation two weeks ago
zychp1 zyBook correct submissions from chapter 1

zy attempt Total count of zyBook submissions
zy early Average earliness of zyBook submissions

Figure 5: Regression Coefficients
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Figure 6: Regression coefficients T3

Figure 7: Regression coefficients Raw

(corresponding to the total number of additional submis-
sions to a problem which had already been completed) both
have negative weightings. The first could be explained by
the fact that students who struggle and require multiple sub-
missions to a problem are likely weaker students. The second
is more difficult to account for, as one might expect subse-
quent attempts at a problem for which the student already
has credit to be a sign of determination to learn the material.

6. DISCUSSION
In this paper we formulated an in-class predictive model for
student performance in a CS1 course taught at George Ma-
son University. Our model used a feature set solely derived
from in-class activities and assignments rather than relying
on past information or demographics. We employed a vari-
ety of machine learning algorithms and tested their accuracy
as a function of the number of weeks of data used from the
semester. Our results show that both final raw scores and
final exam scores can be predicted with a high level of accu-
racy as early as 6 or 7 weeks into the course. Thus it could
be effectively employed as an early warning system, such
that students could have a good sense of what grade they

will end up with if they remain on their current trajectory.

We note that often in cases where multiple features had
equivalent direct grade contributions (due to course weight-
ing) there was a discrepancy in the predictive power amongst
these features. For example, we found that recent participa-
tion was a more relevant predictor of ultimate success than
past participation, even though it is equivalent in terms of
direct impact on a student’s grade. Similarly, we found that
engagement with certain textbook chapters, and success on
certain labs and quizzes are more indicative of success than
others. Thus there could be a situation in which two stu-
dents have the same class grade, and yet one is flagged as
a struggling student while the other is not. Herein lies the
value of using such a model; it can discover nuances and pat-
terns in student performance which an instructor (particu-
larly in an introductory course with many students) would
otherwise be unable to detect.

6.1 Future Work
In this work we considered only in-class information. It
would be interesting to see how much improvement could
be made to the model by also considering past information
such as prior course scores and demographics. It would also
be worth trying to make predictions of other CS courses, or
non-CS courses, and comparing the accuracy of predictions
as well as which features stand out as strong predictors.

We propose that our predictive model could serve as an early
warning system, triggering intervention. However, we do not
suggest exactly how or when this intervention should take
place. Studies would have to be performed on different forms
of intervention to determine which methods work best.
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APPENDIX

Appendices
A. GRIDSEARCH PARAMETERS
Grid search found the optimal combination of parameters for
each machine learning algorithm. The following parameters
were used (any unlisted used the default value from sklearn):

Ridge: alpha=1.0, solver=‘lsqr’
Lasso: alpha=0.1
ElasticNet: alpha=0.1, l1 ratio-0.9
SVR: C=1, gamma=0.001, kernel=‘linear’
AdaBoost: learning rate=0.2, loss=‘exponential’,
n estimators=80
GradientBoost: criterion=‘mae’, learning rate=0.01,
loss=‘huber’, max depth=None, min samples leaf=1,
min samples split=10, n estimators=80, subsample=0.8
Bagging: bootstrap features=True, max features=20,
n estimators=80
RandomForest: criterion=‘mae’, min samples leaf=0.1,
min samples split=0.1, n estimators=40
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ABSTRACT
Online learning has attracted a large number of partici-
pants and is increasingly becoming very popular. How-
ever, the completion rates for online learning are notori-
ously low. Further, unlike traditional education systems,
teachers, if any, are unable to comprehensively evaluate the
learning gain of each student through the online learning
platform. Hence, we need to have an effective framework
for evaluating students’ performance in online education sys-
tems and to predict their expected outcomes and associated
early failures. To this end, we introduce Deep Online Per-
formance Evaluation (DOPE), which first models the stu-
dent course relations in an online system as a knowledge
graph, then utilizes an advanced graph neural network to
extract course and student embeddings, harnesses a recur-
rent neural network to encode the system’s temporal student
behavioral data, and ultimately predicts a student’s perfor-
mance in a given course. Comprehensive experiments on
six online courses verify the effectiveness of DOPE across
multiple settings against representative baseline methods.
Furthermore, we perform ablation feature analysis on the
student behavioral features to better understand the inner
workings of DOPE. The code and data are available from
https://github.com/hamidkarimi/dope.

Keywords
Online courses, Student behavior modeling, Knowledge graph,
MOOC, Graph neural networks

1. INTRODUCTION
Online learning has higher dropout and failure rates than
traditional education systems. For instance, the completion
rates of Massive Open Online Courses (MOOCs), an exten-
sion of online learning technologies, are low (0.7%-52.1%,
with a median value of 12.6%, reported by [20]). We also
see similar situations in other online courses from univer-
sities such as Open University in the UK and China [19].

∗Equal contribution and co-first author

Figure 1: Visual comparison of the learning/intervention
process between online and in-person education systems.

Furthermore, since students typically drop out early in the
courses [33], the platform is desired to detect which stu-
dent is likely to drop out (or fail) as early as possible to
intervene and to hopefully prevent these negative outcomes.
Then the question is how we can assess students’ perfor-
mance and detect those who are likely to drop out or fail in
an online course. To answer this question, we first need to
take a closer look at the online learning system and see how
it differs from traditional learning.

As illustrated in Figure 1 (right side), in the traditional
learning setting, instructors can interact with students, as-
sess their performance, and take action to provide interven-
tion if they sense a student is likely to perform poorly in
the class. In online learning systems, however, the students
primarily interact with the online platform, so we face a
setting depicted in the left side of Figure 1. In this set-
ting, there is inherently less interaction between students
and instructors. More specifically, due to the high student-
teacher ratio, teachers, if any, in the online learning systems
are unable to comprehensively evaluate the learning gain
of each student. Thus, we seek to develop a methodology
that can harness the interactions of students with an online
platform and accurately predict the course outcome (e.g.,
pass or fail). Such a system could then be used in real-time
throughout the course to identify the students who are pre-
dicted to perform poorly and provide some intervention to
them with the limited resources that are inherent in online
systems.

Given the above discussion, we propose a framework named
Deep Online Performance Evaluation (DOPE) to predict
students’ course performance in online learning. DOPE first
models the student course relations of the online system as a
knowledge graph. To incorporate an aggregated overview of
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the students and courses in the online system, DOPE learns
student and course embeddings from our knowledge graph.
More specifically, we employ a relational graph neural net-
work [34] that can handle the rich attribute information
found in our knowledge graph (e.g., student demographic
data). Then, our proposed approach utilizes a recurrent
neural network (RNN) to encode the temporal student be-
havioral data into some features. More specifically, the stu-
dent behavioral data is coming from student click patterns
extracted and aggregated into weekly snapshots that repre-
sent how they have interacted with the online learning sys-
tem. Finally, the student and course embeddings (extracted
from the knowledge graph) are combined with the encoded
behavioral data extracted for the given student and course
and are fed to a classifier to predict a student’s performance.
In summary, our contributions are as follows.

1. We propose the use of a knowledge graph to model com-
plex online learning environments to allow more rich data
to be extracted as compared to representing the data in
a traditional unstructured way; and

2. Our proposed framework to predict student course out-
comes contains two novel components, namely a relational
graph neural network to extract student and course em-
beddings from the formed knowledge graph and a recur-
rent neural network model for encoding student behav-
ioral data according to their clicks in the online system.

2. PROBLEM STATEMENT
Suppose from the set of courses in an online system we
have a subset of m courses denoted as C = {c1, c2, · · · ,
cm}. Furthermore, let there be n students having enrolled
in at least one of the m courses in C, which we denote as
S = {s1, s2, · · · , sn}. For each course cj , we assume there
are some course features that can be represented as the vec-
tor fj ∈ Rdc with dc being the dimension size after encoding
the course features. Similarly for each of the students si we
assume there has been some collected demographic informa-
tion that can be represented as the vector di ∈ Rds with ds
being the dimension size after having encoded the student
demographic data. In addition to the demographic data, the
system is assumed to have collected some sequential behav-
ioral data for each student si enrolled in course cj that we
represent as Bij = [B1

ij ,B
2
ij , · · · ,Bk

ij ] where Bw
ij ∈ Rq rep-

resents an encoding of the behavior for student si during the
wth week of course cj , k represents the number of weeks for
which behavioral data was collected, and q is the dimension
of the encoded weekly student behavior. In other words, we
have a tensor of student behavioral data B ∈ Rn×m×k×q.
For each student si, we represent their performance out-
come in course cj as oij , where we assume there can be P
outcomes (denoted by the set p ∈ P).

Now, given the notations listed above, we seek to learn a
model f(.|θ) having parameters θ such that it can predict
the course student outcomes O as follows:

M(C,S,F ,D,B,O, f(.|θ))→ θ̂

where we use M to denote the machine learning (artificial
intelligence) process, B is used to represent the behavioral
(e.g., click) data for a given set of courses C using only the
first k weeks of data, F represents the set of course features
of C, D denotes the set of demographic data for the students

Figure 2: Visualizing the traditional representation used in
prior supervised learning prediction models as compared to
our knowledge graph representation.

Figure 3: Visualizing the aggregation process in how both a
student and course embedding are formed from their knowl-
edge graph multi-hop neighborhood.

in S, O represents the performance outcomes of the students
in S and the learned parameters of f(.|θ) are given by θ̂.

3. PROPOSED MODEL
In this section, we explain our proposed model in detail.

3.1 Knowledge Graph Representation
We first model the historical online course data in the form
of a knowledge graph, as shown in Figure 2. Our knowledge
graph formulation in Figure 2(b) offers a richer represen-
tation than a traditional independent naive student course
relation representation shown in Figure 2(a). This is be-
cause through this graph structure we can leverage the re-
lations between students and courses beyond that seen in
Figure 2(a). We let G = {C,S,Xc,Xs,B,A} represent a
knowledge graph G containing the set of m course nodes C,
set of n student nodes S, course features Xc ∈ Rn×dc con-
structed from F , student demographic features Xs ∈ Rm×ds

constructed from D, the behavioral data B representing
complex sequential edge features, and an adjacency tensor
A ∈ Rn×m×P constructed from the P different student-
course outcome relations where Ap

ij = 1 if oij ∈ O and
oij = p (with Ap

ij = 0 otherwise). Now, given the knowledge
graph G, we seek to extract student and course embeddings
by using a relational graph neural network.

3.2 Relational Graph Neural Network
Recently, graph neural networks (GNNs) [38, 39] have be-
come increasingly popular due to their ability to utilize deep
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learning on graph structure data. One popular class of
GNNs is the graph convolutional networks (GCNs) [5, 27,
8, 7], which are constructed with roots from the classical
CNNs. The general idea of these GCN models is that we
would like to learn a better set of latent features. In the
context of our problem, to better understand and represent
a student, rather than directly using their features alone, we
could use a 1-layer GCN that would incorporate the features
of all the courses that the student has taken. For example,
in Figure 3(a), the 1-hop neighbors would be utilized in a
1-layer GCN model taking into consideration the course c3
that they passed and c1 that they failed. Then, it is natural
to see in Figure 3(a) that using a 2-layer GCN would further-
more incorporate the 2-hop neighbors which would include
information from all the classmates of si for each of the two
courses they have taken, and thus providing further context
into learning a more comprehensive embedding for student
si. We specifically harness the ability of a relational graph
convolutional network [34]. Next we will provide the details
on how the first layer (or equivalently a 1-layer) GCN is able
to construct learned representations hs

1
i and hc

1
j for the stu-

dent si and course cj , respectively, from the initial student
features Xs, course features Xc, and adjacency tensor A in
our knowledge graph representation.

–First Layer Embeddings. First, we recall that connec-
tions between students and courses are stored in the tensor
A where Ap

ij = 1 if oij ∈ O and oij = p (with Ap
ij = 0 oth-

erwise). Thus, we define for a student si their set of courses
for which they had outcome p as N p

s (si). Similarly, we de-
fine for a course cj their set of students that received the
outcome p as N p

c (cj). Now, given these new notations, we
can define the first layer representations hs

1
i and hc

1
j for the

student si and course cj , respectively, as follows:

hs
1
i = σ

(
W1

selfXs[i] +
∑
p∈P

1

|N p
s (si)|

∑
cj∈N

p
s (si)

W1
pXc[j]

)
(1)

hc
1
j = σ

(
W1

selfXc[j] +
∑
p∈P

1

|N p
c (cj)|

∑
si∈N

p
c (cj)

W1
pXs[i]

)
(2)

where σ is an element-wise non-linear activation function (e.g.,
ReLU(·) = max(0, ·) [13]), Xs[i] denotes the student features for

si, Xc[j] denotes the course features for cj , W1
self is used to

transform the self features from the original features, and W1
p

is used for transforming the features that are linked through the
relation (i.e., course outcome type) p for the first layer.

–Final Student Embeddings. If we assume having L layers in
our GCN model, we can then first define the last layer where we
will obtain the student embedding zsi = hs

L
i for si as follows:

zsi = σ

(
WL

selfhs
L−1
i +

∑
p∈P

1

|N p
s (si)|

∑
cj∈N

p
s (si)

WL
p hc

L−1
j

)
where hs

l
i represents the representation of student si at layer l of

the GCN. Note that if we were to use a 2-layer GCN (i.e., L = 2)

then hs
L−1
i = hs

1
i would be coming from Eq. (1) and similarly

hc
L−1
j = hc

1
j from Eq. (2).

–Final Course Embeddings. If we assume having L layers in
our GCN model, we can then first define the last layer where we
will obtain the course embedding zcj = hc

L
j for cj as follows:

zcj = σ

(
WL

selfhc
L−1
j +

∑
p∈P

1

|N p
c (cj)|

∑
si∈N

p
c (cj)

WL
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Figure 4: Visualizing the entire DOPE model consisting of
both the relational graph neural network and recurrent neu-
ral network components.

where hc
l
j is the embedding of student cj at layer l of the GCN.

Next, we will discuss how DOPE uses an RNN to encode a stu-
dent’s sequential behavior data associated with a given course.

3.3 Encoding Student Behavioral Data
In this part, we discuss how to encode the sequential edge fea-
tures i.e., behavioural student data. To recall, when a student
si is currently enrolled in a course cj , by the kth week we will

have the features Bij = [B1
ij ,B

2
ij , · · · ,Bk

ij ]. To better repre-

sent the behavioral data, we utilize a Long-Short Term Memory
(LSTM) [16], which is an effective RNN variant that has been
designed to extract temporal features from sequential data e.g.,
videos [25] , speech [14, 25], and text [24, 23]. Furthermore, it
has shown great abilities to capture temporal online user behav-
iors [26]. We fix the length of the behavior feature sequence for
all students to be k (e.g., 10 weeks). Then for a given behavioral
sequential data Bij , at each week t ∈ [1, k], an LSTM unit takes
the t-th week’s click feature vector Bt

ij as the input and uses

LSTM formulation [16] to produce the output behavioral vector

ht
b. The final output of the LSTM is hk

b ∈ Reb (i.e., output of
last LSTM unit) when given the sequence Bij as input. Then,

we set the encoded behavior of student si for course cj as the eb

dimensional vector zbij = hk
b .

3.4 Final Course Performance Classifier
Here we combine student and course embeddings from the re-
lational graph convolutional as well as encoded behavioral data
and feed into a classifier. This can be seen in Figure 4. Given
the student embedding zsi for student si, course embedding zcj for

course cj , encoded student behavior of si in the course cj as zbij
we form the final feature representation as follows:

zij = zsi ||zcj ||zbij
where || denotes concatenation and we concatenate the three com-
ponents together into a single (es + ec + eb) dimensional repre-
sentation. For training DOPE, we use supervised learning such
that labels are the outcome performances from the historical data
oij ∈ O and matched with the training student and course pair
(si, cj). More specifically, we construct a minibatch set M that
contains triplets of the form (si, cj , T ) where T = oij (i.e., the
course outcome type) and we assume the outcome type set T
where |T | = p since there are p course outcome types. The ob-
jective is then formalized in the following:

L =
1

|M|
∑

(si,cj ,T=oij)∈M
log

exp (θMLG
T zij)∑

T
′∈T

exp (θMLG
T

′ zij)
(3)

+ λReg(θRGCN , θLSTM , θMLG)
where the classifier first maps zij to a p dimensional vector through

the parameters θMLG (since we have p different outcomes, i.e.,
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Table 1: The description of the dataset.

Name Train Periods Test Periods #Students
SS1 2013J 2014J 735
SS2 2013B, 2013J 2014B, 2014J 6622
SS3 2013J, 2014B 2014J 2366
ST1 2013B, 2013J 2014B, 2014J 5745
ST2 2013J, 2014B 2014J 2685
ST3 2013B, 2013J 2014B, 2014J 7092

link labels in the knowledge graph) and then utilizes the softmax
function to get the outcome probabilities.

4. EXPERIMENTS
In this section, we conduct some experiments to verify the working
of our proposed method.

4.1 Dataset and Experimental Settings
Online education platforms utilize virtual learning environments
(VLEs) to collect records about all students’ interactions and pro-
vide the opportunity for analyzing students’ learning behavior.
In this study, we use the data of The Open University Learn-
ing Analytics Dataset (OULAD) [29], which contains 22 open
university courses for years 2013 and 2014 and 32,593 students.
The dataset includes student demographic information, student
assessment results, and daily interactions with the university’s
VLEs (10,655,280 entries). For each year, courses are offered in
two distinct modules denoted as B and J (essentially they are
similar to ‘semester’ in the conventional education system) where
each module takes around 35 to 40 weeks long. The outcome
of a course for a student can have four different categories in-
cluding Distinction, Pass, Fail, and Withdrawn. We use OULAD
and select three social science courses (i.e., SS1, SS2, and SS3)
and three Science, Technology, Engineering, and Mathematics
(STEM) courses (i.e., ST1, ST2, and ST3) as demonstrated in
Table 1.

To represent the behavioral data, we count the different number
of weekly clicks a student makes e.g., accessing resources, web-
page click, forum click, quiz attempt, and so on. The size of each
weekly behavioral vector is 20. Further, course attributes include
two one-hot encoding vectors, one for representing a course among
6 courses, and the other one for holding either the course is social
science or STEM. Train and test periods are shown in Table 1.
We use 10% of the training data as a validation set to tune the
hyper-parameters. The implementation is done using PyTorch
package [30]. Each simulation is run for 200 epochs with a learn-
ing rate set to 0.001 and a decaying rate of 0.99 every 100 steps.
As for the evaluation metric, we use weighted F1 score which is
the harmonic mean of recall and precision.

4.2 Baseline Methods
We compare the performance of DOPE with the following baseline
methods.

• SVM. In this baseline method, we concatenate the course at-
tributes and students’ demographic features as well as weekly
click data (i.e., behavioral data) into a single vector and feed it
to a support vector machine with radial basis function kernel.

• LR. This is similar to SVM except we use logistic regression for
classification. The reason for including this baseline is to mea-
sure the online course performance prediction problem using a
simple classification method without any kernel or non-linearity.

• DOPEFCN. This is a variation of DOPE where instead of mod-
eling behavioral data with an LSTM, we use a fully connected
network. The reason for including this method is to evaluate the
effectiveness of the way we model sequential behavioral data.

We compare DOPE with the baseline methods for the different
numbers of weekly click data i.e., 5, 10, 15, and 20 weeks. By
doing so, we can measure how effective DOPE is in the early
prediction of a student’s course performance prediction. We note
that 20 weeks is almost half of a course period when there is still
adequate time for intervention in the case of prediction as failure.

4.3 Binary Classification
As mentioned begore, our dataset includes 4 distinct labels for a
student’s performance in a course, namely Distinction, Pass, Fail,
and Withdrawn. In this section, we merge Distinction and Pass
into a single class “Pass” and Fail and Withdrawn into a single
class “Fail” and then perform a binary classification. Figure 5
illustrates the experimental results for all courses. We make the
following observations based on the results presented in Figure 5.

• In general, the more weekly click data is introduced, the bet-
ter we can predict the students’ outcomes. DOPE enjoys more
of such performance increase as compared to other methods.
In particular, as early as 20 weeks from the start of a course
(i.e., almost in the middle of a course duration), it can predict
student’s outcomes with very high performance. This allows
teachers or online course administration to take actionable and
interventive measures to help students with poor performance.

• DOPE achieves a better performance than DOPEFCN. This
shows the fact the LSTM component as a machinery extracting
temporal features from click behaviors is necessary and affects
the model’s predictive power.

• DOPE is shown to be effective for all courses as we can observe
it achieves an F1 score of more than 0.8 across all courses when
20 weeks of click data are considered.

4.4 4-class Classification
In this part, we compare the performance of DOPE with baseline
methods for a 4-class classification setting whose experimental
results are demonstrated in Figure 6. We make the following
observations based on the results in Figure 6.

• The observations we made for binary classification hold for 4-
class classifications as well. In particular, DOPE still outper-
forms baseline approaches, more weekly click data is helpful in
course outcome prediction, and the LSTM can effectively han-
dle sequential that than simple concatenation followed by a fully
connected network model (i.e., DOPEFCN).

• Since more classes are considered, compared to binary classifi-
cation, the 4-class classification is a harder task. In particular,
now Withdrawn is considered as a separate class, which might
be “conceptually” hard for a model to discern from Fail.

4.5 Behavioral Feature Analysis
Since behavioral data (i.e., click data) plays an essential role in de-
termining a student’s performance, we conduct a feature analysis
experiment investigating the importance of each behavior type.
A similar feature analysis has been performed to discover great
insights into human behaviors [21]. To this end, we follow an ab-
lation feature analysis where at each time we include one feature
type and suppress the rest (setting their values to zero) and then
acquire the F1 score from the model. We do this experiment for
the binary classification and the case when 20 weeks of click data
is included. Figure 7 demonstrates the results and we make the
following observations accordingly.

• For all courses, feature type homepage is associated with a high
F1 score. This seems reasonable since most of the click activity
occurs on the main page of the platform interface.

• Interestingly, clicks and activities in forums have an influential
role in predicting fail or pass of a student in a course. This is in
line with previous [15, 31] where they showed that MOOC forum
activities correlate with a student’s academic performance.
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Figure 5: Comparison results for binary classification using four different amounts of included weekly click data.

(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison results for 4-class classification using four different amounts of included weekly click data.

• Unique behavioral importance profile of a course can aid pol-
icymakers, administrators and even course interface designers
to prepare the course materials in a more informed way. For
instance, we can observe that attribute wiki is playing an im-
portant role in performance prediction of ST2 while its effect
is negligible for other courses. This can be indicative of ma-
terials of the course ST2 to be requiring more wiki access and
consequently, the content can be changed accordingly.

Based on the observations above, we can conclude that DOPE
encodes behavioral data in an intuitive manner that conforms to
previous studies’ findings as well.

4.6 Inter-course Outcome Evaluations
Naturally, each course has its own model. However, in this sec-
tion, we intend to measure inter-course performance evaluation
where we train DOPE on one course and test it on another one.
Table 2 shows the results. Again, the models are trained for the
binary classification and they incorporate 20 weeks of the click
data. Also, for the reference, we have included intra-course per-
formance (i.e., the same course for training and test) shown in the
diagonal entries of Table 2. Expectedly, when the training course
and the test course are the same (i.e., intra-course setting), the

performance is higher. This seems reasonable since clicking pat-
terns are expected for the course in the past (i.e., a part of the
training data) and the one in the future (i.e., testing data), and
the model can more easily extract such patterns. Although the
results for inter-course results are not as good as the ones for
intra-course, we still see that the DOPE can effectively achieve
reasonable performance. This indicates that the proposed model
DOPE can detect salient click and demographic patterns that are
transferable from a course to another.

Table 2: Inter-course performance evaluation

Test course

T
ra

in
in

g
co

u
rs

e SS1 SS2 SS3 ST1 ST2 ST3

SS1 0.83 0.78 0.77 0.71 0.8 0.75
SS2 0.63 0.80 0.58 0.66 0.53 0.66
SS3 0.64 0.51 0.80 0.45 0.72 0.49
ST1 0.60 0.79 0.71 0.82 0.47 0.41
ST2 0.74 0.60 0.56 0.62 0.88 0.49
ST3 0.79 0.76 0.75 0.70 0.77 0.86
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Figure 7: Behavioral feature analysis on different courses. The models are binary classification using 20 weeks of click data.

5. RELATED WORK
In the following, we highlight some of the works focusing on stu-
dent dropout and performance prediction. In [35], they extracted
27 interpretive features and used logistic regression to predict
student persistence prediction. The authors of [32] used proba-
bilistic soft logic to model student survival by constructing prob-
abilistic soft logic rules and associating them. Different from [32]
(which mainly considered forum features), in [28] they did not
consider forum data, but instead only made use of clickstream
data to train their prediction model. More specifically, they used
principal component analysis [37] paired with a linear support
vector machine [4] for each week. It was in [12] that a more
comprehensive approach was taken that used standard classifi-
cation trees [2] and adaptive boosted trees [1] to construct their
two-stage Friedman and Nemenyi procedure for dropout predic-
tion by processing different features such as clickstream-based,
forum-based, and assignment-based features. More recently, in
[3], the authors studied a hybrid method for dropout prediction
by combining both a decision tree [11] and extreme learning ma-
chine [18]. In addition to these traditional machine learning meth-
ods, some researchers have tried to use different deep learning
models for dropout prediction of online courses. In [9] an LSTM
was used to deal with the features extracted from students’ in-
teraction with lecture videos, forums, quizzes, and problems. [36]
explored the potential benefits of employing a fully connected
feed-forward neural network for dropout prediction. Different
from previous work, [10] proposed a context-aware feature inter-
action network to incorporate context information of both par-
ticipants and courses. More specifically, they used an attention-
based mechanism for learning activity features. The most similar
method to ours is found in [17] where they sought to conduct per-
formance evaluations on students using a graph neural network
(GNN), but there are primary differences: (1) they constructed
separate small graphs of courses for each student while DOPE
constructs a single knowledge graph of historical student course
relations; (2) their graph neural network was used to obtain a
graph classification for a given student based on that student’s
specific course graph, while our method uses the relational graph
neural network to learn embeddings for both students and courses

from a single large knowledge graph; and (3) DOPE furthermore
utilizes an LSTM model to capture a student’s rich sequential
behavioral data beyond just using static fixed student features.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a model for course performance predic-
tion we call it Deep Online Performance Evaluation (DOPE). Our
method first represents the online learning system as a knowledge
graph, such that we then learn student and course embeddings
from historical data using a relational graph neural network. Si-
multaneously, DOPE utilizes an LSTM for harnessing the student
behavior data into a condensed encoding, as the data has a nat-
ural inherent sequential form. We tested the proposed model on
six courses from the OULAD dataset where the results showed
the feasibility of DOPE and that it can predict at-risk students
of on-going courses. We also investigated the usefulness of the
different types of behavioral features and observed that DOPE
encodes the data in an intuitive manner.

In the future, we will first analyze the imbalance and sparse is-
sues of the dataset. One possible way to alleviate the sparsity
would be through a network alignment [6] of multiple MOOC
datasets represented as knowledge graphs or connecting student
behavior data from social media for better predictions in online
education [22]. Also, we will investigate more advanced ways of
handling behavioral data. For example, investigating better ways
to use “subpage” clicks beyond a simple aggregation that ignores
separating the multiple different “subpages”. In addition, we plan
to apply our framework to the traditional education system aim-
ing at identifying similarities and differences between online and
traditional course performance prediction, since we believe this
to be highly important in improving online learning systems.
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ABSTRACT
Imagine a student using an intelligent tutoring system. A
researcher records the correctness and time of each of your
attempts at solving a math problem, nothing more. With
no names, no birth dates, no connections to the school, you
would think it impossible to track the answers back to the
class. Yet, class sections have been identified with no more
data than this. This paper recounts shocking episodes where
educational data was used to re-identify individual students,
build profiles on students, and commit fraud. We look at
the ethical principles that underlie privacy as it relates to
research data, and discuss ethical issues in data mining relat-
ing to social networks and big data. We explore four major
types of data used in EDM: (i) clickstream data, (ii) student-
interaction data, (iii) evaluative data, and (iv) demographic
data. Each type of data can be harmful if disclosed in partic-
ular contexts, even if all personally identifiable information
is removed. We consider laws and legal precedents control-
ling access to student data in the United States and the
European Union. This paper concludes by describing some
practical situations in EDM and suggesting privacy policies
that satisfy the ethical concerns raised earlier in the paper.

Keywords
Privacy, anonymization, de-identification, ethics, educational
data mining

1. OUR DATA ARE MORE THAN VALUABLE
Educational data mining (EDM) analyzes student data from
Learning Management Systems (LMSs) and stand-alone ed-
ucational applications. Educational technology (EdTech)
vendors use student data to analyze student performance,
improve student models, and discover opportunities to boost

learning. Any EdTech data breach or unjustified student
tracking infringes student privacy, generates huge contro-
versy, and produces big headlines. The ability to create aux-
iliary connections with other known information makes data
valuable to both hackers and researchers. EDM researchers
need to understand privacy risks raised by sensitive data.

1.1 Privacy risks of educational data breaches
One of the biggest leaks of student data was the Edmodo
data breach. Edmodo is an EdTech company that provides
coaching tools and a collaborative platform for K-12 stu-
dents and teachers to communicate about course content,
quizzes and assignments. The breach involved 11.7 gigabytes
of data and over 77 million uniquely identifiable users, ex-
posing at least 50 million usernames and 29 million emails.
Edmodo did acknowledge the breach’s occurrence, but by
that time data was being sold by the hackers on the black
market [9]. The breach was important, not because of the
inherent value of the data itself, but rather because of how
the data could be connected with auxiliary datasets. Having
a list of hashed passwords is not useful; knowing that peo-
ple tend to reuse passwords exposes other systems to greater
risk. Leaking names and email addresses also left the stu-
dents at greater risk of identification or additional tracking.

Since other breaches or publicly available datasets reveal
personal information such as addresses or ethnicity, they
can be cross-referenced to the leaked data to reveal a more
complete identity. Companies shy away from controversy
when it places their product or service at risk, and victims
tend to not come forward, lest they sacrifice their privacy.
It is important to take these breaches seriously, as any data
leaked by research projects or products has more value now
than before this large data breach.

Let’s examine other educational data breaches. At Torrey
Pines High School in San Diego, California, the online grad-
ing system was hacked to alter students’ grades and tran-
scripts [17]. This incident highlights risks like grade changes
by unauthorized parties. In Montgomery County, Maryland,
a student performed a brute-force attack on Naviance, an
online platform for college and career readiness. The attack
exposed sensitive data from 5962 accounts, including names,
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addresses, phone numbers, GPA, and SAT scores [12], that
students trust will remain private and protected.

In the last two years, Chinese media have reported several
cases where students’ personal information, including their
national identity card number, was stolen or leaked. Com-
panies then used students’ identities as phantom employ-
ees for tax fraud [7, 8]. One of the saddest cases related
to an educational data breach occurred in 2016. After the
national college entrance exam, a criminal group hacked a
local university application system and acquired students’
personal information, including phone numbers. The per-
petrators posed as financial-aid officers then contacted stu-
dents, asking them to transfer money into specified accounts
before their financial aid could be delivered. One student
contacted, Yuyu Xu, died from sudden cardiac arrest after
discovering that it was a fraud [6].

1.2 De-identification is not enough
In a 2005 contest to devise better movie-recommendation
systems, Netflix released 10 million movie rankings by 500,000
customers after removing all direct customer-related infor-
mation. Two University of Texas researchers showed that
simple anonymization fails to preserve privacy; researchers
connected anonymized Netflix dataset entries with distinct
users in the Internal Movie Database [43]. Similar risks are
present in anonymized datasets used for EDM research.

Another compromise of anonymized data occurred when the
“Tastes, Ties, and Time” (T3) project released de-identified
Facebook profile data. All personally identifiable data was
removed, such as names, email addresses, university name,
and names of friends. However, the dataset’s associated code
book provided a list of students’ majors and state or coun-
try of origin. Within a couple of days, researchers at Uni-
versity of North Carolina at Chapel Hill and University of
Wisconsin-Milwaukee identified the “anonymous northeast-
ern university” as Harvard. This raised significant privacy
concerns as research assistants at Harvard University who
were “friends” with some students in question, had deeper
access to profiles than the general public. Both the Harvard
IRB and Facebook had approved the project [69].

In one case, researchers collected clickstream data from mul-
tiple classrooms across the country instead of personally
identifiable information (PII) or demographic data about
an individual student. They created clusters of students
from log files, recording time and correctness of students’
responses. These clusters were enough to identify classes
of gifted students and extract demographic data about stu-
dent groups [67]. When one cluster missed a day’s worth of
work, the researchers cross-referenced potential classrooms
with announcements of a field trip. This resulted in a single
classroom being identified using only anonymized data.

Common de-identification techniques include: Anonymiza-
tion, where all PII is simply removed from the dataset; hash-
ing, where multiple fields (e,g., last name and email address)
are hashed into a single value, and replace the original fields
in the record; swapping, where some field, such as a name,
is switched to apply to someone else’s record; and noising,
where data values are perturbed (changed) in some way [37].

These common de-identification techniques can have adverse
effects on data quality [14]. Protecting students’ privacy by
removing re-identifiable attributes from data can reduce the
data’s utility for analysis [67]. Noising data can diminish
performances of supervised learning models [44]. Despite
not changing aggregations, swapping has similar effects [41].
Thus, it is crucial to balance privacy with utility. Ohm
(2009) warns that “the utility and privacy of data are linked,
and so long as data is useful, even in the slightest, then it is
also potentially re-identifiable” [47].

Building profiles for targeted advertising also endangers stu-
dent data privacy. Data can be collected by amassing emails
or system interactions, like websites visited. Students can be
identified and targeted on the basis of their answering pat-
terns, e.g., what questions they answered correctly. Google,
which provides the educational content platform GSuite for
Education, has been alleged to have built personalized pro-
files of students based on their GSuite interactions, and
to have scanned students’ emails to target advertising [23,
28]. Selling the data to third-party vendors without consent
would raise severe ethical questions.

In these cases, students’ identities and information were used
or revealed without explicit permission, undermining the
idea of consent. Although releasing someone’s homework
grade or test score seems trivial, researchers need clear un-
derstanding of what constitutes legal and ethical usage of
student data so students remain protected while the EDM
research efforts continue into noble frontiers.

2. ETHICAL PRINCIPLES RELATING TO
EDUCATIONAL RESEARCH DATA

Deciding what constitutes “responsible use” bridges research
ethics and other ethics subfields. Each field emphasizes dif-
ferent aspects of the research process. As with any ethical
discussion, clarifications of these terms and new realizations
of technologies causes these principles to evolve to reflect
the state of EDM research. Several analyses have looked at
key principles in a more abstract form [48, 51, 59], but these
works are too broad to answer specific questions. This pa-
per seeks to highlight key principles from each subfield and
applications to specific areas of EDM research.

2.1 Research ethics
Much of the literature on research ethics derives from the
Nuremberg Code [34], the Helsinki Declaration [2], and the
Belmont Report [15, 35, 65]. But the Belmont report lacks
specifics on internet-mediated research [1]. The Menlo Re-
port [4] extends principles from the Belmont Report to com-
puting centric research. It adopts three principles found
within the original Belmont Report, and adds a new fourth
principle, respect for law and public interest.

2.1.1 Respect for Persons
The Belmont Report establishes the principle of respect for
persons through two key frames: treating individuals as
autonomous agents and entitling individuals to protections
[65]. The Menlo Report adds consideration of computer sys-
tems and data that directly impact people who are typically
not research subjects themselves [4]. This impacts the con-
cept of informed consent. Informed consent comprises three
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concepts: notice, comprehension and voluntariness [4]. For
EDM research, consent documents must not promise im-
proved service or instruction in return for participation; this
could be interpreted as coercion. This is relevant to intel-
ligent tutoring systems (ITSs)—students unwilling to allow
an ITS to use their data for research purposes should not
thereby be academically disadvantaged.

The Menlo Report reiterates consent from one person does
not constitute consent from all members of their group, and
consent given for one research purpose should not be con-
sidered valid for different purposes. Since data subjects are
co-owners of educational data [40], concepts such as down-
stream consent [13] should be considered for applications like
educational data warehouses. To further protect individu-
als, the Menlo Report suggests de-identification of data. De-
identified data can fit into the special regulatory category of
“pre-existing public data,” which affords more opportunity
for exemptions granted by research ethics boards.

2.1.2 Beneficence
For identifying of potential benefits and harms, the Menlo
Report targets systems assurance (confidentiality, availabil-
ity, integrity) and individual and organizational privacy [4].
Within EDM, this means identifying likely flaws or biases
in ITSs prior to deployment or introducing protections for
model inference and model inversion attacks [20, 52, 56, 58].

When collection or storage of high-risk data is necessary, the
Menlo Report suggests to destroy data once past the reten-
tion period of scientific reproducibility, which is commonly 3
years at minimum [11, 46]. A tension exists between data re-
tention for research replication and ensuring privacy of data
subjects, which will be discussed further in section 3.2. Uti-
lizing data aggregations prevents the need to store sensitive
information that could tie back to a specific student or class.

2.1.3 Justice
With regard to justice, the Menlo Report declares research
should not target specific people or groups based on at-
tributes such as technical competency or personal demo-
graphics [4]. For EDM researchers creating some model or
product, this discourages using convenience samples such
as classrooms the researcher worked with previously. In-
stead, research should target classrooms or groups of stu-
dents where the potential intervention provides the most
benefit. Using prior data providing an accurate cross-section
of the larger community being studied is more favorable than
potentially excluding future groups from participation.

The Menlo Report compares actively excluding groups out
of prejudice and actively including entities willing to cooper-
ate and consent. Including entities demonstrates the princi-
ples of Respect for Persons and Beneficence outlined earlier.
Specifically targeting subjects through coercion undermines
legitimate research and violates the principle of Justice [4].

2.1.4 Respect for Law and Public Interest
The Belmont Report implicitly classifies respect for the law
and greater public interest as an aspect of Beneficence. The
Menlo Report considers it a fourth principle with two ap-
plications: compliance and transparency/accountability [4].

These provide some assurance of public good whenever iden-
tifying stakeholders is difficult or impossible. Lacking trans-
parency and accountability weakens current research projects
at hand and learning analytics research credibility as a whole.

Within EDM research, compliance, transparency, and ac-
countability all require researchers to understand relevant
laws in their jurisdictions. Researchers are culpable for being
up-to-date on laws and regulations where they perform re-
search. Transparency means releasing source code or clearly
communicating what information is collected and what com-
putations are performed. Transparency is in the interest of
research subjects, the beneficiaries of research, and research
ethics boards as they audit projects where necessary.

2.2 Social networks and ethics
With a growing level of research incorporating data directly
from social networks, EDM must consider the various ethical
principles guiding online behaviors. The disconnect of indi-
viduals from online identities must be considered while using
social networking data and its derivations. Seeing incom-
plete aspects of an individual’s personal life through their
social network lens affects and alters the perception of them.

Users curate their identities in an online setting [61]. Some
students may only use social network services to communi-
cate within specific spheres like family, workplaces, or friends.
Students’ online actions and behaviors may not truly reflect
themselves as learners, but as reflections of the sphere they
are in. Social networks have distinct group dynamics, similar
to the real world, further complicating the trustworthiness
profiles provide as a snapshot of the student. In theory, so-
cial network users should be exposed to opinions of diverse
worldwide users, but in practice, views and news feed al-
gorithms constrict types of content users see [50]. In online
settings, users tend to subjugate their identities to the group
identity they participate in (e.g., student, liberal, conserva-
tive, Christian, Muslim), in order to conform to the group
[50]. With these considerations in mind, this may devalue
the student’s social network presence to the point where so-
cial network data may lack enough integrity to be used.

Some broad concerns with using social network data include
availability of users’ data to third parties to create market-
ing profiles, using data mining applications without their
knowledge or consent, surveillance by law enforcement, or
having third party applications collect and publish user data
without notification [66]. Social networking services provide
privacy controls for users; however, failure to understand
implications of sharing information on a social networking
service results in decreased privacy for users in relation to
outside actors such as researchers [5].

When releasing de-identified Facebook account data as part
of the T3 project, researchers placed limited concern on re-
search ethics and students’ privacy. Utilizing data was not
the problem; failing to recognize how collection methods af-
fected privacy is the issue. While acquiring profile data, re-
searchers could have broader access than originally intended
by the profile owner. This happens if researchers have prior
connections through memberships in their organization or
having mutual connections to the profiles. If research com-
bines educational and social networking data but disrespects
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privacy standards laid out by the student on platforms like
Facebook (or if researchers fail to seek further consent from
students about using their social network data), then this
breaches the student’s overall privacy [69].

2.3 Big-data ethics
Data possesses properties distinguishing itself from other ad-
vanced forms of technology, not limited to: its regarding as
an aspect of societal infrastructure; its interconnectedness;
its dynamic nature for discovery beyond original purpose;
its real-time analysis and decision-making possibilities; its
usability regardless of where, when, and for what purpose it
was collected; its reusability for unexpected purposes to re-
veal unexpected information (the core purpose of data min-
ing); its intrusiveness due to storing data about individuals
in multiple databases; its ownership issues, especially in ed-
ucation settings [26, 40]. Each individual datum is useless
without context and associated metadata. By this construc-
tion, value added to data provides its potential for misuse.
In EDM, positive outcomes for students come from discrete
products or further insight on learning motivations and pro-
cesses; this does not exclude potential misuse by researchers.

Although this paper will not discuss algorithmic fairness
in detail, the concept applies in big data ethics. Many
practices classify or regress individual experiences into com-
mon baselines based on socioeconomic status, race, eth-
nicity, or gender without explanatory data. Division into
classification groups and averaging metrics stereotypes stu-
dents. Unchecked stereotyping could rehash old prejudices
that negatively affect research itself. The lack of care to
blindly use basic classification groups can be extreme enough
to break the principle of “doing good work” [26]. Instead,
research should favor groups created by methods like Topo-
logical Data Analysis [22] and other Bayesian models that
cluster outside of traditional demographic groupings.

2.4 Ethical uses of specific educational data
There are four kinds of data commonly used in EDM that
have further ethical concerns for researchers: clickstream,
student interaction, evaluative, and demographic data.

2.4.1 Clickstream data
At minimum, clickstream data provides information that
some generic user initiated an interaction at a given time.
Although relatively safe on its own, a classroom worth of
students generating clicks can reveal the location of the
classroom, especially if the classroom functions on a daily
or weekly routine. Studies have already shown tracking IP
addresses to reveal geolocation [38], which shows the poten-
tial for this to be done for clickstream data as well. Uti-
lizing this aspect of clickstream data allowed Yacobson et
al. to identify a gifted student classroom from a completely
anonymized dataset of over 500 students after clustering
time of clicks and correctness of answers. Once a class devi-
ated from the schedule due to a field trip, researchers then
identified the school and classroom in question [67].

2.4.2 Student interaction data
Student interaction data includes peer assessments, online
discussion forums, and team-member evaluations—data with
a clear writer-respondent relationship. These interactions

directly reflect the respondent’s viewpoints, which may vio-
late privacy if shared outside of the student-teacher relation-
ship when they cast aspersions on the student. If negative
comments are given about the writer, and that information
somehow leaves the model or is revealed to an outside source,
this could affect student’s relationships and future prospects.
Similarly, sharing class forums regarding sensitive subjects
like sexuality to wider audiences is not proper since this
could potentially identify and harm a student.

2.4.3 Evaluative data
Evaluative data references include grades and other inputs
to predictive analytics models. In educational settings, clear
benefits to predictive models include quality assurance and
improvement of instruction, tracking and predicting reten-
tion rates, and enabling the development of adaptive learn-
ing [3, 57]. These same models could influence later in-
teractions between students and instructors, thus affecting
the relationship and trust—a proven factor in the academic
success of students [19, 21, 39, 53]. For example, if a predic-
tive model flags a student for high potential of failure and
dropout from a course, the instructor may focus interven-
tions on that student. This could overcome other reasons for
a student’s poorer performance, thus remedying symptoms
rather than determining underlying causes for the struggles.

2.4.4 Demographic data
Many studies looked at how simple demographics can iden-
tify a non-negligible number of individuals [24, 60]. Student
demographic data can be combined with other data to infer
identities of students. In the T3 project, student Facebook
data identified many individuals as being the only Harvard
freshman student from a certain state or country. Iden-
tifying an exact student is possible when combining news
announcements or other university materials [49]. With
the growing number of data breaches like the Edmodo case
and the noted intrusiveness of big data due to an individ-
ual’s membership in many databases, this leads to a risk
that often goes unnoticed for smaller research applications.
For EDM researchers, having researchers redact some de-
mographic information, when not integral to research, may
assist students in controlling their information and privacy.

In summary, it is vital to see how ethics does not adhere to
data itself; the researchers themselves and how the data are
used carries significant ethical implications. Understanding
the scope of data collection, storage, and usage ultimately
impacts the ethics of research and benefits for learners.

3. LAWS AND LEGAL PRECEDENTS
Legal regimes vary substantially throughout the world; an
exhaustive comparison is beyond the scope of this paper.
Legal frameworks for educational data exist in other coun-
tries, but their impacts are less clear [18, 62, 63, 64]. We
focus on the two largest EDM research communities: the
United States and the European Union.

3.1 United States
In the United States, the most relevant legislation is the
Family Educational Rights and Privacy Act (FERPA). En-
acted in 1974 after widespread concern about intrusive psy-
chological testing of students, FERPA defined the circum-
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stances which allow schools to release a student’s “education
records” to outsiders (including EDM researchers). Person-
ally identifiable information (PII) about a student must not
be disclosed unless the student, or the parents if the stu-
dent is under 18 years old, give their prior consent. The law
applies to all schools that receive funds under a program ad-
ministered by the US Department of Education. In practice,
this includes virtually all colleges and universities, as well as
public (but not private) elementary and secondary schools.

Under the law, PII includes students’ names, names of par-
ents and family members, Social Security or student ID num-
bers, biometric records, and other indirect identifiers includ-
ing date or place of birth and mother’s maiden name. It also
includes “[o]ther information that, alone or in combination,
is linked or linkable to a specific student that would allow
a reasonable person in the school community, who does not
have personal knowledge of the relevant circumstances, to
identify the student with reasonable certainty.”

This raises two main issues: What is an education record,
and what does the “other information” mentioned above in-
clude? For example, does clickstream data collected by an
ITS count as an“education record”? The most relevant court
case is Owasso v. Falvo (534 US 426 (2002)). This case
arose in Oklahoma, when a teacher had students peer-grade
each other’s papers. Papers were collected from students
and passed out to other students. The teacher called out
the correct answers, and each student would mark answers
on the paper in front of them as correct or incorrect. The
school district was sued by the a student’s mother who said
that her son, who had not scored very well, had been em-
barrassed when a fellow student called out his score.

The case eventually reached the US Supreme Court, which
ruled unanimously that peer grades did not constitute “ed-
ucational records.” FERPA established a two-part test to
determine what was an educational record: (i) The mate-
rial must “directly relate to the student” and (ii) must be
maintained by the institution or an individual acting on the
institution’s behalf. The decision turned on the test’s second
part. The court ruled grades were not “maintained by .. an
individual acting on behalf of the institution,” at least until
entered in the teacher’s gradebook. The court did not rule
whether teachers’ gradebooks are an educational record.

The Owasso decision seems to imply that FERPA does not
prevent the disclosure of student classwork and homework
to outside researchers, except possibly if outsiders can use it
to discover students’ grades for the assignment. In general,
data from web-based participatory learning tools is not cov-
ered under FERPA [27]. Note that this is a legal judgment,
not an ethical one, since disclosure of student information
from some such tools may allow re-identification by others.

However, one clause in FERPA implies this situation may
not last. The clause on linkable information implies that
what constitutes PII changes as technology changes [68]. As
datasets become higher dimensional, the possibility of using
an auxiliary dataset to re-identify people grows [42]. Thus,
every researcher releasing a de-identified dataset should be
familiar with the growing risks.

A distinction should also be made between datasets used
for analytics and datasets used for intervention [30]. A re-
searcher simply analyzing effects of some practice or tool
on student learning has little need to track individual iden-
tities. If the dataset is used for intervention—to improve
experiences of particular students—obviously the students’
identities must be preserved. In this case, FERPA may still
apply, since neither the law nor Owasso v. Falvo clearly
delineates what kind of research data constitutes an “educa-
tional record.” Fortunately, interventions are often in house;
data of this nature would rarely be important to outside
researchers. However, if interventions are with students in
other institutions, it would be worth seeking legal guidance.

3.2 European Union
The European Union adopted the General Data Protection
Regulation (GDPR) in April 2016, which took effect in May
2018. GDPR applies to processing“personal data”tied to an
identifiable person. For practical purposes, this seemingly is
the same as FERPA [45] (except GDPR also applies outside
educational contexts). According to GDPR [33],

[A]n identifiable natural person is one who
can be identified, directly or indirectly, in partic-
ular by reference to an identifier such as a name,
an identification number, location data, an on-
line identifier or to one or more factors specific to
the physical, physiological, genetic, mental, eco-
nomic, cultural or social identity of that natural
person.

This is subject to the same uncertainties as FERPA. One
place where the two laws differ is in the EU, the subject must
consent to use of their personal data: the researcher must
secure “a clear affirmative act establishing a freely given,
specific, informed and unambiguous indication of the data
subject’s agreement to the processing of personal data relat-
ing to him or her ... Silence, pre-ticked boxes or inactivity
should not ... constitute consent [recital 32]” [29].

Another consideration is the GDPR’s signature provision:
the “right to be forgotten.” If the subject of the data with-
draws consent, the data must be erased. The data must
also be erased when no longer needed for the purpose (e.g.,
research) that it was collected for [29].

4. IMPLICATIONS OF EDM RESEARCH
Having discussed privacy risks, ethical considerations, and
legal risks for EDM researchers, we now examine current pri-
vacy concerns and work needed in the near future. Through
correspondence with EDM 2019 researchers and reflection on
our own research, we identify the following areas as requiring
attention to the principles and risks established earlier.

4.1 Crawling learners’ data outside a platform
Though most EDM researchers use data generated within
educational platforms/systems such as MOOCs/ITSs, some-
times it can be tempting to acquire data on learners beyond
a specific tool and beyond the course duration. When re-
searchers use the learners’ information to access their data
on social web platforms after they have finished a MOOC,
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for example, more research questions can be answered, such
as “does displaying MOOC certificates have an impact on
learners’ career paths?” Chen et al. traced the learners’
profile data overtime on Gravatar, StackExchange, GitHub,
Twitter, and LinkedIn after the MOOCs to investigate the
impact of MOOCs in the long-term [10]. Chen et al. used
data from 18 MOOCs and reported they could reliably iden-
tify the highest of 42% of the learners in a MOOC on social
web platforms. The MOOC data (from edX) they started
with had the usernames, full names, email addresses. There-
fore, it is not a surprise that a high percentage of learners
can be identified. However, crawling data of learners on five
social-media platforms several years after they have finished
a MOOC does bring up privacy concerns.

Arguably, learners’ profile and posts are the data available
to the public, but EDM researchers are able to join learners’
data from an educational platform with learners‘ data on
social web platforms, which may give researchers too much
power in mining learners’ data after they have finished their
learning. Considering the learners’ additional data can po-
tentially be crawled, the sharing and reusing learners’ data
should be backed with appropriate legal agreements. For ex-
ample, Yacobson et al. suggested to“ban linking application
data with external data sources” [67].

4.2 Community consensus on learners’ privacy
Researchers need data with high utility, but the effort to
anonymize data hurts this. In other words, keeping datasets
of high utility and high privacy level concurrently is hard.
De-identification protects learners’ privacy, but too strict
de-identification can negatively affect analysis [37].

Besides, there is always a risk that de-identified data can
be re-identified, especially if de-identification is done in a
shallow approach (e.g., by removing learners’ full names,
emails). The reason is that learners’ personal “footprints”
also reside in their artifacts and interaction patterns with
the educational platform. Yacobson et al. presented an ex-
ample where they re-identified the school that the learners
were in based on de-identified clickstream logs [67]. Simi-
larly, being teaching software engineering long enough, the
paper’s fourth author would argue it is possible to tell learn-
ers’ demographic characteristics by reading their code.

The tension between usefulness and anonymity of the data
is not likely to be solved by legislation. Hoel et al. analyzed
three different privacy frameworks in selected countries [32]
and presented clear differences on value focuses – e.g., the
European framework focuses on individuals and the Asian
privacy framework focuses on the organizations. Though we
have observed that the legislation in one region can have an
influence on future legislations in other countries [25], the
time for those data protection legislations to “converge” (if
possible) may take a long tune.

As a result, the best short-term result we can have could
be a community consensus in the EDM and LA (Learn-
ing Analytics) research communities. In addition, when an
anonymized dataset is posted/shared, we advocate that re-
searchers limit the additional information provided about
the student population to reduce the risk of re-identification.
For example, a dataset generated by “graduate Algorithms

II students in an R2 university on the east coast of the U.S.”
is more likely to be re-identified than a dataset generated by
“students in a graduate Algorithms course”.

4.3 A protocol for configuring privacy policies
A common definition for privacy is the POQ framework:
“some person or persons P, some domain of information O,
and some other person or persons Q, such that P has privacy
regarding O with respect to Q” [54]. For example, Alice (P)
took an online course with sponsorship from her employer
(Q). Her course completion status (O) is accessible by her
employer; in other words, P does not have privacy regarding
to O with respect to Q. This privacy policy may not be
configurable by the learner based on the privacy policy of
some online learning platform, for example, edX [16].

Though the POQ framework can serve as a basis for privacy
policies, it leaves out some essential components [55]. The
privacy protocol helps learners manage privacy in any learn-
ing environment. Hoel and Chen suggest the policy should
achieve privacy by negotiating“with each student” [31]. Cer-
tain components should be added to the POQ framework to
extend it for educational service providers.

First, the lifespan of privacy policies should be added. To
follow the example above, when Alice leaves the current
company, should the former employer still have access to
Alice’s records on edX? Besides, the purpose of the planned
usage of the data (e.g., to gain generalized knowledge of the
student population, to predict individual student’s success
in a course, etc.) should be part of the protocol. Educa-
tional data can be “justifiably collected and analyzed for
one educational context, but not another” [55]. Moreover,
privacy protocols should stipulate that learners can access
data analysis results based on their data. It is common for
researchers to use students’ data to predict student success
(or failure) [36]. When there is a prediction, not all the stu-
dents are willing to see this information, and some educators
may not be ready to share this information with students.

5. CONCLUSION
Overall, it does not seem likely that legislation related to
educational-data privacy in different countries will be har-
monized in the near future. Many datasets from education
settings have re-identification risk, even after personal in-
formation is removed. Therefore, the research community
has to move forward and establish a certain level of con-
sensus to discourage research projects that are of high ethi-
cal risk and relatively low research value. Seeking excessive
personal data on learners from the social web could be one
of them. EDM researchers and third-party tool providers
should take responsibility to foster a trusting relationship
between learner and teacher, and learner and institution.

Like any survey paper, this work is not specific enough to
guide each and every research action, and it will not cover
all legislation relevant to an EDM researcher. Within a cou-
ple of years, most of this information will be supplanted by
new legislation, research paradigms, innovative technologies,
and research by the exciting generation of upcoming EDM
researchers. Being aware of and vigilant against all possible
risks will protect the interests of the EDM research’s most
important stakeholders: learners, students and teachers.
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ABSTRACT 
Recommending courses to students is a fundamental and also 
challenging issue in the traditional university environment. Not 
exactly like course recommendation in MOOCs, the selection and 
recommendation for higher education is a non-trivial task as it 
depends on many factors that students need to consider. Although 
many studies on this topic have been proposed, most of them only 
focus either on historical course enrollment data or on models of 
predicting course outcomes to give recommendation results, 
regardless of multiple reasons behind course selection behavior. To 
address such a challenge, we first conduct a survey to show the 
underlying characteristic of the course selection of university 
students. According to the survey results, we propose a hybrid 
course recommendation framework based on multiple features. Our 
experimental result illustrates that our method outperforms other 
approaches. Also, our framework is easier to interpret, scrutinize, 
and explain than conventional black-box methods for course 
recommendation.   
 
Keywords 

Educational Data Mining; Recommender Systems; University 
Environments 

1. INTRODUCTION 
Course selection in university is a crucial and challenging problem 
that students have to face. It is difficult to decide which courses 
they should take because there are a large number of courses 
opened each semester and students have to spend a lot of time 
exploring those courses. Moreover, the decisions they make shape 
their future in ways they may not be able to conceive in advance.  

We collected a dataset during 2015 and 2018 from our university to 
gain a better understanding of the elective course enrollment 
patterns. Figure 1(a) presents the distribution of the enrolled course 
number of students on the left and the distribution of the popularity 
for each course of our university on the right. There are hundreds 
of elective courses offered by the university while averagely 
students only select a few of them to satisfy the requirements for 
their degree program. Figure 1(b) shows the distribution of the 
enrolled courses for each semester. We can also see that students 
may take courses in the first two years mostly 
(semester1~semester4), because they may potentially be busy with 
an internship or finding jobs in the third and fourth year. 

 
(a) #Course distribution.              

 
(b) #Course distribution for each semester. 

Figure 1. Distribution of courses. 
From the discussion above, a safe conclusion could be drawn that 
due to a large number of available but unfamiliar courses, course 
selection is a critical activity for students.  

With the increasing amount of available data about undergraduate 
students and their enrollment information, data-driven methods 
supporting decision making have gained importance to empower 
student choices and scale advice to large cohorts [14]. Many 
relevant studies on course recommendation focus on online 
learning platforms such as MOOCs. Other studies on course 
recommendation use datasets collected in physical university 
environments, however, they rely on approaches that are similar to 
the ones used in recommending MOOC courses without fully 
considering the different reasons involved in course selection 
process in physically-based university environments.  
In fact, course recommendation for higher education can be more 
“messy and unorganized” [1] as it depends on many factors that 
students need to concern. Intuitively, the reasons behind course 
selection are manifold. Likewise, students who enrolled in the same 
course may have completely different orientations based on their 
own reasons, which serves as different criteria for course selection 
[34]. It inspires us to try to find more useful features for the 
recommendation. 
To make the point clear, a survey is conducted on 81 students in 
our university to better understand student perceptions and attitudes 
for their course selection process. [10] Figure 2 shows the main 
underlying reasons for their course selection. 
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Figure 2. The distribution of main reasons for course selection. 
(1) Interest 
As Figure 2 shows, the overall most important factor was students’ 
interest and it is often taken as a main contributing factor to the 
recommendation. However, students may not choose courses based 
purely on their interest in the university environment. It is expected 
that students will be more inclined to choose courses that do not 
require too much effort or difficulty. For example, some students 
would not enroll in a course which contains contents they are 
interested in, they just choose the course that allows them to get 
credits easily. 
(2)  High-Grade  
Improperly selecting courses would seriously affect the students’ 
course achievements, which enforces students to drop out [12]. 
Getting relatively high grades for students is another factor 
influences student’s choice especially for successful students. 
Some students even prefer to choose what they perceived would be 
an easier course for fear that a tougher course might lower their 
GPA.  
(3) Learning goal and career plan  
It is natural to recommend courses that align with student’s learning 
goals and career plans as students consider the usefulness of 
courses as an important factor in their course selection process. 
However, first-year students may lack learning goals and career 
planning for the future, and the choice of courses is aimless. Also, 
student interest and goal can change as they explore and discover 
something meaningful on and off campus.  
(4) Social Aspect 
Social factor also plays a part in the course selection process. For 
example, some students prefer to enroll in a course with their 
friends or classmates together. Potts et.al [21] conclude that the risk 
of social isolation is a problem in the learning process especially 
for first-year students at university, who have difficulty navigating 
their new academic and environment. Tinto [22] concludes that 
participation in a collaborative learning group encourages student’s 
attendance and class participation. Therefore, the classmates or 
friends based social links could be important information in course 
recommendation. 
(5) Popularity 
As shown in Figure 1(a), the long-tail distribution of course 
popularity indicates that students are more motivated to choose 
popular courses as their first choice. However, the popular courses 
will be filled up quickly while others will not be selected by 
students frequently.  
In summary, all these discussions above indicate that there are 
complex constraints and contexts that have to be considered 
together to balance all those factors above, made more difficult by 
the multiple objectives that students want to maximize and risks 
they want to hedge against. For example, choosing challenging 
courses of value while maintaining a high GPA [16]. This suggests 

that recommendations that are aimed only at one or a few factors 
are likely not enough to help the students. 
To address these challenges which have not been well explored in 
the research community, we propose our hybrid course 
recommendation framework, which incorporates different criteria 
in a modular way. Moreover, in our approach selection criteria can 
further be prioritized by the student. We believe that weaving those 
criteria could increase the usability of our recommendations 
compared to previous work focusing only on one of the two. Also, 
our framework is very efficient and easy to interpret. 

2. RELATED WORK 
2.1 Course selection 
Some work has been done on analyzing the college students’ course 
selection. Morsy and Karypis [23] investigated how the student’s 
academic level when they take different courses, relate to their 
graduation GPA and time to degree.  This study suggests that 
course recommendation approaches could use this information to 
better assist students towards academic success, by graduating on-
time with high GPA. Also, understanding students’ reasons for 
enrolling in a course provides key information for recommending 
courses and improving students’ learning experiences [24-27].  
Additionally, there is still a lack of study on the factors that 
influence students’ course selection in university and how the 
course selection would impact the students’ educational 
achievement. 

2.2 Personalized Course Recommendation 
Various approaches have been used in applications for course 
recommendation by learning from historical enrollment data [32, 
33]. 
Content-based filtering approaches recommend a course to a 
student by considering the content of the course and clustering 
course and student into groups to gain similarity between them [2,3]. 
Collaborative filtering approaches recommend a course to a student 
by investigating student's similarity with the student's historical 
data in a system and predict the course that the student would be 
interested in [4-6]. Association rules based on frequent patterns are 
used to discover interesting relations that describe previous course 
selections from students [8,9]. Recently, other methods including 
sequence discovery and representation learning have been used in 
this domain [11,19,20]. However, those systems often behave like 
a “black box", i.e., recommendations are presented to the users, but 
the rationale for selecting recommendations is often not explained 
to end-users.  

2.3 Grade Prediction  
While some researchers have focused on between-course 
enrollment data, others have focused on models of predicting 
grades in future courses [13-6]. Based on what courses they 
previously took and how well they performed in them, the predicted 
grades give an estimation of how well students are prepared for 
future courses, then recommending courses to students that will 
help them to get relatively high grades [18,28,29,31]. 
However, these methods can be prone to recommending relatively 
easier courses in which students usually get high grades [17]. In 
addition, there are some students who like challenge difficult 
courses if they are interested in or think it is helpful for their future 
career, for those students, the grade prediction based 
recommendations are not enough. 
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Despite the significant success of various course recommendations, 
constraints on the number of student preferences in the university 
environment resulting in inflexibility where a student’s 
requirements do not align perfectly with those built into the system. 
In contrast to the aforementioned approaches, our model combines 
the concerns of performance and interest together. Also, it has the 
benefit of allowing for a custom weighting of those components, as 
well as the increased explanatory value of the model itself. 

3. PROPOSED METHOD  
We first give the definition of our recommendation problem in 
Section 3.1. Then we propose our hybrid course recommendation 
framework with three subsections introducing our Interest-based 
Score, Timing-based Score, and Grade-based Score in detail. 
Finally, those different scores are used in our course 
recommendation algorithm introduced in Section 3.3. 

 
Figure 3. Overview of the proposed course recommendation. 

3.1 Problem Formulation 
Like every classic recommendation task, there are two basic 
elements user and item in our course recommendation task, where 
a user represents a student and an item represents a course.  We use 
𝑆 to denote a set of students and 𝐶 to denote a set of courses. Each 
𝑠 ∈ 𝑆  has enrolled some courses denoted by 𝐶% ⊆ 𝐶 and each	𝑐 ∈
𝐶 has its enrollment set denoted by 𝑆) ⊆ 𝑆. Let 𝑇 denote a set of all 
available semesters, and 𝑡 to denote a specific semester. Generally, 
there are 8 semesters for 4 academic years degree program. Let 𝐺 
denote a set of grades that student could get, and each 𝑔 ∈ 𝐺 denote 
a specific grade that student obtained for a course. Let 𝐸 =
{(𝑠, 𝑐, 𝑔, 𝑡)|𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶%,𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇} be the set of all enrollment 
relations, which means student 𝑠 enrolled in course 𝑐 in semester 𝑡, 
and got the final grade 𝑔. 
Given enough students enrollment data (𝑆, 𝐶, 𝐸) , our goal is 
recommending courses to a specific student 𝑠 which are not in 𝐶% 
for next semester.  

3.2 Framework 
According to the result of the survey shown in Section 1, students 
may concern different factors while they choose courses. Inspired 
by that, we propose our hybrid course recommendation framework 
that considers student interest, the timing of taking the course and 
the predicted grade of the student together. Figure 3 shows the 
overview of the proposed course recommendation. 
For each pair of student and course (𝑠, 𝑐), we need to understand 
how suitable the course is for the specific student. We use three 
different aspects to calculate the 𝑆𝑐𝑜𝑟𝑒(𝑠, 𝑐)  for each pair of 
student and course: 
(i) 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡	𝑏𝑎𝑠𝑒𝑑	𝑆𝑐𝑜𝑟𝑒	(𝐼𝑆) , which is to measure how 
interesting the course is for a specific student. (ii) 

𝑇𝑖𝑚𝑖𝑛𝑔	𝑏𝑎𝑠𝑒𝑑	𝑆𝑐𝑜𝑟𝑒	(𝑇𝑆) , which is to measure how suitable 
students enroll in the course at a specific time (semester) since 
different courses may have different suitable time periods. (iii) 
𝐺𝑟𝑎𝑑𝑒	𝑏𝑎𝑠𝑒𝑑	𝑆𝑐𝑜𝑟𝑒	(𝐺𝑆) , which is to predict students’ 
performance for the course.  
We propose our approaches to estimate 𝐼𝑆  , 	𝑇𝑆  and 𝐺𝑆 , 
respectively. Then, they are fused by a student-specific weight 
parameter as the 𝑆𝑐𝑜𝑟𝑒(𝑠, 𝑐, 𝑡). Once all of the 𝑆𝑐𝑜𝑟𝑒(𝑠, 𝑐, 𝑡) have 
been computed, the 𝑘 courses with the highest score are selected.  

3.2.1 Interest-based Score 
Let 𝑠 and 𝑐 be a student and a course, respectively, the goal of 
interest score estimation is to calculate 𝐼𝑆(𝑠, 𝑐).  
In our framework, we extract user interest from student historical 
enrollment behaviors. Since each course of university belongs to a 
category, let 𝐶𝐴𝑇𝐸 denote the set of all categories, 𝑐𝑎𝑡𝑒 to denote 
a specific category, then 𝐶𝐴𝑇𝐸 = {𝑐𝑎𝑡𝑒B, 𝑐𝑎𝑡𝑒C,… , 𝑐𝑎𝑡𝑒|EFGH|} . 
We think that there is a strong relationship between student interest 
and course categories. For instance, a student frequently enrolls in 
courses which belong to “Computer Science” may imply that the 
student has an interest in this category or he may have personal 
learning goal in this domain. Hence, it is appropriate to recommend 
the student the courses such as “Python Programming” and “Data 
science”. 
For a student 𝑠, the idea is to count the number of courses that he 
enrolled in and belongs to a category, i.e., 𝑁𝑢𝑚(𝑠, 𝑐𝑎𝑡𝑒). Then, all 
of the values are normalized as the preference score from 0 to 1, 
denoted as 𝑝(𝑠, 𝑐𝑎𝑡𝑒), which is defined as equation (1). 

𝑝(𝑠, 𝑐𝑎𝑡𝑒) =
𝑁𝑢𝑚(𝑠, 𝑐𝑎𝑡𝑒)

𝑀𝑎𝑥)NOPQ∈EFGHR𝑁𝑢𝑚(𝑠, 𝑐𝑎𝑡𝑒′)T
																 (1) 

For a student 𝑠 , the preference vector 𝑷𝒔 , is obtained by the 
preference score of each category, which is defined as equation (2). 

𝑷𝒔 = (𝑝(𝑠, 𝑐𝑎𝑡𝑒B), 𝑝(𝑠, 𝑐𝑎𝑡𝑒C),… , 𝑝R𝑠, 𝑐𝑎𝑡𝑒|EFGH|T)				(2)      
We can further use 𝑷𝒔 to calculate the similarity between student 𝑠 
and other students. Let 𝑠Y  and 𝑠Z  be two students, the similarity 
between 𝑠Y  and 𝑠Z  can be measured by the cosine similarity 
measurement as shown below.  

𝑠𝑖𝑚R𝑠Y	, 𝑠ZT =
𝐩%\

G ∙ 𝐩%^
_𝐩%\_ × a𝐩%^a

																														 (3) 

For the convenience of computation, we use a matrix form 
representation 𝑃	 = (𝐩Q%d;	𝐩

Q
%f
	; 	 . . . ; 	𝐩Q%|h|) to denote the interest 

of all students where 𝐩′% = 	𝐩%/‖𝐩%‖ means the normalization of 
𝐩%. Then the similarity matrix 𝑆𝑖𝑚 can be simply written as: 

𝑆𝑖𝑚	 = 	𝑃G 	× 	𝑃																																									(4)	 

where 𝑆𝑖𝑚Y,Z is the result of 𝑠𝑖𝑚R𝑠Y	, 𝑠ZT. 

Based on the similarity, we could estimate the user-based interest 
score. For a student 𝑠 and a course 𝑐, the Interest Score denoted as 
𝐼𝑆(𝑠, 𝑐), is defined as (5), where 𝑆%,l  indicates the set of top-k 
similar students of 𝑠 as neighbors, and 𝐼Emn  is an indicator function 
whose value is 1 when 𝑐	 ∈ 	𝐶𝑠′. 

𝐼𝑆(𝑠	, 𝑐) =
∑ 𝐼Emn × 𝑠𝑖𝑚(𝑠	, 𝑠′)%Q∈pm,q
∑ 𝑠𝑖𝑚(𝑠	, 𝑠′)%Q∈pm,q

																							 (5) 

Furthermore, we try to utilize students’ major information together 
with their similarity as equation (6).  
𝑠𝑖𝑚s(𝑠	, 𝑠′) = 𝜆𝑠𝑖𝑚(𝑠	, 𝑠Q) + (1 − 𝜆)𝑠𝑎𝑚𝑒𝑚𝑎𝑗𝑜𝑟(𝑠	, 𝑠Q)					(6) 
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Where 𝑠𝑎𝑚𝑒𝑚𝑎𝑗𝑜𝑟(𝑠	, 𝑠Q)  function equal to 1 if student 𝑠  and 
student 𝑠Q have the same major, otherwise, the function equal to 0. 
𝜆  (limited from 0 to 1) is used to control the weight between 
similarity and major information. The underlying rationale is that 
each major has its owner preference on courses enrolling, students 
have the same major will generally make a similar choice in course 
selection. Also, students in the same major are more likely to be 
friends or classmates, which brings potential social link 
information into the course recommendation. Then equation (5) can 
be rewritten as below. 

𝐼𝑆(𝑠	, 𝑐) =
∑ 𝐼Emn × 𝑠𝑖𝑚s(𝑠	, 𝑠′)%Q∈pm,q
∑ 𝑠𝑖𝑚s(𝑠	, 𝑠′)%Q∈pm,q

																							 (7) 

3.2.2 Timing and popularity based Score  
Different courses may have different suitable time periods 
(semesters). For example, in each department, courses can be taken 
by students of different grades, e.g., freshman or sophomore. 
Previous studies showed that the timing of courses has a strong 
correlation with student graduation GPA and time to degree [23]. 
Based on that, we assume that the timing of courses is also 
important for course selection. The suitable timing of courses will 
help students for good grades and successful graduation in a timely 
manner. 
For each course 𝑐 , we define the 𝑇𝑖𝑚𝑖𝑛𝑔	𝑏𝑎𝑠𝑒𝑑	𝑆𝑐𝑜𝑟𝑒𝑠	(𝑇𝑆) , 
denoted as 𝑇𝑆(𝑐, 𝑡), where 𝑡 indicates a specific semester. In our 
framework, 𝑇𝑆 is considered from two aspects:  
(1) Which semester is more suitable for taking this course? For a 
specific course, we sum up the number of enrollments for every 
semester and normalize all of the values. The result is denoted as 
𝑇O(𝑐, 𝑡). 

𝑇O(𝑐, 𝑡) =
𝑁𝑢𝑚(𝑐, 𝑡)

𝑀𝑎𝑥On∈GR𝑁𝑢𝑚(𝑐, 𝑡Q)T
																						(8)		 

where 𝑁𝑢𝑚(𝑐, 𝑡) represents the number of enrollments of course 𝑐 
in semester 𝑡 , and 𝑇 indicates the set of all time periods, i.e., 8 
semesters for 4 academic years degree program.  
(2) Which courses are popular now? For a specific semester, we 
sum up the number of enrollments for every course and normalize 
all of the values. The result is denoted as 𝑇{(𝑐, 𝑡). 

𝑇{(𝑐, 𝑡) =
𝑁𝑢𝑚(𝑐, 𝑡)

𝑀𝑎𝑥)Q∈ER𝑁𝑢𝑚(𝑐′, 𝑡)T
																							 (9) 

where 𝐶  indicates the set of all courses. 𝑇O(𝑐, 𝑡) and 𝑇{(𝑐, 𝑡) are 
then fused by the harmonic mean since we want both of the two 
values are relatively high. The final 	𝑇𝑖𝑚𝑖𝑛𝑔	𝑏𝑎𝑠𝑒𝑑	𝑆𝑐𝑜𝑟𝑒, 
𝑇𝑆(𝑐, 𝑡) can be defined as: 

𝑇𝑆(𝑐, 𝑡) = 2 ×
𝑇O(𝑐, 𝑡) ×	𝑇{(𝑐, 𝑡)
𝑇O(𝑐, 𝑡) + 𝑇{(𝑐, 𝑡)

																			 (10) 

Therefore, we can use 𝑇𝑆(𝑐, 𝑡)  to ensure that the semester 𝑡  is 
suitable for taking the course 𝑐  and the course 𝑐  is suitable for 
taking in the semester 𝑡. 

3.2.3 Grade-based Score 
Improperly selecting courses would seriously affect the students’ 
course achievements, which may decrease their GPA even enforce 
students to drop out. Accurately predicting students’ grades in 
future courses has attracted much attention as it can help identify 
at-risk students early [30]. 
We use the grade prediction method called cross-user-domain 
collaborative filtering proposed by Ling et al. [12]. For predicting 
the score of each course	𝑐	 ∈ 	𝐶 for each student 𝑠	 ∈ 𝑆	, a small set 

of senior students who have already enrolled on course 𝑐 and have 
the most similar previous score distribution to student 𝑠 will be 
discovered by means of Pearson correlation coefficient. The 
underlying rationale is that students with similar scores in the 
previous courses will generally obtain similar scores in the 
subsequent courses.  
Let 𝑆% denote the set of senior students who have already enrolled 
on course 𝑐. For any senior student 𝑠% 	 ∈ 	 𝑆%, the following Pearson 
correlation coefficient is used to measure the course score 
similarity between student 𝑠 and the senior student 𝑠%. 

𝑠𝑖𝑚(𝑠	, 𝑠%) =
∑ (𝑔%Y − �̅�%Y)Y∈Emmm R𝑔%mY − �̅�%mYT

�∑ (𝑔%Y − �̅�%Y)CY∈E��m
�∑ R𝑔%mY − �̅�%mYT

C
Y∈Emmm

 

(11) 
where 𝐶%%m denotes the courses that are enrolled by both students  𝑠 
and 𝑠% , 𝑔%Y and 𝑔%mY denote the grade of course 𝑖 by students 𝑠 and 
𝑠%  respectively. �̅�%Y  and �̅�%mY  denote the average grade of courses 
enrolled by students 𝑠 and 𝑠%, respectively. Accordingly, the grade 
of the course 𝑐 by student 𝑠	can be predicted as follows. 

𝑔%) =
∑ (𝑔%m)) × 𝑠𝑖𝑚(𝑠	, 𝑠%)%m∈pm,q

∑ 𝑠𝑖𝑚(𝑠	, 𝑠%)%m∈pm,q
																			 (12) 

where 𝑆%,l indicates the set of top-k similar senior students of 𝑠. It 
should be noticed that students often achieve inconsistent grades in 
the various courses they take, and different students may have 
varying grades deviations, i.e. the grades deviation compared with 
the average grades among all students. Similarly, different courses 
may have varying grades deviations, i.e. the score deviation 
compared with the average score among all courses. In order to deal 
with those variations. We use the grade deviation of student 𝑠 and 
the grade deviation of course 𝑐  to predict student grades. 
Accordingly, equation (12) could be rewritten as below. 

𝑔%) = 𝑏%) +
∑ (𝑔%m) − 𝑏%m)) × 𝑠𝑖𝑚(𝑠	, 𝑠%)%m∈pm,q

∑ 𝑠𝑖𝑚(𝑠	, 𝑠%)%m∈pm,q
						 (13) 

where 𝑏%) 	= 	µ + 𝑏% 	+ 𝑏)  denotes the baseline estimate for 𝑔%) 
with µ being the overall mean grade of all courses enrolled by all 
students, 𝑏% 	= 	 �̅�% 	− 	µ being the grade deviation of student 𝑠 and 
𝑏) 	= 	 �̅�) 	− 	µ being the grade deviation of course 𝑐, where �̅�%  is 
the overall mean grade of student 𝑠  and �̅�)  is the overall mean 
grade of course 𝑐. 
Finally, we could use the grades that students are expected to obtain 
in future courses to boost the performance of our recommendation. 
The final 	𝐺𝑟𝑎𝑑𝑒	𝑏𝑎𝑠𝑒𝑑	𝑆𝑐𝑜𝑟𝑒𝑠,  𝐺𝑆(𝑠, 𝑐)  can be defined as 
normalized values of grades. 

𝐺𝑆(𝑠, 𝑐) =
𝑔%)

𝑀𝑎𝑥)n∈E(𝑔%)Q)
																										 (14) 

The total score of student and course pair 	𝑠𝑐𝑜𝑟𝑒	(𝑠, 𝑐)	can be 
written as:  

𝑆𝑐𝑜𝑟𝑒 = 𝛼 × 𝐼𝑆(𝑠, 𝑐) + 𝛽 × 𝑇𝑆(𝑠, 𝑡) + 𝛾 × 𝐺𝑆(𝑠, 𝑐)							(15)   
Where 𝛼,	𝛽, 𝛾 are parameters to control the proportion of weights 
from different sources. By taking those scores into account 
simultaneously, a course that the student interested in, and suitable 
for him to take to get a high grade could be ranked higher than other 
courses. Also, student could control the weighting of those 
components to have a better understanding of the data and decision-
making.  
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3.3 Course Recommendation Algorithm 
The whole framework can be written as Algorithm 1. Student set 𝑆, 
course set 𝐶, enrollment set 𝐸(𝑠, 𝑐, 𝑔, 𝑡) are input and output is a 
list of recommendations 𝑅𝑠  for student’s next semester that 
includes up to 𝑘 recommendations per student.  

Algorithm 1: Generating a list of course recommendations for 
student 

 Input ： 
Student set 𝑆, course set 𝐶, enrollment set 𝐸(𝑠, 𝑐, 𝑔, 𝑡); 

 Output ： 
Recommendation results for each student 𝑅𝑠. 
 

1 Calculate student interest	𝒑𝒔 for each 𝑠	 ∈ 	𝑆 by equation 1; 
2 Calculate student interest similarity by equation 4; 
3 Calculate student grade similarity by equation 11; 
4 Calculate student deviation of each student; 
5 Calculate course grade deviation of each course; 
6 foreach 𝑠	 ∈ 	𝑆 do 
7 Calculate user interest-based score	𝐼𝑆(𝑠, 𝑐) by equation 7; 
8 Calculate timing-based score	𝑇𝑆(𝑐, 𝑡) by equation. 10; 
9 Calculate user grade-based score	𝐺𝑆(𝑠, 𝑐)  by equation 13 

and equation 14; 
10 Calculate final score 	𝑆𝑐𝑜𝑟𝑒	(𝑠, 𝑐, 𝑡) by equation 15;  
11 Let 𝑅𝑠 be the sorted list of 𝐶 ordered by its 𝑆𝑐𝑜𝑟𝑒	(𝑠, 𝑐, 𝑡) in 

descending order. 

12 endfor 

 
4. EVALUATION 
In this section, we conducted a series of experiments to evaluate the 
effectiveness of our proposed method. We first describe the dataset 
and experimental settings. Next, the evaluation methodology and 
metrics are introduced in detail. Finally, the results are shown in 
Section 4.4.  

4.1 Dataset 
This work focuses on undergraduate students in a traditional 
educational institution. We used a dataset from our university that 
spans for 5 years. The dataset consisted of per-semester course 
enrollment information of 2,366 students from 12 departments, 
with a total of 38,968 pseudonymized enrollment records from 
2014 through 2018. Each row of the course enrollment data 
contained semester and department information, an anonymous 
student ID and course information included course name, instructor 
and course category. 

4.2 Experiment Settings 
4.2.1 Data selection 
The most natural approach to evaluate the model is to split the data 
by semesters. As shown in Figure 1(b), most of the undergraduate 
students may take courses in the first two years. Therefore, for 
students who enrolled in 2015, the semester of Spring 2015 was 
used for training, the subsequent semesters of Fall 2015, Spring 
2016 and Fall 2016 are regarded as the testing semesters, each of 
which is tested separately. The results are evaluated by comparing 
the predicted courses and the ground-truth courses he/she has 
enrolled in.  

4.2.2 Comparison 
We name our methods as Hybrid Course Recommendation (HCR). 
We compare our method with two group popularity approaches [14] 
and Random recommendation (Random). The two group popularity 
approaches including the department level (Grp-Pop-1), which 
recommend the most popular courses in the major, and the 
academic level (Grp-Pop-2), which recommend the most popular 
courses on the major and the academic level of the student 
(“freshmen”, “sophomores”, “juniors”, and “seniors”).  

4.3 Evaluation Metrics 
Like previous work [11,14,15,20], we used Recall@ns and 
Coverage as the evaluation metric for the performance.  
Coverage is measured based on the percentage of courses that have 
been recommended at least once to students, which describes the 
ability of a recommendation system to explore the long-tail item.  
Recall@ns is the percentage of actually enrolled courses of 𝑠 in 
semester 𝑡 that were contained in the recommendation list, where 
ns is the number of courses that the student took in the target 
semester. The reported metrics are averaged out across all students. 
Since our proposed course recommendation method considers both 
student interest and the grade he/she may obtain, we cannot only 
use the Recall metric, and instead, we use a variation of it. For the 
list of the courses 𝑅% that recommended to a student 𝑠, Let 𝑇% is the 
set of courses in the test set of 𝑠, 𝐴%  is the set of courses which 
student is expected to get the grade equal to or higher than his/her 
average previous grade. We use the ratio of |𝑅% ∩ 𝑇% ∩ 𝐴%|and 
|𝑇% ∩ 𝐴%| to measures the fraction of the actual well performed 
courses that are retrieved.  

4.4 Results 
4.4.1 Interest-based Score 
In collaborative filtering strategy, taking how many similar 
students as neighbors is an important problem which is sensitive to 
the quality of the result. We investigate the performance of our 
interest model with different neighbor numbers. As shown in 
Figure 4, the performance of the model increases with the increase 
of neighbor number at first then decreases. According to the 
observation above, we pick a practical value 40 as the value of the 
neighbor number parameter in our follow-up experiments. 
We also investigate the performance of our interest model with 
different weights between similarity and major information. As 
shown in Figure 5, we can observe that the performance of the 
model increases with the decrease of 𝜆  in terms of Recall. The 
reason is that the model considers not only the similarity but also 
the major information. That is, each major has its own preference 
for courses enrolling, major information will improve the 
performance of the algorithm.  
However, 100% recall could be bad because the system just 
recommends what students do anyway. We noticed that the 
Coverage also decreases with the decrease of 𝜆. The model seems 
benefit from the major information while scarifying the diversity of 
results. Recommendations for courses at other departments 
sometimes are useful to mine more long-tail student interest while 
students usually ignored that these courses existed or that their 
content matched their interests.  To achieve the best performance 
of recommendation, we need to make a trade-off. According to the 
observation above, we set	𝜆 as 0.2 in our follow-up experiments. 

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 464



 
Figure 4. Performance of different neighbor numbers. 

 
Figure 5. Evaluation of major information. 

4.4.2 Influence of different factors 
To illustrate the influence of different factors, we set each 
parameter 𝛼, 𝛽, 𝛾  from 0 to 1 with a step size 0.05 to find the 
optimal combination.  

Table 2. Performance of different parameters  

     
Model (𝛼, 𝛽, 𝛾)= 

(1,0,0) 
(𝛼, 𝛽, 𝛾) 
= (0,1,0) 

(𝛼, 𝛽, 𝛾) 
= (0,0,1) 

 
(𝛼, 𝛽, 𝛾)* 

 
          

Recall@ns 0.380 0.412 0.341 0.434 

Recall(a)@ns 0.311 0.315 0.332 0.322 

Coverage 0.534 0.212 0.356 0.516 

      
As shown in Table 2, the interest score and timing score has a good 
explanatory value for the recommendation than others. Also, the 
suitable timing of taking a course will help students to get a good 
grade. A recommendation only based on the grade has a good 
performance for recommending high grade courses. However, the 
results cannot help all the students. We reached the best Recall@ns 
with (𝛼 =0.4, 𝛽 =0.45 and 𝛾 =0.15)*.  
The results indicate that recommendations that are aimed only at 
one factor are likely not to be satisfied by every student. As we 
discussed before, different students may have completely different 
orientations based on their own reasons, which serves as different 
criteria such as their preferences, interests, needs, performance, 
etc. Such a hybrid system could provide explanations and user 

controls for different categories of target students to support the 
interpretation of the data and decision-making.  

Table 3. Evaluation of course recommendation 

     Semester Model Recall@ns Recall(a)@ns Coverage 
          Fall 2015 Random 0.048 0.036 - 

Fall 2015 Grp-Pop-1  0.374 0.306 0.272 
Fall 2015 Grp-Pop-2 0.452 0.342 0.342 
Fall 2015 HCR 0.472 0.393 0.578 

          Spring 2016 Random 0.025 0.020 - 
Spring 2016 Grp-Pop-1  0.325 0.201 0.305 
Spring 2016 Grp-Pop-2 0.423 0.372 0.237 
Spring 2016 HCR 0.431 0.402 0.342 

          Fall 2016 Random 0.002 0.002 - 
Fall 2016 Grp-Pop-1  0.326 0.243 0.213 
Fall 2016 Grp-Pop-2 0.441 0.387 0.250 
Fall 2016 HCR 0.463 0.392 0.559 

      

4.4.3 Comparison result 
We analyze the performance of different algorithms. The results in 
Table 3 show that our framework performs well when compared 
with other methods.  
As the results show, both of the Recall and Recall(a) of Random 
recommendation strategies are very low since there are a large 
number of courses, but each student only averagely chooses a few 
courses per semester. Hence, it is difficult to recommend the right 
course. Popularity approaches are having considerably satisfactory 
performance in Recall since popular courses which are taken by 
students frequently usually attract most of students. However, Grp-
Pop-1 and Grp-Pop-2 do not consider student preference, it is also 
difficult to mine more long-tail student interest as the Coverage is 
low. In addition, Grp-Pop-1 and Grp-Pop-2 are not good in Recall(a) 
since they only consider the popular courses, ignore the 
performance the student is expected to get in the recommended 
courses.  

5. CONCLUSION  
This research aims to recommend suitable courses for learners and 
study how to design a personalized course recommendation in the 
university environments. In this paper, we propose a hybrid course 
recommendation framework that considers student interest, the 
timing and popularity of courses, and predicted performance of 
students, simultaneously. Experiments are conducted to confirm 
the effectiveness of the proposed approach. The results show that 
the proposed hybrid course recommendation approach performed 
well compared to other methods. Also, the model itself is flexible 
in the sense that one can easily adjust or extend it by changing the 
recommendation formula and incorporate more information.  
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ABSTRACT
Massive online Open Courses (MOOCs) make extensive use
of videos. Students interact with them by pausing, seek-
ing forward or backward, replaying segments, etc. We can
reasonably assume that students have different patterns of
video interactions, but it remains hard to compare student
video interactions. Some methods were developed, such as
Markov Chain and Edit Distance. However, these meth-
ods have caveats as we show with prototypical examples.
This paper proposes a new methodology of comparing video
sequences of interaction based both on time spent in each
state and the succession of states by computing the distance
between the transition matrices of the video interaction se-
quences. Results show the proposed methodology can better
characterize video interaction in a task to discriminate which
student is interacting with a video, or which video a student
is interacting with.

Keywords
MOOC, Distance matrix, Edit Distance, Markov Chain, Op-
timal Matching Distance

1. INTRODUCTION
In online learning contexts, learner engagement is often mea-
sured by their interaction with video. The simplest measure
is the total amount of time spent on video listening that can
be used as an engagement measure [6]. But the availability
of detailed interactions with a video allows more sophisti-
cated measures, and comparison between video interactions.

Two common methods used to find the similarity between
video interactions are the Markov Chain and Edit distance
measures. The main limitation of using Markov Chain to
compare video interactions sequences is that state transi-
tion probabilities do not take into account the time between
states. Many sequences can have the same transitions prob-
ability matrix but represent different styles and length.

By contrast, the Edit distance approach to comparing video
interaction sequences may take time into account if the se-
quences of events are mapped to a time scale and represented
as activity segments, such as in [4]. However, large offset,
such as a pause, in similar activity sequences will create large
Edit distances that will shadow the similarity.

A methodology that can simultaneously take into account
the time and transitions between activities could help the
analysis of video interaction. It could help the analysis of
the MOOCs and online teaching systems learning in video
intensive environments, and could help to extract meaning-
ful patterns of video interactions. It has often been used
to classify students to identify students at risk (see for eg.
[14, 8, 2]).

2. BACKGROUND
Among the different techniques to analyze video clickstream,
some focus on extracting patterns, or motif, between events
[3, 17, 16]. Descriptive statistics such as the video proportion
played are also commonly used (see for eg. [15]). However,
our focus is on measuring distance, or conversely similarity
between video interaction patterns, and what are the most
useful representations for that purpose.

We review the basics of the two families of methods and rep-
resentations used in measuring video interaction similarity
in more details and discuss their issues, before describing
previous work with each approach, and then describe and
evaluate the proposed method.

First, we describe the event data and a common transfor-
mation of events into activity sequences.

2.1 Events and activity sequences
Data on student interaction with videos relies on the notion
of events associated to timestamps, such as “play” at 0:00:00
and“pause”at 0:00:10. There are five basic video interaction
events: (1) load, (2) play, (3) pause, (4) seek and (5) stop.

The student can be considered in a state of listening to a
video between 0 sec. and 10 sec., and in pause state there-
after. For example, suppose we have two students interac-
tions:
Interaction sequences:

1: Play (4 seconds) then Pause (4 seconds) and then Play
(4 seconds),
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2: Pause (2 seconds) then Play (8 seconds) and then Pause
(2 seconds).

Each student spent 12 seconds in total interaction with video.
We can transform those two patterns of interaction into a
sequence of activity states of 1 second intervals:

Activity sequences:

1: Pl-Pl-Pl-Pl-Pa-Pa-Pa-Pa-Pl-Pl-Pl-Pl
2: Pa-Pa-Pl-Pl-Pl-Pl-Pl-Pl-Pl-Pa-Pa-Pa
(Pl=Play and Pa=Pause)

We will name this type of sequence an activity sequence,
where a polling interval is defined and the activity corre-
sponds to the last event that occurred. Activity sequence
encoding has been used in a few studies of student interac-
tion patterns with a learning system [4, 1].

We now turn to how these sequences can be represented.

2.2 Markov Chain representation
A Markov chain is specified by a set of states and transitions
between states. The process starts in one of the state si,
then moves to another si+1 with a probability of pi,i+1. The
Markov property stipulates that the transition probability
is independent of states prior to si.

Considering the video interaction events as states, a student
interaction can be represented as a Markov state transition
matrix, where cells contain frequencies of transitions in the
sequence, normalized such that row sums are 1, and thus
represent transition probabilities.

For example, the two interaction sequences in the section
above would result in the following event sequences:
Event sequences:

1: Pl-Pa-Pl
2: Pa-Pl-Pa

Contrary to activity sequences, event sequences do not carry
the notion of a polling at regular time interval and ignore
the time stamps on events. These event sequences would in
turn result in a Markov Chain that is common to both:

Mseq1.1 = Mseq2.1 =

( play pause

play 0/1 1/1
pause 1/1 0/1

)
A measure of distance between sequences can be computed
from the two Markov matrices, such as the Frobenius norm
of the cell-wise difference between the matrices. More on
this below.

The limit of using Markov Chain to compare video event
sequences lies in the fact that transitions probabilities can
be the same for very different sequences. This issue is ev-
ident in the two sequences above that end up having the
same Markov transition matrix. While it can be alleviated
by having a start end state, it is clear that the loss of state
duration information will lead to a loss of valuable informa-
tion.

However, Markov Chains are efficient at capturing transition
patterns and have been used with some success for clustering
[12, 11], for creating student profiles of interactions [10, 5],
and for simulated students [7].

2.3 Sequence Edit Distance method
The sequence Edit Distance method relies on measures found
with word distances, where alphabet similarity between words
is the basis of calculating similarity.

Edit Distance (ED), generates distances that represent the
minimal cost in terms of insertions, deletions and substitu-
tions for transforming one sequence to another. The cost
of each deletion, insertion or insertion is 1 by default. This
algorithm was originally proposed by Levenshtein [9] and
is most common when computing distances between words
[13]. For video listening sequences, the principle is the same
but the alphabet is represented by the activity. For exam-
ple, the ED measure for activity sequences 1 and 2 above
yields a distance of 9 over a maximum of 12.

A notable property of the ED measure is that sequences
of different lengths will necessarily have a non null distance,
and therefore potentially miss regularities in interaction pat-
terns of different length sequences. On the contrary, a Markov
Chain representation is not sensitive to sequence length, or
to the number of transitions for that matter (since the row
sums are all normalized to 1), whilst its capacity to capture
interaction patterns in sequences of different length.

3. PROPOSED METHOD, TMED
The proposed method, named TMED, is a combination of
the two techniques: the Markov Chain and the ED measure.
The combination of results give a full similarity between
each pair of student sequences of interactions benefiting of
advantages from both techniques.

3.1 Transition matrix
The video transition matrix of a student s for a video is
expressed as:

Ms =


load play pause seek stop

load m1.1 m1.2 m1.3 m1.4 m1.5

play m2.1 m2.2 m2.3 m2.4 m2.5

pause m3.1 m3.2 m3.3 m3.4 m3.5

seek m4.1 m4.2 m4.3 m4.4 m4.5

stop m5.1 m5.2 m5.3 m5.4 m5.5


where mj,k is the number of transitions from event j to
event k in an activity sequence obtained from an interaction
sequence. And Ms is the transition matrix of student s
interacting with a video. Contrary to a Markov Chain, rows
do not necessarily sum to 1. In the case where no event
occurs and the student remains in the same state for awhile
(playing video or pausing video, for eg.) the increase of the
matrix element mi is the maximum number of transitions
possibles within the time spent in that state counting the
transition from one state to the same state.

3.2 Distance between two transition matrices
The distance between two student transition matrix is ex-
pressed as:

d(Ms1,Ms2) = ‖Ms1 −Ms2‖F

=

√√√√ 5∑
i=1

5∑
j=1

(ms1,j −ms2,j)2
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An important question is what is the polling interval to
choose. This interval will determine the total number of
transitions in Ms. The choice is determined by the minimal
interval required to avoid skipping events while transform-
ing the event sequence to the activity sequence. In our case,
this interval is set to 3 per second and it applies to all video
interactions. The total number of transitions, Ts,i in a given
interaction matrix M for sequence s and video i is therefore:

Ts,i = Ls,i ∗N (1)

where Ls,i is the length of the interaction time and N is the
polling interval.

The similarity between two interaction video sequences based
on transition matrices with a video is then expressed as:

Smat(Ms1,Ms2) = 1−Dis(Ms1,Ms2) (2)

Dis(Ms1,Ms2) =
d(Ms1,Ms2)

Ts1 + Ts2
(3)

Where Smat(Ms1,Ms2) is the similarity level between se-
quence of interaction of student s1 and student s2 of video
i using matrix of interactions and Dis(Ms1,Ms2) is the
dissimilarity between them. d(Ms1,Ms2) is the distance
among them. Ts1 and Ts2 are the number of transitions
of student s1 and student s2 sequence of the video i. If
Smat(Ms1,Ms2) is 0 then the two sequences are completely
dissimilar and when it is 1 then they are completely similar.
Between 0 and 1 shows the percentage of similarity between
the two sequences of transitions.

3.3 Edit Distance measure (ED)
For each pair of sequences, we compute the ED distance to
obtain the distance matrix and from there compute the level
of similarity among them. The level of similarity between
two sequences is computed using ED distance as:

Som(seqs1, seqs2) = 1− distom(seqs1, seqs2)

max(Ts1, Ts2)
(4)

Where Som(seqs1, seqs2) is the similarity level between se-
quence of student s1 and sequence of student s2 of video
i and distom(seqs1, seqs2) is the ED distance between the
two sequences and Ts1 and Ts2 are the numbers of transi-
tion of the sequence of each student given in equation (1).
max(Ts1, Ts1) is the maximum between the number of tran-
sitions of the two student sequences of interactions.

3.4 TMED
The last step of this proposed methodology is to combine
the two techniques by taking for each pair of sequences the
proper level of similarity among the levels given by each
technique. This is meant to take into account the for com-
plementary of those techniques: one can find styles and give
good similarity for sequences of different lengths and the
other gives regularity among sequences and gives good sim-
ilarity among sequences from the same range length. The
final similarity level is then given by:

S(seqs1, seqs2) = Select(Som(seqs1, seqs2),

Smat(Ms1,Ms2))
(5)

Where S(seqs1, seqs2) is the level of similarity between se-
quence of interaction s1 and s2, Som(seqs1, seqs2) similarity

level between the two sequences based on ED distance as ex-
pressed in equation (4) and Smat(Ms1,Ms2) similarity level
between the two sequences based on sequence matrix as ex-
pressed in equation (2).

The function Select() selects Smat similarity if one of the two
sequences is less than the half-length of the other, and se-
lects the maximum level of similarity between the proposed
method and the ED method otherwise.

One takes the maximum between ED similarity and matrix
similarity to avoid the ED drawback of finding dissimilarity
between sequences of same range of length but some mis-
match between states as illustrated in section 4 below. The
flow of the proposed method is illustrated in Figure 1 from
the sequences to the computation of their similarity level.

4. VALIDATION
To validate the proposed method, we compare its capac-
ity of finding the level of similarity between sequences with
existing methods, namely the Markov Chain technique as
used by Klingler et al.[8] and the ED based method used for
clustering the same kind of sequences of interactions.

4.1 Prototypical cases
We first test the approach over prototypical cases where the
patterns are obvious to the eye. For this purpose we take
two main cases: sequences of same lengths of transitions and
sequences of different length of transitions. For the same
sequence length interactions, we considered a cyclic same
sequence of transitions as illustrated in Figure 2a. The cycle
of transitions is: Lo-Pl-Pa-Pl-Pa-Se-Pl-St. The cycle
of transition can start anywhere and finish by St for any of
the sequence.

The expected level of similarity should be close 100% as it is
the same sequence following a cycle. The result based on ED
distance cannot find that level of similarity as shown in Fig-
ure 2b compared to the Markov based method in Figure 2c
(with some exceptions which do not reach the 100% similar-
ity as expected, but close enough to be considered as such)
and the proposed method in Figure 2d (finds perfect match
of style by 100% similarity in each case). For these cyclic
sequences, the proposed method and the Markov based simi-
larity methods are performing better than ED based method
in finding similarity between two cyclic same sequences of
interactions.

The second validation of the proposed method is to compare
it to a Markov based method for different length sequences
given known similarities. For this purpose, we considered
four sequences of same transitions levels as shown in Fig-
ure 3a. In this case, the percentage of transition between
states is the same, but the time spent in each state is dif-
ferent from one sequence to another. The expected level of
similarity depends here on the lengths of each sequence as
the succession of states are the same for all four sequences.
We should have then as result a progressive increase in level
of similarity from the shortest sequence to the longest.

The result from the Markov Chain based method as in Fig-
ure 3a could not find the different levels of similarity as the
percentage of transition between the states is preserved with
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Sequences

ED distance

Select Similarity

ED Similarity

Transition matrix TMED distance TMED Similarity

Figure 1: Flow of the proposed method to compute similarity between students’ video sequences. “Select” is the selection
process between the two technique similarity.

different sequences lengths. The proposed method performs
better as shown in Figure 3b because it is based on the
number of transitions rather than probability of transition
as Markov Chain is.

4.2 Real dataset
The experiment on a real set of video interaction logs aims
to test and compare the ability of the proposed method to
recognize (1) the student behind an interaction log (data
contains 4800 students), and (2) the video behind an inter-
action log. While this task is of no practical use, since both
the video and student associated with an interaction log are
already known in general, it provides a ground truth dataset
to assess the discrimination power of each approach.

We choose three well-known classifiers such as support vec-
tor machine (SVM), boosted tree (GBM) and K-nearest
neighbor (KNN) for each method of representation of se-
quence of interactions to predict first the student and then
video to which sequence of interaction belongs. If a spe-
cific representation of student sequence of interaction is pre-
dictable in terms of which video and student that interact
with the video, that means that the representation is able
to better distinguish different types of interaction and even
showing the specificity of a video in the way that students
interact with it.

For the first part of the experiment where we predict student
to which the sequence representation belongs, the algorithm
arbitrarily selects one sequence of each student to predict
among the nine (9) same student sequences representation
and trains on the eight (8) others student sequences rep-
resentation. The matrix distance used for Markov chain
sequence representation and the proposed TMED represen-
tation is the one described above in section 2.2. In these two
cases the dimension of the representation of each sequence
is 25, that represent the 25 elements of transition matrix of
each sequence representation as described in section 3.3. For
the OM sequence representation, the matrix distance used
is the one described in section ?? above. For the prediction
80% of the data is use for training and 20% for prediction.
Each experiment is repeated 400 times using different set of
students to predict (from 3 to 15 students). The data set
is organized in such that all the student sequence present in
the data set selected, the training set has 8 of their sequence
representation and one in the testing set in each prediction
run.

In the second part of the experiment, we used the same rep-
resentations of student footage but instead of predicting the

student, we predicted the video the student interacted with.
We used the same training (80% of the data) and test (20%
of the data) sets, making sure that in the data we had the
same number of students interacting with each video. Since
each student has nine (9) sequences of interaction represen-
tation, the number of predicted classes (video 1 to video
9) in each data set considered is the same regardless of the
number of students considered. For this reason, balanced
precision was included in the results to avoid the effect of
having more students. Again, in this case, at each predic-
tion run, the algorithm ensures that each student sequence
representation in the data set considered is the same as its
sequence representations in the test set in each run.

4.3 Real data results
The results show that the proposed TMED method through
the level of similarity. Through the tests of validation on
prototypical data, the proposed method yields better results
than the other two existing methods as one can see through
Figures 2 and 3. For the same sequence represented as a
cyclic sequence of interaction with various ways of represen-
tation show in Figure 2 (a) the expected degree of similarity
100% but only the proposed method give us the closest re-
sults to the expected one as shown in Figure 2. One can also
see in this figure that the Markov chain based similarity is
the second-best estimation of similarity after the proposed
method based one.

When we consider a same sequence of states with different
lengths of time as shown in Figure 2 (a), the expected results
of similarity is a progressive increase of level of similarity ac-
cording to the length of the sequence. The classic Markov
chain based method could not find that the length of se-
quences are different whereas TMED method is able to find
it well (Figure 3 (c)).

The experiment over the real data tasks tests the capac-
ity of each method of representation of video interaction to
identify each sequence of interaction in terms of student and
video sequences. Results show better accuracy for TMED
than the other ones (table 1). The performance parameters
on student prediction using SVM, GBM and KNN on pre-
dicting five (5) students and twelve (12) students with nine
(9) records of each student (where eight (8) records are for
training and predicting one record of each student).

For predicting video, the complete results for forty-five (45)
records from five (5) different students and hundred and
eight (108) records from twelve (12) students in predicting
the nine (9) videos are shown in table 2. They demonstrate
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(a) Same cyclic sequence of transitions (b) ED (c) Markov (d) Proposed

Figure 2: Result of similarity: (a) The cycle starts and follows the same pattern of transition to close the cycle (b) Similarity
based on Edit Distance (ED) cannot recognize the similarity of cyclic sequences. (c) Similarity based on Markov Chain can
recognize the similarity, with some exceptions that not reach 100%. (d) Proposed TMED similarity can recognize cyclic
sequences.

(a) Same cyclic sequence (b) Markov (c) Proposed

Figure 3: Similarity results from the sequence in (a): (b) similarity based on Markov Chain cannot recognize the duration in
each state.(c) proposed TMED similarity can recognize the fact that those sequences are same but the level of similarity is
based on the time spent in each state.

Predictions: 45 records, 5 target students
Approach: SVM GBM KNN
Method : ED MC TMED ED MC TMED ED MC TMED
Accuracy 0.60 0.00 0.80 0.40 0.00 1.00 0.20 0.22 1.00
F1 0.75 0.00 0.89 0.57 0.00 1.00 0.33 0.36 1.00

Predictions: 108 records, 12 target students
Accuracy 0.58 0.18 0.67 0.42 0.36 0.42 0.11 0.00 0.40
F1 0.73 0.20 0.78 0.59 0.50 0.63 0.20 0.00 0.67

Table 1: Results of Twenty fold cross validation 400 runs of student prediction of 5 and 12 students using three different
methods of representation of student interaction with videos showing that the proposed representation technique is performing
better than others.

that the proposed method is also better on recognizing both
video and student than the two other methods of presenta-
tion of student interaction with video.

These results suggest that the proposed method has a better
way of representing a student video interaction with videos
and so can be used for comparing two different interactions
with video.

5. CONCLUSION
The proposed methodology aims to fill out a methodologi-
cal gap on representing and comparing video sequences of
interaction methods. The proposed method overcomes the
drawbacks of the previous methods based on Markov Chain
and sequence of interactions known as Edit Distance (ED).
The main contribution of this proposed method is the fact
that it takes into account the time spent in each state and
the general style of succession of states. This offers a new
tool to researchers who want to compared video viewers in-
teraction and find eventually video style of interaction.
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Predictions: 45 records, 9 target videos
Approach: SVM GBM KNN
Method : ED MC TMED ED MC TMED ED MC TMED
Accuracy 0.11 0.33 0.56 0.33 0.56 0.56 0.22 0.22 0.33
F1 0.20 0.50 0.72 0.50 0.36 0.72 0.36 0.36 0.50

Predictions: 108 records, 9 target videos
Accuracy 0.22 0.11 0.56 0.11 0.33 0.56 0.22 0.11 0.22
F1 0.36 0.20 0.61 0.20 0.50 0.61 0.36 0.20 0.36

Table 2: Results of Twenty fold cross validation 400 runs of video prediction using three different methods of representation
of student interaction with videos, ED (Edit Distance), MC (Markov Chain), TMED.

TMED combines two styles of representation of video se-
quence of interaction and computes the similarity based on
the advantage of each style of representation. The ED based
similarity is generally good on same range length of inter-
action sequences and the matrix of interaction based rep-
resentation does better on sequences of different range of
length.

The proposed method is also able to better represent a se-
quence of interaction when doing classification tasks as the
results show. In fact, proposed method has a better per-
formance in predicting student sequence of interaction and
prediction video when having a representation of a video
sequence of interaction.

References
[1] Yoav Bergner, Zhan Shu, and Alina von Davier. Visu-

alization and confirmatory clustering of sequence data
from a simulation-based assessment task. In Educa-
tional Data Mining 2014, 2014.

[2] Mina Shirvani Boroujeni and Pierre Dillenbourg. Dis-
covery and temporal analysis of latent study patterns
in MOOC interaction sequences. In Proceedings of the
8th International Conference on Learning Analytics and
Knowledge, pages 206–215. ACM, 2018.

[3] Christopher G Brinton, Swapna Buccapatnam, Mung
Chiang, and H Vincent Poor. Mining MOOC click-
streams: Video-watching behavior vs. in-video quiz per-
formance. IEEE Transactions on Signal Processing,
64(14):3677–3692, 2016.

[4] Michel Desmarais and François Lemieux. Clustering
and visualizing study state sequences. In Educational
Data Mining 2013, 2013.

[5] Louis Faucon, Lukasz Kidzinski, and Pierre Dillen-
bourg. Semi-markov model for simulating MOOC stu-
dents. International Educational Data Mining Society,
2016.

[6] Philip J Guo, Juho Kim, and Rob Rubin. How video
production affects student engagement: An empirical
study of MOOC videos. In Proceedings of the first ACM
conference on Learning@ scale conference, pages 41–50.
ACM, 2014.
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ABSTRACT
In colleges, programming is increasingly becoming a gen-
eral education course of almost all STEM majors as well
as some art majors, resulting in an emerging demand for
scalable programming education. To support scalable edu-
cation, teaching activities such as grading and feedback have
to be automated. Recently, online judge systems have been
extensively used for programming training, because they are
able to automatically evaluate the correctness of programs
in real time and thereby make grading work scalable. How-
ever, existing online judge systems lack of the ability to give
effective feedback on logical programming errors. As such,
instructors and teaching assistants are still overwhelmed by
the work of helping students fix programs, especially for
those novice students. To tackle the challenge, we develop
PIPE, a deep learning model that is able to Predict logIcal
Programming Errors in student programs. The model seam-
lessly integrates a representation learning model for obtain-
ing the latent feature of a program and a multi-label classi-
fication model for predicting the error types in the program,
thereby allowing end-to-end learning and prediction. We
use the C programs submitted in our online judge system
to train PIPE, and demonstrate its superior performance
over the baseline models. We use PIPE to implement the
error-feedback feature in our online judge system and en-
able automated feedback on logical programming errors to
the students.

Keywords
Online Judge System, Scalable Programming Training, Log-
ical Programming Error, Automated Error Feedback, Deep
Learning

1. INTRODUCTION
∗Xuesong Lu is the corresponding author.

The evolution of big data and AI technologies has made
programming a ubiquitous skill in almost all industries and
thereby led to a massive demand for programming profes-
sionals. In colleges and MOOC platforms, programming is
no longer a professional course of ICT-related majors and
becoming a general education course for all STEM majors
and even some art majors. As such there is an urgent need
for scalable programming teaching methodologies and learn-
ing tools to cater for the increasingly overwhelmed teaching
workload. One of the most important mechanisms to achieve
scalable teaching is automation. For example, online judge
(OJ) systems [22], which are originally used for competitive
programming contests, have now been extensively used in
programming training mainly due to their ability of auto-
mated program evaluation. Given a programming exercise
and a set of predefined input, the judge system evaluates a
submitted program1 by comparing the expected output with
the actual output obtained from the execution of the pro-
gram. Such a pair of predefined input and output is called a
test case. This feature can largely reduce the grading work-
load of instructors and teaching assistants, and thus make
class sizes scalable to some extent.

Despite the ability of automated program evaluation, exist-
ing OJ systems often provide to students next-to-zero feed-
back on programming errors when they submit an incorrect
program. We refer to an “incorrect program” as a piece of
code that is compilable but generates wrong output for the
test cases. The errors in such a program are often termed
as “logical errors”, as opposed to “common errors” that are
related to the use of incorrect syntax. In our teaching, we
observe that the students can easily fix common errors with
the help of an IDE, but are quite struggling when dealing
with logical errors. In the latter case, existing OJ systems
only show to students feedback such as “Wrong Answer” and
“Runtime Error”, and cannot provide any information on de-
tailed types of errors. The problem is even severer in case
of a quiz, where students are not allowed to check the test
cases2. As such, students, especially novices, rely heavily on
instructors and teaching assistants to help them fix logical
errors, which prevents programming training from becoming
more scalable. This has motivated us to develop an auto-
mated tool for logical error feedback.

1Below we use the term ‘program’ and ‘code’ interchange-
ably.
2Otherwise, students may fake the output.
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In this work, we develop a deep learning model, PIPE, that
is able to predict the detailed types of logical errors and
therefore can be deployed in OJ systems to enable auto-
mated error feedback. We collect the C programs that are
compilable but fail to pass the test cases, submitted by the
students in our OJ system. We manually label the programs
with a set of predefined types of logical errors. Since each
program may contain multiple types of logical errors, we re-
gard the prediction task as a multi-label classification prob-
lem. Therefore, the architecture of PIPE is inspired by the
work of code2vec [2] and C2AE [24], which are originally de-
veloped to predict semantic properties of code snippets and
boost the performance of multi-label classification tasks, re-
spectively. In particular, we first use the idea of code2vec to
obtain the latent representations of C programs. For each
program, in addition to just embedding the code itself, we
embed two more types of information in the model input,
namely, the corresponding exercise identity and the evalua-
tion results returned by the judge system. Then following
the idea in C2AE, we also transform the corresponding er-
ror types into latent representations with an encoder, and
jointly learn deep latent spaces together with the represen-
tations of the C programs. The error types are finally recon-
structed from the deep latent spaces using a decoder, which
are then used to compute the loss function with the true
error labels for backpropagation. Thanks to the seamless
integration of code2vec and C2AE, PIPE allows end-to-end
training and prediction. We then conduct extensive experi-
ments to demonstrate PIPE’ superior performance over the
baseline models. We deploy PIPE in our OJ system and
show the usage of the automated error-feedback feature.

The rest of the paper is organized as follows. Section 2
presents the detailed architecture of PIPE. Then Section 3
describes the real dataset used in our experiments and presents
the performance evaluation of the proposed model. Section 4
gives a brief literature review of related work, and finally
Section 5 concludes the work and points out some future
work to improve the feature of automated error feedback.

2. THE PIPE MODEL
We describe the architecture and the optimization method
of PIPE in this section.

2.1 Architecture Overview of PIPE
Since each program may contain more than one logical error,
we regard the error prediction task as a multi-label classifi-
cation problem. We use the structure of the C2AE model
as the backbone of PIPE. The C2AE model performs joint
input and output embedding which correlates the features
and the labels, and hence achieves the new state-of-the-art
performance on multi-label classification tasks. In particu-
lar, PIPE uses a feature mapping Fx to transform the pro-
grams X and uses a encoding function Fe to transform the
corresponding labels Y of the logical errors into deep la-
tent spaces L. Then it utilizes Deep Canonical Correlation
Analysis [3] (DCCA) to learn L for joint program and la-
bel embedding. Finally, PIPE uses a decoding function Fd

to recover the label outputs from L, where Fe and Fd thus
compose an autoencoder for the reconstruction of the labels.
The objective function of PIPE is formulated as follows:

Θ = min
Fx,Fe,Fd

Φ(Fx,Fe) + αΓ(Fe,Fd) (1)

where Θ represents the total loss of PIPE, Φ(Fx,Fe) and
Γ(Fe,Fd) denote the loss at the latent space layer for associ-
ating features and labels, and the loss at the output layer for
reconstructing the labels, respectively. The hyperparameter
α balances the two components of the objective function.
Once the training is completed, PIPE can throw away the
component pertaining to Fe and use Fd(Fx) to predict the
logical errors in each program.

In PIPE, we simply use a fully-connected network to im-
plement the functions Fe and Fd, respectively. We further
leverage the idea in code2vec to implement the feature map-
ping Fx for program representation learning, as shown in the
part surrounded by the red dotted line in Figure 1. Rather
than directly embed the source code, code2vec first decom-
poses the program into a collection of paths in its abstract
syntax tree (AST) and then learns to aggregate the paths
into a single program vector. The method is proved to bet-
ter capture the regularities that reflect common program
patterns and lower the learning effort, compared to learning
over original program text. To capture more information
about the logical errors pertaining to each particular ex-
ercise, we embed the exercise identity and the evaluation
results on the test cases returned by the judge system, and
concatenate them with the program vector to form a unified
feature vector, which we call program embedding. Then the
program embeddings are transformed into the latent space
L using a fully-connected layer. The architecture overview
of PIPE is shown in Figure 1.

2.2 Program Embedding
Firstly, we need to transform the programs into vectorized
representations. Following the method in previous work [2,
19], we compile each C program X and parse it to con-
struct an AST. An AST is a tree representation of the ab-
stract syntactic structure of source code, where the nodes
denote the various elements appearing in the original source
code. By traversing between the AST leaves, we can ob-
tain multiple syntactic paths that represent the context of
the corresponding C program. Then the syntactic paths are
converted into context vectors, which are used as one type
of input to learn the values of program embedding. Each
context vector ci ∈ R3d is concatenated to using three indi-
vidual vectors, as depicted in Equation 2,

ci = [si,pi, ti] (2)

where si ∈ Rd, pi ∈ Rd and ti ∈ Rd are the vectorized
representation of the source node, the path and the target
node of the corresponding syntactic path, respectively. Then
each context vector ci ∈ R3d is transformed into a combined
context vector ĉi ∈ Rd using a shared fully-connected layer,
and finally all the combined context vectors are aggregated
into a single program vector vp ∈ Rd using the following
attention mechanism,

vp =

n∑
i=1

αi · ĉi

s.t. αi =
exp(ĉTi · a)∑n
j=1 exp(ĉ

T
j · a)

(3)

where a is the attention vector, αi is the attention weight
and n is the number of combined context vectors. The atten-
tion vector learns the importance of each combined context
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Figure 1: The overview of PIPE’s architecture.

vector. To capture more information pertaining to the er-
rors in the program w.r.t a particular exercise, we further
embed the exercise identity and the evaluation results on
the test cases into two vectors ve ∈ Rde and vr ∈ {0, 1}dr ,
respectively. vr is a bit vector where 1 indicates a correct
output on the test case and 0 otherwise. The vector ve re-
stricts the exercise-related characteristics such as functions
and algorithmic logic, and the vector vr captures specific
types of errors since similar logical errors should result in
wrong output on similar test cases. Eventually the program
embedding vX is obtained by concatenating vp, ve and vr,
as formulated in Equation 4.

vX = [vp, ve, vr] (4)

2.3 Learning Deep Latent Spaces for Joint Pro-
gram & Label Embedding

Following the idea in the work [24], we learn deep latent
spaces L to associate program embedding and label em-
bedding, using Deep Canonical Correlation Analysis [7, 3]
(DCCA). For each C program X, we simply represent its la-
bel Y as a bit vector vY ∈ {0, 1}N , where N is the number of
logical error types. The vector vY may contain multiple 1s
since each program may have multiple types of logical errors.
Then both the program embedding vX and the label embed-
ding vY are transformed into a latent vector of size l using a
fully-connected layer with the tanh activation function. The
holistic functions that mapping X and Y are refer to as Fx

and Fe, respectively, as depicted in Section 2.1. Then the
objective function for correlating the latent representations
are formulated as Equation 5,

Φ(Fx,Fe) = ||Fx(X)− Fe(Y)||2F
s.t. Fx(X)Fx(X)T = Fe(Y)Fe(Y)T = I,

(5)

where I ∈ Rl×l is the identity matrix. By solving the objec-
tive function, we enforce the deep latent space L to associate
the programs X and the labels Y, and hence Fx(X) can be
used as the input to predicting the label Y .

2.4 Recovering Label Outputs from the Deep
Latent Space

In the training phase, the output label Ŷ is reconstructed
from the latent representation Fe(Y ) using a decoder Fd,
which is simply implemented as a fully-connected layer in
this work. In the original work [24], the model uses a label-
correlation aware function to calculate the label reconstruc-
tion loss Γ(Fe,Fd) at the output layer, in order to bet-
ter preserve the label co-occurrence information for multi-
label classification task. However, we notice that there is
no strong correlation between the labels of the logical error
types in our dataset. Hence, we insteadly use the multi-label
cross-entropy function to calculate the label reconstruction
loss, as depicted in Equation 6,

Γ(Fe,Fd) =
1

|Y|

|Y|∑
j=1

Ej

Ej = −
N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

(6)

where |Y| is the number of training instances, N is the num-
ber of logical error types and yi equals to 1 if the program
contains the corresponding error and equals to 0 otherwise.
We use the Sigmoid activation function in the output layer.
By solving the loss function, we enforce the autoencoder
Fd(Fe(Y )) to reconstruct the label of the logical error types.
Since the latent representation Fe(Y ) and Fx(X) are highly
correlated after the training is completed, Fd(Fx(X)) can
be used to predict the error types of a given C program X.

2.5 Optimization
The gradient of the label-reconstruction loss Γ(Fe,Fd) can
be easily calculated since it is a cross-entropy function. Fol-
lowing the method in [24], the gradient of the association
aware loss Φ(Fx,Fe) in the latent space can be calculated
with the help of Lagrange multipliers [20]. In particular,
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Φ(Fx,Fe) is first reformulated as

Φ(Fx,Fe) = Tr(CT
1 C1) + λTr(CT

2 C2 + CT
3 C3), (7)

where

C1 = Fx(X)− Fe(Y)

C2 = Fx(X)Fx(X)T − I

C3 = Fe(Y)Fe(Y)T − I.

We fix λ to 0.5 in accordance with [24]. Then the gradient
w.r.t Fx(X) and Fe(Y) can be calculated as

∂Φ(Fx,Fe)

∂Fx(X)
= 2C1 + 4λFx(X)C2

∂Φ(Fx,Fe)

∂Fe(Y)
= 2C1 + 4λFe(Y)C3.

(8)

3. PERFORMANCE EVALUATION
In this section, we evaluate the performance of PIPE on
a real dataset collected in our OJ system, and report the
experimental results by comparing PIPE with other baseline
methods. In the end, we demonstrate an example of the
error-feedback feature implemented with PIPE in our OJ
system.

3.1 The Dataset and Settings
The real dataset is collected from an introductory C pro-
gramming course for undergraduate students in our school.
The course uses heavily an OJ system to train the students,
and we collect all the programs with logical errors submitted
by the 29 enrolled students throughout one entire semester.
Most programs have less than 50 lines. After cleaning work
such as removing repeated submissions of programs with mi-
nor changes, we obtain 5196 C programs pertaining to 200
programming exercises. We have carefully designed for each
exercise 10 test cases. Then we randomly disseminate the
URLs of these programs to 17 senior students and ask them
to annotate the labels of logical errors. In order to guarantee
the correctness of annotation, they are allowed to freely run
the programs and check the output of the test cases. Also,
each program is annotated and cross validated by three stu-
dents. The annotation work takes roughly two months.

After annotation, we observe that 5125 out of the 5196 pro-
grams fall into 10 major types of logical errors. The remain-
ing 71 programs have very uncommon errors and are thus
discarded from the dataset. The 10 types of logical errors
are summarized and explained as follows. The distribution
of the numbers of the errors is plotted in Figure 2.

1. Incorrect input variables - mainly due to misuse of
the ‘&’ operator in the scanf() function.

2. No output - forgetting to write output.

3. Incorrect output format - output format not com-
plying with the exercise requirements.

4. Incorrect initialization - errors related to incorrect
initialization of variables.

5. Incorrect data types - mainly due to undesired type
conversions.

6. Incorrect data precision - mainly due to loss of
precision during calculation.

Figure 2: Distribution of the numbers of error types.

7. Incorrect loops - loop-related errors such as incor-
rect termination condition and incorrect step size of
iteration.

8. Incorrect branches - errors due to incorrect condi-
tional statements.

9. Incorrect logic - program’s logic not complying with
the exercise.

10. Incorrect operators - misuse of operators.

The dataset is randomly splitted into training, validation
and testing set with proportion 6 : 2 : 2 in the experiments.
We implement PIPE and four baseline models for compari-
son using Python 3.6 and TensorFlow 1.13. The first three
baseline models are the original code2vec model, code2vec
plus exercise identity embedding, and code2vec plus exer-
cise identity and evaluation result embeddings. The fourth
model is the same as PIPE except that we use the original
label-reconstruction loss in the C2AE model. At the input
we randomly choose 200 context vectors for each program.
At the output all the models are modified to cater for the
multi-label classification task accordingly. The batch size is
64 and the learning rate is 0.001. We use the Adam algo-
rithm for optimization. All other optimal hyperparameter
settings are determined via the validation process, including
the thresholds for rounding to the predicted labels. The met-
rics of interest are therefore precision, recall and F1 score,
in accordance with [2, 24]. We also measure the averaged
percentage of exact match, which means that the predicted
types of errors are exactly the same as the ground truth for
a given program. All experiments are conducted using a
normal PC installed with an Intel Core i7-8550U CPU and
8GB RAM.

3.2 Main Results
The main results are presented in Table 1. For PIPE, the
program embedding size is set to 1383, the size of the la-
tent space is 69, and the balancing factor α = 0.1. For
each model, we calculate seven metrics on the testing set,
which are the averaged percentage of exact match, per-class
precision (C-P), per-class recall (C-R), macro F1 score (Ma-
F1), overall precision (O-P), overall recall (O-R) and micro

3program embedding(138)=program vector(64)+exercise
ID vector(64)+evaluation result vector(10).

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 476



Model Exact Match C-P C-R Ma-F1 O-P O-R Mi-F1
code2vec 0.5735 0.4037 0.3671 0.3822 0.7013 0.6472 0.6714
code2vec + exercise ID 0.5643 0.3696 0.3427 0.3543 0.6978 0.6437 0.6687
code2vec + exercise ID + evaluation 0.5809 0.3798 0.3438 0.3592 0.7088 0.6441 0.6735
PIPE + C2AE loss 0.0 0.09817 0.3679 0.1528 0.2443 0.8497 0.3792
PIPE 0.6259 0.4386 0.3984 0.4151 0.7527 0.7037 0.7255

Table 1: Comparison between PIPE and baseline models.

F1 score (Mi-F1). We observe that PIPE performs con-
stantly much better than the other models on all metrics.
Although PIPE using original C2AE loss achieves the best
overall recall, it has poor results on all other metrics. This is
because the label-reconstruction loss in C2AE attempts to
preserve the correlation between the labels and hence more
error types are predicted. However, this also drastically re-
duces the precision and causes no case of exact match is
predicted. The results prove the effectiveness of the seam-
less integration of code2vec and C2AE, as well as the use of
cross-entropy for the label-reconstruction loss.

3.3 Sensitivity Analysis
We perform sensitivity analysis for three most important
hyperparameters, that is, the size of program embedding
vX , the size of the latent space l and the loss balancing
factor α. For each of them, we fix the values of all other
hyperparameters and vary it in the corresponding ranges.

The size of program embedding. The size of vX equals
to the sum of the size of program vector vp, the size of
exercise identity vector ve and the size of evaluation result
vector vr. The size of vr is fixed to 10 since each exercise has
10 test cases, and the size of ve is fixed to 64 for the sake of
simplicity. We then vary the size of vp in (64, 128, 192, 256),
following the setting in [2]. Therefore, the size of vX varies
in (138, 202, 266, 330). The results are presented in Figure 3.
We observe that PIPE prefers smaller program embedding
size on all metrics.

The size of the latent space. Following [24], we measure
the size of the latent space L as its ratio to the size of pro-
gram embedding, i.e., l/|vX |. We vary the ratio in the range
[0.1, 1] with increments 0.1, and report the results in Fig-
ure 4. We observe that roughly all the metrics first increase
and then decrease as the size of latent space increases. Over-
all taking half of the size of program embedding achieves the
best performance.

The balancing factor α. We vary α in the range [0.1, 1]
with increments 0.1. We also set α = 0.05 to show the per-
formance on the very small value. The results are presented
in Figure 5. We observe that α = 0.1 achieves the best
overall performance. Further increasing α would break the
balance between the losses of the two parts.

3.4 Demonstration
We have implemented the error-feedback feature in our OJ
system using PIPE. Figure 6 shows the usage of the feature.
In case of an incorrect submission, a student may check the
possible errors predicted by the system and modify the pro-
gram accordingly, where each type of error is associated with
a probability. For example in Figure 6, the student may have

99.04% chance to write incorrect loops, and may also have
93.21% chance to lose precision during calculation, etc.

4. RELATED WORK
Code error prediction (or detection) is a branch of auto-
matic software repair (ASR) [13], which is a long and active
research area of software engineering. ASR is with respect to
an oracle that is able to determine whether the execution of
a given program is correct. Among various types of oracles,
test suites or test cases are mostly used in recent ASR re-
searches, which are also used as an important input feature
in our PIPE model. Traditionally, test-suite-based methods
can be broadly classified into two categories, i.e., search-
based methodology [9, 8, 11] and semantics-based method-
ology [14, 5, 12]. The former category of methods explore
a search space of programs to find the most suitable repair
candidate that can pass the test cases; the latter category of
methods synthesize a repair candidate using semantic infor-
mation via symbolic execution and constraint solving. All
these algorithms are specifically designed for repairing soft-
ware with thousands to hundreds of thousands lines of code,
and often cannot be directly applied in the setting of pro-
gramming education. For instance, search-based methodolo-
gies typically rely on redundancy presented in other parts of
the program to limit the search space, whereas redundant
code is hardly observed in a students’ program. Moreover,
rather than directly correcting the bugs in students’ pro-
grams, providing hints for students to find the errors is more
preferable for education purpose. Therefore, the methods
for ASR are somehow too heavy to cater for our prediction
requirements.

In the past few years, research at the intersection of deep
learning and programming languages has been driven by the
availability of“big code”. Massive source code obtained from
the sites such as GitHub as well as some MOOC courses
facilitates the design of learnable probabilistic models that
exploit abundant patterns of code. These models are then
applied to various applications, including program repair [1,
21], clone detection [10] and code synthesis [18], etc.

Training deep learning models to provide feedback to stu-
dent code has recently drawn attention of both researchers
and programming educators. For example, the work of [4]
trains recurrent neural networks to automatically detect and
correct syntax errors in programming assignments. The
models are first trained on syntactically correct student pro-
grams and then are used to predict the correct token se-
quences given the prefix token sequence of a student pro-
gram with syntax errors. Similarly, the work of [6] trains a
multi-layered sequence-to-sequence neural network with at-
tention to predict erroneous locations in student programs
and attempts to fix the errors with correct statements. The
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Figure 3: Varying the size of pro-
gram embedding.

Figure 4: Varying the ratio of the
size of latent space to the size of pro-
gram embedding.

Figure 5: Varying the balancing fac-
tor α.

Figure 6: The usage of the error-feedback feature.

model requires to construct training pairs of syntactically in-
correct program and the corresponding syntactically correct
program. Since both works are focused on detecting and fix-
ing syntax errors, they cannot generate abstract syntax trees
for program embedding and thus directly use the language
tokens in the original program text. The work in [16] trains
an autoencoder to learn joint embedding of program states
and programs. The embedding are then used as the input to
train an RNN-based model, which can automatically propa-
gate teacher feedback to similar programs. While the focus
of their work is representation learning of program state,
our model allows end-to-end learning and prediction of log-
ical errors in programs. Other work pertaining to program
feedback in the educational setting include [15, 17, 23].

5. CONCLUSIONS
To automate the feedback on logical programming errors in
OJ systems, we develop PIPE, a deep learning model that
is able to predict the types of errors in students’ programs.
PIPE seamlessly integrates program representation learn-
ing into a multi-label classification model, and thereby can
perform end-to-end learning and prediction. To boost the
prediction performance, PIPE also incorporates the exercise
identity and the evaluation results on the test cases into the

program representation, with the hope that the error in-
formation w.r.t each particular exercise and each particular
evaluation pattern could be captured. Experimental results
on a real dataset show PIPE’s superior performance over
the baseline models. We have used PIPE to implement the
error-feedback feature in our OJ system, and will further
evaluate its impact on programming education.

In future, we plan to improve PIPE so that it may not only
predict but also localize the errors, i.e., telling the students
which lines of the program may contain logical errors and
what are the potential types of the errors. Such feedback
would further promote students’ learning efficiency and help
us to achieve higher scalability in programming education.
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ABSTRACT
Assessing Opportunities to Learn (OTL) implies the mea-
surement of different aspects of the curricular implementa-
tion in the classrooms, such as the contents that the teacher
selects for the course and the time of exposure and the fre-
quency of the tasks proposed.

Based on recent studies that demonstrate the influence of
this curricular dimension on students’ performance, this work
analyzes the relationships between the emphasis made by
teachers of third grade of secondary school on different read-
ing contents, and students’ performance in reading tests.
The aim of this research is to establish the effect of the em-
phasis with which teachers propose different types of read-
ing activities (literal, inferential, and critical) on students’
performance. From the analysis of compositional data, this
study concludes that the students of those teachers who re-
port working a greater extent on the critical dimension of
reading obtains –on average– higher scores on the national
reading test. This result holds even when socio-economic
and cultural context and reading habits are controlled for.

Keywords
Compositional data, curriculum emphasis, opportunity to
learn, reading performance, regression models.

1. INTRODUCTION AND BACKGROUND

The opportunities to learn (OTL) that the education sys-
tems offer to students are currently one of the central ob-
jects of educational evaluations. This implies, among other
things, the measurement of various aspects of the curricu-
lar implementation in the classrooms, such as: a)the con-
tents that the teacher selects to address in the course and
b)their exposure time and frequency according to the tasks
proposed. As such, OTL studies have the potential to con-
tribute to the knowledge of what and in which way the cur-
riculum is implemented in the classroom, and to curricular
formulations.

One of the first organizations to use the concept of OTL in
their studies was the International Association for the Eval-
uation of Educational Achievement (IEA) in the Second In-
ternational Study in Mathematics (SIMS), showing the cor-
relation between student performance and the opportunity
to have tackled a certain curricular content in class, see [30].
Likewise, the research produced from the SIMS data showed
–among other aspects– the centrality of curricular coverage,
emphasis, and time devoted to its treatment in relation to
students results in tests, see [7].

The OTL project that served as a source for the design of
the instruments used in the International Study of Trends
in Mathematics and Science (TIMSS), was carried out by
the Mathematics and Science Opportunities Survey (SMSO)
(see [32]), which formulates the concepts of prescribed cur-
riculum (national goals or curricula), implemented curricu-
lum and achieved curriculum (what students have actually
learned, see [33]. In this sense, the evaluation of opportu-
nities to learn proposes relevant information about the im-
plemented curriculum that contributes to a better and more
complete understanding of what students can learn.

Studies carried out by Cervini conclude that OTL affect stu-
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dent performance even when controlling for variables such
as socioeconomic status and socio-cultural context of the
school: “students with the same social background who at-
tend schools with a similar social composition, but some
[have] a significantly higher performance level because their
teachers gave them a greater opportunity to learn”, see [25].

Recently, and from the accumulation of evidence, greater im-
portance has been given to the incidence of learning oppor-
tunities in student performances. Numerous studies realize
the importance of considering these variables when identify-
ing the aspects that influence student performance and that
are also modifiable from the organization of schools and the
pedagogical practices of the classroom, see [13].

Consequently, when evaluating the performance of students
based on tests aligned to the prescribed curriculum (the reg-
ulations established to be taught in a school year) it is ex-
pected that different results will be observed for those who
have had greater coverage of the contents or greater empha-
sis on its treatment, in addition to more exposure time to
them (emphasis), than for those who have not had it, see
[25]. The work that is developed in this article aims to give
statistical evidence to this last hypothesis raised by Cervini
in the Uruguayan classrooms.

On a large scale, there are few international experiences that
evaluate learning opportunities in the classroom: the eval-
uations carried out by the IEA (SMSO and TIMSS), the
International Study of Progress in Reading Comprehension
(PIRLS), the Program for the International Assessment of
Students (PISA) and the International Survey on Teaching
and Learning (TALIS). Since 2017, the National Institute
of Educational Evaluation (INEEd) of Uruguay, performs
the national evaluation of achievements of the educational
system (ARISTAS) that contemplates the measurement of
OTL in classrooms of third and sixth grade of primary edu-
cation and third grade of secondary education.

Research based on PISA data (see [17]) has shown, for a
large group of countries, a significant association (of mod-
erate to strong) between reading habits (students’ taste for
reading, time dedicated to it in their free time and the di-
versity of texts they read) and their reading performance.

Similar findings were reported for Uruguay by ANEP, 2004.
In this study, the relationship between certain attitudinal
variables regarding students’ reading habits and the results
of reading and math tests is analyzed. In concordance with
international findings, this study shows better reading re-
sults for women than men. Nonetheless , it is also women
who show greater taste for reading. Among the findings of
this study, it is noted that as performance in reading im-
proves, so does the taste for reading, while the dislike of it
decreases on average.

Although there is evidence that links student reading habits
with their reading performance. This can happen since stu-
dent reading habits allow some teacher practices, that in
turn influence student performance. However, there is little
evidence that links these qualities of students with teacher
practices (see [4]) and their performance. Thus, this re-
search focuses on the relative effect of teaching practices on

the reading performance of students, when certain student
qualities (such as socioeconomic and cultural level; and stu-
dent reading habits) are controlled for.

Based on data from the 2018 national evaluation of the
Uruguayan educational system –Aristas– carried out by the
National Institute of Educational Evaluation (INEEd), the
aim of this work (considering recent studies that demon-
strate the influence of curricular implementation on student
performance) is to analyze the relationships between the em-
phasis made by nine grade teachers on different reading di-
mensions (literal, inferential and critical) and their student
performance on reading.

One possible explanation is that the students whose teachers
report working the critical dimension of reading on a greater
extent, achieve –on average– higher scores in the reading
test, even when socio-economic and cultural context; and
reading habits, are controlled for.

This paper is organized as follows. In Section 2 the theoret-
ical framework and the main linguistic concepts used are in-
troduced. Section 3 provides the implemented methodology
and the statistical tools used: Compositional Data Analysis
(CoDA). The most relevant results obtained from the sta-
tistical analysis are enumerated in Section 4. In Section 5
the final discussion and conclusions are established.

2. THEORY
As Zakaryan (see [35]) indicates, in general terms, the na-
ture of classroom teaching significantly affects the level of
student learning. In this relationship, the analysis of the
teaching practice is key, since the teacher determines the
learning opportunities through the activities he proposes in
the classroom and the qualities of his or her teaching. Thus,
the content, format and cognitive demand of the tasks that
teachers pose in the classroom constitute “the main vehicle
to provide school children with learning opportunities”, see
[28], p. 113.

One of the questions which OTL studies attempt to respond
is whether the curriculum implemented by teachers in the
classrooms effectively covers the contents established in the
nationally prescribed curriculum. Within this research per-
spective, three approaches are identified: the coverage of the
contents, the exposure to them –measured through the time
dedicated to them– and the emphasis on their implementa-
tion, that is, what contents are treated with priority in the
classrooms over others in the program, see [26].

In this way, it is possible to approach the institutional and
pedagogical mechanisms that contribute to the distribution
of learning opportunities not only among schools, but also
between classrooms. Likewise, it is relevant to know the
form of said distribution, that is, if all children and young
people receive from the school system –or not– the same
opportunities to learn.

This work follows the definition of opportunities to learn
(OTL) carried out by the INEEd, see [15]. In this, the study
of the OTL not only seeks to analyze the alignment between
the prescribed and the implemented curriculum, but also to
what extent this alignment and other school conditions in-
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fluence the performance of the students. Among the dimen-
sions of the OTL assessed by the INEEd, this paper focuses
on coverage and sequence of the contents, which refers to the
degree of implementation of the curricular contents, as well
as their didactic sequence and emphasis, see [15], p. 14. In
particular, the emphasis on curricular content is measure as
the percentage of classroom pedagogical time that teachers
devote to the work of curricular content corresponding to a
school grade, see [15], p. 15.

3. METHOD
This study uses data from the evaluation of the uruguayan
education system (Aristas) carried out by the INEEd in
secondary education in 2018 nationwide. This evaluation
gathers information on various actors of the education sys-
tem: school principals, teachers and students, through self-
administered online surveys. Aristas is applied to a repre-
sentative sample of nine grade middle school students of the
Uruguayan urban region. Besides this contextual question-
naires, each student has to take two multiple choice tests to
assess reading and math performance (Students’ abilities are
estimated based on test results using item response theory,
and in particular the Rash model).

To obtain information on curricular implementation, Aris-
tas asks teachers if they have covered and with how much
emphasis, a series of curricular activities that can be clas-
sified into three reading dimensions: literal, inferential and
critical.

As defined by INEEd in the OTL framework for secondary
education (see [14] and [15]), the emphasis with which teach-
ers work the curricular contents in the classroom is a com-
posite measure based on their reports on: i) the total number
of classes taught and ii) the number of classes dedicated to
addressing each type of activity in the course. Both mea-
sures refer to the period between the beginning of the school
year (March 2018) and the time the evaluation was carried
out (October 2018).

In order to address this, teachers are presented with a list of
10 activities (corresponding to the three different dimensions
of reading –literal, inferential, critical–) and are asked to
indicate the number of classes dedicated to each activity.
Each of the dimensions in which the activities are grouped
implies differences in their cognitive complexity, see Table
1. Thus, the number of classes reported per dimension is
counted as the average number of classes declared for each of
the listed activities. That is, the number of classes reported
by a teacher in one dimension is the sum of classes that the
teacher declares to dictate for the activities that integrate
that dimension, over the total of activities that compose it.

From the self-report declared by nine grade teachers in sec-
ondary education, an overestimation of the effective number
of classes in the school year is generally observed. That is,
when the maximum total number of classes in the year is
72%, 70.2% report dictating above that threshold. This in-
convenience in the instrument is a frequent problem due to
various causes, see [10] and [4].

To approach this over report problem, the classes reported
are relativized by each teacher for the activities of each di-

Literal dimension Inferential dimension Critical dimension

K
in
d
s
o
f
a
c
ti
v
it
y

Recognize basic elements of
the enunciation situation

Recognize the subject of the
paragraph or statement

Evaluate and / or interpret
the facts, situations or con-
cepts posed by the text

Locate explicit information
Summarize the general idea
of the text and draw conclu-
sions

Recognize items complexes
of the enunciation situation
(assumptions, implications,
reasons, ideological position
of the enunciator, intertex-
tuality, parody, irony, exag-
geration)

Recognize the thematic pro-
gression

Recognize narrative, de-
scriptive, argumentative or
expository intentionality
Match information of sen-
tences and paragraphs
Hierarchize data or events
and establish relationships
between texts when it has
different formats (eg tables
and text)

Table 1: Activities classified according to the dimension they
conform. Source: own elaboration.

mension of reading to the total of classes according to the
school calendar. It is assumed that the relative weight that
the teacher reports in each activity is a valid measure of the
real time spent in class.

The classes reported by the i-th teacher to the literal, infer-
ential and critical reading respectively are called Li, Ii and
Ci, so the normalized vector is

Xi = (LRi, IRi, CRi) =
1

Li + Ii + Ci
(Li, Ii, Ci).

Let S2 be the unit simplex of R3 (S2 = {(x, y, z) ∈ R3/x+
y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0}). It is true that Xi ∈
S2 ∀i = 1, . . . , N , where N is the total number of teach-
ers in the sample (N = 364). In this way, conclusions
can be drawn about the behavior in relative but not ab-
solute terms. The isometric transformation is then given by

φ : R3
≥0 → S2, where φ(x, y, z) =

(
x

x+y+z
, y
x+y+z

, z
x+y+z

)
y

R3
≥0 = {(x, y, z) ∈ R3/x, y, z ≥ 0}).

This means that the class proportions dictated (on average)
in each of the three dimensions of reading (literal, inferential
and critical) are thought of as compositional data. In this
sense, the vector is made up of three components, each of
which represents the proportion of classes dictated in that
dimension, therefore the components of the vector of propor-
tions are non-negative and add to 1. This vector indicates
the relative emphasis the teacher reports assigning to each
of the dimensions. This type of compositional data analysis
doesn’t allow for classical or hierarchical regression models
as its assumptions don’t hold.

The analysis of compositional data dates back to Pearson
1987, but the basis of statistical theory for this type of data
has been developing since the middle of the last century,
see [12], [8] and [9]. The association that exists between
the components of the vector determines a series of method-
ological difficulties (see [34]) that lead to the need for specific
techniques for this type of data.

A large number of applications of compositional data theory
are found in the literature for different fields (see for example
[5], [23], [20] and [27]). However, there are few applications
in reference to educational data and in particular in the area
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of educational evaluation, see for example [31], [19], [21] and
[6].

On the other hand, reading achievement is assessed through
a standardized reading test developed by INEEd. The test
is designed based on a general statement of reading (reading
competence) which is successively broken down into state-
ments (dimensions of said competence: literal, inferential
and critical) and subaffirmations (knowledge and skills). Test
items are designed to assess students mastery of the subaffir-
mations. From a psychometric perspective, the Item Theory
Response (TRI) method is used for the calibration and con-
struction of the items. For the porpoise of this study, the
group performance or ability (Yi) is the average of the scores
assigned by TRI to all the students of the ith–group.

4. RESULTS
Data from Aristas 2018 in Uruguay shows a relationship be-
tween socioeconomic level and reading habits of the group,
and the emphasis the teacher assigns to certain reading ac-
tivities over others, see [4]. Higher socioeconomic levels and
more frequent reading habits of the group are associated
with more teacher emphasis on the dimension of critical
reading. Even when socioeconomic level is controlled for,
the reading habits of the group have a significant effect over
teacher emphasis.

Figure 1 shows, by means of box plot, the strong relationship
between the quintiles of the socioeconomic level of the group
(ESCS) and the average reading performance obtained by
the group of students (left panel). Moreover, higher reading
habits of the group also have an effect, (not as pronounced
as ESCS) on student performance (right panel).
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Figure 1: Left Panel: Box plot of the average performance of
the group in the reading test according to the socioeconomic
quintile of the group. Right Panel: Box plot of the average
performance of the group in the reading test according to
the level of reading habits of the group.

The relationship between reading test results and empha-
sis placed by teachers on each of the three dimensions of
reading, is evaluated. As Figure 2 shows, groups who per-
form better on the test devote more time to activities that
involve critical reading. Moreover, as group performance im-
prove, the proportion of classes dedicated to literal reading
decreases. These trends don’t appear to apply to inferential
reading.

However, these results are a) only descriptive of the sam-
ple and b) they are marginal, that is, the joint effect of the
activity vector on student performance and its relative im-
portance vis-a-vis other variables of the study (ESCS and
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Figure 2: Box diagrams of the proportion in each of the ac-
tivities (literal-inferential-critical) according to the quartiles
of the group’s performance variable.

reading habits) is not observed.

To model the problem, a non-parametric regression model
(kernel method, see [18]) and a parametric regression model
(Dirichlet regression, see [29] and [24]) are considered, see
Figure 3. This figure reflects the average percentages of em-
phasis placed on each dimension as a function of the group’s
performance. On average, according to the non-parametric
model, the emphasis on literal reading is among 20% and
35%, decreasing as Y increases. The influence of Y on the
proportion of activities in critical reading varies between an
average range of 27% to 50% increasing as Y increases. The
inferential reading is the one with the least variation as a
function of Y , between 30% and 38%.

In both cases it is observed that increasing group’s per-
formance is associated to an increase in the proportion of
classes in which critical reading activities are taught.

Figure 3: Non-parametric regression by kernel method
(points) and Dirichlet regression (continuous line) in S2

where the independent variable is the performance of the
group (Y ).

This result holds for the Dirichlet model. In this case the
decrease of literal reading emphasis is associated with higher
test results but with a moderate statistical significance (p−
value = 0.07), see Table 2.
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Coef. ANOVA
Lit. Coef. . Error p-value
Int. 0.86 0.06 < 2e-16
Y -0.14 0.08 0.07

Inf. Coef. . Error p-value
Int. 0.97 0.06 < 2e-16
Y 0 0.07 0.99

Crit. Coef. . Error p-value
Int. 1.12 0.06 < 2e-16
Y 0.46 0.07 8.94e-11

Table 2: ANOVA of the Dirichlet regression where the in-
dependent variable is the performance of the group (Y ).

A possible mistake when interpreting these results is to infer
a direct association between emphasis and student perfor-
mance when, strictly speaking, it could be an indirect effect
caused by student reading habits and socio-economic and
cultural level of the group, see [4]. Figure 4 shows these
interactions.

Figure 4: Diagram on the relationship between activities
and performance controlling for ESCS context variables and
study habits.

To control the effect of socioeconomic status and reading
habits on performance, two step regression is estimated. The
performance of the group in reading Y can be decomposed
as the sum of a β (hypothetical or latent) score generated by
certain context variables (in this model they are the ESCS
and reading habits noted as H) and another α associated
with the emphasis of classes in each activity, that is

Y = Intercepto+β+α+ε, where ε is a random error centered
and independent of α and β. In this case, student perfor-
mance is considered as the dependent variable (as opposed
as in Figure 3).

The strong relationship between β and Y has already been
widely studied, see [14]. If the last term α is also signif-
icant to explain performance, this indicates that emphasis
on a certain type of activities also influences performance,
even controlling for certain group context variables. To “ex-
tract” the effect of the context, the following procedure is
performed. As a first step, to avoid the ipstative effect (see
[11]) between the components of the vector in S2 an isomet-
ric transformation is carried out that goes from S2 to R2.
This is called the log-ratio isometric transformation (ilr),
see [1]. The image of (LR, IR,CR) is noted by (ilrx, ilry) .

The first adjustment is then a linear model of the form,

Y = a0 + a1ilrx + a1ilry + b1ESCS + b2H + ε (Model 1).

Table 3 shows how all the variables are significant in this
model, with the variables of S2 tolerating the inclusion of H
and ESCS in the model.

Coef. ANOVA
Model 1 Coef. Error p-value
Intercept -0.11 0.025 4.06e-06

ilrx 0.15 0.050 0.01820
ilry 0.12 0.042 0.00586

ESCS 0.68 0.04 < 2e-16
H 0.32 0.082 0.00013

Model2 Coef. Error r p-value
Intercept -0.10 0.026 < 3.44e-05

ilrx 0.15 0.053 0.00465
ilry 0.14 0.044 0.00146

Table 3: ANOVA considering ESCS and H as control vari-
ables.

Second, after estimating the coefficients of the equation for
maximum likelihood, the effect on the performance of the
context variables is extracted, that is, Y ∗

i = Yi− b̂1ESCSi +
b̂2Habitosi. The final model (model 2) that allows us to
deduce the effect of emphasis on each dimension is,

Y ∗ = d0 + d1ilrx + d2ilrx + ε∗ (Model 2).

The ANOVA results of the Model 2 are also found in Table
3.

If the inverse ilr transformation is performed to the esti-
mated coefficient vector of Model 2, the coefficient vector
in S2 is obtained, (LIT, INF,CRIT ) = (0.28, 0, 35, 0, 37)
which allows to conclude that the emphasis on certain activ-
ities allows to obtain a better performance, still subtracting
the effect of the context.

Figure 5 shows the level curves of the estimated regression
function in Model 2. Even when controlling for the context
variables, teachers who emphasize the activities of critical
reading versus literal reading obtain –on average– a better
group performance in the reading test. Higher intensities of
gray indicate larger group performance.

It is important to highlight that Model 2 has high variabil-
ity, which makes it possible to conjecture that other group,
school or teacher variables that influence performance are
not being accounted for in the model.

5. DISCUSSION AND CONCLUSIONS
This paper analyzes the relationship between the empha-
sis placed by teachers on different classroom reading activ-
ities (literal, inferential and critical reading), and the read-
ing performance of their nine grade students in Uruguay.
This makes it a novel contribution to educational policy in
Uruguay as the topic has never been studied, and it is also
a contribution to educational evaluation, as it applies the
analysis of compositional data to this field of research.

Findings show a relationship between reading test scores
and the emphasis placed by teachers on different reading
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Figure 5: Level curves set of the estimated regression func-
tion in Model2.

dimensions. Better test results are associated with teacher
emphasis on critical reading activities. Nonetheless, this re-
lationship is not direct as it is affected by other variables
such as the socioeconomic and cultural level of the group
of students and their reading habits. However, even when
controlling for these variables, the evidence holds: greater
emphasis placed on critical reading activities versus literal
reading is associated with higher group results on the read-
ing test.

Moreover, findings also suggest the omission of certain vari-
ables that can be relevant to explain reading performance by
students. It could be the case of prior reading achievement.
Although it could be argued that teachers place more em-
phasis on critical reading activities when their students are
better prepared for that (when they have higher prior read-
ing achievement), evidence from primary school students
from Uruguay shows that is not necessarily the case, see
[16]. Nonetheless, this will be explored in future research.

In Uruguay, the differences in academic achievement are
strongly related to socieconomic factor, see [23], [2] and [3].
This study shows that having those factors controlled, the
OTL offered to student variable is still relevant on achieve-
ment data. The dimension of this finding has implications
not only on the teaching profession but also on public edu-
cational policies.
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relació n con la satisfacción laboral: Evidencia para el
caso chileno. Education Policy Analysis
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ABSTRACT
A challenge in digital learning games is assessing students’
learning behaviors, which are often intertwined with game
behaviors. How do we know whether students have learned
enough or needed more practice at the end of their game
play? To answer this question, we performed post hoc anal-
yses on a prior study of the game Decimal Point, which
teaches decimal numbers and decimal operations to mid-
dle school students. Using Bayesian Knowledge Tracing, we
found that students had the most difficulty with mastering
the number line and sorting skills, but also tended to over-
practice the skills they had previously mastered. In addition,
using students’ survey responses and in-game measurements,
we identified the best feature sets to predict test scores and
self-reported enjoyment. Analyzing these features and their
connections with learning outcomes and enjoyment yielded
useful insights into areas of improvement for the game. We
conclude by highlighting the need for combining traditional
test measures with rigorous learning analytics to critically
evaluate the effectiveness of learning games.

Keywords
Decimal, Digital Learning Game, Bayesian Knowledge Trac-
ing, Over-practice

1. INTRODUCTION
Digital learning games are typically regarded as a power-
ful tool to promote learning by engaging students with a
novel and interactive game environment. While there have
been concerns about the lack of empirical results on learn-
ing games’ effectiveness [21,32], recently we have seen more
research that addresses this issue by showing students’ learn-
ing gains from pretest to posttest in rigorous randomized ex-
periments [9, 41, 52]. More generally, a meta-analysis of 69

studies by [10] showed that game conditions promoted signif-
icantly more learning than non-game conditions with equiv-
alent knowledge content, and that augmented game designs
with more learning-oriented features were more instruction-
ally effective than standard designs.

While this prior research has demonstrated that digital learn-
ing games can enhance learning, the next step is to exam-
ine how they do so. In particular, even though the common
measures of pretest and posttest scores are necessary to eval-
uate students’ transferable learning, they are inadequate to
address many questions about how learning takes place dur-
ing the game. For example, did students get just enough
practice from the game, or more practice than necessary?
How does in-game learning correlate with test performance?
These questions have been explored in great detail in Intel-
ligent Tutoring Systems (ITS), but not as much in digital
learning games, primarily because of the differences in design
approaches between these two platforms. ITS are typically
very structured environments where students are frequently
evaluated on their knowledge and, in the mastery learning
settings [28], move to a new skill as soon as the system de-
termines they have mastered the current skill. In contrast,
digital learning games emphasize students’ freedom in shap-
ing their own learning experience without concern about the
consequences of failure [15]; as a result, the game’s learning
objectives are not always obvious to the students [4]. The
question, then, is how can we combine the traditional pretest
and posttest measures in learning game studies with learn-
ing analytics methods from ITS to paint a better picture of
students’ learning, both inside and outside of the game con-
text? Furthermore, given the game’s dual goal of promoting
both learning and enjoyment, do in-game learning metrics
also relate to students’ enjoyment in any meaningful way?

Our work explores these questions in the context of Decimal
Point, a game that teaches decimal numbers and operations
to middle-school students. Here we present a post hoc analy-
sis of the data from a prior study [22]. First, we investigated
how well students mastered the in-game skills, how long it
took them to master each skill, and whether students con-
tinued practicing after mastery. Next, we used student data
from before and during game play to predict their learning
outcomes and enjoyment after the game. Based on this re-
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sult, we derived lessons for improving learning support in
Decimal Point as well as in a more general learning game
context.

2. RELATED WORK
2.1 Learning Analytics in Games
In-game formative assessment can be a powerful comple-
mentary tool for capturing students’ learning progress [59].
Traditional formative measures typically make use of game-
based metrics, such as the number of completed levels or
the highest level beaten [2, 11], but these metrics may not
always align with actual learning. Prior studies on Deci-
mal Point, for instance, reported that students who played
more mini-game rounds did not learn more than those who
played fewer [18, 39]. An alternative approach is to employ
learning analytics methods from ITS studies. For exam-
ple, learning curve analysis, which visualizes students’ error
rates over time, has been applied in several learning games
and yielded valuable insights that range from instructional
redesign lessons to discovery of unforeseen strategy by stu-
dents [17,29,42].

Learning analytics techniques can also connect formative as-
sessment with external performance. For example, Bayesian
networks have been applied to predict posttest responses
from students’ in-game data in several learning games [30,
48,54]. Similarly, [27] employed feature engineering and gra-
dient boosted random forest algorithm to identify struggling
students in real-time in a physics learning game. Recently
we have also seen more usage of deep learning for this predic-
tion task [24,51]. In general, research work in this direction
can illustrate how well students’ learning aligns with the
game’s learning objectives, while also guiding the develop-
ment of adaptive support game features.

2.2 Decimal Point
Decimal Point is a web-based single-player digital learning
game that helps middle-school students learn about decimal
numbers and their operations (e.g., adding and comparing).
The game features an amusement park metaphor, with a
map of the park used to guide students (Figure 1). There
are 8 theme areas with 24 mini-games, connected by a line
that is designed to interleave skill types and theme areas.
Each mini-game is aimed at helping students solve one of
the common decimal misconceptions: Megz (longer decimals
are larger), Segz (shorter decimals are larger), Pegz (the two
sides of a decimal number are separate and independent)
and Negz (decimals smaller than 1 are treated as negative
numbers) [25]. Also, each mini-game calls for one of the
following skills:

1. Addition: add two decimals by entering the carry dig-
its and the sum.

2. Bucket: compare given decimals to a threshold num-
ber and place each decimal in a “less than” or “greater
than” bucket.

3. Number Line: locate the position of a decimal number
on the number line.

4. Sequence: fill in the next two numbers of a sequence
of decimal numbers.

5. Sorting: sort a list of decimal numbers in ascending
or descending order.

(a) Goal (b) Space Raider

Figure 1: Screenshots of the main map screen and
two example mini-games. Goal is a Number Line game
and Space Raider is a Sorting game.

In each mini-game, students solve a number of decimal prob-
lems related to the game’s targeted skill and receive imme-
diate feedback about the correctness of their answers. Stu-
dents don’t face penalty on incorrect responses and can re-
submit answers as many times as needed; however, they are
not allowed to move forward without solving all the prob-
lems in the mini-game. More details about the instructional
content of the mini-game problems can be found in [35].

The original study of Decimal Point showed that the game
led to more learning and enjoyment than a conventional tu-
tor with the same instructional content [35]. Subsequent
studies have integrated the element of agency into the game,
by endorsing students to select their preferred mini-games
to play and stopping time [18, 39]. Based on their find-
ings, students who were provided agency acquired equiva-
lent learning gains in less time than those who were not.
Most recently, a study by [22] compared two versions of the
game, one that encourages students to play to learn, and one
that encourages them to play for fun. Their results indicated
that the learning-oriented group focused on re-practicing the
same mini-games, while the enjoyment-oriented group did
more exploration of different mini-games. In general, while
all of these previous works reported that students learned
from the game across all study conditions, it is not yet clear
which game factors contributed to these findings. Further-
more, no connection between students’ learning and their
enjoyment has been identified. Our work aims at acquiring
more insights into these areas.
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Table 1: Survey items before and after game play.

Pre-intervention surveys

Dimension (item count) Example statement Cronbach’s α

Decimal efficacy (3) [44] I can do an excellent job on decimal number math assignments. .83

Computer efficacy (3) [31] I know how to find information on a computer. .71

Identification agency (2) [50] I work on my classwork because I want to learn new things. .60

Intrinsic agency (2) [50] I work on my classwork because I enjoy doing it. .86

External agency (3) [50] I work on my classwork so the teacher won’t be upset with me. .61

Perseverance (3) [12] Setbacks don’t discourage me. I don’t give up easily. .79

Math utility (3) [13] Math is useful in everyday life. .63

Math interest (2) [14] I find working on math to be very interesting. .75

Expectancy (1) [23] I plan to take the highest level of math available in high school. -

Post-intervention surveys

Dimension (item count) Example statement

Affective engagement (3) [5] I felt frustrated or annoyed. .78

Cognitive engagement (3) [5] I tried out my ideas to see what would happen. .54

Game engagement (5) [7] I lost track of time. .74

Achievement emotion (6) [43] Reflecting on my progress in the game made me happy. .89

3. DATASET
Our work uses data from 159 fifth and sixth grade students
in our prior study [22], where students could select and play
the mini-games from the map in Figure 1 in any order, and
were allowed to stop playing at any time after finishing 24
mini-game rounds. They could also play more rounds of
the completed mini-games, with the same game mechanics
but different question content. For example, the first round
of the mini-game Goal asks students to locate 0.76 on the
number line, while the second round features the same game
interactions but involves locating 0.431. Before playing, stu-
dents did a pretest and answered demographic survey ques-
tions. After game play, they completed another survey to
evaluate their experience and did a posttest, followed by a
delayed posttest one week later. Here we outline the mea-
sures which are relevant to our analyses. A more detailed
description of the experimental design can be found in [22].

Pretest, Posttest, and Delayed Posttest: Each test
consisted of 43 items, for a total of 52 points. The items were
designed to probe for specific decimal misconceptions, and
involved either the five decimal skills targeted by the game or
conceptual questions (e.g., “is a longer decimal larger than a
shorter decimal?”). There are three test versions (A, B and
C), which are isomorphic to one another and counterbal-
anced across students (e.g., ABC, ACB, BAC, etc. for pre,
post, and delayed). Our prior analysis showed no differences
in difficulty between the three versions [22].

Questionnaires: Before game play, students reported their
age and gender, as well as their ratings to survey items about
their background information, from 1 (“Strongly Disagree”)
to 5 (“Strongly Agree”). After playing, students rated their

enjoyment (also from 1 to 5) via survey questions that ad-
dress four enjoyment dimensions (Table 1). If a dimension
comprises several items, we compute the average ratings of
all items in that dimension to derive its representative rat-
ing score. According to [16], a measure should have α ≥ .60
to be considered reliable; therefore, based on Table 1 we re-
moved the cognitive engagement dimension (with α = .54)
from further analyses.

The full log data from the study is archived in the DataShop
repository [55], in dataset number 3086. We present our
analysis of this data in the following section.

4. RESULTS
4.1 Investigating in-game learning
In our prior work on Knowledge Component (KC) model-
ing in Decimal Point, based on data from a separate study,
we used the correctness of the student’s first attempt in an-
swering each mini-game problem to update their mastery
of the KC covered by that mini-game. With this mapping
from in-game action to KC, we found that students’ learn-
ing can be better captured by a KC model based on skill
types (e.g., Addition, Bucket) than on decimal misconcep-
tions (e.g., Segz, Negz) [40]. Therefore, in this work we used
the five skill types as our KCs, and tracked students’ learn-
ing progress of these skills by Bayesian Knowledge Tracing
(BKT) [60]. The BKT parameters were set as p(L0) = 0.4,
p(T ) = 0.05, p(S) = p(G) = 0.299 [3], and the mastery
threshold is 0.9.

First, we looked at how well students mastered each of the
five skills in the game. Comparing the students’ final mas-
tery probabilities in each skill and our mastery threshold,
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we observed that: there were 4 students who did not master
any skill, 20 students who mastered one skill, 33 students
who mastered two skills, 42 students who mastered three
skills, 34 students who mastered four skills, and 26 students
who mastered all five skills. Next, we counted how many op-
portunities each student who mastered a skill took to reach
mastery in that skill. An opportunity is defined as one com-
plete decimal exercise; each mini-game round consists of one
opportunity, except for those in Sequence, which contain
three opportunities (i.e., students have to fill in three deci-
mal sequences per round). The distributions of opportunity
count until mastery are plotted in Figure 2, which shows
that Number Line and Sorting took the longest to master,
at around 5 opportunities on average. For Number Line, one
student even needed 26 opportunities to reach mastery.

Figure 2: Opportunity counts until mastery for each
skill. The number next to each skill indicates the
count of students who mastered that skill and were
included in the violin plot.

Next, we examined how well students regulated their learn-
ing, i.e., after mastering a skill, did they tend to continue
practicing the same skill, or switch to a different skill? For
each student, following [8], once they mastered a skill (≥
90% mastery probability), we considered their subsequent
opportunities as over-practice. Then, for each student who
mastered a particular skill, we computed the ratio between
their over-practice count and total opportunity count in that
skill. Plotting these ratios for all the mastered students in
each skill (Figure 3), we observed that between 20-80% of
a student’s practice opportunities in a skill could be con-
sidered over-practice, i.e., they took place after the student
had mastered the skill.

4.2 Investigating factors related to posttest and
delayed posttest performance

Having examined students’ in-game learning, we then looked
at how it related to test performance after the game. In or-
der to predict posttest and delayed posttest scores, we col-
lected features that reflected students’ in-game learning and
also included demographic measures that account for indi-
vidual student differences. In total, we considered 19 fea-
tures: pretest score, decimal efficacy, gender, computer effi-
cacy, identification agency, intrinsic agency, external agency,
perseverance, utility, math interest, expectancy, final in-
game mastery probabilities of the five skills (Addition, Bucket,
Sequence, Number Line, Sorting), total opportunity count,
over-practice opportunity count and total incorrect answer
counts. To identify the most important features, we (1) per-

Figure 3: Over-practice ratio in each skilll. The
number next to each skill indicates the count of stu-
dents who mastered that skill and were included in
the violin plot.

formed feature selection with linear regression, and (2) ran
another linear regression model with the selected features on
the full dataset to inspect the coefficient and significance of
each feature. In step (1), we use the mlxtend library [45] to
run a forward feature selection procedure that returns the
feature subset with the best cross-validated performance,
measured in terms of mean squared error (MSE).

In predicting posttest scores, our feature selection identi-
fied three features: Bucket mastery, Sorting mastery and
pretest score. A linear regression model with these three fea-
tures, when trained and evaluated on the entire dataset, had
an MSE of 26.167 and an adjusted R2 of .735. Based on the
regression table, the coefficient and significance of each fea-
ture was as follow: pretest score with β = 0.734, p < .001,
Bucket mastery with β = 6.833, p < .001, Sorting mastery
with β = 5.100, p = .001. In other words, pretest scores,
Bucket mastery and Sorting mastery each had a positive
and significant association with posttest scores.

The delayed posttest model incorporated two additional fea-
tures – Number Line mastery and gender – and yielded an
MSE of 24.218, as well as an adjusted R2 of .747. Based on
the regression table, the coefficient and significance of each
feature was as follows: pretest score with β = 0.730, p <
.001, Bucket mastery with β = 4.276, p = .018, Sort-

ing mastery with p = 4.270, p = .003, Number Line with
β = 3.099, p = .029, and gender with β = 1.426, p = .074.
In other words, the three skill mastery values – Bucket,
Sorting, Number Line – as well as pretest score each had
a positive and significant association with delayed posttest
score, while gender (male = 0, female = 1) had a positive
and marginally significant association

4.3 Investigating factors related to enjoyment
For each enjoyment dimension measured in post-intervention
surveys (achievement emotion, game engagement, affective
engagement - see Table 1), we computed the per-student
average Likert scores to the statements in that dimension.
Then, we performed the same feature selection procedure as
in 4.2 and reported our results in Table 2.

We observed that the adjusted R2 values of the game en-
gagement and affective engagement models were much lower
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Table 2: Results of feature selection for predicting game enjoyment. The Overall performance row indicates
the selected model’s scores when trained and evaluated on the entire dataset.

Achievement Emotion Game Engagement Affective Engagement

Selected features computer efficacy, identification
agency, intrinsic agency, math inter-
est, pretest score, total opportunity
count

math interest, com-
puter efficacy, gender

decimal efficacy, gender, intrinsic
agency, Sorting mastery, Bucket

mastery, total incorrect attempt
count, identification agency

Overall

performance

MSE = 0.520

Adjusted R2 = 0.386

MSE = 0.602

Adjusted R2 = 0.225

MSE = 0.660

Adjusted R2 = 0.218

than those of the test score models. Even when trained
and evaluated on the entire dataset, Linear Regression could
only explain about 20% of the variance in game engagement
and affective engagement. On the other hand, the achieve-
ment emotion model did have reasonable performance (ad-
justed R2 = .386), so we focused on analyzing the fea-
tures in this model. The linear regression table showed
the coefficient and significance of each feature as follows:
computer efficacy with β = 0.047, p = .063, identification
agency with β = 0.099, p = .024, intrinsic agency with
β = 0.116, p = .002, math interest with β = 0.114, p = .001,
pretest score with β = −0.017, p = .011, opportunity count
with β = 0.009, p = .033. In other words, computer efficacy
had a positive and marginally significant association, while
pretest score had a negative and significant association; the
remaining features (identification agency, intrinsic agency,
math interest and opportunity count) each had a positive
and significant association.

5. DISCUSSION
5.1 Investigating in-game learning
Based on the opportunity count until mastery in each skill
(Figure 2), we identified Sorting and Number Line as the
most difficult skills in the game. Our prior learning curve
analysis [40] on a different Decimal Point study reported a
consistent finding – that the learning curves of these two
skills were mostly flat and reflected small learning rates.
Based on previous research in decimal learning, a plausible
explanation is that there are several misconceptions which
can lead to students making a mistake in Sorting or Num-

ber Line problems, including (1) treating decimals as whole
numbers, (2) treating decimals as fractions, and (3) ignoring
the zero in the tenths place [46]. Furthermore, even when
students recognize their misconception, they may shift to
a different misconception instead of arriving at the correct
understanding [56]. This phenomenon likely also occurred
in Decimal Point, as the game provides corrective feedback
(whether an answer is right or wrong) but does not empha-
size the underlying reasoning; consequently, as an example,
a student realizing it is wrong to assume longer decimals are
larger may end up concluding that shorter decimals must be
larger, thereby adopting a new misconception. This high-
lights the need for more refined tracing of the student’s
dynamic learning states in a digital learning environment.
While the standard KC modeling technique can track when
students make an intended mistake (e.g., longer decimals
are larger), it does not investigate their specific input to
see whether a new misconception (e.g., shorter decimals are
larger) has emerged. To address this issue, future itera-

tions of the game should provide more instructional support
that can react to various misconceptions from students, for
example via explanatory feedback [19] or predefined error
messages for different types of error [36].

Once students have mastered a skill, however, our analy-
sis showed that over-practice was very common, i.e., stu-
dents kept playing more mini-games in the mastered skill.
At the same time, there were only 26 out of 159 students
who mastered all five skills, suggesting that the majority
of students still had room for improvement in the unmas-
tered skills but chose not to practice them. One possible
reason is that the game environment did not explicitly indi-
cate when the student has reached mastery or force them to
switch to practicing a different skill. Consequently, young
students, who were likely to be weak at self-regulated learn-
ing [37,53], simply played the mini-games that they thought
were engaging, which in this case involved the skills they had
already mastered. A prior study by [29] similarly found that,
in a game about locating fractions on number line, students
were more engaged when the game was easier, contradicting
game design theories that optimal engagement would occur
at moderate difficulty level.

5.2 Investigating factors related to posttest and
delayed posttest performance

We saw that our linear regression models were able to pre-
dict posttest and delayed posttest performance well, cap-
turing about 75% of the variance in test scores with only
3-5 features. The three features present in both models are
pretest score, Sorting mastery and Bucket mastery. The
inclusion of pretest score is not surprising, as it is consistent
with the standard practice of controlling for prior knowledge
when analyzing posttest score [58]. On the other hand, both
Sorting mastery and Bucket mastery suggest that the abil-
ity to compare decimal numbers plays a large role in test per-
formance. This is likely due to the game and test materials
focusing on the four most common decimal misconceptions
(Megz, Segz, Pegz, Negz), three of which are related to dec-
imal comparison [25]. Based on the distribution of practice
opportunities until mastery, however, students took much
more attempts to master Sorting problems than Bucket

problems, which may explain why they did not achieve high
scores on the posttest and delayed posttest, averaging at
only around 30 out of 52 points [22]. Therefore, improv-
ing students’ performance on Sorting problems, potentially
by incorporating hints and error messages as we previously
discussed, is crucial in future studies of the game.
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At the same time, we saw that Number Line mastery had a
significant positive association with delayed posttest score,
but was not selected in the posttest model. An interpreta-
tion of this result is that Number Line tasks, which we identi-
fied as among the most difficult in the game, could be at a de-
sirable difficulty level, which can promote deeper and longer-
lasting learning than the more straightforward tasks [61].
For instance, a prior study on comparing erroneous exam-
ples and problem-solving decimal tasks found that erroneous
examples, which are more aligned with the desirable diffi-
culty, led to significantly higher delayed posttest scores but
similar posttest scores [34]. In our case, we also saw that
Number Line is an important feature for predicting delayed
posttest but not for predicting posttest performance.

Similar to Number Line mastery, gender (male = 0, female
= 1) was not a feature in the posttest model, but had a posi-
tive association with delayed posttest scores. In other words,
with other factors being equal, females could achieve higher
delayed posttest scores than males. While this association is
only marginally significant (p = .074), similar findings about
females’ tendency to outperform males in retention and de-
layed posttest have been reported in previous mathematics
intervention studies [1, 20]. Using the same dataset as in
this work, [22] also found that females demonstrated signif-
icantly higher pre-post and pre-delayed learning gains than
males, with a larger effect size in pre-delayed learning gains.
Therefore, an important next step is to conduct future stud-
ies of Decimal Point on a larger sample size to draw more
conclusive findings about whether the game promotes more
retention in females and what could lead to this effect.

5.3 Investigating factors related to enjoyment
Our enjoyment prediction models did not perform as well
as the learning models and could explain only about 20% of
the variance in game engagement and affective engagement.
These poor model fits likely result from the lack of appropri-
ate features in our data. To track student engagement, pre-
vious work has emphasized the use of fine-grained measures
such as time spent on decision making [47], social engage-
ment profile [49] and interaction traces [6]; in contrast, our
feature set consists mainly of quantitative scores (e.g., Likert
responses) and aggregate data (e.g., error count). Related to
this direction, a previous study of Decimal Point by [57] has
clustered students based on their mini-game selection orders
and found that the cluster which demonstrated more agency
reported higher enjoyment. Adopting their method of en-
coding students’ mini-game sequences is a good first step in
building more fine-grained features for our prediction tasks.
On the other hand, the lack of association between our in-
game learning measures (e.g., skill mastery, over-practice op-
portunity count, error count) and game engagement or affec-
tive engagement implies that students’ game performance,
whether good or bad, were unlikely to yield any negative
emotion such as confusion or frustration. This is a positive
outcome, indicating that our game environment does not
impose any performance pressure on students – one of the
primary principles of learning games [15].

At the same time, we did find that a linear regression model
was able to predict achievement emotion reasonably well
from student’s identification agency, intrinsic agency, math
interest, computer efficacy, pretest score and opportunity

count. Identification and intrinsic agency indicate that, with
all other factors being equal, the more students identified
their learning as coming from intrinsic motivation (rather
than external pressures), the more achievement they felt
after learning. Math interest and computer efficacy sug-
gest that students’ acquaintance with the learning domain
or medium could also be positively associated with achieve-
ment emotion [26]. On the other hand, pretest score had
a negative association, likely because students with lower
prior knowledge were able to learn more from the game
and therefore felt more achievement than those with high
prior knowledge. Similarly, for opportunity count, a plau-
sible reason for students choosing to play more mini-game
rounds is that they felt the mini-games were helpful, which
contributed to their achievement emotion after game play.
Overall, the features we identified could serve as a guideline
for promoting achievement emotion in learning games and
in more general instructional contexts.

6. CONCLUSIONS
From our analyses, we gained several insights into students’
learning outcomes and enjoyment in Decimal Point. First,
we found that Sorting and Number Line are important skills
for posttest and delayed posttest performance, but students
required more instructional support to effectively master
them. Second, very few students mastered all five deci-
mal skills from the game, while the majority engaged in
over-practice, likely due to their preference for playing easy
mini-games, i.e., those they had already mastered. Third,
expanding on prior findings about gender effect in Decimal
Point [22,33], we identified a trend of females outperforming
males in the delayed posttest, which should be investigated
on a larger sample size. Fourth, we learned that students’
achievement emotion can be reasonably captured by their
level of computer efficacy, learning motivation, prior knowl-
edge and number of mini-game rounds. All of these insights
can be derived from log data alone and would serve as useful
metrics to assist digital learning game researchers in evalu-
ating and improving their own games. For Decimal Point,
in particular, an important next step is to perform similar
analyses in other studies of the game to see which of our
findings can be replicated. Identifying consistent trends in
student data could allow us to construct a more generalized
model of students’ game play that combines existing theories
with novel exploratory analyses [38].

In a broader context, we have seen the rapid growth of digi-
tal learning games in recent years, from being conceived as a
novel learning platform [15,21] to having their effectiveness
validated by rigorous studies [10]. The game Decimal Point,
in particular, has been shown to significantly improve stu-
dents’ learning through several research works [18,22,35,39].
When viewing from a learning analytics perspective, how-
ever, one could identify room for improvement that would
otherwise not be reflected in pretest and posttest scores
alone. For instance, a game may not adequately support
all of its learning objectives, or students may engage in non-
optimal learning behavior due to a lack of self-regulation.
At the heart of these issues is the question of how digital
learning games can optimize student learning while retain-
ing its core value as a playful environment, where players
are free to exercise their agency. Addressing this question is
an important step for future works in the field.
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ABSTRACT
One crucial function of a classroom, and a school more
generally, is to prepare students for future learning. Students
should have the capacity to learn new information and to
acquire new skills. This ability to“learn” is a core competency
in our rapidly changing world. But how do we measure ability
to learn? And how can we measure how well a school has
prepared their students to learn? In this paper we formally
pose the problem, and introduce a grounded theory of how
to measure ability to learn. Using simulations of students
learning we provide initial evidence that this theory provides
an elegant solution to this problem. We further validate our
ideas using real world data from 70k middle-school students
and show that our theory is more accurate and interpretable
than current state-of-the-art models of learning gains. We
consider our results a modest yet interesting first step for a
novel type of test.

1. INTRODUCTION
Large-scale, standardized tests typically measure knowledge
and skills that students already possess, such as reading com-
prehension and mathematical competency. However, these
tests overlook students’ abilities to acquire new knowledge
and skills. Could we instead measure how well a student
is able to learn? Measuring how well a school system has
prepared a student for learning is a particularly hard chal-
lenge and as such it remains elusive. PISA (Programme
for International Student Assessment – an international test
run every three years to evaluate educational systems), has
made it a goal of their 2024 innovative assessment to measure
ability to learn. How could such a test be scored?

Early research has shown that measuring ability to learn is
both important and difficult. Work by Schwartz et al. [18,
17, 19] has shown that assessments of students’ ability to
learn capture important information that assessments which
simply measure what a student knows fail to capture. In these
studies, students participated in two different educational
interventions, one designed to teach students factual content

in a manner that also prepared them for future learning, and
one designed to teach students factual content using more
traditional approaches. Standard measures of knowledge
found that regardless of the intervention, students in both
groups learned the same factual content. However, a second
type of assessment designed to measure students’ ability to
learn uncovered significant predictive differences.

Despite the potential, to the best of our knowledge, there are
no large-scale assessment that have attempted to measure
students’ ability to learn. In traditional tests, students get
questions correct or incorrect — a single random variable
that is traditionally modeled using Item-Response Theory
(IRT). In a learning test, on the other hand, students work
through learning experiences which produce two measurable
values: a prior (pre) and posterior (post) ability. All
learning experiences, especially relevant authentic ones, are
impacted by what a student knows when they start. A useful
model would enable measurement of student learning across
countries, schools-districts, and millions of students as they
engage in a necessarily wide variety of learning experiences.
Without a useful model it is hard (if not impossible) to pro-
duce desired and important analyses such as: (a) inferring
ability to learn from multiple learning experiences (b) discov-
ering issues of fairness in learning experiences (c) reasoning
about mixture effects within populations.

The prior-knowledge confound : Measuring learning-ability is
particularly difficult because it requires us to reason about
the impact of prior knowledge. For example, consider two
populations where students have the exact same ability to
learn but different levels of prior knowledge. Now imagine the
two populations are given the same learning experience. Both
populations will learn (recall they have the same learning
ability) but will have different outcomes on the same exam. In
practice most people model this relationship using a “linear”
model [22]. However, research has shown that the impact
of prior ability has important non linear properties [21, 15].
This is an instance of Simpson’s Paradox.

A core insight of this paper is to think of the difference be-
tween prior and posterior ability as being governed by popu-
lation specific parametric functions which we call Learning-
Gain Functions. These learning gain functions are nat-
urally incorporated in a fully Bayesian model of student
responses on learning ability tests. The main contributions
of this paper are:

1. We formalize, parametric Learning-Gain functions as a
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way to model ability-to-learn tests.

2. We introduce an interpretable single-parameter Bayesian
family of Learning-Gain functions.

3. We show that this model is able to near-perfectly re-
cover learning ability in a complex, simulated dataset.

4. We demonstrate that this model outperforms other
single- and multi-parameter models on two real-world
datasets.

5. We show the practical value of this model by com-
paring real-world schools on their “ability to learn” as
estimated by our model

This work is a first attempt at addressing the need for models
of student “ability to learn” that can be employed in large-
scale assessments such as PISA 2024. The initial results are
promising, and we hypothesize that the model will generalize
broadly to different learning tests.

1.1 Population Learning-Ability Tests
Learning-ability-tests are built to directly measure the “abil-
ity to learn” of a population. The most straightforward
format for such an exam has learners complete a set of learn-
ing tasks and for each task j, the learner i is given a pre and
post test – these fence-post the learning gains. We define
alpha (αi,j) to be a student’s prior ability on the task and
beta (βi,j) to be the student’s posterior ability.

We seek to measure ability-to-learn for a population (or an
individual as a singleton population) as a number, which we
call θ. This measure should generalize and explain ability-
to-learn of the population on a different learning-task. In
order to learn a generalizable θ we must learn to separate
ability-to-learn from task specific effects (such as if the task
is easier for beginners to learn than for advanced students
etc). We use the notation phi (φj) to represent task specific
parameters for task j.

We propose that when a student engages with a learning
task, the learning-ability of the student (θ) interacts with
task-specific-parameters (φj) to produce a learning-gain-
function (fj) which determines how prior-abilities will map
to post-abilities. As such a function oriented probabilistic
model of a single student, from a population with learning-
ability θ, working on a series of learning tasks would look
like the following:

Learning-ability tests stand in contrast to Intelligence Quo-
tient (IQ) exams as measurement takes place on either end
of a learning experience. IQ tests on the other hand measure
aptitude, and while this often requires learners to engage in
complex tasks the goal is to measure ability on the task.

1.2 Prior work
This work builds on a rich and broad literature of work on
measuring ability-to-learn which extends for decades [5, 13,
9]. Evaluation of students’ ability to learn is often treated
as equivalent with change in knowledge over time, typically
with a pretest and posttest. Common approaches include
comparison of raw gain scores (posttest minus pretest), anal-
ysis of posttest scores with pretest scores as a covariate, and
analysis of gains scores with pretest scores as a covariate.
Each of these methods has strengths and weaknesses, al-
though there is evidence that analysis of gain scores with
pretest scores as a covariate is the best of these methods
when certain assumptions are met [6]. As such, we included
this model (Linear Multi-Theta) in our model comparison
on real-world data and find that it doesn’t fit as well. Ad-
ditionally, while the intercept and slope parameters in the
Linear Multi-Theta model can be interpreted as describing a
population’s ability to learn, it is not immediately clear how
they might be used to compare different populations. Both
the Learning-Gain-Decay and Learning-Gain-Bump models
estimate ability to learn with a single parameter, avoiding
this problem. Taken together, these factors suggest that it
would be prudent to move away from the Linear Multi-Theta
model if our goal is to estimate ability to learn.

Another approach to estimating student ability to learn is
to characterize “learning curves” [7]. This requires repeated
sampling over time so the learning rate can be determined
from the shape of the curve, where students with higher
ability to learn are characterized by steeper learning curves,
and students with lower ability to learn are characterized by
shallower curves. However, the shape of a learning curve does
not reveal the full interaction between prior and posterior
knowledge. We would expect two students with the same
ability to learn but different levels of prior knowledge to
progress at significantly different rates. Additionally, collect-
ing enough data to plot a learning curve requires repeated
measurement that is infeasible in most educational settings.

NWEA has looked into how to quantify learning gains [12, 11]
and most recently [21]. Their contemporary models project
student abilities into norm grade levels. [16, 8]. Anderman et
al make initial steps into translating learning-gain research
into a bayesian model [1]

Significant research has focused on the promise and perils of
using student gain data as an outcome—as a good indicator
of teacher effectiveness. There is a book on the subject of
evaluating teachers by measuring their value added: Evalu-
ating Value-Added Models for Teacher Accountability [10].
We remind the reader that it is necessary to be careful and
accurate in measuring student learning.

There is a rich mathematical history of reasoning about
functional mappings. This field of mathematics draws from
domains as diverse as 3D geometry [14, 3] to neocortical
circuitry [20]. This is, to the best of our knowledge, the first
use of functional maps in measuring learning.

1.3 Learning Gain Functions
In traditional IRT, each interaction between a student and a
question (aka item) produces a single number. In a learning
test, each learning-experience produces two numbers (αi,j
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Figure 1: Simulations of four populations on the same task.
Each graph represents pre/post abilities for one population.
Each point represents one student. Countries in the columns
have the same learning function. L = µ post minus pre.

and βi,j). This poses a modelling challenge. How do we
model learning, in a way that elegantly considers the effect
of prior knowledge (αi,j)?

We found it natural to resolve this problem by thinking of
the learning experience as being a reflection of an underlying
function which we call learning-gain-function. A learning-
gain-function is a population wide mapping of student pre-
conditions to post-conditions. In a learning-ability-test, we
would like to compare populations on their ability to learn,
and as such it seems like it would be best to compare the
countries by their functional mapping. Thinking of the
mapping of prior-ability to post-ability is incredibly useful if
we want to build a Bayesian model of learning-ability.

To articulate this point, consider the four different popula-
tions learning on the exact same learning task (Figure 1).
For all four populations we plot prior abilities and poste-
rior abilities. The two populations on the left both have
the same learning “function” on this task. If you had two
students with the same prior ability, after the learning-task
they would have (within noise) the same post ability. As
a confound, they have different prior ability distributions.
Typical measures of learning gains would compare these two
populations based on the average difference in post ability
versus pre ability (L shown on the figure). As such they
would look very different even though the two populations
have the same learning-gain-function. The same is true for
the two populations on the right. They also have the exact
same learning-gain-function, but as a result of different prior
knowledge distributions, typical metrics make them seem
quite different. By modelling a learning-gain-function we
neither benefit, nor penalize populations for having different
prior distributions. Instead we compare learning in a way
that is agnostic to previous knowledge.

The learning function f is “parameterized” by the ability-to-
learn parameter θ and task specific parameters, φ:

fθi,φj (αi,j)→ βi,j

In the case of PISA, this theta should represent “ability to
learn” for a specific population. The function, importantly,
does not have to be linear – and in fact ample evidence
shows that it should not be. Note that, αi,j and βi,j can be
estimated using standard item-response theory.

This formalization lends some insight into how we can deal
with the different levels of prior knowledge between popula-
tions. At this point we haven’t made any claims about what
the function looks like. What is an appropriate parametric
form of a learning-gain function?

2. SIMULATING LEARNING
To begin the process of understanding the family of functions
for how much students learn during a task, we built a series of
simulators in python that attempt to match as realistically as
possible the process of learning during a task. The simulator
has fake students learn through the process of working on
fake items, where the learning and progress at each minute
is governed by the interaction between a student’s prior
knowledge and the difficulty of the items (an assumption
loosely based on the zone of proximal development). This
simulation is not perfect, but it provides us with a starting
point for building a theory of ability to learn. It is simple,
and makes it possible to observe all the factors that impact
changes in knowledge, including variables which are often
unobservable like learning ability.

These simulations have the added benefit of building a falsi-
fiable condition for any model which tries to estimate ability
to learn. I.e., any good model should be able to describe
this synthetic data. While ability to describe synthetic data
is evidence in support of a theory, it is a necessary but not
sufficient condition. The final test would be to show that it
also works with real world data.

Figure 1 shows a simulation of 2,000 students learning in four
countries via a single task which is heavily biased towards
”beginners learn more”. The countries in the right column
both have the exact same learning function, but because
their students have different priors, they are very hard to
distinguish that they have the same learning ability.

The main take away at this point is to confirm what we
believed from prior work: average ”ability” gain is not a
very useful metric. Even for countries with the exact same
learning rate we observe very different average gains (L)
when priors are different.

3. THEORY OF LEARNING FUNCTIONS
If we could come up with an equation for that function (aka
the form) we could formalize our measurement of ability-to-
learn. In the example from Figure 1 it feels like a“polynomial”
fits f well – but that turns out to be a bit misleading. The
learning-experience in that figure represents one where “be-
ginners learn more.” If we change the learning task to be one
where “medium level students learn more” the function is not
well fit by a polynomial.
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Figure 2: The same population on three different tasks. Left: a task on which beginner students learn more. Middle: a task on
which medium students learn more. Right: top students learn more. Points are simulations pre-vs-learn of different students.

If we revisit our simulations and consider “pre vs learn-
delta” as opposed to “pre vs post” we can gain insight into
the functional form. Here we define learn-delta to be an
individuals improvement from post to pre on the learning-
task (βj − αj). Figure 2 shows the “pre vs learn-delta” for
three different tasks, produced by the simulation, one where
beginners learn more, one where medium students learn more,
and one where students with advanced prior knowledge learn
more.

The graph in the middle (medium students learn more) resem-
bles a “Gaussian” bump, whereas the graphs on the left and
right look like exponential decay and growth, respectively.
However, upon further inspection, we note that all of the
graphs can be represented by an equation with a Gaussian
bump. The exponential graphs could be considered to be
left and right legs of a bump.

In order to build a functional form that matches all three
scenarios (while appreciating that the “beginners learn more
is much more common”) we propose a simple parametric
form which can describe all three, the learning-gain function
family:

Learning-Gain-Bump Family: The function of a stu-
dent i from population j with learning ability θ, learning
on task k with parameters φ is:

fθ,φ(α) = α+ θ · e−
(α−φ1)2

φ2 = β (1)

Where:
α is prior ability of student i on task k
β is posterior ability of student i on task k
θ is “ability to learn” of population j
φ is a vector of two task k specific constants.

In this model larger values of learning-ability (θ) scale up
the Gaussian shaped bump.

We note that in practice most learning experiences tend to
have the property that “beginners learn more” and as such an
exponential decay function should often work well in practice.
As such we also consider the Learning-Gain-Decay Family:
fθ,φ(α) = α+ (α+ φ1)−1 + φ2

Inference is performed using a PyTorch implementation of
the model, and Adam optimization to minimize the Mean
Squared Error in predicting posterior (β) abilities.

4. EVALUATION
While the Learning-Gain function family seems reasonable
as a hypothesis. In order to test its utility as a basis for
item response theory on learning-ability, we evaluate on both
simulated data with known learning-abilities and real-world
data.

4.1 Simulated Evaluation
To evaluate we generated two tasks, and for each task sim-
ulated 2000 students from eight countries with a range of
parameters: most importantly a single parameter which rep-
resented the latent ability to learn of a student from that
population.

To evaluate, we build an inference algorithm to take the
observed data produced by the simulations (the pre/post
abilities of each student) and attempt to infer single value θj
for each population j using the generative model in Equation
1. Recall that the simulations are not generated from our
assumed function, rather it is a product of a zone-of-proximal
development rather-complex simulation.

The Bayesian model, which estimates learning-ability via
learning-gain-functions, is able to perfectly back-out ”popu-
lation ability to learn” from such simulated data (For both
tasks with eight countries, R2 > 0.99). In contrast a linear
function was not able to fit the data nearly as well. For the
task that was good for beginners it performed reasonable
(R2 = 0.92) whereas for the task that was good for medium
prior knowledge the model was predictably unable to fit the
data (R2 = 0.81). While this is impressive result especially
considering the complexity of the simulation, in order to
consider this model useful we would like it to be able to make
predictions on real-world data.

4.2 Evaluation on Real-World Data
We trained the Learning-Gain-Fn model on two real-world
datasets: NWEA and ECDL. The NWEA dataset contains
69612 students from 330 schools in Grade 7 whose reading
level was assessed twice (pre test and post test) using item-
response theory, once in Winter and again in Spring 2017.
The ECDL dataset contains data from 379 undergraduate
students at the University of Alcalá (Spain) [4]. Scores
for each student include four pretests and four posttests
corresponding to distinct learning modules.

We compared the Learning-Gain-Fn model to a number
of other plausible models: a linear model, a second-order
polynomial, an exponential-decay model, and a linear model
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Table 1: Results on Real-World Data

Model Parameters per Population Formula NWEA Test-Set MSE ECDL Test-Set MSE

Linear 1 ∆i = αiφ1 + θj 56.9 0.45
Polynomial 1 ∆i = φ1α

2
i + φ2αi + θj 56.0 0.47

Learning-Gain-Decay 1 ∆i = θj(αi + φ1)−1 + φ2 54.9 0.44

Learning-Gain-Bump 1 ∆i = θj · e−
(αi−φ1)2

φ2 53.1 0.44

Linear Multi-Theta 2 ∆i = αiθj1 + θj2 55.1 0.44

Figure 3: The simple model proposed by the Learning Gain
Bump Family allows for very accurate prediction of latent
ability to learn from the complex simulation.

with two parameters per population. (See Table 1 for model
details.) Our primary goal was to identify a model that could
best capture “ability to learn” in a single parameter across
a variety of populations and testing scenarios. Estimation
with a single parameter is important because it is more-
easily interpreted—a higher value corresponds to a higher
ability to learn. Each of the models we evaluated estimates
“ability to learn” with a single parameter where higher values
correspond to better learning ability. The exception to this
rule is the Linear Multi-Theta model, which estimates ability
to learn using two parameters. (See Related Work for an
explanation of why this model was included.)

To compare models, we held out 10% of the data from each
dataset and computed the mean-squared error when different

models made predictions about the missing data.

Notably, the Learning-Gain-Bump model outperforms all
models on predicting held-out data, including the Linear
Multi-Theta model. Full results are reported in Table 1. This
suggests that “ability to learn” in these two cases followed a
parametric form best explained by a more nuanced learning-
gain function. While the gains in MSE are modest, we
hypothesize that for some datasets, especially ones where
the learning tasks most benefit medium strength students,
the linear model will break down. We also note that the
Learning-Gain-Decay and the Learning-Gain-Bump function
performed very similarly – which indicates that all the tasks
in this data were ones where ones where beginners learned
the most.

Figure 4 shows the shape of the learning-gain-fn for different
grade levels in the NWEA dataset between Winter and Spring.
For every one of the 330 schools in the dataset we can now
compute the ability-to-learn (θ) of the students in their
population. We note that, as shown in Figure 4(b), the
distribution of θs appears to be Gaussian. Figure 4(a) also
includes the learning-gain-fn for two of the top schools in the
NWEA dataset. We note that it is impressive how much of
ability-to-learn can be explained by which school a student
went to. In the top schools (by learning-ability) students with
low, medium and high prior ability substantially improve
between the pre and post test.

These results are preliminary. The robust model of ability-
to-learn presented in this paper will open up deeper analysis
into learning in a wide range of contexts: from short tests of
learning ability to evaluations of ability-to-learn in schools.

5. LIMITATIONS
Ability to learn is unlikely to be a single parameter:
It is highly unlikely that a student’s ability to learn can
be captured in a single number. However, this simplifying
assumption proves to be convenient and useful. Often, the
amount of data available to estimate parameters is small,
making a model with few parameters attractive. Additionally,
estimating ability to learn with a single parameter results
in a model that is maximally-interpretable—the higher the
number, the better the ability to learn.

There is a three-month gap between testing periods
in the NWEA data: Our hypotheses about student ability
to learn are based on a simulation of student learning that
occurs over the course of a day. In testing these hypotheses
we relied on real-world datasets that measured learning over
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Figure 4: (a) NWEA pre-vs-learn graphs for different grade levels. Note that the distribution matches the theoretical simulated
learning-task. The graph includes the pre-vs-learn for the school with the highest θ and the school with the highest θ for
students with low prior ability. (b) shows the full histogram of learning abilities for different schools. (c) shows the relationship
between student abilities and ability-to-learn

significantly-longer time period. For example, the two tests
in the NWEA dataset that we used to measure ability to
learn occurred approximately three months apart. Despite
this fact, our model still fit the real-world data better than
any alternative model, providing a measure of reassurance.

6. DISCUSSION
Modelling individual students’ ability to learn: The
models in this paper estimate ability to learn at the group
level. However, there are many cases where estimating in-
dividual students’ abililty to learn would be useful as well.
Due to the small number of datapoints per student, this
could prove challenging. However, a hierarchical model that
assumed individual students’ abilities to learn were governed
by a strong group-level prior could overcome this problem.

Incorporating Pre/Post Tests: Given the function, we
can incorporate this ability to learn into the traditional IRT
process before and after. Specifically, the probability that a
student i gets an item k right on the pre test should be, under
the IRT-2PL: pik = σ(αi − dk) where dk is the difficulty of
item k and αi is the same alphai that we used in our learning
model. σ is the sigmoid function. Similarly the probability
that student i gets a item k correct on the post test would
be: pik = σ(βi − dk) where βi is the posterior ability of
the student after the learning task. In the case where pre-
post tests are real valued, we can use the logit-normal IRT
proposed by Arthurs et al [2].

Fairness and Mixture Models: A Bayesian model of
learning-gain-functions can do much more than simply infer
ability-to-learn from pre-post tests. It would also allow for
researchers to disentangle mixture distributions. This would
allow researchers to identify sub-population effects within
a larger population. Similarly, a robust model of ability-
to-learn can be the basis of ensuring that a learning-task,
and/or an education system is fair to different demographics.

Learning The Learning-Gain Function: In this paper
we have modeled ability to learn as a parameter in a family of
learning functions. This family of functions is Gaussian-like,
a choice that was informed by observing the outcomes of a
theoretically-grounded simulation. While this choice proved
to have the lowest error, it is likely that another choice could
offer improvements. Rather than trying a number of models,

each with its own assumptions, an alternative approach would
be to use a small neural network to learn the model directly
from the data.

Neural networks are universal function approximators, which
means a small neural network should be able to learn the
function family that serves as the best model that incorpo-
rates θ, φ, and α. Fears that neural networks are black-box
algorithms that lack interpretability do not apply in this
case—since the number of parameters is small, the learned
function can be visualized directly across all values of the
parameters. This approach would combine the flexibility of
neural networks with the transparency and interpretability
of the current models.

7. CONCLUSION
“Learning how to learn” is considered an essential skill for
the 21st century [23]. Given the rapid pace of technological
development, this is one of the most valuable skills an edu-
cational system can provide for its students. In recognition
of this fact, the PISA 2024 test will contain an experimen-
tal section that has been explicitly designed to measure
students’ ability to learn. However, few assessments have
been explicitly designed to gauge this abililty, meaning that
the community lacks models that are capapble of directly
estimating this skill. In this paper we introduce a model
that estimates student ability to learn using a single param-
eter. This model is more accurate at estimating student
change in knowledge than other competing single- and multi-
parameter models on two real-world datasets. Additionally,
it is able to perfectly recover “ability to learn” from a com-
plex, theoretically-grounded simulation of student learning
over time. We present this work to demonstrate the value in
explicitly modeling this skill, and we propose this model as a
first step towards a more complete theory of understanding
ability to learn.
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Iterative Feature Engineering Through Text Replays of 
Model Errors 

 
ABSTRACT 
Feature engineering, the construction of contextual and relevant 
features from system log data, is a crucial component of 
developing robust and interpretable models in educational data 
mining contexts. The practice of feature engineering depends on 
domain experts and system developers working in tandem in order 
to creatively identify actions and behaviors of interest. In this 
paper we outline a method of iterative feature engineering using 
the misclassifications of earlier models. By selecting cases where 
earlier models and ground truth disagree, we can focus attention 
on specific behaviors, or patterns of behavior, that a model is not 
using in its predictions. We show that iterative feature engineering 
on cases of false positives and false negatives improved a model 
predicting quitting in an educational video game by 15%. We 
close by discussing applications of this method for addressing 
model performance gaps across different classes of learners, as 
well as precautions against model overfitting with using this 
method of feature engineering. 
   

Keywords 

Feature engineering, knowledge engineering, games, text replays 

1. INTRODUCTION 
Educational games and digital simulations are powerful 
educational tools that have seen increasing use in classrooms 
within the last decade. These digital environments afford students 
rich opportunities to engage deeply with content, adopt new and 
different identities [6], explore personally relevant domains [8], 
and develop non-cognitive skills such as productive persistence 
[17]. The adoption of educational games as tools for learning has 
been accompanied with an increasing focus on educational games 
as a medium for the application of educational data mining. The 
medium of educational games presents challenges for EDM  
methodologies, however, as the relative complexity of student 
behaviors in games can be quite broad when compared to more 
constrained environments such as intelligent tutoring systems 
(ITS). 

Given the more complex behaviors possible for students in these 
environments, researchers studying learning in digital 
environments and games are able to identify and predict more 

complicated cognitive and non-cognitive constructs. Some 
examples of constructs identified in games include persistence 
[14], elegant problem solving [13], seriousness [5], carefulness 
[4], computational thinking [1], and mental demand [31]. 

This increased complexity places an increased importance on the 
feature engineering and/or knowledge engineering steps of the 
data science pipeline. Expert knowledge is often crucial for 
understanding specific patterns of behavior within educational 
games and simulations.  For example, deep understanding of both 
gameplay design and conceptual understanding of physics were 
needed to develop a model of whether students had implicit 
conceptual understanding of physics based on how they responded 
to balls of different colors (connoting mass) in a physics game 
[22]. This understanding has driven feature engineering in many 
of these cases. Previous work by [23] has shown that feature 
selection and feature engineering of variables with high construct 
validity can lead to better model performance on unseen data. The 
question, then, is how we as researchers can quickly and 
effectively identify the specific patterns of player behavior that 
“matter” – how can we best separate the signal from noise in a 
large, complex dataset on student behavior and interaction? 

Historically, social sciences researchers have addressed the 
complexity of human behaviors by combining qualitative methods 
providing “thick description” of actions [7] with quantitative 
methods to make scalable and general claims. However, the 
considerable amount of behavioral log data generated by modern 
learning systems poses a challenge to the qualitative analysis of 
human behaviors. One approach, termed “closing the interpretive 
loop” [24], is to refine and validate a model by looping back to the 
raw data, and checking whether the model and data are consistent. 
In an application of this method, [12] constructed a model to 
investigate how interactive indicators in the Jaune Fluo dataset 
relate to emotions in learning. By returning to and leveraging raw 
transcription data, they gained insights about micro-level 
interactions between speakers that could be used to drive 
modeling.  

In this paper we propose a related approach -- a method for 
selecting specific cases of relevance from a larger dataset for 
further analysis, using instances of model mis-prediction. By 
adopting an iterative approach to model selection and feature 
engineering, we can use cases of false positives and false 
negatives to identify the specific cases where the model fails to 
accurately match student data, to better uncover relevant 
gameplay behaviors and patterns. We can then employ qualitative 
techniques to these cases to better understand what is occurring, 
and use these findings for additional feature engineering and 
model iteration. By closing the interpretive loop, we not only gain 
deeper understanding of the data, but also generate new contextual 
features for modeling in a way that is closely tied to observed 
patterns of behaviors in the data. We apply this method in the 
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broader context of studying student quitting behavior in the 
educational  physics simulation game Physics Playground [28]. 

2. METHODS 
Data for this work comes from a series of randomized controlled 
trials (RCTs) conducted at middle schools in Pennsylvania and 
Florida during the spring of 2019 using the educational physics 
simulation game Physics Playground, courtesy of the Physics 
Playground team.  

Physics Playground teaches elementary physics concepts such as 
conservation of momentum and torque through a sandbox 
environment where players are tasked with drawing simple 
machines that move a ball to a balloon elsewhere in the level. 
Students receive badges for successfully solving levels, and are 
able to use these badges to unlock different types of music, 
custom balls, and other cosmetic changes within the game. 
Physics Playground also contains in-game hints and scaffolds, 
accessible through a help button on the UI. 

 

Figure 1.  Physics Playground. The author has 
(unsuccessfully) built a lever and dropped a weight on it in an 

attempt to move the ball to the balloon. The help button 
(bottom right) and object counter (bottom left) are also 

pictured. The author would like to note that they are not a 
physicist. 

A total of 96 students participated in the study. The RCTs were 
designed to test the effectiveness of several types of learning 
supports for Physics Playground on learning gains in the game. 
Students spent a total of ~110 minutes of class time playing 
Physics Playground in between a physics knowledge pretest and 
posttest, across four days. In the treatment condition, students 
were able to access a help button in the game UI that allowed the 
student to select multiple types of scaffolds to watch. Through the 
help button, students were able to receive help related to the use 
of game tools and mechanics, worked example solutions, and 
abstracted physics concepts. Students in the control condition 
were automatically prompted to use this button after three minutes 
had elapsed, but were unable to access the help button before that 
point. Preliminary analyses identified no significant differences in 
posttest scores or learning gains between conditions, so for the 
current study we combined these two groups and ignored 
condition assignment. Additional details on the study and its 
overall findings can be found in [29]. 

2.1 Data Structuring, Preprocessing, and 
Labeling 
Gameplay data from the study were collected by the game’s 
servers and output as .json files. A total of 703,765 records of 
student gameplay were collected during the study, where one 
record is a single logged student action in the game. 

Several pre-processing steps were taken to prepare the data for 
analysis. Three students who did not complete the consenting 
process for the study were removed from the dataset. Events 
which occurred outside of study hours were also removed from 
the dataset. These events were due to students continuing to play 
the game in their free time. Attempts which were shorter than two 
seconds were also removed from the dataset. These attempts often 
consisted of students rapidly pressing the spacebar to reset their 
current level, without taking any in-game actions. 
We also added additional contextual information into the dataset. 
We added the Physics Playground q-matrix into the dataset, which 
consists of the mapping between levels and physics constructs to 
be taught, as well as the simple machines associated with each 
level’s solution. We added a series of session, visit, and attempt 
IDs to each record. A “session” is a length of time from student 
login to student logout. New sessions can begin when a student 
begins playing Physics Playground for the first time each day, or, 
when a student refreshes their browser. A total of 586 gameplay 
sessions were recorded, for an average of six sessions for each 
student. It is worth noting that students played the game for four 
days within the study; the higher average number of sessions is 
because students could accidentally refresh their browsers, or hit 
the “back” button, which began the logging of a new session. 
Within each session are “visits” – a visit lasts from the beginning 
of a level to the end of a level, whether the student solves that 
level successfully or quits to go to a different level. We identified 
2906 total visits, with an average of 30 visits for each user – 
slightly less than the 34 levels available to play in the game for 
the current study. Finally, within each visit are “attempts” – an 
attempt begins any time that the level is initialized, and ends when 
a student either successfully solves the level, restarts the level, or 
quits the level. We identified 16,546 total attempts in the game, 
with an average of 172 for each user. 
Given this structure of sessions, visits, and attempts, we defined a 
“quit event” as any time a student begins a new visit, within the 
same session, when their previous attempt was not successful. 
This represents a student failing to solve a level, leaving that level 
entirely, and playing a different level within the game. From each 
quit event, we labeled each record that happened up to 120 
seconds before the event as “quit”, and all other records as “not 
quit”. Previous work on predicting quitting in Physics Playground 
used aggregations of 60-second clips within each attempt, e.g. 
[10]. In contrast, our method of labeling quitting at the event 
level, and up to 120 seconds prior, allows us to identify quitting 
across attempts, and sometimes across visits, in order to allow 
earlier detection and intervention by automated systems or in-
classroom educators. 

2.2 Initial Feature Engineering and Model 
Fitting 
Drawing on previous literature that has explored Physics 
Playground [10,13], we developed an initial set of 32 features to 
use in predicting student quit behavior. These features included 
counts of each type of object or simple machine (weights, ramps, 
levers, pendulums, springboards, freeforms, and pins) that the 
student had drawn total and per attempt, the number of times 
students went some number of seconds without recording an 
action (5, 10, 15, 30, and 60 seconds), and whether students used 
each type of scaffold (worked examples, game tools, and physics 
animations) as well as the number of scaffolds that they used total 
and in each attempt. We also developed features to capture the 
amount of time that students spent using scaffolds, as well as the 
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amount of time that had passed (in seconds) since the last time a 
scaffold was used. Finally, we recorded the elapsed time of each 
attempt, as well as the total elapsed time of the session, and the 
number of badges that students had earned so far.  
For modeling quit behavior, we chose to use a relatively simple 
logistic regression model rather than more sophisticated 
algorithms such as a decision tree, gradient classifier, or recurrent 
neural network. Regression-based models are easier to implement 
into Physics Playground’s Unity-based architecture than more 
sophisticated machine learning models. We used five-fold 
student-level cross validation in RapidMiner 9.4 [15]. We did not 
use any feature selection procedures for modeling; each feature 
was used as a component in the final model. We did not believe 
that our feature space was large enough to warrant feature 
selection. We used AUC ROC as our goodness metric, as we were 
more interested in overall model performance than optimizing our 
quit prediction threshold. 
This initial model, which we will call the “original” model with 
“original” features in this paper, has an AUC of 0.688. 

2.3 Error Identification and Feature Re-
Engineering 
Using the confusion matrix of this initial model, we identified all 
false positives and false negatives and mapped these events onto 
the attempts in the dataset. In other words, if any record within an 
attempt contained a case of model mis-prediction, we labeled the 
entire attempt as a mis-prediction. This resulted in 1,487 attempts 
labeled as cases of false negatives (9% of all attempts) and 298 
cases of false positives (2% of all attempts). We then used text 
replays [2] to qualitatively code these attempts for patterns of 
engagement or behavior that we believed could be related to 
quitting behavior in players. Text replays have been used 
previously to conduct in-depth study of other constructs such as 
gaming the system [19], as well as to obtain training labels for the 
development of detectors [21, 23, 5]. [19]’s research shows that 
they can be a powerful tool for developing thick descriptions of 
learner behavior, and that this deeper understanding can lead to 
substantially better models of that behavior [18]. We randomly 
selected 100 examples each of false positives and false negatives 
for this coding process and conducted text replays on these 
attempts, taking notes on potential new features which could 
capture behaviors that we observed in the data. This coding 
procedure was done by a single researcher. As in [19], reliability 
measures were not obtained, as the goal was to develop new 
features that could be applied to the data programmatically rather 
than to develop a scalable human-based coding method. In our 
coding, we also viewed only single attempts, not looking at 
preceding or subsequent attempts (as in most prior uses of text 
replays). 
Overfitting is an inherent concern for iterative feature engineering 
processes; we will discuss in the discussion section why 
overfitting may be particularly concerning for this paper’s 
method. Because we wanted to overfit  as little as possible, we 
only looked at text replays of false negatives and false positives. 
We intentionally did not view text replays of cases of true 
positives or true negatives. In other words, when we saw a 
behavioral pattern in false positives or false negatives, we did not 
double-check whether it was also seen in true positive or true 
negative cases, with a goal of deriving more features rather than 
attempting to conduct feature selection by hand by looking at the 
data (which could increase risk of over-fitting).  

Our text replay and qualitative coding processes identified 14 
additional features that we then developed software to apply to the 
dataset. Four of these new features related to scaffold use: 
Multiple Uses Of Same Scaffold, the number of times a student 
used the same learning support more than once in the same 
attempt; Short Scaffold Time, the number of times a student 
spent less than five seconds interacting with a scaffold; Early 
Scaffold Use, the number of times that a scaffold use appeared in 
the first third of actions that a student took in a given attempt; and 
Multiple Scaffolds In Attempt, the number of times that a 
student used more than one scaffold in the same attempt. Four 
features related to attempt duration: Long Attempt Count, the 
total number of attempts over three minutes; Average Last Three 
Attempt Times, the average duration of the last three attempts 
that a student had; Attempt Time Standard Deviation, the 
standard deviation of time across all student attempts so far; and 
Previous Attempt Duration, the duration of the attempt 
immediately before the current one. Three new features related to 
machine drawing and use: Net Objects Drawn, the number of 
objects a student drew on the current attempt minus the number of 
objects a student erased; Time Spent Drawing, the total elapsed 
time between the start and end of a student drawing a machine; 
and Unexpected Machine Used, whether a student drew a 
machine that was not associated with the knowledge component 
of the current level. We also created a feature for Consecutive 
Nudges, the number of consecutive times the student clicked on 
the ball to attempt to move it (cf. [9]), and a feature for Recently 
Restarted, whether the student restarted an attempt within the last 
120 seconds. A restart is when a student unsuccessfully solves a 
level, but retries the same level rather than quitting and going to a 
new one. 
The final re-design to our model, which we called Quit Flush, 
went beyond just creating a new feature. During coding, 
especially for false positives, we noticed that the model would 
continue to predict quitting after a quit event when the student did 
not subsequently quit. A student would begin a new attempt with 
the model already predicting that the student would quit. Then, 
some amount of time after the attempt had started, the quit 
prediction would drop off, and the student would go on to either 
restart the level or complete it successfully. We hypothesized that 
this was because the student may have quit in an earlier attempt, 
and the model had not yet caught up to the student’s new 
behavioral patterns in a different visit. Therefore, we constructed 
a separate dataset, which we called the Quit Flush dataset. In this 
dataset, we reset the values of all features following a quit event, 
starting the model over again from a blank slate whenever a quit 
was identified. 
Following this feature engineering process, we replicated the 
model fitting steps of the original model exactly. We also fit a 
series of models where we held out each new feature, to examine 
the performance gain from adding each feature into the new 
model. 

3. RESULTS 
3.1 Original Model vs. Enhanced Model 
Our enhanced model, using all 14 newly engineered features (but 
not including the quit flush), produced an AUC of 0.812 – a gain 
of almost 0.10, and a 15% improvement over the original model. 
The enhanced model’s performance is comparable to the best 
performing models developed by [10], even with the limitation of 
a relatively simple logistic regression rather than the more 
sophisticated classification algorithm used in that paper. We will 
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call this model the “enhanced model” with “enhanced features” in 
this paper. 

3.2 Enhanced Model vs. Quit Flush Model 
The quit flush model, using all 14 newly engineered features and 
resetting all features’ values after a quit, produced an AUC of 
0.616 – slightly worse than even the original model. The poor 
performance of the quit flush model suggests that student quitting 
events are “sticky”, and that moving between levels does not 
necessarily indicate that a student starts working productively. 

An ROC curve comparison between the AUC of the original 
model, enhanced model, and quit flush model is given in Figure 2. 

 

Figure 2. Comparison between Original Model AUC, 
Enhanced Model AUC, and Quit Flush Model AUC. 

3.3 Leave One Out Model Results 
Following our fitting of the enhanced model and the quit flush 
model, we then fit subsequent iterations of the enhanced model, 
holding one feature out each time. The purpose of this analysis 
was to identify the contribution that each individual feature made 
to the overall performance of the model. 

Table 1. Comparison of feature impact on enhanced model 
performance. 

Feature Name AUC When Held Out Delta 

Consecutive Nudges 0.742 -0.070 

Early Scaffold Used 0.793 -0.019 

Previous Attempt Duration 0.812 -- 

Short Scaffold Use 0.812 -- 

Attempt Longer Than 3m 0.812 -- 

Average Last 3 Attempts 0.812 -- 

Uses of Same Scaffold 0.812 -- 

Multiple Scaffold Uses 0.812 -- 

Recent Restart 0.812 -- 

StD Attempt Duration 0.812 -- 

Time Drawing Objects 0.812 -- 

Unusual Object Used 0.812 -- 

Net Objects Drawn 0.812 -- 

 

We found that the performance increase of the enhanced model 
was driven primarily by just two features – consecutive nudges, 
and early learning support use. Student use of consecutive 
nudges was also found to be associated with student quitting in 
research by [9] – it is possible that students using nudges 
repeatedly could indicate that the student is trying to make an 
ineffective solution work when they cannot figure out a more 
productive means of solving the level. Further analysis of this 
behavior, perhaps incorporating qualitative interview data from 
students during or immediately after gameplay, could contribute 
to a better understanding of this behavioral pattern. Early use of 
learning support could either indicate a student who is completely 
stuck and doesn’t know where to start, or a lack of willingness to 
put in effort to solve a level, either of which could lead a student 
to quit. 

4. DISCUSSION AND CONCLUSION 
In this paper we demonstrate that iterative feature engineering 
using cases of model mis-prediction, conducting qualitative 
coding of text replays on instances of false positives and false 
negatives, can enhance model performance. We found that an 
“enhanced” model, using features that we developed through this 
method, performed 15% better than an “original” model on the 
same dataset. This performance gain came from just two of the 14 
features that we iteratively engineered. We have several potential 
applications for this methodology, and an important caveat to 
make. 

4.1 Applications of Iterative Feature 
Engineering 
Educational data mining has been applied to a wide variety of 
problems, and we believe that iterative feature engineering may 
have specific learning contexts where it is more useful. 
Specifically, this technique relies on having rich, nuanced log data 
from which specific details of student interaction with the system 
can be drawn. For relatively simple contexts, such as students 
working on an online quiz system with very few choices or 
different components, this method may be more difficult to apply 
successfully, as there may not be enough variation in behavior for 
iterative feature engineering to be useful. On the other hand, 
contexts with rich contextual data may be better suited for this 
method. This method may be particularly useful for improving 
prediction models that were already developed using  text replays 
[20, 11, 5, 23], though there is not a principled reason why the 
method could not be useful even for models initially developed 
using other methods. In applying iterative feature engineering to 
models not developed using text replays, it may be relevant to 
consider whether the behavior can be identified and understood 
from text replays – some forms of affect, for instance, may be 
difficult for humans to identify directly from this type of data. 

4.2 Using Iterative Feature Engineering to 
Address Uneven Quality Across Populations  
In this work, we applied our iterative feature engineering process 
to the entire dataset. However, recent papers have found that 
many EDM models can perform unevenly for different 
populations of learners, such as rural students versus urban 
students or non-native speakers versus native speakers (see review 
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in [3]). We believe that the approach proposed in this paper may 
be a useful tool for fixing this type of inequity. Training separate 
models on each sub-population within the full dataset, and 
conducting qualitative coding on instances of error within these 
sub-population, could highlight different behavioral patterns seen 
for individuals in different groups. Population-specific features 
could then be engineered to equalize the performance of the 
model across groups of learners. 

4.3 Caveat – The Potential for Overfitting 
Consider this technique taken to its logical conclusion – monkeys 
on infinite typewriters, endlessly thresholding and re-thresholding 
features, defining and re-defining cutoffs, until the billionth 
permutation of this process produces a model with no error. This 
model, obviously, would be massively overfit and of next to no 
use in any broader context, such as on a new class of students. In 
practice, there are likely not enough educational data monkeys in 
the world to produce a model with no error. That said, conducting 
several cycles of iteration on the same dataset does run the risk of 
overfitting one’s feature engineering process, and subsequently 
the model, to the particulars of the dataset being used. Therefore, 
this is likely a method best used only limited times over the course 
of model development. Ultimately, fully-withheld test datasets – 
or better yet, the collection of new datasets after the fitting process 
is complete -- should be used in final evaluation of a model (as 
seen in the trajectory of gaming the system modeling between 
[19] and [18]). It is not yet known how much iteration of this 
nature is beneficial, before diminishing returns or overfitting 
occur. It may be a valuable step for future research to investigate 
iterating multiple times and observing changes in model 
performance, identifying the elbow point for improvement. From 
the perspective of quantitative ethnography, researchers might 
consider stopping the iterative process when reaching theoretical 
saturation, seeing more data but failing to generate new insights 
[25]. 

4.4 Alternative Approaches to Feature 
Engineering and Text Replays 
In this paper, we started with a model with initial features and 
then refined the model by examining the misclassified cases and 
deriving new features based on the qualitative interpretations of 
game play behaviors. However, this is not the only way that an 
iterative process of feature engineering could be conducted. [26] 
outline an alternative approach for constructing a theoretical-
based and analytics-driven model by grounding analyses in 
qualitative data and exploring the pattern of data before model 
construction. Epistemic Network Analysis (ENA) models the co-
occurrence of behaviors based on coded qualitative data and 
unpacks the complexity in the learning process [27]. Used first in 
epistemic games, other scholars have begun applying ENA 
techniques to this same problem. For example, [9] adopted ENA 
to explore why learners quit levels in Physics Playground, 
investigating cognitive processes based on student interaction 
with the game. Their study identified that students who crystalize 
their problem-solving strategy at the beginning of gameplay are 
more likely to quit the levels. This behavior pattern suggests new 
features to be engineered for the future study of quit model 
prediction.  

4.5 Further Model Development and 
Future Directions 
Poor performance of the quit flush model suggests that a student-
level model may be beneficial to predicting quitting.  Originally, 

our justification for creating the quit flush model was that we 
observed cases of quitting being predicted at the beginning of an 
attempt, and we hypothesized that this could be due to the model 
continuing to predict quitting behavior immediately after a quit 
event occurs. We anticipated that a quit flush feature would 
improve overall model performance by addressing these cases; 
however, the quit flush model performed significantly worse than 
both the enhanced and original models. Given this difference in 
performance, it is possible that an enhanced model which uses 
features aggregated across visits or even sessions of play, could be 
a more effective predictor than the simple count and duration 
features that we used in the current work. Previous work on 
Physics Playground has identified the existence of player 
typologies [30], representing distinct approaches that groups of 
players employ when playing Physics Playground. This work 
found that students who played Physics Playground could be 
assigned to one of three classes: achievers, motivated by in-game 
rewards such as badges; explorers, motivated by the ability to 
explore the game space, design interesting and unique machines, 
and push the boundaries of the physics simulation, and 
disengaged players, those players who did not engage with the 
game to the same degree as their peers. These classes of players 
could serve as valuable student-level features that inform overall 
patterns of play. Further work on this topic may also use features 
aggregated up to each level, as previous work has [10, 13]. While 
we did not use these features for the current work, because of 
difficulties in generating these variables at run-time inside the 
game environment, future work that is focused on using the quit 
model for analysis entirely outside of the game might benefit from 
using these various levels of aggregation. 
This work has leveraged qualitative analysis in a somewhat 
different fashion than prior efforts within the EDM community. 
Qualitative techniques are not new within the fields of educational 
data mining and learning analytics. Text replays – human review 
of student behavior to generate labels – have been used for over a 
decade [2]. Similar work, such as [16] has focused on generating 
human-readable samples of student-tutor interactions. However, 
these methods are usually used to generate ground truth labels in 
order to construct models, or to better understand the relationships 
that these behaviors have with one another. In this paper, we 
utilize qualitative coding of student behaviors to develop features 
that subsequent models can be trained on. By bringing more 
qualitative understanding and analysis into educational data 
mining and learning analytics, and synthesizing these approaches 
with quantitative modeling practices, we can develop models that 
perform better and are more understandable by the research 
community.  
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ABSTRACT
Selecting courses in an open-curriculum education program
is a difficult task for students and academic advisors. Course
recommendation systems nowadays can be used to reduce
the complexity of this task. To control the recommendation
error, we argue that course recommendations need to be pro-
vided together with statistical confidence. The latter can be
used for computing a statistically valid set of recommended
courses that contains courses a student is likely to take with
a probability of at least 1− ε for a user-specified significance
level ε. For that purpose, we introduce a generic algorithm
for course recommendation based on the conformal predic-
tion framework. The algorithm is used for implementing two
conformal course recommender systems. Through experi-
mentation, we show that these systems accurately suggest
courses to students while maintaining statistically valid sets
of courses recommended.

Keywords
Recommender Systems, Course Recommendation, Confor-
mal Prediction

1. INTRODUCTION
Recommender systems are systems capable of predicting the
preferences of users over sets of items [1]. They can be found
almost everywhere in the digital space, shaping the choices
we make, the products we buy, the books we read, or the
movies we watch. The range of applications of recommender
systems has been broadened recently to the education do-
main, especially in higher education [5]. There are sys-
tems reported that provide recommendations for academic
choices, learning activities, learning resources, and learning
collaborations [14].

Among the recommender systems for academic choices, there
exists a particular interest in systems that recommend courses
[3]. There is a wide range of such systems that differ in the
underlying recommendation mechanism, accuracy, type of

recommendations (courses, course sequences, course concen-
trations), and type of representation. It has been recently
recognized that course recommender systems need to be safe
[11]; i.e., course recommendations need to be provided with
confidence information that will help a student to make a
better course selection. There exist different approaches
to delivering such confidence information from course pref-
erence ranks estimated by the underlying recommendation
mechanisms [3, 6, 10, 12] to separate warning modules [11].
The characteristic feature of these approaches is that they
are heuristic, and thus they do not provide any theoretical
guarantees for the quality of course recommendation.

In this paper, we argue that course recommendations need
to be supported with statistical confidence. This confidence
will allow computing a statistically valid set of recommended
courses that contains courses a student is likely to take with
a probability of at least 1 − ε for a user-specified signifi-
cance level ε. To achieve this, we employ the well-known
conformal-prediction framework [4, 15, 16]. We design a
generic algorithm for conformal course recommendation ca-
pable of computing statistically valid sets of courses for stu-
dents. The algorithm is used for implementing two con-
formal course recommender systems that employ a content-
based recommendation mechanism. The first system is instance-
based, and the second system is an exemplar-based system
[13].

The conformal course recommender systems have been im-
plemented for academic advising of University College Maas-
tricht, a Liberal Arts Bachelor study with an open curricu-
lum. In this study, students personalize their program by
selecting courses that align with their academic and per-
sonal interests. In total, students choose around 40 out
of the 160 possible educational modules; i.e., they create
a program by selecting one path out

(
160
40

)
possible. Our rec-

ommender systems are tested to facilitate this process. The
initial experimental results show that the systems accurately
recommend courses while providing statistically valid sets of
courses recommended.

The rest of the paper is organized as follows. The related
work is provided in Section 2. Section 3 formalizes the task
of course recommendation. The course and student topic
models used for course recommendation are briefly described
in Section 4. Section 5 introduces the generic algorithm
for conformal course recommendation and its instantiations:
the instance-based and exemplar-based recommender sys-
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tems. The student-course data is described in Section 6.
Section 7 provides the experiments and discussion. Finally,
Section 8 concludes the paper.

2. RELATED WORK
Course recommender systems received significant attention
since the very first publications [12, 18, 17]. Meanwhile,
these systems have become very diverse. Following the main
trends in recommender-system research there are different
types of course recommender systems: content-based sys-
tems [10, 11], collaborative-filtering systems [3], hybrid sys-
tems [3, 6], and popularity-based ranking systems [6]. Most
of these systems are capable of providing (explicitly/implicitly)
confidence information for course recommendations. How-
ever, this does not give any guarantee for the quality of
course recommendation in a statistical sense.

Confidence-based recommender systems have been proposed
based on collaborative filtering. The first system is based
on group recommender systems [8], and the second one is
based on matrix factorization [7]. Both systems can be di-
rectly applied for course recommendations, however, under
assumptions typical for collaborative filtering. For example,
plenty of data is available; the course order does not matter.
In this context, we note that we propose a generic algorithm
for conformal course recommendation that is not tailored to
the recommendation mechanism: collaborative filtering or
content-based filtering. The only requirement to apply this
algorithm is to have a function that estimates the typical-
ity of a course w.r.t. other courses taken by a student (see
conformity functions in Section 5).

3. RECOMMENDATION TASK WITH CON-
FIDENCE

Let T be a set of topics t considered in a set C courses c.
To indicate the degree of presence of topic t in course c ∈ C
we employ weight wc,t. Topic weights wc,t of course c ∈ C
represents a topic model of this course. We assume that the
topic models (i.e. topics’ weights wc,t) are provided initially
for all the courses c ∈ C. We describe our approach to derive
these models in the next Section.

The courses c ∈ C are given for a set S of students s. To
indicate the degree student s ∈ S masters topic t we employ
weight ws,t. Topic weights ws,t of student s ∈ S represents
a topic model of the student w.r.t. courses c ∈ C. Thus,
they are computed w.r.t. set Cs of courses student s has
taken; i.e. for any topic t ∈ T we have:

ws,t =

∑
c∈Cs wc,t

|Cs| , (1)

If we assume a specific ordering of the topics t ∈ T , then:

• the topics’ weights wc,t for course c form a topic-model
vector wc for c, and

• the topics’ weights ws,t for student s form a topic-
model vector ws for s.

The topic-model vectors wc and ws “live” in the same space
W . Due to the number |T | of all the topics, we employ the

cosine similarity over W . It can be used to compute simi-
larity for any two topic-model vectors that represent courses
and students.

The topic-model vectors wc of all the courses c ∈ C form
the course data set WC defined as {wc}c∈C . Analogously,
the topic-model vector wt of all the students t ∈ T form the
student data set WS defined as {wt}t∈T . In this context,
we introduce the recommendation task considered in this
paper. Given a course data set WC , a student data set WS ,
and a student s ∈ S with topic-model vector ws ∈ WS , the
task is to compute a recommendation set Cεs ⊆ C \ Cs that
contains courses that indeed fit student s with a probability
at least 1− ε for a predefined significance level ε ∈ [0, 1].

4. COURSE AND STUDENT TOPIC MOD-
ELLING

We employed the topic-modeling approach proposed in [11].
The set T of topics t was identified from the course descrip-
tions using the Latent Dirichlet Allocation (LDA) generative
model [2]. Each topic t ∈ T is given by a probability distri-
bution over the vocabulary derived from all the descriptions.
Thus, each course c ∈ C is represented by topics t, which
words are present in the description of that course. Student
topic models are derived based on the topics courses using
formula (1).

5. CONFORMAL COURSE RECOMMENDA-
TION

This section introduces a conformal course recommendation.
First, we present a conformal test for course inclusion and
a generic algorithm for conformal course recommender sys-
tems. Then we provide two instantiations of this algorithm.

5.1 Generic Conformal Course Recommender
Consider a particular student s ∈ S with her set Cs of
courses. We assume that student s is represented by a proba-
bility distribution Ps; i.e. Ps has generated the course set Cs
for s. Thus, to decide whether to recommend a new course
c /∈ Cs for student s, we perform a statistical test of the null
hypothesis that the set Cs ∪{c} is generated by the student
distribution Ps under the exchangeability assumption [15] 1.

We implement the statistical test according to the conformal-
prediction framework [15]. It makes use of course conformity
scores. The conformity score αc of a course c is defined as a
score that indicates how typical c in set Cs∪{c}. The confor-
mity score αc is computed by a course conformity function
A. The latter is a mapping from 2C×C to R∪{+∞}; i.e. it
returns for any course set Cs and any course c a score αc that
indicates how typical is course c for the courses in Cs ∪ {c}.
Depending on the implementation of the conformity func-
tion for the course and student topic models, we can have
recommender systems based on content/collaborative filter-
ing (See the next section).

The conformity score αc of a new course c is used as a test
statistic for the null hypothesis that the set Cs ∪ {c} is
generated by the student distribution Ps according to the

1We note that the exchangeability assumption is weaker
than the well-know i.i.d. assumption.
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exchangeability assumption. The p-value pc for the null
hypothesis, is calculated as the fraction of the courses in
Cs ∪ {c} associated with conformity scores that are equal
to or smaller than αc. The larger the value of pc, the more
likely it is to observe the value of αc under the null hypoth-
esis, and the more confidence we have in course c. If we
set a course significance level εc (probability of the error) in
range of [0, 1], then the statistical test will accept the null
hypothesis if pc > εc and course c will be recommended.

If we perform the statistical test from above for student
s ∈ S over all n courses from set C \ Cs ( that s has not
taken), then we can compute a recommended set of courses.
We summarize this process in Algorithm 1 given below. It
presents a generic conformal course recommender algorithm.
Given a course significance level εc ∈ [0, 1] and set Cs of
m courses taken by student s, the algorithm computes set
Cεs ⊆ C \ Cs of recommended courses for student s on the
chosen significance level ε. To decide whether to include
course ci ∈ C \ Cs in set Cεs the algorithm computes the
conformity score αcj for each course cj ∈ Cs∪{ci} using the
nonconformity function A (step 4). The conformity scores
αcj are used for computing the p-value pci of course ci (step
6). Once pci has been obtained, course ci is added to the
set Cεs of recommended courses if pci > εc (step 7). This
process is repeated for every course ci ∈ C \ Cs.

We note that the generic conformal course recommender al-
gorithm computes valid recommendation sets Cεs for a sig-
nificance level ε that usually is bigger than the course sig-
nificance level εc (used in Algorithm 1). To explain this
phenomena we follow the approach proposed in [9]. W.l.o.g.
assume that the set C \ Cs is the same for all the students
s ∈ S. Let eci be a random error variable for a course ci
from the n courses in C \ Cs. The variable eci equals 1
if course ci does not fit student s; and 0, otherwise. As-
sume that we set the course significance level εc so that
p(ec1 = 1) < εc, p(ec2 = 1) < εc, . . . , p(ecn = 1) < εc. This
implies that the expected number of courses incorrectly rec-
ommended, ec1 + ec2 + . . . + ecn , is bounded by nεc; i.e.
E[
∑
ci∈C\Cs

eci ] ≤ nεc. If we know number t of courses

from C \ Cs that fit student s in advance, then:

1

t
E[

∑
ci∈C\Cs

eci ] ≤
n

t
εc. (2)

We note that 1
t
E[
∑
ci∈C\Cs

eci ] is the expected error and
n
t
εc is a significance level ε for which validity of recommen-

dation sets Cεs can be established. This implies:

εc =
t

n
ε (3)

Thus, to guarantee valid recommendation sets Cεs ⊆ C \ Cs
that contains courses that fit students with a probability
at least 1 − ε we need to set the course significance level
εc according to formula (3) when we initialize the generic
conformal course recommender algorithm from Algorithm
1.

Algorithm 1 Generic Conformal Course Recommender

Input: Course significance level εc,
Set Cs of m courses taken by student s.

Output: Set Cεs of recommended courses for student s.

1: Set course set Cεs equal to ∅.
2: for each course ci ∈ C \ Cs do
3: for each course cj ∈ Cs ∪ {ci} do
4: Set conformity score αcj of course cj equal toA(Cs∪

{ci}, cj).
5: end for

6: Set pci equal to
#{cj∈Cs∪{ci}|αcj

≤αci
}

m+1
.

7: Add course ci to Cεs if pci > εc.
8: end for
9: Output set Cεcs of recommended courses for student s.

To establish the validity of sets Cεs of recommended courses,
we adapt the error metric from [9, 19]. Assume that for
student s ∈ S, we have a test set of courses, and we know
that within this set, there is a true set Cts of courses that
student s will take. We define the individual error es for
student s ∈ S as the proportion of the courses in the true
set Cts that are not recommended, i.e.

es =
|Cts \ (Cεs ∩ Cts)|

|Cts|
.

In this context, the error e of a conformal course recom-
mender is defined as the averaged error e over all the stu-
dents s ∈ S:

e =

∑
s∈S es

|S| .

We note that the individual error es corresponds to the ex-
pected error 1

|Ct
s|
E[
∑
ci∈C\Cs

eci ]. Thus, to show experi-

mentally that a conformal course recommender is valid for
any significance level ε in [0, 1], we have to show that the
error e is less than or equal to ε.

The validity of a conformal course recommender can be triv-
ially achieved if the recommender outputs all the possible
courses from set C \ Cs. Thus, we need to estimate the in-
formational efficiency of the recommender. For this purpose
we employ the size SR of the recommended set Cεs of courses
averaged over all the students:

SR =

∑
s∈S |C

ε
s |

|S| .

5.2 Content-based Conformal Course Recom-
mender Systems

The generic conformal course recommender algorithm can
be instantiated if we specify the course conformity function
A. This function can be done using different recommender
mechanisms, e.g., collaborative filtering or content-based fil-
tering. In this paper, we assume the existence of topic model
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vectors of courses and students that fit the content-based
filtering scenario (see Section 3). That is why we propose
conformity functions for two content-based conformal course
recommender systems specified below.

The first system is an instance-based conformal course rec-
ommender system (ICCRS). Any student s ∈ S is repre-
sented by a set of topic-model vectors (instances) wc of the
courses c ∈ Cs she has taken. In this context the course con-
formity function A outputs for any course c ∈ C and course
set Cs of student s ∈ S an averaged similarity of c with
courses in C; i.e. 1

|Cs\{c}|
∑
c′∈Cs\{c} cos(wc, wc′) where cos

is the cosine similarity.

The second system is an exemplar-based conformal course
recommender system (ECCRS). It employs topic-model vec-
tor ws (exemplar) of student s ∈ S computed using formula
(1). In this context the course conformity function A out-
puts for any course c ∈ C and course set Cs of student s ∈ S
a value equal to cos(wc, ws), where topic-model vector ws of
student s ∈ S is based on the courses in Cs \ {c} and cos is
the cosine similarity.

The computational complexity of ECCRS is higher than
that of ICCRS since, for any student, we need to recom-
pute her topic-model vectors ws by excluding courses one
by one. However, ECCRS has better explanation capabili-
ties. The topic-model vector ws of student s represents the
current levels of topic mastering, and the topic-model vector
wc, of course, c represents the topics covered in the course.
Thus, the cosine match can explain why the course has been
selected/rejected.

6. STUDENT-COURSE DATA
ICCRS and ECCRS have been implemented as course rec-
ommender systems for University College Maastricht. The
college has provided course enrollment data from 2008 to
2017. This data includes course and student identifiers,
grades for each course, details regarding course assessment,
ECT credits, and course descriptions. The course descrip-
tions facilitate the construction of topic values for both the
student model and the course model. The calculation of
topic values is with LDA, and an optimal number of top-
ics is determined through maximum likelihood estimation.
This optimization results in sixty-five topic areas represent-
ing the course catalog [11]. We remove modules without
descriptions from consideration. In total, 143 courses and
2422 students enrolled in at least one course remain.

The rates of course enrollments vary widely between each
course. Registration in the majority of courses offered oc-
curs only a few times over the entire period, see in Figure
1. The modules provided are updated each year, reflecting
the changes to the course catalog via dropping courses and
course code changes. Several introductory courses, required
courses, and projects make up a significant portion of all
enrollments. Most students at UCM need eighteen periods
to complete their education. Nevertheless, some students
enroll in over twenty periods. See Figure 2. Each recom-
mender system focuses on a subset of twelve periods repre-
senting two years at UCM. The subset is refined further by
selecting only students starting in the fall intake semester.
These restrictions increase the standardization of students

for our systems, and balance for the diversity of enrollment
patterns present in an open-course curriculum. Our recom-
mender systems use the remaining 1018 students that fall
within these boundaries.

Figure 1: Total Number of Course Enrollments

Figure 2: Total Number of Student Enrollments per Period

University College Maastricht offers a project-based cur-
riculum. Two of the six periods each year are for stu-
dent projects (periods three and six). The choice of courses
within project periods is restricted. See Figure 3. Exclud-
ing these project periods, the average courses offered each
period is 31 with a maximum of 44 courses. Figure 3 shows
the variation in course offerings throughout the UCM data
available. This variation is taken into account by our sys-
tems, and we omit these project periods from calibration.
Course recommendations include only those courses offered
in the target period. Therefore, recommending the maxi-
mum number of courses for a period results in a 0% error.

Figure 3: Courses Offered in Each Academic Period

7. EXPERIMENTS
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This section presents experiments of ICCRS and ECCRS
on the student-course data provided by University College
Maastricht (see Section 6). First, an experimental setup is
given, followed by results and discussion.

7.1 Setup
We validate ICCRS and ECCRS on the student-course data
in the order of study periods. Assume that we have M
number of periods P1, . . . , PM in which a student studies
towards her degree (for our data M is equal to 18). We
denote by Cs(Pm) ⊆ Cs the set of courses that student s
has taken in period Pm for m < M . Given new period Pm+1

together with the set ∪Mm=1Cs(Pm) of courses student s has
taken before that period, we test our recommender systems
by checking whether the recommended sets Cεs of courses for
Pm+1 includes the courses Cs(Pm+1) that student s indeed
has taken in Pm+1.

Figure 4: Prediction Process for Period Pm+1

We validate ICCRS and ECCRS using data from students
in their second year of study. This choice is due to the fact
the number of p-values possible is related to the number of
courses a student has taken (see line 6 of the generic con-
formal course recommender in Algorithm 1). For example,
a student with only three courses taken in period P1 of year
one can only have p values from the set { 1

4
, 1
2
, 3
4
, 1} for any

new course in period P2.

For the validation process, we estimate the average error of
e, and the average size of SR of the recommended sets Cεs
of courses. We then use these statistics to study ICCRS
and ECCRS as conformal predictors and as recommender
systems.

In the first study, when we investigate ICCRS and ECCRS
as conformal predictors, we are interested in establishing the
validity and informational efficiency of the systems (check
Sub-section 5.1). In the second study, when we investigate
ICCRS and ECCRS as recommender systems, we are inter-
ested in estimating the error of the systems over the periods
when we employ the recommended sets Cεs on a given course
significance level ε. In our experiments, we use course sig-
nificance levels ε of 0.05 and 0.1.

7.2 Results and Discussion
Figures 6 and 7 present the error plots and size plots of the
recommended sets Cεs of ICCRS and ECCRS, respectively,
for course significance level εc

2. The error curves are very
close to the diagonal (0, 0) − (1, 1), which means the error
is close to the course significance level εc. For ICCRS, the

2We use the course significance level εc instead of the signif-
icance level ε for the predicted course sets since the range of
ε is very restricted according to formula (3); e.g. [0, 0.025]
for 40 possible courses in a study period.

error is bounded mainly from above. For ECCRS, the error
is bounded mainly from below. This bounding indicates that
the systems are valid given sufficient information, especially
ICCRS, which is conservatively valid [15].

The conservative validity of ICCRS explains why the aver-
aged size SR of the recommended sets Cεcs is higher than
that of ECCRS. Thus, we may conclude that the informa-
tional efficiency of ECCRS is better in our experiments.

Figure 5: Period errors of ICCRS and ECCRS on course
significance level εc of 0.05 and 0.1

Figure 5 presents the error of ICCRS and ECCRS when
recommended sets Cεs on course significance levels εc of 0.05
and 0.1 are used. The systems are applied over periods of
P1, P2, P3, P4, P5, and P6 of the second year of the UCM
students. The results show that:

• ICCRS and ECCRS produce accurate recommended
sets of courses with an acceptable error.

• ICCRS is more accurate than ECCRS. This difference
can be explained by the fact that ICCRS is more con-
servatively valid.

• the course significance level εc plays a substantial role:
for 0.05, the error of recommended sets Cεs is much
lower. However, this comes with a price: the size of
the recommended sets is bigger when epsilon is lower.

8. CONCLUSION
This paper shows that safe course selection can be obtained
if recommendations are supported with statistical confidence.
The statistical confidence can be used for computing a sta-
tistically valid set of recommended courses that contains
courses a student is likely to take with a probability of at
least 1− ε for a user-defined significance level ε.
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Figure 6: ICCRS - Calibration and Course Set Sizes

We have developed a generic conformal course recommender
algorithm that outputs recommendations supported by sta-
tistical confidence. The algorithm has been instantiated in
the form of two confidence-based course recommendation
systems. The systems are essentially content-based: the
first is an instance-based recommender system with rela-

Figure 7: ECCRS - Calibration and Course Set Sizes

tively high accuracy. The second system is an exemplar-
based system with a lower accuracy but with better ex-
planatory capabilities. The experiments showed that both
systems accurately suggest courses to students while provid-
ing statistically valid sets of courses recommended.
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ABSTRACT
Peer assessment adds value when students provide “help-
ful” feedback to their peers. But, this begs the question
of how we determine “helpfulness.” One important aspect is
whether the review detects problems in the submitted work.
To recognize problem detection, researchers have employed
NLP and machine-learning text classification methods. Past
studies have used datasets that were narrowly focused on a
small number of classes in specific academic fields. This pa-
per reports on how well models trained on one dataset or
field perform on data from classes that are unlike the classes
whose data they have been trained on. Specifically we took
a model developed with data from a computer science class
with several programming assignments, and tried to transfer
it onto an education class focused more on writing research
papers. We have attempted to perform such a task on a
few models including logistic regression classifier, random
forest classifier, multinomial naive bayes classifier and sup-
port vector machine. We made several attempts to raise the
accuracy of classification, including lemmatizing to deduct
variation in data input, and active learning strategies.

1. INTRODUCTION
The term “peer assessment” means students reviewing each
other’s work. The practice has been widely used for at least
fifty years. It began as a face-to-face process, with students
exchanging their papers. For the last twenty-five years or
so, peer assessment has also been performed using online
applications. Peer assessment has many advantages. From
a pedagogical point of view, the greatest advantage is that it
helps students understand the requirements for the assign-
ment, and see how their work measures up to their peers
[1, 2, 3, 4, 5]. This helps them to improve their own work
product. From an operational standpoint, peer assessment
is scalable—no matter how many students are in the course,
students’ work does not want for personal attention. This
makes peer assessment especially useful for MOOCs, where

it is frequently to provide feedback and to assign grades.

Student work on a MOOC can be graded in different ways.
If objective questions are posed, such as multiple-choice and
true/false questions, they can be automatically graded by
software that checks whether answers match the key, while
for subjective issues such as coding projects and essays, it
becomes a bigger challenge. These platforms often utilize
quantitative methods such as averaging reviewer scores on
multiple sections of peer assessment related to the course
assignment.

Current peer grading approaches are based on the numerical
scores assigned to rubric items by each reviewer. Rarely do
they utilize another very important piece of information: the
justification given by reviewers for the grades they’re giving.

Fundamentally, the quality of a review is related to whether
it identifies ways for the author to improve the work. Thus,
it is important for the review to point out shortcomings or
problems in the existing work. Other researchers [6] have
done preliminary work in this area. They have looked at ap-
proaches to detecting suggestions [7], for the reason that sug-
gestions help students act on improving the work they have
done. Other work involves recognizing problem statements.
A problem statement helps people realize the shortcomings
in their work, and pointing out a problem does not require
as much thinking as knowing what is wrong and coming up
with a solution to correct the problem as making a sugges-
tion does. In the context of peer review, if we could tell
whether a comment contains one of these features (sugges-
tion or problem statement), we could compare a reviewer’s
work with other reviewers’ and urge him/her to add more
to the review if his/her review lacks these features signifi-
cantly. In order to accomplish it, a means of automatically
detecting these features needs to be devised.

We have built text classifiers that can recognize whether a
comment contains a problem statement; however there’s a
drawback. As researchers know, text classifiers are very do-
main specific, that is if a classifier is trained on one specific
domain, it will probably not perform well when used on an-
other domain [8]. When MOOCs offer classes in multiple
fields, the peer reviews in each class will have different lan-
guage features. Useful sentiment features such as problem
statements would not be the same in different classes. Tra-
ditionally, there would be multiple classifiers trained on each
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one of the domains to achieve optimal performance. An issue
with this approach is that there needs to be enough labeled
data from each of these domains, which in a lot of cases is
hard to achieve. Labeling is becoming one of the most ex-
pensive steps in machine learning, both from the perspective
of time and of money [9]. However, there are a number of
ways to work around this problem, if not completely miti-
gate it.

Researchers have demonstrated that traditional machine learn-
ing and deep learning technologies are useful for problem de-
tection in peer review in the computer science field [10]. The
researchers aim to generalize the problem detection function
to different subjects. There are two potential methods for
quickly building a model in a target domain and avoiding
much of the time-consuming and expensive data labeling ef-
forts. Such methods include transfer learning and active
learning. With these two approaches, problem detection
could be transferred quickly to a new field and at a reduced
cost.

The first approach is to leverage transfer learning to transfer
“knowledge” learned from the problem detection task in the
computer science field to the other field. This process can
use model insights gained from other datasets to expedite
the construction of a new model while including only a small
amount of labeled data in the target domain. In our case, we
trained a problem detection classifier from data generated in
a computer science class. One of the research questions we
aim to discuss is leveraging transfer learning to effectively
preserve the performance of the model when it is applied to
other classes.

The second method is to utilize active learning to label abun-
dant data and then apply machine learning algorithms or
train deep neural network models on this automatically la-
beled data. This method is detailed in the implementations
subsection of the experiment section of this paper.

2. LITERATURE REVIEW
2.1 Problem Detection
There have been plenty of attempts to apply natural lan-
guage processing (NLP) techniques and machine-learning
(ML) algorithms on automating various aspects of review as-
sessment. Brun and Hagege [11] leveraged NLP techniques
to identify suggestions in review text. Zingle et al [7] at-
tempted to use different ML and Deep learning algorithms
to determine whether a review text contains suggestions.
Nguyen et al. [12] used logistic regression to train a model
that predicted whether a review comment contained a prob-
lem solution. They provided this information to the reviewer
before the review was submitted, in order to encourage the
reviewer to suggest solutions for problems in the work.

However, most of the current research related to applying
NLP and ML on peer review is limited to one subject or
ones filled with enough labeled data. For example, research
from Zingle et al. [7] collected student annotated peer re-
views from a graduate level computer science course and
used this labeled data to train models for detecting sugges-
tions in the course. The study by the Brun and Hagege [11]
did similarly with abundant manually annotated customer
reviews. To the best of our knowledge, there are no pub-

lished papers that address the issue of how to apply NLP
and ML on peer reviews in a field without abundant labeled
data. This paper is based on previous research about detect-
ing problem statements in peer assessments [10]. This paper
focuses on detecting problem statements in a field without
abundant labeled reviews by utilizing transfer learning and
active learning.

2.2 Transfer Learning
In most traditional machine learning algorithms, an essen-
tial hypothesis is that the training data and test data must
be in the same feature space and have the same distribution
[13, 14]. If the feature space or latent distribution changes,
sufficient labeled data from the new domain will be needed
and the statistical model must be rebuilt from scratch. This
approach can be time-consuming and expensive in many
real-world applications like text classification and thus lim-
its its development [15]. The peer-review comments from
the computer science field and the peer-review comments
from other subjects might be in the same feature space but
in different distribution, where plenty of peer-review com-
ments from each field must be labeled and a learner must
be reconstructed from scratch for each subject.

In contrast, transfer Learning, which is fundamentally moti-
vated from a discussion in a NIPS-95 workshop [16], relaxes
the hypothesis that the training data must be in the same
feature space and identically distributed with the test data
[13, 14]. The basic idea of transfer learning is to transfer
“knowledge” learned from source tasks to different but re-
lated target tasks. This is to combat against the problem
of an insufficiently large labeled training dataset and to im-
prove the learning of the target task by reducing the labeling
cost. In this case, only a small quantity of labeled data in
the target domain is required. Negative transfer may occur,
but a successful “transfer” would greatly improve the perfor-
mance and reduce the cost of learning for the target task by
avoiding much time-consuming and expensive data labeling
efforts.

Pan and Yang [13] summarized various transfer learning
settings and categorized transfer learning under three sub-
settings. These include inductive transfer learning, trans-
ductive transfer learning, and unsupervised transfer learn-
ing, based on different situations between the source and
target domains and task. This paper is under the induc-
tive transfer learning setting, which has different, yet related
source and target domain tasks, where a sufficient quantity
of labeled data is only required in the source domain. There
are five main approaches for conducting the inductive trans-
fer learning from literature. These approaches are instance-
based transfer learning [17, 18], feature-representation trans-
fer[19, 20], parameter-transfer [21, 22], relational-knowledge-
transfer problem [23, 24], and Hybrid-based (instance and
parameter) transfer learning [25, 26].

The parameter-transfer approach mentioned above is a sim-
ple but effective method for transferring “knowledge” by
sharing parameters. Assumption of the approach is that
some parameters are shared by source tasks and target tasks
[13]. The “knowledge” is encoded into and transferred across
tasks by those shared parameters.
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2.3 Active Learning
Active Learning is a significant subfield of machine learn-
ing and a helpful technique in many real-world applications
where there is abundant unlabeled data, but where labels
are difficult, time-consuming, or expensive to acquire [27].
Active learning algorithms are allowed to interactively query
a human annotator called teacher or oracle to label the new
data point chosen by a predefined strategy and usually per-
form better with less labeled trained data. There are three
main settings in which the learner may be able to query.
These settings are membership query synthesis proposed by
Angluin [28], steam-based selective sampling proposed by
Cohn et al. [29] and pool-based active learning proposed by
Lewis and Gale [30].

The most common active learning scenario is the pool-based
active learning setting, which assumes that there is a smaller
set of labeled data and a large pool of unlabeled instances.
The key hypothesis of pool-based active learning is that the
learning algorithm would perform better with less training
if the algorithm could determine which instances in the pool
are the most informative and is allowed to ask queries based
on a certain query strategy. This would be in the form of
unlabeled instances that are to be labelled by an oracle (e.g.
a human annotator) [27, 30]. Hoi and et al. [30] investigated
the pool-based scenario on large-scale text classification and
first demonstrated the feasibility of batch mode pool-based
setting active learning on the text categorization problem.

Under each active learning scenario, there have been a num-
ber of query strategies proposed for evaluating the infor-
mativeness of unlabeled instances. We evaluated the most
common query strategies, uncertainty sampling published
by Lewis and Gale [30]. The uncertainty sampling strat-
egy selects the instance in the pool about which model is
least certain on how to label observations according to an
uncertainty measure like entropy.

In contrast to active learning, traditional passive learning
would use a random sampling strategy to select instances
from a large pool of unlabeled instances. This strategy gen-
erally underperforms compared with uncertainty sampling
strategy thus is not adopted here.

3. EXPERIMENT
3.1 Data
To train the problem statement classifier, we used a dataset
pulled from the Expertiza system. Expertiza is a web based
education platform instructors can use to distribute home-
work assignments and team projects. The key feature of this
platform comes in later stages once students submit their
work, where they assess the work product of other students
by giving a numeric score as well as a comment to justify
their decision. For team assignments, students would assess
work done by other teams, as well as the contributions of
their teammates.

In some of the classes, students are asked to annotate the
comments they received with an incentive of extra credit
with a “yes” or “no” on given metrics. For example, some
metrics that the students label for include “Does the com-
ment contain a problem statement?”, “Does the comment
offers a suggestion?”, or “Was the comment localized to a

particular place in the work?“. This is a valuable source of
annotated data for our research, as students should be ex-
perts at annotating feedback on their own work. However,
many times more steps are required to improve the quality of
this data. On observing the annotations, we found a num-
ber of problems. Sometimes students would rush through
the annotation with the goal of getting extra credit with
minimal effort, leaving a trail of yes’s or no’s without actu-
ally reading the comments. Other times fatigue may set in
while annotating a large number of comments, resulting in
the accuracy of labels gradually dropping towards the end of
the annotation process. To resolve this issue, the course staff
and the research team checks labels applied by the students
through random sampling of the students’ annotations. If it
appeared that a student was not taking adequate care, that
student’s annotations would be removed from the dataset.

We extracted data from computer science class projects.
Since every member of the team is involved in annotating re-
views they received for team projects, we were able to calcu-
late inter rater reliability using Krippendorff’s alpha, which
was relatively low at a value of 0.696. To improve the accu-
racy of our model, we decided to only take those data with
consensus among all annotators, by removing those with any
conflicted labels, which decreased the size of our dataset by
4649, resulting in an improved Krippendorff’s alpha of 1. We
then further altered the dataset by downsampling the major-
ity class by 313 observations to ensure a balanced proportion
of classes.

To prove that language features, specifically for problem
statements in this particular dataset could be transferred, we
run a test on three other datasets. The first composes Hotel
product reviews, the second Amazon reviews, and the third
a small dataset from a university level education class. The
Hotel and Amazon datasets were found on the website Kag-
gle, which states that the data originated from the website
Datafiniti. Two useful columns from the original datasets
included a review score from the original 1 to 5 scale, with
1 being very bad to 5 being very good, and a column with
the actual review text. From inspecting the data, we found
that reviews with low ratings mentioned problems regarding
the respective hotels or amazon products they were review-
ing, while there was no mention of a problem in well rated
reviews. Based on this information, we kept all the reviews
with a rating of 1 or 2 and relabeled them all to the value
1 to represent that these reviews mentioned a problem. We
then kept an equal quantity of positive reviews, all labeled
5, and relabeled these to the value 0 to represent that these
reviews did not mention a problem.

The target domain dataset that we’re primarily trying to
transfer is generated from the education class, which had
been taught using the Expertiza system. The nature of as-
signments in this particular class involves much more writ-
ing in terms of research papers as compared with the project
based assignment in the computer science class. Students in
this class are not asked to annotate the feedback reviews
they’ve received, thus creating an issue in terms of a lack of
labeled data. Different members of the research team did
some manual inspection and annotation on small subsets of
this data, then removed those data entries with conflicting
labels to reach a complete consensus. This dataset was man-
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ually labeled by our research team as either 1 mentioning a
problem, or 0 not mentioning a problem.

We started by preprocessing the text in all four of the datasets.
Specifically, we removed all punctuation aside from sentence
ending period marks. We then removed all special charac-
ters and numbers. We removed URL links and converted
the text to lowercase. Afterwards, we decided to balance
the datasets using downsampling in terms of class propor-
tion for observations mentioning and not mentioning a prob-
lem. This helps with models, particularly Naive bayes, to
prevent overpredicting a class based on the proportion of
training data of a certain class instead of the input features.
However, we did not balance the Education dataset since it
was not being used to train the models and due to its small
size. The total number of observations in the Expertiza,
Hotel, Amazon, and Education datasets were 18354, 4460,
2442, and 172 (122 labeled 0 and 50 labeled 1) respectively.

Additionally, we have attempted to apply lemmatization and
stopword removal to gauge its impact on model performance.
The intuition of this is with lemmatization, we would reduce
the variation of data embedding, helping the models to focus
on important features to achieve better results.

3.2 Models
Before we could transfer knowledge into models that work in
the target domain, some machine learning from the source
domain is required. For this task, we pick four models
including the Random Forest classifier, multinomial naive
Bayes classifier, support vector machine, and logistic regres-
sion classifier. Each classifier used the same 90-10% train-
test split with hyper parameters tuned using 5-fold cross-
validation.

Leveraging the power of the Scikit-learn package, we were
able to build a data pipeline for this task [31]. Cleaned
data was funneled into a count vectorizer, then weight trans-
formed with a TF-IDF transformer, before being used by the
classifiers.

The logistic regression classifier uses a regression equation to
produce discrete binary outputs through a sigmoid function.
It learns the coefficients of each input feature through the
fitting process just like in linear regression.

The random forest classifier uses an ensemble approach that
fits multiple decision trees, then uses averaging to improve
the accuracy of predictions as well as to avoid overfitting.
The loss criterion to choose from includes gini and entropy.

The multinomial näıve Bayes classifier is a special instance
of a naive bayes classifier that follows a multinomial dis-
tribution for each feature p(f i|c). The näıve Bayes model
assumes that each of the features it uses for classification
are independent of one another.

The support vector machine classifier works by establishing
a decision boundary as well as a positive plane and a negative
plane between classes. Anything in the positive plane is
considered to have the characteristic under study. In our
experiment, this is the presence of a problem in a reviewer’s
comment.

We have also attempted doing the same task with a neural-
network based model. One popular network structure in
natural language processing is the Long Short Term Mem-
ory (LSTM) network. The LSTM takes the cleaned dataset
as input, then using GloVe [32] embedding as a feature ex-
tractor before feeding them into a stacked LSTM and dense
layers.

LSTM is a variation of Recurrent Neural Network (RNN),
with the modification of adding the functionality of forget-
ting information when new information is fed into the net-
work. This particular network leverages existing advantages
of memorizing information through timesteps, and in the
meantime uses four gates to input, forget, update, and out-
put information.

3.3 Implementations
To validate our ideas on if detecting problem statements
could be transferred, we did some initial experiments by
training models on one dataset and then test on another.
Results of these experiments could be found in the following
section of the paper, where we did observe signs of knowl-
edge being transferred and proceeded to the next stage on
improving model accuracy on new domains.

Apart from transferring existing knowledge from other do-
mains, the other way to diminish the impact of lacking an-
notated data is active learning. Active learning helps re-
searchers to lessen the effort annotation by selecting a sub-
set of high value data to annotate. Different active learning
strategies may generate different subsets of data, but the
essence of doing so is that it would pick data that can bring
more knowledge to the models compared with other data
points.

During the active learning phase, we attempted applying un-
certainty sampling strategy to actively learn the more impor-
tant groups of data-points listed by each model respectively.
Unlabeled data from the education class dataset is exposed
to all four models, and they would go through predicting
whether a problem statement is present in a comment, gen-
erating labels of 1’s and 0’s as well as corresponding confi-
dence scores. Using the score, we could retain four subsets
of data points of which the models’ confident scores are be-
tween 49% and 51%.

Two researchers then annotate over 100 of these data-points
per subset, then remove conflicted entries, leaving 100 la-
beled data-points which each of these models are “curious”
about. These observations are then appended to the com-
puter science dataset which we originally trained the models
with. Finally, the four models were re-trained separately.

4. RESULTS
In Tables 1, 2, 3, and 4 the rows represent the dataset that
was used to train the model. The columns represent the
dataset that was tested on by the model. In the cases marked
by the diagonal in the tables, we trained the models using
90% of the dataset and tested on the remaining 10%. The
order of the sets of three values within each represent the re-
sults without any further text preprocessing, lemmatization,
and stopword removal respectively.
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Table 1: F1 Score Logistic Regression
TrainTest Computer Science Hotel Amazon Education
Computer Science 0.89 / 0.89 / 0.83 0.70 / 0.69 / 0.68 0.70 / 0.71 / 0.63 0.73 / 0.69 / 0.64
Hotel 0.68 / 0.68 / 0.55 0.94 / 0.93 / 0.94 0.82 / 0.85 / 0.8 0.65 / 0.63 / 0.59
Amazon 0.60 / 0.58 / 0.47 0.78 / 0.81 / 0.76 0.95 / 0.93 / 0.93 0.65 / 0.63 / 0.53
∗without preprocessing / with lemmatization / with stopword removed

Table 2: F1 Score Random Forest
TrainTest Computer Science Hotel Amazon Education
Computer Science 0.88 / 0.89 / 0.82 0.62 / 0.60 / 0.62 0.66 / 0.65 / 0.57 0.68 / 0.65 / 0.66
Hotel 0.74 / 0.74 / 0.59 0.91 / 0.90 / 0.92 0.73 / 0.74 / 0.73 0.61 / 0.63 / 0.60
Amazon 0.58 / 0.54 / 0.43 0.73 / 0.75 / 0.72 0.91 / 0.93 / 0.91 0.62 / 0.55 / 0.50

When models are trained on one dataset and tested on an-
other dataset without any prior knowledge for the target
domain, we could expect some drop in performance. As
we tested each model’s performance on different datasets,
we validated this claim and found that the degradation of
model performance is closely related to how much domains
differ from each other.

For example, when we initially tested if something consti-
tuted a problem statement that was learned from the com-
puter science could be transferred to other domains, we
found that despite a drop of 0.2 - 0.3 in F1 score, each
model did receive a F1 score larger than 0.6 for most of
the runs, which is better than the random guessing average
of 50%. This is a sign of positive transferring of knowledge,
thus proving our idea could work.

Apart from the naive Bayes classifier, we received good re-
sults when testing on the Education dataset. This could
be caused by the nature of reviews towards computer sci-
ence sharing more similarities with the education dataset
since they are both done by students towards their peers,
unlike the other two. Apart from that, we found the knowl-
edge transferring to the Amazon dataset constantly out per-
forming knowledge transferring to the Hotel dataset. When
closely observing the content of the Amazon dataset, we
found it is focused on reviewing electronic devices such as
Amazon Kindle and Kindle fire. The nature of such projects
do share some similarity with reviewing an application built
by a computer science student, and as expected we could
find knowledge transferred better from a computer science
class to Amazon reviews compared with those from the Ho-
tel dataset. All of the findings above can be found in Tables
1, 2, 3, and 4. Unsurprisingly, when we compare transfer-
ring knowledge between different domains through datasets
that we have acquired, it can also be found that transferring
works the best between the two commercial review datasets,
being Amazon and Hotel, due to their nature being customer
rather than peer reviews.

We analyzed the most important features most models used
for prediction by examining feature coefficients from these
models. The results of this examination also aligned with
our observations. Within the top 20 positive and negative
coefficients, we found 5 pairs of shared features between the
computer science dataset and Amazon dataset. We also
found 6 pairs between the computer science dataset and

Hotel dataset. Furthermore, there were 7 pairs of shared
features between the Amazon dataset and Hotel dataset.

The models resulted in similar performances with and with-
out the use of lemmatization for training and testing on
the same dataset. Lemmatization did increase the accu-
racy when models were trained on the Hotel dataset and
tested on the Amazon dataset, and vice versa. However,
stopword removal led to a significant decrease in classifier
performance in all cases except for when the models were
trained and tested on the same dataset for the Hotel and
Amazon dataset, in which case the performance was around
the same.

The logistic regression classifier and support vector machine
led to the best results when training and testing on the
same dataset, with the exception of multinomial naive bayes
when using the Hotel dataset. Otherwise, the multinomial
naive bayes classifier performed the worst, particularly when
attempting to predict observations found in the Education
dataset.

When tested and trained on the same dataset, the models
performed well with f1-scores ranging from mid 80s to mid
90s.

To bring up the accuracy when we transfer a model onto
another domain, we did some active learning attempts. By
using the uncertainty sampling strategy, each of the four
models were exposed to the unlabeled education dataset,
then the top hundred data points denoted unsure by each
model is extracted. Each of these data points had a confi-
dence between 49% and 51%, and were presented to an ora-
cle (human annotator) for labeling. After removing conflict-
ing labels, these subsets of data were appended to the orig-
inal computer science dataset individually based on which
model mentioned the uncertainty, then used to retrain each
model respectively.

We found that with a very small carefully picked set of data,
we could regain a considerable amount of accuracy after
transferring a model onto a new domain. As could be seen
in Figure 1, which details the affects of adding the target
domain data from active learning to the computer science
dataset, all models gained accuracy with Naive Bayes bene-
fiting the most from this process.
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Table 3: F1 Score Naive Bayes
TrainTest Computer Science Hotel Amazon Education
Computer Science 0.86 / 0.85 / 0.80 0.55 / 0.55 / 0.53 0.56 / 0.58 / 0.54 0.50 / 0.55 / 0.53
Hotel 0.56 / 0.53 / 0.50 0.95 / 0.95 / 0.93 0.79 / 0.82 / 0.78 0.57 / 0.54 / 0.53
Amazon 0.59 / 0.55 / 0.52 0.80 / 0.82 / 0.77 0.94 / 0.93 / 0.94 0.57 / 0.57 / 0.55

Table 4: F1 Score Support Vector Machine
TrainTest Computer Science Hotel Amazon Education
Computer Science 0.90 / 0.90 / 0.83 0.69 / 0.68 / 0.67 0.69 / 0.70 / 0.63 0.74 / 0.69 / 0.64
Hotel 0.66 / 0.66 / 0.56 0.93 / 0.94 / 0.94 0.83 / 0.85 / 0.80 0.65 / 0.62 / 0.61
Amazon 0.63 / 0.59 / 0.48 0.79 / 0.80 / 0.75 0.94 / 0.93 / 0.93 0.67 / 0.66 / 0.53

Figure 1: F1 Improvements with Active Learning

There are also a few things we noticed that did not work.
Ordinary data preprocessing techniques such as lemmatizing
and mainly stopword removal actually reduced model per-
formance in terms of accuracy on all four models. From re-
viewing the coefficients, we found that many times the tense
and plurality of words actually matters, let alone a lot of the
stop words. For example auxiliary verbs such as “could” and
“should” often implies a problem needs to be corrected, and
words implying contrast such as “but” and “however” are
used to bring up readers’ attention before mentioning dis-
satisfaction. When these elements of language are removed,
predicting whether a comment contains a problem becomes
harder.

Apart from this, attempts on generating uncertain data from
Neural network models and then re-train itself with resolved
uncertainty does not show significant differences compared
with training itself on more randomly selected samples. Re-
sults for both approaches have a F1 score fluctuate between
0.69 and 0.71 without significant differences. This could be
because each time a neural network is trained, it restruc-
tures itself in a different way. With each perceptron (neu-
ron) being a small classifier by itself, what is used to carry
important knowledge to one network state might not hold
as much value when the network is in a new state.

5. CONCLUSIONS AND FUTURE WORK
In conclusion, we could use models trained on one domain
that classify certain sentiment components on other domains.
We have tested doing problem detection between two dis-

tinctively different classes, and are confident about detecting
other useful things such as suggestions or problem localiz-
ers. Results in the previous section have presented that with
very little human intervention, each of the classifiers could
regain a significant amount of its accuracy.

This is a very important step if we are to build a system
that could promote students writing better reviews in dif-
ferent domains and different class settings. Furthermore,
if we are to automate the grading process by involving in-
puts from peer assessment, we would certainly want to use
features such as “how many suggestions are made” or “how
many problems did the reviewer find” to gauge the quality
of peer grading. Being able to analyze these features across
peer assessments from different subjects becomes increas-
ingly important.

Within this article, we mainly focused on transfer learn-
ing on traditional machine learning techniques, while there
are many deep transfer learning techniques which could be
utilized. With smaller datasets they might not have made
much difference in terms of model accuracy. However, other
researchers have shown that using layers in these neural net-
works trained on one dataset could be used as feature ex-
tractors for another. Examples of this are GloVe [32] and
BERT [33], where both of these models are trained on a
much larger dataset, resulting in exposure to a variety of
knowledge, then later repurposed as feature extractors for
other tasks.

In the future, we plan to explore the possibility of using
transfer learning and active learning on neural network mod-
els and to continue building a review helpfulness evaluator
across different subjects. In the long run, we would like
to create a system that automatically assigns grades to stu-
dents based on both numerical and textual peer assessments.
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ABSTRACT
The goal of knowledge tracing is to track the state of a
student’s knowledge as it evolves over time. This plays
a fundamental role in understanding the learning process
and is a key task in the development of an intelligent tu-
toring system. In this paper we propose a novel approach
to knowledge tracing that combines techniques from ma-
trix factorization with recent progress in recurrent neural
networks (RNNs) to effectively track the state of a stu-
dent’s knowledge. The proposed DynEmb framework en-
ables the tracking of student knowledge even without the
concept/skill tag information that other knowledge tracing
models require while simultaneously achieving superior per-
formance. We provide experimental evaluations demonstrat-
ing that DynEmb achieves improved performance compared
to baselines and illustrating the robustness and effectiveness
of the proposed framework. We also evaluate our approach
using several real-world datasets showing that the proposed
model outperforms the previous state-of-the-art. These re-
sults suggest that combining embedding models with se-
quential models such as RNNs is a promising new direction
for knowledge tracing.

Keywords
Knowledge tracing, Recurrent neural networks, Matrix fac-
torization, Matrix completion

1. INTRODUCTION
A central component in many computer-based learning sys-
tems, and in any kind of intelligent tutoring system (ITS),
is a method for estimating and tracking a student’s knowl-
edge or proficiency based on the student’s previous interac-
tions with the system. For example, a student may interact
with many different course materials (homework exercises,
quiz/exam questions, textbooks and other course materials,
etc.) over a potentially long period of time. As a result
of these interactions (as well as other external factors) the
student’s knowledge and proficiency will dynamically evolve

over time [3, 13, 1, 12]. Tracking the state of a student’s
knowledge as it evolves can provide deeper understanding
how the student is learning and which interactions (ques-
tions, textbooks, etc.) are most helpful, ultimately enabling
the creation of a personalized learning environment tailored
to provide an improved learning experience for the student.

Estimating student knowledge or proficiency from a sequence
of student interactions poses two fundamental challenges.
First, student proficiency evolves over time as the student
interacts with the system. For example, the student might
turn to textbooks in response to getting a particular ques-
tion wrong, and then may be able to answer a similar ques-
tion correctly afterwards. Alternatively, the student may
gradually lose proficiency in some areas if long periods of
time pass without using this knowledge (e.g., over long va-
cations). Thus, we cannot treat this as a static problem of
estimating a student’s knowledge, but must think of this as a
dynamic tracking problem. A second and more subtle chal-
lenge is posed by the fact that the manner in which student
proficiency evolves may be strongly influenced by the nature
of the interactions. For example, when a student is posed
a question that requires knowledge of a particular concept,
we not only learn something regarding the student’s profi-
ciency, but the student may also also learn something from
the question. In this way, the interactions both provide in-
formation to help us track the student’s knowledge while
simultaneously inducing changes in the state that we wish
to track.

In this paper we propose a framework for tracing student
knowledge using only a sequence of student responses to
questions (for an ensemble of many students). The frame-
work consists of two core components: a (static) embedding
network that learns fixed latent representations of questions
from student-question interactions and a recurrent neural
network (RNN) that dynamically tracks the hidden state
corresponding to each student’s knowledge over time from
the student’s sequence of interactions. Our main contribu-
tions are:

• A new knowledge tracing framework which exploits
both the advantages of latent question embedding from
response data and an RNN to track student knowledge;

• A framework that can track student knowledge with-
out using the question-level concept/skill tags that other
knowledge tracing models (e.g., DKT [13] and its vari-
ants) require, avoiding labor-intensive manual tagging;
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• A flexible framework that can also accommodate a va-
riety of sequential modeling techniques (e.g., memory
networks [28]) and can incorporate tag information and
other features when available.

2. RELATED WORK
2.1 Educational data mining
Extracting useful information from the kind of educational
data we consider was first studied within the intelligent tu-
toring community. Since the seminal work of [3], there has
been a variety of efforts aimed towards understanding the
cognitive processes that are most relevant in the context of
an ITS, most of which aim to estimate students’ proficiency
based on their past interactions with the system with the
aim of predict their performance on the new exercises/tests
or customizing their learning materials.

Static models. Item Response Theory (IRT) is a standard
framework for modeling student responses to questions dat-
ing back to the 1950s [20]. Perhaps the most common IRT
model is the Rasch model [15]. This is a simple two-parameter
model in which each student is modelled as having a partic-
ular skill level and each question has a particular difficulty,
which is then paired with a logistic link function to provide
predictions of the probability a student will answer a ques-
tion correctly. There are natural mutlidimensional exten-
sions of this and similar IRT models, which can be viewed as
special cases of standard matrix factorization models ([19])
or more general factorization machine models [16]).

Sequential models. Most of the models described above
involve estimating a fixed student-question embedding which
is then used to predict future responses. However, we fully
expect the state of a student’s knowledge to change over
time. To capture such dynamics, a natural approach is to
incorporate dynamics in the model. One of the most pop-
ular models is Bayesian Knowledge Tracing (BKT), which
employs a hidden Markov model ([3]) to model the process
of mastering a particular skill. However, the BKT approach
has some significant drawbacks. Most significantly, it mod-
els only a single skill or concept at a time. In practice, any
particular question may be associated with a complex com-
bination of different skills. To overcome this shortcoming,
several alternative approaches have recently been proposed.

The most relevant attempt in this direction is the Deep
Knowledge Tracing (DKT) framework [13]. The DKT ap-
proach was inspired by recent progress in RNNs and deep
RNN architectures. RNNs are a family of neural networks
tailored for sequential prediction problems [22]. In recent
years deep RNN architectures have been shown to outper-
form many classical models in many application areas, in-
cluding natural language processing and session-based rec-
ommendation system. DKT is the first model to use RNNs
to track student knowledge. DKT uses a one-hot encod-
ing of skill/concept tags and associated responses as input
and trains the RNN to predict the future student response.
An extension of DKT is the Deep Hierarchical Knowledge
Tracing (DHKT) [21], which extended DKT to incorporate
problem IDs in addition to concept tags.

However empirical experiments in [26, 23, 24] show that
DKT does not appear to result in substantial improvement
over many simpler models from classical IRT whose parame-
ters and inferred states are psychologically meaningful. It is
worth noting that the IRT variants considered in [26, 23, 24]
use problem IDs as identifiers instead of skill IDs for DKT.
Since multiple problem IDs can be tagged with the same
skill IDs, we generally find that skill IDs repeat much more
frequently than problem IDs. Thus, a comparison using skill
IDs would likely be more favorable to a recurrent/sequential
model like DKT. Of course, in considering only skill IDs we
lose the ability to learn/exploit question-level information
such as question difficulty. Moreover, producing skill IDs for
each question requires substantial human effort and is often
not feasible in practice. Furthermore all the experiments
in [26, 23, 24] consider the ‘New Student’ evaluation proto-
col, which keeps a portion of the students as training sets
and test on new students. Such an evaluation scenario may
not be particularly meaningful in a real-world ITS and does
not favor penalization models such as IRT, though online
evaluation in [23, 24] mitigates such bias. Thus, the com-
parison study in [26, 23, 24] is not entirely satisfying and
leaves open many questions regarding the potential benefits
(or lack thereof) of deep RNNs for knowledge tracing.

Hybrid models. There are also several attempts to com-
bine static models and sequential models to exploit advan-
tages from both approaches, such as the FAST model in [5]
and the LFKT model in [9]. In [10], these two approaches
are compared and the experimental results show that these
two hybrid models do not outperform a simple IRT model.
The authors conjecture that the lack of improvement is due
to a confounding between item identity and the question po-
sition in a (nearly deterministic) sequence of questions. In
contrast to these more pessimistic results, in this paper we
propose a hybrid model and show that it can harness the
advantages from both static and sequential models in a way
that outperforms both.

2.2 Session-based recommendation systems
A closely related application to knowledge tracing is that
of predicting a user’s preference for various items in a rec-
ommendation system. Among various recommendation sys-
tems, session based recommendation is the most closely re-
lated to knowledge tracing. For example, a session-based
recommendation model, GRU4Rec, is proposed in [6] that
has a similar architecture as DKT. However, GRU4Rec does
not consider user identifications as inputs. An alternative
approach – the Recurrent Recommender network (RRN) [25]
– is capable of both modelling the seasonal evolution of items
and tracking the user preferences over time. RRNs use a ma-
trix factorization to model the stationary component of the
user and item embeddings, and then two Long Short-Term
Networks (LSTMs) to track the dynamic component of these
embeddings.

Though similar, there are some notable differences between
product recommendation and knowledge tracing. First, user
preferences tend to change much more slowly compared to
student knowledge. Second, student interactions with ques-
tions have a significant impact on student knowledge, while
in contrast interactions with an item (watching a movie,
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buying a product, etc.) typically have a mild impact at most
on user preferences. Third, in a recommendation context,
user responses may contain important implicit feedback [7].
For example, we can conclude that a user will watch a movie
or buy a product because he/she likes it, even if the user does
not give explicit feedback. However, students typically have
limited freedom to choose which questions to answer. These
differences have important algorithmic implications.

3. THE DYNEMB FRAMEWORK
3.1 System architecture
In this section we describe a novel framework for tracking
student knowledge, dubbed DynEmb, that learns a static
question embedding but exploits sequential models of the
temporal dynamics of student-question interactions to track
the knowledge states of the students. We will represent
our training data as a sequence of interactions of the form
Rt = (st, qt, rt, ot). Each interaction Rt involves a student
st and a question qt. We assume there are M questions
and N students. The response to the question is denoted rt,
which is most commonly a correct/incorrect binary outcome
or occasionally a numerical score. In this paper we focus
mainly on the binary case, but the underlying framework can
easily extend to the more general setting. Finally, we let ot
denote other information about the interaction that may be
relevant, including – but not limited to – time stamps, ques-
tions tags, platform (e.g., paper, computer, mobile, etc.),
and question text descriptions.

The goal of DynEmb is to predict student responses to future
questions given a historical sequence of interactions {Ri}ni=1.
Specifically, given a new student-question pair (st, qt) and
any additional information ot if available, our goal is to pre-
dict rt. DynEmb has two main components, each of which
are trained independently (see Figure 1). The first com-
ponent QuestionEmb generates a d−dimensional question
embedding Wqt ∈ Rd from {Ri}ni=1 using standard matrix
factorization techniques described in more detail below. The
second component StudentDyn learns to track each student’s
knowledge state using a sequential model that takes the stu-
dent’s past sequence of question embeddings {Wqi}

t−1
i=1 and

responses {ri}t−1
i=1 as inputs and produces a dynamic student

embedding Zst(t) ∈ Rd. The sequential model could be a
“vanilla” RNN, a long short-term memory (LSTM) network,
a gated recurrent unit (GRU), a memory network with at-
tention, or others. In this work we use an LSTM in the Stu-
dentDyn component by default. After obtaining the (static)
question embedding Wqt and the (dynamic) student embed-
ding Zst , the predicted probability of a correct response is
computed via

r̂t = φ (〈Wqt , Zst(t)〉+ bqt) , (1)

where bqt is a scalar that represents a bias learned for each
question and φ is a sigmoid activation function. We describe
these components in further detail below.

QuestionEmb. The QuestionEmb component uses an `2-
regularized biased matrix factorization model to learn a static
latent embedding for the questions. More specifically, in this
component we learn both a question embedding W and a
student embedding Z, where W ∈ RN×d is a matrix whose

columns correspond to the question embedding vectors (the
Wq’s) and Z ∈ RM×d is a matrix whose columns corre-
spond to the student embedding vectors (the Zs’s). These
are learned via the following optimization problem:

arg min
W,Z,b,c

n∑
t=1

L (rt, φ (〈Wqt , Zst〉+ bqt + cst))

+ λ
(
‖W‖2F + ‖Z‖2F

)
,

(2)

where b and c are vectors of question and student “biases”
respectively, λ is the regularization parameter, and L(y, x) =
− (y log(x) + (1− y) log(1− x)) is the log loss function. This
is inspired by the observations in [27] that if the question
embedding W is static, then one can still use conventional
matrix factorization to recover W , even though the other
factors Z may actually be changing over time. Finally, we
note that while (2) is a non-convex optimization problem,
simple optimization algorithms exist that provably converge
to a global minimum [8, 4].

StudentDyn. The StudentDyn component uses an RNN to
sequentially generate a student embedding after each inter-
action. For the case of a binary response, rt−1, the input
to the recurrent neural network is the Kronecker product of
the question embedding learned by the QuestionEmb com-
ponent (Wqt−1) and the vector [rt−1, 1 − rt−1]T . At time
step t, an interaction between student st and question qt is
predicted via the model in (1), and the RNN is trained to
predict rt. The dynamic student embedding Zst(t) is the
internal hidden state of the RNN, which is then combined
with Wqt via (1) to obtain our final prediction.

3.2 Model training
To train DynEmb, we adopt a two-phase pretraining strat-
egy. We first train the question embedding in the Ques-
tionEmb component. We then feed the learned question
embedding to the StudentDyn component to train the se-
quential model. Note that we keep the question embed-
ding W and the biases b fixed when training the Student-
Dyn component. This embedding pretraining strategy not
only speeds up the training process, but also produces bet-
ter prediction performance compared to end-to-end training
(see Section 4.4 for an experimental justification). Simi-
lar pretraining strategies are widely used in learning com-
plex models (e.g., for machine translation [14] and sentiment
analysis [17]).

Compared to DKT [13], DKVMN [28], and other sequential
knowledge tracing models, the explicit question embedding
learned directly from interactions based on matrix factor-
ization seems to be more robust. In fact, in our experi-
ments we have observed that if we replace the (frequently
repeating) concept/skill tags in DKT and DKVMN with the
(much less frequently repeating) question identifiers, then
both DKT and DKVMN will have significant performance
degradation and require intensive computational resources
to train. However, our model can track student knowledge
using the pretrained question embedding instead of con-
cept/skill tags. This allows our approach to exploit ques-
tion difficulty information and scales well, especially when
concept/skill tags are not available.
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3.3 Integrating skill tag information
If manually-labeled skill tag information is available for each
question, then it is convenient and beneficial to incorpo-
rate this information into the DynEmb framework. However
the question latent space learned via the matrix factoriza-
tion might be different from the latent space constructed by
manual labeling. One simple method to exploit both ap-
proaches consists of concatenating the two latent question
embeddings to form a new latent question embedding. The
skill tags can be one-hot encoded. To further exploit the
hierarchical relationship between questions and skill tags,
we initialize a question’s embedding by the one-hot encod-
ing of its corresponding skill tag, and put an additional `1
regularization on the objective in (2) to promote sparsity.

To control the dimensionality of the latent space, the con-
catenated embedding is followed by a fully connected (FC)
layer with ReLU activation. This kind of integration scheme
can be found in [2] and also enables easy incorporation of ad-
ditional embeddings/fields, e.g., semantic embedding from
question text.

Finally, the StudentDyn component uses an RNN to se-
quentially generate a student embedding after each interac-
tion using this modified question embedding just as before.
See Figure 2 for additional details.

4. EXPERIMENTS
In this section, we experimentally validate the effectiveness
of the proposed DynEmb model on two tasks: prediction
of response correctness for existing students and prediction
of response correctness for new students. By conducting
experiments on several data sets each and comparing with
the relevant baselines, we show that:

1. DynEmb outperforms DKT by up to 5.43% and 3.74%
in predicting the next response in the ‘New User’ and
‘Most Recent’ evaluation settings respectively (see def-
inition in Section 4.1);

2. The performance of DynEmb is stable with respect to
the dimensionality of the item embedding;

3. The proposed embedding pretraining strategy is a key
component of the success of the DynEmb approach.

4.1 Experimental setting
We consider the following baselines:

• Algorithms that compute a static embedding: in this
category, we compared with BMF [19]. We compare
to both offline and online BMF.

• Knowledge tracing based on RNNs: we compare with
the state-of-the-art DKT algorithm [13].

We report the Area Under the ROC Curve (AUC) for com-
paring the predicted probabilities of correctness for each re-
sponse. AUC is threshold agnostic, and is widely used in
the knowledge tracing literature.

We use two evaluation methods. The first is online response
prediction for new users [13, 23]. In this setting, students
are first split into training and testing populations. Each
model is first trained on the training population. Then for
each time t > 1 in each testing student’s history, we train
the student-level parameters in the model on a new student,
including both the training population and the first t−1 in-
teractions of the student history, computing the probability
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that the tth response is correct. In practice, we find that
re-training and testing after each response is not computa-
tionally feasible for large datasets, in which case we perform
online response prediction in batches. We denote this eval-
uation method the ‘New User’ setting. Our second method
is to consider online response prediction for the the most
recent interactions as in [23]. The procedure here, denoted
the ‘Most Recent’ setting, is the same as in the ‘New User’
setting except that we consider only the most recent inter-
actions for our testing population as the testing data set.

4.2 Experiment 1: Future response prediction
In this experiment, the task is to predict students’ response.
The prediction task is: given all interactions up to time t,
given the student s and question q involved in the interaction
at time t, what is student s’s response (correct/incorrect) to
question q?

We use the following data sets to evaluate performance on
this task.

ASSISTments. This data set was gathered from ASSIST-
ments’s skill builder problem sets, where students learn by
working on similar questions until they can respond cor-
rectly n (usually 3) times in a row [11]. We use two one the
provided data sets, “ASSISTment09” and “ASSISTment12.”
Note that the authors updated “ASSISTment09” in 2017
(first found in [26]).

Cognitive Tutor. In the 2010 KDD Cup Challenge, the
PSLC DataShop released several data sets from Carnegie
Learning’s Cognitive Tutor in (Pre-)Algebra from the years
2005-2009 [18]. We use three of the“Development”data sets,
“Algebra I 2005-2006,” “Algebra I 2006-2007,” and “Bridge
to Algebra I 2006-2007.”

Preprocessing of data sets. As noted in [23], there are
multiple records duplicating a single interaction (represented
by a unique order id value) in “ASSISTment09.” These du-
plicate rows arise when a single interaction is aligned with
multiple skills. This provides DKT models access to the
ground truth when making their predictions, which can ar-
tificially boost prediction results by a significant amount.
We adopt two strategies to clean the data. The first is to
discard rows duplicating a single interaction (as in [23]); the
second is to combine these duplicating rows into a single row
with a new skill tag as suggested by [26]. In this paper we
removed duplicate and multiple-skill repeated records in all
data sets to ensure fairness for the purpose of comparison.
We also removed “not original” records as suggested by [26].
We do similar cleaning operation on the other data set “AS-
SISTment12”. For the Cognitive Tutor data sets, we form
problem identifiers from the concatenation of the “Problem
Name” and “Step Name” fields.

Implementation details. The dimensionality of the input
to the RNNs in DynEmb is fixed at 100. The `2 regular-
ization parameter in the QuestionEmb component is chosen
using cross-validation based on standard BMF. The hyper-
parameters in the StudentDyn component are the same as
DKT and chosen by cross-validation.

Results. Table 2 compares the results of DynEmb with the
baseline. We observe that DynEmb significantly outper-
forms the best baseline in all datasets in terms of AUC on
the three datasets up to 5.43%.

4.3 Experiment 2: Robustness to embedding
dimensionality

In this section, we study the effect of the dynamic embedding
dimensionality on the tracking performance. In this study
we use the “ASSISTment09” and Cognitive Tutor “Algebra
I 2005” (“CT05” for short) datasets, which have the smallest
number of interactions from the two tutoring systems respec-
tively. The effect on other datasets is similar and omitted for
the sake of brevity. We will test on the response prediction
task. As we can see from Figure 3, the performance by AUC
of DynEmb is quite stable over a wide range of embedding
dimensionalities. This robustness is an additional attractive
feature of our approach.

Figure 3: Performance versus embedding dimensionality.

4.4 Experiment 3: Embedding pretraining vs.
end-to-end training

In this section we demonstrate why DynEmb uses pretrain-
ing for the question embedding. The dataset used in this
section is “ASSISTment09.” We use the “Most Recent” eval-
uation method. In Figure 4, we can see that end-to-end
(E2E for short) training (with/without pretraining the ques-
tion embedding) will cause over-fitting, while the learning
curve of proposed pretraining strategy does not suffer from
over-fitting or under-fitting. Of course, another advantage
of pretraining is its improved computational efficiency. The
combination of these two factors provides powerful evidence
for choosing pretraining over an end-to-end training strategy
in this framework.

4.5 Experiment 4: Visualizing question em-
bedding

Though the latent space of the question embedding learned
via matrix factorization is not explicitly aligned with the
latent space formed by the manually-labeled skill tags that
were provided, the proposed question embedding initializa-
tion and sparsity promotion is remarkably effective at align-
ing the question embedding space with the manually con-
structed skill embedding space. This provides additional se-
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Table 1: Overview of data sets.

Data set
Number of

Ratio of correctness Description
Skills Problems Students Responses

ASSISTments
101 13111 4003 214424 0.658 2009
265 47124 28998 2623624 0.699 2012

Cognitive Tutor
90 210710 574 809693 0.767 Algebra I 2005
488 580531 1338 2270384 0.772 Algebra I 2006
494 207856 1146 3679188 0.888 Bridge to Algebra 2006

Table 2: Future response prediction experiment: Table comparing the performance of DynEmb (concatenating question and
skill embedding) with baselines, in terms of AUC. DynEmb outperforms the best baseline by up to 5.43%. We also list the
performance of DynEmb with only question embeddings.

Evaluation method Model
BMF

DKT
DynEmb

Improvement
offline online Question Concat

New User

ASSISTment09 0.67 0.686 0.727 0.725 0.739 1.65%
ASSISTment12 0.694 0.717 0.709 0.722 0.736 2.65%
Algebra I 2005 0.761 0.763 0.773 0.803 0.815 5.43%
Algebra I 2006 0.761 0.786 0.808 0.805 0.821 1.61%

Bridge to Algebra 2006 0.838 0.844 0.856 0.868 0.873 1.99%

Most Recent

ASSISTment09 0.706 0.727 0.661 0.738 0.727 0.00%
ASSISTment12 0.67 0.696 0.71 0.692 0.714 0.56%
Algebra I 2005 0.744 0.763 0.779 0.791 0.808 3.72%
Algebra I 2006 0.761 0.782 0.801 0.813 0.822 2.62%

Bridge to Algebra 2006 0.831 0.839 0.847 0.859 0.865 2.13%

Figure 4: Training and testing log-loss of different training
methods.

mantic meaning for the learned question embedding, which
improves model interpretability. Figure 5 shows clear clus-
tering of question embedding with respect to the associated
skills (indicated by skill identifiers).

5. CONCLUSION AND DISCUSSION
In this paper we presented a framework to track student
knowledge in an ITS by utilizing techniques from matrix
factorization/embedding and RNNs. Our framework can
track student knowledge without the concept/skill tag in-
formation required by other knowledge tracing models, e.g.,
DKT [13] and its variants. This avoids labor-intensive man-
ual tagging. Taking advantage of additional latent question
embeddings, our framework outperforms recent state of the
art knowledge tracing models using RNNs. By constructing
an embedding of the questions via matrix factorization in
addition to skill tags, our framework can fuse question-level

Figure 5: Visualization of the embedding of random selec-
tion of 200 questions by multidimensional scaling.

and skill-level information. The DynEmb framework is also
flexible in that it can accommodate various matrix factor-
ization techniques and dynamical models, which makes it
a promising avenue for future research and development of
algorithms for knowledge tracing.

However, in the context of a real-world implementation, sev-
eral challenges remain regarding how to design a practical
DynEmb based system for knowledge tracing. For exam-
ple, developing a method amenable to deployment in an on-
line setting will require additional algorithmic improvement.
Another challenge concerns how to incorporate additional
sources of auxiliary information not considered here, such
as question text or details about additional student interac-
tions with an ITS (browsing history, textbook interactions,
etc.) to best exploit all of the information that might be
available. We believe that the DynEmb framework provides
a natural platform to address such challenges.
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ABSTRACT
In order to effectively grade persuasive writing we must be able
to reliably identify and extract extract argument structures. In or-
der to do this we must classify arguments by their structural roles
(e.g., major claim, claim, and premise). Current approaches to clas-
sification typically rely on statistical models with heavy feature-
engineering or on deep neural-networks that do not consider prior
knowledge or other secondary features. Little research has been
carried out to investigate if we can incorporate features into deep
models to address AM tasks. In this work, we propose to incor-
porate lightweight features into deep models to classify argument
components. We experimented with two state of the art (SOTA)
approaches: 1) linear-Long-Short-Term Memory (LSTM) models
with concatenated feature vectors; or 2) Directed Acyclic Graph
(DAG) structured LSTMs. In our models we incorporated the fea-
tures of argument position (e.g., if the argument is in the first para-
graph) and prior knowledge of discourse indicators (e.g., in conclu-
sion, for example). We use two baselines in our work: 1) prior work
using SVM models with heavy feature engineering; 2) traditional
linear-Bi-LSTMs with no task-specific features.

Our results show that with a comparatively small number of lightweight
features, both linear-Bi-LSTMs and DAG-Bi-LSTMs outperform
SVM models that depend on more heavy feature engineering, and
outperform linear-Bi-LSTMs with only general word embedding
features. These results suggest that incorporating task-specific el-
ements into deep models may potentially benefit argument mining
tasks.

Keywords
Argument component classification, deep learning, feature engi-
neering, DAG-LSTMs, LSTMs, argument structures, argumenta-
tion mining, automated essay grading

1. INTRODUCTION
Current automated essay grading systems are typically focused on
the syntactic and semantic analysis of written arguments via Natu-
ral Language Processing (NLP) techniques (as in [7, 23, 3]). These

systems are typically designed to evaluate arguments on the basis
of: general readability (e.g., the number of prepositions and rela-
tive pronouns or the complexity of the sentence structure); shallow
semantic analysis (e.g., lexical semantics or the analysis of the re-
lationship among named entities); and syntax analysis (e.g., gram-
matical analysis). To the extent that argument structures consid-
ered in this work have been focused on the limited identification
of individual components (e.g., hypothesis statements [4]), or on
manual analysis by human experts [14], which is costly and time-
consuming. Few existing systems perform any automatic analysis
of the argumentative structures or seek to identify structural flaws
due to the lack of an auto-extraction mechanism in the system.

In order to parse arguments it is necessary to extract the basic com-
ponents. Extracting argument structures (EAS) is one of the essen-
tial tasks of argumentation mining (AM).EAS can be divided into
three sub-tasks: 1) argument component identification (ACI) break-
ing down the text into argument units; 2) argument component
classification (ACC) of classifying argument component (ACs) into
types; 3) argument relation identification (ARI) of identifying
the relationships between each pair of ACs. Prior researchers have
focused on different subsets of these tasks (e.g., [27] addressed
ACI, ACC, and ARI separately, [24] jointly modeled ACI and ACC)
or built end-to-end models that address them sequentially (e.g. [18]).
Our goal in this work, by contrast, is to investigate how to incorpo-
rate task-specific features into deep learning models and whether
those features can improve our models’ performance on the task
of ACC. We carried out our work using an argumentation schema
developed by Stab and Gurevych on a corpus of 402 persuasive es-
says (PE) [27]. As part of this work, we replicated their work on
ACC and used it as a baseline model.

Most current approaches to ACC either rely on heavy feature engi-
neering [27, 16, 22, 12] or use deep models that only consider pre-
trained word embeddings with no other secondary features [19, 24,
11]. Little research to date has been focused on incorporating prior
knowledge or lightweight features into deep models for AM tasks.
To the best of our knowledge, Lugini and Litman carried out the
only work that adds features into LSTM based models to address
ACC on the argument dataset of classroom discussions [13]. In that
work, they considered a set of features including semantic-density
features (e.g. the number of pronouns), lexical features (e.g., uni-
gram and bi-gram), and syntactic features from speech tags. They
combined the feature matrix and LSTMs hidden output for clas-
sification. They showed that the features boosted the deep model
performance.

In our work, we investigated whether or not it is possible to incor-
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Figure 1: An example of DAG LSTM modeling an AC.

porate lightweight features into deep models to address ACC on PE
dataset with different feature sets and deep models. In this work we
considered prior research on the prior knowledge of discourse in-
dicators and position features. The discourse indicators have been
shown are potential features for identifying the argumentative sec-
tion of online product reviews [30]. Researchers have also demon-
strated that the structural features of AC position (e.g., if the AC
shows in the introduction, if an AC is the first sentence of one para-
graph) and token statistics (e.g., number of tokens of an AC) are the
most effective features for AC classification [27]. For this study we
only considered the position information for ACs. We chose to
focus on these two features because these two are the most infor-
mative and also require the least amount of feature-engineering.

For our deep models, we experimented with Bi-LSTMs. We en-
coded the incorporated features by one-hot encoding, computed
the element-wise summation of feature vectors, and then combined
feature vectors with Bi-LSTMs output for prediction. This ap-
proach is the same as the work in [13]. We also considered bidi-
rectional DAG-Structured Recurrent Neural Networks (RNNs) to
incorporate features. DAG-RNNs, also known as Neural Lattice
Language models, are an extension of linear-chained RNN models
that can consume DAG-structured input [32]. If we treat the text
as a linear path, the prior knowledge and secondary features can be
added as new edges on the path to form a DAG structure. The dis-
course features are connected to the parent- and child- nodes of the
related tokens, similar to the work of [32]. For position features,
we simply connected them with the two special sequence delim-
iters which indicate the beginning and end of the sentences. Fig-
ure 1 shows an example of DAG input with discourse indicators of
“FROM_THIS _POINT_OF _VIEW” and “I_FIRMLY_BELIEVE
_THAT” in red and position features of “IN_INTRODUCTION”
and “IS_LAST _SENTENCE” in green. The original input is in
the blue nodes. Token “-B-” and “-E-” are special sequence de-
limiters. The nodes are indexed in topological order, as this is the
order in which the one-directional DAG model consumes the input
sequence. For bidirectional DAG models, we simply reverse the
order. The intuition behind this approach is that it mimics how hu-
mans read and annotate essays as humans can incorporate linguistic
intuition to determine the role of the ACs in written argumentation.
For example, if a sentence appears to be the last sentence of the
introduction in a five-paragraph essay, it most likely contains the
author’s standpoint, i.e., claim.

DAG-RNNs have been used to incorporate linguistic knowledge
(e.g., the non-compositional phrase in the form of n-gram) for sen-
timent classification [32]. They have also achieved SOTA results
in many other NLP tasks such as neural machine translation [28],
speech translation [25], and language modeling [2]. In this work,

we utilized LSTMs, a special kind of RNN and building off Zhu et
al.’s work [32], we implemented a DAG-LSTM in Tensorflow with
a different hidden state bagging function (discussed in section 4).

Our results show that linear-Bi-LSTMs with no task-specific fea-
tures performed worse than traditional models. However once we
incorporated our two features, both the linear-Bi-LSTMs and DAG-
Bi-LSTMs outperform general Bi-LSTMs with no features and they
outperform other models that rely on heavy feature-engineering.
DAG-Bi-LSTMs slightly outperform the linear-Bi-LSTMs when
considering both features. The linear-Bi-LSTMs with only posi-
tion features yield the best results.

The significance of this work is as follows. 1) Our work serves as
the basis for automated essay grading systems, and can be applied
to extract argument structures for detecting structural flaws. 2) We
addressed a common issue in NLP that deep models tend to yield
lower performance on small datasets. We showed that deep models
can benefit from lightweight features and yield better performance.
3) We experimented with DAG-LSTMs to incorporate features on
text classification tasks. We showed that it could be a promising
architecture to incorporate features into sequence models. 4) We
tested the same approach used in [13] to combine features with
LSTMs on a different dataset. Our results are consistent with their
work.

2. RELATED WORK
2.1 AC Classification
Most of the prior work on AC classification relies on traditional
classification models and heavy feature engineering. In [27], re-
searchers applied multiclass SVMs to classify ACs using struc-
tural, lexical, syntactic, discourse indicator, and contextual fea-
tures. They obtained an F1 score of 0.794 on the PE corpus. In [26]
and [18], authors performed classification task on a small portion of
the PE dataset, again relying on extracted features. In [10], Namhee
et al. analyzed online comments to identify and classify subjec-
tive claims using lexical and syntactic features. In [16], researchers
worked to classify ACs on legal documents using extracted features
while Niall et al. applied kernel methods for argument detection
and classification on AraucariaDB dataset [22]. Different from the
above, we only considered prior knowledge of discourse indicators
and structural information of position features.

Many researchers have begun to explore the application of deep
neural-network models to argument mining. In [11], authors exper-
imented with CNN and RNN models to detect the claims [1] and
evidences [21] on Wikipedia datasets. Potash et al. proposed a joint
sequence-to-sequence model with attention to predict the links be-
tween ACs and classify ACs on the PE dataset, where they consid-
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ered the sequential nature of ACs [19]. In our work, by contrast, we
focused on incorporating prior knowledge to deep neural-networks
to classify the ACs alone.

To the best of our knowledge, research from [13] is the only work
that combines feature engineering and deep models to address ACC
on classroom discussion. They showed that SOTA deep models
with only pre-trained embeddings performed poorly on their dataset.
However, by including secondary features they improved the per-
formance substantially. The features included: semantic-density
features (e.g., number of pro-nouns, descriptive word-level statis-
tics, number of occurrences of words of different lengths), lexical
features (e.g„ tf-idf feature for each unigram and bi-gram, descrip-
tive argument move-level statistics), and syntactic features (e.g.,
unigrams, bigrams, and tri- grams of part of speech tags). In their
work, they experimented with Convolutional neural network mod-
els and LSTMs. Their results showed that the model’s performance
was improved after adding the secondary features. In our work, we
considered the same approach to incorporate features into linear-
LSTMs and compare the model performance with DAG-LSTMs.

2.2 DAG-RNNs
DAG-RNNs, also known as Neural Lattice Language (NLL) mod-
els, are extensions of chain-structured RNNs [32, 28]. These mod-
els, first proposed by Zhu et al. in [32], leverage DAG structures to
incorporate external semantics such as n-gram sentiment tags and
expert annotations to improve performance on sentiment classifi-
cation. Su et al. introduced NLL-based Gated Recurrent Units
(GRUs) to encoder multiple word segmentation of Chinese text
for translation [28]. Sperber et al. later used NLL-based GRU
models to consume word lattices from the up-stream modes of the
speech recognizer for speech translation [25]. These lattices were
annotated with posterior probabilities on the alternative translation
paths. And finally, in [2], researchers demonstrated that the NLL
models outperformed the LSTM-based models at the task of lan-
guage modeling when incorporating multi-word phrases (n-grams)
and multiple-embeddings for polysemy. However, little research
has been done to utilize DAG-RNNs to integrate features for AM
tasks.

3. DATASET
The PE dataset was developed by [27]. It contains 402 essays from
the online community essayforum 1. The forum provides writing
feedback for different kinds of text. Students can post practice
essays for standardized tests in the community and obtain feed-
back about their writing skills. The dataset was randomly selected
from the writing feedback section of the forum. The dataset comes
with three argument components: major claim indicating the au-
thor’s standpoint on the given controversial topic; claim of sub-
standpoints that supports (“for”) or attacks (“against”) the major
claim; premise that is the reason of the argument which supports
or attacks the claim. Table 1 shows the class distribution of the PE
corpus. The average number of tokens in major claims, claims, and
premises are 19, 23 and 21, respectively.

Major Claim Claim Premise
Train & Dev 598 1202 3023

Test 153 304 809

Table 1: Number of instance in each class

1https://essayforum.com/
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Figure 2: An unit of DAG-LSTM.

4. METHODS
4.1 Linear-Bi-LSTMs
In traditional Bi-LSTM models, ACs are encoded using Glove em-
beddings [17] that are obtained from training on large Wikipedia
datasets. The encoded ACs are fed to Bi-LSTMs, and the last hid-
den states are passed to the softmax layer for prediction. To incor-
porate features, we used a one-hot vector to represent each feature
and summed up the features vectors that are related to an AC. For
example, if we have a total of three features in the feature space
that are “if an AC is in the introduction”, “if an AC is in the conclu-
sion”, and if an AC contains discourse indicator of “in conclusion”.
We use one-hot vectors to represent three features as [0, 0, 1], [0,
1, 0], and [1, 0, 0], respectively. When we have one example AC
that contains a discourse indicator of “in conclusion,” and this AC
is in conclusion paragraph, we sum up two feature vectors by ele-
ments to get a vector of [0, 1, 1], which represents the feature for
this AC. Then we concatenate the vectors on the hidden output of
Bi-LSTMs for final prediction. The same approach has been used
in [13]

4.2 DAG-Bi-LSTMs
We implemented the DAG-Bi-LSTMs using the TensorFlow plat-
form. 1 The DAG-Bi-LSTMs in our work is similar to the models
described in [32]. However, we applied a different hidden state
merge function. While Zhu et al. used binarization, we elected to
sum the parent hidden states as suggested in the TreeLSTM work
[29]. Intuitively, by summing the previous states, we expect the
DAG-models to learn both the summarized linear history and the
incorporated knowledge. We used the same one-hot method to en-
code the incorporated features.

For sequential inputs the linear-LSTM models calculate hidden states
ht and cell states ct based upon the proceeding hidden state ht−1,
cell states ct−1 and the input embedding et of token xt as:

ht, ct = LSTM(ht−1, ct−1, et, θ) (1)

The primary difference between DAG- and linear- LSTMs is that
the former can have multiple parent and child states, as shown in
Figure 2, while the latter cannot. Given a DAG input, hpi indicates
a set of parent states at t time step, where i = 0, 1, ..., or n and
pi ∈ P . The DAG model first gathers its parent hidden states hpi

and then sums over the parents’ hidden states and over the parents’
cell states as follows:

hPt =
∑

pi∈Pt

hpi cPt =
∑

pi∈Pt

cpi (2)

1We also experimented with DAG-Bi-Gated Recurrent Units, but
DAG-Bi-LSTMs yielded better results.
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The remainder of the DAG process is similar to that of linear-Bi-
LSTMs in that hPt , cPt , et are fed to standard LSTM unit to gen-
erate new hidden, cell states of ht, ct, which are then copied to the
child states. Finally, the last hidden states are fed to Multi-Layered
Perceptrons (MLPs) for prediction.

4.3 Prior Knowledge and Features
In this work, we considered the prior knowledge of discourse indi-
cators and the AC position features. In prior work [27], Stab and
Gurevych collected a list of hand-crafted features for ACC tasks,
including lexical, structural, discourse indicator, contextual, syn-
tactic, etc. The detailed explanations of the features can be found
in Section 5.3.1 of [27]. For discourse indicators, they include five
categories: forward indicators (e.g., “therefore”); backward indi-
cators (e.g., “because”); thesis indicators (e.g., “in my opinion”);
rebuttal indicators (e.g., “although”); and first-person indicators
(e.g., “I”, “me”). For the position features, we annotated sentences
if they were the first/last sentence and if they showed up in the
last/first paragraph. The annotations are in the special n-gram form
(e.g., “IS_LAST_SENTENCE”, “_THEREFORE_”) so that they
are distinguished from original corpus. We also experimented with
annotating the discourse indicators by category, such that the for-
ward indicators were annotated as “FORWARD _INDICATORS”.

5. EXPERIMENTAL SETUP
We carried out a series of experiments using the same static train-
ing/testing split as in prior work [27]. Since the corpus does not
have a designated development set, we used stratified sampling to
select 15% of the training set to tune our hyper-parameters and re-
ported our final results on the designated test set. We ran each
experiment five times and reported the average Macro-F1 score of
the test dataset.

We carried out four distinct experiments: Base-SVMs, which repli-
cates the work in [27] with multiclass SVMs using polynomial ker-
nels on a set of features; Base-LSTMs, which are baseline mod-
els of general Bi-LSTMs with no secondary features; LSTMs and
DAG-LSTMs refers to Bi-LSTMs and DAG-Bi-LSTMs with task-
specific features.

We used a grid search for hyper-parameter tuning, and we used
the same set of parameters across all the models. We used 300-
dimensional GloVe embeddings [17]. Tokens not present in the pre-
trained embeddings or not features were randomly initialized with

uniform samples from range [−
√

3
dim

,
√

3
dim

] [15] where dim is
the dimension of the embeddings 300. All of the tokens in the test
and dev sets but not in the training set have one unique random
embedding. The embeddings were fixed during training. We then
used the Adam optimization algorithm [9] with a learning rate of
0.005, a batch size of 32, a layer LSTM with a hidden size of 64,
and a drop out rate of 0.2, and a layer tanh-MLP with a hidden size
of 64.

6. RESULTS & DISCUSSION
In this section, we will discuss the overall results. Later we will
talk about how each feature impacts the linear-LSTMs and DAG-
LSTMs by comparing them with traditional SVMs and linear-LSTMs
with no task-specific features. In the end, we will compare the per-
formance of linear-LSTMs and DAG-LSTMs.

6.1 Overall Results

Table 2 shows the results of each experiment and our baseline met-
rics. The standard deviations of the deep model results are all
less than 0.009 over the runs. The first three columns show our
benchmark, Stab and Gurevych’s results with SVMs on: all fea-
tures, structural features alone (including AC position in the doc-
ument and token statistics), and contextual features alone (includ-
ing discourse indicators and the number of noun and verb phrases
in an AC). The next two columns show two of our baseline mod-
els: Base-SVMs and Base-LSTMs. Then the rest shows the linear-
LSTMs and DAG-LSTMs with the two features together and sepa-
rately. Pos includes the position features are considered, while dis
refers to the discourse indicators were incorporated, and Pos-dis
indicates that both features are used.

Overall, for linear-LSTMs with only position features return the
best macro-F1 score of 0.805 across the board. DAG-LSTMs with
both position and discourse features return a very close score of
0.802. Drilling won, linear-LSTMs with position features also yield
the best F1 score for claim and premise components, especially for
claim components, the F1 score is increased by 23% over the base-
LSTMs and increased by 4.5% over base-SVMs. For major claims,
the SMVs from prior work still have the best F1 score.

Thus for traditional models with heavy feature engineering, our
Base-SVMs are close to Stab and Gurevych’s result (SVMs) but
with a lower F1 score on major claims. This may be due to minor
differences in our feature extraction or the different experimental
setting. Among three deep models, the base-LSTMs with only pre-
trained word embeddings perform very poorly, and all the F1 scores
are much lower than the SVM models, which is not very surprising
because of the small amount of data. The trained models do not
generalize well on test data. This may also be due to the fact that
the pre-trained embeddings are obtained from training models on a
large corpus of Wikipedia data [17], which can be thought of prior
knowledge. However, Wikipedia is very different from the PEs,
the writing is generally more formal; it is a product of collabora-
tive work; and is heavily edited. PEs are most likely composed by
non-native English writers. Thus the base-LSTMs with glove em-
beddings may not able to catch the semantic meaning in the PEs.

However, once we incorporated the position and discourse features,
we obtained a very high Macro F1 score. We have F1 of 0.801
and 0.802 for linear and DAG models, a 16% improvement over
Base-LSTMs with no features (0.633). These results imply that
both models can utilize task-specific features to boost performance.
When we compare deep models with heavy feature engineering
based SVMs, we find that the deep models with only two features
outperformed the SVMs with heavily features Engineering, which
suggests that combining little features with deep models can im-
prove the learning on AM tasks.

6.2 Position Features
When adding position features, both the linear models and DAG
models outperformed the SVMs and base-LSTMs. The linear mod-
els return the best results. In fact, after incorporating position fea-
tures, the major claims that were previously misclassified as premises
by the Base-LSTMs were now either classified as claims or major
claims in the linear and DAG models. However, while adding the
position features improves the tasks on identifying the claims and
major claims, they are not good at distinguishing the two. Looking
deeper, the resulting models tend to be biased towards the major
claim classification, especially for claims that show up in the in-
troduction or conclusion. One possible explanation for this is that
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SVMs (Stab et al.) Base-SVMs Base-LSTMs LSTMs DAG-LSTMs

Features All Pos Dis All None Pos-Dis Pos Dis Pos-Dis Pos Dis

Major claim .891 .803 .656 .844 .625 .832 .823 .650 .852* .845 .645
Claim .611 .551 .248 .640 .455 .670 .685* .428 .659 .668 .498
Premise .879 .870 .836 .886 .819 .903 .907* .820 .896 .886 .797
Macro-F1 .794 .741 .580 .790 .633 .801* .805* .633 .802 .799 .647

Table 2: Results on classifying ACs on PE corpus. “All” column refers to the eight type of features in [27]. “Pos” column indicates
the models with position features. “Dis” columns shows the model results with discourse features. * means significant improvement
over Linear-LSTMs with no features. Bold indicates the best result per row.

the position features dominate the feature space in the PE dataset;
models pay too much attention to the position features and too little
attention to the semantic context.

Our results are consistent with prior work which has suggested that
position features play an important role in classifying ACs on the
PE dataset. As shown in Table 2 with only position features, the
traditional SVMs can reach a macro F1 score of 0.741. The utility
of this feature is relatively intuitive. In five-paragraph essays, the
major claims usually show up in the first or last paragraphs. And
in our PE dataset, 70% of the major claims were either the last
sentence of the introduction or in the first sentence of conclusions,
while 67% of key subsidiary claims show up in the first or last
sentence of the middle paragraphs.

Our results also suggested that we can incorporate non-semantic
features into deep models to help the model learn, especially these
non-semantic features can not be captured by the word embedding
features.

6.3 Discourse Indicator features
Interestingly, the performance of linear models was not improved
after adding the discourse features, and DAG model’s performance
was improved a little. When we examine the data more closely
we see that one possible reason is the current discourse indicator
list provided in [27] does not cover all the cases in the PE. We
identified more discourse indicators that are not included in the list,
such as thesis indicators of “it is believed that’, “to summarise”, “in
short”, “it is undeniable”, and “I admit that” and forward indicators
of “based on the above discussion”. We will address this problem
in our future work.

We also experimented with incorporating discourse features by cat-
egory. We ran another set of experiments based on the same model
parameters setting as above. Below Table 3 shows the results.

LSTMs DAG-LSTMs

Features Pos-Dis Dis Pos-Dis Dis

Major Claim .843* .662* .859* .675*
Claim .666 .475* .659 .506*
Premise .899 .817 .894 .794

Macro-F1 .803* .651* .804* .659*

Table 3: Results for incorporating discourse indicators as anno-
tation types for Linear-LSTMs and DAG-LSTMs.* means im-
provement over the results that show in Table 2.

After incorporating discourse indicator features by category, the
model’s performance was improved. In Table 3, * indicates the im-
provement over the results from n-gram discourse features. Both
the linear and DAG models yield slightly better results on major
claim and claim components, especially the major claim. Deeply
looking at the results, some major claims were misclassified as
claims before, which were correctly predicted here. The reason
could be that when we consider the discourse indicators by cate-
gory, we only have five features. For each feature, we have suffi-
cient training examples for it. In fact, the thesis, first-person, for-
ward, rebuttal, and backward indicators show up 701, 1535, 968,
719, and 1769 in the total data. Thus, it is easier for the models to
capture the discourse features. However, when we considered them
in the n-gram form, we have more than 100 of them. The number of
them shows up in the ACs are much less than above. And some of
them only show up once in the entire data, such as thesis indicators
of “all things considered” and backward indicator of “is due to the
fact that”, which prohibits the models learning useful information.

Overall, the discourse indicator features did not improve the model’s
performance massively, which indicates that deep models with pre-
trained embeddings already capture the semantic information. Thus,
adding discourse indicator features does not help as much as posi-
tion features on PE dataset.

6.4 Linear-LSTMs vs DAG-LSTMs
When adding both classes of features, the linear and DAG mod-
els yielded similar results for their macro-F1 score. However, the
linear models outperformed the DAG models with the position fea-
tures alone, and the DAG models utilized the discourse indicator
features better in both the Table 2 and Table 3. One possible ex-
planation is that when we concatenated the feature vectors on the
last hidden output of linear models, the models are not able to learn
the interactions between the discourse indicators and surrounding
words. But the DAG models can learn those interactions by merg-
ing the hidden annotation states with current hidden states, and the
current states contain the semantic information from all previous
tokens. For example, for the DAG-input shown in Figure 1, we use
the index of the DAG input to refer the time step that the LSTM unit
processes the hidden state. At time step 15 of the forward training,
we first merge the hidden output of state 10 and state 14, and then
pass the merged hidden state as the hidden input of state 15. In this
way, the DAG models consider both semantic meaning of all previ-
ous tokens and the discourse feature of “I firmly believe that”, and
pass that information to the next hidden state. These results imply
that DAG-models tend to utilize the semantic features better as they
can learn the interaction between the features and tokens. However,
they might not perform very well when we consider non-semantic
features, such as the position features used here. One possible ap-
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proach to address this problem is to combine two proposed methods
to incorporate features. We can use DAG models to incorporate dis-
course indicator features and then concatenate the one-hot position
feature vectors on the final hidden states for prediction.

7. CONCLUSIONS
In this work, we experimented with two approaches to combine fea-
ture engineering with deep models: linear-Bi-LSTMs with feature
vectors concatenated on the hidden output and DAG-Bi-LSTMs.
Our results show that both deep models could benefit from task-
specific features, as both of them outperformed traditional mod-
els with heavy feature engineering and deep models with no task-
specific features. We also show that the linear models handle the
position feature better, and that the DAG models utilize the seman-
tic features better since the linear models can not learn the interac-
tion between discourse features and tokens. And finally we show
that the deep models benefit more from position features than dis-
course indicator features on the PE dataset. Our results imply that
when we apply the deep learning models to classify ACs, we could
consider utilizing some task-specific features to guide the model
learning.

This work can serve as a basis for the development of structurally-
aware support platforms for reading and writing. This can include
automated essay grading systems that detect and evaluate structural
deficiencies as well as writing tutors that scaffold the construction
of coherent essays or identify structural issues. As discussed in
Section 1, current automated grading systems suffer from the lack
of reliable auto-extraction mechanisms with most still relying on
traditional ML models that use heavy feature engineering to func-
tion. Such work is costly and time consuming to develop and may
not always generalize to other essay types. Our work addresses
this problem by showing that lightweight features and off the shelf
methods can outperform those methods. At the same time our
work also showed that while traditional machine learning models
are costly and deep learning models are sensitive to small datasets,
as discussed by [8, 31], this limitation too can be addressed through
the use of lightweight feature work to guide the deep models. By
addressing these two problems we have shown a path for develop-
ing robust argument detection mechanisms for automated educa-
tional platforms using novel deep learning approaches a path that
can lead to substantive improvements for students and educators.

8. FUTURE WORK
These preliminary results serve as a basis for our ongoing research,
in which we are building an end-to-end model with feature engi-
neering to address all three sub-tasks for argument structure ex-
traction. For that work we will frame this task as sequence tag-
ging problems. We propose to use linear-LSTM and DAG-LSTM
based models with task-specific features to address EAS. We es-
timate that incorporating the task-specific features into end-to-end
models can improve the model’s performance compared to the deep
models based on general word embedding [6].

In future work, we will also consider experimenting these two ap-
proaches on different argumentation datasets, and compare the re-
sults with fine-tuning SOTA language models (e.g. BERT [5], T5
[20]).
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ABSTRACT
Accurately predicting which students are best suited for
graduate programs is beneficial to both students and col-
leges. In this paper, we propose a quantitative machine
learning approach to predict an applicant’s potential perfor-
mance in the graduate program. Our work is based on a
real world dataset consisting of MS in CS students in the
College of Computer and Information Science program at
Northeastern University. We address two challenges associ-
ated with our task: subjectivity in the data due to change of
admission committee membership from year to year and the
shortage of training data. Our experimental results demon-
strate an effective predictive model that could serve as a
Focus of Attention (FOA) tool for an admission committee.
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1. INTRODUCTION
Master’s education is the fastest growing and largest compo-
nent of the graduate enterprise in the United States. Accord-
ing to the 2016 joint survey conducted by the CGS (Council
of Graduate Schools) and ETS (Educational Testing Ser-
vice) [4], first-time enrollment in U.S. graduate programs
reached a record high total of 506,927 students in Fall 2015.
Because of the rise in applicants, the admissions process
may become increasingly tedious and challenging. The ETS
has established standardized tests (such as the GRE) to help
evaluate applicants’ quantitative, reading, and writing skills,
but these scores alone are far from indicative of success-

ful students. Although applicants’ previous achievements
can demonstrate excellence, students with high GPAs from
prestigious universities do not always excel in their graduate
studies.

In this paper, we take a quantitative machine learning ap-
proach to predict the outlook of applicants’ graduate studies
based on features extracted from their application materials.
The training data for our model are empirically admitted
students with their performance measures in the graduate
program. In particular, we have a real world dataset from
Northeastern University’s MS in Computer Science (MSCS)
program, consisting of MS students from 2009 to 2012. We
use a student’s overall GPA in the MSCS program as his/her
performance measure. Our model aims to identify the top
20% and bottom 20% performing students respectively (see
details in Section 4.1).

Two challenges arise when learning with this data. First,
the data involves the admission committee’s (possibly sub-
jective) evaluation. Specifically, some members of the com-
mittee may be biased in weighing a particular set of stan-
dards (e.g., GRE scores), while others may be in favor of
different measures. This issue is particularly acute when
the admission committee/policy changes from year to year.
As a result, it can be difficult to form an accurate predictor
directly from the entire dataset. Another challenge is the
limitation of the training data. We have a total of 454 la-
beled training samples (all admitted students) from 2009 to
2012. On the other hand, we have over 2000 applications
that are either rejected (i.e., not admitted) or declined (i.e.,
admitted but not enrolled), which can serve as an unlabeled
auxiliary dataset. Our conjecture is that building a semi-
supervised model leveraging the large set of unlabeled data
may lead to a superior performance compared to using the
labeled data alone.

Our model is inspired by two existing frameworks: SVM+
[12] and S3VM [3]. SVM+ is a variant of SVM which ad-
dresses the issue of heterogeneous data. Specifically, SVM+
implicitly establishes a different hyper-plane for each data
subgroup by modifying a standard SVM’s objective func-
tion and constraints. S3VM is a semi-supervised version of
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SVM which learns a classifier using both labeled and unla-
beled data. Our contribution is a new variant of SVM that
unifies the advantages of both S3VM and SVM+. Our new
model, which we name S3VM+, addresses the admission bi-
ases in the labeled data and utilizes unlabeled applicants’
data simultaneously. S3VM+ can be applied to any domain
for which the data may have clearly defined subgroups (e.g.,
privileged domain knowledge) and a large amount of unla-
beled data.

An additional motivation of our research was to validate
our hypothesis of whether we could predict student success
based only on quantitative measures and, thus, remove the
subjectivity of the committee reading the recommendation
letters and statement of purpose. If successful, such a model
will not only lead to a better selected student body, but
also help to manage growing enrollments. Our experimental
results (see Section 4 for details) demonstrate that, with
our new model, we can achieve an effective yet imperfect
prediction. Thus, in practice, our model could serve as a
Focus of Attention (FOA) tool for the admission committees.

The rest of the paper is organized as follows: in Section 2,
we present the related work in predicting students’ perfor-
mance in the education domain. In Section 3, we give brief
introductions to S3VM and SVM+ and present our model
S3VM+ in detail. We demonstrate the efficacy of our model
in Section 4 by comparing its performance to those three
existing models. Finally, we conclude in Section 5.

2. RELATED WORK
Most EDM studies focus on predicting students’ academic
performance after they have been admitted to the college or
program. For example, Lepp et al. investigated the relation-
ship between cell phone use and academic performance in a
sample of US college students [8]. Delen applied machine
learning techniques for student retention management [6].
Ioanna et al. presented a dropout prediction in e-learning
courses using machine learning techniques [10]. Neverthe-
less, another important aspect of educational research is se-
lecting the best fitting students at admission time, which
has not been widely addressed in past literature.

The most closely related work to our paper is the admissions
research conducted by the University of Texas at Austin (UT
Austin) for their graduate admission program [14], driven
in part by their need to manage growing application num-
bers. In their work, the authors applied logistic regression
(LR) to help the admission committee identify weak candi-
dates who will likely be rejected and exceptionally strong
candidates who will likely be admitted. Our work bears
a similar mission but is different in three aspects. First,
the UT Austin research includes credentials such as recom-
mendation letters and statement of purpose, whereas our
work strives to build a purely quantitative model relying
only on non-subjective measures. Second, the recommen-
dations made by UT Austin’s algorithm are based on an
applicant’s likelihood of admission, whereas our model aims
to predict the future performance of the applicants in the
graduate program. Last, our model addresses human sub-
jectivity in admission decisions. The contribution of our
paper is a quantitative machine learning model to predict a
candidate’s future performance at admission time.

3. INTEGRATING SEMI-SUPERVISED SVM
WITH DOMAIN KNOWLEDGE

We choose our model based on the characteristics of our
dataset and particular challenges involved in our task. In
particular, we choose SVM and two existing frameworks:
S3VM [3] and SVM+ [12]), as our baseline models. Our
proposed model is a new variant of SVM, which is inspired
by S3VM and SVM+. We first give brief introductions to
S3VM and SVM+. We then describe our new model in
detail in Section 3.3.

3.1 S3VM (Semi-Supervised SVM)
S3VM is semi-supervised SVM proposed by [3]. The model
is learned using a mixture of labeled data (the training set)
and unlabeled data (the auxiliary set). The objective is to
assign class labels to the auxiliary set such that the “best”
support vector machine (SVM) is constructed. In particular,
given a labeled dataset L = {x1, x2, . . . , xl} and an unla-
beled auxiliary dataset U = {xl+1, xl+2, . . . , xl+k}, S3VM
learns a classifier from both L and U using overall risk
minimization (ORM) posed by Vapnik [13] (Chapter 10).
Starting with the standard SVM formulation, S3VM adds
two constraints for each data point in the auxiliary set U .
One constraint calculates the misclassification error as if the
point were placed in class 1, and the other constraint calcu-
lates the misclassification error as if the point were placed
in class -1. The objective function calculates the minimum
of the two possible misclassification errors. The final mem-
bership assignments of the instances in U correspond to the
ones that result in a minimum total sum of slacks across all
instances in the training set. Specifically, we have:

min
w,b,η,ξ,z

1

2
‖ w ‖2 +C

 l∑
i=1

ηi +

l+k∑
j=l+1

min(ξj , zj)

 (1)

subject to

yi(w · xi + b) + ηi ≥ 1 ηi ≥ 0 i = 1, . . . , l

w · xj + b+ ξj ≥ 1 ξj ≥ 0 j = l + 1, . . . , l + k

− (w · xj + b) + zj ≥ 1 zj ≥ 0 j = l + 1, . . . , l + k

where C is the trade-off between maximizing the margin
and total violations. ηi’s are the slacks for the labeled data,
and ξj ’s and zj ’s are the slacks for the unlabeled data hy-
pothetically assigned to the positive and negative classes
respectively.

Equation (1) can be solved using mixed integer program-
ming by applying the “large integer M” technique. The idea
is to introduce a constant integer M>0 and a decision vari-
able dj∈{0, 1} for each point xj in the auxiliary set U . dj
indicates the class membership of xj . If dj=1, then the point
is in class 1 and if dj=0, then the point is in class -1. The
integer M is chosen sufficiently large such that if dj=0 then
ξj=0 is feasible for any optimal w and b. Likewise if dj=1,
then zj=0. In other words, ξj and zj can have at most one
non-zero value no matter what class xi belongs to. Conse-
quently, we could replace the min(ξj , zj) in Equation (1) by
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(ξj+zj). This results in the following formulation:

min
w,b,η,ξ,z

1

2
‖ w ‖2 +C

 l∑
i=1

ηi +

l+k∑
j=l+1

(ξj + zj)

 (2)

subject to

yi(w · xi + b) + ηi ≥ 1

ηi ≥ 0, i = 1, . . . , l

w · xj + b+ ξj +M(1− dj) ≥ 1

− (w · xj + b) + zj +Mdj ≥ 1

ξj ≥ 0, zj ≥ 0,

j = l + 1, . . . , l + k, dj ∈ {0, 1}

The solution to Equation (2) can be found using mixed in-
teger programming products. In our experiment, we used
CVX [1] and Gurobi [2] optimizers. Same as a standard
SVM, S3VM classifies a new instance x∗ using sign(w∗x+b).

3.2 SVM+
Vapnik and Vashist [12] introduced SVM+, which is a vari-
ant of SVM that addresses the issue of learning with het-
erogeneous data. In their model, the authors developed a
new paradigm to learn using privileged information (LUPI).
The objective of SVM+ is to take advantage of additional
domain knowledge, and in particular data subgroups that
may arise from different sources or due to labeling biases.

Suppose the training data has t > 1 groups. We follow the
notation in [9] and denote the indices of group r by

Tr = {in1 , . . . , inr}, r = 1, . . . , t

All training samples can then be represented as:

{{Xr, Yr}, r = 1, . . . , t}

where {Xr, Yr} = {(xr1 , yr1), . . . , (xrnr
, yrnr

)}. To incorpo-
rate the group information, SVM+ defines the slacks inside
each group by a unique correcting function:

ξi = ξr(xi) = φr(xi, wr), i ∈ Tr, r = 1, . . . , t

Specifically, the correcting functions are defined as:

ξr(xi) = wr · xi + dr, i ∈ Tr, r = 1, . . . , t

Compared to a standard SVM, S3VM uses slack variables
that are restricted by the correcting functions, and the cor-
recting functions capture additional information about the
data. Note that all of the data is used to construct the deci-
sion hyperplane. The group information is only used to fine
tune the slack variables. Formally, the objective function for
SVM+ is formulated as follows:

min
w, b, w1, w2, wr,

d1, d2, dr

1

2
‖ w ‖2 +

γ

2

t∑
r=1

‖ wr ‖2 +C

t∑
r=1

∑
i∈Tr

ξri (3)

subject to:
yi(w · xi + b) + ξri ≥ 1

ξri (xi) = wr · xi + dr

ξri ≥ 0, i ∈ Tr, r = 1, . . . , t

Parameter γ adjusts the relative weight between ‖ w ‖2 and
the ‖ wr ‖2’s. C is the trade-off between maximizing the
margin and total violations.

Liang and Cherkassky [9] further extended the SVM+ ap-
proach to multi-task learning. In the SVM+MTL [9] frame-
work, the data is partitioned into groups using privileged
information similar to the SVM+ model. However, instead
of making a correcting function for the slack variables, their
model establishes a unique correcting function (i.e., a hyper-
plane) for each group in addition to a shared common hyper-
plane. In other words, the decision function for group r =
1, . . . , t is as follows:

fr(x) = (w · x+ b) + (wr · x+ dr)

where w, b are the parameters for the common hyper-plane
and wr, dr are the parameters for the correcting function for
group r. The corresponding formulation of the quadratic
optimization problem is as follows:

min
w, b, w1, w2, wr,

d1, d2, dr

1

2
‖ w ‖2 +

γ

2

t∑
r=1

‖ wr ‖2 +C

t∑
r=1

∑
i∈Tr

ξri (4)

subject to

yi[(w · xi + b) + (wr · xi + dr)] + ξri ≥ 1

ξri ≥ 0 i ∈ T, r = 1, . . . , t

SVM+MTL is an adaptation of SVM+ for solving MTL
problems. In our experiment, we applied the SVM+MTL
framework because it provides more flexibility to learn a
different decision plane for each year’s student data.

For SVM+MTL, predicting the class label for a new given
instance x∗ is not straightforward because its decision func-
tion requires a group-dependent correcting function, and we
do not know the group membership of test instances. To re-
solve this problem, we predict the label for x∗ in each group
and perform a majority vote over all predicted labels. Specif-
ically, a test instance x∗ will be predicted in each group as
follows:

fr(x
∗) = sign[(w · x∗ + b) + (wr · x∗ + dr)]

where r = 1, . . . , t are the bias groups, and w, b, wr’s and
dr’s are learned model parameters. The class membership
for x∗ is determined by a majority vote over fr(x

∗)’s.

3.3 S3VM+
Our new model, S3VM+ leverages the unlabeled data and
addresses the biases in the training data simultaneously. In
particular, we train our model with a labeled dataset and an
unlabeled auxiliary dataset. Furthermore, our data is parti-
tioned into yearly groups because of the admissions commit-
tee changes from year to year and thus may have different
biases. For the labeled dataset, we incorporate the grouping
information by establishing a correcting function for each
group (constraints (a) and (b) in Equation (5)).

For the unlabeled data, we introduce two slack variables ξi
and zi for each data point xi representing the slacks of plac-
ing xi in the positive class and negative classes respectively.
The objective function for S3VM+ takes the minimum of the
two slacks for each unlabeled instance and minimizes the to-
tal sum of slacks across all training instances. We apply the
“large integer M” technique (see Section 3.1 for details) and
convert the constraint with a minimization function to two
constraints over linear functions. Because both labeled and
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unlabeled data are grouped by academic year, we apply the
same correcting functions used for the labeled data to each
corresponding annual group of unlabeled data (constraints
(c) to (f) in Equation (5)). Formally, the optimization prob-
lem for S3VM+ is formulated as follows:

min
w,b,w1,w2,wr,d1,d2,dr

1

2
‖ w ‖2 +

γ

2

t∑
r=1

‖ wr ‖2

+ C

 l∑
i=1

ηri +

l+k∑
j=l+1

(ξrj + zrj )

 (5)

subject to

(a) yi[(w · xi + b) + (wr · xi + dr)] + ηri ≥ 1
(b) ηri ≥ 0 i = 1, . . . , l
(c) [w · xj + b+ (wr · xj + dr)] + ξrj +M(1− dj) ≥ 1
(d) ξrj ≥ 0 j = l + 1, . . . , l + k, dj ∈ {0, 1}
(e) − [(w · xj + b) + (wr · xj + dr)] + zrj +Mdj ≥ 1
(f) zj ≥ 0 j = l + 1, . . . , l + k dj ∈ {0, 1}

where C is the trade-off between maximizing the margin and
total violations, and γ is the trade-off parameter between
‖ w ‖2 and the ‖ wr ‖2’s. Note that constraints (a), (b)
are for labeled instances and constraints (c) − (f) are for
unlabeled instances.

To classify a new instance x∗, we follow the same approach
as SVM+, which is to take a majority vote on class labels
predicted by each group.

4. EXPERIMENTAL RESULTS
In this section, we first describe the process of constructing
our training and testing dataset. We then discuss the meth-
ods we used to conduct our experiments in Section 4.2. We
present our analysis of our experiments in Section 4.3.

4.1 Constructing the Training and Test Data
We have a real world dataset consisting of students from the
MSCS program at Northeastern University. Table 1 presents
the features we collected from students’ applications for our
experiment. Feature 1 contains the students’ undergradu-
ate GPAs adjusted according to each individual university’s
grading scale. For example, a 3.5 out of 5 and a 7 out of
10 would result in the same value. Feature 10 contains self-
reported values representing the maximum number of lines
of programming written by the student prior to joining the
MS program. Feature 12 contains the rankings of the un-
dergraduate institutions where the students obtained their
bachelor’s degrees. We classified the rankings into 4 cate-
gories with 1 being the most prestigious. The classification
was performed manually according to the Best Global Uni-
versities list published by US News and World Report. The
rest of the features are standardized test scores. Both the
GRE and TOEFL had two versions of tests during 2009 -
2012 which use different scoring scales. Both of these tests
are converted to their new versions of scoring scales using
conversion tables provided by the ETS [4].

As mentioned in Section 1, our task is to identify success-
ful candidates at the point of admission. One measure of
success is MS-GPA in the MS program (as distinct from the
input feature 1 “Undergraduate GPA”). Indeed, a cumula-
tive MS-GPA is the most widely used measure for students’

Table 1: Features Collected for Training

1 Undergraduate GPA
2 GRE Verbal
3 GRE Quantitative
4 GRE Analytical Writing
5 TOEFL Total
6 TOEFL Reading
7 TOEFL Listening
8 TOEFL Speaking
9 TOEFL Writing
10 Max # of Lines of Code Written
11 Bachelor’s Degree in EECS (Yes/No)
12 Undergraduate School Ranking

Table 2: Student Data Statistics

Year Total Top 20% Bottom 20% Aux. Data

2009 37 7 7 431
2010 89 18 17 503
2011 132 28 27 705
2012 196 51 42 948

academic performance [11]. The labels in our training data
are determined by the training instances’ percentiles in the
overall MS-GPAs. Specifically, the top and bottom 20%
students are labeled with class 1 and -1 respectively. The
number 20% was intuitively chosen as an measure which sets
the individuals apart from the average students.

Note that we did not use a midpoint MS-GPA as a cutoff
to separate the positive and negative classes, in order to re-
duce the label noise. In particular, instances close to the
average GPA are harder to categorize as good or bad stu-
dents.1 Another intuitive approach is to define two hard
MS-GPA thresholds for good versus bad performances, i.e.,
to have a MS-GPA above an upper threshold (e.g., > 3.8)
for good students, and below a bottom threshold (e.g., <
3) for bad students . A further investigation reveals that
this approach is less effective for the following reason: dif-
ferent instructors have different grading policies due to the
nature of the courses. For some fundamental courses, an ’A’
means you are in the top 30% of a class, while for some other
advanced courses, an ’A’ means you are in the top 10% of
a class. Even for the same course in the same year with
different sections, the instructors may choose to cooperate
exams/grading or not. Because students have different in-
structors and/or even take different courses, hard cutoffs are
not an accurate reflection of a student’s abilities.

Having stated this, on the other hand, if a student performs
consistently in the top 20% in each class, this student will
be among the top 20th percentile of the entire MS-GPA
spectrum. The same can be said for those that perform
consistently in the bottom 20th percentile. Identifying the
factors that lead to this consistent success or underperfor-
mance are of greatest interest to this research. Therefore,
we used relative measures to label our positive and nega-
tive training samples. For comparison purposes, we report
our experimental results on both relative and hard cutoffs
in Tables 5 and 6 respectively.

1We did experiment with splitting the two classes using the
mean value of all MS-GPAs and the performance was not
satisfactory as expected.

541 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



Table 3: Prediction Using 1Y Data

Top20% Bot20%
Train Teset MS-GPA MS-GPA Overall

2009 2010 0.72 0.59 0.66
2010 2011 0.64 0.70 0.67
2011 2012 0.65 0.76 0.70

Table 4: Predicting Using 10-fold Cross Validation

Test Accuracy Training Accuracy

Model
MS-GPA%

Top20 Bot20 Overall Top20 Bot20 Overall

2009 - 2011 0.70 0.71 0.71 0.79 0.79 0.79
2009 - 2012 0.74 0.72 0.73 0.84 0.75 0.79

Table 2 summarizes the distribution of students from 2009
to 2012. Column “Total” is the total number of students
enrolled in the corresponding year. Columns “Top 20% MS-
GPA” and “Bottom 20% MS-GPA” are the total number
of students in the top and bottom 20th percentile among
their peers measured by the cumulative MS-GPAs . There
is not an equal number of positive and negative instances
for each year because there are multiple students with same
MS-GPA.

Both SVM+ and our model S3VM+ make use of an unla-
beled auxiliary dataset. We collect the application data of
rejected (i.e., not admitted) and declined (i.e., admitted but
not enrolled) applicants as the auxiliary data. These data
contain the same features as the labeled data, and the size
distribution of auxiliary data from 2009 to 2012 is presented
in the last column of Table 2. Our training data are all la-
beled and unlabeled instances from 2009 to 2011, and our
test data are labeled instances from 2012.

4.2 Experimental Method
We are interested in identifying the top and bottom 20%
of candidates from an application pool based on the perfor-
mance of the admitted students. Our first goal is to confirm
our conjecture that there are biases in admission decisions
from year to year. To this end, we conducted two exper-
iments. The first experiment is to use the previous year’s
data to predict the current year’s performance using a stan-
dard SVM. For example, we would use class 2009’s data to
predict class 2010’s performance, and class 2010’s data to
predict class 2011’s performance. Table 3 presents the pre-
diction accuracies for each year. We observe that, for 2010,
the top 20% of students are easier to predict than the bot-
tom 20%, whereas for 2011 to 2012, the situation is reversed.
This lack of consistency and the low overall accuracies (up
to 70%) suggest that there is no strong correlation of pred-
icative patterns from year to year. Our second experiment is
to apply a standard 10-fold cross validation on two datasets:
all data from 2009 to 2011 and all data from 2009 to 2012.
Because 2012 added a significant amount (89%) of instances,
we would expect a noticeable increase in both the training
and test accuracies if the data across different years conform
to the same distribution. Table 4 summarizes the results of
this experiment. We observe only a marginal improvement
in overall test accuracy after adding instances from 2012
and, more importantly, the overall fit of the data remains
the same (79%). From these two experiments, we conclude

Table 5: Performance Comparison with Relative Cutoffs

Test Accuracy Training Accuracy

Model
MS-GPA%

Top20 Bot20 Overall Top20 Bot20 Overall

SVM 0.73 0.71 0.72 0.79 0.80 0.79
S3VM 0.75 0.74 0.74 0.81 0.82 0.81
SVM+ 0.77 0.70 0.74 0.92 0.84 0.88
S3VM+ 0.82 0.72 0.77 0.95 0.89 0.92

Table 6: Performance Comparison with Hard Cutoffs

Test Accuracy Training Accuracy

Model
MS-GPA

>3.8 <3.4 Overall >3.8 <3.4 Overall

SVM 0.65 0.69 0.66 0.73 0.75 0.74
S3VM 0.72 0.65 0.70 0.83 0.70 0.77
SVM+ 0.75 0.64 0.71 0.92 0.75 0.84
S3VM+ 0.77 0.67 0.74 0.93 0.80 0.87

that data across different academic years have different dis-
tributions. We believe this year to year bias is due to the
change in the membership of the admission committee.

In light of above learned information, we partitioned the
data by academic year and use them as the privileged groups
in SVM+ and S3VM+. We take the union of labeled data
from 2009 to 2011 as our labeled training data. The aux-
iliary dataset is formed as the union of the corresponding
auxiliary data from 2009 to 2011. We test and compare
the performance of the four models (SVM, S3VM, SVM+,
S3VM+) in predicting labeled instances in 2012.

The hyper-parameters are the trade-off constant C for all
four models and γ for SVM+ and S3VM+. We perform
10-fold cross validation and grid search on the training data
to select the hyper-parameters. We first use a coarse grid
{0.01, 10, 1000} for C and refine the candidates after the
initial search. The final list for C is {1, 10, 100}. Following a
similar procedure, our final search list for γ is {0.01, 1, 100}.
After the best hyper-parameters are selected, we train the
corresponding model one more time using the entire training
data and then apply the learned model to the test data and
measure its performance. We report both training and test
accuracies in Table 5.

4.3 Analysis on Performance Measures
Table 5 displays the main results of our experiment. First,
we observe that the test accuracies for SVM on the pos-
itive and negative classes are more balanced compared to
the results in Table 3. There is also an improvement in
the overall performance for SVM. This can be explained by
the increased amount of training data used in our Table 5
experiment.

Second, we conclude that all three variants of SVM (S3VM,
SVM+, S3VM+) are superior to standard SVM. Using SVM
as a baseline measure:

• S3VM improved slightly on the accuracies of both pos-
itive and negative classes, which suggests that using
auxiliary data has a positive impact on identifying
both the good and bad students. This is consistent
with the fact that the auxiliary data contain both de-
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clined (i.e., admitted but not enrolled ) and rejected
(i.e., not admitted) applicants, which could improve
the accuracy of positive and negative classes respec-
tively.

• SVM+ demonstrated improvement on the positive side
only, which indicates that the partition of bias groups
by academic year is most effective in identifying the
top students. One explanation for this could be that
the top 20% of students are inherently different from
year to year, while the bottom 20% of students remain
similar. Or that a particular admissions committee has
biases about how to recognize a strong student.

• Our model S3VM+ has a noticeable advantage among
all models in predicting the positive class: 83% versus
73% (SVM), 75% (S3VM) and 77% (SVM+). In light
of the construction of S3VM+, one could conclude that
adding auxiliary data to each partition group further
enhances the power of identifying top students. On the
other hand, because grouping does not have a signifi-
cant impact on identifying bottom students (as demon-
strated by SVM+), S3VM+ would only result in a lim-
ited gain for the negative class.

Lastly, from the training accuracies presented in Table 5, we
observe a significantly better fit of the training data using
our model S3VM+. In particular, 95% versus 92% (SVM+),
81% (S3VM), 79% (SVM) accuracies for the positive class
and 89% versus 84% (SVM+), 82% (S3VM) and 80% (SVM)
accuracies for the negative class. Compared to the standard
SVM, S3VM improved training accuracies evenly on both
classes, and SVM+ and S3VM+ demonstrated more signif-
icant gains on the positive class, which is consistent with
what we observed in the test data.

4.4 Labeling Strategy: Relative v.s. Absolute
Recall that in Section 4.1, we discussed our choice of label-
ing the top 20% and bottom 20% of students with respect
to their MS-GPAs as our two classes. We explained our ra-
tionale of using relative rather than hard cutoffs to label our
data. We confirm this conjecture in Table 6, where we show
the results of an experiment using MS-GPA > 3.8 for the
top students and MS-GPA < 3.4 for the other. In the table
we see that for all four methods, the overall accuracies are
lower than in Table 5.

4.5 Analysis on Weight Vectors
Because we utilized a linear SVM and its variants, we found
it interesting to investigate the ranking and magnitude of
each individual feature in the weight vectors produced by
each model. Table 7 presents the ranking of wi’s in the
weight vectors (w’s) of four models. Figure 1 displays the
weights of individual features across four models using their
magnitudes. In order to make a meaningful comparison,
each weight vector w = {w1, w2, . . . , w12} is scaled by the
maximum absolute value of its components. Thus, the weight
for the most important feature is either 1 or -1. Note that,
for SVM+ and S3VM+, we display the shared hyper-plane
vector w without the correcting functions for each group.

From Table 7, we observe that all models except standard
SVM suggest the same top two features: “GRE Quanti-
tative” and “GRE Analytic Writing” scores. Furthermore,

Table 7: Weights Ranking Comparison

Model R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

SVM w1 w11 w4 w12 w3 w9 w7 w2 w6 w8 w5 w10

S3VM w4 w3 w11 w1 w6 w2 w7 w10 w9 w12 w5 w8

SVM+ w3 w4 w9 w2 w11 w1 w7 w5 w8 w12 w6 w10

S3VM+ w3 w4 w11 w2 w9 w7 w1 w12 w5 w8 w10 w6

Figure 1: Weights Distribution Over 12 Features Across

Four Models
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SVM+ and S3VM+ overlapped in their top five features
but with a different ranking order.

From Figure 1, we conclude that the most important fea-
tures are 1 (“Undergraduate GPA”), 2 (“GRE Verbal”), 3
(“GRE Quantitative”), 4 (“GRE Analytical Writing”) and
11 (“Bachelor’s Degree in EECS (Yes/No)”). A closer ex-
amination reveals that SVM relies mostly on three features
(1, 4, and 11). S3VM has significantly large weights on two
additional features, 6 (“TOEFL Reading”) and 7 (“TOEFL
Listening”), on top of the five features listed above. SVM+
and S3VM+ made use of one additional feature which is 9
(“TOEFL Writing”).

5. CONCLUSIONS
In this paper, we applied a quantitative machine learning
approach to predict candidates’ potential academic perfor-
mances based on information from their applications. We
built our model using empirically admitted students with
their cumulative GPAs as performance measures and tested
our model’s efficacy for the incoming students. Through-
out our experiments, we found a unique challenge associ-
ated with our task, which is different data distributions
across the academic years due to biases arising from chang-
ing membership of the admissions committee. We addressed
this issue with the Learning Using Privileged Information
(LUPI) framework. We further handled the limited train-
ing data issue by employing a semi-supervised version of
SVM to utilize the large amount of unlabeled data (i.e.,
the rejected/declined applications). Our resulting model,
S3VM+, is a novel variant of SVM that addresses subjectiv-
ity and lack of labeled data simultaneously. Our experimen-
tal results demonstrate a significant gain of our model com-
pared to three existing models in standard literature (i.e.,
standard SVM, S3VM, and SVM+). Although we based
our work on a two-year master’s program, our model is eas-
ily extensible to similar tasks such as college or pre-school
admissions. Our model can also be applied to other real
world situations in which data may have clearly defined bi-
ased subgroups and a large amount of unlabeled data.
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ABSTRACT
There have been discussions on where to invest the budget
allocated to education. Most politicians want to invest in the
schools’ infrastructure, but is that the most efficient policy
for spending? This paper presents analyses to help clarify
that. It integrates the most recent data sources (2018) on the
secondary students’ assessment (ENEM), the School Census
and the Teachers’ Census and consolidates all microdata to
the school level, making them features of the schools. These
features are then grouped into three types: infrastructure,
human education and socio-economic aspects. Then the fea-
tures from each group are applied in logistic regression pre-
dictive models both isolate and collectively. In a 10-fold
cross-validation comparison with the area under the ROC
curve as metric. The experimental results show that infras-
tructure is significantly less influential than the other fea-
tures. Further research needs to consider investment costs
and time to produce effect on school performance.

Keywords
School quality assessment, Educational decision support sys-
tem, Educational Data Mining, Domain-Driven Data Min-
ing, Educational budget allocation

1. INTRODUCTION
International comparison of students’ performance among
countries by the Programme for International Student As-
sessment (PISA) has yielded strategic discussions in interna-
tional education policies. The PISA, sponsored by Economic
Co-operation and Development (OCDE), aims at assessing
and providing a global perspective on secondary education
(15-year-old pupils) across countries of the world [16].

Following the international efforts, the local governments
have been concerned with standardized tests themselves,
aiming at the assessment of students as much as at mon-
itoring the quality of the educational system [1]. In Brazil,
the National Institute for Educational Studies (Instituto Na-

cional de Estudos e Pesquisas Educacionais – INEP) pro-
duces the annual School Census which is a survey of the
schools for secondary education in the country and the Na-
tional Secondary School Exam (Exame Nacional do Ensino
Médio – ENEM) that evaluates student performance at end
of secondary education.

In 2009, ENEM became a mechanism for students’ admis-
sion to higher education in public universities. That im-
proved the quality of the information collected. Added to
the technical knowledge of each student, ENEM also cap-
tures their socio-economic-cultural (SEC) information [2].
The integration of this information with the School Census
data has become a relevant source of data for scientific stud-
ies and enables the Federal Government to define and val-
idate public policies for Brazilian education [30]. However,
secondary education is under jurisdiction of the constituent
states of the federation, not the national government. Thus,
despite the importance of the federal government role, there
is considerable variation among the states in curriculum,
teacher training, budget policies and other issues [10].

Many factors can influence the performance of the students.
Studies have shown that school inputs, students’ SEC back-
ground, parents’ education are correlated with student achieve-
ment [13, 7, 12]. In Brazil, according to the last school cen-
sus available for this research (2018), 42% of the secondary
public schools still lack Basic Infrastructure Level. The def-
inition of the quality of the levels was performed by Neto
[26] being the Basic Level the second lowest of four levels
which includes features like having a management room with
computer and printer for administrative work only. This
scenario makes Brazilian politicians focus most of their ed-
ucational bills and budget allocations on improving school
infrastructure [19].

Despite the importance of providing infrastructure to schools,
it is common for politicians to invest in infrastructure such
as computer labs, tablets, TVs etc. even for schools that
have not reached the basic level yet. This paper does not
discuss pedagogical issues related to infrastructure; just tries
to help policymakers and education-related institutions on
how to invest their budget to comply with both regulations
and education quality goals in a long-run plan to secondary
public education.

This paper presents experiments in a Domain-Driven Data
Mining (DM) approach that assesses the quality of secondary
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schools in Brazil. The results show that the infrastructure
predictors are less relevant than SEC and educational pre-
dictors at a 5% significance level. Experiments were carried
out on the most recent data available (2018) with logistic
regression models in a 10-fold cross-validation setting.

The paper is organized in 4 more sections. Section 2 presents
the data sources and preprocessing. Section 3 describes the
experimental project to elucidate the most influential group
of features for predicting good students. Section 4 presents
the results and discusses its impacts. And Section 5 presents
the conclusions, difficulties found and suggestions for future
work.

2. DATA SOURCES AND PREPROCESSING
This research has used two official public databases: Mi-
crodata from the National Secondary School Exam 2017
and 2018 containing the students SEC information and their
grades on the test at the end of secondary education, and
the School Census 2018 [2] detailing the conditions of the
schools, from physical infrastructure to faculty information.
The 2017 ENEM database was only used as an independent
statistical sample to apply the process of granularity trans-
formation described in Subsection 2.4. These databases re-
fer to over 5 millions of students of 32,000 secondary schools
across the country, but this paper will focus only on public
(free) schools.

2.1 The Universe of Schools (Scope)
This research attempts to help policymakers optimize the
budget allocation in order to improve Brazilian Secondary
Schools. That does override the priority of the 42% of public
secondary that have only an elementary infrastructure (just
classrooms, electric energy, sanitation and piped water). A
few schools (0.7%) were discarded from the database for
being below that level.

ENEM is a democratic exam that any person can sit. That
makes it necessary to apply some selection filters in student
grain: a) Students who have no school assigned, are just
training or are not in the last secondary school year (74%),
b) students who do not follow a regular curriculum (2.5%)
and c) foreign students (0.02%). The remaining 680,583
students were considered. To eliminate anomalies that could
either divert from the goal or deteriorate the quality of the
work, students who did not perform all the tests, including
the essay, were also left out of the scope of this research.

Back to the school grain, for having critical mass, only schools
with 10 or more students were selected, as established by
INEP in the analyses. After this last filter, the total that re-
mained in this research dropped to 14,579 secondary schools
with 653,848 students which form the dataset used in this
paper’s experiments.

2.2 Problem Characterization and Goal Set-
ting

In business, one of the most common decision strategies for
selecting the eligible candidates for an action is ranking them
according to a classification score and choosing those above
a predefined threshold [17]. That is used in applications such
as staff selection, fraud detection [6], and resources alloca-

tion in public policies, for instance. This score is computed
by either weighing a set of variables based on human-defined
parameters or by applying a function learned by a classifi-
cation algorithm from a set of data with binary labels as
desired response, according to specific optimization criteria.

In some domains of application, several problems are ill-
defined simply because stakeholders do not reach consensus
on either method [29]. That is particularly true for edu-
cation where experts and faculty do not agree even on the
characterization of a good school or a good student. To
circumvent these issues, we have adopted the systematic
approach proposed by [3] to characterize this as a binary
decision problem. Thus, the problem can be solved by ma-
chine learning algorithms based on the supervised learning
paradigm with a data dependent strategy where each exam-
ple is labeled as “good” or “bad” for binary decision making.
That involves solving two scientific issues which represent
controversial points in the application domain: (1) which
metrics should be used as a ranking score for evaluating
the quality of the school and (2) which threshold should be
adopted as a criterion to define what would be a “good”
school in the binary decision.

The ENEM [1] has been conceived to assess the quality of the
Brazilian secondary schools based on their students’ evalu-
ation on the test. Despite arguments among experts on ed-
ucation, they have agreed that the performance of the stu-
dents at the last year would represent their performance in
the secondary school and also agreed that the mean student
score would be the most relevant indicator of each school,
as already done in previous studies [3, 30].

2.3 Binary Goal Definition
Once having defined the quality metrics, the most contro-
versial point is to set the threshold to characterize what
would be a “good” or “bad” school in the dichotomic objec-
tive. Once again, to circumvent the controversy and lack of
consensus in the field on the issue and bring a higher level
of abstraction that enables future comparison across years,
regardless of the degree of difficulty of the exams, this study
used statistics concepts for setting the threshold as recom-
mended by [28]. Quartiles of the distributions not only are
robust against extreme values (outliers) [21], but also can be
a straightforward data dependent dichotomizing criterion of
interest for the application domain. The upper quartile has
already been successfully used as threshold [28] on a contin-
uous goal variable for creating a binary target-variable. This
paper has adopted that approach for converting the problem
into a binary classification where the upper quartile repre-
sents the “good” schools.

2.4 Granularity Transformation
The granularity of the attributes is a fundamental concept
and its diversity brings great complexity to research of this
nature. How can one associate to each school its family
income attribute from the distribution of family income of
their students? How can one associate to each school its
faculty education attribute from the distribution of faculty
education of their teachers? These transformations repre-
sent a difficulty for teams without professionals specialized
in developing data mining projects. This difficulty is due
to both the sheer volume of data to be handled and the
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need to use artificial intelligence to embed knowledge of ex-
perts in education in the transformation of the attributes for
granularity change in a process coined Domain-Driven Data
Mining (D3M)[23].

We considered and chose the Regression Granularity Trans-
form (RGT) [4] as the most adequate approach for this re-
search. It aims at maximizing the information gain towards
the target class for categorical microdata present in Student
and Teacher grains. Logistic Regression was the technique
applied on the categorical attribute distribution having its
histogram with the categories’ relative frequencies as input.
These transformations were learned from the previous year
data (2017), to avoid having to discard data from the focus
year of 2018. For numerical features, the average was the
transformation adopted.

2.5 Preprocessing
Many factors affect the success of a data mining application.
Data quality is among them [20]. Domain and data under-
standing allowed for the removal of irrelevant attributes (e.g.
linked to elementary and fundamental schools and to other
secondary school models that do not use the regular curricu-
lum), attributes with a posteriori information and identifi-
cation codes.

In the final data sample, just two binary features presented
missing values, which were filled with “0”, because they rep-
resented lack of that property. The categorical features that
had the mode representing over 90% of the cases were re-
moved.

For features with correlation higher than 0.8, only those with
the highest semantic value for the domain were preserved.
To reduce the influence of outliers and improve the quality of
the Logistic Regression models, all numerical features were
normalized using the α-winsorized values of the distribution
(α/2 = 0.025 at each tail) as their minimum and maximum.

3. EXPERIMENTAL PROJECT
The experiments were carried out using the Logistic Regres-
sion model in a 10-fold cross-validation setting. The features
on school grain were partitioned into 3 different groups: 1)
Infrastructure of schools, 2) SEC information of Students
and 3) Level of Education of Parents and Teachers. The
same held-out fold was used as test dataset for all groups
and the models’ performance on it was assessed by Area
Under the Receiver Operating Characteristic (ROC) curve.
ROC curve plots the true positive rate against the false pos-
itive rate, at all possible decision thresholds.

The goal is to experimentally compare the discriminant power
of each group of predictors, focusing on groups 1 and 3, once
that it is hard to produce any change in group 2 with educa-
tional policies. In one hand, it is widely known that features
from group 3 are more influential than those of group 1 , but
it is hard for education policymakers to intervene on that
due to limitations on either the country’s economy or the
Cash Transfer policies [22]. On the other hand, investment
in features from group 1 has been the main focus of govern-
ment, either by the insufficient conditions in some schools
or because these investments have their effect more easily
assessed. There are some studies in the literature on public

policies addressing teachers training and parents education
[5, 8]. This paper aims at showing that the predictors of
group 3 are more influential in predicting performance than
those of group 1.

3.1 Performance analysis
Figure 1 shows the results for each test set in the 10-fold
cross-validation process. In turns, one partition (fold) is
separated for testing while the other 9 are used for training
the model. The performance of the ROC curve at each fold,
the average and the standard deviation across the 10 folds
are the values reported. By comparing the results of groups
1 and 3, in the one-sided paired t-test, we accept the alter-
native hypothesis that the mean of the education group (3)
is greater than that of the infrastructure group (1) at 0.05
significance level.

Figure 1: represents (a) the outputs for schools’
infrastructure group, (b) the outputs for students’
socioeconomic-cultural information group and (c)
parents and teachers’ level of education group.

The difference is highlighted even more when analyzing the
number of variables in each group. Group 1 has 23 vari-
ables that represent the school structure while group 3 has
only 3 variables, namely, the level of education of fathers,
mothers and teachers. Analyzing group 3 in a logistic regres-
sion model on the whole dataset for assessing the features’
influences according to their β coefficients, their predictive
powers were in decreasing order, the father’s education, the
mother’s education and the teachers’ education. The quali-
fication of teachers, in contrast to existing studies [18], does
not have high explanatory power. This result is probably
due to the fact that, in Brazil, the number teachers with
M.Sc. and Ph.D. degrees in public secondary education is
minimal (4.8% and 1.1%, respectively). Table 1 displays
the beta coefficients of each variable and their p-value, well
below the 0.05 significance level.

4. DISCUSSION
Several studies have improved the understanding of the de-
terminants of school performance with the perspective of
guiding educational policies. James Coleman, in 1960, had
already identified the SEC factors of the students as the
main determinant of their performance [13]. The correla-
tion between parental education has been long established,
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Table 1: Variable importance of the Logistic Regres-
sion model for group 3

Feature β p-value Grain
Father’s Education 3.87 0.00 Student Level
Mother’s Education 2.94 0.00 Student Level
Teacher’s Education 2.62 0.00 Teacher Level

as well [15, 11]. Other lines of research have also highlighted
the relevance of aspects related to schools and teachers [18,
25, 14]. Much has been discussed in Brazil about the sec-
ondary education, as well as improving the budget alloca-
tion.

According to OECD, Brazil’s public spending on education
was close to the average of its member countries in the year
of 2015 while the performance of Brazil in the last PISA
exam was among the worst countries evaluated [27]. The
quality of education still does not respond to the investments
made. Therefore, it is crucial to improve the understanding
of standardized national tests to help policymakers and ed-
ucation related institutions in developing educational public
policies to produce an effective return on investment.

4.1 Parents Education as Proxy to SEC?
Separating out the independent effects of family education
and SEC background is not a simple task. Some prior stud-
ies showed that those features are very correlated to family
income, once parents who are more educated, earn higher
salaries [24]. From another perspective, more education
empowers parents and teachers to give the students better
counseling and training. Some studies have tried to isolate
the effect of each feature, aiming at determining causal re-
lations between them in the educational outcomes [9] .

This Subsection attempts to dissociate these characteristics
to find out if the parents’ education influences the student
performance in the ENEM Exam for families with the same
constant income. We started by considering only students
from schools with infrastructure at basic level or above. To
block any effect of economics, the students were undistin-
guishable by their family income which was kept constant.
The performance was measured by the fraction (percentage)
of good students in the sample, for each level of education.

Figure 2 shows the fraction of good students against the par-
ents’ education for each income value. It is clear that higher
parents’ education is associated with higher fraction of good
students, with the income constant. Despite being a cate-
gorical feature, the level of education is associated with time
of schooling, therefore suited to line graph representation.

Wrapping up, the students’ performance on ENEM increases
with their parents’ level of education no matter their family
income.

5. CONCLUSION
This paper has presented a comparative study of the influ-
ence of groups of predictors in the quality assessment of sec-
ondary school in Brazil to help policy makers in educational
budget allocation.

Figure 2: Fraction of good students as function of
their parents’ education level. Ranges from “A” (no
schooling) to ”G”(postgraduate) for different family
incomes indicated in the curves.

The experimental procedure had logistic regression as pre-
dictive technique and the comparison was performed with
single-tailed t-test on a 10-fold cross-validation setting on
paired test sets. The predictors (features) were partitioned
into 3 groups as planned: Infrastructure, SEC information
and Education. The performance metric was the Area Un-
der the ROC curve (AUC ROC) widely applied for assessing
binary classifiers in domains such as medicine, telecommu-
nications, artificial intelligence etc.

The results show that both the groups of features of par-
ents’ and teachers’ education and of socio-economic-cultural
information are more influential than the group composed of
infrastructure features with statistical significance of 0.05.

Some research found in the literature argue that there is a
high correlation among the predictors and that there could
be causality in SEC information influencing the Education
predictors. We have shown that Education predictors have
a positive effect on the students’ performance no matter the
family income. Nevertheless, much more analyses have to
be made in that sense.

Furthermore, ensemble of predictors in general achieve higher
improvement in performance with the increase of comple-
mentarity among their modules [31]. That suggests that the
higher increase of AUC in the combination of SEC and ed-
ucation features versus the combination of SEC and infras-
tructure features might be related to the smaller correlation
of education compared to infrastructure both in relation to
SEC features. This needs to be further investigated. It
is also important to extend the analyses presented here for
2018 to several years to verify if the results found hold across
time. We are carrying out the research and the preliminary
results show that the same behavior holds for the previous
9 years as well.

It is important that experts in education and policy makers
collaborate in this research to help improve the Domain-
Driven Data mining approach by embedding their expertise
in the solution development.
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ABSTRACT 
 
Despite decades of evidence on the impacts of procrastination on 
learner outcomes, the educational data mining community has 
procrastinated in applying measures of procrastination based on 
learner behavior. We advance a new measure of habitual 
procrastination within online learning, the Procrastination Index, 
which represents a learner’s degree of procrastinating in when they 
start learning assignments (rather than when they complete 
assignments), relative to other learners within the same assignment 
(recognizing that different assignments may need different amounts 
of time). We apply this measure to data from over 100,000 students 
in 3,700 course sections from a large online learning platform. We 
find that students who habitually delay starting assignments have 
21 times the risk of failing their courses than students who start on 
time. The result of this work is a straightforward and reliable 
Procrastination Index that generalizes across multiple academic 
disciplines, takes the individual features of assignments into 
account, is a strong predictor of academic performance, and 
provides an early signal to enable educators to design appropriate 
interventions for at-risk students.   

Keywords 

Procrastination, educational data mining, at-risk prediction 

1. INTRODUCTION 
 
Everyone procrastinates sometimes – even psychological 
researchers studying procrastination [8]. Despite procrastination’s 
near-universality as a phenomenon, though, understanding is still 
incomplete as to what the full effects of procrastination are, where 
it emerges from, and how it can be combatted. 

The relationship between procrastination and academic 
performance has been studied extensively. A meta-analysis by van 
Eerde [20] found that students who procrastinate generally receive 
worse course grades, a result seen in online learning environments 
as well [7, 12, 23]. On the other hand, other researchers have found 
evidence that students who procrastinate experience less stress and 
have better health than students who do not procrastinate [19]. 

A range of procrastination behaviors appear to be associated with 
poorer outcomes. Although procrastination has been defined rather 

broadly as “the tendency to postpone an activity under one's control 
to the last possible minute, or even not to perform it at all” [6], most 
studies of procrastination involve homework or studying. However, 
even procrastinating on accessing course materials is associated 
with worse course outcomes [1]. Several factors appear to be 
associated with the decision to procrastinate, from anxiety and 
depression [3] (though see [19] for contrasting evidence), to self-
handicapping [20], to poor self-regulation [12] or a lack of  
scaffolding for self-regulation [16].  

However, there are key limitations to past research on 
procrastination. Importantly, most published papers on the topic 
assess procrastination through self-report measures [11,18]. While 
these self-report measures correlate to behavioral measures such as 
whether the student hands in assignments late and total time spent, 
the correlation is moderate, in the -0.2 to -0.3 range [20]. 
Furthermore, this is not quite the same as identifying actual 
procrastination – delaying in starting or working on an assignment. 
For instance, a student could start early, work hard throughout, but 
still turn in a difficult assignment late. It is also conceivable that 
some students may think they are procrastinating more than other 
students when they are not. Correspondingly, some highly 
successful students may procrastinate, starting at the last minute, 
and still turn in high-quality work on time. These students may not 
see themselves as procrastinators. Therefore, in this paper we 
attempt to hone more closely in on procrastination as a behavior, 
using learning system data to see when students start an assignment 
as well as when they turn it in, following recent work in the EDM 
community using log data to study procrastination [i.e. 4, 9, 13].  

In the remainder of this paper, we begin by offering an operational 
definition of procrastination at the level of a learning task and then 
aggregating it to the level of a learner. We study the properties of 
procrastination according to this definition, and then investigate the 
empirical relationship between procrastination and academic 
performance. We embed this into an analysis of the probabilistic 
risk associated with different levels of procrastination according to 
our definition. Finally, we present linear and logistic regression 
models that use procrastination on tasks to predict students’ final 
grade and whether they will pass or fail the course, as a method for 
applying this paper’s findings into prediction-based interventions. 

2. METHODS 
 
We used two datasets for the study, Alpha and Beta, that were 
derived from the online learning system Connect, a web-based 
learning system actively used by approximately 6000 higher 
education institutions worldwide. Students use Connect to read a 
course text and complete assignments. Instructors can compose 
assignments from a question bank as well as creating their own 
assignments. Both instructor-created and question bank 
assignments can be auto-graded. Connect records assignment start 
and end time, and the grade. Dataset Alpha is a heterogeneous 
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dataset spanning multiple institutions. Alpha consists of 
2,666,617 assignment submissions by 102,506 students on the 
platform during the Fall 2018 semester. The assignments span 
3,681 courses, 42 disciplines, and 3,681 instructors at 1,216 
institutions. Although the platform is used internationally, we 
restricted the analysis to US institutions to limit regional issues, 
policy differences in data use, and possible cultural differences in 
procrastination. The students submitted about 112,025 unique 
assignments in various courses. The courses are set up by 
instructors and differ in terms of course length, the number of 
homework assignments (the sample was restricted to courses with 
at least 10 assignments), and what percentage of the overall course 
grade is made up of the assignments on the Connect platform.  

Dataset Beta, a more homogeneous data set from a single 
institution, also contained the final course grade for each student. 
The dataset, collected in the 2018/2019 academic year, consists 
of 98,201 assignment submissions on 5,986 assignments by 1,022 
unique students in 298 sections of 37 courses in 28 disciplines. 
Many students were included in more than one course for a total of 
3758 student-sections. The courses are designed with a regular 
spacing of assignments, four per week in each of eight weeks, for a 
total of approximately 32 assignments per course. In these courses, 
assignments on Connect are worth 80% of the course grade.  

3. OPERATIONAL DEFINITIONS 
3.1 Task Procrastination  
 
All procrastination is delay, but not all delay is procrastination [15]. 
The central concept in procrastination is task delay – i.e. delaying 
in starting or completing a task that needs to be completed to 
accomplish some goal. When the student considers when to start an 
assignment, the student must decide, explicitly or implicitly, how 
much time they will need and, therefore, when they should start. 
An error in estimating this correctly places the student at risk of a 
poor grade. As a first step, let us postulate that for each assignment 
there is a threshold time to start the assignment, τt., a point after 
which we cannot reasonably expect most students to perform well 
on the assignment due at time τd. Note that this is a simplifying 
assumption: student knowledge of the topic and general ability 
likely varies, causing the true threshold start time to vary between 
students for a given assignment [cf. 10].  

Consider two scenarios. In the first, a student begins a task at time 
τs ,before the threshold time τt and is therefore likely to complete 
the task and complete it well.  

 

 

Figure 1 "Safe Zone" for starting an assignment 

 
In the second scenario, a student begins a task after the threshold 
time, and is not likely to obtain a good grade on the assignment.  

 

 

Figure 2 Case when start time is after threshold time 

But how does one find τt? Or in other words, how do we assess task 
procrastination for a specific task given that the time needed to 
complete will vary from task to task? We can answer this question 
by considering the average z-scores derived based on each 
assignment rather than the absolute scores. Figure 3 shows the 
average grade z-scores students achieved based on when they start 
an assignment. By the 60th percentile, the score is below the mean 
performance on the homeworks. Near the 75th percentile, the score 
has dropped to 10% less than the mean and the decrease accelerates.  

Based on these findings, we can heuristically set the threshold 
time τt for an assignment to be  75

s , the start time at which 75% of 
students have started the assignment. Setting 75

s as the threshold 
time, we can assign each student and each assignment a Boolean 
value to indicate whether the student started their assignment early 
enough or whether they procrastinated. A value of 0 means the 
student started their assignment early enough that we can say they 
did not procrastinate. A value of 1 means the student procrastinated. 
In other words, if τs is before 75

s, the student started on time. If  τs 
is after 75

s , the student procrastinated. In the unfortunate special 
case where more than a quarter of students start after the due date, 
seen in approximately a quarter of assignments, we set τt to 0 -- 
starting after the due date is by definition procrastination, since no 
one can complete an assignment in less than 0 seconds.  

75
s’   = 75

s  if 75
s   <= τd 

       τd , if 75
s    > τd 

Task procrastination is then is defined as follows. It is set to 0 if 
the start time is before the fourth quartile threshold 75

s’ as defined 
above. It is set to 1 if the start time is after this point or if no start 
time exists (the student never started the assignment) 

P = 0 if  τt  <  75
s’ 

P = 1 if  τt  >  75
s’  or τt  is null 

3.2 Learner Procrastination 
We can now use this assessment of Task Procrastination t as the 
basis for creating a Learner Procrastination Index (PI). For 
example, the following array represents a student S1 and their 
procrastination pattern (again, 1 represents procrastination and 0 
represents not procrastinating). Take a hypothetical student, Chris. 
Chris started the first two assignments on time, and procrastinated 
on the remaining ones, until beginning the final assignment on time.  

PChris = [0; 0; 1; 1; 1; 1; 1; 1; 1; 0] 

From this, we compute Chris’s Procrastination Index (PI) as the 
percentage of 1s on a scale from 0 to 1, 0.7 based on the above. 

PI = mean(PChris) 

 
Figure 3 Starting Percentile vs. Z-Scored Grade 
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Figure 4 Histogram of PI for the 100k+ students  

A PI of 0 means that student began every assignment on time. A PI 
of 1 means that the student procrastinated on every assignment. 
Figure 4 represents the distribution of the Procrastination Index for 
the over 100K students in Dataset Alpha. 

4. Analysis of Procrastination, Performance, 
and Outcomes 
With this operational definition of procrastination, we can now 
examine the relationship between procrastination and performance, 
shown in Figures 5 and 6. Figure 5 shows the average of the score 
on assignments in Connect for the dataset Alpha and figure 6 shows 
the average of the final grade on the course for dataset Beta. The 
average course grade declines as the Procrastination Index 
increases. The Pearson correlation between Procrastination Index 
and grade was found to be -0.67 and -0.69 for the datasets Alpha 
and Beta respectively, p<0.001 for both datasets. It is worth noting 
that these correlations are double to triple the magnitude of the 
correlations to grades previously reported for self-report measures 
of procrastination (r=-0.2 to -0.29; [i.e. 20]). Furthermore, as Figure 
6 shows, the relationship is fairly consistent. Students who 
procrastinate under 5% average an A grade; students who 
procrastinate under 20% of the time have above a B average. 
Students who procrastinate under half the time receive more Bs and 
As than Cs. As the graph shows, there is a relatively steep drop-off 
in grade around a PI of 50%. Students who procrastinate 95% of 
the time tend to obtain a D or F.  

In the remainder of this section, we will analyze the difference in 
course grades between students who frequently procrastinate (high 
Procrastination Index; “high PI”) and students who procrastinate 
less often (“low PI”). These cut-offs are somewhat arbitrary, and 
we set them using course grades; although this creates some 
circularity, the resultant analysis is correlational rather than causal 
and therefore should be considered descriptive in nature. 

Given the sharp drop-off in grades seen at a Procrastination Index 
of around 50% (see Figure 6), we can consider students who 
procrastinate more than half of the time to have high 
procrastination. There is not quite as clear a cut-off for low 
procrastination, but given that 20% marks a point where students 
tend to get Bs or better, we can consider 20% a cutoff for low 
procrastination. To create a group of students with medium PI for 
analysis, we chose PI between 0.3 and 0.4 to have values evenly 
between low PI and high PI while having a gap between groups. 

Figure 7 shows the probability distribution function of Dataset 
Alpha for performance for different PI groups. Students with a high 
PI (red) are distributed at the lower end of the performance range. 
Students with low PI (green) tend to have higher performance and 
have low probability of obtaining an average score of under 60%.  

 

 
Figure 5 PI vs. Mean Assignment Score 

 

 
Figure 6 PI vs Mean Course Grade (A: 4, B: 3, C: 2, D: 1, F/W:0) 

4.1 Procrastination and the Risk of Failure 
Based on these categorizations, we can study the degree to which 
students with high and low PI are at different levels of risk of failing 
a course. For Dataset Alpha, we classify a student as passing if they 
obtain a grade of 70 or higher for the course. For Dataset Beta, we 
have obtained the actual final grades from the university. A/B/C is 
defined as pass; D and all other grades (F and a never-completed 
“incomplete” or withdraw) are treated as a failing grade.  

 
Figure 7 Performance (mean assignment score) Distribution 

for Different PI ranges for Dataset Alpha 

Within Dataset Alpha, high PI students fail 71.5% of the time, 
while low PI students fail 3.4% of the time (RR= 21). Specifically, 
we compute the risk ratio (RR) for the likelihood that a student with 
a high PI will fail the course, compared to the likelihood that low 
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PI student will fail. We also compare the score distributions with 
Cliff’s Delta, a measure of the degree of overlap between two 
distributions. Cliff's Delta scales from -1 to +1, where +1 and -1 
indicate no overlap (in the two directions), 0 indicates total overlap, 
and values in between indicate partial overlap. 

Dataset Beta, high PI students fail 54.6% of the time, while low PI 
students fail 1.1% of the time (RR=50).  The Cliff's Delta is 0.82 
for dataset Alpha is 0.82 (median score 91 vs. 54) and 0.77 for Beta 
(median score 92 vs. 67), indicating very little overlap between the 
two distributions. Nearly every student in the low PI group 
outscores every student in the high PI group.  

4.2 Procrastination as a Predictor of 
Outcomes   
In this section, we investigate PI as a potential predictor of final 
score and course outcome, using linear regression to predict the 
final score and logistic regression model to predict if a student 
would pass or fail the course, with a training-test split. We find that 
PI can be used to predict the final score, with R2 = 0.45 for both 
datasets, and RMSE of 15 (Alpha)/ 17 (Beta) grade points. Logistic 
regression obtains a successful AUC ROC of 0.86 for both datasets. 
Even if we vary the cut-off for task procrastination, considering the 
50th, 60th, 75th, 85th, and 95th percentile, and re-fit the model, model 
performance remains high. As Table 1 shows, the models maintain 
reasonably high AUC ROC across thresholds, with moderately 
higher AUC ROC with procrastination cut-offs from the 75th to 95th 
percentile of time. However, it is probably not useful for 
intervention to select a threshold where 95% of students have 
already started the assignment. Note that the recall values in this 
table do not fit the intuition that recall should go up for lower 
thresholds; this is because the threshold is at the level of individual 
assignments, whereas the logistic regression model sets a second 
cut-off at the level of students across assignments.  

Table 1 Performance of logistic regression models that use 
different start time thresholds for procrastination.  

 

5. DISCUSSION AND CONCLUSIONS 
Though there has been considerable work on procrastination over 
the last decades, much of this work has looked at self-report 
measures or submission time. In this paper, we consider when 
students start assignments, relative to other students’ work on the 
same assignment, which can function across contexts and can be 
aggregated across a course. Our aggregation, termed the 
Procrastination Index, is correlated with not only score within the 
Connect platform, but with the overall grade on the course, and can 
predict student grades, achieving double to triple the correlation to 
student outcomes seen for prior self-report measures [i.e. 20]. 

We can use early detection of procrastination to message students 
and to help them develop good habits. Even students who are 
performing well, but frequently procrastinate, may benefit from 
developing better habits – procrastination may become a bigger 
problem for these students when they reach more difficult material. 
Finishing tasks just in time can make sense in specific cases – but 
if students develop a general strategy of procrastinating, it may mis-
serve them later [2]. Several interventions may be successful at 

helping students to work effectively. [21] have recently published 
a meta-analysis of different interventions designed to reduce 
procrastination, looking at  which type of intervention leads to the 
strongest reduction. They investigated interventions involving self-
regulated learning strategies (including time management), 
cognitive-behavioral therapy, and assertiveness training. They 
found that cognitive-behavioral therapy led to significantly less 
procrastination, and that assertiveness training actually led to 
significantly more procrastination. However, all of the 
interventions investigated in [21] were intensive. By contrast, [2] 
has proposed a way for students to offer their own deadlines to 
avoid a last minute rush to complete, leading to improved grades. 
In an automatic system, we can envision a system enabling students 
to suggest deadlines or presenting additional deadlines (for, say, a 
milestone that represents completing half the homework) to help 
them break down the task and reduce procrastination. It may also 
be possible to create automated interventions inspired by cognitive-
behavioral therapy, although it is unclear whether they will work as 
well as the full therapeutic approach. 

It remains to be seen what interventions are most effective at 
reducing procrastination and improving outcomes in a scalable 
fashion. As with other domains such as help-seeking [cf. 17], the 
relationship between procrastination and outcomes is probably not 
fully causal and it may be possible to reduce procrastination 
without improving outcomes. Finding the right intervention(s) to 
improve outcomes will be beneficial not only in improving 
outcomes but also in understanding whether – and how – 
procrastination has causal impacts on learning. More generally, a 
fuller understanding of procrastination may help us to better 
alleviate its impacts. Do students procrastinate as a habit or is it an 
ongoing error in their estimation of their time demands? What role 
do boredom and lack of engagement play? Better understanding the 
answers to these questions may ultimately lead to redesign of 
courses and/or assignments to better keep students engaged in their 
learning in a steady fashion throughout the semester.  

In this paper, we have proposed a way to identify procrastination in 
students based on their interactions with an online learning system, 
that accounts for start time relative to other students. The PI 
indicator seems to generalize well across many different class 
sections. subject areas, and disciplines.  We have been able to apply 
it to over a hundred thousand student scores in the Connect learning 
platform as well as with around 3,700 students at a specific 
institution with their final course grades. The correlation of 
Procrastination Index to the outcome in the course is around -
0.7. The PI on a course can be used in a linear regression model to 
predict the final score, achieving  an R2 of 0.45, substantially higher 
than the predictive power of self-report measures of 
procrastination. For predicting pass or fail using a logistic 
regression model based solely on procrastination, we are able to 
achieve an area under the ROC curve of 0.86. We plan to use this 
research to improve our products – targeting content that is often 
procrastinated on for improvements -- and develop ways to nudge 
students to work more effectively and finish their tasks earlier. If 
we, as a field, stop procrastinating on this important issue, the 
impact on our students may be profound. 
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Automated Assessment of Computer Science Competencies 
from Student Programs with Gaussian Process Regression 

ABSTRACT 
Recent years have seen a growing interest in learning analytics for 
computer science education. The significant growth of computer 
science enrollments coupled with the labor-intensive nature of 
human assessment has fueled the demand for automated assessment 
of student programs. Effective automated assessment tools can 
bridge the gap between the demand for support and restricted 
instructional resources by providing adaptive formative and 
summative feedback. Following an evidence-centered assessment 
design approach, we have devised an automated assessment 
framework for middle grades computational thinking. We report on 
an evaluation comparing regression models including ridge, lasso, 
support vector, and Gaussian process regression models utilizing a 
structural n-gram feature set to infer scores for students’ programs. 
The results show that Gaussian process regression outperforms 
other regression models with respect to mean squared error and 
adjusted coefficient of determination. They also show that the 
framework provides a promising approach with regard to dealing 
robustly with noise to effectively model student computer science 
competencies. 

Keywords 
Competency Modeling, Automated Program Assessment, 
Computer Science Education 

1. INTRODUCTION 
Computer science (CS) has become a foundational skill for students 
to thrive in a digital economy [14, 28]. To prepare students for 
future studies and science and technology professions, it is essential 
to ensure that they acquire robust CS competencies. A key strategy 
for developing CS competencies is through programming. 
However, learning how to program is challenging for novices [12, 
13]. Hence, novice programmers need significant scaffolding to 
support understanding and effective use of CS concepts. Effective 
assessment of students’ understanding of essential CS concepts  is 
an important step in providing students with appropriate 
scaffolding and feedback  [11, 17]. Because the growth in demand 
for CS education has outstripped the supply of qualified teachers, 
providing every student with individualized, high-quality, and 

timely support and feedback is challenging. Effective automated 
assessment can guide adaptive formative and summative feedback 
to support effective CS education. 

In order to provide students and their instructors with reliable 
automated assessments, we follow a hypothesis-driven learning 
analytic approach [4] based on Evidence-Centered Assessment 
Design (ECD) [20] to assess students’ competencies in CS concepts 
as demonstrated in their programs. Following this approach, we 
first identify CS concepts that students need to master in order to 
solve a particular computational thinking-focused problem with a 
block-based programming interface embedded in the ENGAGE 
game-based learning environment (Figure 1). We then collect log 
data from students’ interactions with the game. Content area 
experts then analyze the structured log data as evidence of 
knowledge (or lack thereof) of target CS concepts. Deriving 
evidence from students’ proposed solutions, we assess their 
mastery of identified CS concepts, such as creating appropriate 
algorithms and programs, and appropriate usage of computer 
science constructs, such as loops and conditionals. We encode 
programs as structural n-grams to extract essential structural and 
semantic information within them. Finally, we utilize regression 
models including ridge, lasso, support vector regression (SVR), and 
Gaussian process regression (GPR) models on the generated feature 
set to infer students’ competencies for knowledge of CS concepts 
and practices. We utilize GPR models to handle the remaining 
noise in the dataset.  Evaluation results suggest that the models 
accurately model students’ CS competencies and are robust to 
noise.   

2. RELATED WORK 
Two primary approaches have been explored for assessing text-
based programs: dynamic and static assessment [5,15]. In dynamic 
assessment, programs are executed against pre-defined test data to 
determine their correctness. Evaluation metrics include successful 
compilation, consideration of security threats, correct outcome, and 
efficiency metrics such as CPU runtime and clock time [15, 16, 25]. 
In contrast, static assessments are capable of assessing programs 
that are not necessarily complete. To perform a static assessment, 
an intermediate representation of the program needs to be generated 
from the source code. Examples of intermediate representations are 
textual representations, abstract syntax trees, control flow graphs, 
and program dependence graphs. After forming the intermediate 
representation, the representation is analyzed for its correctness, 
efficiency, and quality [26]. Although block-based programming 
differs from text-based programming in syntax and visual 
representation, they can both be transformed into the same 
intermediate representation. Therefore, the techniques used for 
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assessing one type of programming from this representation can be 
readily adapted to assess the other type of programming [9, 10].   

Limited previous work has focused on assessing students’ 
understanding of underlying CS concepts from their programs. In 
this paper, we propose an automated assessment framework 
designed following a hypothesis-driven learning analytics 
approach to assess students’ programs based on their mastery of 
underlying CS concepts for the particular problem at hand.  We use 
the underlying CS concepts to label students’ programs with their 
grades. We then transform students’ programs to a feature set 
containing salient features that can serve as evidence for students’ 
proficiency of this underlying CS concepts. Utilizing the labeled 
data and the extracted feature set predictive models can identify 
students’ mastery of CS concepts. 

3. ENGAGE LEARNING ENVIRONMENT 
To collect data on middle grade students’ programming 
trajectories, we conducted a study with a game-based learning 
environment, ENGAGE, that is designed to teach CS to middle 
school students [2, 18]. The game features a rich, immersive 3D 
storyworld (Figure 1), in which students play the role of a specialist 
who is sent to investigate an underwater research facility that has 
lost communication with the outside world through suspicious 
activities of a rogue scientist. In the learning environment, students 
navigate through a series of interconnected rooms by solving a set 
of computational challenges. Each of the challenges can be solved 
either by programming devices within the room or interacting with 
devices in reference to their pre-written programs. Students 
program the devices with a visual block-based programming 
language interface (Figure 1, Right) [1, 19].  

In this work, we focus on students’ problem-solving approaches 
within a specific level of the game where students write a bubble 
sort algorithm to order a set of containers (Figure 1). This room has 
two devices: a containment device that holds six randomly 
positioned containers and a lock device that opens only when the 
containers are sorted in the increasing order. The player can exit the 
room through a door by correctly implementing bubble sort and 
executing the lock program when the containers are sorted. The 
lock has a pre-written program that will check the positions of 
containers and opens if they are in the correct position. The 
containment device provides students with the necessary blocks for 
implementing a bubble sort algorithm using a small robotic cart 
inside the device’s protective housing. Students can choose from 6 

types of readily available blocks to write their program. A sample 
correct solution for this challenge is shown in Figure 1 (right). 
Students need to test the correctness of their program in two steps. 
First, they need to run the bubble sort device to sort the containers. 
Second, they need to run the open lock program which checks if the 
containers are sorted and opens the door accordingly.  

4. METHODOLOGY 
We utilize supervised learning to assess students’ programs. The 
supervised learning approach consists of three primary steps. First, 
we label the training dataset in accordance with a rubric designed 
based on essential CS constructs. Second, we extract features from 
students’ submitted program snapshots that represent their 
understanding of CS constructs. This is accomplished with a novel 
approach that encodes students’ programs in terms of structural n-
grams. Third, we create models induced from the structural n-gram-
based feature set to infer students’ scores. In this study, we utilize 
a variety of regression models including linear, ridge, lasso, SVR, 
and GPR models to predict students’ programs’ scores.  

4.1 Data Annotation 
We use evidence-centered assessment design (ECD) to create a 
rubric for labeling students’ programs [22]. Following an ECD 
approach, we identify explicit learning outcomes and measures to  
inform our rubric [7]. The relevant CS concepts are identified and 
used to develop the specifications of a rubric to assess students’ 
proficiency of identified CS concepts. Student actions during the 
learning task are used as evidence for predicting mastery of the 
identified CS concepts [24]. Following this approach, we design a 
rubric that utilizes evidence rules specific to the bubble sort 
challenge in the ENGAGE game-based learning environment. We 
use this rubric to manually label students’ programs [3, 4]. 

As students interacted with the learning environment, all of their 
interactions with the game were logged. For this study, we collected 
data from five classrooms across three schools in the United States. 
We collected data from 69 students’ interactions with the bubble 
sort challenge in the game-based learning environment, for a total 
of 1,570 programs that we used as the training dataset. In this 
rubric, the range of possible scores is between 0 to 22. To validate 
the labeling process, two human annotators with a computer 
science background separately labeled 20% of the entire 
submissions, achieving an inter-rater agreement of 0.856 using 
Cohen’s kappa [8]. Before tagging the remainder of the corpus, all 
instances that were tagged differently were discussed. Afterwards, 

Figure 1. ENGAGE game-based learning environment. (Left) The bubble sort task in the game-based learning environment. (Right) 
Program for the bubble sort task: the read-only code for opening the door and an example of a correct implementation of the 
bubble sort written by a student. 
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one annotator tagged the remainder of the dataset. The annotated 
dataset is used as the corpus for our prediction task where the 
assigned scores serve as the ground-truth for our data corpus. 

4.2 Feature Engineering 
In order to infer students’ scores based on their submitted 
programs, we extract structural features that are representative of 
the semantic information in students’ code. To extract features that 
capture essential structural and semantic information stored within 
the programs, we perform a structural n-gram encoding of the 
programs’ abstract syntax trees (ASTs). Since the programs are 
stored as programming snapshots, we first apply an intermediate 
transformation from programming snapshots to their corresponding 
ASTs [23]. We then encode the generated ASTs into their 
corresponding structural n-grams. After generating the ASTs from 
their corresponding programs, we use a structural n-gram encoding 
to capture essential structural information characterized within the 
programs. Two important structural information types in ASTs are 
hierarchical and ordinal. The hierarchical information encodes 
what blocks are nested under another (i.e., a vertical relationship in 
AST), and the ordinal information encodes the placement order of 
blocks (i.e., horizontal relationship in AST) that are nested under 
the same parent node. We extract n-grams with varying lengths of 
n to capture the most fine-grained structural information present in 
an AST. We repeat the n-gram encoding process separately for 
hierarchical feature extraction and ordinal feature extraction. We 
then merge the two feature sets together to build the final feature 
set containing both hierarchical and ordinal n-gram encodings 
corresponding to each program keeping only one copy of the 
generated unigrams.  The occurrence of similar n-grams for n 
values more than one (unigrams) in both hierarchical and vertical 
encodings demonstrate presence of different structures in in the 
AST and thus, both will be preserved. 

Figure 2 shows an AST generated from a sample program along 
with its partial hierarchical (left) and ordinal (right) n-gram 
encoding. In Figure 2 (left), each colored circle shows the 
hierarchical (top to bottom) n-gram encoding of a specific n. In this 
example, we have hierarchical encoding of n-grams of size one 
(green ovals), two (blue ovals) and three (the purple ovals). The 
frequency values for each n-gram encoded feature are shown beside 
the AST. All of the other n-gram feature values are zero since they 
are not in this AST. Figure 2 (right) shows the same sample AST 
with its ordinal (left to right) n-gram encoding. In this example, we 

have an ordinal encoding of n-grams of size one (pink ovals), two 
(purple ovals) and three (the green ovals). Similar to Figure 2 (left), 
the frequency values for each n-gram feature is shown besides its 
corresponding AST in Figure 2 (right).  

 4.3 Inferring Program Scores 
We trained a variety of regression models on the structural n-gram-
encoded features to infer the scores of students’ programs. In 
particular, we used linear regression as the baseline regression 
model, and four additional regression models: ridge, lasso, support 
SVR, GPR models. Ridge and lasso regressions are characterized 
by their utilization of L1 and L2 regularization, respectively, which 
address overfitting and variance issues in comparison to linear 
regression. We use SVR and GPR models since their utilization of 
kernels makes them a suitable candidate for datasets similar to ours 
where the number of features is relatively high compared to the 
number of data points. Finally, we utilize GPR to handle the noise 
resulting from the subjective nature of human grading [6, 27]. To 
infer students’ program grades using the n-gram encoded feature 
set (we set the maximum n to 4 for hierarchical n-grams and 3 for 
ordinal n-grams  in this work), we use a 5-fold cross-validation 
approach to tune the hyperparameters of ridge, lasso, and SVR 
regressions, and to identify the appropriate kernel for the GPR. 
After the hyperparameter optimization process is complete, we use 
10-fold cross-validation to train and evaluate each regression 
model. 

4.3.1 Linear Regression 
Linear regression is a simple regression approach that works under 
the assumption that there is a linear relationship between features 
and the predicted value. The results of applying a 10-fold cross-
validation evaluation on the n-gram encoded feature set resulted in 
a Mean Squared Error (MSE) of 3.03E+24 and an R-squared of 
1.19E-23. The high MSE value reported by the linear model trained 
with our feature set is understandable since the high number of 
features in our dataset dramatically increases the complexity of the 
model, which in turn causes overfitting of linear regression-based 
predictive models to the training data.  

4.3.2 Ridge Regression 
To reduce the variance error, ridge regression includes a penalty 
term in the optimization. We used the set [0.05, 0.1, 0.5, 1.0, 10] to 
tune the value for l, the penalty coefficient, and found l=10 to be 

Figure 2: AST generated from a sample program submitted for the bubble sort challenge and its hierarchical and ordinal n-gram 
encoding. (Left) An AST and its partial hierarchical unigrams, bigrams, and 3-grams marked by green, blue and purple ovals 
respectively on the left and the partial feature set generated from hierarchical n-gram encoding of the AST along with feature-level 
frequencies on the right. (Right) An AST and its ordinal unigrams, bigrams, and 3-grams marked by green, blue and purple ovals 
respectively on the left and the partial feature set generated from partial ordinal n-gram encoding of the AST along with feature-
level frequencies on the right. 
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the best value for our regression task. Applying ridge regression on 
our dataset resulted in an MSE of 5.24 and an R-squared of 0.81. 
We can see that ridge regression considerably outperformed 
standard linear regression with respect to both MSE and R-squared. 

4.3.3 Lasso Regression 
Unlike ridge regression, lasso regression includes a penalty term 
that allows the optimization process to shrink weights to zero if 
necessary. As a result, lasso regression can reduce overfitting as 
well as perform feature selection. We used the set [0.05, 0.1, 0.5, 
1.0, 10] as in ridge regression to tune the value for l and found 
l=0.05 to be the best value for l. Utilizing lasso regression resulted 
in an MSE of 6.30 and an R-squared of 0.77, which also 
outperformed standard linear regression models with respect to 
both MSE and R-squared. 

4.3.4 Support Vector Regression 
Support vector regression (SVR) use kernels to transform data from 
a non-linearly separable space to a linearly separable space. For our 
regression task, we explored with linear, polynomial, and radial 
basis function (RBF) kernels. For each kernel, we tuned the 
hyperparameters of penalty parameter (C), epsilon, and kernel 
coefficient (gamma). For polynomial kernels, we also tuned the 
parameter of the kernel projection (coef0) and degree 
hyperparameters. Utilizing 5-fold cross-validation, we found the 
polynomial kernel with a degree of four to be the best kernel for 
our dataset. Also, the grid search identified C=100, coef0=1, 
degree= 4, epsilon=1, and gamma= 0.001 as the best parameters for 
this kernel. Incorporating the SVR model resulted in an MSE of 
5.09 and an R-squared of 0.82. SVR performed better than both 
ridge and lasso regressions in terms of MSE and R-squared. This 
could be due to the fact that kernel methods perform effectively on 
datasets with a feature set that is relatively large compared to the 
size of the dataset.  

4.3.5 Gaussian Process Regression 
GPRs provide an analytically tractable solution for regression 
problems with an infinite or uncountable set of considered basis 
functions [21]. We hypothesize that the GPR will outperform other 
regression techniques due to its capability of handling noise and its 
propriety for our dataset. To search the optimal kernel for GPR 
models, we cross-validated the model for radial basis functions 
(RBF), rational quadratic, and Matern kernels, and we found RBF 
to perform the best on our dataset. To find the optimal set of 
hyperparameters and prior parameters of the GPR, we follow the 
process of maximizing the probability of observing data given 
hyperparameters of the process (i.e., marginal likelihood). In this 
work, we use a limited-memory BFGS optimization technique to 
maximize the log marginal likelihood conditioned on the length 
vectors and the noise level of the kernels.     

Applying GPR resulted in an MSE of 1.71, and an R-squared of 
0.94. GPR performed significantly better than other regression 
models. Not only is GPR a kernel-based model similar to SVR, but 
by adding an additional noise kernel it can also account for the 
potential noise in our dataset. As a result, it is expected that the 
GPR model outperformed other models in our prediction task. 
Results of applying each of the regression models on the structural 
n-gram encoded feature set is shown in Table 1.  

  

 

Table 1. Average predictive performance of regression models 
trained with the structural n-gram feature set 

Regression MSE R2 

Linear 3.03E+24 1.19E-23 

Ridge 5.24 0.81 

Lasso 6.30 0.77 

SVR 5.09 0.82 

GPR 1.71 0.94 

 

5. CONCLUSION 
Rapidly growing interest in computer science education and 
students’ need for guided practice of CS concepts have created a 
significant need for accurate and effective automated assessment.  
In this work, we proposed a novel structural n-gram encoding 
scheme to extract important structural and semantic information 
from students’ programs. The n-gram encoding approach, coupled 
with data labeled using the ECD-based rubric enables our 
assessment framework to model evidence from programs that are 
representative of students’ mastery of identified CS. We apply a 
variety of regression models on the n-gram encoded feature set to 
infer students’ program scores. The results of our prediction 
demonstrate the effectiveness of the n-gram encoded feature set in 
capturing important semantic and structural information in 
students’ programs. All regression models performed better than 
the baseline model, linear regression.  Furthermore, GPR 
outperformed other models in terms of both mean squared and R-
Squared errors. This confirms expectations since GPR models can 
handle noisy data and are particularly efficient for datasets in which 
the number of features is particularly high relative to the number of 
data points. Our automated CS competency assessment framework 
can be generalized to assess any well-structured programs in 
learning environments that present students with well-structured 
programming assignments. Furthermore, the ECD approach can 
facilitate rubric design and assessment for non-expert CS teachers 
while providing them with automated assessment of students’ 
programs.  

Several directions for future work are promising. First, it will be 
important to expand the assessment framework to accommodate 
more open-ended programming assignments. Second, information 
from successive submission of students can be extracted to analyze 
students’ patterns of developing CS competencies.  
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ABSTRACT 
Physics has always been a challenging subject for many students. 
Research also shows a gap between instructional goals and actual 
student learning in introductory physics courses. This study focuses 
on two online first-year courses that cover classical mechanics of 
the physics curriculum at an open university in Canada. Each of the 
two courses is developed around a textbook and includes a locally 
created study guide enriched with animated videos, dynamic 
diagrams, and interactive exercises. This study aims at introducing 
a simple feature to provide physics students with personalization 
based on their background knowledge and at examining students’ 
interactions with the online course materials. Relevant educational 
data are compiled using checkpoint quizzes, self-reflection 
questionnaires, examinations, and log data collected through the 
learning management system (Moodle). In addition, peer faculty 
feedback is collected. Positive correlations are expected between 
regular learning behavior and engagement in personalized support 
and students’ performance on examinations. 

Keywords 

Data mining, Learning analytics, Learning management system, 
Moodle, Introductory physics, Distance education, Online learning, 
Personalized support, Learning behaviours. 

1. INTRODUCTION 
Despite its significance as a foundation for modern 

technological achievements, physics is perceived as a challenging 
subject by many students. In 1987, a prominent physicist, Richard 
Feynman (1918 – 1988), suggested “that physics shouldn’t be 
taught in high school because most of the teachers lacked a passion 
for the subject” [1]. Researchers at the time also pointed out an 
alarming gap between expected learning outcomes and actual 
student learning in introductory physics courses [2]. This old 
problem called for a reconsideration of the traditional approach to 
teach this important subject. 

The argument surrounding physics education is especially 
relevant to the distance education (DE) model, which is witnessing 
a period of accelerated evolution, powered by advancements in 
digital technology. Despite challenges linked to the nature of DE, 
the flexible presentation format of online courses breaks some of 
the traditional barriers and allows for new possibilities. This leads 
to the question about effective instructional design features in 
introductory physics courses that cater to all students and provide 
successful online experiences [3-5]. 

 

 

 

An online course delivered through a learning management 
system (LMS) can provide a multitude of data and information 
related to students’ interactions with the course materials. 
Knowledge obtained from mining and analyzing available data, in 
combination with plug-in adaptive learning systems, can be used to 
guide individual students to study more effectively and to improve 
the quality and presentation of the course materials [6-8]. For 
instance, recent studies suggest that one of the common (and 
apparently less productive) students’ practices in studying physics 
involves the “cramming” of relatively large quantities of the subject 
matter during short periods preceding exams [5,9].  Also, Imhof et 
al. indicated a “negative relationship between prior knowledge test 
score and predicted learning progress” in physics modules [3]. 
Even though the investigated courses cater to adult learners, not all 
students can effectively acquire online learning abilities [10]. Such 
observations highlight how personalized and adaptive learning are 
potentially effective concepts in the design of online physics 
courses. 

A major advantage of the traditional face-to-face (F2F) 
educational model is the direct student-teacher interaction, which 
permits the instructor to make timely adjustments to the subject 
matter and teaching style to ensure better students’ engagement. 
The assumption here is that the instructor is sufficiently flexible to 
make the required accommodations, and the size of the classroom 
is reasonably small so that accommodating individual students 
becomes practical. In an online class, however, students interact 
less with a dedicated teacher but more with the LMS and the course 
materials. This is especially true in the asynchronous delivery 
model, where course content (typically) consists of rigid learning 
resources developed with the “one-size-fits-all” teaching concept. 
Such a delivery format does not take into consideration the 
“individual differences, personal needs and personal development” 
of all students [7]. 

Chaw and Tang found that students’ use of the LMS is 
correlated with the service quality it provides [11]. Also, the quality 
of an online course should be enhanced when instructors are 
equipped with effective learning analytics and data mining tools 
[12,13]. In particular, proper utilization of educational data 
promises to facilitate effective personalized learning in online 
courses, including personalized feedback and recommendations for 
extra learning materials [8,14-18]. Such individualized support is 
particularly important in physics courses where conceptual 
understanding is typically constructed vertically using scaffoldings 
provided by essential mathematical tools. Therefore, physics 
students are expected to appreciate personalized learning 
environments that evaluate their progress, fill individual knowledge 
gaps, and sharpen specific math skills if needed [19,12]. 

Learning analytics (LA) and educational data mining (EDM) have 
been used for a range of applications, including personalized 
learning [20]. In this paper, we introduce a work-in-progress 
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research project that uses LA and EDM to examine students’ 
interactions with the course materials in two online physics courses.  
More specifically, the project introduces a simple and practical 
adaptive feedback module that can be easily integrated into the 
LMS. It provides a level of personalization based on students’ 
background knowledge directed toward reducing the knowledge 
gap among a diverse student group. 

2. PHYSICS COURSES 
This study focuses on two first-year physics courses offered 

online (through Moodle) at Athabasca University in Canada. The 
first course is an algebra-based introductory physics and covers 
conventional topics in classical mechanics. It is considered among 
the top 50 high enrollment courses at the university, with effective 
annual registrations that exceed 400 students. The second course is 
physics for scientists and engineers, which is the calculus-based 
version of the first course. Both courses share a mandatory home 
lab component [21]. 

The textbook is an essential educational resource in a typical 
physics course. However, traditionally, the textbook is written with 
the conventional classroom in mind. Therefore, in DE, the study 
guide becomes an important component that guides the student 
through different learning activities and course assessments. In 
particular, the study guides for the two courses are designed to 
complement the textbook and provide additional reading (and 
audiovisual) materials related to each unit and lab experiment (see 
Figure 1). An important component of the study guide consists of 
detailed solutions to physics problems related to each unit in the 
course. 

 
Figure 1. Snapshot from the introductory physics study guide. 

Recent revisions of both investigated courses involved the 
production of an online study guide written in HTML with Mathjax 
scripting of the LaTeX code. The improved version of the study 
guide is enriched with dynamic and interactive diagrams created 
using Mathematica (https://www.wolfram.com/mathematica/). 
This is in addition to the free simulations of the PhET Project 
(https://phet.colorado.edu/). Students are expected to benefit from 
the interactivity and the real-time visualization of interactions 
between position, velocity and acceleration, especially in two and 
three dimensions. This includes the kinematics and dynamics of 

projectiles, circular motions, collisions, etc. Some of the interactive 
diagrams are complex enough to be considered virtual labs that 
simulate real-life situations. 

The course development team constructed a website for the study 
guide that is accessible through the course homepage on Moodle 
and supporting responsive (mobile optimized) features. This is in 
addition to the textbook, which is accessible as an eTextbook 
through a separate link. One of the courses uses an open educational 
resource (OER textbook). The new design approach to the study 
guides received positive feedback from peer faculty members. 
However, even though some design considerations are integrated 
into the course for collecting feedback, our knowledge of students’ 
interaction with the course content is limited. 

3. RESEARCH Questions 
In this study, we investigate the effectiveness of automated 

personalized support provided to students at specific milestones in 
two online physics courses. More specifically, the study addresses 
the following research questions: 

• Is there a correlation between the academic performance 
of individual students and their response and behavior 
concerning the adaptive feedback module? 

• How do learning behaviour and study patterns influence 
students’ overall academic performance? 

• What course elements are most effective regarding the 
adaptive feedback module? 

4. RESEARCH PLAN 
Relevant educational data are compiled using checkpoint 

quizzes, students’ self-reflection questionnaire, course assessment 
results, and log data collected through the LMS (Moodle). In 
addition, peer faculty feedback will be collected. 

4.1 Personalization through checkpoint 
quizzes 

For the proposed personalization feature, the online study 
guide for each course is divided into five sections covering the main 
topics in each syllabus: kinematics, dynamics, energy & 
momentum, gravity & rotational motion, and elasticity & 
equilibrium. 

Before starting a new section, a student is encouraged to 
complete a multiple-choice checkpoint quiz that is automatically 
marked by the LMS. The optional quiz is used as a checkpoint to 
assess the student’s mastery of the topics in each section (see Figure 
2). Based on the responses, the system may suggest the student 
proceeds to the next unit in the course or recommend a set of 
additional learning resources that may help strengthen the student’s 
specific background concepts required by the upcoming topics. For 
example, a student who underachieved on the quiz questions related 
to rotational motion could be directed to a relevant video (such as 
https://youtu.be/garegCgMxxg) from the Khan Academy 
(https://www.khanacademy.org/), the problem-solving examples 
created in the study guide, or a section of the textbook. Apparently, 
there is limited research on “the effectiveness of such actionable 
links on students’ learning experience and success” as stated by Iraj 
et al. [22]. The authors also warned that most students appear to 
lack “feedback literacy” and may only respond to quality feedback. 
This research project aspires to provide an informative contribution 
in this regard by using Moodle Quiz module’s overall feedback 
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feature, which can provide different feedback for a different level 
of quiz performance. 

 
Figure 2. Learning path and checkpoints in the online physics 
course. 

4.2 LMS Log Data 
The LMS automatically records the date, time, and score of 

each checkpoint quiz and keeps track of other learning activities, 
including recommended learning objects accessed by individual 
students. When combined with the timing and marks achieved on 
assignments, lab reports and exams, each student’s progress 
throughout the course materials can be highlighted. Such 
information allows us to look for patterns of effective learning 
behaviour and explore the effectiveness of the proposed adaptive 
feature on the student’s academic achievement in the course. 

4.3 Student Self-Reflection Questionnaire and 
Faculty Feedback 

The effectiveness of the course content and design, in addition 
to the student’s learning behaviour, is also gauged through a self-
reflection questionnaire completed by the student toward the end of 
the course. The questionnaire is conduced online and consists of a 
mix of multiple-choice and written response questions. The 
collected data provides self-reflection by the students on their study 
behaviour, feedback on the proposed adaptive feature, convenience 
of course design, and effectiveness of course content, especially the 
interactive exercises and dynamic diagrams. Also, we will solicit 
qualitative assessment and feedback from instructors and tutors 
about the efficiency and effectiveness of the system through 
interviews. 

4.4 Data Analysis 
Based on the results of the first three checkpoint quizzes (see 

Figure 2), we group students by score quartile (students who 
perform below 25%; students with a score between 25% and 50%; 
students with a score between the 50% and 75%; and the students 
who score above 75%.) We then follow the learning behaviour of 
each group and their performance on the midterm examination. The 
fifth group of students who choose to skip the checkpoint quizzes, 

continuing from one unit to the next, can act as a reference group. 
A similar analysis is repeated for data collected during the second 
half of the course. 

To compare the use of recommended learning resources across 
quartiles, we compute the mean number of resources accessed for 
each quartile. We hypothesize that students with higher exam 
scores tend to engage more seriously with feedback and follow a 
more regular study pattern (i.e., suggested study schedule) than 
those with lower exam scores. We will see if the response to 
feedback between student groups is significant at the p<0.05 level 
for different quizzes. The findings can be used to detect struggling 
students since they are less likely to use exercise for study purposes. 
Also, we conjecture that the students with the lowest grades have 
the lowest score on checkpoint quizzes and follow a more random 
study pattern. Their learning behaviour may be guessing or viewing 
hints in an attempt to build a catalog of correct answers, rather than 
actively using their knowledge to correctly address their knowledge 
gaps and adopt a more productive learning behaviour. 

5. CONCLUSION  
Students’ interaction with the course materials, combined with their 
use of personalization through checkpoint quizzes, the results of 
self-reflection questionnaires, and peer faculty feedback, are 
analyzed in association with student’s performance on assignments, 
lab reports and exams. The purpose is to look for educationally 
meaningful information regarding effective personalized feedback, 
successful learning behaviour, and good aspects of instructional 
design. An extension to this project would involve investigating the 
impact of personalizing the study schedule on the issue of 
procrastination and student attrition in online physics courses. 
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ABSTRACT
As scientific writing is an important 21st century skill, its
development is a major goal in high school science educa-
tion. Research shows that developing scientific writing skills
requires frequent and tailored feedback, which teachers, who
face large classes and limited time for personalized instruc-
tion, struggle to give. Natural Language Processing (NLP)
technologies offer great promise to assist teachers in this
process by automating some of the analysis. However, in
Hebrew, the use of NLP in computer-supported writing in-
struction was until recently hindered by the lack of publicly
available resources. In this paper, we present initial results
from a study that aims to develop NLP-based techniques to
assist teachers in providing personalized feedback in scien-
tific writing in Hebrew, which might be applicable to other
languages as well. We focus on writing inquiry reports in Bi-
ology, and specifically, on the task of automatically identify-
ing whether the report contains a properly defined research
question. This serves as a proof-of-concept of whether we
can build a pipeline that identifies major components of the
report and match them to a predefined grading rubric. To
achieve this, we collected several hundreds of reports, anno-
tated them according to a grading rubric to create a super-
vised data set, and built a machine-learning algorithm that
uses NLP-based features. The results show that our model
can accurately identify the research question or its absence.
To the best of our knowledge, this is the first paper to report
on the application of Hebrew NLP for formative assessment
in K-12 science education.

Keywords
Scientific writing, Formative assessment, Natural Language
Processing

1. INTRODUCTION
Writing is a critical 21st century skill, and a high level of
writing proficiency is required to succeed in academia and
workplaces [1]. In science, writing is one of the primary

means of communication in the scientific community and a
crucial aspect of scientific literacy. Thus, developing writing
skills has become a major educational goal in high school
science education [11].

Numerous studies have shown that developing scientific writ-
ing skills among high school students poses considerable dif-
ficulties for both students and teachers [9, 15, 23]. A lot of
this may be due to the lack of formative feedback, which
is known to be essential for the development of these skills
[17, 10]. Formative feedback aims to guide and improve stu-
dents’ learning by providing them with information about
the gap between their current and the desired performance.
In the context of formative feedback on scientific writing,
it has been shown that in order to support students in im-
proving the quality of their writing, the formative feedback
needs to be personalized and specific [3, 14]. It should also
provide applicable recommendations for improvement, and
explanations as to why such improvements are needed [16].

Proper writing instruction demands a significant amount of
time from teachers, for preparing materials, reading, edit-
ing, and providing feedback. The educational reality is that
teachers are faced with large class sizes that limit their abil-
ity to find the necessary time to devote to this process, re-
sulting in a considerable delay in the feedback that students
receive, and in its quality [1]. Another challenge is designing
guidance that motivates students to engage in substantial
writing revisions. Consequently, revising written explana-
tions based on personalized guidance rarely occurs in science
classrooms [19].

Technology holds much promise for improving this process,
by supporting teachers in providing formative assessment.
Automated computer scoring systems are being developed in
order to address the challenges of assessing students’ writing
(e.g., [22, 19, 21, 18, 12, 20]). Among these, automated essay
scoring technologies can enhance both large scale assessment
and classroom instruction [3], as they have many advantages
in the fields of assessment and instruction including objec-
tivity, standardization and efficiency [5]. However, these
technologies were mostly employed for summative, rather
than formative, purposes [21].

In addition, while automated supporting tools for revising
texts on the micro-level (such as grammar and spelling) are
well represented [18], tools that support the development of
writing strategies including self-monitoring and improving
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macro-level of text quality (such as argumentative structure
and rhetorical moves) are infrequent [18]. In the transition
from essay scoring to writing instruction, feedback design is
of great importance, since it is the primary means through
which students can evaluate and improve their writing [17].

In Hebrew, the use of NLP in computer-supported writing
instruction was until recently hindered by the lack of pub-
licly available resources. Hebrew is a morphologically rich
language (MRL). It is complex, characterized by a highly
productive inflectional morphology, with prefixes, suffixes
and circumfixes, and also nouns, adjectives and numerals
inflections for number (amount) and gender [8]. Following
recent developments in Hebrew NLP, the high-level goal of
our research is developing NLP-based techniques to assist
teachers in providing personalized feedback in scientific writ-
ing in Hebrew, which might be applicable to other languages
as well.

The task that we study is writing scientific reports in in-
quiry projects in Biology. A fundamental component of the
report is a well-formulated research question(s). Formulat-
ing research questions that can be answered empirically is
one of the practices needed in order to become scientifically
literate [11]. In fact, by ‘composing questions’, students at-
tend to the main ideas and check if the content is understood
[13]. Since the research questions are defined on the early
stages of the project, failure to properly define them can
have a long-term effect on the quality of the project and
report.

With this rationale in mind, we focus on studying NLP-
based means to provide personalized feedback on the quality
of the questions that students define. A precondition for an
automatic assessment of the quality of the research questions
is detecting them automatically in the text. The identifica-
tion of the research questions in students’ essays serves as a
proof-of-concept (POC) for learning a formative assessment
grading scheme for major components of the report.

Our work is the first step towards NLP-based tools that
will support K-12 science educators in teaching and assess-
ing scientific writing in Hebrew. To the best of our knowl-
edge, there is no published work on NLP-based formative
assessment in Hebrew, and this research has the potential
to pioneer this exciting domain.

2. METHOD AND RESULTS
This section describes the experimental setup, how the data
was collected and annotated, the NLP pipeline and features,
the machine learning algorithm, and the results.

2.1 Research context
Over 20,000 high-school students in Israel major in biology
each year [4]. The Israeli Biology curriculum includes an
inquiry project that constitutes 30% of the final grade [7].
It is conducted collaboratively in groups of 2-3 students.
The students conduct an inquiry on a biological issue, ask
research questions, design and carry out an experiment, col-
lect data, and analyze it. Students are required to docu-
ment their work in a scientific report. Within this process,
the writing task was reported by teachers and students to

be the most challenging part [6]. It is an iterative process,
which often takes up to 10 iterations to complete.

2.2 Data Collection
The data include 705 scientific reports, collected from 520
student groups that belong to 33 classes.

The reports are submitted in Hebrew as Word documents.
In the first phase of the project the Introduction part, which
is where the research question should be defined, was sep-
arated from the rest of the text. The Introduction typi-
cally consists of 2-5 pages. Well-written introduction section
should contain the following discourse categories:

• Biological process.
• Research question. One research question if the work is

submitted by two students, two research questions if the
work is submitted by a group of three students.

• Research hypothesis.
• Description of the organism.

Following is an example of a typical well-written research
question: ”Our research question is how does alcohol con-
centration influence cell respiration rate in yeasts”.

2.3 Creating a supervised data set
In order to create a supervised data set that can be used
as an input to the machine learning algorithm, we anno-
tated students’ texts. The goal of the annotation was to
mark the segments of the texts that represent the aforemen-
tioned four discourse categories. The relevant parts of the
texts were encoded with <tagname> and </tagname> tags
that preceded/succeeded the relevant segments. For exam-
ple, each research question was preceded with an <rq> tag,
and succeeded by an </rq> tag, which were inserted into
the text. The annotation was performed at a sentence or
multiple sentences level. Each sentence was labeled with at
most one discourse category. Our annotation scheme does
not allow overlapping of the categories, but the same cate-
gory may appear multiple times (e.g., two different research
questions). We note that the majority of the sentences do
not belong to any category and are not labeled at all.

The process was conducted by two domain experts (includ-
ing one of the authors). The experts first created a grading
rubric and then tagged the texts accordingly. In the first
stage of the annotation process, both judges worked together
to create a protocol for detecting the discourse elements in
the text. Next, they worked independently to label 147 texts
(from 44 student groups that belong to 6 classes), and the
resulting labels were discussed until disagreements were re-
solved. Finally, additional 56 texts were labeled by one of
the experts.

To create a training and test sets we chosen randomly one
report from each student group, so the chosen reports rep-
resent different stages of report readiness. This means that
some of the reports do not contain research questions at all
and some research questions are ill defined. In total, the
data set includes 100 texts containing 5513 sentences and
197 research questions.

2.4 Research Question identification
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We consider the task of research question identification as a
sentence-level classification task. Each sentence is classified
as a research question or not. The data set was divided into
training and test sets, as presented in Table 1.

Table 1: A summary of the annotated data.
Number of Number of Number of

texts sentences research questions
Training set 70 4013 139

Test set 30 1500 58
Total 100 5513 197

One of the challenges is that the data set is highly imbal-
anced. The ratio between examples in the minority class
(research question sentences) and the majority class (non-
research question sentences) is less than 1:25. Thus, a naive
classification algorithm returning a negative answer for all
the sentences will achieve 96.4% accuracy, but it is of no
practical value. To evaluate the goodness-of-fit of our algo-
rithm, we use the following measures:

• Precision = TruePositive
(TruePositive+FalsePositive)

• Recall = TruePositive
(TruePositive+FalseNegative)

• F-measure = 2×Precision×Recall
Precision+Recall

2.5 Parsing and feature engineering
2.5.1 Parsing

We use the Hebrew morphological parser developed by the
National Institute for Testing and Evaluation (NITE) [2]. It
is used to resolve morphological and parts of speech (POS)
disambiguity. The reported accuracy of the NITE parser is
90% for the full morphological analysis and 95% for POS
analysis.

Running the parser on the annotated student texts generates
a tab-separated value file. Each row in the file corresponds to
one word in the text, and contains the following information:

• isResearchQuestion: True/False - indicates whether
the word is part of a research question sentence

• word original form: the word as appears in the text

• word basic form: the base form of the word

• POS: part of speech of the word

2.5.2 Bag of Words and feature set
First, we construct a Bag of Words (BOW) dictionary as
follows:

1. Divide the data set randomly into training and test
sets as presented in Table 1.

2. Build a BOW dictionary containing the basic form of
each word that appears at least three times in a re-
search question text segment (within the training set),
and its corresponding POS.

3. Remove stop words: numbers, punctuation marks ex-
cept for question mark, prepositions, pronouns, auxil-
iary verbs, all forms of the word ”the” (could appear
in a number of forms in Hebrew)

Then, for each sentence in the data set, we compute the
following set of features:

• We introduce a feature for each BOW dictionary entry.
The value of the features is defined as the number of
appearances of the corresponding dictionary entry in
the sentence.

• In addition, human experts composed a list of phrases
that can be used as markers for a research question,
such as “what is the connection”, “what is the rela-
tion”, etc. (in Hebrew, due to word agglutination,
these phrases consist of two words only). We intro-
duce an additional Boolean feature to represent the
appearance of any of these phrases.

2.6 Results
We used the training set to train three types of classifiers:
SVM, Logistic regression, and Naive Bayes. Their perfor-
mance, computed over 500 5-fold cross-validation iterations,
is presented in Table 2 (mean values). The best performance
was achieved by the Logistic Regression classifier. To eval-
uate the performance on unseen data, we then trained a
logistic regression classifier on the entire training set, and
measured its performance on the test set. The results are
presented in Table 3.

Table 2: The results of 500 5-fold cross validation
runs on the training set

Precision Recall F-measure
Logistic Regression 86.9% 74.3% 79.9%

SVM 75.9% 77.3% 75.9%
Naive Bayes 62.0% 88.6% 72.8%

Table 3: The results of the Logistic Regression
model on the test set

Precision Recall F-measure
Logistic Regression 84.2% 94.1% 88.9%

To understand the source of the errors we examined the
sentences missed by the classifier. The main source of the
errors is related to the failure of the parser to treat correctly
a point sign ‘.’ inside Latin names of organisms (e.g., ‘E.
Coli’, ‘St. Albus’). As a result, sentences containing such
names were considered by mistake as two separate sentences
and the classifier failed to identify them as a research ques-
tion.

3. NEXT STEPS
Next, we plan to extend our model to identify the internal
structure of the research question, as defined in the grad-
ing rubric. To support this step, the annotation scheme
was extended to identify the required components of the re-
search question: opening (e.g., “Our research question is:”),
independent variable (e.g., ethanol concentration), depen-
dent variable (e.g., cellular respiration rate), connection be-
tween the variables, and organism (e.g., bacteria, yeast). As
this rubric is designed to be the basis for generating for-
mative feedback, the experts gave a score (0-2) to each of
these components, as well as an additional score for the lo-
cation of the entire sentence in the text. This scheme was
applied to 115 texts in a process similar to the one reported
in Subsection 2.3. We also used the texts to create synthetic
examples. In case the final version of a particular report was
not well-written, the judges fixed the writing and inserted
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the fixed version as an additional example. In total, 32 ad-
ditional examples were created in this manner.

Based on this, we intend to create a computational model
for identifying the internal structure, and use it to conduct
an intervention study, in which students will receive forma-
tive feedback that is based on the computational analysis of
the research question structure. In parallel, we will extend
our method to the identify the remaining three discourse
categories (biological process, research hypothesis, and de-
scription of the organism).

4. CONCLUSIONS
This paper presents preliminary results from a study that
aims to develop NLP-based tools to assist teachers in pro-
viding formative feedback on scientific writing in Hebrew.
Specifically, we demonstrate that our model can accurately
identify the research question (or its absence), which is a key
component of the specific writing task that we study (scien-
tific report of inquiry project in Biology). Our results, al-
though very preliminary, are a first step towards using NLP
to provide formative assessment on scientific writing in He-
brew. To the best of our knowledge, there is no prior work
that applies Hebrew NLP to provide formative feedback in
K-12 science education.
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ABSTRACT
Nowadays, students prefer to complement their studies with
online video materials. While there are many video e-learning
resources available on the internet, video sharing platforms
which provide these resources, such as YouTube, do not
structure the presented materials in a prerequisite order.
As a result, learners are not able to use the existing mate-
rials effectively since they do not know in which order they
need to be studied. Our aim is to overcome this limitation
of existing video sharing systems and improve the learning
experience of their users by discovering prerequisite relation-
ships among videos where basic materials are covered prior
to more advanced ones. Experiments performed on com-
monly used gold standard datasets show the effectiveness of
the proposed approach utilizing measures based on phrase
similarity scores.

Keywords
prerequisite extraction, prerequisite graph, prerequisite

1. INTRODUCTION
With the widespread adoption of computers, especially among
the young generation of students, and the video sharing plat-
forms (VSP) such as YouTube, learners are more and more
using video materials. In fact, there are many VSPs pub-
lishing learning material which are rich in content and very
popular among students. The video lectures of the Physics
Professor Walter Lewis1 at MIT having millions of views in
YouTube are an example of this paradigm shift.

Learning materials published on VSPs are not treated differ-
ently than other types of videos since these platforms are not
designed to be used as an e-learning system. Therefore they
do not present the materials in a structural manner follow-
ing the prerequisite relationships. VSPs follow their users to

∗Corresponding author
1https://www.youtube.com/watch?v=sJG-rXBbmCc

bring the most relevant personalized material, but these are
not determined based on the background of their users, but
just their interests. Therefore, the presented list of materials
does not follow the prerequisite order. Our aim in this work
is to overcome this limitation of existing VSPs by organiz-
ing the videos according to a prerequisite order, such that
prerequisites are recommended to be watched prior to the
actually searched material. This way we intend to improve
the learning experience.

Our methodology is based on structuring the video learning
materials using prerequisite relationships where basic ma-
terials are covered prior to more advanced ones.This is an
offline process implemented as a separate module which can
be integrated into any VSP providing an API with search
capabilities. Given a predefined set of concepts, we first col-
lect the video learning materials related to those concepts
and extract their subtitles. We then build a model to infer
prerequisite relationships based on the collection of subtitles.
VSPs return a list of videos, where videos are ranked based
on their relevance with respect to the search term. Our
unsupervised methodology exploits the powerful relevance
ranking models of the VSPs by incorporating the returned
alternative materials in prerequisite relationship extraction.
We implemented the proposed methodology using YouTube
as a VSP. Experiments performed on concepts from a bench-
mark data set show that the proposed method utilizing mea-
sures based on similarity scores identifies the prerequisite
relationships among those concepts and therefore provides
users with a better learning experience.

2. RELATED WORK
Our related work is described in two main areas in the fol-
lowing subsections.

2.1 Prerequisite detection
The task of identifying prerequisite relationships between
concept pairs was first introduced in [12] and existing meth-
ods that address this problem are based on supervised learn-
ing. One popular and important feature in this context is
called reference difference (RefD) [3] which intuitively cap-
tures prerequisite relationships between concepts A and B
by counting how often B refers to A and how often A refers
to B. If B refers frequently to A, but A does not refer often
to B, one may infer that B is a prerequisite for A. The orig-
inal RefD feature relies on the hyperlink structure within
documents, which is the reason for computing RefD based
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on Wikipedia articles. In addition to RefD, previous works
[13, 8] extended the list of features derived from Wikipedia
articles, e.g. by including related, but more abstract articles.
In [6] word embeddings of texts are used as features besides
16 other features like RefD to represent text documents for
prerequisite detection. Interestingly, RefD turned out to be
consistently the most important feature across different lan-
guages and datasets, which motivates our choice for focusing
on adapting RefD to unstructured video subtitles. In [1] a
method is presented, which combines burst analysis and co-
occurrence of words to identify prerequisite relationships.
This approach uses unstructured text from books as input
and it requires only light training as parameters need to be
set based on the dataset, otherwise it relies on the default
values. Unlike all previous methods, our method is fully un-
supervised by nature. It relies on the core idea of RefD to
determine prerequisite relationships, but in contrast to ex-
isting methods that exploit links in structured documents,
we use exact matches to count how often concepts occur in
unstructured text documents as noun phrases. Moreover,
our approach could easily be integrated into the existing su-
pervised methods as a feature.

2.2 Resources for extracting prerequisite re-
lationships

In the past, different resources were used for identifying pre-
requisite relationships, namely text books [13, 4, 1], course
prerequisites and video playlists [10], Wikipedia [12, 3, 5],
a mixture of Wikipedia and video subtitles [8], and the
Wikipedia clickstream [11]. Wikipedia has been the most
popular resource as RefD relies on the structured informa-
tion present in Wikipedia articles, e.g. links to related or
more abstract concepts. But Wikipedia has multiple limi-
tations as a resource. First, there might be no Wikipedia
article for certain concepts [7]. Second, the desired concept
might be part of a larger Wikipedia article which implies
that some of the information is too broad or that concept
simply cannot be found unless one knows the specific ar-
ticle in which that concept was mentioned. However, the
most important limitation of Wikipedia in the context of
e-learning is the fact that a concept is explained from a sin-
gle perspective instead of multiple ones, which is important
considering that individuals learn differently and might thus
understand alternative explanations more easily. For these
reasons, we opt in this paper for a VSP, YouTube in our case,
as a resource for concepts since there are typically multiple
videos available for a specific concept, potentially explaining
it from different perspectives which benefits individuals as
everyone learns differently. More precisely, we retrieve the
subtitles of videos similar to [8], but in contrast to them, we
collect a set of videos per concept instead of a single one per
concept. Our approach is also different from [10], who uti-
lize the downloaded video subtitles for creating bag-of-word
representations to infer the hidden concepts using LDA and
one video exists per concept.

3. MOTIVATION AND PROBLEM DEFINI-
TION

As mentioned in Section 2.2, there may be no Wikipedia
article available for a specific concept. Then any features
including RefD relying on such structured text documents
cannot be computed. For example, Wikipedia has no entry

for the concept ”Recursive Backtracking” from our dataset
(cf. Section 5.1), there is only an article related to the gen-
eral concept of ”Backtracking”. Therefore, we extract the
video subtitles and use them as text documents describing
the concepts explained in the videos. Another advantage
of using a VSP is that videos related to a concept explain
the concept from different perspectives, with a varying level
of detail. VSPs such as YouTube have powerful relevance
ranking and diversification algorithms which we indirectly
incorporate in the RefD score calculation by including the
subtitles from the list of videos returned for a concept.

We model our problem with strictly partially ordered sets.
Given a set of m concepts C = {c1, . . . , cm} and a set
of n videos associated with each concept, V = {vi,1, . . . ,
vi,n, . . . , vm,1, . . . vm,n}, we extract from all collected videos
related to a concept ci, namely {vi,1, . . . , vi,n}, the subtitles
and merge them into a text document ti, such that each con-
cept ci is represented by a single text document ti in the set
CT = {(c1, t1), . . . , (cm, tm)}. From CT we form a strictly
partially ordered set PO-CT by introducing the binary pre-
requisite relationship Preq((ci, ti), (cj , tj)) between ci and
cj , where ci, cj ∈ C and

Preq((ci, ti), (cj , tj)) =

{
1 if ci is a prerequisite for cj

0 otherwise

Therefore, PO-CT is transitive (if ci is a prerequisite for cj
and cj is a prerequisite for ck, ci must also be a prerequisite
for ck), asymmetric (if ci is a prerequisite for cj , cj can-
not be a prerequisite for ci), and irreflexive (ci cannot be a
prerequisite for itself) by definition [2]. Our final goal is to
construct an acyclic prerequisite graph PG visualizing the
prerequisite relations from PO-CT.

4. PREREQUISITE DISCOVERY PROCESS
Our method for building the prerequisite graph PG com-
prises two phases. In the first phase, we compute the strength
of the pairwise prerequisite relationships which will be stored
in a prerequisite matrix. Some of the relationships will vio-
late the assumptions made for a partially ordered set, due to
the pairwise computation of prerequisite relationships. For
example, if Preq((ci, ti), (cj , tj)) = 1, Preq((cj , tj), (ck, tk)) =
1, Preq((ck, tk), (ci, ti)) = 1, then there would be a cycle of
prerequisite dependencies as ci would be a prerequisite for
cj , cj would be a prerequisite for ck, and ck would be a pre-
requisite for ci, which needs to be resolved. Therefore, in
the second phase for graph construction, we use heuristics
to overcome these issues.

4.1 Prerequisite Score Calculation
Determining if there is a prerequisite relationship between
two concepts ci and cj implements the core idea of RefD,
namely that if cj occurs rarely in the text document ti de-
scribing ci, but ci occurs frequently in the text document tj
representing cj , then ci is most likely a prerequisite for cj .
Unlike RefD, ti and tj do not contain related concepts to
ci and cj , but rather describe only the concepts ci and cj .
Since we compare text documents, we do not require any
structured information such as links to related concepts. By
gathering n number of videos for each of the concepts ci and
cj from a VSP, our function Preq() exhibits irreflexivity and
asymmetry. We compute Preq((ci, ti), (cj , tj)) as follows:
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1. Set input parameter - n: number of videos to collect
per video for a concept

2. Given a pair of concepts ci and cj , retrieve the n
most relevant videos for each of the concepts ci and
cj from a VSP; extract their subtitles and merge those
of {ci,1, . . . , ci, n} into text document ti and those of
{cj,1, . . . , cj, n} into tj yielding (ci, ti) and (cj , tj), re-
spectively. ti and tj describe the concepts ci and cj in
detail.

3. Preprocess ti and tj and create two lists Li and Lj

which contain all of the nouns and noun phrases from
ti and tj , respectively. This step is performed since
concepts occur in text documents always as nouns or
noun phrases.

4. For each noun and noun phrase in Li, count the ex-
act matches with cj and store it in a variable called
countsj .

5. For each noun and noun phrase in Lj , count the ex-
act matches with ci and store it in a variable called
countsi.

6. The output of the prerequisite relationship calculation
is wi,j = countsj − countsi

7. RefD((ci, ti), (cj , tj)) = wi,j

8. Store wij in the score matrix W

The score matrix W has the following shape:

W =

w1,1 · · · w1,m

...
...

...
wm,1 · · · wm,m


where wi,j corresponds to the prerequisite score between the
concepts in the i-th row and the j-th column. Note that
wi,i, i.e. all elements on the diagonal, are zero due to the
irreflexivity property of RefD. Moreover, wi,j = −wj,i due
to RefD being asymmetric. Due to this property, we have
to compute RefD((ci, ti), (cj , tj)) only m ∗ (m− 1)/2 times.
We also note that the output of RefD can be converted into
a binary output as follows: If wi,j < 0, ci is a prerequisite for
cj and the strength of the prerequisite relationship is |wi,j |.
Otherwise cj is not a prerequisite for ci. In other words,

Preq((ci, ti), (cj , tj)) =

{
1 if wi,j < 0

0 otherwise

Therefore, RefD((ci, ti), (cj , tj)) approximates the binary
relationship Preq((ci, ti), (cj , tj)).

4.2 Prerequisite graph construction
Given the score matrix W from Section 4.1, we want to
construct the acyclic prerequisite graph PG where concepts
correspond to nodes and directed edges from concept ci to
cj with weight wi,j are added. However, since RefD((ci, ti),
(cj , tj)) is a heuristic to approximate Preq((ci, ti), (cj , tj)),
errors are introduced and PG constructed from W is not
necessarily acyclic yet. For example, suppose that from the
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Figure 1: Client server architecture of our learning
platform. Adapted from [9]

first phase, given three given concepts, a, b, c, we obtained
the following matrix W :

W =

 0 x = −0.2 −z = 0.2
−x = 0.2 0 y = −1.0
z = −0.2 −y = 1.0 0

 (1)

The entries in W (cf. 1) correspond to the weights x =
wa,b, y = wb,c, z = wc,a, respectively. This matrix results in
a PG with a cycle because a is a prerequisite for b (since
x < 0), b is a prerequisite for c (since y < 0), and c is a
prerequisite for a (since z < 0). To remove cycles, we apply
to W the following method. Concept ci, which is stored in
the i-th row of W , is only connected to the prerequisite with
the highest absolute weight wi,j∗ in row i. If all weights are
zero in row i, ci has no outgoing edges. This way the most
powerful prerequisite relationships are preserved.

This method only prevents cycle formation in the graph,
but still allows to model scenarios like one concept being a
prerequisite for multiple concepts or multiple concepts being
prerequisites for a single concept. However, PG might still
contain redundant edges after applying our method. For
example, assume that we swap the weights of z in W (cf. 1),
so z = 0.2 and −z = −0.2. Then our method results in a
being a prerequisite for b and c, while b is a prerequisite for
c. Now c is directly reachable from a, but also from a over b.
To remove such redundant edges, we compute the transitive
closure of the acyclic PG using Warshall’s algorithm. The
resulting PG can then be visualized.

4.3 Architecture and Implementation
We are in the process of integrating the methods described in
Section 4 into our e-learning platform which uses YouTube
videos as video learning materials. The platform is built on
top of Open edX2. In the context of the e-learning platform,
the prerequisite relationships are extracted offline given a
set of concepts, which allows us to construct the prerequi-
site graph PG from the score matrix W . A small sample PG
is depicted on the right-hand side in Fig. 4.3 for the domain
”Operating Systems”. For example, to understand the con-
cept ”Activation Record”, it is assumed that a learner knows
about ”Stack”and all the other concepts shown in the graph.
Therefore, learners may only start ”Activation Record” once
they completed all prerequisites.

2https://github.com/edx/edx-platform
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The rest of the client server architecture of our e-learning
platform is depicted in Fig. 4.3. Initially, a set of concepts is
automatically extracted from text documents such as books
or slides according to [13]. URLs of video learning materials
are then extracted from YouTube, together with the pairwise
prerequisite relationships between the concepts based on the
subtitles. Whenever a learner wants to study a concept, she
submits a query through the front end, e.g. ”Activation
Record”, and the query is then transferred to the server for
processing. The server queries PG to return the subgraph
which contains the requested concept and its prerequisites
as a list of JSON objects, where each concept contains addi-
tional metadata like URLs to multiple YouTube videos and
which of those should be recommended to be watched first
by the learner, i.e. their rankings.

5. EVALUATION
The resulting PG depends on the quality of the identified
prerequisite relationships. Therefore, for experiments we
analyze the performance of our approach described in Sec-
tion 4.1 in terms of how well it identifies prerequisite rela-
tionships according to the first phase of our methodology.

5.1 Datasets
For the experiments we used Metacademy3, which provides
concepts for particular domains together with the prereq-
uisite relationships among these concepts. Prerequisite re-
lationships were annotated manually by experts of Meta-
cademy. We focus on the domain ”Data Structures & Algo-
rithms”in our experiments which is comprised of 30 concepts
from which we replaced three of them by three alternative
ones that were listed as prerequisites for some of the con-
cepts, but not included in the dataset. The main reason
for this decision is due to them covering aspects of top-
ics that are already included. From these 30 concepts, we
randomly select 43 positive prerequisite relationship pairs
for our experiments. In line with previous approaches [6,
8], we evaluate our method on a balanced dataset. Thus,
we also generate 43 negative pairs by combining concepts
that have no prerequisites in common. For each of the 30
concepts we retrieved the first n videos from YouTube and
merged them into a single text document per concept, where
n = 1, . . . , 20.

5.2 Performance for Prerequisite Detection
Our baseline method extracts the subtitles from a single
video, whereas all other methods rely on merging the subti-
tles of multiple videos for a concept. We analyze how pre-
cision, recall, and F1-score of our proposed method are af-
fected by varying n, the number of considered videos per
concept ci from which the subtitles are extracted to form
the corresponding text document ti.

The results are shown in Fig. 5.2. In terms of F1-scores,
we observe that they gradually increase from 0.46, when us-
ing only subtitles of a single video per concept, up to 0.75
when incorporating subtitles from up to 20 related videos
for a concept. Especially in the beginning, when using less
than six videos per concept for subtitle extraction, adding
more videos improves the F1-scores noticeable. But how
does varying n affect precision and recall? Depending on

3https://metacademy.org/browse

Figure 2: Influence of n, the number of considered
videos per concept to be used for extracting subti-
tles, on the performance of our method.

the application, one of the two metrics might be more im-
portant. Fig. 5.2 indicates that precision slightly declines
from 1.0 to 0.9 when considering more than 10 videos be-
fore stabilizing. However, at the same time recall roughly
doubles from 0.3 to 0.65 when considering the 20 most rele-
vant videos compared to using only a single video. Overall,
the experiment suggests that including multiple videos per
concept yields a more accurate detection of prerequisite rela-
tionships compared to using a single video per concept. One
possible explanation for this increase in recall is that by in-
cluding a larger number of videos, we also include a richer vo-
cabulary as different educators prefer different terms. This,
in turn, benefits the exact matches used in our method for
detecting prerequisite relationships. One might even argue
that this roughly corresponds to the idea of querying re-
lated Wikipedia articles instead of limiting one’s computa-
tions to the Wikipedia articles describing the respective con-
cept. However, this observation from our experiments might
be an artifact and not hold for other domains and thus we
cannot rely on this effect.

6. CONCLUSION
In this paper we have demonstrated that we can detect pre-
requisite relationships among video learning materials based
on their subtitles using an unsupervised approach by utiliz-
ing the core idea of the well-known RefD metric with exact
matches of concepts in subtitles that were collected from
videos. Using only this indicator alone to determine prereq-
uisites shows its effectiveness. This implies that our method
could also be incorporated as a feature into supervised ap-
proaches to improve their performance.

One limitation of our proposed method is that it relies on
exact matches and therefore ignores synonyms and seman-
tically related terms that describe similar concepts. There-
fore, it seems promising to support fuzzy matches in our
method. One idea would be to employ word embeddings to
that end in a similar fashion as described in [8]. Moreover,
we have evaluated our proposed method only on a single
domain thus far, but we plan to assess the performance
on additional datasets from different domains. We hope
our methodology of identifying the prerequisite relationship
among video learning materials and presenting their related
materials accordingly will improve the learning experience
of students.
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ABSTRACT 

Some current methodologies stress the importance of 

continuously assessing the students to check their progress, 

instead of having an only final examination. To do so, several 

learning resources are presented to the students, so they can 

complete different actions over those resources at certain 

particular dates. This scenario presents a good chance for research 

since it might be useful to analyze the point up to which students 

complete in time the tasks they are supposed to do. In this paper, 

we present a method that takes raw log Moodle data and generates 

new features that represent the degree of anticipation/delay of 

students when completing the tasks suggested by their tutor. We 

have developed a system that implements this method obtaining 

some minable sights that preliminarily seem to be useful to predict 

phenomena such as academic dropout. Obviously, future deep 

experiments must be conducted to demonstrate the validity of 

those new features. 

Keywords 

Data preprocessing; E-learning; Continuous Assessment; 

Assignment-related temporal features; Moodle. 

1. INTRODUCTION 
In the last years, new formative paradigms such as E-learning 

(Electronic Learning) have emerged in order to provide people 

with ubiquitous learning [1]. E-learning platforms like Moodle 

provide useful data about students’ behaviors that can be 

exploited by Educational Data Mining (EDM) or Learning 

Analytics (LA) techniques [2]. 

Many current education initiatives are based on continuous 

assessment during the courses. It means that students are 

encouraged to complete different assignments at certain suggested 

dates [3]. Some of those students will complete those assignments 

at the suggested date, others will do it earlier and some of them 

may complete it late. 

In this paper, we present a method that takes Moodle logs from a 

particular course and a list of suggested dates where assignments 

are suggested to be completed by the students according to the 

tutor recommendation and generates a minable sight in the form 

of a table containing as many rows as students enrolled in the 

course and as many columns as assignments or tasks that students 

should carry out. Each cell will take an integer value representing 

the degree of anticipation or delay for the particular student (row) 

to complete each task (column) suggested by the tutor. These new 

features can be useful in the prediction of the students’ 

performance, which is one of the mail goals of EDM. 

Although there is some literature on procrastination [4], to the 

best of our knowledge, it is the first time that the high-level 

features we propose have been used in EDM field so our ideas 

may represent an interesting line of research, which is the main 

contribution of this paper. 

The rest of this paper is organized as follows. Section 2 presents a 

brief description of the proposed method. Section 3 contains a 

technical description of the implemented tool and the preliminary 

results obtained. Finally, Section 4 includes a discussion of the 

results and conclusions obtained, as well as some potential future 

lines of research. 

2. METHOD 
In this paper, we propose a method that intends to generate new 

features from Moodle logs that represent the degree of 

anticipation or delay for each student to complete the tasks 

proposed by the tutor in order to reach the formative results 

supposed to acquire during continuous evaluation. 

Those suggestions may be really diverse and include tasks such as 

reading a document, watching a video, taking part in a forum or 

submit a report. In particular, we have defined a series of potential 

kinds of tasks that the students can carry out with educational 

resources uploaded to the Moodle virtual classroom by the tutor. 

Those are: View, Create, Update, Delete, Subscribe, Review, 

Submit, and Start. For each educational resource and type of task, 

the tutor has to define a reference date when the students are 

supposed to complete that task on the respective resource (Table 

1). 

The proposed method intends to take raw Moodle data and 

generate a new feature for each resource and type of task in a way 

that each new attribute will take negative values for “eager” 

students, positive values for “late” students, and 0 values for 

students who complete their tasks exactly the same day as the 

tutor suggested. 

This method is intended for EDM/LA experts who intend to use 

these kinds of features in order to analyze their impact on 

students’ performance. Note that our method starts from Moodle 
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log data that register all the events (actions) carried out by the 

students on each resource of the Moodle platform. 

Table 1. Excerpt of an example of suggested tasks and dates 

Computer Architecture Course 

Week 1 

Task Suggested Date 

View the Presentation Session (VPS) 8-Oct-2019 

Read the Teaching Guide (RTG) 13-Oct-2019 

Week 2 

Task Suggested Date 

Subscribe to Doubts Forum (SDF) 14-Oct-2019 

Visualize Unit 1 PDF Document (VU1) 16-Oct-2019 

Submit the report of Activity 1 (SA1) 20-Oct-2019 

… … 

We have also defined our approach in a way that the expert can 

perform the following tasks to particularly design his/her data 

analysis: 

1. Student selection (focus only on some certain students).  

2. Period selection (focus only on certain time intervals of 

the course). 

3. Resource selection (only consider some educational 

resources). 

4. Task type selection (only consider some types of actions 

for each resource). 

5. Reference dates definition (define, for each selected 

resource and type of action). 

6. Generate new attributes’ values (for each selected 

resource, type of action and student). 

7. Manually add the class attribute for the latter analysis 

(dropout, pass/fail, …). 

That would lead to a minable sight for predictive purposes with 

the newly generated features. Table 2 shows an example. 

Table 2. Excerpt of an example of generated minable sight for 

academic dropout prediction 

 
New Generated Features 

Week 1 Week 2 … 

D
ro

p
o

u
t 

Student 

V
P

S
 

R
T

G
 

S
D

F
 

V
U

1
 

S
A

1
 

…
 

Student1 0 -2 0 -1 -3 … 0 

Student2 +2 +3 0 +8 +12 … 1 

… … … … … … … … 

Studentn +1 0 +2 -1 0 … 0 

3. IMPLEMENTED SYSTEM AND 

RESULTS 
In this section we will explain the main aspects about the design 

of the system (3.1), how the system works (3.2) and system 

outputs (3.3). 

3.1 Design and Technical details 
The system was designed in order to meet four important main 

objectives:  

1. The implemented method should guide the user step by 

step, executing the different tasks developed as an 

assistant, to finally obtain the desired minable view.  

2. Due to the problem of dealing with large volumes of 

records to be processed, data persistence was decided 

not to be necessary. In our case, preprocessing the data 

in memory helped speed up the application of the 

different data selection, cleaning and transformation 

techniques.  

3. During the development of the application, it was 

intended to design a system focused on usability, in 

order to facilitate the learning and use of the tool by the 

end-user.  

4. It was necessary to define a properties file so the user 

could define some parameters difficult to provide a 

value for in execution time. 

To achieve these objectives, the implementation was based on a 

web development paradigm with generally visual components 

(selects, multi-selects, calendars for date selection), except those 

values that are necessary to enter into the system for the creation 

of new high-level features, which inevitably force the introduction 

of the necessary values.  

From a technical point of view, the implementation of the tool 

was carried out under the Java development language (JDK 1.8), 

mainly due to the multiple capabilities and features it offers. Since 

our system is a web application, we relied on its main framework, 

Spring 5.0, granting an agile development, based on the injection 

of dependencies and therefore, decoupled and easily scalable. This 

framework offers by default the Thymeleaf 3.0.4 template engine 

for the creation of the different views and, in our opinion, 

perfectly meets the needs imposed, as it allows the definition of 

reusable fragments and layouts, as well as a wide set of 

expressions to directly deal with the different data models 

generated at each step or task performed. 

We also used the Bootstrap 4.0.0 framework, which has facilitated 

the design of the application interfaces, providing the web 

application with responsive features necessary to adapt the tool to 

the different existing viewing platforms. Apache Maven 4.0.0 let 

us manage and build the project in a simple way, as well as define 

the necessary dependencies of the system, obtaining them directly 

from its central repository.  

Other technologies or frameworks such as jQuery (improvement 

of the interactivity of the application with the end-user), jUnit 5, 

Mockito (unit tests of validation of the most important methods of 

the application and integration of components) and Docker 

(creation of lightweight containers and highly portable for 

deployment) were used for the development of the project.  
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3.2 System working 
As already mentioned, the system defines a series of tasks to be 

performed as an assistant. The system will guide the expert 

through the following implemented tasks, which are listed and 

detailed below, in order to be able to design a personalized 

educational data analysis: 

1. Loading of the Moodle log file (Comma Separated 

Values -CSV- file) of a specific subject, that is, the 

source dataset to be preprocessed. 

2. The expert selects those students not to be included in 

the final dataset.  

3. The system allows the expert to select a date range, 

discarding all those records that are not inside that 

period. The system will not allow selecting dates 

outside the dates range existing in the dataset.  

4. The expert selects those resources that he or she does 

not want to include in his analysis.  

5. The system allows the grouping of resources, in order to 

consider them, from that moment, as the same resource.  

6. The system shows for each resource, the different types 

of actions existing in the dataset, and the expert selects 

those that he or she wishes to remain in the final dataset 

(Figure 1 shows a screenshot of this step).  

 

Figure 1. Selection of types of actions 

7. The expert establishes the reference date for each 

resource and type of action (see Figure 2).  

 

Figure 2. Reference dates definition 

8. The system selects the first existing action type for each 

resource and user. 

9. The system generates for each student a single record 

where, for each resource and type of action, it creates an 

entire attribute. This attribute represents the difference 

in days, between the reference date and the date 

recorded in the input file (see Figure 3, where students’ 

names have been anonymized). 

 

Figure 3. Attribute values system generation 

10. The system allows the expert to give value to some class 

attributes for classification purposes (see Figure 4).  

 

Figure 4. Class attributes user value definition 

11. The expert exports the results obtained to a file with 

CSV format.  

3.3 System output 
The system generates a CSV file containing one record per user 

(anonymized), indicating the degree of advancement or delay in 

the performance of the activities selected by the expert, according 

to the date proposed by the tutor, as well as the new features 

created for classification. Figure 5 shows an example.  

 

Figure 5. Example of CSV file generated by the system 

After conducting some preliminary experiments, it was possible to 

obtain some interesting minable sights and get some predictive 

models using Weka1. Applying, for example, a classification 

algorithm based on decision trees, we obtain an interesting model 

to predict whether a student will pass or fail the course. Below, we 

show the results obtained for this example case: 

Decision Stump-Classification 

Case Study I_viewed <= -2.0 : Pass 

Case Study I_viewed > -2.0 : Fail 

If we look at the predictive model returned by Weka, we find that 

the activity “Case Study I” becomes especially relevant among all 

the resources and types of actions of the original dataset. It 

indicates that all those students who visualize this activity with an 

advance of two or more days, with respect to the reference date 

established by the tutor, will finally pass the subject. Otherwise, 

they will fail.  

                                                                 

1 https://www.cs.waikato.ac.nz/ml/weka/ 
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This acquired knowledge could directly influence the decisions 

that teachers should make regarding the activity, monitoring their 

development through tutorials with students, reinforcing the 

teaching material, encouraging students to carry it out or other 

types of actions. 

4. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a method that allows generating 

new features that represent the degree of anticipation or delay of 

students when completing the tasks suggested by the tutor. Our 

method is applicable in open courses that adopt methodologies 

based on the existence of a tutor that guides students by defining a 

series of continuous tasks that students are encouraged to 

complete at a certain date. 

We have developed a preliminary system that implements that 

method with Moodle data, and also gives the user the possibility 

of performing some preprocessing tasks, such as student selection, 

resource selection, and so on. We have conducted preliminary 

experiments to obtain some minable sights of different high 

education open courses. Those tests make us be optimistic about 

the usefulness of the newly generated attributes and their potential 

application for future research. 

The main future line of research that we should carry out next is 

the application of the method in different courses and analyze if 

the new proposed features are valid to predict important 

educational phenomena such as students’ dropout, students’ final 

marks, and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once a stable release of the system is finished and tested, we 

intend to provide the community with an access URL so that the 

system can be publicly used and tested. 
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ABSTRACT 

This research aims to predict the academic performance of 

students when interacting with an Intelligent Tutoring System 

(ITS) from emotions detection and analysis. We use data from 47 

university students in a virtual learning environment. We have 

used data gathered form face recording of students' interactions 

with the system to detect students' emotions and determine to 

what extent they can predict the final students’ performance 

during the learning session. 

Keywords 

Predicting performance, Emotion detection, Video analytics. 

1. INTRODUCTION 
Emotions are a critical component of learning and problem 

solving, especially when it comes to interacting with computer-

based learning environments (CBLEs) [5]. Studies from affective 

computing literature suggest that facial expressions may be the 

best single method for accurately identifying emotional states [4]. 

The automatic detection of emotions technics are capable of 

isolating the mood of a learner by means of a facial recognition 

system through artificial intelligence and there are already tools  

that enable the processing of data in the form of video, such as the 

Microsoft Emotion API [1], FaceReader™, etc. However, we 

have not noticed previous studies testing to what extent the 

emotion recognition result of these tools is powerful enough to 

predict student´s performance.  It could be potentially 

contributing to enhance the quality and efficacy of CBLEs (e-

learning, multi-agent systems, intelligent tutoring systems, serious 

games, etc.) by including the learner's emotional states. 
This research aims to test if student’s emotions recognized by and 

API during a learning session with an ITS can be enough to 

predict the final student’s performance.   

2. EXPERIMENTS 

Data were collected from 47 undergraduates enrolled at a public 

university in the north of Spain whom learned about a complex 

science topic while interacting with the ITS MetaTutorES [3] a 

multi-agent computerized learning environment. Participants 

represented a variety of disciplines, including psychology, 

education and engineering. The emotion data collected was 

naturally occurring, the emotions arouse from interactions with a 

the ITS MetaTutorES, designed to teach learners about the human 

circulatory system during a session ranging from 2:30 to 3:00 

hours. During and at the end of the session, performance test 

about the circulatory system knowledge were taken for every 

subject, giving a final performance value ranging between 0 and 

10, showing 10 the best performance. A pretest about previous 

circulatory system knowledge is taken at the beginning of the 

session and final performance is corrected based on that previous 

level. Videos from every learner' facial expressions were captured 

with a webcam and analyzed using automatic facial recognition 

software (Microsoft Emotion API [1]). The API classifies the 

facial expression in eight classes of emotion: anger, contempt, 

disgust, fear, happiness, neutral, sadness, and surprise. The 

analysis allows us to obtain at least one highest emotion during 

the learning session from every students´ frame having a high 

volume of frames (1 frame for second) for each student in every 

session. The confidence (values between 0 and 1) gives the 

likelihood for each class of emotion. 

The first step of the experiment consists on check the correlations 

between the emotions detected and the students´ performance. 

The Pearson correlation test examines the relationship of each 

emotion with the student’s performance obtanined during the 

learning session. The R value in Pearson's correlation coefficient 

goes from -1 to 1, meaning both values a high level of correlation 

and 0 a null level of correlation between variables (See Table 1). 

Table 1: Pearson correlation test results 

Emotion R-Value 

Anger 0.1295 

Contempt 0.2165 

Disgust 0.0882 

Fear -0.2415 

Happiness 0.0459 

Neutral 0.0463 

Sadness 0.1546 

Surprise -0.1062 

According to the results of table 1 none of the variables is highly 

correlated with the performance. However, based on the axes of 

emotions valence -positive emotions (happiness); negative 

emotions (anger, contempt, fear, disgust); non valence (neutral 

and surprise) [6] and looking at the positive or negative 

relationship, we can observe that only negative or non valence 

emotions are negatively related with performance.  
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In the second step, we applied several classification algorithms 

using the 8 emotions as input attributes for predicting the 

student’s final performance. We used white box classification 

models (decision trees and rule induction algorithms) because the 

models they produce (tree and IF-THEN rules) are easy to 

understand [7]. In our experiments, we selected six well-known 

classification algorithms provided by WEKA [8]: three decision 

tree algorithms and three rule induction algorithms (see Table 3). 

Table 3: Decision Trees classification algorithms. 

Type Algorithms Description 

 

 

 

Trees 

J48 

 

Reptree 

 

Randomtree 

Java implementation of C4.5. 

Fast tree learner that uses reduced-

error pruning. 

Construct a tree that considers a given 

number of random features at each 

node. 

 

 

 

Rules 

Jrip 

 

Nnge 

 

 

Part 

RIPPER algorithm for fast, effective 

rule induction. 

Nearest-neighbor method of 

generating rules using generalized 

exemplars. 

Obtain rules from partial decision trees 

built using J4.8 

 

We executed each algorithm using stratified 10-fold cross-

validation in which the dataset is randomly divided into 10 

disjointed subsets of equal size in a stratified manner. We have 

compared the test results using the Accuracy and ROC Area 

evaluation measures (see Table 4). 

 

Table 4. Results produced by all algorithms. 

 

Algorithm % Accuracy ROC Area 

Jrip 63,8298 0,5820 

Nnge 53,1915 0,5290 

Part 63,8298 0,6590 

J48 63,8298 0,6770 

Reptree 48,9362 0,5170 

Randomtree 59,5745 0,5950 

Avg 58,8653 !Error de sintaxis, 

)0,5932 

 

Table 4 shows that the best results (highest values) were produced 

by J48 (63,8298%Acc and 0.6770 AUC). Next, we show in Table 

5 the obtained decision model by J48 algorithm. 

 

Table 5. J48 decision tree. 

 

Contempt <= 0.126904: Pass  

Contempt > 0.126904 

|   Disgust > 0.137741 

|   |   Sadness <= 0.1977232 

|   |   |   Fear <= 0.1551857: Pass  

|   |   |   Fear > 0.1551857: Fail  

|   |   Sadness > 0.1977232: Fail  

|   Disgust <= 0.137741: Pass  

Number of Leaves  :  5 

Size of the tree :  9 

 

The Table 5 show us a decision tree that let us learn some 

interesting information from. On one side, students who Pass 

show lower values than an umbral of emotions contempt, disgust, 

fear and disgust, and students who Fail show higher values than a 

umbral of these emotions.. On the other side, we can observe that 

negative emotions have more prediction power on performance 

than positive or non-valence emotions. And finally, negative 

emotions values over 0.15 (15% of the session time) are definitory 

to a Fail ending. 

3. CONCLUSIONS 
There was an assumption that emotions experienced during 

complex learning will impact learning and problem solving [2], 

and therefore, achievement. However, in this study, we observe 

that student’s emotions when interacting with an ITS are not 

enough for predicting students’ final performance. The results 

give us some information the relationship of each emotion with 

the student’s performance. However could be necessary to refine 

and redefine the API emotions classification based on an 

educational psychology framework for some close emotions (e.g 

attention, engagement, hope, pride, etc.).  

Finally, we purpose as a future prospect adding other different 

variables/attributes from the interaction with the ITS such as log 

files, eye tracking, etc. in order to obtain higher accuracy values to 

predict students´ performance. We also want to use more 

classifiers algorithms, particularly deep learning which would 

perform significantly better than classic methods. 
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ABSTRACT
This paper presents several strategies that can improve neu-
ral network-based predictive methods for MOOC student
course trajectory modeling, applying multiple ideas previ-
ously applied to tackle NLP (Natural Language Processing)
tasks. In particular, this paper investigates LSTM networks
enhanced with two forms of regularization, along with the
more recently introduced Transformer architecture.
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1. INTRODUCTION AND MODEL OUTLINES
1.1 Fundamentals of Predictive Modeling
Recent innovations in deep learning methods for NLP (Nat-
ural Language Processing) tasks such as [7] in the past few
years have consistently pushed the state of the art in a wide
range of benchmark NLP tasks, while yielding new strategies
that can be applied to predictive modeling tasks in a more
general sense. This is because the majority of these NLP
tasks within the scope of these innovations can be parame-
terized in terms of modeling the function f in the equation

P (y|x0, . . . xt) = f(x0, . . . xt; θ) (1)

where f is a probability mass function with parameters θ
over the random variable y, and x0, . . . xt, drawn from a dis-
crete set of tokens T , represent the context from previous
time steps. Unfortunately, there is little literature in the
domain of education analytics exploring the effectiveness of
innovations from NLP for education analytics tasks that also
conform to this predictive modeling paradigm. Nevertheless,
the LSTM (Long-Short-Term Memory) DNN (Deep Neural
Network) architecture, an earlier innovation which was the
architecture of choice for predictive modeling tasks in NLP
before the past few years, has been successfully applied to
several education analytics tasks. These papers demonstrate
potential for further exploitation of the similarities between

predictive modeling tasks in education analytics and NLP,
while providing a baseline to compare with more recent in-
novations presented in this paper.

1.2 Previous Work with MOOC Course Tra-
jectory Modeling

One of the first papers to present an application of DNN
models for predictive modeling tasks in education analytics
is [4], where the authors specifically investigate the appli-
cability of DNN models for modeling student course trajec-
tories in MOOCs (Massive Open Online Courses). Specif-
ically, the authors of [4] demonstrate the effectiveness of
LSTM DNN models for this task over other strategies, such
as using n-gram models that condition their predictions over
small number of past course nodes. Finally, the authors pro-
vides suggestion for incorporating such a predictive model in
a wider context, including tie-ins with the MOOC service to
provide user-facing suggestions and live feedback to monitor
the predictive model’s performance.

1.3 Baseline LSTM
This model is identical to the Baseline LSTM model fea-
tured in [4], using the same LSTM architecture and a nearly
identical hyperparameter set and training scheme, further
detailed in Section 2.2. This model is intended as a control
baseline to assess the performance of other models tested in
this paper.

1.4 Transformer Architecture
As noted in Section 1, the shared abstraction of both course
trajectory modeling and many NLP tasks as a discrete next-
step predictive task suggests applying innovations from NLP
to improve performance in course trajectory modeling. In
particular, the Transformer architecture, first featured in [7],
is one such major architectural innovation.

Transformer Architecture Details. In [7], the authors con-
struct a DNN model architecture centered around modular
Transformer blocks as described in Section 1.4. In contrast
with the need for O(n) forward and backward passes per
input sequence through each of the LSTM recurrent nodes,
the entire Transformer model is designed to only require
one forward and backward pass through the entire model to
process each input sequence. In addition to forming next-
step predictive models from these transformer blocks, The
authors also provide additional architectural topologies for
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models tailored to other tasks such as machine translation
or text classification, emphasizing the applicability of the
Transformer blocks for a diverse array of NLP tasks. Please
refer to [7] for more information about the composition of a
Transformer-based next step predictive mode.

Multi-Head Dot-Product Self-Attention. The multi-head
dot product self-attention mechanism is the core architec-
tural innovation which enables a Transformer block to fit
to temporal correlations present in the training set in one
forward and backward pass. On an abstract level, the opera-
tion used by the dot product self-attention mechanism with
h heads to compute temporal correlations is the the scaled
and masked outer product of each ki, qi : i ∈ {1, . . . , h}
(derived from the input tensor x ∈ Rn × Rd) as shown in
Equation (2):

ti = softmax

(
mask(kiq

>
i )√

bd/hc

)
(2)

The results ti ∈ Rn × Rn : i ∈ {1, . . . , h} then directly
capture how the features of each ki and qi are correlated
over each pair of time steps in the input sequence. Note
that the operator mask(·) in Equation (2) zeros out lower
triangular entries in kiq

>
i ∈ Rn × Rn, corresponding to the

dot product of features in qi with features in ki from previous
time steps. Please refer to [7] for more information about
the multi-head dot product self-attention mechanism and
the the Transformer block as a whole.

1.5 LSTM Enhancements
This section features two different enhancements featured in
Kirill Mavreshko’s 1 implementation of a Transformer-based
next-step predictive model that could be independently used
with LSTM models to yield performance improvements for
student course trajectory modeling in MOOCs. These en-
hancements have also been independently backed with theo-
retical justification and empirical experiments, demonstrat-
ing performance improvements in coordinated NLP tasks
when applied to LSTM models, as further detailed in [2]
and [5].

Confidence Penalty Term in Loss. The baseline LSTM
model already features some form of regularization, partic-
ularly dropout in the weights of the recurrent layers during
training. However, for any classification task with a correct
output label ytrue in a set of possible labels T , examining
the equation for the cross-entropy classification loss

L(θ) = − logP (ytrue; θ) = − log ptrue pj = P (yj ; θ) ∀j ∈ T
(3)

suggests an additional regularization term that penalizes
highly confident distributions to reduce overfitting. The con-
fidence penalty uses H(p(y; θ)) as quantitative measure of
confidence in a model’s output distribution, where a higher
value represents a lower level of confidence that the model
predicts for each outcome j ∈ T . As a result, the new loss

1Copyright 2018 by Kirill Mavreshko. Source code at
https://github.com/kpot/keras-transformer

function expands to

L∗(θ) = − log ptrue−βH(p(y; θ)) = − log ptrue+β
∑
j∈T

pj log pj

(4)
where β is a scalar hyperparameter weight for the Confi-
dence Penalty loss term. For theoretical arguments and em-
pirical evidence for adding a confidence penalty term, please
refer to [5].

Tied Embedding Layers. Another opportunity to intro-
duce additional regularization to any sort of discrete next-
step predictive model is found when examining the model’s
embedding and output layers, specifically

• The embedding layer L with dimension |T | × dembed,
mapping input tokens in T to vectors in a latent feature
space.

• The output layer W with dimension dfinal×|T |, map-
ping the final intermediate layer output h to an prob-
ability logit over the set of all input tokens T .

After enforcing the condition dembed = dfinal by inserting
a feed-forward layer between the rest of the model and the
output later, W is tied to the embedding layer L fixing W =
L>. For theoretical arguments and empirical evidence for
the effectiveness of tying the output layer in this fashion,
please refer to [2].

2. EXPERIMENTS AND EMPIRICAL RE-
SULTS

2.1 Dataset Cleaning and Processing
2.1.1 Procedures for Dataset Cleaning and Process-

ing
Given that the task of student course trajectory modeling
requires predicting where a student will navigate next given
the student’s previous navigation patterns, extensive pro-
cessing of raw MOOC server logs is required before any
training can occur. This process is explained in great de-
tail in [4], with the main steps listed below:

1. Given the raw server log records, select the basic_action
column, timestamp, username, and title columns nec-
essary to build unique course node tokens in step 3.

2. Filter out all log records except those with basic_action

label seq_next, seq_prev, or seq_goto, representing
the full set of navigation actions a student can take for
each of the MOOCs.

3. Construct a unique positive integer token ID for each
course node through concatenating each component of
the full course path to construct a unique name for
each course node, then assigning each unique name to
the token ID.

4. Assemble the full sequence of navigation records for
each user by grouping by user ID, then ordering within
in each group by timestamp.
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Table 1: MOOC Course Trajectory Dataset Sum-
mary Statistics

Institution Course Term Nodes Users
DelftX AE1110X Fa. 2015 291 14496
UCBX EE40LX Fa. 2015 287 30633
UCBX Fin101X Sp. 2016 114 2951
UCBX ColWri2.2X Sp. 2016 54 40698
UCBX CS169.2X Sp. 2016 204 940
UCBX Policy01X Sp. 2016 129 1804

Table 2: Main Hyperparameters by Architecture
Type

Architecture Type LSTM Transformer
Max. Seq. Length 256 256
Main Layer Width 128 128
Layer/Block Count 2 2
Attention Heads N/A 8
Optimizer Adam Adam
Learning Rate 0.01 0.0005
Batch Size 128 64

5. Prepend the token ID representing the course home-
page to every sequence that does not already begin
with this token ID, then pad or truncate of the result-
ing sequences to the maximum sequence length, adding
0 tokens if necessary.

2.1.2 Additional Notes on Dataset Selection
In [4], additional criteria are included for selecting courses
used to demonstrate the utility of a student course trajec-
tory model, including approximating of the entropy of each
dataset as a set of discrete random processes via fitting a
HMM (Hidden Markov Model) to each dataset. For the ex-
periments in this paper, limited access to MOOC trajectory
records preempts the utility of filtering out datasets with low
entropy over all course sequences. Table 1 provides summary
statistics for the six courses chosen for this paper, hailing
from the MOOC offerings of these two universities:

• DelftX from the Delft University of Technology in Delft,
Netherlands

• UCBX from the University of California, Berkeley in
Berkeley, California

2.2 Hyperparameters and Training Context
All training and evaluation was completed on a remote Linux
server CPU equipped with 2 GeForce Titan X GPUs (Graph-
ics Processing Units). The script for training and evaluation
is written in Python 3 using the Keras [1] deep learning API
over a Tensorflow backend. Table 2 provides the full set
of hyperparameters used for training and evaluating each
model on each course record dataset. As the goal of this
paper is to demonstrate specific differences in model archi-
tecture and training that lead to performance gains relative
to the earlier results, hyperparameter tuning was not done
for any of the LSTM models to facilitate comparison with
results in [3]. Additionally, minimal hyperparameter tuning
was done on for the Transformer models in order to minimize
the risk of overfitting to the datasets for each course.

Simultaneous Fitting to Multiple Datasets. Since records
from each of the 6 courses were processed as described in
Section 2.1 independently, attempting to fit models on mul-
tiple courses would result in collisions between different sets
of course node tokens. Nonetheless, building a predictive
model that can fit to datasets from a wide range of courses
is a well-defined area for future research.

2.3 Empirical Results
Table 3 presents summary statistics for each model’s final
test accuracy and total training time per batch for each of
the six datasets listed in Table 1. Table 4 presents additional
metrics for the Transformer model pertinent to the analysis
in Section 2.4.3. All statistics in both Table 3 and Table 4
are recorded using the default set of Keras command line
logging tools. 2

2.4 Analysis and Further Considerations
2.4.1 Baseline LSTM Comparison with Previous Re-

sults
At face value, the results for the Baseline LSTM model cor-
roborate those presented in [4], with the caveat that average
accuracy metrics reported in [4] are calculated in a differ-
ent fashion that effectively gives more weight to correctly
predicting tokens that occur in shorter course trajectory se-
quences.

2.4.2 Comparison of Final Test Accuracy Between
Models

Table 3 and Table 4 show that the Transformer model achieves
an average final test accuracy of around 63 percent, approx-
imately on par with the average final test accuracy of both
LSTM models without tied embeddings, in contrast with
a marginally yet consistently higher 64 percent average for
the LSTM models that use Tied Embeddings (as described
in Section 1.5). On the other hand, including the Confidence
Penalty (as described in Section 1.5) does not provide any
meaningful improvement in final test accuracy for any of the
six datasets. As the training scheme for all models featured
in this paper invoke early stopping after 3 epochs without
improving validation loss, training any of the above models
for more epochs will most likely lead to overfitting on the
training set.

2.4.3 Further Analysis of Final Test Accuracy for Trans-
former Models

At a first glance, the final test accuracy results in Table 4
seem to contradict Transformer models’ considerable per-
formance improvements over LSTM models demonstrated
in [7]. Nevertheless, the largest dataset featured in this pa-
per only includes 40,698 course trajectory sequences, which
is multiple orders of magnitude smaller than the WMT ma-
chine translation datasets used in [7] with millions of sen-
tence pairs per language pair. This discrepancy in dataset
size can cause overfitting for a particular deep learning ar-
chitecture optimized to train with much larger datasets,
even while controlling for model and training hyperparam-
eters. Furthermore, the final training accuracies listed in
Table 4 suggest that the Transformer model has overfit to

2BaseLogger and ProbarLogger Callback utilities. [1]
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Table 3: Overall Performance Metrics by Architecture
Model Baseline LSTM LSTM w/ Conf. Penalty LSTM w/ Tied Emb. LSTM w/ Both Enh. Transformer

Final Test Accuracy
Average 0.6373 0.6355 0.6418 0.6388 0.6383
Std. Dev. 0.05623 0.05558 0.05728 0.05592 0.05455

Training Time per Batch
Average 35 ms 35 ms 35 ms 35 ms 2 ms
Std Dev. 0.94 ms 0.92 ms 0.89 ms 0.86 ms 0.04 ms

Table 4: Additional Performance Metrics for the
Transformer Model

Test Acc. Train Acc.
Average 0.6307 0.6383
Standard Deviation 0.06081 0.05455
Avg. for Large Datasets 0.6438 0.6411
Avg. for Small Datasets 0.6175 0.6355

the smaller datasets in this paper despite the use of early
stopping, particularly for the following two datasets from
courses with fewer than 2,000 unique users as recorded in
Table 1:

• UCBX CS169.2X with 904 unique users

• UCBX Policy01X with 1,804 unique users

In conclusion, these results provide evidence that Transformer-
based models do not yield benefits in accuracy over LSTM
models when trained with datasets of similar size to the
MOOC course trajectory datasets featured in this paper, in
contrast with the much larger datasets common to certain
NLP tasks such as machine translation.

2.4.4 Further Analysis of LSTM Enhancements
Given that both the Tied Embedding Layers and the Con-
fidence Penalty are theoretically motivated by a search for
new forms of model regularization, the empirical results in
Table 3 indicate the Tied Embeddings are a marginally more
effective form of regularization than the Confidence Penalty
for this task. Furthermore, since the Tied Embedding en-
hancement specifically targets the input embedding and out-
put layers of a discrete next-step predictive model for regu-
larization in contrast to the Confidence Penalty altering the
entire model’s loss function, the embedding and output lay-
ers of each of the LSTM models play a disproportionately
important role in the model’s performance as a whole for
this task.

2.4.5 Analysis of Training Time Results
In contrast to the Transformer model’s lack of improvement
in final test accuracies for all six datasets, the results in
Table 3 and Table 4 suggest that the Transformer model
outperforms all types of LSTM models by more than an
order of magnitude with respect to total training time per
batch. Given that both the LSTM and Transformer mod-
els are built to accommodate a maximum sequence length of
256 as indicated in Table 2, the results in Table 4 are consis-
tent with the reduced number of training passes through the

model’s computational graph per input sequence, as encap-
sulated in the Transformer architecture’s design goals from
Section 1.4.

2.5 Directions for Future Research
2.5.1 Task-Specific Model Enhancements

As mentioned in multiple sections of this paper, certain task-
specific strategies for improving performance on MOOC course
trajectory prediction covered in [4] are not investigated in
this paper, even if applying these strategies in conjunction
impact performance in a noteworthy manner. Some of these
additional strategies used to improve performance on these
two tasks include:

• Calculating the entropy of each dataset’s best-fit HMM
transition matrix as a criterion for selecting MOOC
course trajectory datasets used to evaluate the en-
hanced LSTM and Transformer models.

• Incorporating auxiliary data inputs, including the time
difference between course navigation actions, into eval-
uating the benefits of enhanced LSTM models and
Transformer models over baseline results from [4].

2.5.2 Model Pre-Training and Multitask Learning
Another more ambitious goal for further research involves
constructing one model that can provide meaningful predic-
tions for multiple tasks with minimal training needs. Given
the wide applicability of models with generalized predictive
modeling capabilities, this model would most likely incor-
porate innovations originally designed to provide multitask
capabilities for NLP applications. For example, [6] presents
a NLP model that is first trained to perform a next-word
prediction task on large text datasets before undergoing
fine-tune training for more specific downstream NLP tasks,
which include tasks such as text classification, sentence em-
bedding, question answering and free-form text generation.
In the context of education analytics tasks, an analogous
suite of tasks for such a model could include modeling over-
all course performance and individualized suggestions for in-
structors assisting students with course material.
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ABSTRACT
Mobile learning platforms cater to intermittent microlearn-
ing by lowering the barrier for re-engaging in the learning
process after a period of disengagement. We examine stu-
dent re-engagement in the context of an SMS-based mobile
learning platform, how to predict it and how it differs from
disengagement. In a sample of 87, 651 Kenyan students,
we analyze data on 1, 196, 780 quiz attempts, finding that
36.3% of students who disengage for a week or more even-
tually re-engage on the platform. They spend more time on
quizzes early on than students who stay disengaged. A Ran-
dom Forest classifier trained on two days of student activity
logs predicts disengagement and re-engagement with similar
performance: F1 scores of 81.2% and 80.9%, respectively.
The prevalence of re-engagement in mobile learning calls for
more research into this behavioral outcome.

1. INTRODUCTION
As the world becomes increasingly connected through mo-
bile technology, mobile devices are becoming an increasingly
viable medium for education. Not only are mobile phones
more affordable than traditional personal computers, but
mobile devices have shallower learning curves, as they re-
quire lower levels of literacy and training [14]. The ac-
cessibility of mobile technology is especially advantageous
in resource-constrained areas. It provides students access
to educational resources without having to make substan-
tial economic trade-offs associated with desktop computers.
Given the rapid development of mobile computing power,
many people in developing economies are predicted to skip
purchasing desktop computers altogether and instead adopt
mobile devices [6]. In comparison to traditional online learn-
ing platforms, mobile learning platforms remain relatively
understudied despite their promise for accessibility.

A common concern with self-directed learning tools is that
students do not stay engaged on the learning platform for
long. The issue of disengagement, defined as a drop in stu-
dent activity on the platform, has been studied extensively,

for instance in the context of Massive Open Online Courses
(e.g. [16, 15, 12, 8]). However, it remains largely unstud-
ied in the context of mobile learning environments. Student
engagement patterns likely vary between desktop and mo-
bile learning environments, considering how many different
applications are available [2] and how deeply embedded mo-
bile devices are in people’s everyday lives. In fact, mobile
learning platforms have been found to provide unique op-
portunities for microlearning sessions, where learning tasks
are broken into shorter chunks that can be managed “on-
the-go” [4]. Especially considering the low barriers to entry
and exit in most mobile learning applications, it is unsur-
prising that a sizable proportion of students engage and dis-
engage freely, which can result in longer gaps of inactivity.
These intermittent usage patterns require that we consider
re-engagement as a distinct behavior in mobile learning and
how it compares to disengagement. Insights from this work
can advance our understanding of how mobile learning works
in practice and how platforms may support at-risk students
through intervention.

In this research, we propose definitions of disengagement and
re-engagement in mobile learning, analyze differences in be-
havior between disengaging and re-engaging students, and
apply supervised machine learning approaches to predicting
disengagement and re-engagement in mobile learning. We
find that 36.36% of students who disengage for a week even-
tually re-engage on the platform within two weeks. A Ran-
dom Forest classifier trained on two days of student log data
can predict re-engagement after two weeks with an F1 score
of 80.9%, showing that early platform activity is indicative
of which students will return later on.

2. BACKGROUND
2.1 Beyond Student Disengagement
Before defining re-engagement, we need to formally define
its prerequisite: disengagement. Defining disengagement
in mobile learning platforms presents a challenge, because
many such platforms are inherently less rigid and prescrip-
tive in their learning design compared to online learning en-
vironments such as massive open online courses (MOOCs).
MOOCs tend to lay out a clear path through course mate-
rials with deadlines, while many mobile learning platforms
provide more room for self-directed learning and agency in
choosing a learning path. This calls for an updated defini-
tion of disengagement for the context of mobile learning.

Disengagement is defined conceptually as a “lack of engage-

Maximillian Chen and Rene Kizilcec "Return of the Student:
Predicting Re-Engagement in Mobile Learning" In: Proceedings
of The 13th International Conference on Educational Data
Mining (EDM 2020), Anna N. Rafferty, Jacob Whitehill, Violetta
Cavalli-Sforza, and Cristobal Romero (eds.) 2020, pp. 586 - 590
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Figure 1: Three students’ daily activity for 60 days
after signing up: student 1 disengages; student 2
stays engaged; student 3 disengages and re-engages.

ment,” and has been operationalized in terms of students’
interaction with or completion of learning objectives, de-
pending on the structure of the learning platform [12]. In
past studies in the context of MOOCs, disengagement has
been defined as a “lack of interaction” [9, 1], the point in
time where a student “fails to submit any further assign-
ments” [15], failure to earn a course certificate [5], failure to
complete a set of modules [3] or a lack of platform interac-
tion combined with a lack of progress towards course comple-
tion [12]. Despite the many studies defining and predicting
engagement in MOOCs, research on modeling engagement
in mobile learning is scarce [7] and definitions of disengage-
ment may not translate well from MOOCs to mobile learn-
ing. Definitions focusing on course completion do not apply
in a context that is unlike a course, and definitions focusing
on an absence of platform interaction may incorrectly la-
bel students who disengage early but return to the platform
later on. Mobile learning platforms offer more opportuni-
ties for “microlearning” sessions in which students are able
to learn in short bursts sporadically or “on-the-go” [4].

A recent study on engagement patterns in mobile learning
on the same platform as in this research found students tend
to be engaged in learning activities during the first few days
after signing up but disengage shortly thereafter. In fact,
75% of all students disengaged within two days of register-
ing, and even among the cluster of engaged students, 68% of
them appeared to disengage in the first ten days [7]. How-
ever, whether a students has completely disengaged can be
unclear at first sight. Consider the three actual students
whose activity over time is visualized in Figure 1. All three
are engaged in the first week, but student 1 disengages and
never re-engages, while student 2 is inactive during the sec-
ond week but occasionally returns to complete quizzes over
the next two months. Student 3 was engaged on the day
of registration but then disengaged for 60 days before re-
engaging. We therefore define a re-engaging student as one
who disengages but then returns to the mobile learning plat-
form. This more accurately characterizes student behavior
in the long run and with some additional granularity.

The ability to distinguish re-engaging students from disen-

gaging students has practical applications, such as for an
automated student support system. The system could send
different kinds of text messages or notifications to students
who are classified as disengaging (i.e. not ever re-engaging)
based on their activity in the first few days. By targeting
students based on their predicted behavior, providers can
tailor reminders to groups of students to highlight learning
opportunities without alienating students who are already
likely to re-engage in the absence of nudging.

2.2 Predicting Student Engagement
As there have not been any large-scale studies predicting
student engagement in mobile learning to date, we build on
a large literature on predicting student engagement and in-
tervention systems in the context of MOOCs [16, 12, 15].
As is the case in MOOCs, a vast majority of students on
mobile learning platforms eventually disengage. Any super-
vised learning approach in which labels correspond to en-
gagement/disengagement would therefore suffer from class
imbalance, i.e., the distribution of class labels is heavily
skewed [10]. A naive classifier could simply predict the
majority label for all instances and achieve a high degree
of accuracy without successfully identifying actual engage-
ment. Nagrecha and colleagues [12] addressed this issue by
re-sampling their training data to balance the distribution
of their labels, as was done in prior work predicting student
disengagement [11]. Due to class imbalance, model accuracy
can be a misleading evaluation metric, and prediction recall
is frequently used as a substitute. Likewise, in this study,
we face a heavy imbalance in class labels (very few students
re-engage). We therefore opt to re-sample our data during
training and evaluate our models using both recall and F1
score.

The user interface of mobile learning platforms tends to be
simpler than ones designed for larger computer screens. For
example, MOOCs tend to have more advanced platform fea-
tures than mobile learning applications, such as video play-
back options and non-traditional assessment types. Prior
studies have focused on engineering features relevant to in-
teraction with video lectures, such as “number of straight-
through video plays” or “number of video views per ses-
sion” [9]. But clickstream data (interaction logs) are more
informative about interactions with the structure of a plat-
form than any specific course, which is why they were found
to offer strong predictive power when analyzing data across
multiple courses on a learning platform [17]. We pose two
research questions in this study:

RQ1. How does the behavior of re-engaging students com-
pare with those who stay disengaged?

RQ2. What features are predictive of student re-engagement?

3. METHODS
3.1 Platform Background & Dataset
We study re-engagement on a text message-based mobile
learning platform called Shupavu 291. It has been used by
over 5 million students and it offers content for over 800
distinct curricula. The platform was developed by Eneza
Education1 to provide a learning resource in regions with

1https://enezaeducation.com/
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Table 1: Daily student activity features for two days.
Feature Name Definition

time.i Time spent on day i

nlessonsfinished.i Num. of lessons completed on day i

nask.i Num. of questions asked on day i

n quizzes.i Num. of quizzes completed on day i

avg solve time.i Avg. time to complete quizzes on day i

n unique quizzes.i Num. of unique quizzes completed on day i

nsummary.i Num. of quiz results viewed on day i

nhw tools.i Num. homework tools (e.g. dictionary)

used on day i

limited access to education. Shupavu 291’s user base pri-
marily consists of Kenyan students, though its influence is
growing in other African countries. The platform was de-
signed by a group of Kenyan teachers, and the course ma-
terials align with the topics and learning outcomes of the
Kenyan national curriculum for numerous subjects in pri-
mary and secondary education. Every interaction with Shu-
pavu 291 is via text message. Students navigate through
menus and quizzes by sending a text message containing a
number corresponding to a menu item from the options re-
layed to them. Students are able to choose from a variety of
grade-specific subjects such as “Fractions” and “Kiswahili.”
For a given subject, students choose a specific topic and re-
ceive compact lecture notes followed by a quiz (generally five
multiple-choice questions). Quiz questions follow the menu
format and are sent individually; students receive instant
feedback on correctness along with an explanation. Stu-
dents may retake quizzes as many times as they like or use
the “Ask-A-Teacher” feature to ask teachers for help.

Shupavu 291 stores a record for every quiz or platform in-
teraction a student completes. The dataset used consists
of 21,302,582 platform actions, including 1,196,780 quiz at-
tempts, from 87,651 students in Kenya. Data beyond self-
reported grade level and platform interactions for each stu-
dent is completely de-identified. For the purpose of this
research, we construct two sub-samples, where each one is
used to solve a separate prediction problem. The first sam-
ple consists of the 87,651 students who completed at least
one quiz on Shupavu 291 (an indicator of their willingness to
engage with content). The second sample consists of those
63,120 students in the first sample who exhibited a seven-
day period of inactivity (i.e. disengagement). The sample
definitions are explained further in the next section.

3.2 Defining the Prediction Task & Features
We define two separate prediction tasks: predicting disen-
gagement, and predicting eventual re-engagement. A disen-
gaging student is defined as one who is inactive (here, not
attempting quizzes) for at least seven consecutive days. A
re-engaging student is defined as one who has disengaged
and then is active (here, attempts quizzes) for at least two
different days within the 14-day period following the period
of inactivity. As in most disengagement prediction prob-
lems [12], we found a significant imbalance in observed la-
bels for both disengagement and re-engagement: 72.01% of
students were labeled as disengaging, and 63.68% of them
were labeled as remaining disengaged (i.e. not re-engaging).
We thus trained our classifiers on data that was randomly
re-sampled to achieve a more balanced label distribution.
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Figure 2: Distribution of the number of interactions
with different parts of the platform in the first two
days for students who re-engage and those who stay
disengaged.

Due to the rapid decline in student engagement after regis-
tration, we devise features to capture activity on each stu-
dent’s first two days on the platform. We expect early en-
gagement to be predictive of disengagement and re-engagement.
The features, defined in Table 1, capture how students in-
teract with key components of the Shupavu 291 applica-
tion and generalize across multiple subject areas, similar
to the method used by Taylor and colleagues [15]. Min-
max normalization is performed for each feature for each
student’s first two days. We fit a Random Forest (RF) to
predict whether students disengage, then another RF to pre-
dict their re-engagement. Model performance is evaluated
using Recall (as suggested in [12]) and F1 scores (the har-
monic mean of Precision and Recall), where a “true posi-
tive” is a student who disengages (or remains disengaged).
We optimize model hyper-parameters to maximize F1 scores
through exhaustive 5-fold cross-validated grid search using
scikit-learn [13].

4. FINDINGS
We find that more than a third (36%) of students who dis-
engage (seven days of inactivity) eventually re-engage on
the Shupavu 291 mobile learning platform. The prevalence
of re-engagement in this learning context speaks to the im-
portance of considering this engagement pattern in mobile
learning more broadly. To address the first RQ about dif-
ferences between disengaging and re-engaging students, we
compare student activity in the first two days after register-
ing on the platform. Actions on Shupavu 291 are grouped
into six categories:

• Registration: managing Shupavu 291 subscriptions.
• Menu: navigating the menu structure.
• Lessons: using course material, e.g. completing lessons.
• Quizzes: answering quiz questions, checking quiz grades,

or starting quizzes.
• Platform Features: using Shupavu 291-specific resources,
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e.g. the dictionary or ask-a-teacher feature.
• Miscellaneous: any other interaction, e.g. promotional

events and features.
Overall, disengaging and re-engaging students behave sim-
ilarly, spending most of their time interacting with quizzes
(Figure 2). However, re-engaging students interact signifi-
cantly more with quizzes (56.00% v. 47.57%, χ2 = 25083, p <
0.001) and slightly more with lessons (11.45% v. 10.34%,
χ2 = 1109.6, p < 0.001, while disengaging students have
more registration events (13.30% v. 7.25%, χ2 = 35827, p <
0.001). Having a greater proportion of registration events
may be an indication that students who stay disengaged
were already spending less time engaging with Shupavu 291
even within their first two days. A greater proportion of
academic (quiz and lesson) events is likely an indication that
students who eventually re-engage were more active students
early on. The finding that re-engaging students engage with
more academic events early on is notable, as quizzes and
lessons are the core functions of Shupavu 291.

4.1 Predicting Modes of Engagement
We fit an RF2 to predict disengagement and re-engagement
using a set of features that capture early platform activity
(Table 1). The model achieved good results for the disen-
gagement prediction task, with a testing F1 score of 81.21%
and Recall of 83.06%. Fitting the same RF to predict re-
engagement received comparable performance: 80.91% F1
score and 84.19% Recall. This suggests that it is possible
to train a useful classifier for both behaviors using early en-
gagement features.

To better understand which kinds of early behaviors pre-
dict each outcome, we compare variable importance scores
between the models in Figure 3. The number of quizzes
completed on both day 0 and day 1, time spent on day 1,
and number of platform features (questions asked, home-
work tools, quiz summaries) used on both day 0 and day 1
are more important for predicting re-engagement, whereas
the other features are more important for predicting disen-
gagement. This suggests that quiz engagement and diver-
sity of platform usage is especially predictive of a student’s
likelihood to re-engage, though many of these characteris-
tics are also predictive of disengagement. The importance
of time spent on day 1 for predicting re-engagement is no-
table because it indicates that long-term behavior is related
to sustained activity. Aside from the finding that diver-
sity of platform usage is more important for predicting re-
engagement, Figure 3 also suggests that specific platform
feature usage (e.g. “Ask A Teacher”) is not as indicative
of student engagement as in prior work with MOOCs [9].
Overall, we find that early usage behavior is predictive of
students’ subsequent engagement pattern, which provides a
basis for developing automatic interventions to better sup-
port students.

5. DISCUSSION
This study shows the prevalence of re-engagement in mobile
learning. This behavioral outcome can be defined in many
different ways and the optimal choice will depend on the
context of the learning environment and broader goals of the

21, 000 trees, 2 samples/split min., 1 sample/leaf min., 25
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Figure 3: RF Gini Importance by prediction prob-
lem. Number of quizzes completed and time spent
after the first day are more important predictors of
re-engagement than disengagement.

predictive model. In particular, the periods of time and the
thresholds of activity to determine dis- and re-engagement
can be tweaked to fit context and goals. In the context of
Shupavu 291, which has rapid disengagement, most periods
of inactivity occur soon after registration. Most predictive
models are not also explanatory models and this is no ex-
ception. While it is feasible to predict how a student will
behave, it is unclear why they (choose to) behave in that
way. A student who is active early on but disengages for
a seven-day period several weeks after registering could be
treated differently than one who disengages early on for the
purpose of targeted intervention. Yet more work is needed
to discern how to support students differentially in light of
their predicted outcome.

One of the limitations of this study lies in how the second
prediction problem is set up. The model is trained only on
the subset of students who disengage, because by our defi-
nition, a student who does not disengage cannot re-engage.
Alternatively, we could have taken the output from the dis-
engagement prediction model and predicted the joint likeli-
hood of disengaging and re-engaging. However, this would
have introduced a great deal of uncertainty from the dis-
engagement task into the re-engagement task. Another al-
ternative is to set up the re-engagement prediction task as
identifying students who disengage and then re-engage; how-
ever, in this case, all other students are then a mix of those
who disengage completely and those who remain engaged
the entire time—two groups which exhibit very different be-
haviors. Restricting the sample to only disengaged students
gives up some information, but provides a clear basis of com-
parison for predicting disengaging and re-engaging students.

This research contributes an empirical treatment of student
re-engagement in mobile learning and one of the first large-
scale studies of student interaction with a mobile learning
platform, especially in the developmental context of Sub-
Saharan Africa, where mobile learning provides students
with affordable access to study resources outside of formal
schooling. We find it is possible to predict and distinguish
between disengaging and re-engaging students using early
clickstream data, providing a foundation for more research
into patterns of re-engagement.
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ABSTRACT
Research has shown that autonomy can be beneficial to
both learning and motivation; however, limited research has
explored unsolicited hints impacts on students’ autonomy.
Furthermore, some research has shown that unsolicited hints
can improve student learning while other research suggests
that on-demand hints are more beneficial. In this study, we
compare three types of student autonomy regarding hints:
1) Control, with on-demand hints, 2) Choice, with periodic
popups asking whether the student would like a hint, and
3) Assertions, with periodic unsolicited hints. We found
that the Control and Assertion groups performed similarly,
and significantly better on the post-test than Choice. Fur-
ther, the Assertions group had the fewest steps where help
was needed but was not received, effectively solving the help
avoidance problem. Overall, our results suggest that unso-
licited hints can effectively ensure that more help is deliv-
ered when it is needed, reducing autonomy without reducing
learning.

1 Introduction
Although research has shown that allowing students to have
autonomy while learning a new domain can benefit learn-
ing[6, 18, 19, 17, 7], studies have shown that students many
not have the required skills to self-regulate their learning to
seek help appropriately [2, 13, 22, 12, 3, 2]. Further, research
has shown that students often cannot make effective deci-
sions regarding when they need a hint [22]. Students lacking
help-seeking abilities often partake in help avoidance, where
they do not use assistance available in a tutoring system [1,
15]. To address help avoidance, some ITSs employ proac-
tive assistance[21]. While one paper found that on-demand
assistance, where students have to request hints, produced

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 582690.

better learning outcomes [16], other studies have shown that
providing tutor-initiated, unsolicited hints at the appropri-
ate time, i.e. with no student autonomy about hints, can
augment students’ learning experience and improve perfor-
mance [5, 14, 4].
The goal of this work is to investigate whether unsolicited
hints can solve the help avoidance problem. We compare
three groups: 1) Control, with on-demand hints, 2) Choice,
where students were periodically asked if they would like a
hint, and 3) Assertions, where unsolicited hints were period-
ically added to the student’s workspace without any element
of student choice. The Assertions group provided students
with the least autonomy regarding when to receive a hint,
by adding unsolicited hints to the workspace. Students may
ignore these hints, but as they are the most efficient next
step, students avoiding them will have less efficient solutions.
The Choice group is the middle ground for hint autonomy
because students can choose not to receive a hint. Due to
the need to make a help-seeking decision, we consider this
group to have a medium level of hint autonomy. The Con-
trol group is considered the most autonomous because they
control the entire interaction surrounding hints. Overall,
we hypothesize that the benefit of receiving help when it is
needed outweighs the negative impact of removing student
autonomy about when and whether to receive a hint.
We constructed the following hypotheses based on
prior work in Deep Thought, a logic tutor, and re-
search in students’ self-regulation abilities: H1, As-
sertions will increase the chances of receiving help when it
is needed, while not harming performance; H2, the Choice
group will demonstrate more help avoidance than the Asser-
tion group and worse performance in the posttest due to bad
self-regulation choices; and H3, the Control group will also
demonstrate more help avoidance than the Assertion group,
and take longer in the training, but have similar performance
in the posttest.

2 Deep Thought, our logic tutor
Our propositional logic tutor, Deep Thought, [11] presents
proof problems as a set of given logic statements, shown at
the top of the workspace and a conclusion to be derived at
the bottom of the workspace (see Figure 1). Students solve
problems by iteratively deriving new logic statement nodes
until they derive and justify the conclusion. To create a
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new statement node, students first ‘justify’ it by selecing 1-
2 existing nodes and a rule to apply to them. The tutor is
divided into an introduction, pretest, training, and posttest.
The introduction includes two worked examples where stu-
dents click through the derivation and justification of all
the nodes, followed by one practice problem to learn the in-
terface. Next, a student takes the pretest problem, which
we use to compare the student’s incoming proficiency for
stratified sampling (see Section 3). Next, the tutor guides
students through the training section (15 problems) with
varying difficulty, where students can request and receive
hints. Finally, students take a more difficult non-isomorphic
posttest, where all students must solve the same set of
4 problems without any tutor assistance. Throughout the
tutor, including the pre- and post-test problems, our logic
proof tutor provides immediate error feedback for rule ap-
plication mistakes.

Figure 1: The Deep Thought interface.

2.0.1 Assistance
The tutor uses a data-driven approach based on a modified
version of Hint Factory [20, 9] to generate hints from his-
torical student data, resulting in hints on the most frequent
and efficient paths available based on the student’s current
attempt. Hints provided in the training of the tutor can
either be initiated by the student, in which case they are
called on-demand hints, or they can be initiated by the tu-
tor, in which case they are called unsolicited hints. For our
hints, we used our recently-designed Assertions interface [9]
to place next-step hints in the workspace, which are the next,
best statement that can be derived in one rule-application
step from the student’s current state, as blue nodes marked
with a question mark (denoting that they have not been
justified) and a ‘Goal’ label. Although each group received
hints through the Assertions interface for a fair comparison,
later iterations of the tutor use the Assertion interface only
for unsolicited hints. Hints do not tell students which rules
or prior nodes can be used to justify the suggested state-
ment and are designed to help students solve problems by
suggesting a subgoal statement to help them break down
multi-step problems.

3 Methods
The tutor was used as a mandatory, online homework as-
signment by students in an undergraduate discrete math-
ematics for computer scientists course (Spring 2019). For
this study, we compared 94 students’ data from three con-
ditions to investigate the impact of student-choice on per-
formance and behavior. The three conditions were 1) Con-

trol, 2) Choice, and 3) Assertions. While all conditions
allowed on-demand hints, they differed slightly in unsolicited
help. The Control group represents the normal conditions
in Deep Thought with no unsolicited hints. The Choice
group was asked “Would you like a suggestion?” after com-
pleting approximately every third step to expose poor self-
regulating decisions. We chose this amount to be frequent
enough to be comparable to the Assertion group, but not dis-
tracting. The Assertions group received periodic unsolicited
hints on approximately 40-50% of the steps to produce assis-
tance similar to a partially worked example, or turn-taking
tutor where the tutor and the student co-construct a solu-
tion to the problem.
We used stratified sampling, splitting students by pretest
performance, then randomly assigning them to Assertions
(n = 38), Choice (n = 27), and Control (n = 29) to ensure
all conditions were balanced in incoming knowledge. The
Assertions group was designed to have a slightly larger size
to ensure sufficient data collection, and since we felt that
this condition would be more beneficial to students than the
Choice or Control conditions.
We used each student’s pretest score to measure incoming
knowledge. A student’s score is a combination of normal-
ized metrics for the pretest time, number of steps, and ac-
curacy on a single problem, which ranks a student based
on how fast, efficient, and accurate they are compared to
their current peers. To investigate student’s performance,
we focused on time spent solving a problem, total attempted
steps, and accuracy. Total time is counted from the mo-
ment a problem is on the screen until it is solved by deriving
and justifying the conclusion. Total steps in a problem in-
clude any attempt a student makes at deriving a new step,
which includes both correct and incorrect steps (node deriva-
tions). Accuracy is the total number of correct rule appli-
cations divided by all rule application attempts. Note that
the tutor is not designed or assumed to promote large im-
provements in accuracy, since no penalties are assigned for
incorrect rule applications, even within the pre- and post-
tests. We focus on steps and time per problem because it is
more difficult for students to learn to determine which steps
to derive to achieve shorter, more efficient proofs. Whereas,
learning how to apply the rules can be done by memorization
and simple practice.
Data were analyzed to compare groups for the pretest, train-
ing, and posttest portions of the tutor. ANOVA with Tukey’s
post hoc tests were used to examine the significance of dif-
ferences in the means of the populations between pretest
groups with Benjamini-Hochberg corrections. For training
and posttest metrics, we applied one way ANCOVA using
the pretest as a covariate. To check that the data met as-
sumptions, we used the the Shapiro-Wilk’s W test, Levene’s
test, Q-Q plots, and histograms. Data that did not meet
the assumptions were transformed using log or square-root
transformations, then re-inspected. Data reported in ta-
bles are before transformation for clarity. For all tables, at
least marginally significant values are bolded (p <= 0.10),
and significant values are marked with an asterick (* for
p <= 0.05).

4 Results & Discussion
This section discusses the comparison between the Asser-
tion, Choice, and Control groups, and the differences in per-
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formance between students.

4.1 Hint Usage and Help Need
To understand each group’s utilization of hints, we exam-
ined hint-related metrics. # Hint Requests is the total
number of hints requested in training. Hints Received is
the total hints a student received during the tutor, unso-
licited and requested. For the Choice group, # Asked rep-
resents how often they were asked if they would want a hint.
Hint Justification rate is the percentage of hints received
that students connected to their current solution through
justification. Table 1 shows the mean, standard deviation
and Tukey HSD’s results for the hint metrics. ANOVA
showed a significant difference in the mean # Hints Received
(F (2, 91) = 25.576, p < 0.01) between the groups. Tukey
Contrasts analysis showed significant differences among each
comparison (Control-Choice (p < 0.01); Choice-Assertions
(p < 0.01); and Control-Assertions (p < 0.01)). We ex-
pected these differences because the Assertions group was
given frequent, unsolicited hints, the Choice group was asked
if they wanted a hint at a slightly lower frequency and was
only given a hint if they selected ’Yes’, and the Control group
received hints only upon request. Since all three groups
could request on-demand hints in addition to any the tutor
might provide or offer, we compared # Hints Requests, but
there were no significant differences between the 3 groups
on this metric (F (2, 91) = 0.1816, p = 0.83)).

Table 1: Mean and Standard Deviation(SD) of the
Hint Usage Metrics in the Training.

Control Choice Assertions
n = 29 n = 27 n = 38

Metric Mean(SD) Mean(SD) Mean(SD)
# Asked 34(10) - -
# Hints Received 19(16)* 35(25)* 51(12)*
# Hint Requests 21(21) 26(27) 25(23)
Hint Justification Rate 85%(25) 80%(20)* 84%(6.5)*

The Control group justified 85% of the requested hints, on
average, which makes sense as students are more likely to
use the hints they request [16]. The mean Hint Justifica-
tion rates were 84% for Assertions and 80% for the Choice
group. ANOVA results revealed a significant difference be-
tween groups for the Hint Justification Rate (F (2, 91) =
6.0633, p < 0.01)). Tukey Contrasts analysis showed sig-
nificant differences among Control-Choice (p = 0.03), and
Control-Assertions (p < 0.01)), but no significant difference
between Choice and Assertions group (p = 0.79). This is
surprising because we expected the Choice group to have a
higher Justification rate than the Assertions group, since,
similar to the Control, they chose to get a hint. These re-
sults suggest that unsolicited Assertions were just as well
received as hints offered as a choice.
Further, we defined measures to address all three hypotheses
concerning hint usage: help need, hint abuse, unnecessary
hints, and steps in which they received an appropriate level
of help (i.e. received a hint when needed and did not re-
ceive a hint when not needed). An important goal of this
study was to investigate whether periodic unsolicited hints
could address help avoidance by increasing the number of
times students who needed help received it. Since our hints
are partially-worked steps and students could easily ignore
them, unsolicited hints should not harm students who do

not need them. We determined when a hint was needed
vs. not needed via our new Help-Need model described in
[8, 10]. The model uses (1) the quality of the current step
based on a combined productivity measure of the optimality
of their current state (how close it is to the solution based
on the Hint Factory [20]), and the time taken to derive it,
and (2) a prediction of whether help is needed in the next
step (e.g. if the next step is not predicted to be produc-
tive, then help is needed). We note that our help-need pre-
dictor is not ground truth, but our cited work shows that
the Help-Need predictor is correlated with post-test perfor-
mance. % Help Needed is the percentage of total steps
our Help-Need model identified as unproductive, where a
student could have benefited from a hint, and a hint was not
received % Hint Abuse is the percent of total steps where
our model predicted no Help-Need but a student requested
a hint, representing a bad help-seeking decision. % Unnec-
essary Hint is the percent of total steps where students
received a hint on a step where we predicted no Help-Need,
including both help abuse requests and the number of times
hints were given but not needed. We also included Help
Abuse because we wanted to ensure none of the conditions
were promoting gaming the system. % Appropriate Hint
is the percent of steps where Help-Need model aligned with
the student need (e.g. a student received a hint when they
were predicted to need one or a student did not receive a
hint and the model labelled the step as no help-need).
Table 2 shows the differences in these metrics between the
groups. With ANCOVA, controlling for the pretest, we
found a significant difference between the groups for % Un-
necessary Hints (F (2, 91) = 38.35, p < 0.01) and % Help
Needed (F (2, 91) = 10.11, p < 0.01). For % Unnecessary
Hints, Tukey Contrasts analysis revealed significant differ-
ences between all 3 groups: Choice-Control (p = 0.01),
Choice-Assertions (p < 0.01), and Control-Assertions (p <
0.01). For % Help Needed with the same procedure, we
found significant differences between Choice-Assertions (p =
0.01) and Control-Assertions (p < 0.01); however, there was
no significant difference in Control-Choice (p = 0.45). There
were no significant differences for Hint Abuse (F (2, 91) =
0.04, p < 0.96) or the Appropriate Hint metrics (F (2, 91) =
0.57, p < 0.56).

Table 2: Mean and Standard Deviation(SD) of the
Help Need Metrics in the Training.

Control Choice Assertions
n = 29 n = 27 n = 38

Metric Mean(SD) Mean(SD) Mean(SD)
% Help needed 20(12) 16(11) 10(8)*
% Hint Unnecessary 4(5)* 7(5)* 15(4)*
% Help abuse 7(6) 9(9) 7(7)
% Appropriate Hint 72(11) 71(12) 73(7)

The Control group had the lowest percentage of steps with
Unnecessary hints, which was expected since they had full
autonomy and requested fewer hints than the other groups.
The Control group also had the highest percentage of steps
where Help-Need was detected, meaning that these students
spent more time in steps being unproductive. The Choice
group fell in the middle for both % Help Needed and % Un-
necessary Hints. H2, stated that the Choice group would
have more help avoidance than the other two groups. The
Control group showed similar help avoidance to the Choice
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group by not requesting hints when needed. However, the
Choice group had a significantly higher Help Avoidance than
the Assertion group, which provides partial evidence in sup-
port of H2. Additionally, the Control group having a sig-
nificantly higher % Help Needed partially supports H3, in
which we hypothesized that the Control group would not
request hints often enough. The Assertions group decreased
steps where students needed help but were not receiving it,
confirming H1. Although more unnecessary hints were pro-
vided, our goal was to reduce students being stuck in steps
without receiving help, which was achieved even though the
frequency of unsolicited hints was not based on an intelli-
gent policy. Incorporating an intelligent policy to determine
when to give a hint should result in an even smaller per-
centage of help need and reduce instances of unnecessary
hints. To test whether the larger percentages of Unneces-
sary Hints would be worse for posttest performance, a simple
linear regression was calculated to predict the posttest score
based on the % Unnecessary Hints and was not significant
(F (1, 91) = 0.33, p = 0.57). Therefore, we do not believe
these Unnecessary Hints had a significant impact on perfor-
mance. Another simple linear regression was calculated to
predict the posttest score based on the % Help Needed, and
a significant regression was found (F (1, 91) = 8.49, p < 0.01)
providing support that addressing help need is important.

4.2 Evaluating Students’ Performance
Across the Tutor

To examine the effects on performance each group had, the
pretest and posttest performance metrics for the 3 groups
were analyzed (see Table 3). ANOVA was performed on
pretest metrics to determine if there was a similar distri-
bution of proficiency between the groups. There were no
significant differences between the groups on Total Time
(F (2, 91) = 0.28, p = 0.76) or Total Steps (F (2, 91) = 1.01, p =
0.37) in the pretest metrics. There was a marginally signifi-
cant difference between the groups for accuracy (F (2, 91) =
2.38, p = 0.09), but this is not a meaningful difference due
to the few number of steps in the pretest and the Choice’s
group lower average number of steps. Therefore, we con-
cluded that each group had a distribution of students’ with
similiar incoming proficiency.
For the training and posttest performance metrics, ANCOVA
was used controlling for pretest metrics. There were no
significant differences between any performance metric in
the training portion of the tutor (Total Time (F (2, 90) =
2.07, p = 0.13); Total Steps (F (2, 90) = 1.84, p = 0.16); Ac-
curacy (F (2, 90) = 1.34, p = 0.27)). The posttest metrics
show a significant difference in the Total Time (F (2, 90) =
5.24, p < 0.01)) between the groups. Tukey Contrast anal-
ysis revealed that there was a significant difference between
the Assertion and Choice group (p < 0.01); however, there
was not a significant difference between the Choice and Con-
trol (p = 0.29) or the Assertion and Control (p = 0.19).
There was no significant difference between the Total Steps
(F (2, 90) = 2.09, p = 0.13) or the Accuracy (F (2, 90) =
0.05, p = 0.95) between the groups.
These results provide support for H1 that the students in
the Assertions group would perform similarly to the Control
group; however, the Control group did not perform worse in
the training as expected in H3. These results along with the
results in 2 confirm H1. Assertions reduced help need with-
out harming performance. These results provide evidence

Table 3: Pretest, Training and Posttest perfor-
mance metrics for the Assertion, Choice, and Con-
trol groups.

Control Choice Assertion
n = 29 n = 27 n = 38

Test Metric Mean(SD) Mean(SD) Mean(SD)
Pretest Total Time (min) 5.8(7) 4.0(2) 6.5(6)

Total Steps 15(30) 9(7) 11(13)
Accuracy 40(14) 35(14) 43(17)

Training Total Time (min) 137(50) 114(49) 122(62)
Total Steps 374(126) 348(124) 323(118)
Accuracy 63%(12) 66%(11) 66%(10)

Posttest Total Time (min) 37(29) 43(34)* 34(20)*
Total Steps 104(56) 129(75) 102(47)
Accuracy 69%(12) 69%(11) 69%(11)

in support of H2; however, these results do not address why
the Choice group performed worse. One theory is that the
students could have been making poor self-regulated deci-
sions, supported by Table 2, which may have made them
perform worse than the Control even though they both had
a choice. The prompts may have lead to the Choice group to
make more help-seeking decisions than the Control, where
students would have thought about hints less. However, the
questions asking whether or not they would like a hint could
have also been frustrating or distracting. This distraction
could have caused them to lose focus; however, we would
have expected the total time in the training to be signifi-
cantly different in that case.
Lastly, one of our concerns was whether students were bet-
ter at self-regulating than a random proactive policy. The
Assertions group was the slowest in the pretest, but they
were the fastest in the posttest, shown in Table 3. Their
overall hint Justification rate was also high, shown in Ta-
ble 1. Along with the results confirming H1 in the Table 2
and Table 3, these results suggest that the Assertions group
with unsolicited, tutor-initiated hints did no harm to stu-
dents in terms of learning outcomes compared to the Con-
trol group and produced better learning outcomes than the
Choice group. Therefore, these results suggest that proac-
tively adding hints at the very least did no harm.

5 Conclusion
This work contributes an investigation of the effects of three
groups with varying levels of autonomy of assistance on
learning outcomes and metrics to evaluate hint usage and
hint avoidance. The three groups from most autonomous to
least: 1) Control, where students could request on-demand
hints, 2) Choice, where students were periodically asked if
they would like a hint, and 3) Assertions, where hints were
periodically added to the student’s workspace without any
element of student choice. This study sought to determine
whether students’ autonomy over when and how the inter-
face provides hints affects hint utilization and, in turn, over-
all success. Our results show that the Assertion and Con-
trol group produce similar learning outcomes; however, the
Choice group performed worse on the posttest. Overall, our
results suggest that unsolicited hints can effectively ensure
that more help is delivered when it is needed, reducing au-
tonomy without reducing learning. These results demon-
strate that with an effective, machine-learned proactive hint
policy, better learning outcomes are possible.
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ABSTRACT 

Recently, Crisis Management Serious Games (CMSG) have 

proved their potential for teaching both technical and soft skills 

related to managing crisis in a safe environment while reducing 

training costs. In order to improve learning outcomes insured by 

CMSGs, many works focus on their evaluation. Despite its great 

interest, the learner emotional state is often neglected in the 

evaluation process. Indeed, negative emotions such as boredom or 

frustration degrade the learning quality since they frequently 

conduct to giving up the game. This research addresses this gap 

by combining gaming and affect aspects under an Educational 

Data Mining (EDM) approach to improve learning outcomes. 

Therefore, we propose an EDM-based multimodal method for 

assessing learners’ affective states by classifying data 

communicated in text messaging and facial expressions. This 

method is applied to assess learners’ engagement during a game-

based collaborative evacuation scenario. The obtained assessment 

results will be useful for adapting the game to the different 

players’ emotions.  

Keywords 

Serious game, crisis management, assessment, educational data 

mining, affective states, multimodal emotion detection. 

1. INTRODUCTION 
Recently, Serious Game (SG) development and usage have 

increased to improve learning benefits and to increase learners’ 

motivation [1]. SGs applications reach out several domains such 

as crisis management, education, ecology, and health-care [2]. 

Indeed, collaborative Crisis Management Serious Games (CMSG) 

have proved their potential for teaching concepts related to 

managing different types of crisis situations such as natural 

disasters (earthquakes, floods), man-made disasters (terrorist 

attacks, pollution), and technological crises (industrial accidents, 

cyber attacks) in a fun way while reducing training cost and 

saving time [3].  

Despite its obvious interest, the exploitation of the SG concept in 

learning processes is not always a guarantee of its effectiveness 

[4]. As any learning systems, SGs rely on the implicit alignment 

of the learning outcomes (knowledge or skills) and the game 

experience (engagement, motivation). In particular, the 

effectiveness of a collaborative CMSG depends on different 

learners’ characteristics including cognitive, emotional and social 

aspects [4]. Consequently, there has been a lot of research focused 

on the evaluation of SGs and their effectiveness for Crisis 

Management (CM) training varying in terms of crisis situation, 

number of players, key indicators or characterization of learners 

[5,6,7,8,9,10]. However by studying the state of the art, we have 

noticed that there is a considerable lack of studies integrating the 

concept of affective computing, especially learners’ affective 

states, in the evaluation process within collaborative CMSGs [4]. 

Besides, most of existing works use explicit techniques for 

analyzing learners’ behaviors during playing like pre/post 

questionnaires, interviews and debriefing sessions. These 

techniques represent a subjective evaluation that relies on non-

exhaustive players’ opinions and disrupts the high level of 

engagement provided by the game; impacting thus negatively the 

accuracy of evaluation results [30]. So, improving players’ 

engagement (and thus learning outcomes) requires detecting and 

assessing such emotional states in a non-intruding way [11].  

In this paper, we focus on addressing this gap. In doing so, we 

focus on the detection and analysis of learners’ emotions 

expressed in textual and visual data to infer Flow game-play 

experience indicator (also called engagement) in collaborative 

CMSGs. To the best of our knowledge, players’ engagement 

measure and impact on learning outcomes have not been 

investigated in such context. Hence, our contribution is to propose 

an emotion-based EDM method able to:  

1) Assess the temporal dynamics of learners’ affective 

states during a game-based session for CM training.  

2) Evaluate their final states at the end of training process 

by classifying data communicated in text messaging and 

facial expressions.  
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3) Explore the final individuals’ affective profiles to 

generate the group emotion at a global level.  

The rest of this paper is organized as follows. Section 2 presents 

the proposed EDM-based multimodal method for learners’ 

affective states assessment. Section 3 reports the application of 

our method on a collaborative CMSG used as a case study. 

Section 4 discusses our major findings. Section 5 summarizes the 

paper and presents our plans for future work.  

2. AN EDM-BASED MULTIMODAL 

METHOD FOR ASSESSING LEARNERS’ 

AFFECTIVE STATES  
Our aim is to develop an automatic method for assessing learners’ 

affective states (engagement, frustration, confusion, and 

boredom) using facial expressions and text analysis in 

collaborative CMSGs. To reach this objective, we need to perform 

five main steps corresponding to specific tasks namely data 

collection, data annotation, data fusion, data analysis, and data 

visualization as illustrated in Figure 1. 

 

Figure 1 General Overview of the Proposed Method 

2.1 Data Collection and Annotation Task   
In order to collect data in a way that is more efficient and less 

intrusive compared to physiological measurements [12], we plan 

to extract the messages exchanged between players as well as the 

video records of learners’ faces produced in real-time using a 

Webcam. These two kinds of data are annotated as follows: 

 Text annotation. The textual content of these messages 

represents a rich source to detect their emotions that are 

revealed by the annotator tool indico.io. It is a 

predictive analytics tool classified as one of the top AI 

APIs for emotion detection from raw text strings 

(shorter instances of text like conversations) using deep 

learning algorithms with 93.5% of accuracy [13]. The 

API gives as an output the probability that the text 

reflects the basic emotions as well as their intensities. 

 Video annotation. We have adopted Openface 2.0[14]: 

an automatic facial behavior analysis and understanding 

toolkit. Openface returns intensity and presence for each 

Facial Action Unit (FAU) estimated with several 

computer vision and machine learning algorithms. We 

exploit the output of FAU recognition system since it 

displays emotions according to [15]. Based on the 

EMotional Facial Action Coding System [16], mapping 

rules associate couples of FAU with basic emotions. For 

example, joy is associated with detection of Cheek 

raiser FAU and Lip corner puller FAU. 

2.2 Data Fusion Task  
In our study, we perform a multimodal fusion at the decision-level 

which refers to the process of combining data collected from 

many modalities after being pre-classified independently to obtain 

the final classification. In fact, each classified modality, using the 

previous annotators, provides one hypothesis on labeled emotion 

categories; and this integration method gives a global estimate 

based on partial results [17].  

Xall = (XT, XF) represents the global feature vector consisting of 

the text feature vector, XT, and the face feature vector, XF. 

In decision-level fusion, two separate classifiers provide the 

posterior probabilities P(ei|X
T) and P(ei|X

F) for text and face, 

respectively, having to be combined into a single posterior 

probability P(ei|X
all); where ei represents one of six possible 

classes of basic emotions (e1=joy, e2=sadness, e3=surprise, 

e4=anger, e5=fear and e6=disgust).  

The face modality is assumed to be the main modality in our 

multimodal approach (but the text modality is not neglected). 

Hence, we assign weights as follows: µT=0.3 for the text modality 

and µF=0.7 for the face modality. We adopt this weighting 

proposed and validated by works referenced by [18] and [19]. 

Then, we apply the averaging formula using these weights in 

order to compute the average probability of the two modalities 

defined as follows [20]:  

 

2.3 Data Analysis Task 
In this task, we perform a fine-grained analysis of the dynamics of 

learners’ affective states based on facial features during playing by 

studying the impact of stress on affective transitions, and we 

produce a summative evaluation of their emotional states at the 

end of training process:  

 Stress detection. The stress is one of the most frequently 

occurring emotions inherent to CM since it affects the 

actors’ way to manage crisis situations [4]. Given stress 

is related to emotions; also facial expressions have been 

used to detect stress by linking some of basic emotions 

as features [21]. In fact, many works have proved that, 

in different contexts like driving and working 

environments, stress is detected if either anger, fear, or a 

combination of these two negative emotions is detected 

constantly within a fixed time interval [22,23]. In 

particular, they focus on some specific FAU and their 

activation level extracted in each video frame, described 

as an indicator for fear and/or anger.  

 Mapping between affective states and basic emotions. 

Affective states are particular combinations of basic 

emotions as demonstrated by [24] using association 

rules mining. In our study, we adopt the existing 

mapping as described in [24, 19]; and we propose some 

novel interpretations of basic emotions combinations 
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allowing us to deduce affective states based on existing 

theories of emotions [15,26]. 

Flow/engagement is defined by a high level of surprise 

and a low sadness level [19]. Since joy and sadness are 

opposite emotions as validated by [15] and flow is 

characterized by a full involvement and enjoyment in 

the activity [26], we can affirm that flow can be defined 

also by a high level of surprise and a high joy level. 

Frustration is detected at the presence of a high degree 

of anger and a low degree of joy [19]. Likewise, 

frustration can be defined by a high level of anger and a 

high sadness level. Moreover, basing on the definition 

of frustration state [26], it can be mapped to a high level 

of fear as well as a high level of sadness. In the same 

way, frustration can be defined by a high level of fear 

and a low level of joy.  

Boredom can be mapped to a high level of disgust as 

well as a low level of joy. In the same manner, boredom 

can be defined by a high level of disgust and a high 

sadness level [19].  

The state in which all the levels of six basic emotions 

are low will represent the confusion affective state [19]. 

2.4 Data Visualization Task  
This final task concerns visualization of our analysis results at two 

levels: individual and global. On the one hand, we visualize the 

summative individual emotional profiles which contain relevant 

information about affective states expressed by each player at the 

end of training process by selecting the dominant and the most 

pronounced emotion. On the other hand, we visualize the 

aggregation of all individual emotional profiles based on a 

decision tree algorithm to decide on the polarity of global 

emotion (positive or negative) and then to constitute the group 

emotion [27]. So, we apply J48 decision tree classifier, an 

implementation of C4.5 algorithm in Weka, to generate a decision 

on the group emotion based on individual affective states with a 

default confidence value=0.25. The principle is to decide the class 

label of group emotion (positive or negative) by learning decision 

rules inferred from training data (rates of individuals affective 

states). According to our experimental results, this tree-based 

method reaches an accuracy of 81% using 5-fold cross-validation. 

Figure 2 shows the decision tree model of group emotion.  

 
Figure 2 Decision Tree Model of Group Emotion 

3. EXPERIMENT AND RESULTS  

3.1 Game Description    
We have developed a collaborative scenario for building 

evacuation training in case of a fire emergency situation. This 

scenario is implemented on the iScen software platform [29], 

specifically intended for crisis simulation, management and 

training. The scenario aims to train people (staff or students) of a 

Tunisian university building on evacuating all the present persons 

during a fire emergency triggered in the coffee shop as shown in 

Figure 3. The evacuation exercise involves a group of 30 

participants (including player and virtual characters) having 

different roles namely coordinator, security responsible, 

firefighter, warden and deputy who must collaborate and 

coordinate their actions in order to manage an emergency 

evacuation procedure. This scenario allows learners to reach two 

main pedagogical objectives consisting of: (1) acquiring personal 

fire safety skills both in general and specifically in a university 

context, and (2) teaching best evacuation practices required to 

manage any fire emergency in an efficient and rapid manner.  

 
Figure 3 Screen Capture of Crisis Situation 

3.2 Dataset   
We analyze (n=30) students’ behavior trace interaction data 

obtained after the game session that lasts approximately 25 

minutes. These data are video recordings of the participants’ faces 

while playing using webcams as well as exchanged messages 

using the text chatting system. We analyze affective dynamics 

experienced by participants by tracking emotions at a fine-grained 

level using facial features. We make judgments on what affective 

states were present in each 20-second interval basing on the 

mapping described above. In addition, pre- and post-test 

questionnaires were completed individually by all students before 

starting the game session (pre-test) and immediately after 

finishing it (post-test). Pre-test questions address personal 

information concerning prior game experience and CM 

knowledge. Learners are then categorized as novice, intermediate 

and expert to be confronted afterward to the experimental results. 

Post-test questions aim to measure the level of engagement based 

on the Game Engagement Questionnaire. Both pre-test and post-

test are on a 5-point Likert scale ranging from 1 (not at all) to 5 

(extremely). 

3.3 Obtained Results  
Comparing to several predictions proposed by the Cognitive 

Disequilibrium Model [24], it appeared that some of these 

predictions have been validated while others not addressed by the 

model are identified by our method. This model addresses 

transitions between affective states of learners while solving 

complex activities in relatively short learning sessions [24].  
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The supported predictions include the transitions from the state of 

engagement into confusion, confusion into frustration, and 

frustration into boredom which naturally occurred. In fact, 

analyzing transitions between affective states are so important 

because they provide insight into how learners enter into an 

affective state since engagement and confusion is correlated with 

higher performance, while frustration and boredom are correlated 

with poorer performance.  

The two predictions that have been identified, but were 

unexpected in the model, include the transitions from frustration 

to confusion and boredom to frustration. First, even though the 

transition from frustration into confusion occurred rarely, we 

believe that some frustrated participants, could view the situation 

as a challenge and become more energized; and ultimately enter 

the confusion state while trying to resolve the current 

misunderstanding. Second, the transition from boredom into 

frustration occurred significantly when we detect a high activation 

level of some FAU characterizing the stress emotion. To resume, 

our findings suggest that some aspects of the cognitive 

disequilibrium model might need refinement and some transitions 

can occur due to a specific characteristic of the context of CM 

training namely the stress. 

When aggregated across the all participants at the end of training 

process, our results indicated that 25% of learners felt 

engagement, 50% expressed boredom, 25% felt frustration, and 

0% experienced confusion. Figure 4 displays a global view of the 

all individual affective states. This global view allowed us to 

decide the polarity of group emotion by applying our decision tree 

model. Hence, we can deduce that the global emotion is negative 

(25% engagement + 0% confusion + 50% boredom + 25% 

frustration=> negative class). 

 
Figure 4 Global View of Individual Affective States of Players 

3.4 Results Validation  
For validation purpose, summative evaluation results are 

compared to the answers to the Game Engagement Questionnaire 

(GEQ) analyzing self-reported subjective descriptions and 

collected after the game session. This questionnaire is one of the 

most commonly used self-report questionnaires in the player 

experience field for measuring engagement specifically elicited 

while playing games [28]. The core module of GEQ is a 33-item 

scale which is designed to measure game players’ experience 

across seven dimensions namely Immersion, Flow, Competence, 

Positive Affect, Negative Affect, Tension, and Challenge. 

Dimension scores are computed as the average value of their 

items. The descriptive statistics obtained from learners responses 

are reported in Table 1.  

Table 1 Descriptive statistics for dimensions of the GEQ 

Dimension Mean 
Standard 

deviation 
Max 

Min 

Immersion  2.13 0.60 4.00 1.00 

Flow  2.34 0.62 3.55 1.13 

Positive affect  2.00 0.50 3.00 1.00 

Negative 

affect  
4.28 0.85 5.00 

2.00 

Tension  3.96 0.77 5.00 1.65 

Challenge  3.43 0.68 5.00 2.00 

Competence  2.43 0.56 3.00 1.20 

4. DISCUSSION  
As shown in Table 1, positive feelings are much less severe and 

less frequently experienced compared to negative feelings (lower 

than the mid-value of the scale). In fact, participants reported the 

level of positive affect to be low (2.00). More specifically, results 

analysis shows that immersion (reflecting how players felt 

strongly connected with the game) and flow (indicating whether 

players lost track of their own effort and/or the passage of time 

during the game) receive respectively average degrees (2.13 and 

2.34). The dimension negative affect receives the highest value of 

all (4.28). This result indicates that playing the game engendered 

some negative emotional experiences in particular boredom. In 

addition, participants experience a certain high degree of tension 

(3.96) in the form of specific negative emotions like frustration. 

Moreover, in terms of challenge, participants report that the game 

environment is difficult and challenging (3.43) according to their 

level of competence (2.43). All these results confirm the negative 

group emotion detected after the application of our method on the 

same CM scenario. Basing on this result, we can conclude that the 

team performance is also negative. In fact, this interpretation can 

be explained by the fact that all participants are situated, for the 

first time, in an emergency evacuation procedure based on a 

virtual training environment. It can also be a consequence of 

limited learners’ guidance and assistance carried out by the 

instructor during the training process in order to better achieve the 

game objectives. 
To summarize, the final affect annotations obtained via our 

method correlate well with subjective responses to the GEQ. In 

comparison to the GEQ, our method represents an objective and 

rapid manner to analyze learners’ emotions and to infer their 

affective states without distracting them from game-play using 

EDM techniques. Hence, our contribution is intended to support 

learning, maintain motivation, and increase learners’ engagement 

in the virtual word of the game.  

5. CONCLUSION AND FUTURE WORK  
This paper investigates a multimodal learner analytics approach to 

assess emotional states in collaborative CMSGs. Specifically, 

decision tree models were trained to predict learners’ affective 

states utilizing bimodal data including textual messages and facial 

expressions. Affective states predicted by the model are evaluated 

with learners’ self-reported engagement scores reported after the 

game session. In future work, we want to extend this study to a 

larger sample of participants within another multi-players CMSG 

which is currently under development using Unity 3D game 

engine. Furthermore, we plan to analyze the quality of social 

interactions during a collaborative game session in order to more 

deeply understand the dynamics of affective states over time. 
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ABSTRACT
The increasing complexity in software development leads to
the necessity for a detailed data analysis. Literature illus-
trates a stronger research focus on Educational Process Min-
ing (EPM) being applied to the fields of e-learning and pro-
fessional training. In this work, the opportunities of Process
Mining (PM) are further examined by the evaluation of soft-
ware engineering (SE) courses. The methodology follows the
five stages of the L* life cycle model for PM projects using
data from software repositories. The event log data was ana-
lyzed with the PM tool Disco to examine the students’ work
following an agile development process. The new tool Git-
Lab Analyser supports supervisors to visualize educational
processes and still extracts event logs for the further analysis
and application of PM techniques.

Keywords
data mining, educational process mining, software engineer-
ing, agile development, Git, GitLab, education, software
repositories, Innovation Lab, Scrum

1. INTRODUCTION
Within the last decades an enormous increase of research
interest associated to the field of machine learning systems
was observed [7]. Especially during the last ten years, the
public interest in the impact of applied machine learning
and data analysis methods further grew [6]. The massive
increase and demand of new software functionality in these
fields also lead to higher software complexities. Dealing with
these complexities is difficult especially when it comes to in-
novations. For the development process of innovative soft-
ware, time-to-market is a relevant factor due to its impact
on revenue and business success of companies in comparison
to their potential competitors [9].
In order to cope with the raised complexity Version Control
Systems (VCS) were deployed in software development. Ad-

ditionally, time-boxed plans, IT systems like content man-
agement systems as well as issue trackers are now widely
used [1, 9].
Those systems also become more and more important for
the educational domain. In practical SE courses, students
learn and use such systems in order to better structure their
development process as well as become prepared for their fu-
ture employments. Research picked up on this development
and started to explore PM opportunities regarding the eval-
uation of educational software development teams in order
to improve the learning process. By extracting event logs
from the software development projects, critical processes
can be identified and improved.

Tools for Educational Process Mining:
Different tools for extracting, visualizing and analyzing event
logs for educational purposes were introduced in literature.
One solution called SoftLearn is mentioned in the work of
Vázquez-Barreriros et al. [3] and allows the visualization
of the students’ learning paths by offering a graphical user
interface (GUI).
A publicly available solution is the platform PHIDIAS pre-
sented by Awatef et al. [2]. This tool provides a service for
data and process mining to educational experts. It supports
the reconstruction of educational processes and the detailed
analysis of social networks.
Sokol et al. [11] introduced a web application called Met-
ricMiner for mining software repositories and supporting re-
searchers with the data extraction and statistical inference.
Another analysis tool in the application area of Git repos-
itories is Gitinspector. This tool is not directly defined as
a PM tool, but supports creating insight into development
processes by analyzing Git logs and delivering details about
the author’s contribution over time [5].
Despite all those approaches, Bogarin et al. [4] underline
the lack of tools supporting educational specialists from var-
ious fields in analyzing educational processes by providing
an easy to use tool and a generic framework for EPM in the
context of SE courses. Many of the tools demand special
knowledge in fields which educational specialists lack.

Applications of Educational Process Mining:
Bogarin et al. [4] summarized various application domains
of EPM, which are listed in Table 1.
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Table 1: Application areas for EPM [4]
Application field Amount of studies

Massive Open Online Courses,
hypermedia learning environments, 8

learning management systems
Computer-supported 5
collaborative learning
Professional Training 5
Curriculum Mining 3

Computer-based assessment 2
Software repositories 2

In these applications EPM is used to discover learning flows
and sequential patterns. Participants’ decision-making pro-
cesses as well as usage of group communication tools are
analyzed to detect learning difficulties. Consequently, the
quality of education can be improved by adapting the edu-
cational software development process based on the analysis
results [4].
Mittal et al. [8] introduced a holistic approach to evalu-
ate the complete educational software development process.
They present the idea for a research framework for PM using
event logs of VCSs, issue tracking systems and team wikis.
To the best of our knowledge, there is no tool available ex-
tracting all the relevant event logs necessary to feed this
research framework.

Contribution
We contribute a tool called GitLab Analyser, which visu-
alizes and extracts EPM relevant event logs from the open
source software project management framework GitLab. The
tool is easy to use not only for experts but also general edu-
cational specialists. Besides, it allows a holistic analysis over
underlying learning processes by extracting event logs from
the git software repository, the GitLab issue tracker and the
GitLab documentation Wiki.
The GitLab Analyser is publicly available as standalone ap-
plication under the following link:
https://www.mad.tf.fau.de/research/gitlab-analyser/.

2. METHODOLOGY:
For the development of the tool we aligned with the first
three stages in the five stage process of the L* life-cycle
model for PM projects as described in the PM manifesto:
planning and justification, data inspection, event log extrac-
tion, analysis execution and result interpretation [12, 13].

Planning and justification: We planned to extract event logs
from a SE course called Innovation Lab for Wearable and
Ubiquitous Computing offered by the Machine Learning and
Data Analytics Lab at the Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU) over the last five semesters. The
Innovation Lab is offered to various majors of the univer-
sity’s technical faculty. In this course interdisciplinary stu-
dent groups of size five to eight develop innovative software
related prototypes in cooperation with multiple industry
partners and public institutions. Over four months, these
teams use the agile development process Scrum [10] and per-
form three Sprints after an on-boarding phase.

Data inspection: As a project management tool, GitLab

Community Version 12.8.0 was used because it offered

• planning features (milestones and issue tracker),

• versioning of the source code and

• documentation features (Wiki).

Both the VCS of the source code as well as the Wiki are git
repositories. From all those features events describing the
development process can be extracted.

Event log extraction: The events of the VCS and the Wiki
were extracted using the git native ‘git log’ command. Events
related to the planning features (milestones, issues) were ex-
tracted using GitLab’s native API and the REST API client
postman. After extracting the events, they were converted
to a .CSV file, which can be interpreted by commonly used
PM software like Disco or Celonis.
Table 2 summarizes the data set out of the Innovation Lab
projects at FAU, the tool was developed with.

Table 2: FAU GitLab log data
GitLab General Information Value

Number of projects 24
GitLab issues 3409

GitLab repositories commits 5332
GitLab wiki commits 8474

Number of project branches 744

3. RESULTS AND DISCUSSION
3.1 Event Logs for Process Mining
Table 3 gives an overview about the majority of events and
activities concerning the planning in GitLab, tracking of
source code changes in Git as well as the documentation
of the project in Wiki.

Table 3: Events and activities considered in project
development process

Planning issues, issue labels, milestones,
branches, merge requests, notes,

projects
VCS number of changed files, commits,

commit type, inserted and deleted
lines of code, days with commits,

number of merges and merge requests
Documentation inserted and deleted lines of code,

number of wiki pages, commits,
days with commits

Further indirect available events are extracted by mining
the issue notes section e.g. changed milestone, assigned to
or time spent. By extracting the data the minimum informa-
tion about the event logs is collected (instance id, activity,
timestamp, actor).

3.2 The GitLab Analyser
The GitLab Analyser is developed for the implementation
as easy to use tool for general educational specialists and
to visualize event logs for supervisors. The tool offers three
different analysis types all aiming to support supervisors in
evaluating students and the development process itself:
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1. Single project analysis: Support for supervisors in
evaluating students and the development process itself.

2. Group project analysis: Support for supervisors to
compare the performance of different teams of the same
course (given that all projects are hosted on the same
GitLab server).

3. Cross-project analysis: Support for different courses
to compare the development process by extracting event
logs from different GitLab servers.

Within the tool different result views are presented to the
user on a dashboard. A user view offers the analysis of
project events performed by the individual users, whereas a
project view provides insights into the overall project status.

Figure 1: Participation event distribution of users.
Color coding: assigned to user (green); unassigned
to user but still participated (red) and mentioned
user and participated (yellow).

Figure 1 depicts an exemplary graph from the dashboard on
the user view. This graph visualizes the number of events as
a result of the issues students worked on during the develop-
ment process and whether they were assigned to those issues.
This example shows an even assignment rate with one excep-
tion, Student 4 . Based on this visualization the supervisors
can see students with less participated issues and act based
on these results by providing additional help to the student
in case of lack of background knowledge, breaking big issues
down into smaller issues to increase the student’s success or
motivation.

Figure 2: Inserted (green) and deleted (red) code
lines in commits and changed files (blue) per day.

Figure 2 shows a graph from the project view. This graph
visualizes the number of added, deleted and edited software
code lines committed to the VCS of all team members over
time. It clearly shows a peak in the middle of the develop-
ment process, which was due to a Scrum Review at this point
in time. By inspecting this graph, supervisors can identify
that students do not continuously push their code changes
to the repository, which is necessary for other team members
to work on a common base. Thus, they can motivate stu-
dents to improve the development process by continuously
committing their new developments to GitLab.

3.3 PM opportunities in university projects
With Celonis and Disco two PM tools were tested. The ex-
tracted and transformed event log data (from GitLab raw-
log data) was exported and analyzed with Disco to support
the identification of correlations in the development process.
In the Wiki and Git analysis the commit behaviour and dis-
tribution of commit activities was identified. In addition to
the visualization of issue states, performance measurements
like the average working time on an issue or time until the
first user assignment, were determined by the analysis of
GitLab features. The participation on issues as well as the
information about users carrying out an activity at a specific
point in time can be visualized. The time-boxes filter options
in Disco enable to use the event logs for precise analysis of
activities occurring for example within one Sprint. Further-
more, Disco offered options to analyze specific process parts
by filtering the individual and process-relevant activities.

Figure 3: Process Map - Status changes of issues
(100 percent activities, 50 percent paths)

Figure 3 illustrates the analysis of assignment activities in
form of a process map as an exemplary Disco visualization.
The investigation shows the total number of issues being as-
signed before their closing, i.e. whether a team member was
responsible for them. Additionally, the number of assignee
changes can be viewed, represented by the self-referencing
arrow at the ”assigned to” activity (12 times), and used as
indicator for evaluating the team performance.
The event log extraction allowed to gain insight into the
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students’ work following an agile development process. Nev-
ertheless, the analysis and filter configurations in Disco re-
quire a certain training period. It was critically questioned
whether scientific staff, performing the role as Scrum Master
not as a data scientist, need to familiarize themselves with
the deeper functionality of PM analysis. Instead, course su-
pervisors should be enabled with a tool to obtain essential
analysis results with less effort in a short amount of time.

4. SUMMARY AND OUTLOOK
Due to the increasing complexity in the software develop-
ment process the application of PM techniques offers valu-
able opportunities especially in the education domain. Var-
ious studies underlined the necessity for tools supporting
educational analysis following an agile development process
[4]. We introduced a standalone, easy to use tool called Git-
Lab Analyser which can be used by supervisors from various
fields without significant background in computer science.
The tool not only offers the event log extraction for a de-
tailed PM analysis using elaborate PM software (e.g. Disco,
Celonis), but also visualizes the individual event logs in clear
way for supervisors to evaluate students and the develop-
ment process quickly. We made the tool publicly available
under the following link:
https://www.mad.tf.fau.de/research/gitlab-analyser/.
The GitLab Analyser will be used within the upcoming se-
mester of the Innovation Lab by the supervisors of the dif-
ferent development teams for immediate feedback on the
development process. Additionally, the first version will be
available for supervisors of other universities with similar
courses to receive feedback and first bug reports for the next
iteration of the tool development process.
Besides, we will use the tool to extract event logs from the
last five semesters of the FAU’s Innovation Lab and other
comparable innovation courses of cooperating universities.
By finishing the L* life-cycle model for PM projects through
performing analysis execution and result interpretation, we
will evaluate students’ development and learning processes
in order to come up with recommendations for improved
teaching.
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ABSTRACT
Online exams with machine-readable answers open new pos-
sibilities for plagiarism and plagiarism detection. Each stu-
dent’s responses can be compared with all others to look
for suspicious similarities. Past work has developed several
approaches to detecting cheating: n-gram similarity, Lev-
enshtein distance, Smith-Waterman distance, and binomial
probability. To that we add our own term-frequency based
approach, called the“weirdness vector,”which measures how
unusual a student’s answers are, compared to all other stu-
dents. Each of these approaches seems suited to particu-
lar question types. Levenshtein and Smith-Waterman are
suited to long text strings, as appear in answers to essay
questions. Binomial probability and n-gram similarity are
well suited for finding suspicious patterns in responses to
multiple-choice questions. The “weirdness vector” is most
applicable to fill-in-the-blank questions.

Unlike past research, that applied a single metric to detect
cheating in an exam with questions of a single type, this pa-
per measures how different approaches work with different
kinds of questions, and proposes methodologies for combin-
ing the approaches for exams that consist of all three kinds of
questions. This work shows promise for detecting cheating
in open-web exams, where students can cheat using covert
Internet channels, and is especially applicable in situations
where exams cannot be proctored.

Keywords
Online exams; plagiarism; Levenshtein distance; n-grams

1. INTRODUCTION
Online exams have become more common in recent years due
to the growth in online courses, especially after the transi-
tion to emergency online instruction. They have the ad-
vantage of faster grading, especially for distance ed, more
copious feedback, and they can provide a more authentic
testing environment by allowing students to access certain

information from the web (e.g., the course notes) during the
exam.

Yet open-web exams do raise concerns about cheating [1].
Browsers can be locked down, and students can be moni-
tored remotely with cameras [2]. But monitoring is expen-
sive, and locking down browsers may destroy the authentic-
ity of the environment. For example, in a course on open-
source coding, students would always do their work online.
If they don’t have access to the Internet during an exam,
they must work in an environment far different from their
usual one. However, an authentic testing environment can
only be used if there is a way to detect plagiarism.

Our approach is to use data mining to measure the similar-
ity of the submitted answers. We extend our past work [3]
by incorporating additional published tests into our appli-
cation, and studying their applicability to different types of
questions. Section 2 covers tests that have been proposed
by others. Section 3 introduces new techniques for handling
particular kinds of questions. Section 4 reports our findings
from experiments on real data, and discusses which metrics
are suitable for which types of questions. Section 5 summa-
rizes our work and points out ideas for future progress.

2. RELATED WORK
Many published papers address automated detection of pla-
giarism, but with few exceptions, each paper focuses on a
single mathematical test. While a few papers [4] do consider
multiple tests, they do so in the context of comparing com-
peting tests for detecting plagiarism on a particular kind of
question (e.g., multiple choice). Since exams contain many
different kinds of questions (multiple choice, essay, fill in the
blank, matching, etc.) what is needed is a single application
that can apply appropriate tests to responses to different
kinds of questions. That is the goal of our research.

2.1 Levenshtein Distance
The Levenshtein distance between two strings is the min-
imum number of edits required to change one string into
the other. For example, the Levenshtein distance between
“faculty” and “faulty” is 1, the Levenshtein distance between
“sloop” and “sleep” is 2, and the Levenshtein distance be-
tween “country” and “countries” is 3. In the research of
investigating whether a machine learning model based on
a statistical method works better than a model based on a
structural method, the Levenshtein distance was chosen to
be the similarity measurement for the structural approach.
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Levenshtein distance has been researched not only for tradi-
tional string match, but as a structural method in clustering-
based machine learning models of plagiarism detection [5].

One limitation of Levenshtein distance in detecting pla-
giarism is that rearrangement of text produces a large
Levenshtein distance, since Levenshtein distance is focused
on one-character (or one-word) edits. Suppose that two
students’ answers, taken as a whole, bear little resemblance
to each other, but they contain sequences in different
positions that are highly similar. The Smith-Waterman
algorithm can identify this.

2.2 Smith-Waterman Algorithm
The Smith-Waterman algorithm is another classical string
similarity metric. It looks for similar local regions to identify
optimal sequence alignments. For example, the best align-
ment of two sequences X = “abcbadb” and Y = “abbdb”
would be

a b c b a d b
a b - b - d b

Researchers have proposed alterations of the Smith-
Waterman algorithm that were tested effective in practice
of detecting collusion while speeding up the algorithm with-
out using up much space [6]. Traditional Smith-Waterman
algorithm searches through a pair of sequences and finds the
maximum piece of consecutive matching characters, whereas
the revised implementation introduces the cut-off concept to
keep track of multiple pieces of matching. The modification
yields more optimal local alignments and thus more effective
on plagiarism detection as well.

2.3 n-grams
Another attempt from the structural perspective is n-grams.
We can consider a word as a token [7]. Then an n-gram is a
set of n consecutive words. Then for two exam submissions,
we can ask what is the longest common n-gram between
them, or how many n-grams of length > k do they have
in common? This is a useful metric for comparing two
students’ essay answers, but it also useful for comparing
other kinds of answers, such as answers to multiple-choice
(MC) questions. Here, MC answers, not words, make up
the strings we are comparing.
MC questions have the property that the answers are chosen
from a discrete set, usually about four in cardinality. Given
that there are m possible answers for each question, the
probability that two students will choose the same answer by
chance is 1

m
. The probability that they will choose the same

k consecutive answers is 1
mk . This is the idea behind the

binomial test [8]; it is very unlikely that two students will
choose a large number of the same wrong answers by chance.

Each of these methods works well on a specific type
of text. A more comprehensive approach that works on
all types of questions is needed for online exams. We will
further analyze the effectiveness of each metric to determine
which metrics work better for multiple-choice questions,
fill-in-the-blank questions, and essay questions, respectively.

3. PROPOSED METHODS
3.1 The “weirdness” vector
The weirdness-vector metric looks for pairs of students who
have similar but unusual answers. The basic idea is to cal-
culate the term frequency of each response by each student
and create a vector of term frequencies. Then we can use
cosine similarity to measure the distance between the weird-
ness vectors of each pair of students. Those who have the
most similar vectors are worth further inspecting.

3.1.1 Data Preprocessing
1. For the set of students S = s1, s2, . . . , sn, we extract

all their responses R into a matrix where ri,j is the
response to question qi by student sj .

2. Then we remove the stop words and punctuation in
the response matrix.

3. We use a function to classify each question on the exam
as belonging to one of three question types: Multiple-
choice, fill-in-the-blank, and free-response essay ques-
tions.

3.1.2 Implementation
1. For each response ri,j of student sj to question qi, we

calculate its term frequency among all the responses
to question qi . Each response ri,j is converted into
a “bag of words,” and is compared with every other
bag-of-words response to question qi. The number
of occurrences of each bag of words divided by the
number of students n gives us the frequency fi,j of a
response ri,j .

fi,j =
number of times ri,j appears in responses to qi

n

2. It is the low term frequencies that may be suspicious,
but for the other tests in the program, high values
are suspicious. Hence, we calculate the inverse term
frequency instead:

wi,j = 1− fi,j

3. Each student sj has a “weirdness” vector Wj consist-
ing of the inverse frequencies wi,j of each response to
each question qi , i.e., Wj = w1,j , w2,j , . . . , wm,j , where
q1, q2, . . . , qm are the questions in the test.

4. We use cosine similarity to measure the closeness be-
tween pairs of weirdness vectors. For a pair of vector
X and Y, the cosine similarity is calculated as

cosine similarity =
∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i

where xi and yi , i = 1, 2, . . . , n are components of
X and Y . The vectors with similarly high inverse fre-
quencies will return high cosine similarity, for small
values in the vector components do not contribute
much when calculating the cosine similarity. That be-
ing said, only similar but unusual responses will stand
out in similarity scores.
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3.1.3 Regarding identical answers
The weirdness vector highlights suspicious behavior by de-
tecting pairs of exams that contain identical incorrect an-
swers, yet it is also worthwhile to identify pairs of ex-
ams that have identical correct answers. Some questions
have multiple possible answers, where students can answer
correctly without necessarily providing the exact same re-
sponses. Such cases can be well addressed by an algorithm
that takes multiple correct answers into account; however,
no algorithm can detect plagiarism among students who
have provided the same correct response where only one cor-
rect response is possible.

3.2 Bag-of-Words Extension
Several metrics help detect plagiarism in text-based answers.
Results can be enhanced by preprocessing the text before
applying metrics. One kind of preprocessing is getting rid
of stop words and removing punctuation. We can go one
step further and treat the remaining words as an unordered
set. This is the bag-of-words model.

3.2.1 Use Case
To illustrate the advantage of the bag-of-words model for
finding similar answers, consider this example:

Response1 = “pattern: strategy”

Response2 = “strategy pattern”

Response1 == Response2 // False

bag of words(remove stop words(Response1)) ==

bag of words(remove stop words(Response2))// True

Given that these responses are deemed incorrect, it is worth-
while to count the two wrong answers as matching. Without
the removal of stop words and bag-of-words analysis, this
case would go unnoticed as evidence of potential plagiarism.

4. EMPIRICAL RESULTS
The research questions that we are trying to answer are
whether the tests can detect suspicious similarity, as well
as which tests are most effective on each type of questions.
We consider a test effective if it produces only a few unusual
values (outliers) among its results. Of course, results from
tests alone cannot be solid evidence of cheating; instructors
would need to inspect the exam papers. To forestall exces-
sive manual inspection, a good test should direct attention
to the few most suspicious responses. If the observed val-
ues given by a metric contain outliers when it is applied to a
particular kind of question, this metric can be deemed useful
for that type of question.

We can use data visualizations to illustrate the effectiveness
of all the metrics on three types of questions. We used real
exam data from CSC 517 (all offerings between Fall 2014
and Spring 2020) at North Carolina State University. All
data was de-identified before use.

4.1 Effectiveness of each metric
The weirdness metric shows us (Figure 1) how unusual it is
for a pair of exams to share the same wrong answer to a ques-
tion. Weirdness is a good test for FiB exams if only a few
exams have a large number of the same unusual incorrect

Figure 1: Weirdness metric on 3 types of questions

answers. On essay questions, however, it is the responses
with high term frequency that are suspicious, since each re-
sponse should have its unique phrasing. Essentially, each
incorrect essay response is considered “weird” and hence, the
weirdness values will show a discrete distribution as shown
in the histogram above. For MC questions, there is a much
smaller number of possible choices, and thus, weirdness does
not work as effectively as for FiB. Though both the FiB and
MC weirdness values have small tails, the values are more
meaningful for FiB questions.

Figure 2: Levenshtein on FiB and essay questions

The Levenshtein metric (Figure 2) uses edit distance to com-
pute string similarity. While weirdness watches for short
unusual responses for FiB questions, Levenshtein has its
strength in detecting long similar responses for essay ques-
tions. As the histogram for Levenshtein performance shows,
Levenshtein generates many fewer outliers on essay ques-
tions than on FiB questions. The essay histogram has a
minor peak near 1.0, highlighting the responses that are sus-
piciously similar, whereas the FiB histogram has many high
values, suggestive of false positives.

Smith-Waterman is pretty good at comparing long texts,
and it is much more revealing on essay questions than on
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Figure 3: Smith-Waterman metric results

FiB questions, as we can tell from the graph above.

Figure 4: Max n-grams metric results

n-grams are naturally suited to finding long similarities in
essay questions. We can also concatenate all the MC re-
sponses of two students and use n-grams to compute the
longest common subsequence between them. Since the num-
ber of pairs drops significantly after max n-gram length =
10 for essay questions, we choose 10 as the threshold and
consider those greater than 10 to be outliers. FiB responses
are much shorter, typically no longer than 7 words, and are
expected to be mostly identical; thus n-grams are unlikely
to provide much guidance. The max n-grams lengths of MC
responses tell us how many consecutive MC questions two
students answered identically.

The n-gram metric can, of course, help detect students who
were collaborating extensively on MC questions, but it does
not take correctness of the responses into account. Consec-
utive same correct MC responses should not be treated as
suspicious.

Binomial is used for MC questions only, as it calculates the
probability of students having the same wrong answers. It
is a more reasonable metric for MC questions than n-grams
because it does take correctness of responses into account.

4.2 The most suitable metric

Figure 5: Different metrics on MC questions

Figure 6: Different metrics on FiB questions

As discussed earlier, weirdness is much more applicable to
FiB questions than other string matching metrics. The
concave upward curve at (0.8, 1.0) justifies the effectiveness
of weirdness.

Levenshtein, Smith-Waterman, and N -grams are all
good metrics for essay questions, although empirically,
Levenshtein is more effective over other tests.

5. SUMMARY
We can conclude from the empirical results that for multiple-
choice questions, one should seek help from the binomial
test. For fill-in-the-blank questions, weirdness works the
best. For essay questions, Levenshtein, Smith-Waterman,
and n-grams all work effectively.
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ABSTRACT
This study uses skill-based curriculum analytics to mine the
curriculum of an entire university. A curriculum profile is
constructed, providing insights about university curriculum
design and the match between one institution’s curriculum
and the job market for a cluster of data-intensive fields.
Automating the delivery of diagnostic information like this
would enable institutions to ensure that their professionally-
oriented degrees meet the needs of industry, so helping to
improve learner outcomes and graduate employability.

Keywords
curriculum mapping, curriculum profile, skill-based curricu-
lum analytics, ontologies, skills profile, job market

1. INTRODUCTION
People around the world see universities as an important
step in building a successful career [3]. They invest time
and finances in undergraduate and postgraduate courses,
with a goal to gain new competencies that will help them
to find a job [2]. Over the decades, a number of institutions
in the tertiary sector have worked hard to adapt their cur-
riculum to market requirements, seeking to prepare more
work-ready graduates. However, there is an ongoing de-
bate about whether university efforts to develop students’
skills have a noticeable influence upon graduate employabil-
ity [18]. In particular, employers continue to express doubts
that university education does indeed lead to professional

competence, claiming that it fails to provide students with
the skills they actually require in the workforce [17]. At the
same time, undergraduate employment rates are slumping
[7], which often leads to further delays in the time it takes
students to find work upon graduation, in turn leading to
requirements for further professional training [10].

Until recently, much of this debate has been poorly sup-
ported by evidence and data. Claim and counterclaim pre-
vail, but a large amount of the data supplied has been ad
hoc, or cherry picked to support vested interests [20, 9].
However, with the rise of online job advertisements it has
become possible to collect data about what potential em-
ployers demand in the workplace. A number of datasets can
now be created, using data collected from web platforms
such as LinkedIn1, SEEK2 and Monster3. Indeed, vendors
such as Burning Glass (BG) technologies4 now market ag-
gregation services and data that can be used to understand
changing trends in the workforce. The next sections provide
a brief overview of the ways in which this data can be used.

1.1 Curriculum analytics
Many attempts have been made to understand what gaps
there might be in the curriculum offerings of educational in-
stitutions. For example, Knight and Yorke [13] describe the
Skill plus project as an attempt to manually audit the uni-
versity curricula for four universities and 17 departments.
Trying to find curriculum gaps, Davis et al. [5] conducted a
survey of graduates, Lang et al. [15] surveyed industry repre-
sentatives, Lempp and Seale [16] conducted a study among
health students. However, the manual and resultingly not
sufficient scalability of this work, has limited the use of this
work in linking to workforce needs [11].

1https://www.linkedin.com/jobs/
2https://www.seek.com.au/
3https://www.monster.com/
4https://www.burning-glass.com
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More recently we start to see data science techniques used
to overcome these limitations. For example, attempts have
been made to infer curriculum information from student per-
formance and interactions with the curriculum [20, 21], but
not the skills offered in the curriculum itself. Skills based
curriculum analytics [12] makes use of Natural Language
Processing (NLP) to map curriculum documents to a defined
skills taxonomy, in this case for the purpose of recognising
prior learning. A number of other works have made use of
NLP in analysing curriculum [1, 8, 24, 19, 23], but only for
specific subsets of curriculum (normally computer science).
Thus, opportunities are emerging for automating the analy-
sis of curriculum, but how might this be linked with labour
market demand?

1.2 Connecting market demand and curricu-
lum

Educational institutions have recognised their role in sup-
plying market demand by offering various courses that pre-
pare graduates to enter the workforce [4]. This transforms
the problem of mapping curriculum into one of alignment
with labour market requirements [14]. One of the most
common methods applied to this task adopts industry skill
frameworks and then formulate graduate attributes which
match market expectations [14, 22]. This method allows
curriculum managers and developers to see gaps, and work
to align existing and new courses towards market expec-
tations. It also helps students to plan their study course
according to their career desires [25]. However, both frame-
works and curriculum are living documents that adapt to
the environment, and there is a time lag between acknowl-
edging and implementing new skills and technologies into
frameworks and curriculum. Furthermore, this curriculum
mapping task is usually completed manually (see section 1.1,
which makes it time-consuming, tedious, and prone to mis-
takes. Worse still, some industries may rarely update their
industry frameworks, while other industries might not even
have a formal listing of their skill requirements [6].

Overall, while many institutions make use of industry advi-
sory bodies, market reports, etc. to map their curriculum by
hand, we are yet to find examples of curriculum mappings to
workforce requirements that are supported by the emerging
large scale employment datasets that are becoming common
in the field. This is the gap that we seek to address here.

1.3 Research questions and contribution
This work aims to use automated methods to map gaps be-
tween the subset of the curriculum taught at one institution
and labour market demands. We will do this by asking the
following three research questions:

RQ1: What is the skills profile for a complete institution?
RQ2: How can we explore the gap between university cur-

riculum and market demand?
RQ3: How can we differentiate the match between contrast-

ing curriculum pathways and labour market demand?

Our contributions include: (i) a preliminary method for au-
tomatically constructing a curriculum profile for an institu-
tion (ii) a way to compare subsets of curriculum within that
institution (iii) a method for finding gaps between closely

related set of degree programs and the job market.

2. CURRICULUM PROFILE
This paper introduces the concept of a university curricu-
lum profile. We make use of the BG ontology, which pro-
vides a static set of skills that can be consistently mapped
into a range of different higher level clusters to extract in-
formation about what mix of skills is being taught across an
entire institution. We chose the University of Technology
Sydney (UTS) curriculum as a data source, which consists
of 486 degree programs (termed courses) offered across 9
faculties at the undergraduate and postgraduate levels. In
total, there are 3,739 subjects offered across these degrees.
Information about the curriculum can be obtained using the
UTS handbook (https://www.handbook.uts.edu.au/).

2.1 Method
This section discusses three experiments that have been per-
formed, each designed to extract information about the skills
taught at UTS. We start with a course profile across the
entire curriculum of UTS in a bid to respond to RQ1 (Sec-
tion 2.1.1), before performing a deeper analysis of the data
analysis curriculum offerings at the same institution to re-
spond to RQ2 (Section 2.1.2). Finally, in Section 2.1.3 we
determine how well aligned these data analysis offerings are
with local labour market demand, so responding to RQ3.

2.1.1 The UTS curriculum profile
For the first part of our analysis, we performed a skills anal-
ysis of the entire UTS curriculum, with a view towards de-
veloping a skills profile across the university. This then en-
ables us to drill into sub-profiles for specific degree programs,
demonstrating their similarities and differences. Our analy-
sis implemented the following steps:

STEP 1: We scraped the UTS curriculum handbook.
STEP 2: Subject names and descriptions were mapped to

lists of skills using the BG content tagger.
STEP 3: Skills were mapped to higher level skill clusters

and families according to the BG Skill Ontology.

Drilling into the skill cluster families tagged by BG makes
it possible for us to start exploring the distribution of skills
taught by each Faculty at UTS. Encouragingly, this method
reveals that the majority of the skills developed by each Fac-
ulty are in sensible skill cluster family domains, with some
spread into other families, in explainable patterns. Thus, the
Faculty of Engineering and Information Technology (FEIT)
teaches 100% of all Engineering and 97% of all Informa-
tion Technology skills covered at UTS; the Faculty of Health
(Health) teaches the largest proportion of Health Care skills,
followed by the Graduate School of Health (GSH); and the
Faculty of Business covers the Business and Finance skills.

2.1.2 Within the data analysis curriculum
For our second analysis, we decided to perform a deep dive
into a subset of the UTS curriculum. We chose to explore the
Data Analytics related degrees available across UTS. This
decision was based upon the existence of three potentially
competing degrees that are currently offered at UTS

MDSI: Master of Data Science and Innovation (MDSI)
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MIT: Master of Information Technology (Data Analytics)
MBA: Master of Business Administration (Data Analytics)

We sought to explore how much overlap existed in the cur-
riculum associated with these three degrees, and whether
there was a possibility that inefficiencies could be identified
where the same skills were being taught across multiple sub-
ject offerings. We implemented this analysis by following a
similar sequence to that presented in Section 2.1.1. Each
of the three selected courses consists of a set of compulsory
core subjects and an optional choices. We performed two
separate analyses, extracting a skills profile for two different
course structures: one using just the core subjects required
for each of the three courses (core), and a second analysis
that added the Data Analytics subject selections for that de-
gree (data). We chose the IT, Business and Analytics skill
cluster families for a further investigation of possible reasons
of skills changes, because these are the claimed focus of the
chosen degrees.

After skill profiling a number of patterns can be noted, for
example, the MIT has the most complete coverage in the
Information Technology skill cluster family, but has almost
no coverage of the Analytics skills cluster family. However,
adding the Data Analytics subject choices to the Core leads
to an increase of skills in the Analytics skill cluster family
(almost to the point where it has the same number of skills
as the entire data science-oriented MDSI degree). Similarly,
the Core MBA subjects cover all three skill families, but
selecting more specific Data subjects leads to a growth in the
number of skills in IT and Analytics skill cluster families.
Finally, as expected given the exclusion of the full set of
optional subjects no change is observed for the MDSI when
expanding with Data subjects.

2.1.3 Finding a gap between market demand and cur-
riculum offerings

For our final study, we combined UTS curriculum data with
data about skills sought in the Australian job market:

STEP 1: We selected the top 10 Data Science and Ana-
lytics (DSA) skills, found by Dawson et al. [6] and
required by the market, and checked if they exist in
UTS curriculum and MIT, MDSI and MBA courses.

STEP 2: Then, we selected the top 10 DSA skills that
showed the highest growth in the market and cross-
checked to see if the UTS curriculum adapts to these
rapid market changes.

STEP 3: After that, we selected three DSA Occupations
from the BG ontology, retrieved the skills linked with
these occupations in the BG ontology and compared
them with the skills covered by the UTS curriculum.

Encouragingly, all of the top-10 DSA skills exist in the cur-
riculum. However, some skills are missing from the selected
Data Analytics courses. Overall, selected courses cover most
of the demanded DSA skills.

At the same time, only four skills with the highest com-
pound annual growth rate (CARG) in 2019 [6] exist in the
resulting skills profile. Other technologies and tools, such as
Blockchain, TensorFlow, Internet of Things, are missing in
the curriculum we analysed. However, some of these skills

are yet to be integrated into the skills clusters and fami-
lies of the BG ontology, which points to their very recent
emergence. This gap points to an opportunity for UTS to
identify rapidly growing skills that it considers beneficial to
deliver: a curriculum gap that could be rectified.

Finally, we retrieved three DSA occupations (Data Analyst,
Data Scientist and Business Intelligence Analyst) and their
skills from the BG occupation ontology comparing them
with the skills profiles for the MIT, MDSI and MBA (see
Table 1 for the core subject selections). The results mirror
those obtained in the previous section.

Overall, none of the UTS courses has more than 50% of
the skills taught that required in our three selected occupa-
tions which potentially demonstrates a gap between univer-
sity curriculum and market demand.

Occupation Course Both exist Only in Oc-
cupation

Only in
Course

Data
Scientist

MDSI 27 73 97
MIT 42 58 287
MBA 37 63 153

Data
Analyst

MDSI 20 80 104
MIT 42 58 287
MBA 34 66 156

Business
Intelligence
Analyst

MDSI 17 83 107
MIT 35 65 294
MBA 32 68 158

Table 1: Three DSA occupations from BG ontology
with the number of skills existing and not existing
in three selected UTS courses.

3. TOWARDS A CURRICULUM PROFILE
A number of findings about the curriculum taught at UTS
emerge from the preliminary curriculum profile presented in
the previous section. Firstly, there is a gap between BG skill
ontology and the UTS curriculum profile. However, UTS
develops knowledge not just software skills. The analysis
shows only seven families are more than 50% covered by the
UTS curriculum (Business, Economics, Engineering, Envi-
ronment, Legal, Media and Science). At the same time, the
most well-presented in the curriculum IT and Health fami-
lies cover only 25% and 38% respectively. The majority of
skills in these families are missing. However, the reasons for
the gap are interesting in themselves, including:

1. Novelty skills: there is a lag between new skills emerg-
ing (e.g. TensorFLow, WebAssembly) in the market
and their incorporation into curriculum offerings.

2. Legacy skills: in contrast, some skills (e.g. COBOL,
ALGOL and the early versions of Microsoft Server)
are present in the ontology but not taught at UTS.

3. Generalised knowledge: the role of universities is larger
that of simple skill development. We see evidence
that UTS is developing generalisable knowledge, rather
than the more specific skills.

Another finding from our approach is that the faculties at
UTS do appear to have specialisations which largely match
the subject materials we would expect to see taught in the
faculty. Thus, for example, the Business Faculty has a focus
on “Finance” and “Business” (87% and 73% of all UTS skills
in this families), Faculty of Engineering and IT includes“IT”
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and “Engineering” (97% and 100% of all UTS skills in this
families) and Science Faculty prepares students in “Science
and Research”and“Environment”(100% and 77% of all UTS
skills in this families). Overall, the UTS curriculum profile
demonstrates that the university tends to develop knowl-
edge, not just skills and an ability to use specific tools.

3.1 Data Analysis projection on different courses
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Figure 1: Number of skills in three courses (Core
and Data selections) for three BG skill families.

All three selected DSA courses have unique skill profile and
prepare different types of Data Experts. By selecting three
Data related courses from three different faculties, we wanted
to find out if the courses, offered across UTS, are repetitive
and faculties lack collaboration. The results in Figure 1
show that each course has a different flavour which aims to
develop different fundamental skills. The MDSI focuses on
Analytical skills, the MIT focuses upon IT skills and the
MBA is giving fundamental knowledge in IT, Business and
Analytics. However, expanding the Core subject selection
to DSA major, we see that: (i) MBA almost stopped devel-
oping business skills and focused on Analytics, which also
resulted in the number of IT skills increasing. (ii) MIT be-
comes far more aligned with the Data Analytics skill cluster,
with an accompanying increase in IT and Business skill de-
velopment (iii) MDSI did not change the curriculum profile
at all, which is related more to the extremely open course
structure of the degree and the fact that this could not be
captured by our method. Overall, each course prepared al-
most the equal number of skills in Analytics (39 for MBA,
43 for MIT, 44 for MDSI). However, the content and the
student pathway are not the same. Students from MDSI
are focusing on Data Analytics, as expected from a Data
Science course, but MIT students have a strong background
in IT, supported by Analytics. Finally, MBA students are
well-rounded specialists in IT, Business and Analytics.

3.2 Finding a curriculum gap
The first gap revealed in section 2.1.3 illustrates a discon-
nection between the understanding of graduate capabilities
possessed by universities and the market. While some skill
sets are too narrow to be useful to a graduate (e.g. At-
las.ti and Alteryx), others are popular on the job skills for
data analysts and data scientists (e.g. SQL and Git). A
domain expert is required to make the distinction between
these skills, but our method of building curriculum profiles
could help with decision support, showing up skills that are
essential but still largely unrepresented in the curriculum.

The second gap we found is a lag between the appearance of

a new area of knowledge in the labour market and its intro-
duction to the curriculum. This gap should be distinguished
from the emergence of new tools alone, although there can
be some overlap (e.g. with TensorFlow and Apache Spark).
More general skills like Deep Learning, Data Lakes and Ran-
dom Forests also feature in this list. Similarly, there is a need
for Internet of Things and Blockchain specialists which the
UTS curriculum is yet to respond to. This second gap is
potentially more dangerous because it shows incapability to
cover new areas of knowledge in time. However, more anal-
ysis is required to investigate the actual demand for these
emerging skills. For example, while the CAGR can be very
high, this can be achieved by doubling the demand for a
skill that was previously only advertised for twice in a time
period. Care must be taken to disentangle growth from ab-
solute demand, a task that we reserve for future work.

4. CONCLUSIONS AND FUTURE WORK
In this article, we introduced the university curriculum pro-
file that allowed us to explore the skills taught across an
entire university, and to establish that the faculties at UTS
do indeed teach the skills we expect. It also enabled us to
demonstrate the existence of a potential gap in what was
taught, but which was explained by unearthing the too spe-
cific and technology dependent nature of many skills in the
BG ontology. This gap was explained with the observation
that universities should be developing graduates who can
generalise knowledge from their skillsets, not just make use
of a highly specific tool, and was therefore identified as not
critical.

This work can be extended in several ways. Firstly, it will
be important to find ways of representing the complexity of
a curriculum structure using more than counts. Many of the
potential gaps our analysis identified turned out to be un-
derstandable once we looked deeper into the skills that were
not being taught (Section 2.1.3). Secondly, the analysis can
and should be extended beyond the DSA degrees consid-
ered here to explore what differences may result from using
different skill sets. Third, finding the curriculum gaps will
benefit from the development of automated tools for finding
changes in labour market demand. Such instruments could
be tuned to track changes in real-time and provide histor-
ical data for more in-depth analysis of the university cur-
riculum and its development. Finally, the current method
of extracting skills from the curriculum cannot identify dif-
ferences between novice and advanced skills. It is essential
that we develop additional tools for evaluating these differ-
ent levels of skill proficiency.

We believe that the method of profiling curriculum devel-
oped here will help institutions to adjust existing courses or
initialise new ones as required by the market. It will also
help students to choose more effective learning paths accord-
ing to the market demand. As such, it has the potential to
help institutions improve outcomes for all learners.
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ABSTRACT
In recent years, Wiki has been proved effective for collabo-
rative learning in modern education. As a typical collabora-
tive writing system , Wiki empowers students in generating,
modifying and structuring their own contents. Some courses
may include these collaborative assignments like writing a
wiki page as part of assessment. But for teachers, it is diffi-
cult to assess the quality of student contributions, because
the final result of project is made up of edits from different
students. In this paper, we propose a content-based model,
OSEAN(Order-Sensitive Edit Assessing Network) to better
address this problem. OSEAN can represent and predict
students edits’ quality by extracting semantic features from
edit pairs. Experiment results show that OSEAN has the
highest AUPRC on Wikipedia edit quality classification task
in all tested methods. Furthermore, OSEAN can handle re-
versed edit pairs correctly, which often happens when one
student undoes previous student’s edit.

Keywords
Natural Language Processing,Assessment,Collaborative Learn-
ing,Sequence Modeling,Wikipedia,Crowdsourcing

1. INTRODUCTION
In recent years, the use of modern information and com-
munication technologies in education has been widely stud-
ied[10]. Thanks to the rapid development of web technol-
ogy, higher level of collaborative learning becomes easier.
Among these web applications, wiki attracted attention for
enabling students work together. According to the defini-
tion onWikipedia, wiki is a knowledge base website on which
users collaboratively modify and structure content directly
from a web browser. These inherent characteristics of wiki
technology encourage students collaborate to create their
own contents[3].

However, assessing student contributions in a wiki project
can be difficult. This is because that students not only add

Original

Revised

Original

Revised

For the article on the war itself World War 15

For the article on the war itself World War 15 I

Original

Revised

For the article on the war itself World War 15

For the article on the war itself World War 15 I

Original

Revised

 the growth of nationalism, and the power vacuum created by the 
decline of the Ottoman Empire

the growth of nationalism, and the power vacuum created by the 
decline of the Ottoman Empire  other rubbish no one cares about.

Original

Revised

 the growth of nationalism, and  other rubbish no one cares about. 
the power vacuum created by the decline of the Ottoman Empire

the growth of nationalism, and other bullshit no one cares about.

Figure 1: Example of revision history from Wiki page:
Causes of World War I. We select 3 continuous versions
and compare the differences. Edit 1 fixed an error in the
page. Edit 2 deleted some words and added some offensive
words. Edit 3 did a revert operation to eliminate vandalism
information introduced by revision 2.

contents to the project, but also revise or delete contents
which are added by others. Since reprocessability plays a
key role in evaluation of student works[6], we should as-
sess student contributions from the entire process of wiki
project. If teachers only evaluate everyone’s contribution
from the final state of the project, then some important be-
havior information can be lost. Figure 1 gives a example
of page revision history. In this work, we care about the
quality of students contribution in the project, so we need
to evaluate the quality of each edit. A wiki project usually
consists of many edits, which brings a lot of works to teach-
ers. Therefore, we want to evaluate the quality of edits in an
automated way. To predict new edits’ quality, two types of
methods are proposed. Content-based methods extract fea-
tures from the content of edits. ORES[5] and Stiki[11], web
services provided by Wikimedia team, use linguistic features
to compute the probability that a specific edit is damaging.
StRE[8] utilizes deep neural network and achieves a high ac-
curacy. On the other hand, content-independent methods,
e.g. Interank[12], treat edit as the interaction between user
and project(page).

While each edit is a pair of sequences before and after an
edit, a new question arises: Does the order of pair matter?
The order of edit pairs represents the direction of contents
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evolution. If a model can truly predict the quality of an
edit, it should generate a opposite label if we reverse the
edit pair.

To better predict new edits’ quality and handle the order of
edit pair. In this work, we propose OSEAN(Order-Sensitive
Edit Assessing Network), a content-based edit quality pre-
diction model. OSEAN extracts each dissimilar part of two
sentences and learn the vector representations for two parts.
To handle the order of edit pair, we utilize the subtract result
between two parts as the final representation of the entire
edit.

2. METHODOLOGY
2.1 Problem Formulation
An edit P = {S,T} on a particular page is a pair of orig-
inal sentence S and revised sentence T. Each sequence is
represented as a fixed length character sequence.

S = {S1, S2, ..., SM}
T = {T1,T2, ...,TM}

where M is the length that can be manually set. Our task
is to find a page-specified scoring function that maps each
edit to a binary label:

fpage : P → L,L ∈ {0, 1} (1)

2.2 Model Architecture
Figure 2 gives an overview of OSEAN. We will introduce
each steps in the model below.

Character Embedding. The first layer performs a character-
level look-up where each character is represented as a d-
dimension vector. The edit pair is converted to two matrices
of dimension m× d.

Convolution Step. After the character-level embedding, the
sequences of embedded characters is provided as inputs of
convolution layer, which computes an 1-D convolution over
the embedded sequences. A convolution operation involves
a filter with size h :

ci = tanh(wc · xi:i+h−1 + bc) (2)

As a result, each sentence is represented as a feature map of
dimension l × d, where l = m− h+ 1.

Dissimilar Part Extraction. Since an edit is changes of
page contents, the dissimilar part of two sequences should
have higher weights on qualities. We utilize the method from
[9]. In our model, the semantic unit of the sequence is the
combinations of characters after the convolution operation,
and we only care about the dissimilar part. To determine
which part is dissimilar, we need to check whether a unit is
semantically covered by another sequence.

First, we compute the similarity matrix AL×L for feature
maps CS and CT after the convolution step, each element

ai,j ∈ A is the cosine similarity between unit CS,i and CT,j .

ai,j =
C⊤

S,iCT,j

∥CS,i∥∥CT,j∥
(3)

Then we use the similarity matrix to calculate the semantic
cover of CS,i by combining all units in the other sequence
CT .

cover(CS,i,CT) =

∑L
j=0 ai,jCT,j∑L

j=0 ai,j

(4)

The result ĈS,i = cover(CS,i,CT) can be used to calculate
the proportion α of unit CS,i that is present in the other
sequence. The value of α is the cosine similarity α of CS,i

and ĈS,i. So the dissimilar part’s can be defined as 1 − α.
The dissimilar part DS,i for feature map unit CS,i is:

αi =
C⊤

S,iĈS,i

∥CS,i∥∥ĈS,i∥
(5)

DS,i = (1− αi)CS,i (6)

After performing the above calculations for all units in CS
and CT, we get two dissimilar parts DS and DT.

Edit Representation. We use a weight-sharing fully con-
nected layer(FCL) to generate representation vectors ES,ET
for each sequence. To obtain the final representation Efinal
for the whole edit, we perform a subtract operation on ES
and ET. The edit vector Efinal is used for quality classifi-
cation with a sigmoid activation.

ES = W0DS + b0, ET = W0DT + b0 (7)
Efinal = ES − ET (8)
r = sigmoid(W1Efinal + b1) (9)

Here, r is considered to be the possibility that the edit P to
be a beneficial edit.

2.3 Order of Edit Pair
Consider an edit P = (S,T), we assume P to be a beneficial
edit and labeled as 1. If we reverse the order of the edit
pair, the label of the reversed edit P′

= (T, S) should also
be flipped, meaning P′ has a label 0. This is because the
reverted operation on a beneficial edit should be considered
to be a damaging edit. If the order of the pair can not be
handled correctly, the model is very likely to classify two
opposite edit P and P′ to be the same label.

We give the definition of order-sensitive here:

Definition 1 (order-sensitive). A model is order-sensitive if
for most edit pairs, it satisfies: the model gives two opposite
labels for edit P and its reversed version P′ .

Obviously, an ideal edit quality prediction model should
be order-sensitive. Our proposed model is perfectly order-
sensitive under ideal conditions which can be proven math-
ematically and also performed well in the experiment:

3. EXPERIMENTS
In this section, we conduct experiments to answer following
questions:
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Figure 2: An overall architecture of OSEAN(Order-Sensitive Edit Assessing Network)

RQ1 Can our proposed model outperform state-of-the-art
edit quality prediction methods?

RQ2 If the order of edit pairs is reversed, how the perfor-
mance of all experimented methods will change? Can
our model still maintain the best performance?

RQ3 If we add the order information to model training pro-
cess by performing data augmentation, will model per-
formance get improved?

3.1 Experiments Setup
3.1.1 Dataset
We evaluate model’s performance on the data extracted
from Wikipedia page revision histories. As Wikipedia is the
most widely used collaborative writing system in the world,
experiments on this system can verify the effectiveness of
our model. Page histories are divided into three categories:

1. CS: Pages containing top 147 pages with the highest
number of edits related to computer science in English
Wikipedia as of June 2017[8].

2. EN/ZH: Pages containing top 68/55 pages in the whole
English/Chinese Wikipedia as of June 2019.

The number of samples in each category is reported in 1.

3.1.2 Computation of Edit Quality and Label
The basic idea is that if changes introduced by an edit is
preserved in several subsequent edit, then the edit is consid-
ered to be beneficial. Otherwise, if the changes is reverted,
then the edit is damaging. [1] and [2] give a formula to
compute the proportion of preserved changes. We follow
the approach and use a average value to compute the edit
quality.

Consider a particular page and denote its k-th revision (i.e.,
the state of the article after the k-th edit) as vk. Let d(u, v)
be the Levenshtein distance[7] between two sentences. We
define the quality of edit k from the perspective of the arti-
cle’s state after ℓ ≥ 1 subsequent edits as:

qk|ℓ =
d(vk−1, vk+l)− d(vk, vk+l)

d(vk−1, vk)
(10)

Samples CS EN ZH Total
# Total 2377732 285365 122748 2785845
# q ≥ 0 1402596 190924 88621 1682141
# q < 0 975136 94441 34127 1103704

Table 1: Number of samples for each category in dataset

We compute the average value over several future revisions:

qk =
1

L

L∑
ℓ=1

qk|ℓ (11)

We set L = 10 to compute the final edit quality in data pre-
processing. Each edit‘s quality is automatically computed
and labeled as damaging if the quality score q < 0, and
labeled as beneficial if q ≥ 0.

3.1.3 Competing Approaches
We compare OSEAN with some existing methods:

Average The average approach always outputs the ratio
of good edit on the training set as the predict
probability.

ORES The Objective Revision Evaluation Service (ORES)[4,
5] is an open-source classifier system developed
by researchers at the Wikimedia Foundation.

Interank Interrank[12] uses matrix factorization method to
learn editor’s ability and page’s difficulty based
on the page’s edit history.

StRE StRE(Self Attentive Revision Encoder)[8] is a deep
learning based method which combines word level
signals as well as character level signals.

ABCNN Attention Based Convolutional Neural Network
(ABCNN)[13] integrates attention into CNNs for
general sentence pair modeling tasks. We use
ABCNN-2 for our edit classification task.

3.1.4 Evaluation
To compare the performance of models, we set up a classi-
fication task to predict if an edit is beneficial or not. For
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Model CS EN ZH Total
Average 0.733 0.714 0.814 0.745
Interank 0.448 0.427 0.352 0.436
ORES 0.832 0.852 0.838 0.834
StRE 0.898 0.877 0.884 0.890

ABCNN 0.899 0.912 0.938 0.905
OSEAN 0.946 0.945 0.952 0.947

Table 2: Results on Wikipedia dataset

Model On Test On Train
Ori-Test Rev-Test Diff Ori-Train Rev-Train Diff

Average 0.745 0.305 -0.440 0.745 0.270 -0.475
ORES 0.835 0.316 -0.519 0.931 0.286 -0.645
StRE 0.890 0.404 -0.486 0.923 0.345 -0.578

ABCNN 0.905 0.497 -0.408 0.924 0.450 -0.474
OSEAN 0.948 0.755 -0.193 0.993 0.957 -0.036

Table 3: Results for reversed pair experiment. Ori-* denotes
the original set, Rev-* denotes the reversed set.

each example, we compute the quality score based on the
revision history and assign each example a binary label.

For each particular page, we split the edits on the page ran-
domly into train/validation/test set with ratio 80%/10%/10%
and train models. Page-specific models are evaluated and we
use the average AUPRC in each category as the final metric
which is consistent to previous works[12, 8].

3.2 Basic Experiment (RQ1)
We evaluate OSEAN on the original test set to answer the
first question. Table 2 presents the average AUPRC value
for each category in original test set. OSEAN has the high-
est AUPRC and is 4.6% higher than the next-best method,
proving the effectiveness of our proposed model.

3.3 Reversed Pair Experiment (RQ2)
In this experiment, we use the same train and validation set
as before. For test set, we design two settings:

1. On Test : Trained models are evaluated on original
and reversed test set.

2. On Train: Trained models are evaluated on original
and reversed train set.

A reversed dataset is generated by reversing every edit pair
and flipping the labels in the original set. According to the
definition, an order-sensitive model should have similar per-
formance on original and reversed set. Thus, the difference
in AUPRC can be used as a criterion to determine whether
the model is order-sensitive. We use average AUPRC of all
pages as metric.

Results. Experiment results are reported in Table 3. In-
terank model is not tested because the reversed sample is
anonymous which can not be processed by Interank. Perfor-
mance of all models drops when classifying reversed pairs.
OSEAN has the smallest decline which is 52.7% lower on
test and 92.4% lower on train than the next-best method.
OSEAN has the smallest performance decline and highest
AUPRC on reversed set in both settings, proving that our
model can handle reversed edit pairs correctly.

3.4 Training with Augmentation (RQ3)
In this experiment, we use training set with data augmenta-
tion to train models. For each example P = (S,T) with label
ℓ in training set, we add a reversed example P′

= (T, S) with

Figure 3: Results on decline of AUPRC with different pro-
portion of data augemented.

the opposite label ℓ′ to the training set. Models are trained
on augmented training set and evaluated on both original
and reversed test set. We train models with five different
cases (i.e. when 0%/25%/50%75%100% of reversed training
pairs are added). We want to know if data augmentation
allows models to learn the information of pair order and
empowers models to be order-sensitive.

Results. Performance decline with different rates of data
augmentation is reported in Figure 3. As more data is
added, the performance gap between the original and re-
versed test set is also declined. The narrowing of the gap
proves that data augmentation can indeed make models
more order-sensitive. However, even with 100% data aug-
mentation, the performance gap for all baseline methods
is still large, and gap for OSEAN is 37.4% lower than the
next-best method.

4. CONCLUSION
In this paper, we present OSEAN, a content-based model
for assessing edit quality in wiki-based writing system. Our
method utilizes the convolution network to find semantic
differences between previous and revised sentences, which
can represent an edit. Experimental results on page revi-
sion histories from Wikipedia demonstrate that our model
can effectively predict new edits’ quality. Therefore, we can
more accurately determine the quality of student contribu-
tions in the project.
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ABSTRACT 

We present an educational data collecting, mining and analyzing 

system, EAnalyst, for learners in the K12 period, providing highly 

intellectual personalized analysis and recommendations for 

learners. EAnalyst consists of preprocess module, analysis module, 

dashboard module and recommendation module. To assess target 

learner’s knowledge proficiency better, we extend the current 

deep knowledge tracing model to achieves the goal of 

performance predicting. The results on both open dataset and our 

platform dataset demonstrate the effectiveness of our model run 

on our platform.  

Keywords 

E-Learning; Personalized Analysis; Data Mining 

1. INTRODUCTION 
The rapid development of information technology has helped the 

“learner-centered” teaching mode attracting more and more 

attention. With the assistance of big data analysis and artificial 

intelligence, promoting large-scale data-driven personalized 

learning analysis has become realistic. EAnalyst is a system 

whose main goal is to provide intelligent, personalized, and novel 

assistance to learners. 

To meet the increasing needs of personalized learning [1], some 

existing work focuses on single work or test of a target learner [2] 

without continuous tracking and analysis of the whole learning 

process. Chronological data contain hidden patterns that are 

difficult to detect [3]. There are some attempts on analyzing 

educational time series data [4], evaluating learners’ emotional 

changes throughout learning process [5], but they didn’t consider 

to make analysis on learners’ cognitive level. Some work tried to 

do cognitive analysis of learning [6], but they didn’t combine it 

with temporal data mining and consider using deep learning 

techniques. 

An intelligent teaching environment helps educators to 

communicate with learners and be informed of recent states of 

learners. These technologies make traditional teaching and 

learning more accurate and intelligent. The quality of education 

relies more on data analysis than on the experience of educators. 

Learners are involved in drawing up their learning plans at the 

same time. Georgia state university tracks students from arrival to 

graduation in three years and has made a total of 100,000 active 

interventions based on the risk alert provided by the system, 

which has increased the graduation rate of students from 48% to 

54% [7]. In Oregon's Beaverton, students' drop-off records, 

absenteeism records and various demographic information are 

used to help students adapt to school life better [8]. 

EAnalyst 1  solves the problem that learners have a hard time 

figuring out their own knowledge proficiency because of deficient 

assessment methods and inadequate guidance. Combing domain 

knowledge with educational data mining and analysis, EAnalyst 

enables learners to know their knowledge state from the 

dashboard and provides remedial learning strategy. EAnalyst is an 

end-to-end system that has been tested on both elementary schools 

and secondary schools. Thus, the system is designed mainly for 

learners in the K12 period. The system has been used by part of 

students of those schools since 2014 and gets notable results in 

controlled experiments. 

2. DATASETS 
The data of learners are collected cautiously and critically. 

Different datasets lead to different outputs. Data of too large or 

too small granularity can be harmful to the analysis process. 

The main component of data collected by EAnalyst ranges from 

pre-class quiz, post-class quiz, homework, unit-test and term-test. 

We refer every quiz, homework or test as a collection of series 

exercises. The former three are mainly about inspecting learners’ 

short-term mastery level on concepts they just learned and the 

latter two on a larger concept coverage area. Exercises can be both 

online and offline. Educators use tools provided by the platform to 

select questions from question bank to form test papers. While 

offline exercises are commonly used for learners at a young age 

using the traditional paper test, online exercises are mainly taken 

on digital devices which can help collecting more information 

from question answering process such as time spent per question.  

3. SYSTEM ARCHITECTURE 
We describe EAnalyst architecture illustrated in Figure 1. 

EAnalyst is composed of preprocess module, analysis module, 

dashboard module and recommendation module. Preprocess 

module takes test papers and answer sheets as inputs and outputs 

structured data; analysis module takes structured data as input, 

outputs analysis results; dashboard module and recommendation 

module take analysis results as input then output visualized 

analysis results and recommendation list. 
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Figure 1. System architecture of EAnalyst: (a) Preprocess module. (b) Analysis module. (c) Dashboard module and 

recommendation module 

3.1 Preprocess Module 
Preprocess module uses optical character recognition (OCR) to 

transfer handwritten answers and correction marks to machine-

encoded text. The module applies Transformer [9] which is one of 

natural language process (NLP) techniques to comprehensively 

learning question representation so that it can label questions with 

corresponding knowledge concepts. The response of learners to 

questions are recorded after being corrected by educators. The 

module then formalizes those heterogeneous educational data 

using the Experience API (Xapi), which makes the data readable 

for machine. Figure 1(a) illustrates EAnalyst’s preprocess module. 

3.2 Analysis Module 
Learners interact with their coursework and generate sequences of 

learning process records. A sequence consists of multiple 

interaction record ,…, . The task of this module can be seen 

as predicting learner’s future performance . The record  at 

time step t can be represented as  where  is a 

question learner attempts at time step t and  means 

learner’s response (1 means correct and 0 means incorrect). 

Learning history is then analyzed by knowledge tracing model to 

reveal learners’ learning status. From  knowledge tracing 

prediction, educators can identify specific areas where learners 

need extra help. Educators can also analyze the data of the whole 

class to see their learning habit and adjust courses according to the 

feedback. Educators can even compare this information with that 

from other grades to determine which teaching methods are most 

effective. 

The datasets that are used by knowledge tracing model are 

collected during the 2017-2019 school years. The datasets we 

conducted experiments on is on math subject, which has covered 

652752 practice attempts of 3962 students on 4784 distinct 

questions. We filter learners who has fewer than three exercises to 

guarantee the reliability of knowledge tracing results since 

sequences that only contain one or two exercises barely contribute 

to tracing knowledge state of learners. We summarize some 

statistical features of two datasets in Table 1 and EAnalyst dataset 

distribution in Figure 2. For EAnalyst dataset, the average number 

of records per learner is 165. For EAnalyst dataset each learner 

interacts with more distinct questions than that in open dataset, 

which makes EAnalyst dataset more sparse. 

Deep learning has made a huge success in tasks like image 

recognition, natural language processing (NLP), voice recognition 

and etc. Tasks which are good at handling sequential data use 

model like Long Short-Term Memory (LSTM) networks [10], a 

type of Recurrent Neural Networks (RNN), and get good results. 

Compared with models based on statistical graph like Bayesian 

Knowledge Tracing [11] and models based on matrix 

decomposition like Knowledge Proficiency Tracing [12], models 

based on deep learning, called Deep Knowledge Tracing (DKT) 

[13] are more flexible, which can be combined with effective 

mechanics so that they can make use of other information like 

content of questions and domain knowledge. DKT uses LSTM 

and its variation to cover previous learning records in a long time 

period to detect learners’ knowledge state and memorize it in 

hidden vectors. This method has been combined with the attention 

mechanism to evaluate similarity among different question 

contents to improve prediction accuracy [14]. 

Table 1. Statistics of two datasets 

Dataset Name EAnalyst Dataset 
Assistment2009 

Dataset 

Attribute of 

Dataset 
Original Pruned Original 

records 657573 652752 525534 

learners 4285 3962 15931 

questions 4788 4784 124 

 

 

Figure 2. Distribution of EAnalyst Dataset on math subject. 
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Models like memory network [15] which has worked well in NLP 

field has also performed well at learning correlation between 

different questions. Model [16] using static key memory matrix to 

store question-concept relationships and dynamic value memory 

matrix to store and update concept-learner state relationships. This 

model performs well at knowledge tracing.  We  inherit the 

advantage of two memory matrices and apply convolution neural 

networks with some additional calculation to the reading process 

in the third step to reduce information loss in reading memory 

matrix process. We also consider the forgetting behavior of 

learners and add time interval of adjacent exercises to the 

updating step so that the model can simulate forgetting behavior. 

At first step, input data will be embedded. At second step, a 

question  is used to retrieve related concept position  in key 

matrix. At third step, position  is used in value matrix to query 

corresponding concept state. Finally, the concept state is used to 

predict learner’s future performance on . At fourth step, only 

related concept state will be updated in value matrix. The overall 

structure is illustrated in Figure 1(b). 

We compare the prediction accuracy on both our dataset and 

public benchmark dataset—Assistment2009 [17]. Assistment is an 

online platform which teaches and assesses learners in elementary 

school mathematics. It is also the largest available public 

knowledge tracing dataset. We use Area Under a ROC Curve 

(AUC) to measure performance of the traditional model and deep 

learning model. AUC value ranges from 0.5 to 1 where the former 

value indicates the prediction result by random guessing and the 

latter represent precise prediction.  

We set all sequences to be length of 150 and use -1 to pad short 

sequences to the expected length. The parameters are initialized 

randomly using Gaussian distribution. We set batch size for 

Assistment2009 dataset to 32 and that for Eanalyst dataset to 16 

due to limitation of gpu memory. For momentum, it is set to be 

0.9 and for norm clipping threshold to be 50. 

The performance of different models is listed in in Table 2. The 

comparison results lead to findings that EAnalyst model can 

produce relative good result on Assistment2009 and better 

prediction results on EAnalyst dataset considering EAnalyst 

dataset are much sparser than Assistemt2009. And Our model 

does not come into the problem of overfitting due to its 

complexity compared to DKT’s LSTM network. 

Table 2. Performance of different models on two datasets – 

Eanalyst dataset and Assistment2009 dataset (AUC) 

Model 
 EAnalyst 

Dataset 

Assistment2009 

Dataset 

Bayesian Knowledge Tracing 0.69 0.73 

Variant of Bayesian Knowledge 

Tracing 
0.75 0.82 

Deep Knowledge Tracing on 

EAnalyst platform 
0.85 0.86 

 

3.3 Dashboard Module 
Dashboard module is a visualization tool for learners displaying 

results of analysis on knowledge graph, which is illustrated in 

Figure 1(c) upper part. Educators and experts in education field 

construct the knowledge graph manually according to textbooks 

and their experience. Knowledge graph constructs a network of 

knowledge concepts, which are connected by lines with relevant 

knowledge concepts. The size of each concept is related to its 

importance. The importance level is valued by corresponding 

syllabus. The more important a concept is, the bigger is a node. 

Color depth of a node indicate how a leaner mastery a concept 

node. Each subject includes multiple knowledge graphs divided 

by school year while some concepts can appear in one or more 

graphs. Knowledge graph is a precondition of accurate analysis of 

learners’ overall cognitive levels, knowledge state and appropriate 

learning path recommendation. A learner and his or her educator 

can locate weak spots easily. And having a big picture of one’s 

knowledge state helps the learner to carry out the following 

remedial activities.  

Analysis report giving a more detailed description of a learner’s 

learning report. History of exercises will be evaluated in a 

statistical point of view. Different types of charts such as 

histogram, pie chart, radar chart and line chart. These charts can 

well represent changes in learning indicator of learners over time, 

break out learners of a class by percentage of accuracy they have 

got, show distribution of a leaner’s overall quality and give a 

rough comparison between the learner and the average level of his 

or her class and grade. Figure 3 gives a partial screenshot of a 

learner’s dashboard in elementary school mathematics. 

 

  

Figure 3. concepts mastery level in a radar chart and 

statistical report 

Analysis report giving a more detailed description of a learner’s 

learning report. History of exercises will be evaluated in a 

statistical point of view. Histogram represents change in learning 

indicator like accuracy over time. Pie chart breaks out learners of 

a class by percentage of accuracy they have got. Radar chart 

shows distribution of a leaner’s overall quality. Line chart gives a 

rough comparison between the learner and the average level of his 

or her class and grade.  

Dashboard contains statistical reports generated from analysis 

module and knowledge graph presenting learner’s knowledge 

proficiency. The report displays learner’s test results, test analysis. 

The circle in the graph represents separate entities. The 

importance of the entity is distinguished by size, and the depth of 

color indicates the learners’ mastery level of each entity. The line 

between two circles displays relation existing between two 

corresponding entities. Dashboard works as an effective tool to 

promote learners to define and achieve goals. 
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3.4 Recommendation Module 
Recommendation module mines learner features and course 

features, uses learners’ rating of learning materials as supervised 

labels to filter recommendation materials like reading material, 

exercises, notes and outstanding answers from learning partners. 

We form a learner-course feature vector matrix by combining 

learners’ behavior data with attributes data from learners and 

courses. This module first uses extraction capabilities of deep 

belief networks (DBN) to collect features from learner-course 

matrix to represent learners’ preference. This feature extraction 

part is composed of bottom-up unsupervised pretraining using 

layers of restricted Boltzmann machine (RBM) and top-down 

supervised parameter fine-tuning using Backpropagation (BP) in 

the last level of the DBN.  The trained DBNs from unsupervised 

part and corresponding rating score labels are used as inputs to the 

BP supervised part [18]. Then the recommendation model can be 

used to rating learning materials with scores. Materials with 

scores are ranked and those with higher scores are recommended 

to learners. The process is illustrated in Figure 1(c) lower part. 

This recommendation list will be updated dynamically according 

to newly generated learning tracks to match learners’ changing 

needs. 

4. CONCLUSION 
We present EAnalyst, a learner’s assistant developed by applying 

deep learning techniques for large-scale educational data mining 

and analysis. The system takes temporal data analysis aligned 

with knowledge graph, presents learners with multidimensional 

analytical reports, and recommending learning paths by offering 

relative learning materials. In the future, we intend to solve the 

“cold start” problem of learners’ performance evaluation process 

and improve the analysis model by adding question content so that 

the deep relation between questions and learners’ state can be 

exploited. 
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ABSTRACT
How do people talk about math? What point are we mak-
ing when we contrast math with other topics? In studies
of school performance, attitudes, and stereotypical beliefs,
math is most frequently compared to language abilities and
occasionally artistic qualities. Most studies about these top-
ics administer assessments and closed-form surveys to make
sense of how math ability or beliefs are different from sim-
ilar constructs in other educational domains. In an anal-
ysis of Google search terms using Google Trends, “math”
occurs in search queries far more frequently than “language”
or “art” and —unlike searches about the other topics—the
prevalence of “math”-related searches shifts in conjunction
with the academic year. This project’s goals are to (1) sam-
ple from diverse naturalistic text-based datasets to expose
how math is referred to in non-experimental settings and
(2) identify similarities and differences between math and
the domains most frequently used as contrasts. We per-
form computational analyses on text derived from naturalis-
tic sources written across a variety of different registers, from
a journalistic source (NY Times) and a social media website
(Twitter) to referential sources containing basic definitions
(Merriam-Webster) and more informal descriptions (Urban
Dictionary). We see that, across data sources, queries re-
lated to “math” refer more frequently to education-related
themes and incorporate more disparaging terminology com-
pared to content related to “language” or “art.” This project
is a first step in demonstrating that this methodology can
aid in exploring more realistic discourse surrounding math
and domains of comparison. This can inform and empower
future researchers and practitioners interested in changing
the discussion around math.

Keywords
math, language, art, naturalistic data, big data, NLP

Math is frequently discussed in a derogatory way: “Every-
body hates math” is a major trope in popular media, with
hundreds of instances across television sitcoms, comics, and
movies.1 In addition, when researchers investigate attitudes
about math, they tend to focus their efforts on the study of
math anxiety [2, 6], as opposed to positive feelings. These
ways of portraying math, both in the media and in research
and education appear unique to math. When researchers
measure stereotypical beliefs [4] or attitudes about another
subject [8], they are typically included as a contrast to math.

In public discourse, this differential treatment of math com-
pared to other domains is perpetuated by neuromyths, or
false ideas about the brain, such as the idea that “some of us
are ‘left-brained’ and some are ‘right-brained’ and this helps
explains differences in how we learn” [12]. Implying a natu-
ral contrast between math ability and art or language ability
does a disservice to students, current and former: it encour-
ages the belief that if we are “good” at one thing, we cannot
be “good” at another. Beliefs about innate brilliance further
amplify the folk distinction between math and art. Math is
perceived as requiring the most brilliance out of any STEM
discipline, and significantly more than all art and language-
related fields, including English Literature, Art History, Lin-
guistics, and Music Composition [10]. Such essentialist be-
liefs about domain-specific ability are bolstered by parallel
sex disparities, with more “brilliant” fields like math includ-
ing significantly fewer women.

In this project, we capitalized on naturally occurring data
where people discuss math, and compare parallel discourse
about other domains. We specifically analyze communica-
tions related to language and art, as these are frequently
compared to math. We detail our rationale for each com-
parison domain in the next section.

0.1 Comparison domains
In research contexts, language very frequently serves as a
comparison domain for math. Math is compared to language—
and most often reading and writing skills—in research on
ability [7], stereotyped beliefs [4], theories of intelligence [8].
[14] contrasts STEM performance (math and science) with
non-STEM (language, humanities, and social science) and

1https://tvtropes.org/pmwiki/pmwiki.php/Quotes/
EverybodyHatesMathematics
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finds no actual performance difference nor evidence for gen-
der differences in variability in academic grades.

On the other hand, art is much less studied in relation to
math, in part because it is far more difficult to design art
assessments than math or language assessments, and judg-
ing art ability is perceived as subjective. Some work has
contrasted creative ability in math and art [9] and explored
gender differences in stereotypical beliefs across the two ar-
eas [16]. More frequently, when conducting research on a
task that involves some artistic expression in research about
math ability, the idea of “art” goes unmentioned, as with
drawing [5] or any study of spatial ability [1].

In studies comparing math ability or perceptions to parallel
constructs in another domain, no justification is given for
the choice of alternative domain. It may seem obvious to
us that reading ability is the most direct contrast to math
ability, but this is precisely what we are interested in access-
ing in this project. The assumptions about concepts and
distinctions among them present themselves in our commu-
nications. Therefore, investigating naturally occurring data
may provide us with the justification we need for domain
comparison choices across different contexts. We assert that
though art is only sporadically studied in relation to math,
there are many reasons why it may serve researchers as an
appropriate foil. For example, math is a required course
throughout schooling and necessary for attending college,
while under budget shortages, art classes are the first to
be cut from curricula. However, mathematicians regularly
enjoy drawing comparisons between artistic and mathemati-
cal abilities [11, 3]. This perceived distinction in the relative
utility of math and art, paired with experts’ regular likening
of the two suggests an interesting avenue of future work.

0.2 Measuring math talk
Human attitudes are typically explored via closed-form sur-
veys. But sampling bias as well as the wording of the ques-
tions can impact responses. We propose using naturally oc-
curring datasets to supplement existing research about math
attitudes and as a guide for developing new theories and ex-
perimental paradigms [15].

The goals of this paper are 1) to source data from non-
experimental contexts to examine naturalistic discourse sur-
rounding math and its comparison domains and 2) to iden-
tify how math is discussed that may be distinct from related
domains in similar contexts. We hope to make an empiri-
cal case for comparing math to specific domains: why and
when do we measure math against language or art, and what
might be the appropriate choice based on how people rep-
resent these domains? We locate several sources of commu-
nication spanning a range of genres (e.g., journalistic, social
media, and references), and registers (from more formal to
informal writing styles).

1. METHODS
We identified a variety of online sources with freely accessible
APIs (Application Programming Interfaces). We first used
the Google Trends and English Lexicon Project as measures
of frequency of term usage. Next we collected a selection
of articles from the New York Times, tweets from Twitter,
and definitions from the Merriam-Webster dictionary and

Urban Dictionary that related to the search terms “math,”
“language,” and “art.”

1.1 Data sources
Though Google does not provide access to search history
data, the company built an online interface, Google Trends,2

for observing both fluctuations of searches for specific key-
words or topics over time and across locations [17]. We
focused our observations exclusively on the US. As another
overview of frequency of specific terms, we used the English
Lexicon Project (ELP).3 These sources provide a very gen-
eral sense of how these topics are thought about differently.
We next explore actual word usage in multiple other sources,
namely the New York Times, Twitter, and two different on-
line references (Merriam-Webster and Urban Dictionary).
Two of these may be seen as relatively objective (Times and
Merriam-Webster), though a computational analysis of word
usage will show whether this is truly the case.

We used the “Article Search API” from the New York Times
(NYT)4 to collect all hits that include the terms “math,”
“language,” and “art.” The NYT API provides the headline,
keywords, date, word count, and lead paragraph for all arti-
cles that come up for a specific search term. The NYT Arti-
cle Search API yielded 441,773 searches for “math”, 367,707
for “language” and 1,276,036 for “art.” We sample approxi-
mately 2,000 results for each search term.

Twitter is the only social media company that offers easy
access to their data, in part because posts are all expected
to be public anyway. 5 In order to align results with the
data we obtained from the NY Times, we used the twitter
package for Python6 to load 2,000 tweets per search term.

Merriam-Webster additionally offers easy access to their def-
initions. 7 Preliminary data mining returned just the def-
initions for each term of interest, but it is meaningful that
“math”has three definitions, while“language”and“art”each
have ten. From Urban Dictionary, we downloaded all exist-
ing results for each term, which was 856 for math, 262 for
language, and 876 for art (see Table 1 for total documents
used in analyses for each term and each data source).

1.2 Text Analyses
With each data source, we created Näıve Bayes classifiers to
contrast word usage for documents about math, language,
and art.8 Prior to text analyses, we ran a series of standard
text pre-processing techniques: a) removing stopwords b) re-
moving punctuation and c) reducing words to their roots
(stemming and lemmatizing). To test the accuracy of each
classifier, we shuffle the data and separate it into a training
set consisting of 80% of the data and a test set comprising
the remaining 20%. We train the classifier on the training

2https://trends.google.com/trends/?geo=US
3https://elexicon.wustl.edu/
4https://developer.nytimes.com/
5https://developer.twitter.com/
6https://pypi.org/project/twitter/
7https://dictionaryapi.com/
8We employ the NaiveBayesClassifier function from
Python’s Natural Language Toolkit (nltk version 3.2.2)
package https://www.nltk.org/
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set, then report the classifier’s accuracy predicting responses
on the test set, alongside a subset of informative features
(words that are more common for one specific subgroup).

2. RESULTS
2.1 Google and ELP
From Fig 1, created from data generated in Google Trends
to compare searches pertaining to the topics “math,” “lan-
guage,” and “art,”9 it is clear that, compared to the other
topics, math is generally searched for at a higher rate, though
takes steep dives in the summer months when school is no
longer in session. This suggests that the term “math” is
much more associated with education than other topics, and
idea we explore in more detail in the other data sources.
Contrary to Google search results, an analysis of term fre-
quency in the English Lexicon Project reveals “math” to be
significantly lower frequency (18,404) than terms relating
to “language” (97,874) or “art” (62,513). According to this
source, “math,” “language” and “art” are estimated to be
acquired at similar ages (5.56, 6.79, and 6.21 years, respec-
tively), but “language” is rated as notably more abstract
(that is, less concrete: language: 2.35, math: 3.15, art:
4.17).

Math Language Art Total
NY Times 1,541 1,946 1,835 5,322
Twitter 2,000 2,000 2,000 6,000

M. Webster 3 10 10 23
Urban Dict. 856 262 876 1,994

Table 1: Number of documents for each corpus.

2.2 Journalistic source
We excluded a set of “math” searches to ensure that the re-
sults would not be overly skewed. Specifically, 270 hits con-
tained a daily math challenge and the lead paragraph began
with “Test your math skills with today’s question” and an
additional 40 started with “Our weekly math problems are
written by teachers at Math for America.” For “art,” we ex-
cluded 157 whose lead paragraphs began with “Our guide to
new art shows and some that will be closing soon.” There did
not appear to be anything so consistent for searches relate to
“language.” Search results with blank lead paragraphs (159
math; 18 art; 64 language) were excluded from our training
data. First, we analyzed the distribution of keywords. Of
the 1541 math queries, 323 contained “school” (21%) com-
pared to 81 of 1946 language queries (4%) and 14 of the
1835 art queries (0.8%). There was a similar pattern for the
keyword “test,” included in 149 math queries, compared to
6 and 1 for language and art, respectively.

We next looked at the text from each lead paragraph. We
used all three sets of nonempty lead paragraphs for each
topic to construct the classifier which included a total of
5,322 texts (1541 math; 1946 language; 1835 art). After
removing all terms with roots “math,”“language,” or “art,”
the classifier achieved 70% accuracy on the test set. The
most informative features for math included “test,”“score,”
“grader,” “improv,” “educ,” “competit,” and “teacher” (e.g.,
“Growing up, I thought math class was something to be

9https://trends.google.com/trends/explore?date=all&geo=US
&q=%2Fm%2F04rjg,%2Fm%2F04g7d,%2Fm%2F0jjw

endured, not enjoyed. I disliked memorizing formulas and
taking tests, all for the dull goal of getting a good grade”).
The most predictive terms for an art-related hit contained
“galleri,” sculptur,”“paint,” and “noteworthi.” For language-
related queries, “speak,”“translat,”“dictionari,” and“writer”
were most informative. Though there are no apparent emo-
tive terms, math arises much more frequently in documents
related to school than does art or language in this context.

2.3 Social media
The average word count for tweets corresponding to each
term was approximately equal (18 for math, 19 for language,
and 18 for art), likely due to platform word count restric-
tions. In our classifier (accuracy: 62%), informative features
for tweets about math included words very similar to those
from the NYT, such as “test,” “fail,” “wrong,” “class,” and
“science.” For language, we saw “tiktok,”“english,”“speak,”
“video,”and“utter.” The set of most informative features for
art contained “draw,” “style,” “anim,” “design,” and “cute.”
Here, we see many domain-specific similarities to the NYT
data, but with the addition of terms conveying negative emo-
tions related to math, such as “wrong,” “fail,” and “hard,”
which might speak to the greater subjectivity of the text
source. The language- and art-related searches also appear
to encompass more popular culture references. There was an
interesting pattern of math being more ubiquitous in tweets
relating to current events such as the election: ‘berni,’ ‘vote,’
and ‘warren’ (e.g., “Math says that Warren has a path”) and
the coronavirus outbreak: “million,” (e.g., “It is simple math.
The flu infects millions a year”).

2.4 Reference materials
The Merriam-Webster dictionary produced few results, but
the primary definitions themselves serve as a baseline set
of relevant objective terms. Mathematics is defined as “the
science of numbers and their operations,” language as “the
words, their pronunciation, and the methods of combining
them used and understood by a community,”and art as“skill
acquired by experience, study, or observation.” By their very
definitions, math is a science (rather than an art) and art is
not said to require innate ability.

The Urban Dictionary API yielded 856 definitions of“math,”
262 of “language,” and 876 of “art.” The mean length of the
math definitions was 36 words, 49 for language, and 58 for
art (similar to the NYT results). Because this corpus was
not evenly distributed across topics, we ran separate classi-
fiers between each pair of topics, rather than over all 1,994
total definitions. For the math/art classifier (n = 1732),
accuracy on the test set was 79% and the most informa-
tive words for math definitions were almost all negative:
“abus,” “number,” “mental,” “stress,” “tortur,” and “bore.”
For art on the other hand, informative features included
“style,” “emot,” “draw,” “amaz,” “visual,” and “color.” The
classifier comparing math to language yielded an accuracy of
85%10 and primarily identified words that were informative
of the language texts, as they represented a smaller pro-
portion of our dataset. These included “speak,”“talk,” and
“special,” while terms more indicative of a math entry were
“abuse,”“mental,”“human,” and “bore.”

10Chance would be 77% because 77% of definitions are math
ones.
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Figure 1: Google trends patterns of searching for the topics “mathematics,”“language,” and “art.”

Finally, the classifier comparing art and language arrived
at an accuracy of 85% and words from art-specific defini-
tions included “music,”“best,” and “style,” while definitions
of language included terms “sign,” “french,” “wrong,” and
“number,” which potentially likens math to language more
than to art. Analyses of the example sentences included for
each definition from Urban Dictionary produced comparable
results, with notably more derogatory and profane terminol-
ogy used to describe math than the comparison domains.

3. DISCUSSION
In a preliminary analysis of naturally occurring data sources,
we have observed that math is more frequently written about
and discussed in relation to education compared to language
and art. In contexts where valenced language use is common
(Twitter and Urban Dictionary), math is discussed using
notably more unflattering terminology. Each data source
we explored yielded different frequencies at which the three
chosen topics were mentioned. Our Google Trends analy-
sis revealed that math is searched for more frequently than
language or art. However, though the NYT provided fewer
“language” articles than “math” ones, there were more than
double the number of hits related to “art” (owing to “arts
and leisure” having its own section in the newspaper). In
the references, “math”had fewer entries in Merriam-Webster
compared to language and to art, but in Urban Dictionary,
there were a comparable number of entries for “math” and
“art,” and this was more than triple the number of “lan-
guage”entries.11 Based solely on these simple search counts,
we can identify important differences in how these topics
are thought about: “math” appears to be defined more nar-
rowly than the other domains (based on Merriam-Webster
definition counts and shorter text lengths in the NYT and
Urban Dictionary data) while emotions surrounding “math”
and “art” are stronger than for “language” (based on the rel-
ative number of Urban Dictionary results). “Math” is also
much more associated with education, a claim supported by
the keywords from the NYT, our classifiers’ informative fea-

11We were not able to acquire total hit numbers from Twitter.

tures from the NYT, Twitter, and Urban Dictionary data,
and from the cyclical nature of Google searches for “math.”

4. FUTURE DIRECTIONS
This set of analyses only scratches the surface of what is pos-
sible with this methodology. We have many plans for further
research, namely to conduct additional analyses on the data
presented here, gather more data through clouds of novel
search terms, and explore other naturally occurring data
sources. First, to expand the findings from the data already
gathered, we will conduct text-based sentiment analyses to
search for systematic differences in overall valence associ-
ated with each term, and perform topic modeling over each
set of documents. Second, “language” and “art” are only two
of many possible domains to compare to math, alternatives
to which we will pursue in future work. We aim to use the
work done so far to refine our terms to determine what com-
parisons are more useful for different contexts. Finally, we
intend to search deeper and with more specific intentions
within the sources we have scrutinized thus far as well as
among other potential sources of data.

5. CONCLUSION
Using large-scale datasets of naturally occurring text, this
work presents a preliminary exploration of how math is dis-
cussed, compared to its most frequent comparison domains.
Our data confirm that math is generally spoken about in
a manner that is both more limited (e.g., to educational
contexts) and more negatively valenced. Previous work has
shown that familiarity with an idea increases belief in that
idea [18], which means that the restricted and unflattering
ways in which we generally discuss math may progressively
degrade public opinion about the topic. If—through the me-
dia and other sources—speakers continue to hear (or read)
about math as a narrowly defined concept associated with
negative emotions, this perception will continue to thrive,
and be unwittingly transmitted to future generations [13].
Thus, this work also serves as a plea to limit unnecessary
disparaging reference to math in mass communication.
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ABSTRACT 
More Americans are attending college than ever before but almost 

half of them do not complete college. Thus, early detection of 

students at risk of dropping out of college is of paramount 

importance. This study describes a novel attempt at using notes 

made by student advisors to predict student dropout. We use a 

Natural Language Processing (NLP) technique called sentiment 

analysis to analyze unstructured textual data to extract the positive 

or negative sentiment contained in the advisor’s notes. We then use 

the sentiment extracted from the notes as features to train a random 

forest model to predict student dropout. We achieve 73% accuracy 

in predicting student dropout. Thus, our study demonstrates the 

value of unstructured data held in institutional databases for 

identifying at-risk students. 

Keywords 
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1. INTRODUCTION 
Student retention is a major challenge at American universities with 

the average 6 year graduation rate hovering around 59% [12]. 

Graduation rates vary with institutional selectivity [19]; the 

situation being particularly grave at institutions with open 

admission policies where the 6 year average graduation rate is a 

meager 32% [12]. Low retention rates not only impact the financial 

well-being of individuals but the economy as a whole, since it is a 

well- established fact that income level rises with a college degree.  

Median income levels for young adults with a bachelor’s degree are 

64% higher than those with only a high school diploma [12]. Low 

retention rates also adversely affect the reputation of the 

educational institution and could lead to potential loss of funding 

and inability to compete for quality students. Thus, improving 

student retention is of paramount importance at institutions of 

higher education. 

A critical factor in increasing student retention is the ability to 

accurately identify at-risk students, so that relevant interventions 

can be provided. Much of the prior research has been devoted to 

modeling the factors that impact student retention using traditional 

statistical methods. But, machine learning and data mining 

techniques have started becoming actively employed in student 

retention research in the recent past. Most research articles, though, 

have been focused on using structured data, such as GPA, SAT 

scores etc., that are readily available in institutional databases. To 

the best of our knowledge, as of this writing, there is no literature 

that tries to use unstructured data (e.g. free form text, images etc.) 

in predicting student dropout. Roughly 80% of the data generated 

in the world today is unstructured. Large amounts of unstructured 

data are generated by universities and colleges. Examples include 

advisor notes, discussion forum postings, online chats, emails etc. 

This is a treasure trove of information that has not been adequately 

exploited to help predict student dropout. 

This paper describes a novel approach to predicting college student 

dropout using the information contained in free form notes 

recorded by student advisors on a student advising platform (e.g. 

EAB). We use Natural Language Processing (NLP) techniques to 

unearth the information contained in these advisor notes and use it 

to predict student dropout. To the best of the author’s knowledge 

this study is one of the first to employ NLP techniques to predict 

student dropout. Thus, our study contributes to the literature by 

introducing an additional novel approach to predicting student 

dropout by using NLP techniques to analyze unstructured textual 

data in the form of advisor notes. 

2. LITERATURE REVIEW 
Research on student attrition has traditionally been based on 

surveying student cohorts and following them to assess dropout. 

These surveys contributed to the building of theoretical models of 

student retention, the most famous of them being the Tinto model 

[16]. Survey based research have been criticized for being too 

specific to an institution and hence not generalizable [1]. Also, 

these large scale surveys are not cost-effective to conduct. An 

alternative to survey based research is to use the data that most 

higher education institutions routinely collect about their students. 

This type of research based on institutional databases has been 

shown to be comparable to survey based research [2]. 

Prior research has also been mostly focused on identifying various 

factors that impact student dropout. Tinto [17] highlights academic 

difficulty, adjustment problems, lack of clear academic goals, lack 

of commitment, inability to integrate with the college community, 

uncertainty, incongruence and isolation as factors involved in 

student dropout. Tinto’s theory of student integration posits that 

past and current academic success are crucial factors in determining 

student attrition and many studies have found high school GPA and 

SAT scores to have a strong effect on student retention [13]. 

Declaration of major and number of credit hours taken during the 

first semester have been used as proxies for institutional and goal 

commitment and have been found to be significant predictors of 

student attrition [1]. There have been many studies that have 

investigated the effect of financial aid on student retention [8, 9, 

14]. These studies found that the type of financial aid that the 

student received had an impact on student retention. 

Students receiving aid based on academic achievement had higher 

retention rates, while student loans had a negative effect on 

retention. Also, if students lost a scholarship or grant due to poor 

grades, it had a negative impact on retention. Thus, as evidenced 

above, almost all the studies have focused on factors that are part 
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of structured data collected by educational institutions. Factors 

such as emotions and sentiments that are embedded in unstructured 

data, have not been considered much in the literature. 

Research on using machine learning techniques to predict student 

attrition is still in its infancy. Delen [6] used a dataset consisting of 

39 variables such as SAT score, high school GPA, hours registered, 

hours earned etc. and several machine learning methods such as 

support vector machines and neural networks to model freshmen 

student attrition and found that support vector machines performed 

best, reaching a prediction accuracy close to 80%. Thammasiri, 

Delen, Meesad and Kasap [15] used data and techniques similar to 

Delen [6] to predict whether students would enroll for the second 

term. Lauria, Baron, Devireddy, Sundararaju, and Jayaprakash [10] 

used demographic and course related data to show that support 

vector machines performed better than decision trees at predicting 

at-risk students. Thus, almost all the research on student dropout 

prediction using machine learning and statistical techniques has 

focused on using structured data. 

While there is not much literature using NLP techniques and 

unstructured data in predicting college student dropout, there is 

some recent literature in the related area of predicting student 

completion in Massive Open Online Courses (MOOCS). The most 

common NLP technique employed in these studies is sentiment 

analysis, which examines language in discussion forums and 

assignments to detect positive or negative emotion words and 

words that convey motivation, engagement etc. Wen, Yang, and 

Rose [18] examined students’ opinion towards the course based on 

a sentiment analysis of discussion forum posts and used these 

opinions to predict course completion. Wen et al. [18] found that 

students who used words related to motivation were more likely to 

complete the course. Crossley, Paquette, Dascalu, McNamara, and 

Baker [4] used NLP techniques on MOOC forum posts and found 

that lexical sophistication, writing quality were predictive of 

student completion. Our study uses similar approaches to the 

literature described above but applies sentiment analysis to free 

form notes entered into an advisement system by the student’s 

advisor, in order to predict student dropout. 

3. METHODOLOGY 

3.1 Data 
The data consists of 19,562 notes entered over a period of four years 

(2015 - 2018) for 7343 undergraduate students at an urban 

university in the North Eastern United States which caters to a 

largely minority population. These notes are made by the student’s 

advisor after each meeting with the student and are keyed into the 

student advisement system. These notes are free form and do not 

have any structure to them. Students typically meet with the advisor 

multiple times a semester to discuss enrollment, progress and any 

other issues. The notes the advisor makes documents the meeting 

in a reasonable amount of detail. Thus the notes are rich with 

information on any issues and difficulties students might be facing 

not only with respect to their academics but also with respect to 

their social and family life. We also compiled data on whether a 

student dropped out or not (a binary indicator variable). A student 

was considered to have dropped out if he or she did not enroll in 

any semester following the last semester of enrollment. Based on 

this definition we constructed a binary indicator variable to indicate 

whether a student has dropped out or not.   

3.2 Analysis 

3.2.1 Sentiment Analysis 

Sentiment analysis is a NLP technique that attempts to categorize 

the emotions and sentiments in a block of text. Most sentiment 

analysis tools will categorize the sentiment as positive, negative or 

neutral and also provide indexes for affective states such as anger, 

sadness, happiness, etc. Sentiment analysis has been widely used to 

mine emotions from social media posts and has been effective in 

identifying depression, anxiety and other emotions [15]. 

There are two main approaches to extracting sentiment from text. 

The lexicon based approach uses a dictionary of words annotated 

with their sentiment polarities, while the text classification 

approach involves building classifiers from labelled instances of 

texts. Lexicon based approaches work well when there is 

insufficient human classified data or when human classification is 

time consuming and expensive. We use the lexicon based approach 

in this study as it would be very time consuming to hand classify 

the sentiment in the advisor notes to create a large enough training 

dataset. There are several sentiment lexicons available. We use a 

popular lexicon called the Bing lexicon [11] which consists of 6800 

words, 2000 of which are positive and 4800 are negative. We also 

constructed a custom lexicon of 100 sentiment words relevant to 

the student retention domain and combined it with the Bing 

sentiment lexicon. 

We preprocessed the data by removing stop words, punctuations, 

numbers, white spaces and other words such as will, student, etc. 

that would not be pertinent to conveying sentiment. The sentiment 

analysis was done on the preprocessed data. The output of the 

sentiment analysis is a list of words in each note tagged with a 

sentiment (positive or negative). 

3.2.2 Imbalance 
Data is said to be imbalanced if the number of instances in one class 

significantly outnumbers the number of instances in other classes.  

Since the number of dropouts is much smaller when compared to 

the number that don’t dropout, student retention data sets are 

typically imbalanced. If the data is imbalanced the standard 

classifiers have a bias towards the larger majority class. One 

approach to correcting this imbalance is to preprocess the data in 

order to balance it out and then build the model. This approach uses 

various techniques to either oversample the minority class or 

undersample the majority class. Random oversampling attempts to 

balance the data by randomly sampling from the minority class and 

adding them to the training data set while random undersampling 

attempts to balance the data by removing data instances from the 

majority class. Undersampling has been shown to perform better 

than oversampling in some cases [7]. Synthetic Minority 

Oversampling Technique (SMOTE) is a popular and robust 

technique that uses a combination of oversampling the minority 

class and undersampling the majority class which results in better 

classifier performance than just oversampling or undersampling 

[3]. Our study uses SMOTE to correct the imbalance. 

3.2.3 Classification 
From the output of the sentiment analysis we computed the number 

of positive sentiment words and number of negative sentiment 

words in a note. We then computed the ratio of the number of 

positive sentiment words to the total number of words in a note. 

This ratio and the number of positive sentiment words were used as 
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a measure of positive sentiment in the advisor notes. Similarly the 

ratio of negative sentiment words to the total words in a note and 

the number of negative sentiment words were used as a measure of 

the negative sentiment contained in the advisor note. We then used 

the ratios and word counts as features to predict student dropout. 

We trained a random forest classifier on the features extracted from 

the sentiment analysis to classify a student as likely to dropout or 

not. The random forest model is a popular ensemble model that 

provides good performance. We used 75% of the data to train the 

model and the rest 25% to test the model. We used a tenfold cross 

validation to avoid overfitting. 

4.    RESULTS 
Figure 1 shows a word cloud of the commonly used sentiment 

words in the notes and Figure 2 shows the top ten frequently 

occurring words by positive and negative sentiment. 

Figure 1: Word cloud of most used sentiment words in the 

advisor notes 

 

Figure 2: Top ten frequently occurring words by sentiment 

The words “drop” and “progress” were the most used in the notes, 

with “drop” indicating a negative sentiment and “progress” a 

positive sentiment. 

Table 1 shows some summary statistics of our NLP analysis of the 

advisor notes. After removing stop words and other words (e.g. 

appointment) that were used often in the notes but did not 

contribute to sentiment, we ended up with about 444,000 words that 

we used in the sentiment analysis. Some notes were long and 

detailed while others were short and cryptic. The maximum number 

of relevant words we found in a note was 92 and the minimum was 

just a couple of words. 

Table 1: Summary statistics 

Total number of words analyzed for sentiment 443,974 

Maximum number of relevant words in a note 92 

Maximum number of positive sentiment words in a 

note 

42 

Maximum number of negative sentiment words in a 

note 

36 

Since we corrected for the imbalance in the data (as described 

above) we report accuracy as the measure of classifier performance. 

The random forest classifier we trained produced a 73% accuracy 

predicting student dropout. The AUC metric was similar at 72%. 

We also trained three other classification models – Support Vector 

Machines (SVM), logistic regression and Classification and 

Regression Trees (CART) – to see if the accuracy could be 

improved upon. But, the logistic regression only achieved a 69% 

accuracy, while the SVM and the CART model achieved a 70% 

accuracy. 

5.    DISCUSSION 
To the best of our knowledge this is the first study to use NLP 

techniques to mine advisor notes and use it to predict student 

dropout. The study demonstrates how information contained in 

unstructured data, such as advisor notes, can be automatically 

mined using machine learning techniques in a cost effective manner 

and used in early identification of at-risk students. The number of 

positive sentiment words and the number of negative sentiment 

words provide faculty, staff, administrators and advisors an 

additional indication of the risk of the student performing poorly or 

dropping out and can be used as a supplement to other traditional 

indicators of performance. Our analysis provides an indication of 

the likelihood of the student dropping out and thus helps in 

providing early intervention. The advantage of mining the advisor 

notes is that it picks up issues like family problems, stress etc. that 

cannot be picked up by simply looking at structured data such as 

grades, GPA, SAT scores, etc. Thus, what we have described is a 

powerful tool that can be used in addition to other techniques, such 

as predictive modeling using structured institutional data, to 

identify at-risk students.  

The methodology we have described can easily be implemented in 

practice at any educational institution. Almost every educational 

institution uses some type of system that student advisors use to 

keep track of appointments and make notes. In fact, many 

institutions require advisors to document their discussion with the 

student. Thus, access to data is not an impediment. The NLP 

algorithm can be implemented using any open source tool such as 

R or Python and free libraries like NLTK for Python. Thus the 

approach used in this study can be cost effectively implemented at 

educational institutions and deployed via the advisement system. 

There are several limitations and extensions to our study that will 

be addressed in future research. We used a general purpose 

sentiment lexicon that is more designed towards detecting 

sentiment in text like product reviews, etc. Most sentiment lexicons 

are general purpose ones, which is the reason why we augmented 

the Bing lexicon that we used with a 100 word custom lexicon. But, 

the custom lexicon we used is quite small. If we make our custom 

lexicon more comprehensive by increasing the number of words 

specific to the student retention domain, we would expect to get 

better results. Another limitation is that we have just used unigrams 

(single words) to detect sentiment. Using N-grams (multiple words) 

in our analysis should improve the sentiment detection and 

prediction accuracy. We could also take a non- lexicon based 
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approach and hand classify the advisor notes to create a training 

dataset to predict dropout. It would be interesting to compare this 

type of approach and the lexicon based approach to determine if the 

expense of hand curating a training dataset is worth it. Further, we 

could combine the features extracted from the advisor notes with 

other traditional features such as GPA, SAT scores etc. to improve 

our prediction accuracy. 

6. CONCLUSION 
Unstructured data captured in various databases across the 

educational institution, including in online learning platforms (e.g. 

Blackboard), are a treasure trove of information that has not been 

adequately exploited to help the student in improving performance 

and avoiding dropout. Our study was an attempt at utilizing a small 

part of this unstructured data to help in the early identification of 

at-risk students. The fairly high level of prediction accuracy 

obtained in our study, even without much performance tuning, 

demonstrates the value of unstructured textual data in institutional 

databases for detecting at-risk students by predicting student 

dropout. 

Future research should focus on unlocking the potential of 

unstructured data in institutional databases in helping the student. 

Other forms of unstructured data such as images, videos, audio 

clips, illustrations etc. that are created by students for different 

courses should also be used to extract information that could help 

provide early intervention and improve student retention. 
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ABSTRACT
The assessment of students based on their tasks is impor-
tant in Education, and many advanced methods are applied
to the field to solve this problem. Many recent neural net-
work approaches involve heavy modeling of the contents and
students. However, it is shown that using pairwise com-
parisons without the direct usage of instance features can
show better assessments in the aspect of consistency, and
speed. These ideas have been examined in various per-
spectives since Thurstone proposed the idea of Comparative
Judgement(CJ). Whereas CJ requires direct comparisons of
instances to obtain the final fit of the label, we give a gener-
alization by proposing a label prediction model which uses
the multi-dimensional features of pairwise comparisons. By
reducing the cost in label inference, an Education service
can provide visualizations of multi-dimensional skill levels
for better meta-cognition of the users. Experimental results
on the open dataset EdNet KT1 show that our method gives
higher accuracy even without using the actual responses for
the model input.

Keywords
Educational Assessment, Adaptive Comparative Judgement,
Deep Learning, Pairwise Comparison

1. INTRODUCTION
In the development of Intelligent Tutoring Systems (ITS),
student assessment from their tasks and interactions is a
central problem. It is shown in general education scope,
that student assessment is highly correlated with the im-
provement of motivation, engagement, and achievement of
the students. Especially in ITS, the decisions of tutoring
strategies in many cases rely on algorithmic assessments of
student performances. Instances of tutoring decisions in-
clude providing educational feedback or adjusting the pro-
vided contents to the students in the system. For interactive
education systems, real-time computation of assessment is
required, and various methods are implemented to settle the

computation time problem.

Methods for student assessment have been studied in vari-
ous aspects, including well established fields such as Item Re-
sponse Theory(IRT), Cognitive Diagnosis Model, and Knowl-
edge Tracing. In real-world systems, many assessment meth-
ods are based on domain expert knowledge, such as Knowl-
edge Graphs, tagging of contents, and expert designed rule
based models (such as the Rasch model in IRT). Recently,
data-driven methods with less dependency on domain ex-
pert knowledge are also widely applied in ITS. Collaborative
Filtering approaches such as Matrix Factorization, or Neu-
ral Collaborative Filtering are applied to embed users and
items for tasks such as student response prediction, and con-
tent recommendation. There are also fully data-driven deep
neural networks with no domain expert dependencies that
are capable of modeling, prediction, assessment, and recom-
mendation problems in Education such as Deep Knowledge
Tracing. These methods not only show high accuracy for
the target tasks, but are also easier to apply to new domains
since they are domain independent.

However, many existing data-driven methods, including neu-
ral network models, require large volumes of training data
and also require high costs on inference computations for
achieving high performance. Methods based on domain ex-
perts can have less complexity, making their operating costs
low, but developing such methods often requires a high cost
on domain experts. This cost problem can be a barrier on
providing e-learning services to people in underdeveloped
countries, which also results in digital inequality. [8]

In this paper, we propose two assessment models based on
pairwise comparisons to solve the assessment cost problem
on data, and inference computation aspect. The key concept
of the proposed method is to design a multidimensional gen-
eralization of Comparative Judgement(CJ). Instead of using
each response data for assessment as in many supervised
learning models, we only use pairwise comparisons of user
responses. This model can be trained using significantly less
label data compared to existing data-driven methods. Also,
pairwise comparison data can be gathered within the ITS it-
self without additional cost. This reduces the cost to gather
labeled data, and since the proposed model has less com-
plexity, the computation cost for assessment is also reduced.

We evaluate the proposed methods that use pairwise com-
parison data by comparing the results with other baseline
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models that directly use response data for predictions.

2. RELATED WORKS
2.1 Student Assessment
Various data-driven student assessment methods have been
studied by researchers of ITS, where most are based on three
main approaches: knowledge tracing models, collaborative
filtering based models, and domain knowledge based models.
Knowledge Tracing(KT) is used as a term on various assess-
ment methods to model users by their interactions within
a tutoring system [3]. Yudelson, el al. [26] suggested a
Bayesian model that estimates the student performance by
response correctness data. Piech, et al.[13] applied deep neu-
ral networks to KT. Some approaches [1] involve the mod-
eling of contents and students, using pre-trained networks
trained for different tasks such as BERT[4], or QuesNet [25].
These approaches directly use the response data of users to
estimate the student performance.

Collaborative filtering aims to model users and items to pre-
dict potential user-item responses based on user-item inter-
action data [18]. Using the modeled user and item vectors,
one can recommend items to a user that have high predicted
labels [17]. Where matrix factorization is widely used due to
the simple implementation, neural network models are also
suggested to capture more complex features in user-item in-
teractions [7]. The authors of [11] suggested a collaborative
filtering based approach to predict the probability of a stu-
dent answering to a question correctly.

Some methods are based on domain expert knowledge such
as Knowledge Graphs, tagging of contents, or expert de-
signed rule based models [5]. Martin, et al.[12] proposed
a method to use the Bayesian network that reflects rules
designed by domain experts. Item Response Theory(IRT)
can be applied by by tagging items with their difficulty, or
knowledge requirements [10], [20].

2.2 Pairwise Comparison based Models
Supervised learning (regression and classification) is the pro-
cess of predicting labels of instances using the features of in-
stances. The features of instances can be structured (nom-
inal, ordinal), or unstructured(image, text, sound). Some
models also utilize features that are not from the instance
themselves by pre-training methods. Pre-training is to train
a model on an unsupervised auxiliary task and use the trained
model to perform the supervised main task [6].

However, there are also models that predict the labels using
pairwise comparisons of instances, without using the fea-
tures from the labels. An instance of a pairwise compar-
ison based assessment method is Comparative Judgement
(CJ). The concept was first introduced by Thurstone [22] in
the context of Psychological assessment. CJ takes the or-
der comparison data (high or low) of instance pairs to fit a
1-dimensional ordered label of instances. This method is es-
pecially effective in domains where there is no standardized
assessment method, such as essay marking, image quality
assessment [24], [15]. For instance, the authors of [15] per-
formed a major experiment asking professional markers to
give comparisons, instead of direct markings. Performing
Adaptive Comparative Judgement shows better reliability,

Figure 1: The training step

Figure 2: The inference step

and speed than traditional marking in particular areas such
as essay marking [16], and mathematics problem solving [9].
Comparative judgement techniques are also applied in areas
such as Psychology, Education [19], [9], [14]. The authors
of [23] designed a neural network from pairwise comparison
data to solve a regression problem, where the features and
labels are uncoupled. They make pairwise comparisons of 1-
dimensional values to predict the label. We generalize this
idea to build models that use multi-dimensional features of
pairwise comparisons to predict the label.

3. PROPOSED METHODS
We propose a method to predict the label value of a user.
It reflects the responses of the user to items, using pairwise
comparisons of responses with other reference users. Possi-
ble examples of the labels are preferences on items, expected
response values, performance levels on a task, or knowledge
levels. The main idea is to model the relative relation of user
pairs by the features of pairwise comparisons, as in Figure
1. The arrows between users describe pairwise comparison
results, and two users with no arrow in between are incom-
parable users. For inference, the comparisons of a target
user to multiple reference users is used to predict the label
of the target user, as in Figure 2.

3.1 Data Description
We use the EdNet KT1 open dataset [2], which has 95M
rows, with columns userId, questionId, correctness, times-
tamp. We do not use any other data source for label data for
the experiments to be reproducible from open data. There-
fore, note that the following steps to construct labels are not
an essential part of the proposed method. If labels of users
are available in another experiment setting, then those la-
bels can be used without this additional process. The labels
from EdNet KT1 for this experiment are constructed from
the response data by the following procedure:

We sort the items by their total count in the response dataset
in decreasing order. Then, we take the first 50 items. Filter
the raw data by users who responded to all 50 items, and
compute the correctness rate of 50 items and use it as the
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label. Filter the raw data by users who responded to all 50
items, and filter out the responses on the chosen 50 items
for the experiment.

3.2 Proposed Methods
Before we introduce the details of the proposed models, we
describe an example case of the models to illustrate the un-
derlying idea. Consider a case where we have user-item
interaction data with columns userId, itemId, correctness
as in the EdNet KT1 data case. Fix two users u1, u2 and
let TT, TF, FT, and FF be the number of items that both
u1, u2 responded correctly, only u1 responded correctly, only
u2 responded correctly, both u1, u2 responded incorrectly re-
spectively. If TT = 90, TF = 10, FT = 110, FF = 40, then
u1 correctly responded to 90% of the items that u2 correctly
responded, where u2 correctly responded to 45% of the items
that u1 correctly responded. This relation shows an aspect
that the knowledge of u1 includes the knowledge of u2 more
than the other way round. Then, let y1, y2 be some label
that reflects the educational performances of users u1, u2.
Then, we can consider a model that takes TT, TF, FT, FF
and y2 as features to predict the label y1. This model is an
example of the first proposed model that we introduce later
in this section. The second model that we propose is based
on comparisons with multiple users. The main idea is to
predict a label from multiple comparisons with other refer-
ence users. Now we describe the details of the pre-processing
procedure for the proposed models in the general setting.

Consider the general case where we have response data with
columns: user id, item id, response, where the possible re-
sponses of users to items are 1, . . . , r. We show sample tables
for each step of the whole process starting from Table 1.

user id item id response
1 19 1
1 23 r
2 77 2

Table 1: Raw data example

Fix N items to use as the labels, and filter out responses
which have item id in those N items. Group by user id
and make r arrays l1, . . . , lr where each li is the array of
item ids that is responded as i. Then, append the label
columns y1, . . . , yN to this table.

user id l1 . . . y1 . . . yN
1 [19,35,63] . . . 0.84 . . . 0.72
2 [4,19,88] . . . 0.30 . . . 0.54
3 [9, 17] . . . 0.76 . . . 0.66

Table 2: User Table Example

This table has columns user id, l1, . . . , lr, y1, . . . , yN . Now,
we fix reference users, which is a subset of the users in the
User Table. Then, filter the User Table by the users in the
reference users.

Join the User Table with the Filtered User Table by the
user id column of each table to obtain the table with columns
user id 1, user id 2, and

l1,1, . . . , lr,1, l1,2, . . . , lr,2, y1,1, . . . , yN,1, y1,2, . . . , yN,2.

user id l1 . . . y1 . . . yN
1 [19,35,63] . . . 0.84 . . . 0.72
16 [2,64,85] . . . 0.89 . . . 0.78
22 [100,101] . . . 0.24 . . . 0.42

Table 3: Filtered User Table Example

Then, for all 1 ≤ i, j ≤ r, append the lengths of the inter-
sections of the array pairs li,1, lj,2 as xi,j . Drop the columns
user id 1, user id 2, and l1,1, . . . , lr,1, l1,2, . . . , lr,2, which fi-
nally leaves only the following columns:

x1,1, . . . , xr,r, y1,1, . . . , yN,1, y1,2 . . . , yN,2.

x1,1 x1,2 . . . xr,r . . . y1,1 . . . yN,2

25 42 . . . 34 . . . 4 . . . 12
6 22 . . . 72 . . . 10 . . . 28
15 34 . . . 2 . . . 1 . . . 40

Table 4: Pair Table Example

We call this table with r2 + 2N columns the Pair Table,
and we use this table for model training, where the fea-
ture columns are x1,1, . . . , xr,r, y1,1, . . . , yN,1, and the label
columns are y1,2, . . . , yN,2.

Now we introduce the proposed models: PC1, and PCM .
The first model PC1 is a model that predicts the label of
a user by comparison with a single other user. The model
uses xi,j and yk,1 for features, where i, j = 1, . . . , r, and
k = 1, . . . , N . The N -dimensional labels are yk,2 for k =
1, . . . , N . When r = 2, we call TT = l1,1, TF = l1,2, FT =
l2,1, FF = l2,2. Note that each row of the input data is a
comparison with one other user.

The second model PCM uses pairwise comparisons li,j,k for
M multiple users k = 1, . . . ,M as features. The labels are
the columns y1, . . . , yN of a fixed user. In this model, each
row of the input data is the collection of comparisons with
multiple users. Then, the loss function is computed by the
L1 norm of the N dimensional prediction error. We used a
simple fully connected network structure:

• FC(N + r2, 64), ReLU

• FC(64, 32), ReLU

• FC(32, N)

3.3 Inference using the proposed model
To predict the labels of a new user u with responses l1, l2,
. . . , lr, we compute the join of this row with the User Table
to make the Pair Table of u, by following the steps in the
previous subsection. The created Pair Table is the table of
pairwise comparisons of user u, with the other users in the
User Table. Feeding the processed features to the proposed
models PC1, PCM give the predictions of the labels.

3.4 Neural Network baseline models
Our baseline model is a simple neural network model based
on Fully connected feed-forward network. The network pa-
rameters are set to match the network we proposed above
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in 3.2. The hyperparameters, which include the model di-
mension and depth, have been fit to yield the best results.
The Neural Network baseline model takes all user responses
as input. We name this model NaiveFC. In EdNet KT1
dataset, there are 3 possible labels for each question. 1 for
correct response, 2 for incorrect response and 0 if there is no
response. Each value is embedded into a latent space, and
the embedded values are added as an input to the model. We
find the best performance when the latent space dimension
is 128.

3.5 Matrix Factorization and Random Forests
as Baseline

We also train a Matrix Factorization (MF) model using
Alternating Least Squares [21]. In the proposed models,
we split users into train/validation, or train/validation/test.
However, matrix factorization models cannot be trained to
optimize the results on the validation set, since the user-
item embedding of only the validation set will be trained.
This leaves the data on train users to be ignored. There-
fore, we train the MF model on train + validation users and
evaluate on validation users. This method of data feeding
gives higher accuracy since the validation data is included
in the train data. Therefore, Matrix Factorization is not a
proper baseline for direct comparison because of train-test
data cheating. Still, the results are listed as a comparison of
the proposed models. We also train a Random Forest Re-
gression model, with maximum depth 30 and the number of
trees 300. Likewise, any other regression model can be used
after the pre-processing steps.

4. EXPERIMENTS AND RESULTS
From the EdNet KT1 dataset, we filter the responses from
the users who have solved all the 50 most-responded items.
The filtered data consists of 9,539,455 responses from 3692
users. To evaluate the data efficiency of our model, we com-
pare the performance of our model while varying the min-
imum number of responses of each user in the data. The
minimum number is varied by 50, 100, and 200, which is the
number of responses after excluding the responses for the
50 items. For each setting, the total dataset is filtered by
the users who responded more than the minimum number.
Then, the users are split into train and test users by 9:1.

In the PCM case, we construct three cases for the size of
reference users, which are 8/9, 1/9, and 1/90 randomly sam-
pled users from the train users in the filtered dataset. These
numbers correspond to 80%, 10%, and 1% of the total users.
The PCM models are named by the portion of response
users, and the minimum number of responses excluding the
label items. For instance, PCM50 80% corresponds to the
case where the users are filtered by those who answered more
than 50 questions excluding the label items, and 80% of the
total users are randomly assigned as reference users.

We compare the results with the baseline models NaiveFC,
Random Forest, and a constant value model. Both NaiveFC
and Random Forest models take the vector with each ele-
ment representing the response value of non-label items as
input. There are 10782 columns that are used as features,
since there are 10832 items in total. The constant value
model predicts everything as the average of the labels of the

training dataset. The models are trained to predict the label
column, which is the correctness rate for 50 label items.

All proposed models based on pairwise comparisons show
better performance compared to the baseline models NaiveFC,
Random Forest, and Matrix Factorization. From the experi-
ments on PCM , we show that the reduction of 98.75% refer-
ence users, also resulting in 98.75% reduction of the feature
columns in a different sense, shows similar levels of perfor-
mance. The 1% reference user case, where there are only
32 reference users, surpasses the performance level of the
baseline models, and also shows similar level of performance
with more reference users.

The first Matrix Factorization model is trained by the test
data included in training, and evaluated by test data. The
second model is trained by test data, and evaluated by the
same test data. When predicting all the values as the av-
erage label values of the training dataset, the MAE for test
dataset is 0.1498.

Model MAEtrain MAEtest

PC1100 0.0956 0.0974
PC1200 0.0955 0.0974

PCM50 80% 0.0956 0.0973
PCM50 10% 0.0956 0.0969
PCM200 10% 0.0956 0.0974
PCM50 1% 0.0958 0.0966
PCM200 1% 0.0954 0.0968

NaiveFC 0.1560 0.1648
Random Forest 0.0379 0.1011

MF(Test in Train) 0.3391 0.2437
MF(Trained by Test) 0.1872 0.1872

Average 0.1519 0.1498

Table 5: EdNet Results

5. CONCLUSION AND FUTURE WORK
We have presented two assessment models PC1 and PCM

based on pairwise comparisons. Experiments show that the
proposed models give good results in the EdNet KT1 case.
The features TT, TF, FT, FF capture the relative ordering
of the educational performance, as described in the begin-
ning of Section 3.2.

Our method can be applied in any domain where multi-
dimensional features capture a uniform ordering of labels,
as in the education assessment case. To apply the methods
to other problems, one can simply exploit the pre-processing
method described in the paper for different labels. The ex-
periments of this paper use labels constructed from the re-
sponse data, but note that this process is made before ap-
plying the proposed models. By using external labels, one
can skip the label constructing process and simply feed the
pairwise comparison features to the proposed models.

Also, this paper only presents the performance of our models
using user response data of EdNet KT1 as features. We
presented a baseline of our approach. Further experiments
can be made on other open data such as ASSISTment. In
our expectation, by leveraging richer data into the features,
such as time spent for solving a problem and user behaviors
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during solving problems, the accuracy of the models would
be improved. Also, adjoining pairwise comparison features
to existing real-world models can be a way to reduce the
inference cost, as well as label data gathering cost. We leave
this as our future work.
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ABSTRACT 
We propose edit distance trail as a representation for analyzing the 
behavior of students solving Parsons puzzles. The edit distance of 
a student’s solution from the correct solution of a Parsons puzzle 
gives the degree of correctness of the student’s solution. Edit 
distance trail of a student’s solution is the chronological sequence 
of edit distances of the student’s solution from correct solution 
after each puzzle-solving action. We used edit distance trail 
representation to analyze the puzzle-solving behavior of students 
who used a Parsons puzzle tutor on while loops. In order to find 
patterns in student solutions, we applied k-means clustering with 
elbow method. We found that the centroid curves of the clusters 
of complete solutions differed by slope, corresponding to the 
degree of optimality of student solutions. Students found the final 
few steps of the solution to be more challenging. Centroid curves 
of clusters of incomplete solutions separated informed attempts 
from uninformed attempts and identified when students hit a 
dead-end. We discuss the advantages and drawbacks of our 
representation as compared to aggregate graphs used in literature 
and how edit distance trails can provide insight not afforded by 
descriptive statistics. 

Keywords 

Edit-Distance, K-means clustering, Patterns in puzzle solutions 

1. INTRODUCTION 
In a Parsons puzzle [4], the student is given a program with its 
lines scrambled and asked to reassemble the lines in their correct 
order. The student is also asked to delete one or more distracters – 
lines of code that do not belong in the program. These puzzles are 
rapidly gaining popularity in introductory programming courses. 
Students preferred solving Parsons puzzles to answering multiple 
choice questions or writing code in electronic books [3]. 
Educators like Parsons puzzles because solving puzzles takes 
significantly less time than debugging code or writing equivalent 
code, but in one study, it resulted in the same learning 
performance and retention [2]. Scores on the puzzles were found 
to correlate with scores on code-writing exercises in another study 
[8]. Software to administer Parsons puzzles have been developed 
for programming languages such as Turbo Pascal [4], Python 

(e.g., [7,10]) and C++/Java/C# [1]. 

The sequence of actions taken by students to solve Parsons 
puzzles can potentially yield insight into their puzzle-solving 
strategies, just as similar analysis has been proposed for code-
writing tasks (e.g., [5]). If patterns can be found in how students 
go about solving the puzzles, the patterns may in turn be used to 
predict the likelihood that a student can successfully solve a 
puzzle, and to provide customized feedback that helps a struggling 
student get back on track to correctly solve a puzzle. In other 
words, analyzing how students solve these puzzles could be 
beneficial to educators, students and researchers. 

Whereas the solution to a Parsons puzzle is a state, the sequence 
of actions taken to solve a puzzle is a path. To date, to the best of 
our knowledge, only one study has been carried out to analyze the 
path taken by students to solve Parsons puzzles [6]. In the study, 
researchers built a visualization of the solution paths used by 
students and found wide variance among student solutions. They 
built aggregate graphs of all the solution paths for each puzzle. In 
the graphs, nodes were puzzle states, the size of each node being 
proportional to the number of students who had visited that state. 
The nodes were color-coded based on correctness. Similarly, 
edges represented state transitions in student solutions, with the 
width of each edge proportional to the number of student solutions 
that included the transition. The researchers found sub-optimal 
puzzle-solving behaviors such as backtracking and circular 
looping that could be targeted with customized feedback. 

This analysis based on puzzle-states can yield puzzle-specific 
patterns, such as the statement(s) in a puzzle that students have the 
most trouble assembling. But, since a puzzle with n statements 
can have n! states, the aggregate graph of the puzzle can be 
sparse, making it harder to find patterns in student solutions. For 
the same reason, this approach does not scale well to larger 
puzzles, i.e., puzzles with more lines of code.  

2. EDIT DISTANCE TRAILS 
As an alternative to aggregate graphs, we propose to use edit 
distance trail. An edit distance trail is the sequence of edit 
distances of student’s solution from correct solution, one edit 
distance per action taken by the student to solve the puzzle. In 
other words, it is a record of edit distances of the student’s partial 
solution from the correct solution from start to finish. In order to 
find patterns in student solutions of a puzzle, we propose to use k-
means clustering of edit distance trails with elbow method for 
determining the value of k. 

The operations allowed in a Parsons puzzle are 1) insertion of a 
statement into the solution 2) deletion of a statement from the 
solution and 3) reordering of a statement within the solution. The 
edit distance of a student’s solution from the correct solution is 
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the number of these actions necessary to reach the correct solution 
from the student solution.  

In order to calculate edit distances, we modified Levenshtein’s 
algorithm [11]. Levenshtein’s algorithm calculates edit distance 
based on three operations: insertion, deletion and substitution. 
Since substitution is not an operation permitted in Parsons 
puzzles, but reordering is, we modified the algorithm to eliminate 
substitution and incorporate reordering operation.  

Edit distance trail of a student on a puzzle is the chronological list 
of edit distances of the student’s partial solution from the correct 
solution after each action taken by the student to solve the puzzle.  

• The starting edit distance of an empty student solution from 
the correct solution is equal to the number of lines in the 
puzzle. So, every edit distance trail starts with a value equal 
to the number of lines in the puzzle.  

• When the student’s solution is complete and correct, its edit 
distance from the correct solution is 0. So, every edit distance 
trail of a completed solution ends with 0.  

• The length of the trail is one more than the number of actions 
taken by the student to solve the puzzle, the extra element 
corresponding to the start edit distance before the student has 
taken the first action to solve the puzzle. 

• Since our modified Levenshtein’s algorithm to compute edit 
distance treats insertion, deletion and reordering as single-
cost operations, each insertion and deletion action increases 
or decreases the edit distance by exactly 1. A reordering 
action may change the edit distance by 0 if reordering is 
incorrect, or 1 if correct.  

• If the student inserts a distracter into the solution, edit 
distance increases by 1. 

Unlike the combinatorially explosive number of states in 
aggregate graphs [6], the length of edit distance trail is linear in 
the number of actions taken by the student to solve the puzzle. 
The result of this smaller state space is greater overlap among 
student solutions, making patterns in student solutions easier to 
find. Since edit distances abstract away puzzle-specific details 
such as program states and individual lines in a puzzle, edit 
distance trails are also amenable to comparison across puzzles.  

3. A STUDY OF EDIT DISTANCE TRAILS 
We used edit distance trails to analyze the data generated by a 
suite of tutors on Parsons puzzles called epplets (epplets.org) [1]. 
The tutors are adaptive and use pretest-practice-post-test protocol 
– every student solved all the pretest puzzles, but the tutors 
adaptively selected practice and post-test puzzles based on the 
learning needs of the student. Students used a drag-and-drop 
interface to solve puzzles.   

For this study, we analyzed the data collected by an epplet on 
while loops. In the epplet, during pretest, students solved 
Parsons puzzles on the following concepts: 

1. A puzzle containing a single while loop. The problem (id 
2005) on which the puzzle was based was: “A program that 
reads numbers till the same number appears back to back. It 
prints the first number to appear twice back to back (e.g., 4 
appears back to back in 3,7,5,7,4,4,5 and is printed).” 

2. A puzzle containing nested while loops, the inside while 
loop’s condition dependent on the execution of the outside 

while loop, The problem (id 2105) on which the puzzle was 
based was: “A program that repeatedly reads a positive 
number, reads additional numbers till its multiple is found, 
and prints the number and its multiple. It repeats this until 0 
or negative value is entered for the number. For example, 
while reading the sequence 3,2,4,6,2,5,4,0 it prints 3,6 and 
2,4.” 

The tutor was used by introductory programming students as 
after-class assignments. For this study, we used the data collected 
by the tutor over eight semesters: Spring 2016 – Fall 2019. We 
included data from only the students who gave permission for 
their data to be used for research purposes. Students used the tutor 
in four different languages: C, C++, Java and C#. We combined 
the data from all four languages in our analysis. Students could 
use the tutor as often as they wished. When a student used the 
tutor multiple times, data from all the sessions was included in the 
study. In all, 1068 students used the tutor during those eight 
semesters.    

Epplets log the sequence of puzzle-solving actions taken by each 
student. We processed these logs to reconstruct the partial solution 
after each action and compute the edit distance of the partial 
solution from the correct solution using modified Levenshtein’s 
algorithm. After computing the edit distance trail corresponding to 
each sequence of puzzle-solving actions, we used k-means 
clustering to find patterns in the edit distance trails of the two 
puzzles (ids 2005 and 2105) separately. Within each puzzle, we 
analyzed edit distance trails of complete and incomplete solutions 
separately. The number of edit distance trails available for each 
puzzle and the optimal number of clusters found for each puzzle 
for complete and incomplete solutions are listed in Table 1. 

Table 1. Number of Edit Distance Trails Available and 
Optimal Number of Clusters Found for each Puzzle 

Puzzle 
No. (Id) 

Complete Solutions Incomplete Solutions 

Trails Clusters Trails Clusters 

1 (2005) 532 3 239 4 

2 (2105) 180 3 153 4 

 

3.1 Puzzle 2005 
The clusters found for complete solutions of puzzle 2005 are 
shown in Figure 1, along with their centroids, which are 
themselves trails. Table 2 lists the three clusters, number of 
solutions in each cluster, and the minimum, maximum and mean 
number of actions taken in those clusters to solve the puzzle.  
The puzzle contained 13 lines of code and 2 distracter lines. So, 
all the centroid curves in Figure 1 start at 13. Data points in the 
figure at 14 or 15 correspond to the start of trails in which 
students inserted one or both distracters into the solution before 
inserting any lines of code that actually belonged in the solution. 
In the figure, each data point is part of one or more trails – when a 
data point is shared among trails of different clusters, the colors of 
the different clusters have blended.   
Since a puzzle with n lines can be optimally solved with n actions, 
cluster 1 (leftmost centroid curve in Figure 1) with a mean of 
17.20 actions included all the optimal solutions. The centroid 
curves of the other two clusters have shallower slopes, 
corresponding to the use of more actions than necessary to solve 
the puzzles.  
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Table 2. Complete Solution Clusters of Puzzle 2005 (13 lines): 
Number of trails, minimum, maximum and mean actions 

taken to solve the puzzle 
Cluster 

Number 

N Actions to Solve the Puzzle 

Minimum Maximum Mean 

1 383 16 28 17.20 

2 112 20 40 27.25 

3 24 31 73 40.12 

 

The clusters found for incomplete solutions of the first puzzle are 
shown in Figure 2. Table 3 lists the number of incomplete 
solutions in each of the four clusters, the minimum, maximum and 
mean number of actions taken in the solutions of the clusters and 
the mean of the final edit distance of all the solutions in the 
cluster. The final edit distance shows how many more actions 
were necessary to complete the solution.  
Cluster 2 corresponds to student who bailed out after a maximum 
of 3 actions. It is likely that these students were familiarizing 
themselves with the user interface of the puzzle and planned to 
return to use it in seriousness later. Cluster 3 (leftmost centroid 
curve) comprised of students who made quick progress (mean of 
9.90 actions), but reached a plateau at the end before bailing out. 
They had an average of 9.58 steps left to complete the puzzle. 
Cluster 1 (second centroid curve from the left) comprised of 
students who made gradual progress towards the solution (mean 
of 21.05 actions) before bailing out. The students in this cluster 
took more actions to solve the puzzle than students in cluster 3, 
but got closer to the complete solution. Cluster 4 (rightmost 
centroid curve) was comprised of students who were lost from the 
beginning. Note that the slopes of the centroid curves of 
incomplete solution clusters provide qualitative information about 
incomplete solution attempts in the cluster: attempts that were 
informed (steep slope) versus those that were uninformed and 
included a lot of redundant actions (shallow slope), and the point 
at which attempts in a cluster hit a dead-end (plateau). 

 
 

Table 3. Incomplete Solution Clusters of Puzzle 2005 (13 
lines): Number of trails, minimum, maximum and mean 

actions taken to solve the puzzle 
Cluster 

Number 

N Actions to Solve the Puzzle Mean final 
distance 

Min Max Mean 

1 78 12 43 21.05 7.05 

2 65 1 3 1.50 12.95 

3 53 4 27 9.90 9.58 

4 38 23 75 32.18 8.63 

 

3.2 Puzzle 2105 
Figure 3 and Table 4 show the clusters found among complete 
solutions of Puzzle 2105, which contained 16 lines of code and 2 
lines of distracters. So, complete solution edit distance trails 
started with a value in the range 16-18 and ended with 0.  
The leftmost centroid curve corresponds to cluster 1, which 
contains all the optimal solutions, and yet, has an average of 22.2 
actions. The rightmost centroid curve corresponds to cluster 2, 
wherein, students were able to solve the puzzle but took almost 
twice as many actions as cluster 1. The middle centroid curve 
corresponds to cluster 3, which included students between the 
other two clusters in terms of the mean number of actions taken. 
Clustering of complete solutions resulted in centroid curves with 
varying slopes, corresponding to solutions at different levels of 
optimality.  
Table 4. Complete Solution Clusters of Puzzle 2105 (16 lines): 

Number of trails, minimum, maximum and mean actions 
taken to solve the puzzle 

Cluster 

Number 

N Actions to Solve the Puzzle 

Minimum Maximum Mean 

1 112 20 33 22.22 

2 36 33 66 44.58 

3 42 26 42 33.71 

Figure 2. Clusters of Incomplete Solutions of Puzzle 2005. 
 
 

Figure 1. Clusters of Complete Solutions of Puzzle 2005. 
 
. 
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Figure 4 and Table 5 show the clusters found among incomplete 
solutions of puzzle 2105. Cluster 1 represents students who bailed 
out early, with a maximum of 4 actions. Students in cluster 4 
(middle centroid curve) got closest to the correct solution while 
taking more than twice the number of actions needed to optimally 
solve the puzzle. Students in cluster 2 (rightmost centroid curve) 
were less-prepared than those in cluster 4: they took nearly 50% 
more actions, but were still not as close to the final solution when 
they bailed out. 

Table 5. Incomplete Solution Clusters of Puzzle 2105 (16 
lines): Number of trails, minimum, maximum and mean 

actions taken to solve the puzzle 
Cluster 

Number 

N Actions to Solve the Puzzle Mean final 
distance 

Min Max Mean 

1 54 1 4 1.24 17.05 

2 18 34 84 48.50 10.11 

3 26 5 27 10.30 13.34 

4 53 18 51 33.88 7.07 

 

 
 

4. DISCUSSION 
Analysis of complete solutions of both the puzzles yielded three 
clusters corresponding to different levels of optimality of the 

solution: one cluster corresponding to optimal solutions, and the 
other two differing in the number of unnecessary actions taken by 
students to solve the puzzle. Analysis of incomplete solutions 
yielded four clusters, one of them corresponding to “lurkers” – 
students who just tried a few actions before bailing out. Lurkers 
are similar to “stoppers” identified in literature [9] – students who 
do not take any actions once they encounter a problem, although 
we believe lurkers were probably just testing the interface. 
“Movers” identified in literature [9] were all the students in 
complete solution clusters who were able to solve the puzzle by 
gradually taking steps towards the correct solution. “Tinkerers” 
[9] were students in incomplete solution clusters who tried to 
solve the problem by making small changes in the hopes of 
making it work.  

Edit distance trails can be used to further analyze the behavior of 
movers and tinkerers. For instance, all the centroid curves in 
complete solution clusters show a tail at the end of a steep slope. 
This suggests that even movers who make steady progress solving 
a puzzle find the last few steps to be more challenging. One 
possible explanation is that at the end of solving a Parsons puzzle, 
the student is left with only one or two lines to insert, but the 
number of locations where they can be inserted are the most ever, 
making the final steps more challenging. 

This illustrates an example of when edit distance trails are more 
informative than descriptive statistics such as the number of steps 
taken to solve a puzzle: even in a monotonically decreasing edit 
distance trail, a change in slope may hint at a moment of 
frustration (transition from slope to plateau) or insight (transition 
from plateau to slope). A non-monotonic trail with frequent up- 
and down-swings may suggest the use of trial-and-error approach. 
Such differences may be found in the trails of two different 
students even when they may have taken the same number of 
steps to solve a puzzle.  

Edit distance trail representation is at a more abstract level than 
aggregate graph representation reported in literature [6]: using edit 
distances eliminates puzzle-specific details such as the specific 
line of code acted upon at each instant by a student. So, aggregate 
graph representation is better at unearthing puzzle-specific 
patterns such as determining the specific lines of code that most 
students might have problems assembling correctly. Edit distance 
trail representation on the other hand makes it easier to identify 
patterns among solutions – optimal versus sub-optimal complete 
solutions, lurking behavior, etc. because of its smaller state space. 
In the future, with the accumulation of additional data, we hope to 
find more patterns among complete and incomplete solutions that 
will provide more qualitative information about the types of 
solutions.  
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ABSTRACT
In the context of online education, one important consid-
eration is ensuring learning is equitable for a diverse range
of students. In particular, understanding how factors such
as gender and age can affect student behaviour is crucial
for adapting courses to better suit the needs of these stu-
dents. In this paper, using data from an online introduc-
tory programming course, we apply hierarchical clustering to
identify changes in student behaviour as students approach
dropping out from a course. By considering how these be-
havioural trends differ based on gender and school year level,
we then discuss how this information can lead to insights to
assist in improving equity and educational outcomes.

Keywords
gender equity, age equity, student dropout, student behaviour,
computer programming education, behavioural trends, hier-
archical clustering

1. INTRODUCTION
In an educational setting, ensuring that all students receive
equitable learning opportunities is a challenge of great signif-
icance. This is particularly important in the context of on-
line education, where teachers may be unable to personally
monitor all students due to large cohort sizes, and where the
increased accessibility of course materials can allow for very
diverse ranges of students. It is also particularly important
in areas where certain groups are under-represented, since
inequitable education may discourage students from these
groups from entering the field. Recent work on improving
educational equity has often focused on improvements at an
organisational level, such as through teacher training [11],
frameworks for addressing equity challenges [7] or analyses
of funding distributions [2].

A particularly promising avenue for improving educational
equity is the analysis of student behaviour. In particu-
lar, educational data mining and analysis techniques can

be utilised to understand how students from different back-
grounds respond differently to a course, thereby providing
insight into how the course can be modified to improve learn-
ing outcomes and equity. Previous work employing such
techniques has considered, for example, differences in be-
haviour at school and home [4], course enrolment and com-
pletion rates [10], social behaviour [3], online participation
and activity [6, 9], debugging techniques used [8] and moti-
vation for study [5] for different student groups.

In contrast to previous work, this paper uses a hierarchical
clustering technique to analyse the evolution of behaviour
of students who drop out of an introductory programming
course. In particular, samples of student behaviour are taken
at different stages during a course (e.g. when they first be-
gin, at points midway through and just before they drop
out). These samples are then clustered to detect changes
over time and to compare students of different gender and
grade groups.

2. DATA
Our data come from a beginner-level Python programming
course run in 2018. The course was run online for school
students primarily in Australia over a 5 week period, and
consisted of weekly exercises interleaved with notes on dif-
ferent topics. In total, this amounted to 40 exercises. Of
the 6516 students who attempted the first exercises of the
course, 82% dropped out before completing the last exercise.

3. METHODOLOGY
To observe how student behaviour changed as students came
closer to dropping out, we analysed the behaviour of all
students who completed at least 10 exercises in the first
four weeks of the course but still ended up dropping out.
These students were selected because they were more likely
to be seriously attempting the course (10 exercises consti-
tuted 25% of the course), so their dropout was particularly
significant. In addition, there would have been more oppor-
tunities for interventions to assist these students, so insights
from their behaviour could potentially have a larger impact
on similar students in future. We considered the first four
weeks of the course since all the exercises were comparable
(i.e. structured similarly with a similar time limit to com-
plete them). In total, 3677 students were selected.

For each of these students, we then selected a sample of
evenly spaced out exercises from the set of exercises they
completed during this time, which would represent their
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behaviour at different stages during their interaction with
the course (e.g. when they first began, midway through or
just before dropping out). Since all of the selected students
had completed at least 10 exercises, we used a sample of 10
evenly spaced out exercises for each student, which was the
maximum we could select without including missing data
for some students. Since the first and last completed ex-
ercise are particularly important when analysing dropout,
we wanted to include both of these for each student. As
such, we selected exercises using the following process: for
each student let e1, e2...en be the n exercises they completed

(n ≥ 10). Then, define f(k) = round(1 + k(n−1)
9

) and select
ef(0), ef(1), ..., ef(9). For example, if a student completed 20
exercises, the selected exercises would be e1, e3, e5, e7, e9,
e12, e14, e16, e18 and e20.

After selecting 10 representative exercises for each student,
we then generated features to describe their behaviour dur-
ing each of these exercises, as shown in Table 1. These
features related to the number of times particular events oc-
curred, such as viewing the exercise or failing it, and the
timings of these events. Note that these features did not
need to be independent due to the clustering technique used.

Table 1: Features used to perform the clustering
Feature Description

num views the number of times the student
viewed the exercise page

num autosaves the number of times the student’s
work was autosaved (this was trig-
gered if they had unsaved work that
was not modified for 10 seconds)

num failed the number of times the student
submitted their work for marking
but did not pass all automated tests

earliest: view,
autosave, failure
and pass

the time of the first view, autosave,
failure or pass respectively (in sec-
onds, relative to the deadline)

average time be-
tween fails

if the student failed the exercise two
or more times, the average time be-
tween these failures, in seconds

time from first
failure to comple-
tion

if the student ever failed the exer-
cise, the time in seconds from this
point until these passed.

After preparing the features, we applied the temporal hier-
archical clustering algorithm DETECT [1] to find clusters of
student behaviour that changed over time. This algorithm
produces hierarchical clusters defined by decision rules (e.g.
a cluster could be all cases where the number of views was
≤ 3 and the number of fails was > 2). To do this, it per-
forms a search over many different options for clustering the
data, each time observing the resulting distribution of clus-
ters over time. It then chooses the option that maximises an
objective function based on this distribution. In this case,
the objective was to find clusters that changed the most
between the student’s first two sample exercises and their
last two. Since the algorithm selects only the best features
in the final clustering, the method is robust to dependencies
between features. The resulting clusters are shown in Figure
1 and discussed in more detail in the next section.

Figure 1: Hierarchical clusters of student behaviour.
The cluster names show the hierarchical nature of
the clusters. Cluster 2 represents cases where stu-
dents completed the exercise late. In contrast, Clus-
ters 11 and 12 represent cases where students com-
pleted the exercise early and worked continuously
and intermittently respectively. This is discussed in
further detail in the text.

After producing the clusters, we then analysed the differ-
ences in cluster distributions for students from different back-
grounds. In particular, we considered the relationship be-
tween student gender and school year level on the cluster
distributions over time in order to gain insight into equity
issues. The results are discussed in the next section.

4. RESULTS AND DISCUSSION
4.1 Behavioural Clusters
The behavioural clusters produced by DETECT are shown
in Figure 1. The cluster names indicate the hierarchical na-
ture of the clusters: c0 at the root contains all examples,
c1/c2 are mutually exclusive subsets of c0 and c11/c12 are
mutually exclusive subsets of c1. Since there were 3677 stu-
dents in total and 10 representative examples for each stu-
dent, this made N = 3677 × 10 = 36770 clustered examples
of behaviour in total, with 38.6%, 13.8% and 47.6% in c11,
c12 and c2 respectively.

In this work, we focus on the three final clusters, c11, c12 and
c2, which we label for convenience as “early, continuous”,
“early, intermittent” and “late” respectively. We label c2
as “late” since it represents cases where students completed
the exercise close to the deadline (i.e. within 9.5 days of it).
In contrast, c11 and c12 are labelled as “early” since here
students completed the exercise more than 9.5 days before
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the deadline. In addition, c11 is labelled as “continuous”
because there were ≤ 8 autosaves, and these were triggered
when a student with unsaved work paused for more than
10 seconds. As such, a student with a small number of
autosaves did not pause very often and worked continuously.
In contrast, we label C12 as “intermittent” since there were
a large number of pauses.

Since we used a sample of 10 exercises for each student,
this meant that students could move from cluster to cluster
over time. As such, in order to understand how the cluster
distributions changed over time, we plotted the number of
students in each cluster for each exercise, as shown in Figure
2. Note that the total number of students in the graph
is constant over time (3677 students). Note also that the
exercises are relative to the students, not the course. For
example, Exercise 1 and Exercise 10 represent the first and
last exercise that each student completed before dropping
out, not the first and tenth exercise in the course.

1 2 3 4 5 6 7 8 9 10
Exercise Number

0

1000

2000

3000

Nu
m

be
r o

f S
tu

de
nt

s

C11
C12
C2

Figure 2: Cluster distributions over time

When submitting their first exercise, most students were in
c11 (early, continuous), where they completed the exercise
more than 9.5 days before the deadline and had ≤ 8 au-
tosaves, indicating that the students worked continuously
on the exercise. As such, dropping out students tended to
complete the exercises early and continuously when they first
began the course. Over time, however, the number of stu-
dents in the other clusters increased. In particular, by the
time they were close to dropping out, most students were in
c2 (late), where they were no longer completing the exercises
early. In addition, the increase in c12 (early, intermittent)
indicates that the students who did complete the exercise
early paused more, possibly due to difficulty or distraction.

In summary, by clustering evenly spaced-out samples of stu-
dent work over time, it is possible to observe how student
behaviour develops as students approach dropping out. In
the next sections, we will filter these students based on grade
level and gender to observe differences in these trends for
different student groups.

4.2 School Year Level Differences
In order to analyse the differences between students of differ-
ent school year levels, we divided students into four groups
based on school year, as shown in Table 2. Using the same
clusters as before, we then observed the differences in cluster
distributions with respect to these groups. The results are
shown in Figure 3.

Table 2: Grade groups used in the analysis. N is the
number of students in each group who dropped out
but completed at least 10 exercises in the first four
weeks of the course.
Group N Description

Year 11+ 263 Senior students in Year 11 or above
Years 9-10 2090 Intermediate students in Year 9 or 10
Years 7-8 1081 Junior students in Year 7 or 8
Primary 238 Primary students in Year 6 or under
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Figure 3: Differences in cluster distributions across
school grade groups

From the graphs in Figure 3, one important observation is
that increasing age is correlated with a decrease in the pro-
portion of students in c2 (late), and this difference increases
over time. This suggests that younger students tend to com-
plete exercises later than older students as they approach
dropping out. This could suggest that younger students are
more likely to drop out because they are falling behind and
possibly having difficulties with time management, whereas
older students may be dropping out for other reasons, such
as losing interest or the exercises being too easy.

Another interesting observation is that, while most students
were similar at the beginning, older students were more
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likely to be in c11 over time than younger students. Since
c11 represents behaviour where students complete the exer-
cise early and work continuously, this suggests that older
students may have been more organised than younger stu-
dents, or found the exercises easier immediately before drop-
ping out. This supports the idea that older students may
have been dropping out because the exercises were too easy,
while younger students may have done so due to difficulty.

These observations are important for informing future course
development, since they can provide insight into how courses
can be made more equitable. For example, if younger stu-
dents are more likely to drop out from a course because it
is difficult and they are falling behind, then interventions
could be developed to help support these students. For ex-
ample, they could be given extra practice questions or time
to complete the exercises. In contrast, if older students were
dropping out because the exercises were too easy, then more
advanced content or optional extension exercises could be
added for these students. This could then help to make the
course more equitable by addressing the needs of different
student groups.

4.3 Gender Differences
In addition to analysing differences based on school grade,
we also considered how student behaviour differed based on
gender. In total, we analysed data from 2334 male students
and 1124 female students who dropped out after completing
at least 10 exercises from the first four weeks of the course.
The differences in cluster distributions over time are shown
in Figure 4.
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Figure 4: Differences in cluster distributions across
gender groups

Interestingly, there is very little difference in the cluster dis-
tributions for male and female students over time for this
course. This suggests that male and female students be-
haved similarly with respect to these clusters as they ap-
proached dropping out - they started the exercises at simi-
lar times and worked roughly as continuously as each other.
The dropout rates for male and female students were also
similar. Such information is highly valuable for improving
gender equity, since it highlights where to focus attention.
In particular, instead of comparing the behaviour of male
and female students who drop out in order to introduce dif-
ferent types of interventions, perhaps focusing on reducing
dropout in general for both groups, or focusing on improv-
ing the balance in enrolment rates, could assist in improving
gender equity for this course.

5. CONCLUSION
In this paper, we have discussed how the behaviour of stu-
dents who drop out from a course can be analysed in or-
der to improve equity. In particular, representative samples
of work from dropout students can be clustered to identify
changes over time. Differences and similarities in trends as
students approach dropout can then be observed for different
student groups (e.g. male and female students or students
from different grade levels). This comparison can lead to in-
sights into the potential reasons for why students dropout,
helping to inform further course development to improve eq-
uity.
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ABSTRACT 

The aim of this research is to examine the accuracy of the 

estimations performed with the Elo rating system in an online 

learning environment where multiple attempts are allowed and 

feedback is provided after every submission. The acquired 

estimations are compared to the reference difficulty values 

calculated by the means of the IRT graded response model. The 

data originates from the RunCode online learning environment 

(https://runcodeapp.com) developed for the purpose of learning 

programming skills. The platform has been made available to 299 

first semester computer science students with varying initial 

programming knowledge. There have been 50055 attempts on 76 

tasks recorded. Multiple attempts on tasks were allowed, there 

was no penalty imposed for extra tries and feedback was provided 

after every submission. High correlation values – up to 0.927 – 

have been observed for the estimations performed by the Elo 

rating algorithm. We argue that the design of the Elo algorithm 

makes it a good choice as the on-the-fly task difficulty estimation 

method for online learning environments where multiple attempts 

are allowed and feedback is provided after submission.   

Keywords 

Task difficulty, Elo, rating algorithm, gamification. 

1. INTRODUCTION 
There are several methods developed for the purpose of estimating 

task difficulty that originate to a great extent from the area of item 

response theory. Some aspects make application of these methods 

in the context of online learning environments difficult, e.g. 

computational demands or difficult implementation. Therefore 

alternative methods of the difficulty estimation are analyzed [1], 

with the focus on lower computational demands and easier 

implementation. The Elo rating algorithm is an example of such 

alternative methods that satisfies these requirements, however, 

often with the cost of lower (reasonably) estimation accuracy. In 

online learning environments with formative assessment approach 

– contrary to knowledge assessment systems – lower accuracy of 

the estimations may be often accepted. Such learning 

environments may benefit from the implementation of faster 

methods, even if the requirement of high estimation accuracy is 

not met. The Elo rating system has already found several 

implementations in the educational context [1, 2, 3, 4]. However, 

most of the up-to-date research focuses on its applications within 

knowledge testing environments (summative assessment) or 

online learning platforms (formative assessment) where one 

attempt is allowed and with examples of task types presenting low 

complexity, e.g. multi-choice, where it is easy to satisfy the 

requirement of automated evaluation. The programming 

assignment is an example of a task type with much higher 

complexity – it is highly improbable to “guess” the correct answer 

for such a task type. It is, however, a task type that also satisfies a 

requirement of an automated evaluation and there are multiple 

types of automated tests that may be executed on the 

programming code in order to verify its correctness [5]. It is 

intuitively expected that on average, the number of attempts 

needed to correctly solve a programming task is much higher than 

of e.g. multi-choice task type. But how does it impact the quality 

of task difficulty estimation? What is the impact of multiple 

attempts, especially if there is a significant number of tasks 

available in the system on which learners fail multiple times? 

Especially online learning environments may benefit from the 

answer to this question. Dynamically changing number of system 

users and (or) of collaboratively added tasks make the on-the-fly 

requirement of the task difficulty estimation hard to satisfy already 

for a small number of system users and tasks – if using the well-

known difficulty estimation methods originating from the area of 

e.g. item response theory. On the other hand, usage of alternative 

methods for difficulty estimation may satisfy the on-the-fly 

requirement, but often with the cost of lower accuracy. This cost 

however may be often accepted and this research contributes to 

the question of the above-mentioned compromise between 

accuracy and on-the-fly calibration requirements in online 

learning environments. 

2. ESTIMATING DIFICULTY 
Models created for the purpose of estimating task difficulty 

originate mainly from the area of Computerized Adaptive Testing 

(CAT) domain. These models are used in order to optimize the 

process of knowledge assessment by lowering the number of tasks 

and time needed to determine learner's current knowledge level. 

There are two estimations evaluated: of a task difficulty and of a 

learner ability. Foundations for the development in this area have 

been laid by G. Rasch that formulated the single parameter 

logistic model with difficulty parameter [6, 7, 8]. The model and 

its variations under the name of the Item Response Theory (IRT) 

have been since utilized not only in educational [9], but also 

medical [10] or marketing [11] applications. In the era of the 

internet education, methods for estimating task difficulty have 
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been used not only for the purpose of the knowledge assessment 

[12], but are increasingly present in the field of Intelligent 

Tutoring Systems [13] where they are used for the purpose of 

matching item difficulty to learner ability in order to optimize the 

process of knowledge acquisition and achieve so called adaptivity. 

There are several examples of adaptive online learning systems 

e.g. for learning factual knowledge in the field of geography [1] or 

mathematics [2]. There are various methods other than item 

response theory models used for the purpose of task difficulty 

estimation that have been evaluated within educational research 

community e.g. Elo rating algorithm [1, 2, 12], proportion correct 

[12, 14], learner feedback [12, 15] or expert rating [12]. It has 

been found that the accuracy of these methods may achieve values 

described as “accurate-enough” for the purpose of online learning 

environments [1]. Although in terms of requirements for 

knowledge assessment systems such accuracy may not always be 

accepted, it may be a reasonable choice for usage within online 

learning environments. Above mentioned methods present several 

weaknesses in terms of their usage within online environments, 

e.g. require large calibration samples or high computational 

demands (IRT models), require large number of votes (learner 

feedback) or availability of experts (expert rating), in the context 

of their usage within online learning environments some of them 

may be more reasonable than other, depending on specific aspects 

of an individual system requirements. This article focuses on the 

usage of the Elo rating system as it is the algorithmic approach 

and therefore easier to automate than methods that require 

involvement of a human, e.g. expert rating or learner feedback. 

Additionally, it has already been validated as a suitable tool for 

online learning environments [1]. It has been implemented e.g. in 

the system with multi-choice questions where one attempt is 

allowed. This research extends the up-to-date research by 

presenting results of the analysis performed on the example of the 

online learning environment with the assignment of higher 

difficulty level (programming assignment), where multiple 

attempts are allowed, feedback is provided after every submission 

and no penalty is imposed for extra tries.  

3. ELO RATING ALGORITHM 
The Elo rating system [16] has been developed for the purpose of 

measuring strength of players in chess tournaments. The aim of 

the algorithm is to calculate players’ rating change after every 

game. That change depends on outcomes of tournament games. 

Every player is assigned a rating that is usually a number between 

1000 and 3000 that is a subject to change after every game. New 

rating is calculated by a formula: 

𝑅𝑛 = 𝑅 + 𝐾(𝑂 − 𝑃) 
 

Where: Rn is the new value of the rating, R – the actual rating, O – 

game outcome (1 – win, 0 – loss), P – probability of winning the 

game and constant K – the value for chess tournaments is often 

32. The probability of winning P is given as: 

𝑃 =  
1

1 + 10
𝑅𝑜−𝑅𝑝

400

 

 

Where Rp is the rating of a player and Ro is the rating of the 

opponent. In the context of an online learning environment, we 

consider a tournament game to be a single submission of a 

solution, a player – a learner that submits the solution and 

opponent – a task.  

There are three possible outcomes of the chess game (win, loose, 

draw), but in the context of learning environment we only 

consider two outcomes: learner wins if the submission receives 

the maximum score or learner loses if the submission does not 

receive maximum score.  

4. METHODOLOGY 

4.1 Programming course  
The RunCode online learning environment is an online 

application that supports automated validation of the correctness 

of programming code available at https://runcodeapp.com. It 

provides access to various courses consisting of programming 

assignments that are grouped into modules for the purpose of 

clarity. There are several gamification enhancements introduced to 

the platform aimed at keeping the user engaged. 

4.2 Programming assignment 
Students learn to code using the RunCode online learning 

environment by solving programming assignments. Every 

assignment requires a student to create a code containing a 

function that will be executed by the test runner in order to check 

its correctness. Task description defines requirements that the 

function should meet. Students submit the code containing the 

function and immediately (after its execution by the test runner) 

receive score and feedback. Score is calculated as the percentage 

of the tests, that ended with success to the overall number of tests 

performed on the code and is presented as a value in the range 

[0%-100%]. The feedback information is based on the 

information returned by the test runner and contains errors and 

warnings (if any) returned by the compiler and results of tests 

executed by the test runner containing information about the 

correctness of the submitted code. Only submissions with no 

errors, no warnings and satisfying requirements of all tests defined 

by the lecturer receive the maximum score (100%). Multiple 

submissions are allowed and feedback is provided after every 

submission.  

4.3 Data 
The data originates from the gamified course available on the 

RunCode online learning environment: a platform developed for 

the purpose of learning programming skills. The RunCode system 

supports automated evaluation of the submitted programming 

code. The RunCode platform has been made available as an 

additional, optional tool during the first-semester Introduction to 

programming course at the Faculty of Applied Informatics and 

Mathematics, Warsaw University of Life Sciences. The course is 

mandatory for the students of computer science and is realized in 

a traditional way – with lectures and computer classes. The main 

online tool for managing the course resources is the university’s 

moodle website. Although the RunCode platform usage was not 

mandatory and results obtained were not included in the final 

grade, majority of the students decided to use the system on 

regular basis. The course containing 76 programming tasks has 

been made available on the RunCode application. The data has 

been collected during two winter semesters: 2017/2018 and 

2018/2019. During this period, 299 students with varying initial 

programming knowledge used the system. There have been 50055 

attempts recorded in total. Multiple attempts were allowed with 

no penalty imposed on extra tries and feedback was provided 
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immediately after every submission. Students self-elected the 

order of solving tasks. 

5. RESULTS 
The data has been collected during two academic years: 

2017/2018 and 2018/2019 and contains system usage data that 

originate from the RunCode platform and results of the survey on 

the declared initial level of programming knowledge. Before the 

course started, students took a survey and answered the question 

about perceived programming skill level – self-evaluation of their 

knowledge of basic programming concepts. It has been a 

surprising observation, that about one third of students of the first 

semester at the Faculty of Informatics declared having completely 

no previous experience with programming languages and more 

than a half declared having no (skill level 1) or little (skill level 2) 

previous programming experience (Table 1).  

Table 1. Results of the pre-course survey on programming skill 

level: 1 – no previous programming experience, 5 – very 

extensive programming experience. 

 
1 2 3 4 5 

2017 (n=110) 32.7% 24.5% 15.5% 15.5% 11.8% 

2018 (n=159) 32.7% 25.8% 22.0% 11.3% 8.2% 

 

The overall engagement of the students, measured as the number 

of user submissions on the RunCode platform has been presented 

in Figure 1. The overall engagement of students is considerably 

high with the average of 178 submissions (attempts) performed by 

a user.  

 

Figure 1. Histogram of the number of attempts performed by 

users of the RunCode platform. 

The following detailed analysis of the submission data (Table 2) 

for the purpose of clarity has been limited to seven first attempts 

(ca. 75% of all samples). This limitation is reasonable, as the 

effects visible on the first seven attempts are in general also 

reflected in the remaining data (e.g. dropout) with the long tail of 

even more than 50 attempts on a task. Two important observations 

may be made basing on the overall view of the data presented in 

Table 2. Firstly, the number of successful attempts overall is low. 

On average, the first attempt is correct only in 39% of 

submissions. If the first attempt was not successful, the success 

rate for the second submission is 30% and with following 

attempts, the success rate decreases. 

Table 2. The number of correct and incorrect attempts on 

assignments. The Total column is the cumulative sum of 

attempts. The Dropout column is the percentage of students 

that resigned to take another attempt. 

Attempts Incorrect Correct Total Dropout 

1 8259 5269 13528 - 

2 5623 2389 21540 0,030 

3 4045 1244 26829 0,059 

4 2950 842 30621 0,063 

5 2259 493 33373 0,067 

6 1766 342 35481 0,067 

7 1396 237 37114 0,075 

 

It denotes, that the average difficulty level of tasks available on 

the platform may be perceived as high. Secondly, despite the fact 

that users fail to upload successful solution on the first attempt, 

they feel motivated and do not give up. The dropout rate is very 

low. Only 3% of the system users give up if the first attempt was 

not successful. As the number of submission increases, the 

dropout rate increases but even at the 7th attempt is reasonably 

low (7%). In order to compare the difficulty estimations 

calculated by the Elo rating algorithm with the reference values 

the Pearson’s correlation coefficient has been used. Reference 

values for the following analysis have been calculated by the 

means of the IRT graded response model [17]. The graded 

response model is suitable for modelling polytomous response 

data and has been already introduced e.g. for the purpose of 

knowledge assessment on open-ended tasks with multiple 

attempts allowed [18]. It has been found that the estimations of 

the IRT graded response model are accurate already for sample 

size of n = 200 [20]. The encoding procedure of polytomous data 

for the purpose of this analysis was following: the user-task 

matrix for the i-th attempt on task n by user m has been filled with 

value of i, if the first submission was successful. If the second 

attempt was successful, the value inserted was i-1. Every 

following attempt needed to achieve the maximum score lowered 

the inserted value by 1. In this scenario if a learner does not 

succeed in a maximum allowed number of attempts, the inserted 

value is 0. The procedure does not distinguish between not taking 

the task and exhausting all available attempts with no success. 

The study on the effects of missing data on the accuracy of 

estimations performed by the graded response model may be 

found e.g. in [19]. The reference (IRT) values for the following 

analysis have been calculated on the full data set. The optimal 

value of the Elo uncertainty parameter K has been evaluated 

experimentally, similarly to [12, 14]. The highest correlation with 

estimation values calculated with the graded response model has 

been achieved for the value of K = 3. The PlayerRatings R 

package [21] with default values of the initial rating and rating 

deviation has been used to perform Elo algorithm calculations and 

RapidMiner – for the ETL data processing [22]. The highest 

correlation value – 0.927 – has been observed for cumulative data 

from three attempts on tasks (Table 3). The correlation calculated 

only on the data from the first attempt achieves low correlation of 

the value 0.565. 
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Table 3. Correlation of the difficulty estimations calculated by 

Elo algorithm compared to the reference values. 

Att. 1 2 3 4 5 6 7 

Cor. 0,565 0,887 0,927 0,908 0,892 0,873 0,852 

 

With increasing number of attempts, the correlation decreases – 

correlation value calculated for the cumulative data from 7 

attempts is 0.852 (Figure 2).  

 

Figure 2. Correlation of the difficulty estimations calculated 

by Elo algorithm with the reference values. 

6. SUMMARY AND DISCUSSION 
The aim of this research has been to evaluate the accuracy of the 

Elo rating algorithm in terms of the task difficulty estimation. The 

analysis has been performed in order to verify the appropriateness 

of the method for its usage within online learning environments 

where multiple attempts are allowed and feedback is provided 

after every attempt. The source of the data has been the 

programming course available at https://runcodeapp.com – an 

online application developed for the purpose of learning 

programming skills. The analysis has been performed on the 

sample of 50055 attempts on 76 tasks submitted by 299 learners – 

first semester students of computer science. The data has been 

gathered during two academic years: 2017/2018 and 2018/2019. 

Although usage of the platform was not mandatory, a high level of 

engagement has been observed – the dropout rate for consecutive 

attempts was in the range of 3-7%. Students presented varying 

levels of initial programming knowledge, with about one third 

declaring no previous experience with programming. The highest 

correlation of 0.927 has been calculated for data containing three 

attempts on task. With an increasing number of attempts, the 

correlation value has slowly decreased. The obtained correlation 

level may satisfy the requirements of the online learning 

environment and estimations may be perceived as sufficient. 

Similar values of correlation have been already obtained in 

previous research – does it mean that the Elo rating algorithm may 

be a reasonable choice for estimating difficulty within online 

learning environments? Under circumstances described in the 

following, it may be. Contrary to online assessment applications 

where large calibration samples are required, requirements of 

online learning environments in terms of the accuracy may not be 

that strict – although delivering lower accuracy, the Elo algorithm 

is quick and it is the main advantage. Novel aspects of this 

analysis concern following factors: 1) it is based on the data 

originating from the real online learning environment created for 

the purpose of fostering basic programming skills; 2) allowance of 

the multiple (unlimited) attempts on task and feedback provided 

after every submission; 3) high level of the task difficulty 

observed as the large average number of attempts required to 

complete the task. There are several considerations that may limit 

the interpretability of the results and their generalization that may 

be divided into three elements referring to the RunCode platform, 

users and task characteristics. The RunCode online learning 

environment is a gamified internet application. The aim of the 

implemented gamification elements is to engage platform users 

and motivate them towards reaching the maximum score on every 

task. Overall engagement of system users may be described as 

very high and the gamification may be an important source of the 

large user contribution. The number of students that give up after 

an unsuccessful attempt is very low and varies between 3% and 

7% for the first 7 attempts (Table 2). It should be a subject for 

further analysis, if the results may be repeated if the number of 

dropouts in the data increases. The platform has been made 

available to the first semester students of computer science 

enrolled in the Introduction to programming course. The variety 

of the skill level is broad in the analyzed group. Although the first 

impression may be that students enrolled in the computer science 

track already have experience with basics of programming, 

student responses in the survey completed at the beginning of the 

course do not confirm this suspicion. One-third of the students 

declares to have absolutely no previous experience with any 

programming language, but there are also several students that 

have already mastered the basic programming concepts before 

joining the course. It is to be analyzed, if the observations from 

this study are repeated if users present equal (e.g. very low) initial 

knowledge on the subject. It is also to be considered, that the 

motivation of the computer science student to succeed in the 

Introduction to programming course may be reasonably higher 

than of an average user that joins any programming course at any 

publicly available online learning platform. Although usage of the 

platform was not mandatory and results obtained were not 

impacting the final grade, students used the platform very 

extensively. Therefore, it is to be analyzed if the observations 

made within a group that focused on the success in the course 

apply in other contexts. The overall difficulty level of the 

programming assignment available on the RunCode platform may 

be described as high. The submission process is very complex in 

comparison to e.g. multi-choice questions. Even easiest tasks (as 

perceived by the lecturer) received on average a higher number of 

attempts than initially expected. It may result from the fact that 

unexperienced learners that joined the course struggled from the 

beginning with too many new concepts: not only related to the 

basic rules of code preparation, but also e.g. to the technical 

aspects of creating code with usage of the integrated development 

environment (IDE). There is an additional outcome of the large 

average number of submissions on a task. The difficulty level may 

be estimated with higher granularity, even if the number of system 

users is low. On the other hand, if these tasks were made available 

outside of the university’s course, on an online platform to the 

public, a high average difficulty level would possibly lead to 

learners’ frustration and it would be expected that the dropout rate 

will be much higher. Future work will be aimed at comparing 

other methods of difficulty estimation satisfying the requirements 

of the on-the-fly calibration. 
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ABSTRACT
Co-operative education is a form of work-integrated learning
that includes both classroom study terms and paid work ex-
perience. Research on co-operative education focuses on its
benefits to students, employers, and academic institutions.
In contrast, we study the impact of co-operative education
on students’ mental well-being. To do so, we mine social me-
dia content on the Reddit platform, which includes, among
many other topics, discussion forums for major U.S. and
Canadian colleges. Specifically, we perform topic modelling
of discussions related to mental health and co-operative ed-
ucation. We find that students report feelings of self-doubt
resulting from a competitive co-op job market, especially
when placed in entry-level jobs that are not related to their
academic programs, and anxiety due to job interviews, es-
pecially when they coincide with exams and other academic
deadlines.

1. INTRODUCTION
Co-operative education (co-op) programs combine academic
content with paid work experience. For example, students
may alternate between classroom study terms and work-
terms. Co-operative education programs, both at the un-
dergraduate and graduate levels, have become popular as
they offer practical work experience for students and a tal-
ent pipeline for employers [3, 26].

Prior work has examined the effect of co-operative education
on students and employers. From a student point of view,
studies have illustrated the impact of co-op on skill and ca-
reer growth (see, e.g., [22, 13]). From an employer point of
view, there has been work on understanding employers’ ex-
pectations (see, e.g., [4, 16, 19]). On the other hand, there
is less work on the effect of co-op on students’ mental well-
being, aside from small-scale studies of specific issues such
as failing to obtain co-op employment (details in Section 2).
This is, however, a pressing issue as recent work reports a
rise in mental health problems among college students [1].

To fill this gap, we analyze social media to discover what
students say about the impact of co-operative education on
their well-being. Specifically, we perform topic modelling
of U.S. and Canadian university discussion forums on the
Reddit social media platform (reddit.com), followed by a
detailed inspection of topics related to co-op.

In contrast to prior work based on surveys of small groups
of students from a single institution, our study is based on a
large dataset containing student-generated social media con-
tent from over 50 institutions, and is not limited to specific
issues or students in specific circumstances. Furthermore,
it has been recognized that the anonymity of social media
makes it suitable for discussing sensitive issues. However,
while there has been prior work on using social media such
as Reddit and Twitter to understand mental health issues
[7, 5, 18, 15, 14, 21, 8], including issues experienced specif-
ically by students [1], these studies have not reported any
issues related to co-operative education.

Our main findings are as follows. First, we find indications
of self-doubt resulting from competition, specifically by stu-
dents unable to secure highly-paid and popular co-op po-
sitions, and by students placed in entry-level jobs that are
unrelated to their academic programs. Second, interviews
for co-op positions appear to be causing anxiety: students
fear being unprepared or unqualified, especially when inter-
views coincide with exams. These findings suggest action-
able insights for academic institutions, including managing
students’ expectations and ensuring that co-op interviews
do not conflict with academic deadlines.

2. RELATED WORK
In the context of social media mining, the closest work to
ours is that of Bagroy et al. [1], which proposed a mental
well-being index for college campuses. The index was com-
puted by measuring the fraction of a given college’s Reddit
discussions that were related to mental health issues, as de-
termined by a classifier. In a related study, Saha et al. [24]
computed the fraction of these discussions that was classi-
fied as hate speech, and identified expressions of stress linked
to exposure to hate speech. However, these studies did not
report any issues related to co-op.

Next, we review related survey-driven studies. Drysdale and
McBeath [12] surveyed 1970 students about psychological
attributes such as hope, procrastination, self-efficacy, and
study skills. They found that co-op students had lower anx-
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iety, a better attitude, better use of study aids, and better
time management. Drewery et al. [10] surveyed 1989 co-op
students and found that students who see a strong connec-
tion between the work term and their academic program
are more likely to feel satisfied and perform well. Rowe [23]
surveyed 29 researchers about neglected negative aspects of
co-op. Some of the reported issues were related to men-
tal health, e.g., depression of students unable to find co-op
jobs or placed in jobs that are unrelated to their academic
programs, and disconnect from campus life caused by al-
ternating work and study terms. Cormier and Drewery [6]
surveyed 82 students and found that those who did not find
co-op employment reported negative feelings. On a similar
note, Drewery et al. [11] tested two interventions, on 74 par-
ticipants, to improve unemployed co-op students’ well-being:
a writing exercise and information about coping with stress.
The first was found to be effective, but not the second. Fi-
nally, Deziel et al. [9] surveyed 312 students about their
mental health and found that it is related to academic and
demographic factors such as program, year of study, and
gender. However, the effect of co-op was not considered.

3. DATA AND METHODS
3.1 Data Collection and Pre-Processing
Reddit is an online social media platform divided into over
100,000 user-created discussion communities referred to as
subreddits. A subreddit contains a number of posts that ini-
tiate discussions, and a post is followed by (zero or more)
comments. Subreddit names begin with “r/” and are indica-
tive of the content. For example, r/Fitness contains discus-
sions of fitness and physical exercise, r/StarWars is a forum
for fans of Star Wars movies, etc. As of 2019, there are over
400 million users on Reddit. Each user has a Reddit ID, but
is not required to reveal any personal information.

Previous work [1] has identified the subreddits correspond-
ing to top U.S. colleges according to U.S. News1. We also use
these subreddits in our analysis, listed in Table 1. Addition-
ally, we collected the subreddits corresponding to top Cana-
dian universities according to McLean’s Magazine2, listed in
Table 2. We downloaded these subreddits (posts and com-
ments) from a publicly accessible database on Google Big
Query3, spanning from September 2015 to September 2019.
The sizes of each studied subreddit are shown in Table 1
and 2, in the “before” columns; the numbers in the “after”
columns refer to content relevant to mental health and co-
operative education, as determined by our filtering methods
described in Section 3.2.

Next, we perform standard text pre-processing. Following
previous work on Reddit data mining [17], we remove posts
and comments with fewer than 256 or more than 4096 char-
acters: short ones are unlikely to be meaningful (and may
instead correspond to URLs), while long ones may mention
more than one topic. We also remove stopwords and we lem-
matize the remaining words (i.e., we group together all the
inflected forms of a word) using the Python NLTK parser.

1https://www.usnews.com/best-
colleges/rankings/national-universities
2https://www.macleans.ca/education/university-rankings-
2020-canadas-top-comprehensive-schools/
3https://cloud.google.com/bigquery

Table 1: U.S. academic subreddits: number of posts
and comments before and after processing.

Subreddits Posts Comments
before after before after

r/UIUC 5893 423 27258 1864
r/rutgers 4062 263 12858 913
r/UMD 2861 198 10748 916
r/UCSD 2638 163 10991 771
r/Purdue 2408 183 10540 883
r/berkeley 2254 170 15946 970

r/UTAustin 2134 133 8744 507
r/utdallas 1974 146 6476 524
r/gatech 18623 305 14605 1386
r/Cornell 1718 75 5865 453
r/udub 1571 97 7422 456
r/uofm 1550 99 6254 546
r/SBU 1450 90 4367 246
r/rit 1363 96 7080 684

r/UWMadison 1322 93 5040 343
r/RPI 1207 91 7119 571

r/SJSU 1187 51 3955 306
r/nyu 1146 82 2975 169

r/PennStateUniversity 1134 85 5255 369
r/NCSU 1110 58 3679 293
r/msu 1074 52 4191 316
r/UGA 1026 69 3511 278
r/USC 931 51 2851 197
r/UVA 616 49 2273 116

r/uichicago 532 37 1178 93
r/UNCCharlotte 512 32 1635 94

r/stanford 510 42 1416 112
r/UPenn 491 35 1276 68

r/columbia 411 30 1428 55
r/cmu 333 25 1320 118

r/Baruch 324 19 796 57
r/IndianaUniversity 320 25 1311 79

r/mit 316 25 1487 121
r/UMBC 286 11 822 59
r/Harvard 241 18 1081 73
r/BrownU 219 14 603 28

r/byu 198 20 1404 75
r/duke 187 10 502 19
r/UNC 184 9 416 21
r/washu 179 15 622 30

r/Vanderbilt 156 9 334 16
r/bostoncollege 96 3 315 9

r/Caltech 77 11 232 20
Total 66824 3512 208181 15224

3.2 Content Filtering
Academic subreddits discuss a variety of topics related to the
corresponding college, such as admissions, academics and
campus events. Thus, the next step is to filter the data
and identify discussions that are relevant to our analysis,
namely those which 1) are related to mental health, and 2)
are related to co-operative education.

First, we apply a classifier that predicts whether a post or a
comment is likely to be related to mental health. We use the
logistic regression classifier from Bagroy et al. [1], which was
originally used to compute the percentage of discussions on
academic subreddits that are related to mental health. This
classifier was trained by considering all posts on the subred-
dit r/mentalhealth to be mental-health-related and all posts
on control subreddits (among them r/food, r/technology,
and the FAQ forum r/AskReddit) to be unrelated.

Next, we only retain posts and comments that appear re-
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Table 2: Canadian academic subreddits: number of
posts and comments before and after processing.

Subreddits Posts Comments
before after before after

r/uwaterloo 8912 1836 43382 5215
r/UofT 7895 588 32929 2490
r/UBC 3577 406 20504 1485

r/uAlberta 2766 146 8968 576
r/yorku 2612 182 9877 531
r/mcgill 2603 171 10517 635

r/Concordia 1643 129 4042 286
r/uwo 1599 112 6167 401

r/ryerson 1383 82 4018 374
r/CarletonU 1320 134 4988 473
r/McMaster 928 63 2354 218

r/queensuniversity 763 35 2452 163
r/uvic 665 41 2400 181
r/wlu 458 38 1159 114

r/uoguelph 399 29 960 99
r/Dalhousie 293 24 667 39
r/umanitoba 165 23 354 18

r/brocku 103 11 220 22
r/memorialuniversity 86 5 116 15

r/usask 74 4 157 11
r/uottawa 35 5 27 2
r/UdeM 22 2 101 4

r/University Of Regina 21 3 30 3
r/lakeheadu 20 0 47 4

r/uleth 17 0 18 3
r/laurentian 14 0 21 0
r/AcadiaU 14 1 44 1

Total 38387 4070 156519 13363

lated to co-op, and we do this by only keeping those which
contain at least one of the following co-op related terms:
“coop”, “interview”, “resume”, “workterm”, and “intern”.
Note that we lemmatized the words during pre-processing,
so “interview” also captures similar words such as “inter-
viewer” or “interviewing”.

3.3 Topic Modelling
We then apply topic modelling to the posts and comments
that passed the above mental health and co-op filters. First,
we vectorize the comments and posts in a standard way. For
each post or comment, the ith entry of its vector corresponds
to the Term Frequency - Inverse Document Frequency (TF-
IDF) of the ith word. We compute the TF-IDF score of a
given word for a given post or comment as follows: we divide
the number of times the word appears in the given post or
comment (TF) by the fraction of total posts and comments
that contain at least one occurrence of this word (DF). TF-
IDF is frequently used when vectorizing text as it takes into
account both the uniqueness of a word in the entire dataset
and the importance of the word to the specific document (in
our case, the specific post or comment).

Next, we run the Non-negative Matrix Factorization (NMF)
topic modelling algorithm [27] on the vectorized posts and
comments. NMF clusters the data into topics and produces
a list of representative terms called topic descriptors for each
topic. Each such term has a “representativeness” score, and
we select the top-10 highest-scoring terms for each topic.
Additionally, for each topic, we report the top-10 most fre-
quent word n-grams (for n up to three, i.e., sequences of up
to three consecutive words) within the posts or comments

belonging to the given topic.

NMF requires the number of topics as input. To select an
appropriate number of topics, we ran NMF to produce be-
tween 2 and 100 topics, and computed the coherence [20]
of each output (higher is better). We obtained the highest
coherence for ten topics.

Another issue with NMF is that despite our text pre-
processing, some topic descriptors were uninformative. Fol-
lowing prior work on topic modelling [17, 25, 2], we repeat-
edly remove uninformative terms from the posts and com-
ments and re-run NMF until the topic descriptors no longer
contain any uninformative terms. After two iterations, all
the top-10 descriptors became informative.

Finally, we extract issues affecting students from the NMF
topic descriptors, the frequent n-grams, and a manual in-
spection of a 5% sample of posts and comments assigned to
each topic.

4. RESULTS
Table 3 shows the topic modeling results for posts and com-
ments related to both mental health and co-op, including
topic descriptors, a sample of frequent n-grams, and the per-
centage of content assigned to each topics. After inspecting
these results, plus a sample of posts and comments assigned
to each of the ten topics, we manually group the topics into
issues, as shown in Table 4 (where we also point out which
topics from Table 3 describe which issue).

Topics 1, 2, 4, 9 and 10 cover over 60 percent of the content
and appear related to competition, specifically the competi-
tive nature of the co-op job market. Upon manual inspection
of a sample of posts and comments, we found that students
express self-doubt and feelings of inadequacy when unable
to secure a desirable co-op job, especially when one’s class-
mates and friends are able to obtain such jobs. There were
also some discussions about choosing a good co-op program
that enables interesting and highly-paid co-op job opportu-
nities, concerns over not having enough experience to qualify
for these desirable jobs, and the stress of maintaining a high
GPA to qualify for or remain in such programs. Notably,
many of the posts and comments related to competition
referred to technology and software roles, as well as large
technology employers such as Facebook and Google. This is
likely due to the fact that co-operative programs are mainly
in science and engineering.

Next, topics 3 and 5 are about questions students ask about
co-op programs. This includes general questions related to
admissions, and specific questions such as how to write a
work report.

Topic 6 describes issues with interviews. Many posts and
comments belonging to this topic referred to interviews for
co-op jobs being stressful, especially because they often co-
incide with exams and other academic deadlines, and be-
cause interview processes for software positions may include
lengthy programming tests. Students also reported feelings
of uncertainty about how to prepare for interviews, how
to acquire required skills, and what to expect. Addition-
ally, some students reported anxiety after an interview while
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Table 3: Topic modeling output for co-op related posts and comments
Topic descriptors Frequent n-grams %

1 work, time, people, like, make, want, hard, day, need, know ’work hard’,’people work’,’school work’ 29.9
2 job, apply, degree, graduate, student, want, like, people, look, pay ’apply job’,’job market’ 14.1
3 project, code, like, use, course, make, time, start, personal, create ’work project’,’start project’,’personal

project’
12.2

4 experience, internship, year, co-op, school, summer, gpa, company, graduate,
program

’work experience’,’grad school’,’work
hard’

9.5

5 class, easy, semester, final, hard, pretty, time, exam, course, lecture ’class work’,’final project’,’work time’ 7.8
6 resume, interview, look, company, ask, skill, apply, recruiter, employer, page ’work experience’,’career fair’,’cover

letter’
7

7 lab, research, professor, prof, student, grad, undergrad, paper, ask, email ’research project’,’work lab’,’grad stu-
dent’

5.6

8 group, member, people, meet, person, presentation, individual, make, face-
book, fb

’group project’,’work group’,’class
group’

5.3

9 team, game, member, join, play, club, engineer, player, people, design ’project team’,’work project’,’team
work’

5

10 letter, cover, apply, write, application, position, make, generic, company, tai-
lor

’cover letter’,’resume cover’,’resume
cover letter’

3.6

Table 4: Issues extracted from co-op related posts
and comments

Topics Issue Description %
1,2,4,
9,10

Competition E.g. not qualifying for a de-
sired co-op job

62.1

3,5 Questions About co-op programs (e.g.,
seeking clarification when
instructions are not clear
enough)

20

6 Interviews E.g., not knowing what to ex-
pect or how to prepare

7

7 Research op-
portunities

Not directly related to co-op 5.6

8 Group
projects

Not directly related to co-op 5.3

waiting to find out if they have been hired.

Finally, topics 7 and 8 are not directly related to the effect of
co-op on students’ well-being; they instead refer mainly to
research opportunities and participation in group projects
during internships.

5. DISCUSSION AND CONCLUSIONS
By performing topic modelling on subreddits corresponding
to U.S. and Canadian universities, we obtained the follow-
ing insights into the impact of co-operative education on
students’ well-being.

1. Competition for internships, especially in the soft-
ware and information technology fields, is a frequently
discussed negative aspect of co-operative education.
Prior work has observed that co-op unemployment
can lead to mental well-being issues [6, 11]. How-
ever, our results further indicate that not securing a
desirable, high-paying, challenging, and relevant em-
ployment can be a source of stress, self-doubt, and
disappointment. This is especially true if one’s friends
and classmates are able to secure desirable jobs that
are directly related their programs of study.

2. Co-op interviews are a source of stress for several
reasons. First, students fear being unprepared or un-

qualified, especially when competing for sought-after
jobs. Second, interviews often coincide with midterm
examinations and other academic deadlines, meaning
that students may have to choose between preparing
for interviews (including preparing for programming
tests) and coursework. Previous work has argued that
co-operative education research should consider work-
related variables in addition to education-related ones;
these work-related variables include skills, job satis-
faction, performance assessments, and selection inter-
views [23]. Our findings on co-op interviews align with
this suggestion, providing data-driven evidence of an-
other source of anxiety for co-op students.

3. As reported in previous work [23], we also found some
reports of loneliness during workterms. Addition-
ally, moving and finding a place to live during a
workterm can be a source of stress.

Our findings suggest actionable insights for academic insti-
tutions and students. First, it is important to manage co-op
students’ expectations. For example, universities may want
to offer workshops that explain the competitive nature of
the co-op process and help students find jobs they qualify
for. Junior students, specifically, should keep in mind that
they may not immediately qualify for the sought-after posi-
tions secured by their senior colleagues. Additionally, these
workshops should provide advice on interview preparation,
coping with frequent moving, and finding short-term living
arrangements during internships. Second, co-op interviews
should not be scheduled during peak academic times. Hav-
ing more time to prepare, especially for software interviews
with programming tests, may reduce anxiety.

One limitation of this study is that it only reflects the opin-
ions of students who are active on Reddit. Nevertheless, our
findings can be used as a starting point for additional fo-
cused research. In future work, we plan to survey students
to confirm our findings about the competitive nature of the
co-op job market. Additionally, we will analyze course dis-
cussion forums to further investigate the impact of co-op
interviews on class schedules and academic deadlines.
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ABSTRACT
Educational traces are distinctive compared to the usual
data a recurrent neural network encounters: there is a differ-
ence between two consecutive educational traces generated
by a same learner if they are separated by 2 minutes or 2
months. Indeed, in the latter case, the learner who gener-
ated the trace may have forgotten the associated skill, which
is less likely in the former case. Recurrent Neural Networks
have seen a surge of popularity in the recent few years thanks
to Deep Knowledge Tracing. While the focus has mostly
been on the network architecture, we propose here a novel
framework where traces are enriched with information rel-
ative to the temporality before they are used to train the
network, and assess the performance on two datasets (Lalilo
and ASSISTments 2012), which is not improved by this ap-
proach.

Keywords
Educational Data Mining, Neural Networks, Trace enrich-
ment, Temporality

1. INTRODUCTION
1.1 Modelling student learning
As reminded by Choffin et al. [3], there are two main ap-
proaches to model students’ learning: knowledge tracing and
factor analysis.
On the one hand, knowledge tracing approaches model stu-
dents’ learning over time by nature by taking into account
the sequential order of traces. Historically, these approaches
started with Hidden Markov Models (HMMs) which were
particularly used for Bayesian Knowledge Tracing (BKT)
[4]. More recently, Deep Knowledge Tracing (DKT) ap-
peared and spread partly thanks to increases in computing
power [13]. The key idea is to model skills mastered by the
students using Recurrent Neural Networks (RNNs).

On the other hand, Factor Analysis models have been devel-
oped since the 1950s (cf. [15] for a recent synthesis). They

rely on the idea of making explicit the factors that can have
an impact on students’ success on a given exercise. Training
the model then consists in computing the weight of those
various factors in success.

1.2 How Recurrent Neural Networks are usu-
ally used

Thanks to massive increase in GPUs computing power, re-
search in artificial neural networks and deep learning has
developed at a fast pace over the past decade [10]. In the
EDM community, its first use came with DKT in 2014, which
uses RNNs in order to continuously model students’ learn-
ing over time. Since then, several variations of RNNs have
been created to better model students learning, such as Dy-
namic Key-Value Memory Networks for Knowledge Trac-
ing (DKVMN) [17] and more recently Deep Hierarchical
Knowledge Tracing (DHKT) [16] and Knowledge Query Net-
work [11]. However all those alternative models only work
on trying to adapt the structure itself of the RNN.

Outside of the EDM community, today some of the main
uses of RNNs include natural language translation, speech
recognition and time series forecasting. Those three uses
have one common point: the distance between two succes-
sive data is always the same (a single space between two
words of a text, 25ms between two audio samples in speech
recognition or a same time difference between two points
in time series). Nonetheless, this property is usually not
true on problems datasets generated by students using vari-
ous learning platforms or intelligent tutoring systems (ITSs)
which are commonly considered in the EDM community. In-
deed, in this context two consecutive log entries could be
separated by two minutes (for two exercises done during the
same learning session) or two months (if the student stops
using the learning platform for a while). And when this time
is long, it is likely that the student has either significantly
progressed on that skill (through work outside of the system,
e.g. class work) or on the contrary they may have forgotten
some previously mastered skills.

1.3 Beyond sequentiality: temporality
But there are reasons to think that taking into account time
data can significantly improve success prediction for an exer-
cise. The importance of modeling temporal aspects in ana-
lyses of learning has been well-established in the EDM and
LAK communities [9]. In sequence mining approaches for
instance, authors tend to take it into account by allowing
gaps between actions [8] and/or with feature engineering
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Figure 1: DKT structure. Adapted from [13]

by integrating this aspect in the actions themselves (short
vs. long actions) [2]. The DAS3H model [3], which does
not use RNNs, uses time windows of various durations to
try to characterize the slopes of the forgetting curves for
each skill. In deep learning approaches, Nagatani et al. [12]
slightly modify the RNN structure to use exercise counts
and time gaps between two similar exercises as additional
inputs and are able to increase the AUC (Area Under ROC
Curve) of predictions. In the medical field, a similar study to
predict patient follow-ups benefited from a modification in
the LSTM cell making it time-aware [1]. So likewise here we
want to investigate ways to use the traces temporality and
whether this could improve the quality of the predictions.

2. METHOD
2.1 Deep Knowledge Tracing in a nutshell
As mentioned before, the principle of DKT and its variants
relies on an RNN whose weights characterize how a students’
skills mastery evolves after an interaction with a learning
system, such as an ITS. An interaction with the system is
represented as a couple {exercise, answer}. So if there are
K exercises with a boolean answer, 2K interactions are pos-
sible. In order to facilitate calculations in RNNs, they are
usually one-hot-encoded using a binary vector of 2K values.
For a sequence of N values, each interaction gets sequen-
tially through the RNN. At a time t, the t-th interaction
goes through the cell of the RNN thus providing the new
vector representing the estimated knowledge of the student
at that time. This vector can then be used to predict success
on a given exercise at time t + 1 (cf. Figure 1). Training a
RNN thus corresponds to learning the transitions between
a given student’s knowledge vectors. We can notice that
nowhere the temporal distance (or time gap) between two
inputs is considered (cf. Figure 2 top), and as far as the au-
thors know, no knowledge tracing algorithms are currently
considering it.

2.2 Our proposal
Usually, enriching the traces consists in feature engineer-
ing and tends to be presented as an alternative to Recurrent
Neural Networks [6]. [12] and [1] added temporality by mod-
ifying the structure of the neural network to include tempo-
ral information. Here we try a different approach by insert-
ing new traces in the dataset, doing meta feature-engineering
to be used by a Recurring Neural Network. Our idea con-
sists in considering all traces from students as a sequence
with missing values when there are no new trace for a given
period of time. In cases like this, one can usually infer the

% of traces spaced by

Dataset > 7 days > 30 days

ASSISTments12 3.1 0.6
ASSISTments17 1.1 0.4
Algebra I 2005-2006 0.3 0.02
Bridge to Algebra 2006-2007 0.02 0.003
Lalilo 2.0 0.4

Table 1: Dataset traces spread

missing values [7] by (1) adding data whose values are equal
to the average of previous data or (2) adding again the same
data that was last added. However, neither of these two ap-
proaches can be applied here. First, they are typically used
for time series where only some variables are missing at time
t but not all of them, whereas here it is equivalent to having
all variables missing at time t. Moreover, averaging previ-
ous interactions does not make sense mathematically speak-
ing. Finally, adding again the same interaction that was last
added would not take into account the fact the student may
have been progressing or forgetting during the time in which
they were not using the learning platform.

Our proposal thus consists in adding traces (further on re-
ferred to as ”artificial traces”) at a regular predefined static
time interval when students are not using the learning plat-
form. The underlying hypothesis is that the RNN will be
able to interpret those as time passing by. Those artificial
traces are added as exercise K + 1 (knowing there are only
K exercises initially). Thus if we add traces every month
without any exercise done, after 3 months without use, 2
artificial traces will have been added (cf. Figure 2 middle).
In a similar scenario, if traces are added every week without
any exercise done, 11 artificial traces will have been added
(cf. Figure 2 bottom).

Adding those traces results in modifying the student’s knowl-
edge vector after each exercise K + 1. After a given time
without any new exercise done, the predictions correspond-
ing to the probability of success will therefore differ from
the ones without any artificial trace. When the RNN learns
the meaning of that K + 1-th exercise, it could lead to an
improvement of the predictions.

In order to keep the initial tuple structure, we also add an
arbitrary correctness of 0, which is not used practically to
train the network.

3. EXPERIMENTS
3.1 Experimental setting
We computed the number of traces spaced by more than
7 and 30 days in a number of classical datasets : ASSIST-
ments12 [5], ASSISTments17, Algebra I 2005-2006 and Bridge
to Algebra 2006-2007. The two latter datasets stem from the
KDD Cup 2010 EDM Challenge [14]. We were also able to
get a dataset from Lalilo which is a web-app fostering liter-
acy for K-2 (Table 1). In order to evaluate the performance
of the traces enrichment, we have trained DKT and DHKT
algorithms on the two datasets that had the highest spread
in traces: ASSISTments12 (assist12) and Lalilo. Their main
characteristics are summarized in Table 2.
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Figure 2: Traces fed to the network before enrichment (top), after monthly temporal enrichment (middle),
or after weekly temporal enrichment (bottom)

Dataset Users Items Skills Interactions Median length

lalilo 58,585 3,439 16 4,418,190 46
assist12 29,018 53,086 265 2,711,602 49

Table 2: Datasets characteristics

A key question with our approach relates to the frequency
of use to add artificial traces. Indeed if the frequency is
too high, it is likely that the artificial traces would disturb
the RNN learning. Conversely, if the frequency is too low, it
won’t capture precisely the elapsed time. Therefore we com-
pared the impact of various frequencies of artificial traces
addition.

Our models have been implemented in Python and PyTorch
for the Deep Learning aspects and the corresponding code
is available online on GitHub1. Following Choffin et al. [3],
we removed users for whom the number of interactions was
less than 10 and interactions with NaN skills. We randomly
sample randomly training (80%) and testing (20%) sets and
give results on the testing set. We average on five different
seeds and give standard deviation.

3.2 Results and analysis
A synthesis of the results can be found in the Tables 3 and
4. We use AUC to evaluate the performance of the models.
No significant improvement in the predictions appear, and
even with a high frequency of added artificial traces (daily),
there is no significant degradation either. Several hypothesis
could explain this lack of impact. It is possible that in those
datasets, students are not progressing or regressing signifi-
cantly between two moments when they use ASSISTments.
A lack of differences would also be likely to be observed if
long gaps without usage are unlikely. For example, if most

1https://github.com/thosgt/kt-algos

Model Added trace frequency (# days) AUC (std dev)

DKT None 0.734 (0.004)
DKT 1 0.735 (0.003)
DKT 7 0.734 (0.002)
DKT 14 0.734 (0.002)
DKT 30 0.734 (0.005)

DHKT None 0.771 (0.002)
DHKT 1 0.770 (0.002)
DHKT 7 0.771 (0.005)
DHKT 14 0.771 (0.003)
DHKT 30 0.770 (0.002)

Table 3: Performance comparison on the ASSIST-
ments12 dataset

students do 50 exercises over a few days, then stop using the
system for 2 months, and use it again intensively for a week,
the only exercises impacted would be the ones right after the
gap of two months, i.e. only a small percentage of exercises
overall. It is thus also possible that other datasets would be
more sensitive to measure the impact of this artificial traces
addition.

4. CONCLUSION AND PERSPECTIVES
We proposed here a framework to enrich learning traces to
train recurrent neural networks. This enrichment which con-
sists in adding artificial traces allows to add a temporality
aspect into traces which normally only take into account se-
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Model Added trace frequency (# days) AUC (std dev)

DKT None 0.685 (0.001)
DKT 1 0.685 (0.003)
DKT 7 0.685 (0.002)
DKT 14 0.684 (0.003)
DKT 30 0.685 (0.002)

DHKT None 0.701 (0.002)
DHKT 1 0.700 (0.002)
DHKT 7 0.701 (0.001)
DHKT 14 0.702 (0.003)
DHKT 30 0.700 (0.001)

Table 4: Performance comparison on the Lalilo
dataset

quentiality. Unfortunately, ASSISTments 2012 and Lalilo
datasets did not allow us to reveal a significant impact of
our approach, but we have reasons to believe these partic-
ular datasets were not the most appropriate to measure a
significant difference in the performance of prediction. Our
future works thus involve (1) focusing on a population of
students who has a scarce use of a learning platform over a
large period of time (several months or years), (2) focusing
on the impact of this algorithm over prediction specifically
on exercises done right after a large time gap (during which
the student may have learned or forgotten things), and (3)
identifying learning platforms that teaches skills that are
maybe easier to forget over time (e.g. vocabulary in a for-
eign language), or finding already existing datasets coming
from such a platform.
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ABSTRACT
In order to keep up with the rising demand for new and inno-
vative solutions in an evolving world, an even greater impor-
tance is being placed on training engineers that can tackle
big problems. However, the process of teaching engineer-
ing students to be innovative is not straightforward. There
are multiple ways to demonstrate innovation and problem-
solving abilities, meaning traditional educational data min-
ing methods aren’t always appropriate. To better under-
stand the process of problem-solving and innovation, this
work collected data from students working on innovation
projects within a course and determined appropriate ways
to gain information and insight from the data. Students
wrote and categorized learning objectives in an online por-
tal, which generated log data when they created, updated,
and completed personal learning objectives and correspond-
ing deliverables. Classification models that were both ro-
bust (ROC AUC > .95) and interpretable were applied to
both the language used in the objectives and the quantifi-
able features such as number of objectives, time of complet-
ing certain milestones, and number of deletions and edits.
By extracting the most significant features, we are able to
see which variables are most likely to lead to student success
in innovation-based learning. This would aid instructors in
offering impactful support to students or eventually lead to
an online tutoring system. The conducted analysis will help
students develop and grow throughout the innovation pro-
cess in this course or in other open-ended problem-solving
environments.

Keywords
Classification, open-ended learning, innovation, problem-solving

1. INTRODUCTION
Thomas Friedman describes the current era as the Age of
Accelerations, the time at which technology, the climate,
and globalization are all evolving at a rate like we’ve never
seen before [5]. As these areas progress, engineers need to be

able to identify and solve problems more quickly and effec-
tively than ever before. ABET [1], the National Academies
of Engineering [10], and experts in both engineering and ed-
ucation [12] all stress the growing importance for training
engineers that can use their problem-solving skills to create
new and innovative solutions. This work explores how stu-
dents work on these skills and solve real-world problems in
an Innovation-Based Learning (IBL) course. IBL students
apply their content knowledge and skills to work on a real-
world project with the goal of creating value external to the
class. For example, successful students have presented their
work at conferences, published papers, participated in in-
vited outreach activities, or submitted invention disclosures.
Students are required to write their own learning objectives
and show evidence of work. However, because there are so
many possible approaches to the course, predicting and un-
derstanding student success can be challenging.

In order to better understand what makes students success-
ful in this type of course, data were collected from the online
learning portal from the class. Because of the open-ended
nature of the course, classification and knowledge discovery
can be challenging. We wanted to build classifier models
that were robust, but also interpretable in order to better
predict and support future students in IBL-style courses.
Therefore, three main research questions were explored:

RQ1: What feature sets and models work best for IBL data?
RQ2: How early can student success be predicted?
RQ3: What features are most likely to differentiate between
top-performers and lower-performers?

Finding answers to all of these questions can help guide in-
struction in the course and potential development of an on-
line tutoring system for innovation-based learning courses
and other open-ended problem-solving environments. This
paper will present literature about open-ended learning en-
vironments, give details about the course and data collected,
elaborate on how the research questions will be tested, and
share results and takeaways.

2. OPEN-ENDED LEARNING
Open-ended learning is a pedagogical approach that allows
students to use their own motivations and approach to learn
about the world [8]. Students are taking part in authen-
tic problem-solving, practicing metacognition, and creat-
ing unique pathways through their learning. Examples of
open-ended learning environments include computer pro-
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gramming exercises, project-based learning, and inquiry-based
learning. Educational research exists about the potential
benefits of these experiences [11], but there are still gaps in
understanding about how students progress through open-
ended learning environments. Educational data mining (EDM)
has shown great potential in being able to help shed light on
student trajectories and habits within open-ended learning
environments [20].

EDM has shown preliminary successes in open-ended learn-
ing environments such as learning computer programming
[9], project-based learning courses [17], online tutoring plat-
forms [3,4], learning-by-teaching platforms [6], and language
tutoring systems [13]. Continuing to make strides in un-
derstanding learning in open-ended environments is imper-
ative because it will be an important step in implementing
evidence-based practices and assessment in these environ-
ments.

3. METHODS
3.1 Cardiovascular Engineering Course
Data were collected from an upper level cardiovascular en-
gineering course at a medium-sized research university. Stu-
dents learned about the main concepts of cardiovascular en-
gineering including functional block diagrams of the heart,
arterial systems, and ECG. The students were assessed on
their ability to apply these concepts to a project they worked
on during the semester. After identifying a project and a
team, they wrote learning objectives and corresponding de-
liverables that would share what they needed to learn, when
they would learn it, and how they would demonstrate it.
Students could adjust their learning goals as needed, but
they were expected to share their progress on their project
multiple times during the semester [14]. To get an A in the
course, students needed to work on an innovation project
and achieve high external value. High external value is
demonstrated by sharing your work outside the course and
getting review from a subject-matter expert, e.g. publish-
ing a paper, presenting at a conference, or submitting an
invention disclosure [2, 19].

3.2 Online Learning Portal
A custom online learning management system (LMS) was
created for students to keep track of their learning objec-
tives and deliverables [18]. When students add a learning
objective, they give it a title, description, assign it to a level
of Bloom’s Revised 3D Taxonomy [7], and categorize it using
the list of objective categories in Appendix A. When adding
a deliverable, students give it a title, description, level of
external value, estimated completion time, and status (not
started, in progress, or completed). An example of a learning
objective and corresponding deliverables is shown in Figure
1. Every time a student adds, edits, or deletes an objective
or deliverable, the action is recorded as a log entry, allowing
us to see not only the completed products, but also early
iterations of the students’ objectives [16].

3.3 Data Set
28 students agreed to share their data during the semester.
The average student logged approximately 8 objectives, 32
deliverables, and visited the platform more than 65 times
during the semester. 17 students achieved high external

Figure 1: Example of collected learning objective
and corresponding deliverables.

value, 10 students worked on an innovation project but did
not achieve high external value, and 1 student made some
learning goals but did not complete any.

3.4 Feature Collection
Two main types of features were used and compared: quan-
titative data and text data. The quantitative features that
were extracted from the data include countable features (e.g.
number of planned learning objectives, number of logins,
etc.), quarter-based progress (e.g. number of deliverables
completed during quarter 2, number of learning objectives
deleted during quarter 4, etc.), presence of the specific learn-
ing objectives as seed in Appendix A (e.g. presence of In-
vention Disclosure objective, number of Fundamentals of
Research objectives, etc.), and the level of learning as de-
fined by Bloom’s Revised Taxonomy and the level of exter-
nal value.

For the text data, all learning objective and deliverable titles
and descriptions were extracted for each student. Using the
scikit-learn library in Python, all the words that students
wrote in their objectives and deliverables were tokenized,
counted, and scaled.

4. EXPERIMENTS
4.1 Models and Feature Sets
In order to predict which students would achieve high exter-
nal value during the course of the semester, three classifier
models were tested: Support Vector Machine (SVM), Lo-
gistic Regression (LR), and K-Nearest Neighbors (KNN).
These three models were chosen because they have some
level of interpretability, an important feature in EDM [15].
In order for instructors to use the discovered information,
they need to be able to understand where it was derived
from. The baseline model was a Majority Class (MC) clas-
sifier.

In addition to comparing the models, both the text and
quantitative features were compared. For each set, we also
compared using all features to using the top K features. K
was optimized and set at 24 for text and 15 for quantitative.

4.2 Evaluation Metrics
Each model was evaluated by calculating accuracy, recall,
F1 score, and Area Under Receiver Operating Characteris-
tic Curve (AUC). Accuracy is the proportion of correctly
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classified students to all students. Recall is the proportion
of students that the model identified as not being on track to
success to the number of total students that did not achieve
high external value during the course. F1 score is a per-
formance metric that takes the harmonic mean of precision
and recall. AUC is the area under the Receiver Operating
Characteristic (ROC) curve which shows how well the model
can differentiate between the two classes. All models were
evaluated using ten-fold cross validation.

4.3 Trajectory
In addition to exploring models that were developed by using
each student’s final learning objectives and deliverables, we
were also able to explore how prediction power of the models
changed during the course of the semester. Models were
created using daily snapshots of all students to see when the
model can begin predicting student success.

5. RESULTS
5.1 Comparing Models and Feature Sets
Table 2 shows the accuracy, recall, F1 score, and AUC for
each of the models and feature sets explored. These classi-
fiers used all available data during the semester. Almost all
models performed better than the MC baseline test. The
text features consistently performed better than the quanti-
tative features, and using feature selection usually improved
the model as well. The top models are SVM and LR, both
using the top 24 text features. In addition to having low per-
formance, the quantitative models are also difficult to assess
in real time. The most relevant features of the quantitative
models can give us some information, but they are not as
helpful when making predictions. Therefore, we’ll focus on
using the text models moving forward.

Feature Type Model Accuracy Recall F1 AUC

Baseline MC .6 - - .5

All Text
Features

SVM .783 .85 .758 .831
LR .883 .85 .866 .972

KNN .583 .95 .533 .700
Top 24
Text
Features

SVM .917 .85 .9 .937
LR .917 .85 .9 .952

KNN .783 .85 .767 .832
All Quanti-
tative
Features

SVM .7 .6 .648 .704
LR .717 .5 .612 .697

KNN .567 .7 .482 .523
Top 14
Quantita-
tive
Features

SVM .667 .5 .563 .851
LR .7 .5 .597 .798

KNN .667 .9 .615 .65

Table 1: Performance metrics for each of the models
using end of semester data

5.2 Exploring Model Trajectory
Because the model performs well at the midpoint in the
semester, the next experiment explored at what point in the
semester top-performers can be differentiated from lower-
performers. All models used the 24 top text features. Fig-
ures 2 and 3 show the accuracy and AUC of the models over
time, respectively. The SVM and LR models improve as the

semester goes on, with the AUC for the models leveling out
at about day 55. Therefore, the midpoint of the semester
seems to be an appropriate time to use the model, but using
it earlier might give mixed results.

Figure 2: Accuracy of the text-based models over
time compared with the baseline MC classifier

Figure 3: AUC of the text-based models over time
compared with the baseline MC classifier

5.3 Knowledge Discovery
In order to better understand what features are most sig-
nificant in predicting success, the most important features
were extracted. By using linear classifier models instead
of black-box models like neural networks and other deep-
learning models, Chi-Square and the weights of each fea-
ture could be calculated. Chi-Square tells us which features
are not independent of their classification, meaning they are
more likely to differentiate between classes. The greater the
Chi-Square value, the greater dependence on classification,
meaning that feature is a strong differentiator. Weight can
tell us which class a feature is more likely to be found in.
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Figure 4 shows the 24 features with the largest Chi-Square
value. If the word was more likely to be found in a low-
performing student, the Chi-Square value was multiplied by
-1 to allow for easier interpretation. The top words that dif-
ferentiated low-performing students were information, pre-
sentation, engineering, website, loops, review, and feedback.
The top words that differentiated high-performing students
were sensor, signal, model, device, idea, and symposium.

Figure 4: The Top 24 text features that differen-
tiated the most between successful and unsuccess-
ful students. Words with positive Chi-Square val-
ues were more associated with successful students.
Words with negative Chi-Square values were more
associated with unsuccessful students.

Table 4 shows the quantitative features that had the highest
Chi-Square values. The weights were used to know which
group the variable was more likely to be present in. Top
students were more likely to have data analysis, data collec-
tion, journal manuscripts, and general Mechanisms of Re-
search learning objectives. Unsuccessful students were more
likely to have providing critique and outreach communica-
tion learning objectives.

Variable Chi-Square Group

Presence of MR4: Data
analysis

3.882 Successful

Presence of RM3: Providing
critique

3.091 Unsuccessful

Total number of Mecha-
nisms of Research Learning
Objectives

2.146 Successful

Presence of MR3: Data col-
lection

1.941 Successful

Presence of PC5: Journal
manuscript

1.941 Successful

Presence of PC7: Outreach
communication

1.807 Unsuccessful

Table 2: Quantitative features with the highest Chi-
Square values

6. DISCUSSION
6.1 Insights Gained
Unsurprisingly, top students were more likely to mention
work on their abstracts, posters, pitches, and presence at
the BME Symposium (an on-campus biomedical engineer-
ing conference). Low-performing students were more likely
to have deliverables like websites and outreach activities.
Although websites could be high impact deliverables, they
can also just be a report of students’ lower-level learning.
For outreach activities, this can be interpreted broadly and
could be outreach to a classmate or small group rather than
a visit of high impact. In addition, successful students were
more likely to have words related to the design process such
as idea, develop, and data. Unsuccessful students were more
likely to mention words like information, presentations, re-
view, and feedback. We believe these words appeared in low-
level students because they were activities required by the
class. Therefore, top students did not see the need to write
specific learning objectives about them, but lower perform-
ing students added them in an attempt to have more items
logged.

6.2 Limitations
Just as the world around us is accelerating, so are our stu-
dents. Therefore, these models will need to continue to
evolve and improve as students change their approach to
the class. Aiming for consistently high performing models
is not a realistic goal for this work. Rather, we can use the
knowledge discovery from these models to better understand
how students move through these environments and aim to
better support them.

6.3 Future Work
In addition to collecting data during more semesters and at
more universities, we would also like to explore both cluster-
ing and sequential modeling moving forward. By clustering
similar students and finding patterns that emerge in suc-
cessful students in that cluster, we can give personalized
feedback that allows students to find success while staying
true to their own learning goals.

7. CONCLUSION
Modeling student learning in open-ended learning environ-
ments can be challenging, but SVM classifiers show potential
in being able to predict which students will be successful in
an IBL course. Models had accuracy of over 80% and AUC
of over .95 by the midpoint in the semester. This accuracy
increased to over 90% by the last few weeks of the semester.
By using linear models, we could also gain insight as to
what features differentiated between successful and unsuc-
cessful students. Using these results can help instructors
know which students could use extra support and lead to
more understanding about how students progress through
problem-solving environments in general. By understanding
how to better support our students in the innovation pro-
cess, we can foster the next generation of problem-solvers to
take on the Age of Accelerations.
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APPENDIX
A. LEARNING OBJECTIVE CATEGORIES

Category Code Objective

Discipline-
Specific
Knowledge

DSK0 Cardiovascular Concepts
DSK1 Learning in student’s program
DSK2 Learning in student’s College
DSK3 Learning outside of College
DSK4 Freeform learning

Fundamentals
of Research

FR1 Research method
FR2 Literature review
FR3 Experimental design
FR4 Experimental equipment
FR5 Intellectual merit
FR6 Broader impact
FR7 IRB/IACUC
FR8 Lab safety

Mechanisms of
Research

MR1 Statistics
MR2 Experimental controls
MR3 Data collection
MR4 Data analysis
MR5 Drawing conclusions
MR6 Knowing nature of results

Professional
Communication

PC1 Conference abstract
PC2 Conference poster
PC3 Conference presentation
PC4 Proposal presentation
PC5 Journal manuscript
PC6 Standard operating procedure
PC7 Outreach communication
PC8 Invention disclosure

Research
Mindset

RM1 Personal statement
RM2 Receiving critique
RM3 Providing critique
RM4 Metacognition
RM5 Establishing requirements
RM6 Team conduct
RM7 Mindset

Entrepreneurial
Skills

ES1 Business model
ES2 Customer communication
ES3 Customer segment
ES4 Value proposition
ES5 Product evaluation

Table 3: List of all learning objective categories
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ABSTRACT 

In recent years, we have witnessed an increasing interest in 

online learning environments, particularly in Massive Open 

Online Courses (MOOCs). However, prevailing studies show 

that lower percentage of students complete their courses 

successfully in online learning environment. The vast amount of 

student data available in MOOC platforms enables us to gain 

insight into student learning behaviours. In this paper, we 

explore the idea of ‘student roles’, identifying linguistic change 

associated with roles that will later help us to understand 

students’ learning process in MOOCs. As an initial stage of this 

research, the study aims to categorise student roles (e.g. 

information seeker, information giver) using discourse analysis, 

and to further analyse the linguistic change for each student role 

with time. A multi-class classifier has been built to identify user 

roles with 82.20% F-measure. Further, our study on linguistic 

changes demonstrates that distinctive behaviors can be observed 

across different user roles. Prominent observations include 

discourse complexity, lexical diversity, level of information 

embeddedness and lexical frequency profile being high in 

information giver in comparison to information seeker and other 

user roles. 

Keywords 

MOOCs, Discussion forums, Student Role, Natural Language 

Processing, Machine Learning 

1. INTRODUCTION 
With the advent of Massive Open Online Courses (MOOCs) 

there has been an eruption in learning environment [10]. 

Students are increasingly seeking alternative learning mediums, 

with MOOCs increasingly looked upon as a valuable source of 

learning. As many of the MOOCs are freely available for 

students, it draws interest of thousands of learners.  

According to the statistics, over 101 million learners are 

globally registered to study using MOOCs by the year of 2018 

[16]. However, studies show that only one in every twenty 

students who enrol in MOOCs complete their studies 

successfully [9]. The participation in MOOCs seems complex 

with students’ enrolment for varying purposes and varying 

intentions [17]. Completion is not necessarily the only indicator 

of learning success. Knowing that students may enroll to courses 

for other purposes, we need to explore other perspectives of 

learning success beyond completion. 

The primary problem aims to solve by this research is whether 

analysing the student role and its associated linguistic change 

can be used to understand student learning. We believe learner 

role can give us an indication on whether learning gain is 

important to measure learning success. We try to answer 

“Moving between roles is potentially an indication of learning 

gain”. This hypothesis has not been explored yet in prevailing 

literature.  

As the studies discuss in this paper demonstrate a proof of 

concept, our initial stage is to identify user roles and a sample of 

linguistic indicators that are associated with these roles. Our 

overarching goal is to track these roles and their associated 

linguistic changes with time. And eventually, predicting the 

grades for student using these discourse features. We assume 

observing these roles and associated linguistic changes will 

eventually result in a deeper understanding of the student’s 

learning lifecycle.  

Hecking et al. [5] identifies these roles with both linguistic and 

community-related features (e.g. votes, views). However, in a 

real time system, it is not realistic to wait for the community-

related features to classify students into different roles as 

structural features can be generated throughout the course and 

they may change with time. Therefore, we intend to identify 

student roles in MOOC discussion forums solely based on a 

discourse analysis.  

Few research studies [3; 4] have focused on linguistic changes 

that occur in online communities. Yet, linguistic changes have 

not been studied along with students’ role. 

With reference to the aforementioned aspects, we aim to answer 

the following research questions: RQ1: Can we build a model 

that could predict user roles (information seeking, information 

giving, other) using linguistic only features? RQ2: Do linguistic 

indicators change significantly across user roles?   

Answering these questions will result in identifying user roles 

and its associated linguistic changes in discussion forums. These 

studies may assist to understand students’ learning in online 

learning environment. 

The contribution of this work includes a multi-class 

classification model that uses linguistic-only features to predict 

user roles in MOOC discussion forums. Since it uses linguistic-

only features, our model can be applied to any online forums 

(e.g. technical forums) for role prediction. Further, we examine 

the linguistic indicators and its changing patterns associated 

with user roles at this stage with the intention of proposing a 

framework in future to understand students’ learning. 
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2. RELATED WORK 

2.1 User role/ Post classification 
Searle’s taxonomy [15] has been widely used in literature and 

proven to be a most successful method in speech act 

classification. From this point, several classification mechanisms 

have been evolved based on Searle’s taxonomy [1; 7]. 

Hecking et al. [5] have carried out post classification by 

integrating the categories that prevail in the existing research 

studies. The study presents three classes (information seeking, 

information giving and other). It used content-related features 

(e.g. phrases – “need help or helps you”) and contextual features 

(e.g. position in the thread, number of votes) for classification 

purposes and obtained an average of 70% accuracy.  

In a real time system, it is not realistic to wait for the contextual 

features to predict the given classes as they occur throughout the 

course and changes with time. Therefore, our study focuses 

solely on the linguistic aspects over contextual and structural 

features. 

2.2 Linguistic change in online communities 
An important facet of linguistic research is to identify the 

correlation between user lifespan and their language use [3; 13]. 

Given the rich recent work on linguistic analysis in different 

online communities [3; 6; 13; 14], research scholars also have 

attempted linguistic analysis in MOOC. Dowell et al. [4] have 

conducted a study on MOOC data to identify the conversion in 

learner’s language and discourse characteristic with time. 

However, the research did not investigate the linguistic changes 

associated with each user role. To address this gap, we 

conducted several experiments using different linguistic features 

to discover discourse complexity, lexical diversity, number of 

embedded information and lexical frequency profile. Even 

though preliminary work on linguistic change has been 

conducted in other online communities, there is a lack of work 

conducted in MOOCs.  

3. METHODOLOGY 

3.1 Data set 
We extracted a dataset from the AdelaideX1  ‘Introduction to 

Project Management’ and ‘Risk Management for Projects’ 

courses offered in 2016 and 2017 respectively. A total of 9,497 

user posts was extracted from 923 different users. We sampled 

6000 posts from ‘Project Management’ for this study. We 

extracted user posts of students who have posted a minimum of 

six posts during the entire semester. Posts were manually 

annotated as information seeker (IS), information giver (IG) and 

other (O) user roles by two independent human evaluators. 

According to Cohens kappa, the high inter-rater agreement (k= 

0.924) between the two annotators ensures the validity of the 

human  annotation. 

User role identification  
We adopted machine learning techniques to build a multi-class 

classifier to predict user roles (IG, IS and O) for a given forum 

post using discourse features and linguistic features that were 

extracted using Linguistic Inquiry and Word Count (LIWC) 

                                                                 

1 https://www.edx.org/school/adelaidex  

tool2. We extracted multiple features to reflect several facets of 

the text.  

We implemented multi-class classifiers using weka for role 

identification. All classifiers were tested using 10 Fold Cross- 

Validation to assess effectiveness.  

The imbalanced data were handled using Synthetic Minority 

Oversampling TEchnique (SMOTE). Here we split the data into 

70% for training and validation and 30% for testing. Then, we 

oversample the minority class on each training fold during cross 

validation. Then, validated the classifier on the remaining fold.  

On the other hand, we also performed further analysis on role 

classification to explore the potential techniques that can be 

used to address this problem. We implemented multi-class text 

classification using Keras, a high-level neural network API. 

We used existing pre-trained GloVe word embedding to convert 

the user posts to 100 dimension vectors. Then, built the model 

with one input layer, one embedding layer and one Long Short-

Term Memory (LSTM) layer with 128 neuros and one output 

layer with three neurons.  

3.2 Linguistic study 
In our second study, we conducted several linguistic 

experiments (e.g. discourse complexity, lexical diversity) to 

understand the linguistic changes of each user role with time.  

3.2.1 Discourse Complexity 
According to an existing study by Crossley et al. [2], discourse 

complexity can be measured by several linguistic indicators. 

One possible way is using any given reading level measures. 

Therefore, we used Flesch Kincaid [8] , a reading level measure 

and used this measure to explore discourse complexity with time 

for each user. We also analysed the association between 

discourse complexity and student roles. 

3.2.2 Lexical Diversity 
We calculated lexical diversity to measure the vocabulary usage 

in the given user posts. Measuring the level of lexical diversity 

requires to quantity how often different kind of words are used 

in text. According to the prevailing literature [12], lexical 

diversity can be measured using different formulas such as type-

token ration (TTR), measure of textual lexical diversity 

(MTLD), vocd-D and many. Due to flaws in the traditional 

methods, we chose MTLD over other lexical diversity measures 

as MTLD avoids the adverse effects on text length in measuring 

the lexical diversity.  

3.2.3 Lexical Frequency Profile 
We have examined the Lexical Frequency Profile (LFP) 

associated with each user role to understand how well user has 

written his discourse. Initially, we extracted n-grams from 

lecture transcripts. We used CountVectorizer to tokenise the text 

and built a vocabulary list for lecture transcripts.  

We created Lexical Frequency Profile for each user post with 

respect to the given vocabulary list using spaCy3 , an advanced 

Natural Language Processing API. We created a Phrase Matcher 

Object and applied the matcher object on each user post to 

                                                                 

2 https://liwc.wpengine.com/ 

3 https://spacy.io/ 
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extract the keywords. Finally, we examined LFP for user roles 

and its pattern during a role change.  

Since these linguistic indicators are normally distributed, we 

performed One-Way ANOVA to compare the mean value for 

each variable’s distribution. These linguistic indicators are 

examined during role changes to understand whether there is a 

significant difference between user roles. 

3.2.4 Information Embeddedness  
Information embeddedness is one of the key elements that 

contributes towards student learning. In our study, information 

embeddedness can be defined as the number of information that 

can be extracted from any given discourse. This study attempts 

to find the level of information embeddedness using clause 

extraction. 

Clause extraction has been used in a previous study [11] to 

determine the relationship between the clauses per sentence and 

language development. We develop a novel approach in which 

clauses are been extracted from parse tree using a rule-based 

approach.  

Initially, a pipeline is being built with Part-Of-Speech (POS) 

tagging, lemmatisation using Stanford CoreNLP4  to get the 

basic interpretation of a student post. Tree Annotation is used to 

extract a parse tree for a given sentence. Here, we divided a 

student’s post into multiple sentences and identified the number 

of clauses embedded in each sentence. Initially, clause-level tags 

(e.g. SBAR) and word-level coordinating conjunction (e.g. CC) 

have been extracted from the parse tree. Then, we implemented 

a rule-based approach to extract the number of clauses.  
 

4. Results 
The experiment on role identification addresses information 

seeking, information giving and other role classification solely 

based on discourse analysis. We analysed the features extracted 

from LIWC. Further, we performed feature selection technique 

known as Recursive Feature Elimination with Cross Validation 

(RFECV) for feature ranking. We performed the feature ranking 

on 1200 user posts obtained from Risk Management course. 

According to the RFECV sixteen optimal number of features 

have been selected. We retrieved the features with highest 

ranking and fed these features to the classifier. 

We conducted Multivariate Analysis of Variance (MANOVA) 

to measure the significance between linguistic features and user 

roles. Table 1 presents the top five variables that exhibit the 

largest effects size along with multivariate F value (Wilks' λ). 
 

Table 1: MANOVA analysis of language variables 

Feature F η² 

Words per 

Sentence 

754.853* 0.201 

Question Mark 505.057* 0.144 

Article 493.305* 0.141 

Interrogatives 385.516* 0.114 

Personal pronouns 294.884* 0.090 

*p<0.001 

                                                                 

4 https://stanfordnlp.github.io/CoreNLP/ 

 

We implemented multiclass classifiers with different sets of 

algorithms using Weka. All these classifiers were tested using 

10 Fold Cross-Validation to assess the accuracy. Among these, 

the Random Forest classification model performed best with 

82.20 of F measure (see Table 2).  Table 2 reports the accuracy, 

precision, recall and F-measures for different set of classifiers. 

Table 2: Results of classifier performance 

Classifiers Accuracy Precision Recall F1 
Cohen’s 

Kappa 

Naïve Bayes 71.28 74.40 71.30 71.00 0.5117 

Random Forest 82.17 82.30 82.20 82.20 0.6955 

Simple Logistic 79.35 79.60 79.40   79.40 0.6473 

Logistic 79.43 79.70 79.40 79.50 0.6498 

SMO 74.80 76.50 74.80 75.30 0.5770 

 

We also performed, the text classification with Keras. As stated 

above we used GloVe 100 dimension vector to create the vector 

space for each user posts. We obtained 88.06 as test accuracy. 

We halt the model from further training to avoid over fitting. 

The experiment on linguistic analysis uses different indicators to 

address the linguistic change associated with each user role.  

According to the reading level measures (discourse complexity), 

the results indicates that if a particular user role can be seen in 

consecutive posts the level of complexity increases/decreases 

with minimum change and when there is a role change (e.g. IS 

  IG or IGIS or O IG ) there is a dramatic change in 

discourse complexity. This trend is observed across our data set.  

The mean value of Flesch Kincaid Grade Level measure for user 

roles are as follows: μ = 16.15±12.86(IG), μ= 8.77± 7.43(IS) 

and μ =5.30± 6.99 (O). High Flesch Kincaid score indicates the 

discourse is difficult to understand.  This implies that discourse 

complexity decreases along with these user role changes 

whereas the readability of the text becomes easier with these 

role changes. The results from the One-Way ANOVA test show 

that there is a significant difference in mean values (discourse 

complexity) with p-value<0.001 among these user roles. 

As stated above, lexical diversity of user posts were obtained via 

calculating ‘Measure of Textual Lexical Diversity’. The mean 

value of MTLD for user roles are: μ = 60.845± 32.380 (IG), μ= 

52.18± 39.59 (IS) and μ = 34.46± 46.55 (O). This indicates that 

lexical diversity of the user roles are decreasing along these role 

changes.  

The results of Lexical Frequency Profile show that the number 

of lecture related keywords used in user post changes during a 

role change. For a given user, the number of keywords used in 

an information giving post increases – reach an optimal number 

and decreases with time whereas for an information seeking post 

it increases/decrease with time. Moreover, information giver 

uses more keywords from the lecture transcript than information 

seeker and other.  

In information embeddedness factor, we extracted the clauses 

using a rule-based approach. Once the number of clauses been 

extracted using clause-level tags and rule-based approach, we 

compared them with user roles (IG, IS, O). Figure 1 shows the 

level of information embeddedness in a user posts (number of 

clause) changes with time for sample of three users. 
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5. DISCUSSION   

5.1 Can we build a model that could predict 

user roles using linguistic only features? 
In the existing literature [5], user roles have been predicted 

based on the other contextual features (e.g. votes, views) which 

delays the predictions in a real time MOOC environment.  

Therefore, this study extends the line of research to construct a 

machine learning model to identify user roles (IS/IG/O) using 

linguistic-only features.  

To address RQ1, we conducted an experiment on IS/IG/O post 

classification. The success of our approach with 82.20% of F-

measure and the text analysis performed using Keras with 88.06 

accuracy demonstrates that simple linguistic features can be 

used in role predictions in real time.   

According to the feature space used in this classification, it is 

evident that sixteen identified linguistic features (see Table 1-  

we presented the first five features that holds largest effects size 

due to the page limit) can distinguish IG, IS, O posts. For 

example, information-seeking posts contain high amount of 

negative emotions comparatively to information giving posts. 

Likewise, the number of question marks is high in information 

seeking posts compared to information giving user posts. 

5.2 Do linguistic indicators change 

significantly across user roles?   
To investigate RQ2, we conducted several linguistic 

experiments to explore the linguistic change across user roles. 

The results of our linguistic experiments demonstrate that the 

readability level (μ of Flesch Kincaid Grade Level) of the 

information giver is high (i.e. discourse complexity is high) 

when compared to information seeker and other user roles. This 

implies that there is a high dramatic change in the linguistic 

complexity during a role change. One possible reason can be 

information givers tend to include words that are more complex 

and provide extensive information when comparing to other user 

roles.   

We further anlaysed this results by manually analyzing random 

user posts retrieved from the data set. According to the sample 

user posts given below, information givers try to elaborate their 

information with more complex words than information seeker.  

Information Giver- “Great use of the likelihood/impact scale! 

You might also want to use the PESTLE framework to identify 

broader areas of potential concern...” 

Information Seeker- “That was great can i please gain form 

you, the Challenges you faced during you first project” 

Similarly, the results obtained for lexical complexity shows that 

lexical complexity is higher for information giver.  According to 

the above sample user posts, it is vital that the vocabulary usage 

is higher in information giver than information seeker.   

The trend in the lexical frequency profile shows that information 

giver uses more keywords from lecture transcripts at the 

beginning of the course, reaches an optimal point and decreasing 

afterwards. One possible reason could be that they are 

enthusiastic to share the lecture related information during the 

start of the course and it increases with time. Further, the reason 

to decrease the amount of content-related keywords from the 

lecture transcript at the end of the course might be because they 

elaborate concepts in their own words or uses related keywords 

from other resources as they progress. 

We can observe two kind of trends in information seeker. First 

trend is they use more keywords as they progress. The reason 

could be, they might not know the content at the beginning but 

with time, they know the course related keywords. Other trend is 

they use less keywords with time. The reason might be they try 

to change their role from the information seeker. Further, we 

hope to do a meticulous analysis to explore these patterns with 

the intention of discovering the exact reasons behind them.  

In summary, we have achieved the aim of our study as the 

classifications is purely built upon the idea of utilising 

linguistic-only features. Further, to understand student learning, 

we explored RQ2 by examining the different linguistic 

indicators. These linguistic indicators will have a great potential 

to understand a user’s behavior in any kind of discussion forum.  

6. CONCLUSION 
We have presented a multi-class user role classification in 

MOOC discussion forums using linguistic-only features with the 

intention of eliminating the drawbacks (e.g. contextual features) 

that exist in previous studies. Our model performed well 

comparing to base line model with 82.20% of F-measure  

On the other hand, our linguistic study gives us a clear 

differentiation on linguistics aspects associated with each role.  

The level of information embeddedness, and discourse 

complexity and lexical diversity of information giver is high 

compared to information seeker and other. As a proof of 

concept, our technique demonstrated the potential of identifying 

the linguistic behaviors for each user role.  

     This novel approach holds a great promise for user role 

classification and the associated linguistic behavior in MOOC 

discussion forums. Additionally, we believe that tracking these 

role changes and associated linguistic changes will help to 

understand the student learning in MOOC discussion forums. 

Figure 1: Information embeddedness across user roles with time 
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ABSTRACT
Eye gaze movements analysis are being increasingly used in
many researches within learning context. Most of those re-
searches analyses the eye movements fixations inside some
areas of interest, the saccades trajectory and the scanpath.
The eye gaze data are spatiotemporal sequences represent-
ing the dynamic of the eye fixations in the visual space over
the time. In addition, they contain noises caused by differ-
ent factors. The task of developing predictive model based
on those raw spatiotemporal eye gazes’ sequences is chal-
lenging. In this research, we present machine learning ap-
proaches that we have successfully used to address those
challenges with high accuracy mainly with the deep convo-
lutional LSTM architecture.

Keywords
Eye tracking; Deep learning; Spatiotemporal eye gazes se-
quences classification

1. INTRODUCTION
In some medical field such as anesthesiology, the visual per-
ception is just a tip of the iceberg known as the “situational
awareness.” In fact, the clinician needs to develop the skills
to see adequately the patient vital signs evolution over the
time in order to build their understanding and interpreta-
tion of the clinical situation to perform their clinical rea-
soning. In this paper, we explore the following question:
Can we tell novice and expert clinicians apart by analyzing
only their eye-gaze movements to perform their clinical rea-
soning? Eye gaze data often contains noise which can be
caused by many factors [10]. In addition, the consecutive
data points generated by the eye movements trajectory over

the time within the area of interest are spatiotemporal con-
sidering their order and their positions in the visual space.
Ultimately, our experiments aim to understand key differ-
ences between novice and expert clinicians eye movements
behavior during their clinical reasoning. Taken together,
they will provide us insights to build an Intelligent Tutor-
ing System (ITS) aiming to reinforce gradually the learning
curve of novice clinicians with some cues from the experts
behavioral implicit knowledge in terms of visual attention to
perform a clinical reasoning in critical anesthesiology case.

2. RELATED WORKS
The researches using eye-tracking and ITS can be summaries
in two main axes according to Conati et al [6]. The first axe
is the investigation of eye-tracking data as source of infor-
mation for student modelling and personalized instructions.
The second axe is leveraging the gaze data to attempt to un-
derstand relevant student behaviors. For that purpose, data
mining techniques are often used to retrieve similarities, dif-
ferences, etc. using the eye movements characteristics such
us the fixations, the saccades and the scanpaths. Some re-
searches also focus on mining eye-tracking patterns [18] . As
a contribution, in this paper we propose predictive models
using the sequence of the eye fixations positions over the
time. These model will be used by the envisaged ITS to
proactively classify eye fixations patterns as Novice vs Ex-
pert behavior in order to provide adequate eye movement
tutoring services.

3. EXPERIMENTS AND DATASET
3.1 Experiments
An experiment has been conducted to collect eye gaze data
for the research using an authentic task involving visual per-
ception and clinical reasoning. Seven Novices and seven ex-
perts clinicians were asked to visualize a simulated clinical
scenario to perform their clinical reasoning. A [Novice] is a
resident clinician within the first or second year of the resi-
dency program (PGY1 or PGY2).1 An [Expert] is a hospi-
tal staff member with more than 8 years experience. Each

1PGY refers to a North American scheme denoting the
progress of postgraduates in their residency programs.
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participant looked at a 23” HD monitor (1920x1080 px) on
which the simulation was broadcasted. A Tobii TX300 eye
tracker was attached to the monitor to record their eye-gaze
movements. The simulation is based on the Cannot Intu-
bate/Cannot Oxygenate (CICO) algorithm from the Diffi-
cult Airway Society to manage unanticipated difficult intu-
bation in adults [9]. The simulation was scripted to inte-
grate various unanticipated and realistic complications. It
was recorded using high-fidelity settings and the video had
a total duration of 13 minutes.

As a task, the participants were asked to verbalize their clin-
ical reasoning using a think-aloud protocol (recorded with
the eye tracker built-in microphone) while watching the sim-
ulation video. Specifically, they had to explain what they
see in the different areas of interest (Figure 1) to perform
their reasoning. In addition, the participants must explain
what they would have done as clinician in charge in some key
medical and situational awareness events (Table 1) identified
throughout the simulation.

Figure 1: Areas of interest in the simulation

The display screen was divided in seven zones; each repre-
senting an area of interest (AOI).

3.2 Dataset
The eye tracker has an accuracy of 0.4 deg and was set to
a sampling rate of 60 Hz. This means that a data point
is collect each 17 ms. Each “data point” in the dataset is
identified with a {x,y,t} tuple by the eye tracker. Overall,
our eye-tracking dataset contains about 645k data points;
i.e., 14 time series of around 46k points each. Each time
series T = {p(1) · · ·p(n)} is a sequence of 2D vectors, where

each vector p(i) = [xi, yi] represents the eye-gaze position at
a given timestamp ti.

4. PRELIMINARY ANALYSIS
4.1 Eye movements fixation analysis
First, we conducted preliminary analysis, aimed at provid-
ing exploratory insights. For that, we compare novices vs.
experts using descriptive statistics on the fixation. For ex-
ample, the result for the total fixation count and the total
fixation duration within each AOI are shown in Figure 2.

These preliminary analysis results showed that both experts
and novices have their highest total fixation duration on
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Figure 2: Event count (2a) and mean fixation duration (2b).
Error bars denote 95% confidence intervals.

the Technical view (AOI 3) and the General view (AOI 1).
This result is further confirmed by the fixation count. Sec-
ond, novices spent a significantly shorter amount of time at
the Saturation view (AOI 5) than the experts (M = 59 vs
M = 107 s, p = .002).Inversely, novices spent a significantly
higher amount of time at the Technical view (AOI 3) than
experts (M = 382 vs M = 266 s, p = .042). All other
comparisons were not found to be statistically significant.

4.2 Eye movements behavior around the key
events

The video recordings were annotated at different timestamps
in terms of clinical keys events. The Table 1 provides an
overview of such key event annotations.

Focus Area AOIs Time Description

Healthcare 1,3 02:41 Call for help
provider 1,2,3 03:35 Mask ventilation

3 06:41 Installation of oropharyngeal cannula
3 07:35 Use of video-laryngoscope
1,3 08:33 Use of supra-glottic device
1,3 09:39 Blue Code initiation
3 10:32 Initiation of surgical airway

Patient 2 01:10 Impaired verbal response
3 01:25 Eye closure
1 02:09 Hypoventilation

Vital signs 5,7 01:37 Desaturation
monitor 4,6 08:33 Bradycardia

5 10:22 Loss of the saturation signal

Table 1: Key events through the simulation video, together
with their relation to the eye tracker AOIs.

With this video annotations, we rendered the heatmaps from
raw eye-gaze coordinates corresponding to each key event.
We considered eye movement data corresponding to 2 sec-
onds of duration, 1 second before and 1 second after each key
event timestamp, given that both eye fixations and reaction
times occur typically around 500 ms [8, 15, 19]. Therefore,
it allows to capture the eye gaze behaviour before and after
each key event.

With this fine-grained video annotations and the observa-
tion of the incremental heatmaps around each key events,
we observed more salient differences between novices and
experts. For instance at 06:41 (Installation of oropharyn-
geal cannula) we observed a divergent eye movements behav-
ior: both novices and experts focused on AOIs 3 and 5, but
novices also focused in AOI 1 (Figure 3). These observations
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suggest that both novices and experts have subtle different
eye-gaze movement patterns most of the time, while some-
times they are similar. What is most important, these eye-
gaze patterns vary over time, suggesting that both novices
and experts tend to focus on different AOIs over time.

(a) Experts (b) Novices

Figure 3: Heatmap of the eye-gaze coordinates taking into
account 1 second before and after the key events at 06:41

5. EXPERTISE CLASSIFICATION BASED
ON EYE GAZE SEQUENCE COORDINATES

Taken together, the preliminary and the behavioral analysis
suggest that we could build a classification model consider-
ing the eye-gaze movements coordinates over time. Based
the outcome and observations from the preliminary analysis,
we wondered if we could automatically learn these eye-gaze
behaviors and discriminate clinicians’ expertise accordingly;
i.e., given a particular sequence of eye movements with their
coordinates, can we predict if it is a novice or an expert eye
movements behavior? That research objective is a two-class
(binary) classification problem on spatiotemporal eye gaze
data.

5.1 The challenges of sequential data classifi-
cation

As discussed by Xing et al. [26], there are three major chal-
lenges in sequence classification. First, the vast majority
of classifiers can only take input data as a vector of fea-
tures. However, there are no explicit features in sequence
data. Second, even with various features selection methods
to transform a sequence into a set of features, the feature
selection is far from trivial. The dimensionality of the fea-
ture space for the sequence data can be very high and the
computation can be costly. Third, besides accurate classifi-
cation results, in some applications, we may also want to get
an “interpretable” classifier. As previously stated, building
an interpretable sequence classifier is difficult since there are
no explicit a priori features.

There are many approaches that have been proposed to ad-
dress the problem of sequence classification. We will briefly
discuss the two main categories: vector-based and model-
based classification. In vector-based classification, a data
sequence is transformed into a vector of features through
feature selections. Then, we need a distance function to
measure the similarity between a pair of sequences. The
choice of distance measures is critical to the performance of
these classifiers. For simple time series classification, Eu-
clidean distance is a widely adopted option [26]. Since Eu-
clidean distance is sensitive to distortions in time dimen-
sion, dynamic time warping (DTW) is proposed to over-
come this problem and does not require two time series to

be of the same length [13]. Dynamic time warping is usually
computed by dynamic programming and has the quadratic
time complexity. Therefore, it is computationally costly on
a large data set. Using that vector representation of the
data, sequences can be classified by a conventional classifica-
tion method, such as support vector machines [24], decision
trees [4], etc.

In model-based classification, given a class of sequences, an
underlying model learns the probability distribution of each
sequence. The simplest approach is the Naive Bayes se-
quence classifier [7]. It assumes that, given a class, the fea-
tures in the sequences are independent of each other. How-
ever, this assumption is often violated in practice. A hidden
Markov model (HMM) can learn the dependence among el-
ements in sequences [1, 22], assuming that the system being
modelled is a Markov process with unobserved states, where
the state is described by a single discrete random variable.
In contrast, neural networks do not have these assumptions.
Moreover, HMMs can only deal with a limited number of
step dependencies, while LSTMs can deal with long-term
dependencies.

5.2 Machine Learning Models
Since the objective is to predict the expertise given a par-
ticular eye movements sequence, the full-length eye-gaze se-
quence are sliced in smaller parts. Each instance is a fixed-
size time series consisting of the raw eye-gaze coordinates;
i.e., (x,y) points (a 2D vector). For our experiment, we used
sequence slices of length s = 1000, which represent eye-gaze
sequences (time series) of about 17 seconds each. Finally,
because of the small number of participants, we choose the
LOOCV (Leave-one-out Cross Validation) as a resampling
technique.

Two machine learning architectures were developed to per-
form the eye gaze spatiotemporal data classification : a
WKM-kNN architecture and a DeepConv-LSTM architec-
ture

5.2.1 WKM-kNN architecture
The WKM-kNN architecture is a composition of warped K-
means (WKM) with k-nearest neighbor (k-NN). WKM is a
fast algorithm for clustering data sequences based on dis-
tances, and has outperformed comparable approaches in the
task of sequence classification [17]. In addition to providing
a compact representation of data sequences, WKM makes
them robust to noise or distortions in such data. The input
to this model is a time series (a sequence of 2D vectors), and
the output is either novice or expert, according to the k-NN
classifier.

The WKM algorithm capitalizes in the sequentiality of the
data and starts with a suitable initial partition [16], by using
piecewise linear interpolation, which results in a non-linearly
distributed initial partition of the data. Then, WKM iter-
ates over the data points using a K-means-like optimization
procedure. Finally, the k-NN classifier is a non-parametric
instance-based learning method, which is among the sim-
plest of all machine learning algorithms. In this work we
use k = 1 for classification.
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To sum up, the WKM-kNN architecture proceeds as fol-
lows: first WKM compresses a time series of length n into c
disjoint homogeneous segments (or “elementary units”) with
1 < c � n, then the centroid of each segment is used as
input to a 1-NN classifier. As in any other clustering algo-
rithm, the number of sequence chunks c should be provided
as input. Therefore, because the optimum c for classifica-
tion is unknown in advance, we tested different values of c,
increasingly from 1 (each time series is reduced to a single
2D vector) to 500 (half of the original sequence length).

5.2.2 DeepConv-LSTM architecture
The DeepConv-LSTM architecture is a neural network con-
sisting of a convolutional block followed by a recurrent block
(Figure 4).

The recurrent block is a deep long short-term memory (LSTM)
network. LSTMs are a type of recurrent neural networks
(RNNs) capable of learning long-term dependencies in time
series by selectively remembering patterns for long duration
and were developed to deal with the exploding and vanishing
gradient problems of traditional RNNs [2, 20]. LSTMs have
outperformed many other approaches in a variety of tasks,
such as handwriting [11] and speech recognition [12], there-
fore we adopted this model to analyze eye-gaze sequences.
In addition, inspired by recent work that has applied convo-
lutional neural networks (CNNs) to sequence modeling with
great success [3], we add a one-dimensional convolutional
layer (temporal convolution) to the network input followed
by a max pooling layer, which then feed the consolidated
features to the LSTM. In other words, a CNN layer learns
spatial features which are then learned as sequences by an
LSTM layer. This way, we combine the spatial structure
learning properties of CNNs with the sequence learning of
LSTMs. On the other hand, the max pooling layer is a
sample-based discretization process, with 3 goals in mind:
(1) reduce the input dimensionality, by filtering the initial
data representation; (2) avoid over-fitting, by providing an
abstracted form of the data representation; and (3) lower the
computational cost, by reducing the number of parameters
to learn.

Input
n = 1000

CNN
n = 500

Max Pooling
n = 500

Dropout
n = 500

LSTM
n = 100

Dropout
n = 100

Output
n = 2

Convolutional block Recurrent block

Figure 4: Deep learning network topology. Notes: The
drawing is simplified to avoid visual clutter. Each layer di-
mensionality (n) is denoted below their title.

Overall, the chosen network has 41311 trainable parameters
with the topology shown in Figure 4. The network input is
the sequence slices (a sequence of 2D vectors), whereas the
network output is either novice or expert. Both the CNN
and max pooling layers have a kernel size of 2. The LSTM
layer is fully connected with 100 neurons. The dropout lay-
ers have a probability of 0.2, since it is the recommended

value for most machine learning scenarios; see e.g. [21, 23].
These layers have the effect of reducing overfitting and im-
proving model performance.

We trained the neural network with 60 epochs and a batch
size of 256 (mini-batch training) on an i5 CPU @ 3.30 GHz
with 16 GB of RAM. After each epoch, the model is eval-
uated against the testing partition, to get an idea of how
well the model is performing during training, after which
the data is shuffled for the next epoch. The model was fit
using the efficient ADAM optimization algorithm [14] with
binary crossentropy as loss function.

5.3 Results
The Table 2 summarizes the results, in terms of classification
accuracy. Together with the confidence intervals, we report
the Area Under the ROC Curve (AUC), which is a one of
the standardized measure of a classifier’s performance. Since
the WKM-kNN architecture was tested at different segmen-
tation values c, we report the best classification accuracy
result, which was achieved with c = 4 segments.

Model Accuracy (%) 95% Conf. Int. AUC

WKM-kNN 72.6 [71.1, 74.2] 0.74
DeepConv-LSTM 84.2 [84.9, 86.4] 0.86

Table 2: Summary of the classification results. Confidence
intervals are calculated according to the Wilson method for
binomial distributions [25].

6. CONCLUSION AND FUTURE WORKS
This research objective is to collect factual eye gaze data
from clinicians during a clinical reasoning task. Given a par-
ticular sequence of eye movements, with their coordinates;
can we predict if it is a novice or an expert clinician eye
movements behavior ? To answer that question, we built two
machine learning models for the binary classification. The
deep learning architecture provides an overall better results
achieving a very competitive level of accuracy (84.2%) on
eye-gaze spatiotemporal data. These results are particularly
striking given the fact that we used the raw gaze coordinates
coming from the eye tracker. The key for the success of a
deep neural network classifier is the ability to automatically
learn hidden features or intermediates representations in the
input data.

The future work is to use the eye-gaze spatiotemporal data
classifier outcome and the recorded expert clinical reasoning
during the key events as one of the key milestone for the
ITS domain model. Also, we have not studied the impact
that eye-gaze sequence length may have on model accuracy,
though in general shorter sequences should be harder to clas-
sify. Some studies argue that humans make informed deci-
sions in a matter of milliseconds [5] although we suspect this
is strongly correlated to the application at hand. Therefore,
analyzing this possible impact of sequence length on accu-
racy is another interesting avenue for future work, which in
turn opens many research questions. For example: What
is the minimum sequence length that maximizes classifica-
tion accuracy? Is there any upper bound from which we
can devise useful eye-gaze information? Does more segment
context overlap lead to better model generalization?
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ABSTRACT
Knowledge tracing (KT) models, e.g., the deep knowledge
tracing (DKT) model, track an individual learner’s acqui-
sition of skills over time by examining the learner’s per-
formance on questions related to those skills. A practi-
cal limitation in most existing KT models is that all ques-
tions nested under a particular skill are treated as equiv-
alent observations of a learner’s ability, which is an inac-
curate assumption in real-world educational scenarios. To
overcome this limitation we introduce qDKT, a variant of
DKT that models every learner’s success probability on in-
dividual questions over time. qDKT incorporates graph
Laplacian regularization to smooth predictions under each
skill, which is particularly useful when the number of ques-
tions in the dataset is big. qDKT also uses an initializa-
tion scheme inspired by the fastText algorithm, which has
found great success in a variety of language modeling tasks.
Our experiments on several real-world datasets show that
qDKT achieves state-of-art performance predicting learner
outcomes. Thus, qDKT can serve as a simple, yet tough-to-
beat, baseline for new question-centric KT models.

1. INTRODUCTION
Knowledge tracing (KT) models are useful tools which
provide educators with actionable insights into learners’
progress [21, 16]. Given a learner’s performance history,
these methods predict their proficiency across a predeter-
mined set of skills (i.e., knowledge components or concepts).
One of the most popular methods for tracking this cogni-
tive development is the Bayesian Knowledge Tracing (BKT)
framework [3, 15, 24] which applies hidden Markov models
[1] to learn each learner’s guess, slip, and learn probabilities
for each skill. Another approach to modeling the dynamics
of skill acquisition is SPARFA-Trace [11] which uses Kalman
filtering [9] to model learner skill acquisition. An advantage
of SPARFA-Trace is that, unlike BKT models, it can re-
late individual questions to multiple skills. Recently, deep
learning techniques have been applied to the KT problem
to create Deep Knowledge Tracking (DKT) [18] which mod-

els the sequence prediction task using a Long Short-Term
Memory (LSTM) network [8].

All of the aforementioned KT models track an individual
learner’s knowledge at the skill level. Under the KT frame-
work, the time series data modeled consists of learner skill
interaction sequences, given by Xi = {(sit, ait)}Tt=1 where
sit is the skill index attempted by the ith learner at dis-
crete time step t, while ait ∈ {0, 1} is the assessment of the
learner’s response, with 0 indicating an incorrect response
and 1 indicating a correct response.

The key assumption underpinning all of the above models is
that all questions nested under a particular skill are equiv-
alent. This assumption, however, is generally unrealistic in
real-world educational datasets. First, a mapping of ques-
tions to skills is not always available and obtaining such a
mapping requires the intervention of subject matter experts,
which is both costly and time-consuming. Second, questions
in real-world educational datasets are never homogeneous,
but rather exhibit significant variations in difficulty and dis-
crimination [5]. In other words, different questions convey
differing levels of information about a particular learner’s
mastery of the underlying skill, and methods for modeling
learner’s acquisition of skills over time should take such in-
formation into account.

However, simply substituting questions for skills in a tra-
ditional KT model is insufficient to accomplish the goal
of tracking an individual learner’s knowledge at the ques-
tion level. To illustrate this, we selected two commonly
used educational datasets, ASSISTments2009 and ASSIST-
ments2017.1 We first ran the standard DKT model using
the skill-level information provided with each dataset. We
then re-ran the DKT model but used the question identi-
fiers themselves, rather than the skills, for modeling per-
formance. Concretely, the time series data modeled con-
sisted of learners’ question interaction sequences, given by
Xi = {(qit, ait)}Tt=1, where qit denotes the question answered
by learner i at time t. The AUC for both of these model
variants are shown in Table 1. We note that for the AS-
SISTments 2017 dataset that this question-centric approach
provides a moderate improvement in AUC but for the AS-
SISTments 2009 dataset the question-centric approach sig-
nificantly hurt AUC.

To understand why this behavior occurs, we note that the

1https://sites.google.com/site/assistmentsdata/home
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Dataset
Number of
questions

Avg. Obs.
per question

DKT
(skill)

DKT
(question)

ASSISTments 2017 1,183 145.76 0.72 0.74
ASSISTments 2009 16,891 19.27 0.74 0.68

Table 1: AUC scores for DKT vs. its variant with
questions as indices. Using questions indices leads
to overfitting when the number of observations per
question is small.

average number of observations per question for the AS-
SISTments 2009 dataset is significantly smaller than that for
the ASSISTments 2017 dataset. This results in the question-
centric modeling overfitting to the data, which adversely
affects predictive accuracy. In contrast, the ASSISTments
2017 dataset has a larger number of observations per ques-
tion, which helps the question-centric DKT model to avoid
overfitting.

It is apparent that question-level modeling has the potential
to significant improve predictive accuracy in KT models as
compared to skill-level modeling. However, simply substi-
tuting questions for skills in a KT model is insufficient to
realize the gain. Addressing this challenge is the focus of
our work.

Our main contributions are summarized as follows:

1. We propose a novel algorithm for question-level know-
ledge tracing, which we dub qDKT, that achieves state-
of-the-art performance compared to traditional KT
methods on a number of real-world datasets.

2. Our method utilizes a novel graph Laplacian regular-
izer for incorporating question similarity information
into qDKT. Question similarity can be calculated using
the skill information or using textual similarity mea-
sures if the dataset contains the actual text for each
question. Unlike other KT methods, our method does
not assume that each question must be associated with
exactly one skill.

3. We propose a novel initialization scheme for question-
level KT models using fastText [2], an algorithm for
natural language processing (NLP). This initialization
scheme learns embeddings that summarize pointwise
mutual information statistics [12], which is beneficial
for bootstrapping sequence prediction models.

Incorporating question-information to improve skill-centric
KT models have been tried in the past, for example, the
model proposed by [22] concatenates the question embed-
ding to the skill embedding, which is then used as the input
to the model. As training progresses, the model learns both
the question embedding, and the skill embedding. However,
the focus of our proposed initialization scheme is to boot-
strap question-centric KT models without using any skill
information. As stated earlier, this is advantageous because
firstly, tagging questions with skills can be expensive, and
secondly, the design of current skill-centric KT models does
not transfer well to question-centric KT models (as shown
in Table 1).

Initialized with the fastText-inspired scheme, qDKT per-
forms at par with the state-of-art skill-level DKT model on
ASSISTments 2009 dataset, and improves it by 5% and 6%
on the ASSISTments 2017 dataset and Statics 2011 dataset
respectively. Coupling the fastText-inspired scheme with
the Laplacian regularizer, qDKT gives gains of 2% in AUC
score as compared to the skill-centric DKT model for AS-
SISTments 2009, while also capturing question-specific char-
acteristics.

2. PROBLEM STATEMENT AND DKT
OVERVIEW

Each learner’s performance record contains the questions at-
tempted, time at which each question was attempted, and
the assessment of each response (either correct or incorrect).
Also, assume that the skill associated with every question is
known. Given performance records for several learners, one
wishes to train a knowledge tracing model with the objective
of predicting the success probabilities across the questions
(or the skills) at time T for a new learner whose performance
history has been recorded until time T − 1.

2.1 DKT Model
DKT uses an LSTM to predict a learner’s future perfor-
mance using their previous assessment history. As dis-
cussed earlier, the input to the model is a time series which
consists of learners’ skill interaction sequences, given by
Xi = {(sit, ait)}Tt=1. Here we restrict our discussion to a
single learner and will omit the superscript i throughout.
The forward equations of the DKT model are given by

xt = Wxvvt, (1)

ht = LSTM(xt), (2)

yt = σ(Wyhht + by), (3)

where σ is the sigmoid function. In words, the input at
time step t is the skill interaction tuple (st, at) which is
encoded by an arbitrary high-dimensional one-hot vector,
vt ∈ {0, 1}2M , where M is the number of skills. Using an
embedding matrix, Wxv ∈ RK×2M , vt is mapped to a low-
dimensional vector, xt ∈ RK ,K � M (1), which serves as
the input to the LSTM cell. xt is passed through each of the
input, forget, and output gates and, in the end, the LSTM
returns ht – the estimate of the learner’s current knowledge
state. The final output of the model is yt ∈ RM which pre-
dicts the learner’s success probabilities for all the M skills
for the next time step t+ 1.

2.1.1 Loss in the DKT Model
The output yt of the DKT model predicts the learner’s pro-
ficiency over the skills for the next time step t + 1. During
training, the assessment (at+1) of the learner’s response to
the question indexed by qt+1 is known beforehand. The suc-
cess probability for the skill associated with qt+1 is given by
yt[st+1]. Since DKT assumes that mastery in the skill is
equivalent to mastery in any of the questions under it (i.e.,
all questions under a skill are equivalent), a trained DKT
model should predict the success probability at the skill to
be the same as the assessment. This rationale motivates the
basis for calculating the loss, `t, at time t, given by

`t = l(yt[st+1], at+1), (4)
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where ` is the binary cross-entropy loss.

2.2 Proposed Model: qDKT
We now introduce our proposed method for KT modeling at
the question-level, which we dub qDKT. Our method con-
siders a modified problem statement where we estimate a
learner’s success probability for each question rather than
for each skill. Let a learner’s question interaction sequence
X = {(qt, at)}T−1

t=1 until time step T − 1 be given, where
qt denotes the question answered at time t and at ∈ {0, 1}
is the assessment of the response to question qt. Our goal
is to output yt ∈ RN which predicts the learner’s success
probabilities for all the N questions at the next time step
t+ 1. qDKT utilizes the same architecture as DKT as spec-
ified in (1) - (3), but with vt ∈ {0, 1}2N , Wxv ∈ RK×2N ,
and y ∈ RN . The updated loss `t from (4) at time t is then
given by

`t = l(yt[qt+1], at+1). (5)

We eill refer to this model as the base qDKT model, where
the prefix q denotes question-level modeling.

3. REGULARIZATION FOR qDKT
As seen in Table 1, the base qDKT model performs poorly
for datasets with both a large number of questions and a
small number of observations per question. To overcome
this, we propose a regularization method for qDKT to com-
bat overfitting. It is reasonable to assume that success
probabilities of multiple questions associated with the same
skill should not be significantly different for a given learner.
Based on this premise, we regularize the variance in success
probabilities for questions that fall under the same skill

R(y) =
∑
i∈Q

∑
j∈Q

1(i, j) · (yi − yj)2, (6)

where vector y ∈ RN contains success probabilities of all
questions Q in the dataset, i, j ∈ Q and 1(i, j) is 1 if i, j fall
under the same skill, otherwise it is 0.

We add this penalty to the loss and use λ to control the
weight of the penalty. Thus, the updated loss function from
(4) with the regularization penalty is

` = l + λ ·R(y). (7)

3.1 Interpretation of the regularizer
Graph theory provides a clean interpretation for the regu-
larization penalty which is also helpful for speeding up its
computation. We construct a graph G with number of nodes
equal to the number of questions in the dataset. Two nodes
are connected with an edge of weight 1 if the questions are
associated with the same skill and with an edge weight of 0
otherwise.

The degree matrix D of a graph G is a diagonal matrix with

dii =
∑
j∈Ci

wij ,

where wij is the similarity between node i and node j (edge
weight), C is the set containing all the indices directly con-
nected with i (immediate siblings). The adjacency matrix A

of a graph G stores the edge weights wij . Given the degree
matrix D and the adjacency matrix A of a graph G, the
Laplacian matrix L is defined as

L = D −A.

Then for any vector v [7],

vTLv =
∑
i,j

wij · (vi − vj)2. (8)

We can then use (8) to simplify the regularization penalty
of (6)

R(y) =
∑
i∈Q

∑
j∈Q

1(i, j) · (yi − yj)2 = yTLy. (9)

The simplification of the double summation term to a con-
densed vector-matrix multiplication term is useful to speed
up its calculation, especially while training the qDKT model
on GPUs.

Further, our approach to model similarity works even when
questions are associated with multiple skills. This provides
additional flexibility over previous KT models that restrict
each question to be associated to exactly one skill. Such flex-
ibility is important for real-world applications where ques-
tions commonly evaluate learners on multiple skills simulta-
neously. Moreover, this formulation can be helpful to incor-
porate even other measures of similarity like tf-idf similarity
[13] using question text.

4. INITIALIZATION OF qDKT
DKT maps each skill interaction tuple to x ∈ Rd via the
matrix Wxv (see (1)). In DKT, the entries of Wxv are initial-
ized with draws from a standard normal distribution. While
this approach is straightforward, random embeddings tend
to perform extremely poorly in high dimensions where the
optimization problem will have an extremely large number
of saddle points [4]. To overcome this limitation, we propose
a more effective method for initializing Wxv inspired by the
fastText architecture.

4.1 Language Modeling and fastText
In NLP, language models are used to predict the most likely
words that can follow a given sequence of words. Such mod-
els are often initialized with word embeddings from algo-
rithms like word2vec [14], fastText and GloVe [17]. At a high
level, these algorithms embed words into a high dimensional
space such that words that have close semantic relationships
will be embedded near one another, while words with low
semantic similarity will be embedded further apart [6].

A novelty of fastText is that it considers individual char-
acters in a word when computing the final embeddings. By
doing this, fastText recognizes that the words“love”, “loved”,
“lovely”, and “lovable” are all related and embed them ac-
cordingly.

4.2 Embedding Educational Response Data
In our application, we wish to have a notion of question
similarity that can serve to guide our initialization scheme,
similar to the notion of similar word contexts in fastText.
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Dataset Learners Questions Skills Records
ASSISTments 2009 4,151 16,891 111 325,637
ASSISTments 2017 1,709 1,183 86 249,105

Statics2011 333 1,223 85 189,297
Tutor 895 5981 1,592 437,524

Table 2: Dataset summary statistics.

To do this, we assemble an approximate “text corpus” from
our response data, as follows.

Let set Q contain all the question ids and set U contain all
characters. We define a one-to-one mapping f : Q → U
which maps a question id to a unique character. To convert
learners’ question interaction sequences, X = {(qt, at)}Tt=1

into a text corpus, we apply a signal transformation Y on
X such that yt = f(qt) + at where ‘+’ denotes the string
concatenation operator. Thus, each question interaction is
encoded as a two character string consisting of the ques-
tion id and the graded response. This interaction encoding
constitutes the “words” of our corpus. The “sentences” of
our corpus constitute of the string of such encoded interac-
tions by an individual learner. We finally apply fastText to
this newly generated “corpus”. For a given question inter-
action say (q, 0), fastText will train the embeddings of the
following n-grams {f(q), ‘0’, f(q) + ‘0’}. Thus, we link the
embeddings of (q, 0) and (q, 1) through the embedding of
f(q). The resulting output embedding of fastText is used as
our initialization of Wxv.

5. EXPERIMENTS
5.1 Datasets
We consider four datasets for our experiments: ASSIST-
ments 2009, ASSISTments 2017, Statics 2011, and a dataset
from OpenStax Tutor, an online learning platform. The
Statics 2011 dataset is from an engineering statics course.
Standard pre-processing steps common in the literature are
used to clean the data. For ASSISTments2009 dataset, we
follow the pre-processing steps recommended by [23]. Dupli-
cated records and scaffolding problems are removed. Also,
since the dataset contains a few questions that are associated
with multiple skills, those multiple skills were combined into
a new joint skill for skill-level DKT models, along the lines
of [23]. However, for qDKT, our Laplacian regularization
approach provides needed flexibility when questions fall un-
der multiple skills, doing away with the need of combining
multiple skill into one joint skill. For the ASSISTments2017
dataset, all scaffolding problems are filtered out. Relevant
statistics for each dataset are given in Table 2.

5.2 Experimental Setup and Metrics
Each experiment consists of comparing our proposed qDKT
algorithm against the original DKT algorithm for a given
dataset. To further quantify the impact of each proposed
improvement to the qDKT model we will measure qDKT
performance over four different variants: 1) The base qDKT
without any regularization and with randomized initializa-
tion, 2) qDKT with regularization and randomized initial-
ization, 3) qDKT without regularization but with our pro-
posed initialization scheme and 4) qDKT with both regu-
larization and with our proposed initialization scheme. For
all the experiments and datasets, we perform 5-fold cross
validation; 70% data is used for training and the rest for

testing. We report the average receiver operating charac-
teristics curve (AUC) score to compare each method. All
the models are trained using the Adam optimizer [10] with
dropout [20] to reduce overfitting.

5.3 Results and Discussion
Our results are displayed in Table 3. We see that the
base qDKT model without regularization and with random-
ized initialization outperforms the original DKT model on
three of the four datasets used. For the ASSISTments 2009
dataset, base qDKT loses by a large margin. This is due to
ASSISTments 2009 dataset having a large number of ques-
tions coupled with a low number of observations per question
(see Table 1). We note that the individual addition of either
the regularizer or the fastText initialization scheme greatly
improves the performance of qDKT for each dataset. We fi-
nally note that the combination of both the regularizer and
fastText initialization scheme enables qDKT to achieve bet-
ter performance than DKT for all datasets considered.

For additional details, please refer to the extended version
of this paper [19].

6. CONCLUSIONS
We have proposed qDKT, a novel model for knowledge trac-
ing for educational data. Our method improves on prior
art by predicting student performance at the question-level,
rather than at the skill level. We have further proposed
novel regularization and initialization schemes that greatly
improve the performance of our method across several real-
world datasets when compared with the traditional knowl-
edge tracing methods. We propose that qDKT can provide a
simple, yet tough-to-beat baseline, for new question-centric
KT models to come.
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ABSTRACT
Massive Open Online Course (MOOC) has been inefficient
in responding to students’ questions, or in-lesson comments
as the volume of questions is truly massive. This paper pro-
poses a framework that utilizes students’ behavioral data on
the web in addition to text data in answering student ques-
tions. With this framework, we built a recommender system
that generates a set of ranked video snippets in response to
a student’s question by implementing a deep neural net-
work for question and confusion classifiers and a content-
based recommender for providing answers to the student’s
question. Preliminary results show that our question and
confusion classifiers outperform the baseline models. Our
combined recommender model shows the best performance
in recommending the answer. As an ongoing endeavor, we
are in the process of developing an intelligent agent that
leverages the question and confusion classifiers in improving
student’s achievement.

Keywords
MOOC, Recommender Systems, Question Answering

1. INTRODUCTION
Given the millions of users who are using a Massive Open
Online Course (MOOC) platform for their studying, instruc-
tors cannot answer all the questions from their students.
Consequently, discussion forums are leveraged to facilitate
peer-to-peer learning. However, this approach has the po-
tential of misleading each other with inaccurate informa-
tion as well as the lack of responsibility and participation,
thereby contributing to duplicate questions and early dropouts
[6]. A few studies developed a question answering model to
mitigate the aforementioned problems. YouEDU [1] pre-
sented an approach that automatically detects confusion in
MOOC forum posts and recommends video clips as answers
in a specific course forum. Xiao-Shih [3] is the intelligent ed-
ucational question answering bot made of Natural Language

∗The corresponding author.

Processing (NLP) processes and a Random Forest model to
answer learners’ questions. While these approaches provide
some answers to the problem, they primarily targeted at
students who actively participate in the course discussion
forum. Still, learners who use forums are a very tiny part of
course learners. Further, behavioral traces can help identify
periods of confusion and the reasons behind [6].

In this paper, to provide a better learning experience on
the MOOC platform, we extend prior research by incorpo-
rating the idea of detecting student’s confusion as in [2, 5,
6, 7] but using web data rather than text data in order to
have more responsiveness and interactivity within a single
webpage. The methodology and preliminary results are pre-
sented in Section 2 and Section 3, respectively.

2. METHODOLOGY
In this section, we present the data set used in this paper,
classifiers, recommender models, and ongoing work. We de-
cided to adopt the Khan Academy data set, as described in
the following subsection. The post data from the discus-
sion forums commonly used by prior work are not employed
in our study because our ultimate goal is to develop a sin-
gle page learning environment for MOOC (Section 2.5) that
resembles the Khan Academy environment for a seamless
learning experience. Also, given that Khan Academy pro-
vides a diverse set of courses in which our approach is vali-
dated, using the Khan Academy data set was preferred for
generalizability.

2.1 Khan Academy Dataset
As illustrated in Figure 1, we collected the 9,772 videos,
469,474 questions, and 1,048,575 video transcripts through
the Khan Academy API1. Because the length of the given
transcripts was too short, only a single sentence for each
transcript, we merged them into the list of captions (one-
minute long each) by calculating the number of snippets
using equation (1).

number of snippets =

⌈
tend − tstart

60

⌉
(1)

After that, we used the number of snippets to compute the
number of captions by equation (2), resulting in 72,313 captions.

number of captions =

⌈
number of transcripts

number of snippets

⌉
(2)

1https://github.com/Khan/khan-api
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Table 1: Description of Features used for training
the Confusion Classifier.
Name Description Example
replay Is the video replayed? 0
playback speed Speed of the video. 0.5
caption Is caption of the video opened? 1
return Does a student watch at a previous specific time point? 0
return counts How many time a student jump to a previous specific time point? 3
forward Does a student watch at a next specific time point? 1
forward counts How many time a student jump to a next specific time point? 2
watch counts How many time a student watch the entire video? 2
pause Is the video currently paused? 0
pause counts How many time a student pause the video? 5
volume up Is the volume increased? 1
volume down Is the volume decreased? 0
resolution What is the quality of the video selected? 720

In the question dataset, as many questions were invalid ques-
tions (i.e., with the attribute flags of inappropriate, com-
ments, misplace, or spam), we utilized a few attributes pro-
vided by the Khan Academy API to label each question in
building a classifier as follows.

• flags. If a user flagged the question, we considered it as
a statement. The possible flags are, for instance, inap-
propriate, changetocomment, doesnotbelong, and spam.

• lowQualityScore. This attribute shows the quality
of the given question. From our observation, we de-
cided to use 0.7 as a threshold, meaning that a sen-
tence with a score of 0.7 or lower is considered a valid
question. Further, we noticed that the sentences with
the lowQualityScore of greater than 10 is also valid.
These sentences were all related to a sexual reproduc-
tion course and were all valid questions.

• not spam. If value of not spam is true, we considered
it as a real question.

• sum vote. The sum vote is incrementally accumu-
lated by the vote of the students (including the one
who posts). If the sum vote is greater than 2, we con-
sidered it as an actual question.

Finally, we extracted the referenced time from the questions
using the regular expression technique when we computed
the similarity between the question and captions in the rec-
ommendation stage.

2.2 Classifiers
In the classification stage, we set the dependent variable of
the data set as a binary class (1 or 0) for both Question and
Confusion classifiers: 1 indicates a real question (by Ques-
tion Classifier) or student’s confusion (by Confusion Classi-
fier), 0 otherwise.

2.2.1 Question Classifier
We built binary classifiers applying various approaches –
both Machine Learning (e.g., Logistic Regression, Random
Forest, and SVM) with TF-IDF and Deep Learning (e.g.,
MLP, CNN, GRU, and LSTM) with the GloVe [4] pre-trained
word vector. Regarding training and testing datasets, we
had all of the questions go through the NLP processes to
extract the tokens of each question. We kept Wh-words and
question marks as we found that they had some discriminant
power. We used 85% of the dataset as a training set, and
the remaining as a testing set.

2.2.2 Confusion Classifier
To build a confusion classifier, we trained bidirectional Gated
Recurrent Units (GRU) for classifying the sequences of users’
behavioral log data. As a preliminary evaluation, because
the clickstream study data was lacking diverse scenarios, we
instead synthesized 100,000 log data (ten sequences each) to
simulate the students’ behaviors. The features of the syn-
thesized data are described in Table 1.

2.3 Recommender Models
We built three models, of which the differences were the
inputs used to compute the similarity as follows.

• Baseline. This model was straightforward. We built
it by computing the similarity between the video’s cap-
tions and the questions, both of which went through
the same NLP steps.

• Combined. This model applies the same NLP pro-
cesses as the previous one, but use more input text. In-
stead of using only video’s captions, we concatenated
the video’s metadata to its captions to assign more
weights on some specific topics of the video (e.g., Al-
gebra, Renaissance in Italy, and Biology).

• Noun-based. This model used the same combination
as the previous one but kept only the nouns and noun
phrases of the questions and the video’s captions.

In addition to the different input processes of each model,
the primary tasks were token vectorization, similarity metric
calculation, and time reference extraction. A process after
NLP steps was vectorization. We used TF-IDF to build
the feature vector of each question and the video’s captions.
Subsequently, using the time reference extraction, we con-
catenated the caption text of the referred time to assign
more weights on the specific topic by the specified time in
the question. Lastly, we used cosine similarity to calculate
the closeness between a question and each of the captions.

2.3.1 Ranking and Recommending Videos
After computing the similarity score between the given ques-
tion and captions of every video, we sorted the similarity
score descendingly in order to select the top-5 ranked videos
to create a recommendation list. Further, our additional
objective was to recommend the videos that can answer the
question within a period of one-minute length. Thus, the
starting time of the video – that the model ranks and recom-
mends – is the same start time of the caption that matches
the question.

2.4 Ongoing Development
We are further working on developing two modules to make
the learning environment more interactive and intelligent as
follows.

Faster Question Answering. To make the system re-
spond faster and remove potentially duplicated questions
more effectively in online settings, we cluster similar ques-
tions in meaning that contain the same answer set so that
we do not need to compute the similarity between the new
question and all of the videos’ captions again. In essence, we
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Figure 1: Overview of the proposed framework. The
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Figure 2: Screenshot of IntelliMOOC prototype.

need to compute only with the question clusters. We also
adopt the voting idea to re-compute the weights of the video
snippets using the like and dislike interactions as feedback
of the student. As a result, students will get the most useful
answer at the top while requiring less time.

Intelligent Agent with Confusion Detection. To make
it more personalized and interactive, we are in need to de-
velop an intelligent agent, which stays side-by-side to the
student, for encouraging the student to ask a question or
giving an additional explanation when the student is strug-
gling in a particular topic. For this purpose, we have devel-
oped a module that utilizes the feedback from the student’s
interaction for re-training the classifier in order to improve
the model over time incrementally.

In sum, as shown in Figure 1, we propose a framework based
on the techniques above that can work with any MOOC plat-
form by linking the existing discussion forum to the course
video pages, so that we can mitigate the dropout and no re-
sponse problems caused by the confusion that arises during
the study [6]. In the next subsection, we describe how we
combine those techniques to develop a prototype.

2.5 Prototype of IntelliMOOC
As illustrated in Figure 2, we built a prototype of the Intel-
liMOOC as the web-based platform consisting of six compo-
nents in the two modules described above. In the upper seg-
ment, it composes of (1) video player, (2) intelligent agent,
and (3) explanation card using confusion classifier with key-
word extraction and Wikipedia API. In the lower segment,
it includes (4) question input box, (5) recommended answer

set, and (6) answered video player using question classifiers
with recommendation model. The connection of the under-
lying processes of each component is depicted in Figure 1.
This framework shows how integrating those elements in a
single page can provide a better learning experience for the
MOOC platform.

3. EXPERIMENTAL EVALUATION
In this section, we show the performance of the classifiers
and recommender models. In a standard information re-
trieval project, the objective is to get the top documents
that meet a user’s query. In this work, the query is a ques-
tion, and the document corresponds to a caption. Our pur-
pose is to retrieve a ranked recommend set of videos that
can effectively answer the question.

3.1 Classifiers
We quantified the performance of the classifiers using the
two metrics: Accuracy and F1 score.

Accuracy is the most straightforward standard evaluation
metric commonly used for classification models. It measures
how the model correctly classified the data.

F1 score is the weighted average score of Precision and Re-
call metrics. It is used in this study to examine whether our
model still performs well under the class imbalance setting—
roughly 3:1 in our case—as it takes both false positives and
false negatives into consideration.

Accordingly, we found that the bidirectional GRU performed
the best in the accuracy and F1 score altogether, achieving
0.84 and 0.78 for the question classifier and 0.997 and 0.99
for the confusion classifier, respectively.

3.2 Recommender Models
We evaluated our recommender models using two metrics:
Parent-Relevancy Score and Normalized Discounted Cumu-
lative Gain. The definition of the two metrics are as follows:

Parent-Relevancy score measures the relevancy between
the real topics of the question and the parent topics of the
recommended videos. The measurement is divided into two
levels. (1) Root-Level match is defined as the correct match
between the root parent topic of the question and the root
parent topic of each video in the recommended set. (2) 1-
Level match is defined as the correct match between at least
one parent topic of the question and at least one parent topic
of each recommended video regardless of its level.

Normalized Discounted Cumulative Gain (NDCG)
computes the sum of the relevance scores (gain) of each rec-
ommendation to measure the ranking quality. Nonetheless,
the gain is proportionally discounted to how much lower the
video is in the ranking. The underlying intuition is that the
gain due to a relevant video that appears as an earlier choice
should be penalized smaller than it would be if it appeared
as a later choice. If scorei is the gain connected with the
video at position i, the Discounted Cumulative Gain (DCG)
at a position i is defined as:

DCGp =

p∑
i=1

scorei
log2(i + 1)

(3)
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Table 2: Parent-Relevancy scores of each model with
the best score obtained by Combined model.

Baseline Combined Noun-based
Root-Level 0.667 0.703 0.663
1-Level 0.741 0.760 0.707
Average 0.704 0.732 0.685

Baseline Combined Noun-based0.0

0.2

0.4

0.6

0.8

1.0
Rater 1
Rater 2
Rater 3
Rater 4
Rater 5
Average

Figure 3: Normalized Discounted Cumulative Gain
(NDCG) from each rater with the best score at 0.97
and average score at 0.68, both obtained by the
Combined model.

We used a score relevance scale of 0, 1, 2, and 3, correspond-
ing to the classes listed below and calculated the DCG for
the ranked recommendations we received for each question.
The Ideal value of DCG (IDCG) is defined as the DCG based
on the ideal ranking as assessed by the raters. To get the
IDCG, we order the rankings given by the raters in decreas-
ing order of relevance scores and compute the DCG of the
sorted ranking. It corresponds to the maximum theoreti-
cally possible DCG in any ranking of the recommendations
for the given question. We normalize the DCG for our rank-
ing by the IDCG to make the Normalized DCG (NDCG):

NDCGp =
DCGp

IDCGp
(4)

If there are n recommended videos, then we report NDCG(n)
as NDCG, the overall rating for the ranking.

To evaluate each model, we randomly sampled questions
from the Khan Academy data set. Regarding Parent-Relevancy
Score, we randomly chose 50 questions out of 353,067 ques-
tions in the data set and performed five-time iterations to
get the average score of each model. In the case of NDCG,
we randomly selected eight questions from the data set and
two new questions from the raters. The raters comprised of
one undergraduate and four graduates as the courses were
mostly high school courses and introductory undergraduate
courses. Each recommender would output the result sets
to each rater. They independently evaluated the relevance
of each recommended video to the given questions. This
process yielded a human-generated ranking, which we then
compared to the algorithm’s rank order. The rating scale
given to the raters is shown below, which is similar to [1]:

3: Completely Relevant the recommended snippet pre-
cisely answer the question.
2: Relevant the recommended snippet is somewhat useful
for answering the question.
1: Somewhat Relevant the title of the recommended snip-
pet is only relevant to the question.
0: Not Relevant the recommended snippet is not relevant
to the question.

As shown in Table 2 and Figure 3, the Combined Model is
the best model in recommending ranked video clips in each
of the evaluation metrics.

4. CONCLUSION
We propose a framework that includes a recommender model,
which answers a student question by recommending a set of
relevant video snippets. The experiments showed promis-
ing results for both of the question and confusion classifier
as well as the recommender model. In particular, the Com-
bined Model, which utilizes both of the part of speech (noun,
verb, and adjective) and video metadata, produced the best
results, outperforming the baseline and noun-based mod-
els. Our ongoing research is being carried out to enhance
the student learning experience by integrating an intelligent
agent into the system, which can timely detect a student’s
confusion using web data.
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ABSTRACT 
Metacognition is a valuable tool for learning, particularly in online 
settings, due to its role in self-regulation. Being metacognitive is 
especially crucial for students who face exceptional difficulties in 
academic settings because it grants them the ability to identify gaps 
in their knowledge and seek help during difficult courses. Here we 
investigate metacognition for one such group of students: college 
students traditionally underrepresented in STEM (UR-STEM) in 
the context of two online university-level STEM courses. Using an 
automatic detection tool for metacognitive language, we first ana-
lyzed text from discussion forums of the two courses; one as a 
prototype and another as a replication study. We then used associ-
ation rule mining to uncover fine-grained relationships in the online 
educational context between underrepresented STEM student sta-
tus, online behavior, and self-regulated learning. In some cases, we 
inverted association rules to find associations for underrepresented 
minoritized students. Implications of the results for teaching and 
learning STEM content in the online space are discussed. Finally, 
we discuss the issue of using association rule mining to analyze 
commonly occurring patterns amongst an uncommon smaller sub-
set of the data (specifically, underrepresented groups of students). 

Keywords 
Metacognition, Association rule mining, Rare itemsets, STEM 

1 INTRODUCTION 
The troubling underrepresentation of certain groups of people in 
STEM majors and careers is a multifaceted and complex issue that 
does not have one single cause and therefore one single solution. 
Thus, in this paper we utilize a multi-step research design that in-
volves innovative ways to capture what may or may not be 
contributing to the underrepresentation of certain students in 
STEM, specifically through online STEM courses at the university 
level. In the current study we use student demographic data to un-
derstand fine-grained relationships in online learning behaviors, 
analyzed in ways that are not common in this field of research. Spe-
cifically, we inverted what association rule mining was originally 
constructed to do, which we will discuss in this paper. 

1.1 Metacognition and the Online Space 
Especially in higher education contexts, where learning responsi-
bilities often fall more on the student than the instructor, it is 
important to understand the behaviors related to students’ academic 

successes and failures. One behavior that oftentimes separates a 
successful student from a struggling student is metacognition [11]. 
Amongst metacognitive research, three main branches of metacog-
nition have been distinguished: metacognitive knowledge, 
metacognitive monitoring, and metacognitive regulation [7]. For 
the sake of this research, we focus on metacognitive monitoring, as 
it is the critical point in order for metacognitive regulation to take 
place [3].  
Metacognitive monitoring, or being conscious of what you do and 
do not know, is especially critical in online courses, because the 
burden of guiding and monitoring learning rests more on the stu-
dent than in traditional learning environments [18]. To be a 
successful student in an online setting, where being self-regulated 
is crucial to academic success, the ability to be aware and strategize 
one’s thinking is of the utmost importance. Students who accurately 
assess their mastery of a concept know how to take effective 
measures for studying that reflect this judgment of learning. This is 
called calibration and it can be detected through metacognitive 
monitoring [6]. Traditionally, metacognition in educational con-
texts has been analyzed according to interventions and surveys; 
however, this has been shown to be unreliable [15]. More often than 
not, metacognitive monitoring, a form of self-regulated learning, 
occurs subconsciously, making it difficult for students to accurately 
report this [9]. It is for this reason that we use an automatic meta-
cognitive language detection tool [5], in order to avoid invalidities 
in traditional metacognition measurement. 

1.2 Underrepresented Students in STEM 
In the United States, an important issue remains unsolved year after 
year: that is, the vast underrepresentation of African American, His-
panic, Native American, first-generation, and non-male students in 
STEM majors and careers [2]. As if this were not troublesome 
enough, with each vertical stage in the academic process, the un-
derrepresentation of these students gets worse [2]. A large 
underrepresentation of these students, and in turn, a large 
overrepresentation of people who do not identify with these demo-
graphic markers poses a serious bias in the trajectory of the nation, 
with only a small and homogenous group of people controlling sec-
tors of business and research that are the engines of the nation’s 
economy and innovation [14]. 
With the concern for students underrepresented (UR) in STEM ex-
isting throughout these students’ educational trajectory, we argue 
that much can be learned by examining behaviors related not just 
to what might impede, but also what might support, these students’ 
success in their STEM college courses to later improve representa-
tion in STEM fields. As online education continues to grow [1], its 
flexibility has made it a very attractive option for underrepresented 
students in STEM [4]. While online education does offer many op-
tions and benefits that traditional face-to-face education does not, 
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it must not only improve access to college courses among tradition-
ally underserved students, but it must also support the academic 
success of these students. The purpose of this investigation is to 
document and understand some of the affordances of the online 
context for UR-STEM students in online STEM college courses. 

1.3 Association Rule Mining 
Unlike correlation analysis, which is bivariate, association rule 
mining can discover relationships among multiple variables at the 
same time [17]. Specifically, association rule mining aims to find 
“if-then” rules of the variables, in the form of “antecedent → con-
sequence,” where antecedent and consequence are conditions that 
some variable(s) has certain value(s). While association rule min-
ing is extremely useful for exploratory analyses of large data, 
researchers have only recently attempted to grapple with a main is-
sue of this tool: its inability to catch important, yet uncommon 
association rules [15]. This shortcoming of association rule mining 
poses an obstacle. 
A handful of prior association rule mining research endeavors have 
expressed concern and proposed methods to remedy this issue. For 
example, [13] proposed confabulation-inspired association rule 
mining for finding rare itemsets. [12] stressed the importance of 
high-utility infrequent itemsets in fields like biology, banking, re-
tail, and market basket analysis because of how infrequent itemsets 
find the hidden rules of association among the data items. In their 
research, they propose a Utility Pattern Rare Itemset (UPRI) algo-
rithm to handle these scenarios. In terms of educational data 
mining, [16] explains that researchers will likely only find normal 
behavior in association rule mining because that is the most fre-
quent behavior. To remedy this issue, [16] developed a new 
algorithm based on the Apriori approach to mine fuzzy specific rare 
itemsets from quantitative data, consisting of sets of items that 
rarely occur in the database together. 
The current study aims to bring awareness to using association rule 
mining to catch rules amongst an already known subset of the par-
ticipants, within the large dataset, rather than first mining in order 
to discover a subset group of the data that has characteristics in 
common. In this particular case it is minoritized underrepresented 
STEM students within a normal STEM online course. We applied 
association rule mining to explore the associations among variables 
pertaining to these students. For example, a possible rule in this 
study might be “non-male → no prior online experience.” That is, 
if the student is a non-male, they are likely to have no prior online 
experience. Given that association rule mining tends to find fre-
quent itemsets, we propose a modified approach in order to answer 
our research questions. 
We ask the following research questions (RQs): 
RQ1. What fine-grained relationships amongst underrepresented 
STEM students, their demographic information, and their metacog-
nitive language can be uncovered through association rule mining? 
RQ2. Although created to find commonly occurring sets of rules, 
can association rule mining to be used to find sets of rules in an 
uncommon population (underrepresented students in STEM), 
within a larger set of data?  

2 METHOD 
In order to answer our research questions, we used demographic 
information from students in two online STEM courses and discus-
sion forum posts from the same two courses to uncover fine-grained 
relationships between online learning behavior and student demo-
graphic variables. 

2.1 Participants and Data Source  
2.1.1 Discussion Forum 
We analyzed all forum posts (7,040) from 205 students from one 
(8-week) term of Course A as well as all forum posts (6,086) from 
77 students from one (16-week) term of Course B at a large Mid-
western public university in the United States. All prompts that 
corresponded to the forum posts were open-ended with much flex-
ibility for students to answer. Data included all of the students’ 
discussion forum posts as well as their final course grades, which 
were provided to us by university data curators. Specifically, there 
were four levels of grades: A, B, C, and D or lower (we combined 
D and F grades to avoid identifying students from this small group). 
In both courses, forum participation was required as part of stu-
dents’ participation grades. Students were required to regularly post 
questions they had, or to answer other students’ questions. Online 
forum activity was 25% of their grade for students in Course A and 
5% of their grade for students in Course B.  
We used the [5] metacognition tool in order to count metacognitive 
phrases spontaneously produced by the students in their forum 
posts. We used this count to relate evidence of self-regulated learn-
ing behaviors to students’ background information. This tool also 
categorizes metacognitive language as being positive or negative; 
however, for the sake of this study, we only used total count. 

2.1.2 Participants  
Table 1 describes students’ demographic characteristics. Note that 
the total number of students across the subsamples is greater than 
the total of all students because some students belonged to more 
than one group. We do not report intersectional group level findings 
of students who fit multiple UR categories, to protect students’ 
identities and comply with FERPA regulations. 

2.2 Data Analysis 
Association rule mining has been used in educational contexts to 
find out relationships between variables, particularly in datasets 
with many variables [10], like in the current datasets (e.g., ethnic-
ity, prior online experience, ACT score (a standardized test used for 
college admissions in the United States), grades, metacognitive lan-
guage count). 
Initially we used association rule mining tool as it was intended to 
be used but only found obvious associations, like those who are 
STEM majors are likely to have prior subject experience, with none 
of them dealing with underrepresented students in STEM. This is 
because their actions were not frequent compared to those in the 
majority (i.e., STEM majors) and therefore did not get detected as 
association rules. The current study’s process of association rule 
mining was inverted, meaning that the minimum support and lift 
values were set low because the target population was vastly un-
derrepresented in the dataset. This included taking the inverse of 
many dummy variables where the majority was reflected rather 
than the minority; for example, we changed the variable “STEM 
major” to “Non-STEM major” so that we were mining for rules as-
sociated with the minority rather than the majority and the unlikely 
versus the obvious likely. In other words, all of the variables were 
changed to reflect the minority rather than majority in order to 
avoid excluding uncommon associations in these courses, espe-
cially dealing with minority groups. Therefore, we were actually 
looking for sets of less likely associations, relative to the total 
amount of associations, rather than likely associations. To identify 
interesting rules, the FP-Growth algorithm was used with a mini-
mum Support value of 0.10, because the minimum population size 
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of some underrepresented student category groups that we looked 
at (non-males, racial/ethnic minoritized students, and first-genera-
tion) were just above 15% of the total population. In other words, 
if the minimum Support value was set higher than 0.15, it would 
not capture any of the association rules of the target population and 
if the minimum Support value were set right at 0.15, it would only 
capture those association rules in which all of the students pertain-
ing to a specific category exhibited a particular rule. We selected a 
maximum Lift value of .89 since we wanted to find rules that were 
not associated with each other. High association, or associations 
that occur more than expected, are indicated by a Lift value > 1 in 
traditional uses of association rule mining. Therefore, a Lift value 
< 1 translates to events that happened less than expected. Through 
trial and error, we discovered that a Lift value set any lower than 
0.89 would be too general and would generate too many rules. A 
Lift Value set higher than 0.89 gets too close to a high association 
value, excluding too many rules related to the underrepresented 
population we were interested in. Rules satisfying the criteria are 
defined as “interesting” in the sense that they were less likely to 
happen.  

3 RESULTS 

3.1 Descriptive Statistics 
205 students in Course A produced a total 11,417 metacognitive 
phrases in 7,007 forum posts. The average number of metacogni-
tive words per student was 55.69 (SD = 24.18). The final exam 
score was out of 170 points, and scores were approximately nor-
mally distributed. The minimum score a student received on the 
final exam was 69.26 and the maximum was 180 (with extra credit). 
The 77 students in Course B produced a total of 475 metacognitive 
phrases and 1,939 forum posts. The mean number of metacognitive 
phrases per student was 6.17 (SD = 5.07). Table 1 shows a percent-
age breakdown of the variables used in association rule mining in 
order to conceptualize Support values. URM signifies underrepre-
sented racial/ethnic minoritized students in STEM (African 
American, Hispanic, and/or Native American), First-gen. signifies 
first generation college student (neither parent completed a higher 
education degree), No Prior OL refers to a student having no prior 
experience with an online course, a higher poster is a student who 
posts more than the class average (34 for Course A and 13 for 
Course B), Low Exam refers to the student getting a score lower 
than the class mean, Course Rep. refers to students taking the 
course for a second time (repeating), and Non-tr. Age refers to stu-
dents older than 22. 

Table 1. Student breakdown of variables used  
Course A 205 Students Course B 77 Students 
Non-males 25% Non-males 47% 
URM 15% URM 19% 
First-Gen 16% First-Gen 22% 
No Prior OL 25% No Prior OL 29% 
High Poster 45% Course Rep. 19% 
Low Exam  47% Non-Tr. Age 31% 

3.2 RQ Answers 
Table 2 shows the association rules that were likely to take place, 
or associations with a Lift value > 1 and Table 3 shows the associ-
ation rules with a Lift Value < 1 that were less likely than average 
to occur. The meaning of each variable follows that of Table 1. The 
new variables include Low Total MC which signifies the student 

produced less metacognitive language than the average of that 
class, High Total MC phrases refers to students producing more 
than the average for that class, and prior subject experience refers 
to students who have had experience with their current course’s 
subject. The strongest associations have Lift values > 1.00 and the 
weakest association all have Lift values < 1.00.  

3.3 Likely Association Rules 
The two rules from Course A in Table 2 involve the likely associa-
tions among variables. In particular, the rule “High poster → Non-
male and isolates a strong association regarding who, of the un-
derrepresented students in STEM, is engaging most in beneficial 
educational behaviors like posting often. “First generation → Low 
total metacognition” suggests that first-generation students are not 
engaging metacognition as much as their peers.  
The last two rules from Course B in Table 2 involve likely associa-
tions. The rule “Non-male, Non-traditional age group → Low 
grade” suggests that non-males who are older than 21 are likely to 
receive lower grades than their peers. The rule “URM → More than 
4 metacognitive comments, Low grade” indicates if a student iden-
tifies as a URM, they are likely to engage in high amounts of 
metacognitive language but receive a low grade.  

Table 2. Likely associations (Lift > 1) 
 Antecedent Consequence Support Lift 

Course A 
High poster Non-male 0.13 1.16 
First-Gen Low total MC 0.10 1.15 

Course B 

Non-male, 
Non-tr. age Low grade 0.12 1.50 

URM High total MC, 
Low grade 0.07 1.66 

3.4 Less Than Average Association Rules  
The first four rules from Course A in Table 3 involve the unlikely 
associations among variables. These are not simply the inverse of 
the most likely rules, because the minimum Support value was not 
changed, only the Lift. The rules “High poster → Low metacogni-
tion” and “High poster → Low exam” suggest that students who 
post often rarely exhibit low amounts of metacognition and rarely 
get low exam grades. The next two rules, “Low total metacognition, 
Low Exam → Prior subject experience” and “Low metacognition 
→ Non-male”, indicate that the relationships between low meta-
cognitive language and low exam score are rarely found amongst 
students with prior subject experience and non-male. 

Table 3. Unlikely Associations (Lift < .89) 
 Antecedent Consequence  Support Lift 
Course A High Poster Low MC 0.09 0.55 
 High Poster Low Exam 0.09 0.70 

 
Low MC, 
Low Exam 

Prior Subject 
Experience 0.06 0.73 

 Low MC Non-male 0.09 0.86 
Course B First-Gen, 

URM No prior OL 0.06 0.79 

 
High total 
MC  

Course repeat, 
Low grade 0.15 0.84 

 
First-Gen, 
Non-male High total MC 0.19 0.87 
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The next three rules in Table 3 are unlikely associations from 
Course B. The rule “First generation, URM → no prior online ex-
perience” describes that if a student identifies as first-generation 
and as an URM, they are likely to have prior online experience. The 
rule “More than 4 metacognitive phrases → Course repeat, Low 
grade” indicate that it is unlikely for students to have negative ed-
ucational outcomes if they are engaging in high amounts of 
metacognitive language. Lastly, the rule “First generation, Non-
male → More than 4 metacognitive comments”, suggesting if a stu-
dent is a first-generation and a non-male, it is highly unlikely that 
they are engaging in a high amount of metacognitive language pro-
duction.  

4 DISCUSSION 
Based on the association rule mining analysis that was performed 
on data from an online Course A, there is evidence that suggests 
increased posting in this online course is associated with beneficial 
educational outcomes, like engaging in metacognitive learning 
strategies and obtaining a high exam grade. A more obvious rule 
uncovered through this analysis is that prior subject experience is 
also associated with beneficial educational outcomes. Some insight 
that rule mining provided about this course is that non-male stu-
dents, although underrepresented in STEM, generally did well in 
this course while first-generation students did not fare as well.  
Association rule mining also uncovered important information 
about students in Course B. A stark difference from Course A is 
that non-male students did not do as well in this course as in Course 
A. In Course B, being a non-male older than 22 years old was as-
sociated with getting a lower grade in the course. Being a non-male 
in general as well as being a first-generation college student was 
associated with uttering the least number of metacognitive phrases 
of all groups compared (gender, first-generation, and URM).  
Underrepresented racial/ethnic minoritized students were the most 
likely group of students, amongst those compared, to produce met-
acognitive language; however, being a minoritized student was still 
associated with getting a lower grade in the course. This is an inter-
esting finding because in Course A, the production of 
metacognitive language was positively related to course outcome 
however, in Course B it was not. Through association rule mining 
it is seen that the more metacognitive phrases a student produced, 
they less likely they were to display non-beneficial educational be-
haviors (i.e., repeat the course or receive a low grade). 
Perhaps the most interesting finding of this analysis is that un-
derrepresented racial/ethnic minoritized and first-generation 
college students were very likely to have prior online experience, 
but only for one course. Initially, before mining for association 
rules, we thought that a possible factor exacerbating the STEM 
achievement disparity was the digital divide, or the lack of experi-
ence that certain populations have with technology [8]. However, 
there is evidence that this is not the case. Along with research ex-
plaining that online education is an attractive option for 
underrepresented students [19], we see it is likely that underrepre-
sented students have had prior experience with online education. 
Knowing this, educational researchers could hone in on this advan-
tageous likelihood of experience with online courses to help lessen 
the underrepresentation of these students in STEM. The fact that 
this finding was only present in one course and not the other enter-
tains explanations related to how there might be underlying 
similarities amongst students related to the types of courses they 
take, even within the STEM discipline. 

4.1 Implications 
Right now is a crucial time in higher education because of the ap-
parent transition into more of an online state that ever before. We 
also know that online education is an attractive option for un-
derrepresented students in STEM for various reasons (e.g., flexible 
class time). That being said, much work needs to be done in under-
standing academic outcomes in online education, especially for 
student underrepresented in STEM, because although it has great 
positive potential it also has the potential to worsen the lack of cer-
tain students in STEM majors and field. 
The current study also indicates that association rule mining can, in 
fact, be used in other ways that it was not intended for, and in this 
case, to find commonly occurring sets of rules in an uncommon 
population (URMs), within a larger set of data. This opens the pos-
sibility for association rule mining to become a prevalent tool to be 
used among education researchers, especially to generate hypothe-
ses about intersectional relationships that traditional statistical 
analyses might not uncover.  

4.2 Future Directions  
Association rule mining is intended to find variables that have 
strong associations to each other, in order to single out patterns not 
obvious by simply looking at the data. Using association rule min-
ing was an issue when analyzing uncommon or non-majority 
populations, and therefore uncommon categories in the dataset, be-
cause the data miner has to take the inverse of what association rule 
mining was constructed to do. It is for this reason that we promote 
new algorithms or new ways of dealing with specific-rare itemsets, 
keeping in mind nuanced approaches that might be easier to use for 
educational researchers who are not entirely familiar with data min-
ing techniques. Also, algorithms for rule mining that are 
specifically tailored to analyze unlikeliness or even likeliness but 
in minority subsets of data within the larger dataset would be very 
useful for reliable results and interpretation as well as facility in 
usage of educational data mining techniques. Future studies could 
also include extending these methods to more courses with varied 
demographics to determine the generalizability of using association 
rule mining in this way. 

5 CONCLUSION 
We took a novel approach to uncover relationships between student 
variables and course success by mining these variables for associa-
tion rules in order to get a better understanding of the how UR-
STEM students interact with online STEM courses.  
We mined for unlikely as well as likely associations. We found in-
teresting relationships that could prompt further analysis. These 
findings could be beneficial to an instructor, to provide clear direc-
tion about which students need direct help or additional resources, 
and thereby enhance positive outcomes in a course. These findings 
could also prove to be beneficial to online curriculum creators as 
well as university policy-makers because of specific information 
regarding an at-risk population (first-generation and racial/ethnic 
minoritized students) in the leaky STEM pipeline. 
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ABSTRACT 

In this paper, we extracted content-based and structure-based 
features of text to predict human annotations for claims and non-
claims in argumentative essays. We compared Logistic Regression, 
Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear Support 

Vector Classification, Random Forest, and Neural Networks to 
train classification models. Random Forest and Neural Network 
classifiers yielded the most balanced identifications of claims and 
non-claims based on the evaluation of accuracy, precision, and 
recall. The Random Forest model was then used to calculate the 
number, percentage, and positionality of claims and non-claims in 
a validation corpus that included human ratings of writing quality. 
Correlational and regression analyses indicated that the number of 

claims and the average position of non-claims in text were 
significant indicators of essay quality in the expected direction.    

Keywords 

argument mining, claim detection, essay quality, natural language 
processing, automated essay evaluation 

1. INTRODUCTION 
Argumentative essays include many different discourse units 
including a thesis statement, main ideas (claims), supporting ideas, 
and a conclusion (Burstein et al., 2003). Since argumentative essays 
are important elements in the teaching and assessment of writing, 

various techniques have been used to identify discourse units 
including those based on natural language processing (NLP). NLP 
has been used to automatically identify discourse elements based 
on the linguistic features that comprise discourse. Previous studies 
have found that content (i.e., lexical, syntactic, and discourse 
indicators) and structural features (i.e., the positionality of tokens, 
sentences, and paragraphs) are effective in the identification of 
discourse elements (Burstein et al., 1998, 2001a, 2001b, 2003; 

Lawrence and Reed, 2015; Nguyen and Litman, 2015, 2016; 
Persing and Ng, 2015; Stab and Gurevych, 2014, 2017). However, 
most studies have extracted content features at the word-level 
(unigram) or bigram level (e.g., Stab and Gurevych, 2017), or used 
indicators that generally occur only as transitional markers either at 
the beginning or the end of sentences (e.g., Burstein et al., 1998). 
Less is known about how multi-word n-grams (bigrams and 
trigrams) and their associated part-of-speech (POS) tags can 
influence the accuracy of discourse unit identification. Meanwhile, 

few if any studies, have examined how normalized positions of 

sentences in paragraphs and in text can predict claims. Lastly, while 
some studies (e.g., Klebanov et al., 2016) have examined relations 
between essay quality and the use of discourse structures, these 
studies have examined relatively small corpora (e.g., test sets of 40 
essays) and have not focused on claims, an important discourse 
element.  

2. PURPOSE STATEMENT AND 

RESEARCH QUESTION 
In this study, we develop NLP approaches to automatically identify 
claims in structurally-annotated essays using n-grams and POS tags 

along with positionality data. We compared the identification 
accuracy of the derived NLP features using different machine 
learning models and examined the relations between the number 
(and percentage) of claims and non-claims, their positionality, and 
human ratings of argumentative essay quality. Two structure-
annotated corpora from Stab and Gurevych (2014, 2017) were used 
as our training (N = 329) and testing (N = 90) sets. The model with 
the best performance was used to identify claims and non-claims in 

a corpus comprising 2269 argumentative essays that had been rated 
on writing quality. Finally, we conducted correlation and regression 
analyses to explore the relations between the variables. The 
research questions that guide this study are as follow: 

1. To what extent do (1) the frequency of n-grams (bigrams and 
trigrams), (2) the frequency of part-of-speech (POS) n-grams 
(bigrams and trigrams), and (3) positional (structural) information 
of sentences predict whether the sentence is a claim or not?  

2. What are the relations between the number, percentage, and 
positionality of predicted claims/non-claims in an essay and the 
quality of the essay? 

3. METHOD 

3.1 Data 
Three corpora were used in the current study. A training and testing 
corpora were used to train and test the claim detection algorithm, 
respectively. The claim detection algorithm was then applied to a 
validation corpus of student essays to calculate the number, 
percentage, and positionality of claims and non-claims in each 
essay. The relations of these features to claims (and non-claims) 

and essay quality was then examined.  

3.1.1 Training set 
The training corpus was developed by Stab and Gurevych (2017) 

and was annotated with argument components (“major claim,” 
“claim,” and “premises”) and the relationships between “premises” 
and “major claim” or “claims” (“attack” or “support”). The corpus 
contains 402 argumentative essays written by students on 341 
different prompts (e.g. “Will computers replace human power in 
jobs” and “Should students be taught to compete or cooperate”). 
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The essays were collected from an online writing forum where 
native and non-native speakers of English could post their 
argumentative essays and give feedback to each other to help 
improve writing quality. After removing 73 essays that were 
duplicated in the testing set, there were 329 essays in the training 

corpus. 

Major claims referred to sentences that directly expressed the 
general stance of the author that was supported by additional 
arguments. Claims were the central component of an argument, and 
premises were reasons that were provided by the author for 
supporting or attacking a certain claim. Three non-native 
annotators participated in the annotation process. According to the 
original study, the overall inter-rater agreement among the three 

annotators was .72. 

3.1.2 Testing set 
The testing corpus contained 90 argumentative essays compiled by 

Stab and Gurevych (2014). The essays were originally collected 
from the same source as the training set and were annotated by three 
annotators using the same annotation guidelines as the training set. 
It is unknown if the same annotators were used. The reported inter-
rater reliability was .68.  

3.1.3 Validation set 
We selected 2269 argumentative essays written by native speakers 
of English as our validation corpus. The essays were collected in 
the development of the Writing-Pal (McNamara et al., 2012) from 
individual participants who composed essays in response to 13 
specific prompts. Most of the participants were students ranging in 
grade levels from 7th to 10th or first-year college students. The 

participants were asked to respond to a specific prompt, state the 
degree to which they agreed or disagreed with the statement, and 
provide supporting evidence and arguments to persuade the 
readers. The essays in the validation corpus were evaluated by 
human raters following the scoring rubric used in the SAT (a 
standardized test used for college admittance in the United States). 
The SAT rubric evaluated writing in terms of ideas, organization, 
style, and voice. Raters were asked to assign each essay a quality 

score between 0-6. Interrater-reliability was greater than Cohen’s 
Kappa .60 and r .70. Averages were taken between the two raters.  
If two raters disagreed by greater than one point on the 6-point 
scale, they were asked to adjudicate the essay. The average score 
for the essays was 3.38 and the standard deviation was .91.  

3.2 Algorithm Development 
Data preprocessing, feature development, application of machine 
learning models, and the selection of those models were the four 
major steps in the development of the classification algorithms for 
the claims and non-claims. We report the first two major steps in 
the following section and report the application and selection of 
machine learning models in the results section.  

3.2.1 Merge and build standardized structure-

annotated sub-corpora 
The training and testing corpus were annotated using a framework 
of three argumentative units (“major claim,” “claim,” and 
“premise”). However, in this study we are only interested in 
distinguishing claims from non-claims. Based on our focus, we 
merged the tags of “major claim” and “claim” and treated both of 
them as a larger category of claim. We treated any sentences in an 
essay that did not fall into the category of claim as a non-claim. We 

then unified the formats of the two structural annotated corpora by 
tokenizing the essays into sentence and adding structural tags 
(claim or non-claim) for each sentence based on the annotation of 
the original corpora. Further, we extracted all claim sentences from 
the training corpus to build the claim sub-corpus and extracted all 

the non-claim sentences to build the non-claim sub-corpus.  

3.2.2 N-gram and n-gram POS tokenization 
In this study, all of the n-gram and POS n-gram features for model 

development were extracted only from the training corpus. After 
the claim and non-claim sub-corpora were built, a Python script was 
written to tokenize the sentences within each corpus into bigrams 
and trigrams. Thus, all of the n-grams were extracted on sentence 
instead of clause levels. Prior to n-gram tokenization, all 
punctuations within the sentences were removed. Then, all of the 
characters were set to lowercase and all extra blanks in the 
sentences were removed from the texts. Stop words (e.g., of, a, and, 

the) were not deleted from the text. The texts were not lemmatized 
or stemmed.  

We used the NLTK (Natural Language Toolkit; Bird et al., 2009) 
to tokenize the claim and non-claim sub-corpora into bigram and 
trigram. After the n-gram tokenization, we used the NLTK part-of-
speech tagger to label the word class of each word within each 
sentence in the claim and non-claim sub-corpora. The NLTK pos-
tagger labels part-of-speech for each word based on Penn Treebank 
tagset (Marcus et al., 1993). Prior studies have shown that the 

overall accuracy of NLTK pos-tagger was 91.33% for Brown 
Corpus, 89.56% for Treebank Corpus, and 86.45% for NPS Chat 
Corpus (Yumusak et al., 2014). Once the POS-tagging was 
completed, we used the NLTK tokenizer to segment the POS-
tagged corpora into part-of-speech bigrams and trigrams. For 
example, the following phrases should be, would be, can be, and 
will be would be converted to the same POS n-gram combination: 
MD (modal) + VB (verb base). 

3.2.3 Normalized frequency and Keyness values 
We calculated raw frequency and normalized frequency for each 
bigram, trigram, as well as POS bigram and trigram term in the 

training corpus (both claim and non-claim sub-corpora). In addition 
to raw and normalized frequency, keyness value of each n-gram 
and POS n-gram was also calculated based on the raw frequency 
data. Keyness value, based on log-likelihood values, provided 
evidence of whether n-grams and POS n-grams were more common 
in one corpus compared with the other corpus (Kilgarriff, 2001).  

The thresholds for log-likelihood was 3.84 (equivalent to p < .05). 
Specifically, for any n-gram or POS n-gram that appeared in both 
corpora, if the n-gram or POS n-gram had a log-likelihood value 
greater than 3.84, we considered it more likely to occur in one 
corpus over the other. In this study, we wrote a Python script to 

automatically calculate the Keyness values (log-likelihood values) 
for all n-grams or POS n-grams that could be found in both claim 
and non-claim sub-corpora based on Rayson and Garside (2000). 
In Table 1, we list the top n-grams and POS n-grams with highest 
keyness values found in claims and non-claims. 

In total, we calculated the following indices in the training, testing, 
and validation corpus, respectively: (1) the frequency of significant 
n-grams (bigrams and trigrams) in the claims extracted from the 
training corpus in each sentence; (2) the frequency of significant n-
grams in the non-claims extracted from the training corpus in each 
sentence; (3) the frequency of significant POS n-grams in the 

claims in each sentence; and (4) the frequency of significant POS 
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n-grams in the non-claims in each sentence. In this way, for each 
sentence in each corpus, we derived eight indices. 

Table 1 Top n-grams with highest keyness values in 

claims and non-claims 

 

3.2.4 Positional data for sentences 
Beyond n-gram patterns, studies have shown that in argumentative 
or academic writing, sentence position is an indicator of the 
structural function of the sentence (e.g., Burstein et al., 1998, 
2001a; Biber et al., 2004). In this study, the following raw and 
normalized positional variables for each sentence in an essay were 
calculated as potential positional features: (1) the position of the 
sentence in the whole essay (e.g., if a sentence is the 5th sentence 
in the essay, the value of this variable would be 5); (2) normalized 
sentence position in the essay (i.e., equal to the value in [1] divided 

by the total number of sentences in the essay); (3) the position of 
the paragraph in which the sentence was located (e.g., if the 
sentence occurred in the 2nd paragraph of the essay, this value 
would be 2); (4) normalized paragraph position in the essay (i.e., 
equal to the value in [2] divided by the total number of paragraphs 
in the essay); (5) the position of the sentence in the paragraph where 
the sentence occurred (e.g., if the sentence was the 4th sentence in 
its paragraph, the value would be 4); and (6) the normalized 

position of a sentence in a paragraph (i.e., equal to the value in [5] 
divided by the total number of sentences in the paragraph).   

3.3 Validation Study 
Our second objective was to examine the relationship of the 
number/percentage of claims and positional data with the quality 

(human score) of the essay. To do so, the algorithm (from the final 
model) to predict the discourse type (claim or non-claim) was 
applied to each sentence of each essay in the validation corpus. We 
then calculated the percentages and average position of claim and 
non-claim sentences in each essay of the validation corpus and used 
these features to model essay quality to examine the following: (1) 
correlations between essay quality (represented by human holistic 
scores of the essays) and the number/percentage and positionality 

of claims/non-claims in the essay; and (2) the extent to which the 
number and percentage of claims/non-claims in an essay and 
sentence positionality predict its quality. In the regression analysis, 
the number of claims, the number of non-claims, the percentage of 
claims, the percentage of non-claims in an essay, and sentence 
positionality were included as the independent variables, while the 
human score of the essay served as the dependent variable. Prior to 
analyses, the human scores were checked for normality; 

multicollinearity (r < .70) across all independent variables was 
checked to ensure the variables developed were unique. 

4. RESULTS 
In the following sections, we report the results for feature selection, 

machine learning model selection, and the statistical analyses. 

4.1 Feature Selection 
As we have reported in the method section, we applied both 
content-based features and structure (position) based features to 
train the model.  

Altogether, we had 17 features calculated at the sentence level. Six  
were structure (position) based features as reported in the method 
section: (1) the position of the sentence in the whole essay; (2) 
normalized sentence position in the essay; (3) the position of the 
paragraph in which the sentence was located; (4) normalized 
paragraph position in the essay; (5) the position of the sentence in 
the paragraph where the sentence occurred; and (6) the normalized 
position in paragraph. Eight of the features were content-based n-

gram/POS n-gram frequency calculated based on sentence level. 
These features included: (1) the frequency of significant bigrams in 
claims; (2) the frequency of significant bigrams in non-claims; (3) 
the frequency of significant POS bigrams in claims; (4) the 
frequency of significant POS bigrams in non-claims; (5) the 
frequency of significant trigrams in claims; (6) the frequency of 
significant trigrams in non-claims; (7) the frequency of significant 
POS trigrams in claims; and (8) the frequency of significant POS 

trigrams in non-claims. The other three features were word counts, 
bigram counts, and trigram counts of the sentence. 

Before moving forward to build the model, we conducted 
correlational analyses to remove highly correlated variables. The 
results of this analysis indicated that the position of the sentence in 
the essay was highly correlated with normalized sentence position 
in the essay (r = .85, p < .001), with the position of paragraph in 
essay (r = .91, p < .001), and with normalized paragraph position 

in essay (r = .83, p < .001). Normalized sentence position in essay 
was also highly correlated with the position of the paragraph in 
essay (r = .89, p < .001) and normalized paragraph position in essay 
(r = .94, p < .001). Meanwhile, the position of paragraph in essay 
was highly correlated with normalized paragraph position in essay 
(r = .92, p < .001). Based on these results, we decided to remove 
the position of sentence in essay, the paragraph position in essay, 
and the normalized paragraph position from the independent 
variables.  

For the structure-based features, only the frequency of significant 
POS trigrams had a strong correlation with the frequency of 
significant POS bigram (r = .54, p < .001). For the word and n-gram 
counts variables, since the variable word counts were highly 
correlated with bigram counts (r = 1, p < .001) and trigram counts 
(r = 1, p < .001), we decided to remove both of the latter variables 
and only keep the variable of word counts. After this process, 10 
features remained for model development (see Table 2). 

Table 2 Summary of structural and content-based features for 

model development 
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4.2 Model Selection 
We built six different supervised machine learning models on our 

training data using six different classifiers. We then we used the six 
models to predict discourse types of sentences in our testing corpus. 
We evaluated the performance of the models using accuracy, 
precision, recall, and F1-score. Table 3 reports the performance of 
the classifiers on claim and non-claim identification in the test set. 
The Random Forest model was selected as the best model to predict 
the discourse type in the validation corpus.  

Table 3 Performance of the multiple classifiers on claim 

detection in the test set 

 

4.3 Relationship between Essay Quality and 

Number of Claims 
Spearman’s correlations were computed among the number, 
percentage, and the average positionality of claims and non-claims 
and the human raters’ holistic scores for each essay in the validation 
corpus. We included text length to assess if the raw scores highly 
correlated with the number of words in the essay (a strong predictor 

of essay quality). Correlational analysis indicated the number of 
predicted claims (r = .35, p < .001) and the average position of non-
claims in text (r = -.19, p < .001) showed at least a small effect size 
(r > .099) with essay quality and were not strongly correlated with 
text length (r < .70). These variables were selected for inclusion in 
our regression analysis to predict essay quality scores. However, 
the percentage of predicted claims (r = .08, p = .015) and non-
claims (r = -.08, p = .015) and the average position of claims (r = 

.04, p < .001) had weak correlations with essay quality. 

A significant regression equation was reported (R2 = .132, 
F(2,2266) = 172.3, p < .001). The model explained 13.2% of the 

variance of the human scores. Two significant predictors of essay 
quality were included in the model: number of claims (β = .132, p 
< .001) and the average position of non-claims in text (β = -2.829, 
p < .001). 

5. CONCLUSION AND FUTURE WORK 
In this study, we extracted content-based linguistic features and 
structure-based features to train and predict discourse types of 
claim and non-claim in argumentative essays. The average testing 

accuracy (F1) of the classifiers used in this study (Logistic 
Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Linear 

Support Vector Classification, Random Forest, and Neural 
Network) was around .69. This aligns with the accuracies reported 
in Stab and Gurevych (2017) to a degree. In their work, they 
reported F1 scores from an SVM classifier for major claims, claims, 
and premises using structural, lexical, contextual, syntactic, 

discourse markers, and embeddings features. Their F1 scores for 
these features in tandem were .77. F1 scores in isolation were .59 
for lexical features, .60 for contextual features, .39 for syntactic 
features, .52 for discourse features, and .75 for structural features. 
These results seem to indicate that the individual content-based 
features (lexical, syntactic, indicator, and contextual features) 
might have encountered an upper limit in terms of the accuracy of 
identification if other features were not combined. The accuracy of 

the identification of claims in our study also seems to support this 
interpretation.  

In terms of application, we found that the number of claims and the 
average position of non-claims in text were indicators of essay 
quality. A significant regression model was found to predict holistic 
human scores based on these variables. The model explained 13% 
of the variance in the human scores. 

To improve the accuracy of classification, we are planning to 

implement a classifier with more diverse features from a contextual 
and discourse perspective including contextual, discourse, 
syntactic, and lexical features. We presume this will increase 
accuracy based on findings from Stab and Gurevych (2017) who 
showed that the combination of all features increased their 
accuracy. We also intend to investigate the relationship between 
argumentation elements from a broader view by including more 
argumentation elements such as major claims, primary claims, 

counterarguments, rebuttals, and conclusions. Further, we plan on 
annotating the relationships between these discourse elements and 
build models to automatically identify the discourse elements as 
well as their functional relationships. 

In the current study, we have demonstrated the usefulness of 
content and structural features in automated claim detection and 
explored the relations between the number and positionality of 
claims and writing quality. Our findings can positively supplement 
existing automated essay scoring (AES) and automated writing 

evaluation (AWE) systems and may provide implications for the 
teaching of argumentative essays.  
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ABSTRACT
We propose VarFA, a variational inference factor analysis
framework that extends existing factor analysis models for
educational data mining to efficiently output uncertainty es-
timation in the model’s estimated factors. Such uncertainty
information is useful, for example, for an adaptive testing
scenario, where additional tests can be administered if the
model is not quite certain about a students’ skill level esti-
mation. Traditional Bayesian inference methods that pro-
duce such uncertainty information are computationally ex-
pensive and do not scale to large data sets. VarFA utilizes
variational inference which makes it possible to efficiently
perform Bayesian inference even on very large data sets.
We use the sparse factor analysis model as a case study and
demonstrate the efficacy of VarFA on both synthetic and real
data sets. VarFA is also very general and can be applied to a
wide array of factor analysis models. Code and instructions
to reproduce results in this paper are available at https:

//tinyurl.com/tvm4332. An extended version of this pa-
per is available at https://arxiv.org/abs/2005.13107.

1. INTRODUCTION
A core task for many practical educational systems is stu-
dent modeling, i.e., estimating students’ mastery level on a
set of skills or knowledge components (KC) [14, 6]. Such es-
timates allow in-depth understanding of students’ learning
status and form the foundation for automatic, intelligent
learning interventions. A fruitful line of research for stu-
dent modeling follows the factor analysis (FA) approach. FA
models usually assume that an unknown, potentially multi-
dimensional student parameter, in which each dimension is
associated with a certain skill, explains how a student an-
swers questions and is to be estimated.

Most of the aforementioned FA models compute a single
point estimate of skill levels for each student [13, 1, 3, 9, 5,
15]. Often, however, it is not enough to obtain mere point
estimates of students’ skill levels; knowing the model’s un-
certainty in its estimation is crucial because it potentially

helps improve the model’s performance and improve both
students’ and instructors’ experience with educational sys-
tems. For example, in adaptive testing systems [4, 16],
knowing the uncertainty in model’s estimation could help
the model intelligently pick the next test items to most effec-
tively reduce its uncertainty about estimated students’ skill
levels. This will help to potentially reduce the number of
items needed to have a confident, accurate estimation of the
students’ skill mastery level, saving time for both students
to take the test and instructors to have a good assessment
of the student’s skills.

In this work, we propose VarFA, a novel framework based
on variational inference (VI) to perform efficient, scalable
Bayesian inference for FA models. The key idea is to ap-
proximate the true posterior distribution, whose costly com-
putation slows down Bayesian inference, with a variational
distribution. In addition, this variational distribution is very
flexible and we have full control specifying it, allowing us to
freely use the latest development in machine learning, e.g.,
deep neural networks (DNNs), to design the variational dis-
tribution that closely approximates the true posterior. Thus,
we also regard our work as a first step in applying DNNs to
FA models for student modeling, achieving efficient Bayesian
inference (enabled by DNNs) without losing interpretability
(brough by FA models). We demonstrate the efficacy of our
framework on three real data sets, showcasing that VarFA
substantially accelerates classic Bayesian inference for FA
models with no compromise on performance.

2. BACKGROUND
We first set up the problem and review related work. As-
sume we have a data set Y ∈ RN×Q organized in matrix
format where N is the total number of students and Q is
the number of questions. This is a binary students’ an-
swer record matrix where each entry yij represents whether
student i correctly answered question j. Usually, not all
students answer all questions. Thus, Y contains missing
values. We use {i, j} ∈ Ωobs to denote entries in Y , i.e., the
i-th student’s answer record to the j-th question, that are
observed.

We are interested in models capable of inferring each i-th
student’s skill mastery level that can accurately predict the
student’s answers given the above data. These models are
often evaluated on the prediction accuracy and whether the
inferred student skill mastery levels are easily interpretable
and educationally meaningful. We now review factor anal-
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ysis models (FA), one of the most widely adopted and suc-
cessful methodologies for the student modeling task.

Many FA models, despite differences in their respective math-
ematical formulae, modeling assumptions and the available
auxiliary data used, can be unified into a canonical formu-
lation below

P(yij = 1) = σ(c>i mj + µj) , (1)

where ci ∈ RK , mj ∈ RK and µj ∈ R are factors whose
dimension, interpretations and subscript indices depend on
the specific instantiations of the FA model. We will use
this general formulation in the rest of this paper. Usually,
FA models obtains a point estimate of ci, mj and µj . We
will show next how to obtain uncertainty estimation of these
variables of interest.

3. VARFA: A VARIATIONAL INFERENCE
FACTOR ANALYSIS FRAMEWORK

The core idea of VarFA follows the variational principle, i.e.,
we use a parametric variational distribution to approximate
the true posterior distribution. VarFA is highly flexible and
efficient, making it suitable for large scale Bayesian inference
for FA models in the context of educational data mining. In
this current work, we focus on obtaining credible interval
for the student skill mastery factor ci’s as a first step of
VarFA. Extension to VarFA to full Bayesian inference for
all unknown factors is part of an ongoing research; see 5 for
more discussions.

Now, we explain in detail how to apply variational inference
for FA models for efficient Bayesian inference. Because the
posterior distribution is intractable to compute, we approxi-
mate the true posterior distribution for ci’s with a paramet-
ric variational distribution

p(C|Y ,M,µ) ≈ qφ(C|Y ) =

N∏
i=1

qφ(ci|yi) , (2)

where φ is a collection of learnable parameters that
parametrize the variational distribution and yi is all the
answer records by student i. Notably, we have removed the
dependency of the variational distribution on ψ and θ so
that the variational distribution is solely controlled by the
variational parameter φ. Thus, the design of the variational
distribution is highly flexible. All we need to do is to specify
a class of distributions and design a function parametrized
by φ to output the parameters of qφ. Common in prior lit-
erature is to use a Gaussian with diagonal covariance for
qφ:

qφ(ci|yi) = N (ui, diag(vi)) , (3)

where its mean and variance [u>j ,v
>
j ]> = fφ(yi). We can

use arbitrarily complex functions such as a deep neural net-
work for fφ as long as they are differentiable. With the
above approximation, Bayesian inference turns into an opti-
mization problem under the variational principle, where we
now optimize a lower bound, known as the evidence lower
bound (ELBO) [2], of the marginal data log likelihood.

We form the following optimization objective to estimate φ

Table 1: Student answer prediction erformance comapring
VarFA to SPARFA-M on Assistment, Algebra and Bridge
data sets. ↑ and ↓ denote higher and lower is better, respec-
tively.

(a) Assistment

Metric Algorithm

SPARFA-M VarFA

ACC ↑ 0.7074±0.0044 0.7101±0.0048
AUC ↑ 0.756±0.048 0.7635±0.0036
F1 ↑ 0.7746±0.0029 0.7765±0.0014
Run time (s) ↓ 5.3319±0.2774 6.9167±0.1074

(b) Algebra

Metric Algorithm

SPARFA-M VarFA

ACC ↑ 0.7735±0.0037 0.7774±0.0031
AUC ↑ 0.8137±0.003 0.8245±0.002
F1 ↑ 0.8465±0.0021 0.8486±0.001
Run time (s) ↓ 8.464±0.4568 10.3335±0.4435

(c) Bridge

Metric Algorithm

SPARFA-M VarFA

ACC ↑ 0.8492±0.0016 0.8468±0.0016
AUC ↑ 0.837±0.0024 0.8419±0.0028
F1 ↑ 0.9121±0.0005 0.912±0.0009
Run time (s) ↓ 15.6048±0.7314 15.8558±1.046

and θ:

θ̂, φ̂ = argmin
θ,φ

− LELBO(φ, θ) + λR(θ) , (4)

where θ = {m1, ...,mQ, µ1, ..., µQ} and R(θ) is a regulariza-
tion term. That is, we perform VI on the student factor ci’s
and MLE inference on the remaining factors denoted as θ.

4. EXPERIMENTS
We demonstrate the efficacy of VarFA variational inference
framework using the sparse factor analysis model (SPARFA-
M) as the underlying FA model. On three real-world data
sets, we demonstrate that 1) VarFA predicts students’ an-
swers more accurately than SPARFA-M; 2) VarFA can out-
put the same insights as SPARFA-M, including point es-
timate of students’ skill levels and questions’ associations
with skill tags; 3) VarFA can additionally output meaning-
ful uncertainty quantification for student skill levels, which
SPARFA-M is incapable of, without sacrifice to computa-
tional efficiency. Note that SPARFA-B can also compute
uncertainty for small data sets but fails for large data sets
due to scalability issues and thus we do not compare to
SPARFA-B for real data sets. The code along with in-
structions to reproduce our experiments can be downloaded
from https://tinyurl.com/tvm4332.

Data sets. We perform experiments on three large-scale,
publicly available, real educational data sets including AS-
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(a) 3rd latent concept (b) 4th latent concept (c) 7th latent concept

Figure 1: Violin plot showing the mean and standard deviation of the estimated skill mastery levels on 10 selected students on
the 3rd, 4th and 7th latent skills that VarFA computes. In each sub-figure, bottom and top axises respectively shows student
IDs and top axis shows the number of questions each student answered.

SISTments 2009-2010 (Assistment) [7], Algebra I 2006-2007
(algebra) [10] and Bridge to Algebra 2006-2007 (bridge) [11,
12]. The details of the data sets, including data format and
data collection procedure can be found in the preceding ref-
erences.

Results: Performance Comparison. Table 1 shows the
average performance on the test set of each data set com-
paring VarFA and SPARFA-M for all three data sets and ad-
ditionally run time. We can see that VarFA achieves slightly
better student answer prediction on most data sets and on
most metrics. Table 1 also shows the run time comparison
between VarFA and SPARFA-M; see the last row in each
sub-table. We see that both inference algorithms have very
similar run time, showing that VarFA is applicable for very
large data sets. Notably, VarFA achieves this efficiency while
also performing Bayesian inference on the student knowledge
level factor.

Results: Bayesian Inference With VarFA. We now illus-
trate VarFA’s capability of outputting credible intervals us-
ing the Assistment data set. Fig. 1 presents violin plots
that show the sampled student latent skill levels for a ran-
dom subset of 10 students. Plots 1a, 1b and 1c shows the
inferred students ability for the 3rd, 4th and 7th latent skill
dimension. In each plot, the bottom axis shows the student
ID and the top axis shows the total number of questions
answered by the corresponding student. For each student,
the horizontal width of the violin represents the density of
the samples; the skinnier the violin, the more widespread
the samples are, implying the model’s less certainty on its
estimations.

Results in Fig. 1 confirms our intuition that the more ques-
tions a student answers, the more certain the model is about
its estimation. For example, students with ID 106, 110
and 389 answered 222, 181 and 149 questions, respectively,
and the credible intervals of their ability estimation is quite
small. In contrast, students with ID 27, 49 and 65 answered
far less questions and the credible intervals of their ability
estimation is quite large. This result implies that VarFA
outputs sensible and interpretable credible intervals.

Results: Post-Processing for Improved Interpretability.
SPARFA assumes that each student factor ci identifies a
multi-dimensional skill level on a number of “latent” skills
(recall that we use 8 latent skills in our experiments). As
mentioned earlier, these latent skills are not interpretable
without the aid of additional information. To improve in-
terpretability, [8] proposed that, when the skill tags for each
question is available in the data set, we can associate each
latent skill with skill tags via a simple matrix factorization.
Then, we can compute each students’ mastery levels on the
actual skill tags.

We again use the Assistment data set for illustration. We
compute the association of skill tags in the data set with each
of the latent skills and show 4 of the latent skills with their
top 3 most strongly associated skill tags. We can see that
each latent skill roughly identify the same group of skill tags.
For example, latent skill 4 clusters skill tags on statistics and
probability while latent skill 7 clusters skill tags on geometry.
Thus, by simple post-processing, we obtain an interpretation
of the latent skills by associating them with known skill tags
in the data.

We can similarly obtain VarFA’s estimations of the students’
mastery levels on each skill tags through the above process.
In Fig. 2, we compare the predicted mastery level for each
skill tag (only for the questions this student answered) with
the percent of correct answers for that skill tag. Blue curve
shows the empirical student’s mastery level on a skill tag
by computing the percentage of correctly answered ques-
tions belonging to a particular skill tag. Orange curve shows
VarFA’s estimated student mastery level on a skill tag, nor-
malized to range [0, 1]. Even though the two curves show
different numeric values, they nevertheless demonstrate sim-
ilar trends, showing that the predictions reasonably match
our intuition about student’s skill mastery levels.

5. CONCLUSIONS AND FUTURE WORK
We have presented VarFA, a variational inference factor
analysis framework to perform efficient Bayesian inference
for learning analytics. VarFA is general and can be applied
to a wide array of FA models. We have demonstrated the
effectiveness of our VarFA using the sparse factor analysis
(SPARFA) model as a case study. We have shown that
VarFA can very efficiently output interpretable, education-
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Table 2: Illustration of the estimated latent skills with the their top 3 most strongly associated skill tags in the Assistment
data set. The percentage in the parenthesis shows the association probability (summed to 1 for each latent skill). We see that
the tagged skills associated with each estimated latent skill form intuitive and interpretable groups.

Latent Skill 1 Latent Skill 3

Division Fractions (29.1%)
Least Common Multiple (18.1%)
Write Linear Equation from Ordered Pairs (17.8%)

Conversion of Fraction Decimals Percents (7.3%)
Addition and Subtraction Positive Decimals (6.8%)
Probability of a Single Event (5.7%)

Latent Skill 4 Latent Skill 7

Pattern Finding (17.4%)
Histogram as Table or Graph (11.3%)
Percent Of (10.5%)

Volume Sphere (13.4%)
Volume Cylinder (10.4%)
Surface Area Rectangular Prism (10.2%)

Figure 2: Comparison between the estimated skill mastery
levels using VarFA’s predictions and using empirical obser-
vations for student with ID 110.

ally meaningful information, in particular credible intervals,
much faster than classic Bayesian inference methods. Thus,
VarFA has potential application in many educational data
mining scenarios where efficient credible interval computa-
tion is desired, i.e., in adaptive testing and adaptive learning
systems. We have also provided open-source code to repro-
duce our results and facilitate further research efforts.
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ABSTRACT
As students progress in their university programs, they have
to face many course choices. It is important for them to re-
ceive guidance based on not only their interest, but also
the “predicted” course performance so as to improve learn-
ing experience and optimise academic performance. In this
paper, we propose the next-term grade prediction task as
a useful course selection guidance. We propose a machine
learning framework to predict course grades in a specific pro-
gram term using the historical student-course data. In this
framework, we develop the prediction model using Factor-
ization Machine (FM) and Long Short Term Memory com-
bined with FM (LSTM-FM) that make use of both student
and course attributes as well as past student-course grade
data. Our experiment results on a real-world data of an au-
tonomous university in Singapore show that both methods
yield better prediction accuracy than the baseline methods.
Our methods are also robust to handle cold start courses
with the average prediction error can be as low as three
quarter grade difference from the ground truth.

Keywords
Grade prediction, factorization machine, long short term
memory

1. INTRODUCTION
Predicting student grades has recently gained attention as it
benefits not only students, but also instructors [3]. Students
face many course courses in every new term. They need some
guidance based on their “predicted” performance in future
courses so as to improve their course selection and overall
academic performance. Instructors, on the other hand, can
also adjust their course delivery methods to the predicted
student grade performance.

We consider a university setting where students are required
to choose courses at the beginning of each program term.

The predicted grades of the selected courses is then evalu-
ated against the grades received at the end of that term.
This task is called the next-term student grade prediction
and it requires the past student-course grade data to pro-
vide useful features to predict grades of courses taken in the
following term.

Our next-term student grade prediction task is different from
the previous student grade prediction works [2, 3] which fo-
cused on predicting grades of a calendar term where students
from different admission years are predicted together. Since
different program terms are included in the prediction task,
it is difficult to train the model to specialize on courses in
the specific program term of the students.

In this paper, we develop FM and long short term memory
combined with FM (LSTM-FM) models that are trained on
student’s program terms instead of calendar terms. The pro-
posed models are evaluated on a real-world data collected
from an autonomous university in Singapore. We further
make use of both static and dynamic student and course
attributes to derive features that improve the prediction re-
sults. Additionally, our proposed models could perform well
on predicting both existing and cold-start courses.

2. PROBLEM FORMULATION
Given a set of students S = {s1, s2, ..., s|S|}, where each
student belongs to a certain cohort, denoted by cohort(si)
(i.e. batch of students admitting to the university in the
same year). To graduate from their programs, students
must complete T = {t1, t2, ..., t|T |} program terms and reg-
ister one or more courses in each program term. Let C =
{c1, c2, · · · , c|C|} be the set of all courses taken by students
from S. We denote the grade obtained by student si in
course cj by gi,j ∈ {A+, A, · · · , F}. Our task is then to pre-
dict gi,j for every student si from a target student cohort
S in a target program term tk for every course students
have registered in the program term tk. We assume that
the course grades for earlier program term(s) by the same
students are available, and the course grades for students
from previous cohorts in the earlier and target terms can be
observed.

We define the feature representation of a student-course pair
(si, cj) as a feature vector Xi,j . A prediction model for the
above problem is thus a function F : X → Y where Y ∈ R2.
F is learned from a training data (tk, X

trg, Y trg). For each
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Figure 1: Training and testing instances for program
term-specific grade prediction involving data from
cohorts 1 to 3 as training, and data from cohort 4
as test.

student si ∈ S, Y trg
i,j is unknown for courses cj ’s registered

by si during the target program term tk. For each student s′i
of earlier cohorts, Y trg

i,j = gi,j for courses cj ’s registered by si

in the target program term tk. For all students, Xtrg
i,j are fea-

tures derived from student si and course cj using data from
earlier program terms. The testing data (tk, X

test, Y test)
consists of Xtest

i,j = Xtrg
i,j and Y test

i,j = gi,j when si received
the grade gi,j in the program term tk.

Figure 1 illustrates the training and testing instances of the
next term grade prediction for students of cohort 4 in tar-
get program terms 1 to 3. For target program term 3 (see
the last table of the figure), the training data include the
student-course data of students from cohorts 1 to 3. The
feature representation of a student-course pair is derived
from program terms 1 to 2 of these students, or from the
non-program term student and course attribute data (e.g.,
student education background, course major, etc.).

This program term-specific grade prediction approach is more
intuitive than previous works that focused on the grade pre-
diction for students taking courses in the same calendar term
which could involve different program terms for students
from different cohorts [2, 3]. Since student grades of dif-
ferent program terms refer to different sets of courses, our
problem definition and solution approach ensure that dyad
features and ground truth labels for the testing data of a
target program term follow the same data distribution as
that of the training data.

3. DATASET AND FEATURES
3.1 Dataset Description
The dataset was collected from an autonomous university in
Singapore that covers four consecutive cohorts (2011- 2014)
of undergraduate students from the same degree program.
Students are required to complete 8 program terms.

Table 1 shows the dataset statistics. It consists of 618 stu-
dents and 691 courses. In total, we have 19,655 student-
course pairs that involve grades, known as the student-course
dyads. Students from cohort 4 are used as the test cohort
to allow more data to be used in training. The university
implements 12 grading letters that are mapped to numeric
values for grade prediction as follows. A+, A, A-, B+, B,
B-, C+, C, C-, D+, D, and F are mapped to 4.3, 4.0, 3.7,
3.3, 3.0, 2.7, 2.3, 2.0, 1.7, 1.3, 1.0, and 0.0 respectively.

Table 1: Dataset Statistics
Cohorts Total

1 2 3 4
Num. Students 115 145 157 201 618
Num. Courses 169 160 170 192 691
Num. Dyads 3748 4471 4850 6586 19,655

Table 2: Student-Course Dyads of Target Cohort 4
(CSS: cold start students, CSC: cold start courses,
NCS: non-cold start dyads)

Program #dyads #NCS CS
term #CSC #CSS
t1 986 0 0 986
t2 955 952 3 0
t3 856 850 6 0
t4 919 907 12 0
t5 801 789 12 0
t6 704 677 27 0
t7 699 676 23 0
t8 666 638 28 0

Cold start dyads. The cold start student-course dyads of
a target program term are ones with new students or courses
with respect to the program term. They do not appear in
the training set, but appears in the testing set. As shown
in Table 2, program term t1 sees all cold start dyads with
new students (denoted by CSS). The other program terms
however hardly encounter new students. Dyads involving
cold start/new courses (denoted by CSC) are relatively fewer
as not many new courses are introduced in each program
term. Most of the new courses are observed in the program
terms t6 to t8, the last 3 terms of the program. The other
dyads are the non-cold start (NCS) dyads.

3.2 Student-Course Features
We consider five categories of features for representing the
student-course dyads (si, cj):

Static student features. These are features of a student
which do not change with time as they are not associated
with any target program term, such as student’s major,
gender, alma mater, and cohort.

Dynamic student features. These are student features
derived from the data and their values may vary in differ-
ent target program terms. These features are particularly
useful to determine the latest performance and academic
load of the student, such as student’s average grade in the
previous program term (lterm gpa) and up to previous pro-
gram term (lterm cum gpa), number of credit units (CUs)
a student received up to previous program term (total chrs)
and registered in the target program term (term chrs), av-
erage CUs per program term taken by a student (speed),
number of courses taken by a student in every course disci-
pline up to target program term (disc distrib), relative CUs
gained by a student compared to all students in the same
cohort (rel total chrs), and relative lterm cum gpa of a stu-
dent compared with that of the cohort (rel lterm cgpa).

Static course features. These are features of a course
cj that do not change with time: course’s discipline (disc),
CUs (chrs), and level (clevel).
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Dynamic course features. These are features of a course
cj that change with time: instructor of cj (iid), number of
students taking cj in the target program term (num enrolled)
and in all previous program terms (total enrolled), average
grade (term cgrade) and grade distribution (term dgrade)
obtained by students of the previous cohort when they took
cj in the target program term, average grade (lterm cum cgrade)
and grade distribution (lterm cum dgrade) obtained by stu-
dents of the same and previous cohorts when they took cj
in any program terms in the past.

Student-course interaction features. As we know which
student si takes which course cj in the target program but
not the grade, we can exploit this information to derive some
features that capture the indirect interaction between si and
cj for us to determine if si will perform well in cj . We derive
rel cterm that measures the program term si registered for
cj relative to the program term other students of the same
cohort taking cj . We also derive disc grade which is the av-
erage grade obtained by si when taking any courses sharing
the same course discipline as cj in the previous terms.

4. PROPOSED METHODS
Two methods are proposed for the next-term grade predic-
tion task, namely, Factorization Machine (FM), and In-
tegrated Long and Short Term Memory with FM
(LSTM-FM). The former is often used for recommenda-
tion tasks. The latter is a sequence model combined with
FM to predict grades of courses in each program term.

4.1 Factorization Machine (FM)
To use FM for next-term grade prediction, our training data
for predicting grades in a target term tk is represented by a
Ndyads

trg × p matrix, X, where Ndyads
trg represents the number

of training dyads, p = |S| + |C| + |F |, and F represent the
set of features. Each row X(i, j) for dyad (si, cj) consists of
a one-hot vector of student ids, a one-hot vector of course
ids, and the features representing the dyad (si, cj).

Model. FM captures both 1-way and 2-way interactions
between all features using factorized interaction parameters,
as formulated below.

Ŷi,j = w0 +

p∑
k=1

wkXi,j,k +

p∑
k=1

p∑
k′=1

Xi,j,kXi,j,k′

k∑
f=1

vk,fvk′,f

where w0 captures the global intercept and together with
the

∑p
k=1 wkXi,j,k serves as a basic linear regression model.

The last part contains all pairwise interactions of the X
features, which is modeled as a factorized parameterization∑k

f=1 vk,fvk′,f .

4.2 LSTM-FM Model
In LSTM-FM, we merge a sequence model with FM to both
learn the sequence of grades received by a student and pre-
dict the grades in the target program term using the ob-
served sequence as well as the feature interaction for the
student-course dyads. The LSTM-FM framework (Figure 2)
is decomposed into two main components: 1) Input Layer
that utilizes bidirectional LSTM networks (Bi-LSTM) [1] to
model the historical grades of a student and 2) Interaction
Layer that employs interaction module similar to FM in or-
der to model features interactions. The returned value is

Figure 2: LSTM-FM framework

then transformed into the predicted grade by using 2-layer
feed-forward networks with layer normalization [4].

As there can be a number of courses taken by the student
in the same program term, we define Gsi

tk,cj
as a |C| di-

mensional vector keeping the grade score of student si gets
for course cj in program term tk. We then use historical
courses-grades of student si, G

si
tk,cj

’s, for terms t1, · · · , tk−1

to learn the hidden states using Bi-LSTM. We subsequently

concatenate the hidden states ~h(si, tk−1) and ~h(si, tk−1) of
the bi-LSTM into h(si, tk−1) which is fed to the interaction
layer with the (si, cj)’s features to predict Gsi

tk,cj
.

5. EXPERIMENTS
5.1 Evaluation Metrics
Root mean squared error (RMSE) and mean absolute error
(MAE) are used to evaluate the accuracy of different grade
prediction methods as formulated below. The grades need
to be converted to numerical values before using the two
metrics. For both RMSE and MAE, the error is defined by
the difference between the predicted grade and the actual
grade. RMSE is appropriate to penalize methods that yield
large errors. MAE, on the other hand, provides the average
difference between the predicted and actual grades. For ex-
ample, for a given actual grade of A- (with numeric score =
3.7), an MAE of 0.3 suggests that the predicted grade differs
from the actual grade by an average of half grade, say B+
(with score = 3.4) or A (with score = 4.0).

RMSE =

√√√√∑
Y

trg
i,j is defined(Ŷ test

i,j − Y test
i,j )2

|{(i, j)|Y trg
i,j is defined}|

MAE =

∑
Y

trg
i,j is defined |Ŷ

test
i,j − Y test

i,j |

|{(i, j)|Y trg
i,j is defined}|

5.2 Methods for Evaluation
We focus on evaluating FM and LSTM-FM with the features
defined in Section 3. There are several variants for both
depending on what features are used: FM and LSTM-FM
without any features other than student id and course id are
also included (FM and LSTM-FM without features),
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Table 3: Overall Results (CSC: Cold Start Courses)
Method All dyads Dyads w/o CSC Only CSC dyads

RMSE MAE RMSE MAE RMSE MAE

UR 1.710 1.382 1.735 1.404 1.696 1.378
GM 0.755 0.551 0.757 0.552 0.638 0.506
MoM 0.676 0.488 0.678 0.488 0.583 0.448

Without student-course features

LR 0.628 0.456 0.629 0.455 0.577 0.434
FM 0.607 0.428 0.608 0.428 0.552 0.415
LSTM-FM 0.651 0.464 0.652 0.464 0.618 0.490

With all student-course features

LR 0.629 0.457 0.630 0.459 0.585 0.446
FM 0.625 0.448 0.622 0.445 0.587 0.457
LSTM-FM 0.628 0.449 0.629 0.449 0.574 0.441

With selected student-course features

LR 0.621 0.452 0.621 0.455 0.583 0.452
FM 0.594 0.425 0.594 0.428 0.601 0.450
LSTM-FM 0.603 0.437 0.603 0.436 0.606 0.476

FM and LSTM-FM with all features and FM and
LSTM-FM with only selected features (Section 5.3).

We include several baseline methods for comparison: uni-
form random (UR) that randomly predicts a grade score
from interval [0, 4.3], global mean (GM) that predicts a
grade score using the average of all observed grades in the
training set, mean of means (MoM) that returns the av-
erage of (a) the predicted grade score of GM; (b) the average
observed grades of this student in the training set; and (c)
the average observed grades of this course in the training
set, and linear regression (LR) that uses the first two
components of FM (w0 +

∑p
k=1 wkXi,j,k) to predict a grade.

5.3 Prediction Results
The overall prediction results are summarized in Table 3.
UR yields the highest error. With the use of historical data,
GM can predict with smaller errors. MoM further reduces
the prediction error with more information used. By imple-
menting a traditional machine learning approach, LR, we
can obtain lower prediction error. The results show that
the historical data contribute to grade prediction accuracy,
and it is worthwhile to explore more machine learning ap-
proaches to improve this grade prediction task.

We then analyse the results of our proposed methods. It is
interesting to see that FM with only student id and course
id predicts grades quite well. It is also applied to LSTM-FM
although the latter has a larger error. FM (and LSTM-FM)
with all features actually performs worse than the one with-
out features. With selected features (by excluding cohort,
disc distrib, iid, term dgrade, and lterm cum dgrade), both
methods achieve the best results. The overall results show
that the lowest error obtained by LR in every scenario is
always higher than those of FM and LSTM-FM. This sug-
gests that the 2-way interaction captured in both FM and
LSTM-FM can improve prediction accuracy compared to
LR that only captures linear model. The results so far are
encouraging as an MAE of 0.425 is smaller than a 3

4
grade

difference. We evaluate the methods for dyads that do not
involve CSC to see if they are able to improve prediction
accuracy. Table 3 shows that CSC dyads do not make sig-
nificant difference to the prediction results. This suggests
that the methods are robust against CSC.

The prediction errors for each program term are illustrated
in Figure 3. We observe that both FM and LSTM-FM have
similar performance on predicting grades in every program

Figure 3: Prediction error per program term

term. The first two program terms t1 and t2 have relatively
higher errors compared to the latter terms due to lesser
training data. t1 also handles grade prediction for cold start
students. As the amount of training data increases, we no-
tice a significant error improvement from term t3 onwards.
The error converges at term t5 when the model has suffi-
cient training data. For terms t5 to t8, both methods can
maintain the MAE to be below 0.401.

6. DISCUSSION AND FUTURE WORK
Based on the proposed framework in this paper, we plan
to develop a grade prediction API for the university that
can be used by both students and instructors. This may
help students to select courses that are appropriate to enroll,
given their performance in past terms. Instructors then may
use this API to understand the class profile, see the predicted
performance of their students and use this information to
adjust class outline and delivery method. We plan to explore
using course description and knowledge graph to improve
prediction accuracy. More advanced deep learning models
can also be introduced to explain the prediction results.
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ABSTRACT
Effective peer assessment requires students to be attentive
to the deficiencies in the work they rate. Thus, their reviews
should identify problems. But what ways are there to check
that they do? We attempt to automate the process of decid-
ing whether a review comment detects a problem. We use
over 18,000 review comments that were labeled by the re-
viewees as either detecting or not detecting a problem with
the work. We deploy several traditional machine-learning
models, as well as neural-network models using GloVe and
BERT embeddings. We find that the best performer is the
Hierarchical Attention Network classifier, followed by the
Bidirectional Gated Recurrent Units (GRU) Attention and
Capsule model with scores of %93.1 and %90.5 respectively.
The best non-neural network model was the support vector
machine with a score of 89.71%. This is followed by the
Stochastic Gradient Descent model and the Logistic Regres-
sion model with 89.70% and 88.98%.

Keywords
Peer assessment, problem detection, text mining, text ana-
lytics, machine learning

1. INTRODUCTION
Peer assessment—students giving feedback on each other’s
work—has been a common educational practice for at least
50 years [1, 2] It provides students more copious and rapid
feedback than an instructor would give, as well as reac-
tions from a more authentic audience (the student’s peers).
By concentrating on a limited number of works, peers can
produce assessments with similar validity and reliability to
those of instructors, whose time is spread more thinly over
many students’ submissions [3]. Students who perform peer

assessment show a substantial increase in performance [4].
Moreover, studies uniformly report that students learn more
by being reviewers than they learn from the reviews they re-
ceive [5, 6, 7, 8].

The need for peer assessment was felt more acutely after
the rise of massive open online courses (MOOCs). With
students paying little to no fees, MOOCs are not able to hire
enough staff to asses all submitted work. Thus, MOOCs rely
heavily on peer assessment [9, 10].

For students to gain from peer assessment, students must
take the process seriously. They must think carefully and
metacognitively about the works they are reviewing. To
foster an atmosphere where students assess conscientiously,
the instructor must train the students in reviewing—and
follow up by assessing how well they perform this task [11].
But instructor assessment of students’ reviewing suffers from
the same shortcomings as instructor assessment of students’
submitted work: it consumes much instructor time, is likely
to be rushed, and is mostly summative; that is it evaluates
how well the students have done, but does not directly help
them improve their reviewing. Thus, considerable research
has looked at other methods for assessing review quality [12].

Fundamentally, the quality of a review is related to whether
it identifies ways for the author to improve the work. Thus,
the review should point out shortcomings or problems the re-
viewer perceives in the reviewed work. This paper describes
several approaches to automatically identifying whether re-
view comments, which are responses to individual rubric
items, do point out (alleged) problems with the work.

2. RELATED WORK
Previous approaches to evaluating peer-assessment reviews
include calibration [13, 10, 14], reputation systems [15, 16],
”back-reviews” (rejoinders) [17], natural language process-
ing [18, 19, 20], logistic regression [21], and neural-network
techniques [22]. Peer assessment has much in common with
peer review, as used to vet scientific work for publication.
Hua et al. [23] used NLP to automatically detect arguments
in these reviews. Negi [24] used several AI techniques to de-
tect suggestions in product reviews. Space does not permit
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elaboration of these methods, but a fuller discussion can be
found in our extended paper.

3. EXPERIMENTAL METHODOLOGIES
3.1 Data
The data used for our experiments comes from Expertiza
[25], a peer-assessment platform for reviewing work devel-
oped by collaborative teams. For each review, the reviewer
fills out a rubric, which consists of several criteria. Sample
rubric items are, ”How well does the code follow good Ruby
and Rails coding practices?” ”Is the user interface intuitive
and easy to use?” Most criteria ask for a numeric rating as
well as textual feedback. It is the textual feedback that we
analyze in this work.

Our study is based on reviews of coding and documentation
assignments from NCSU CSC 517, Object-Oriented Design
and Development. To obtain labeled data for our research,
we offered students a small amount of extra credit for tag-
ging review comments they received, as either mentioning a
problem or not. We spot-checked the student-assigned tags
for the purpose of quality control. An example comment
that does not mention a problem (tagged as 0) is, ”The in-
terface is easy to use and it is well described in the Readme
file.” One mentioning a problem (tagged as 1) is, ”The im-
plementation can only log one type of user on.”

Several students had the opportunity to tag the same review
comments. If multiple students tagged the same comment,
inter-rater reliability (IRR) could be calculated. We used
Krippendorff’s α [26] as the metric for IRR. By dropping
observations with conflicting tags, we have raised the Kirp-
pendorff’s α associated with our dataset from 0.696 to 1.

The dataset was de-duplicated and balanced, resulting in a
total of 18,354 observations. It was separated into training,
validation, and testing sets in the ratio of 80:10:10. This
split was used to find optimized hyperparameters with 5-
fold cross-validation. Unless the dataset is large, the com-
bination of observations used in the training and test sets
can have an impact on how well the classifier performs. We
compensated for this by using 20-fold cross-validation on our
finalized classifiers with tuned hyperparameters and saving
the resulting 20 scores for analysis.

3.2 Baseline Models
We set up our baseline using traditional machine-learning
models, such as Support Vector Machine (SVM), SVM us-
ing Stochastic Gradient Descent (SGD), Multinomial Näıve
Bayes (MNB), Logistic Regression (LR), Random Forest
(RF), Gradient Boosting (GB), and AdaBoost (AB).

3.2.1 Input Embedding
The input to our baseline models was first processed by the
TF-IDF vectorizer in scikit-learn [27]. TF-IDF vectorization
is a common way to convert raw text and documents into
embeddings suitable for machine-learning models. The vec-
torizer generates a document-vocabulary matrix for each of
the documents (in our case, review comments that averaged
2.2 sentences per comment). Then, using inverse document
frequency, it normalizes (”lowers”) the weight of the words
by checking how often a word appears in other documents

(comments, in this case). This helps lessen the impact of
frequent yet unimportant words, so that common words like
”the” that convey little semantic meaning do not affect the
classification of a comment. The model architecture and
dataflow for traditional classifiers is shown in Figure 1.

3.2.2 Support Vector Machine
Support vector machines are commonly used for classifica-
tion in machine learning. A SVM establishes a decision
boundary as well as a positive plane and a negative plane
between classes. Statistical features for each review com-
ment represented in TF-IDF-normalized vectors are put into
the vector space for all comments, then the model learns a
hyper-plane (support vector) to best divide them into two
categories: comments containing problem statements, and
comments without problem statements.

Figure 1: Data pipeline for machine learning model

3.2.3 SVM with Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) was developed early on
and popularly adopted to optimize neural-network models
[28], while applying SGD on linear classifiers is not unheard
of. [29] We compared the performance of the SVM model
with and without SGD.We applied a combination of L1 and
L2 regularization to the loss function, with the hope of cor-
recting over-fitting problems.

3.2.4 Multinomial Naive Bayes
A näıve Bayes model assumes that each of the features it
uses for classification is independent the others. To deter-
mine whether a review comment identifies a problem, the
model examines the TF-IDF normalized word-count vectors
for that comment, using the conditional probability of each
of these features/vectors, and makes a judgment, based on
conditional probabilities learned from the training set.

3.2.5 Logistic Regression
The logistic-regression (LR) classifier uses a regression equa-
tion to produce discrete binary outputs. Similar to linear
regression, it learns the coefficients of each input feature
through training; however it uses a logistic function instead
of linear activation to determine the class to which an in-
put belongs by fitting coefficients of each n-gram through
comments in the given training set.

3.2.6 Random Forest
The Random Forest (RF) classifier is an ensemble method
that fits multiple decision trees and uses averaging to im-
prove the accuracy of predictions and to avoid over-fitting.

3.2.7 Gradient Boosting
Gradient boosting (GB) is an ensemble machine-learning al-
gorithm that utilizes a number of weak models, such as small
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decision trees. In training, these small decision trees are fit-
ted in a negative gradient direction in order to reduce the
loss calculated from the cost function.

3.2.8 AdaBoost
AdaBoost, or adaptive boosting, is a meta-algorithm that
alters weights of entries for base models. When an entry
is misclassified, the algorithm increases the weight of that
entry and decreases the weights of entries that have been
correctly classified. The algorithm terminates upon meeting
the confidence threshold. Through doing this, the booster
identifies the features that have greater impact on the re-
sults, and improves prediction accuracy.

3.3 Neural Network Models
Our other experiments use neural networks, and Keras [30]
was the framework of choice for implementation. Compared
with our baseline models, the input of each model is gener-
ated in two different ways: through a GloVe embedding and
BERT embedding.

3.3.1 Input Embedding
Global Vectors for Word Representation, or GloVe embed-
ding [31], is an embedding model that converts words into
multidimensional vectors based on their meaning. Its func-
tion is similar to Word2Vec, which transforms words to em-
beddings in a limited vector space, though the underlying
principle is different.

Bidirectional Encoder Representations from Transformers
(BERT) is a multi-layer bidirectional transformer encoder
[32] developed by Google. The BERT network we used in
our experiment is published by Google and is pre-trained
on Wikipedia and BooksCorpus data. We used the open-
source project ”Bert-as-service” to create sentence embed-
dings. Specifically, we limited the maximum sentence length
to 25 words, and extracted embeddings with outputs from
the second-last layer in the pretrained network. The Bert-
Base-Uncased model [32] has 12 attention layers, and 768
neurons in each layer with 12 attention heads. Using this
network has given us 768 dimensions as sentence embed-
dings. We also used a version with word level embeddings.
Figure 2 demonstrates the model architectures in order of
the next subsection.

3.3.2 Multilayer Perceptron
A multilayer perceptron (MLP) model [33] is a typical arti-
ficial neural network. It utilizes multiple layers of neurons,
and uses back-propagation for training. Errors calculated
by a loss function are propagated back through the layers
using the chain rule of gradient descent derivation.

3.3.3 Convolutional Neural Network
A convolutional neural network (CNN) utilizes convolution
kernels that pool data with a defined window size on given
dimensions to generate summaries from input data [34].

When dealing with comment classification, this model uses
convolutions on the feature dimension to reduce the com-
plexity of each word vector, different dropout percentages,
and pooling methods.

Figure 2: Data pipeline for neural network Models

3.3.4 Recurrent Neural Network
Recurrent neural networks (RNNs) are neural networks that
take time-sequence information into consideration. For each
time-step, the network takes the inputs and updates its in-
ternal memory cells with new information. Different RNN
models implement memory updates differently. For exam-
ple, long short-term memory (LSTM) networks not only re-
member inputs, but also ”forget” unimportant information.

When we pass an embedded sentence to the network, each
word is seen as an item emerging in one time step, and the
sequence of words in a sentence becomes a sequence of vec-
tors transitioning along with time steps. The neural network
learns from the transition what information is important to
keep and what is not, then applies the same judgment when
a new sentence is given to it for classification.

Here we also implemented a GRU network and a bidirec-
tional GRU network in parallel.

3.3.5 Hierarchical Attention Network
Hierarchical attention networks (HANs) are neural networks
that take into consideration the document structure and sen-
tence structure [35]. A document normally consists of a
number of sentences, and a sentence is formed by a number
of words. Not all sentences in a document are important to
the classification of a document, and similarly, not all words
are important for sentence-level classification. HANs utilize
this information through attention layers that capture words
and sentences that are important towards the classification.

In classifying comments, a HAN can capture information
with greater impact on the results. For example in sample
comment ”The writeup does not include a Test Plan sec-
tion,” the words ”does not include” contributes a lot more
to implying there is a problem stated in this comment than
other parts of the comment do.
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3.3.6 CNN with Long Short Term Memory
Previous models showed that each type of the neural net-
work or neural network layer could be efficient on specific
tasks, for example CNN for dimension reduction and HAN
for extracting words that are more important to the result.
In this subsection we combine some models and explore the
benefits of mixing different types of neural networks.

A model with CNN and LSTM layers is implemented in the
hope of securing benefits from both models. With CNN as
a dimension reducer, the LSTM layer might be able to find
useful information from the aggregated features. Another
attempt tests whether a CNN is needed to reduce dimen-
sions, by removing it while boosting the performance of re-
current layer by putting it in a bidirectional wrapper.

4. EXPERIMENTAL RESULTS
Figure 3 displays a boxplot of the 20 f1-scores obtained us-
ing the traditional machine-learning classifiers and neural
networks from the 20-fold cross validation. The lowest-
performing classical machine learning classifiers, multino-
mial näıve Bayes and AdaBoost, achieved similar accuracy,
with respective sample median f1-scores of 0.855 and 0.861.
The gradient boosting and random-forest classifiers achieved
sample median f1-scores of 0.870 and 0.871. The highest
performing classifiers included logistic regression, stochas-
tic gradient descent, and support vector machines. They
achieved sample median f1-scores of 0.890, 0.897, and 0.897
respectively.

Figure 3: Models’ F-1 Scores

These results show that classifiers can classify review com-
ments as mentioning problems with an accuracy range of
approximately 84% to 95%.

The HAN and BiGRU-Attn-Caps models that used GloVe
embeddings achieved the best performance among all the
models. The CNN model that used GloVe embeddings achieved
the next best performance with a sample median f1-score of
0.886. The Bidirectional GRU had a very close sample me-
dian f1-score of 0.882, followed by the Bidirectional LSTM
model with 0.872, then the LSTM CNN model at 0.865. The
lowest-scoring models were the ones with word-level (WL-

Bert) and sentence-level (SL-Bert) BERT embeddings with
sample median f1-scores of 0.862 and 0.844 respectively.

To gain insight into the phrases that contributed towards
determining a suggestion, we extract coefficient weights of
some features from two of the models. Table 1 displays a list
of the logistic regression model’s top 10 positive and nega-
tive features in determining if a comment has mentioned a
problem in the author’s work. The features that increase the
likelihood that a comment will mention a problem (positive
coefficients) include phrases that may constitute a sugges-
tion by the reviewer. For instance, phrases such as ”could”,
”should”, ”could have”, and ”more” indicate that the reviewer
is likely giving advice to the author about improving the
work, thus noting a problem by implication. Features with
negative coefficients include phrases that likely demonstrate
positive sentiment, such as ”yes”, ”good”, ”well”, and ”great”.

Table 1: Logistic Regression Coefficients
Coefficient Value Coefficient Value

yes -8.0233 not 10.5227
good -3.9472 but 8.8498
and -3.1690 however 7.8254

they have -3.1193 more 6.2155
well -3.0567 could 5.6703

yes the -2.9953 should 5.3498
all the -2.7422 would 5.0391
clearly -2.6269 no 5.0183
project -2.5331 missing 4.9864
passed -2.4645 some 4.9160

Table 2 displays the stochastic gradient descent model’s top
10 positive and negative features in determining if a com-
ment mentioned a problem in the author’s work. The coef-
ficient values are lower than those of the logistic regression
model, but they comprise similar positive and negative fea-
tures.

Table 2: Stochastic Gradient Descent Coefficients

Coefficient Value Coefficient Value

yes -4.1029 however 6.5277
conflicts -2.0396 not 6.4184

good -2.0083 but 5.5175
apply -1.7788 should 3.9721

complicated -1.7785 could 3.9198
since -1.6178 would 3.8352
sense -1.6139 more 3.6346

required -1.5925 missing 3.5942
passed -1.5757 no 3.4112
project -1.5637 except 2.9776

5. SUMMARY
We have marshalled a multitude of classifiers that can parse
student peer-review comments for the detecting the mention
of a problem. The HAN and BiGRU-Attn-Caps models per-
formed the best among the neural network classifiers on this
dataset, while the best traditional classifiers were the sup-
port vector machine and stochastic gradient descent models.
The least effective classical models were the AdaBoost and
multinomial näıve Bayes classifiers—the two that used the
sentence and word level embeddings.
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ABSTRACT 

Time series data that exhibit skewed distribution is a common and 

important issue related to advanced model adoption, which 

however may be mis-specified when the data become extremely 

large and completely stochastic. This study adopted an experience-

to-model approach in order to address the data skewness problem 

in educational data mining and in parallel explain the practical 

pedagogical meaning of data distribution patterns. To do this, we 

first specified a proper analysis granularity with respect to temporal 

data and provided evidence of its non-normality, and finally 

handled the skewness by correlating it to gaussian mixture models. 

We performed a scalable model by adaptively selecting the 

parameters and discussed the similarity measure based on 

probability density distribution.  

Keywords 

Data skewness, temporal pattern, data transformation, e-learning 

1. INTRODUCTION 
In recent years, big data in education is becoming a new driving 

force and playing an increasingly important role in educational 

research and practice[1]. The mining of big data in education is 

beneficial for educators and organizations to understand the 

learning patterns of students, optimize curriculum design, gain 

insight into student characteristics, provide high-quality 

educational decisions, and finally improve students' academic 

standards[2-4]. 

One of main challenges, however, is that the data is not always of 

normal distribution, which makes many standard approaches 

limited and corresponding results not robust. Many studies either 

ignored the existence of this challenge or simplified the 

assumptions of research conditions. Pearson correlation, for 

example, is used for testing linear dependence between a couple of 

variables assuming the data is small and has a normal shape. But 

the model can be easily mis-specified because the feasibility of this 

assumption is weakened when the data become extremely large and 

completely stochastic. Besides, many scholars use machine 

learning algorithms to classify the time series data without paying 

much attentions to the data distributions, leading to seriously 

inaccurate results due to the fact that the performances of classifiers 

are subject to the data presented to it during training session and 

many attributes of the data are not balanced[5]. The imbalanced 

data distribution is usually described by a skewness coefficient in 

statistics representing an asymmetry from the mean of a data 

distribution. Time series data that exhibit skewed behavior is a 

common and important issue related to advanced model adoption 

of educational data mining[6].  

This study adopts an experience-to-model approach in order to 

address the data skewness problem in educational data mining and 

in parallel explain the practical meaning of data distribution 

patterns. To do this, we first summarized coarse-grained 

observations on temporal data that collected from online courses, 

and then discussed the non-normality of time series data in 

education based on carefully selected granularity. Finally, we 

provided a tutorial to handle the skewness by correlating it to 

gaussian mixture models.  

2. RELATED WORK 
Temporal data has been studied in many research domains, while 

there is only a little literature has been documented in the 

educational domain. The current research on educational temporal 

data has mainly focused on online courses and metacognition. For 

example, authors in[7] proposed a temporal modeling approach for 

students' dropout prediction in MOOCs, authors in[8] mined 

temporal characteristics of learning behaviors from e-learning 

systems, and authors in[9] obtained sequential and temporal 

characteristics of self and socially regulated learning. Many of 

these research omitted the distribution assumption of data samples, 

which may lead to improper explanations related to statistical 

values. As is known, the Gaussian distribution is well known and 

widely applied by assuming that the aggregate effect of many 

individual independent components tends to be distributed with 

symmetrical bell curve. However, the use of Gaussian-based 

statistics can result in substantial error if problems are involved a 

lot of skewed data[10]. The assumption of homogeneity of variance 

indicates that the variance of the variable remains constant over the 

observed range, which may not be the truth in most research 

scenarios. Although the current statistical software packages 

provide tools to test the normality assumptions, and a lot of 

literature have documented to use multiple regression model and 

ANOVA model for modest violations to these assumptions[11]. A 

more effective way, however, is to transform data to improve 

normality of independent variables when substantial non-normality 

is present. Data transformations can improve normality of a 

distribution and equalizing variance in quantitative analysis of data. 

For this reason, this study will conduct experiments based on this 

approach. In previous works, the transformation approaches 

include adding constants, square root transformation, log 

transformation, scales, inverse transformation, arcsine 
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transformation and Box-Cox transformation[12]. Many of these 

approaches are showing good properties of distribution symmetry. 

Besides, the data skewness problem has been extensively studied 

in communities of time series mining. It is claimed that the 

skewness has significantly influence on the performance of 

algorithmic tasks[13], where the authors have to detect the degree 

of skewness to determine the characteristics of the dataset 

distribution. To explore such influences, the relationship between 

data skewness and accuracy of data mining models has been 

examined in[14] and[15]. Because the irregular sampling of data 

sets is often encountered in time series, the measures of skewness 

are also of great interest and have become especially important 

while conducting data cleaning and data preprocessing. Therefore, 

authors in[16] devised an approach to transform the time series 

segments to produce new ones so that the new ones can be analyzed 

using standard methods, which is in essence consistent with data 

transformation techniques as stated above. This study uses 

quadratic square root approach on temporal data and compares the 

difference in the developed metrics between original and 

transformed data on online courses.  

3. DATA 

3.1 Data Collection 

There are 14 million video-viewing logs collected from 57,717 

students. We choose the top 7 video courses with the most in-course 

interactions, which are respectively Introduction to Mao Thought 

(MS), Political Economy (PE), Linear Algebra (LA), Enterprise 

Financial Management (EF), Marketing (MM), Microcomputer 

Principle and Interface (MI), and Health Assessment (HA). Finally, 

we keep information of 7,341 students. One-way ANOVA shows 

that the differences between groups in terms of the continuous 

variables are statistically significant at the 0.05 level (df = 6, p=0.00) 

and the differences between groups in terms of the age and video-

viewing time have statistical significance at the 0.05 level (df=4, 

p=0.00). 

3.2 Granularity of Analysis 

In information systems, time is mainly represented by time points 

and time intervals. Time describes the moment at which learning 

behaviors occur, while time interval describes the length during 

which the behaviors last. They are used to present a certain 

chronological order, cycle characteristics, and time association 

rules. Since the current analysis unit is the temporal data, time-

related information of interest is abstracted. Each student has plenty 

of but usually intermittent interactions with systems. In order to 

summarize the statistic distributions, this study focuses on the total 

time during which a player is always in the playing state. The video-

viewing time is an absolute measure representing the length of 

content students learn, while we also consider a relative measure 

called the viewing completion ratio, which is the proportion of 

video-viewing time with respect to the total video length and 

represents the progress of content consumption.  

3.3 Preliminary observations 
The most active period for students watching videos is from the 

November of the second half of the year to the early January of the 

following year. The effective learning days of the week are 

workdays, and ineffective learning days are weekends. The study 

period of the day is mainly from 9 am to 6 pm. During mealtime 

and other breaks such as the evenings, students rarely watch videos. 

Students who use mobile devices have different temporal patterns. 

For each course, the cumulative playing time of most students is 

less than 1 minute. This shows that this part of students is not 

advanced students[17], Their behavioral pattern can be attributed 

to “zapping style” according to[18]. There are also some students 

whose cumulative playing time exceeds the total length of the video 

and the corresponding learning completion rate is greater than 1, 

which indicates that these students have played the complete video 

from the beginning to the end or watched specific segments of the 

video repeatedly. In other words, their watching pattern can be 

attributed to repetitive style[18].  

As the length of time increases, the probability density first 

decreases rapidly to a specific value, then reaches a peak at a faster 

rate and produce a thick tail. For each course, the peak of the 

probability density curve is relatively close in time and has a similar 

co-increasing or co-decreasing trend. This shows that the students' 

learning of the courses shares a similar distribution pattern. 

The average of viewing time and the viewing completion rate are 

both close and low. The average cumulative viewing time for each 

course is about 13 minutes, and the average completion rate of 

video viewing is about 40%. These two values reflect the 

phenomena reported by most MOOC studies: high dropout rates 

and low resource utilization. It also shows that, compared to non-

educational videos, educational videos have specific non-linear 

viewing patterns and a clear cognitive search intent[19]. 

4. RESULTS 

4.1 Skewness 
We perform a Kolmogorov-Smirnov normality test on the selected 

7 courses. The established null hypothesis is that the viewing time 

or viewing completion rate conforms to a distribution of a specific 

normal shape. At 95% confidence and 0.05 significance level, we 

calculated two-tailed p-values for the two indicators which are 

showing equivalence to 0.000. In addition, we calculate the D 

statistic, which tells the maximum distance of the cumulative 

distribution function between the data distribution and the fitted 

normal distribution. More intuitively, it quantifies the magnitude of 

the difference between two distributions. For each course sample, 

the D value is large. 

Besides, we observed the kurtosis and skewness coefficients. We 

can find that the probability density curve has a sharp peak and 

right-skewed shape. The right skewed distribution has a property 

that the mean value in the horizontal direction is greater than the 

median and mode[20], and the absolute value of most skewness is 

greater than 1.96 times its standard error, which indicates that the 

skewed distribution and the symmetrical distribution have statistics 

significance. Like the average viewing time, the distribution of 

viewing completion rates is all right-biased except MM, and the 

relationship between the median and the mean satisfies the 

corresponding skewed properties.  

Because of data skewness, it is not appropriate to use standard 

methods that are based on normal distribution assumption. There 

are generally two methods for processing skewed data. The first 

method based on fitting a series of models has been implemented 

in[21], and the current study will try the second approach to obtain 

more rich features through data transformation. 

4.2 Data Transformation 
Intuitively, the right-biased distribution of the data causes the 

probability density of the long tail to change relatively slowly. This 

means that once students exceed the average viewing time 

threshold, they will have a higher proportion to invest more time in 
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courses. Conversely, if students' learning time does not reach this 

threshold, they will have a higher percentage of withdrawal from 

the course. Indeed, it is observable that many students fall into the 

second category. In order to make the curve more symmetrical, we 

compress the spacing of the data. This requires that the spacing of 

the long-tail portion is compressed faster, while the short-tail 

portion is compressed more slowly. After trying a lot of models 

empirically, we found that quadratic square root of the original data 

can make the data distribution basically symmetrical, and its effect 

is better than other available methods, such as natural logarithm. 

We further use the local quadratic regression on the transformed 

data to smooth the data. Let the range of the temporal variable X be 

D. For each sample 0x D , we choose a neighborhood of 0x . Fit 

the dependent variable corresponding to the observations of the 

temporal variables that fall within this neighborhood using the 

weighted least squares method. The value of the curve at 0x  is an 

estimate of the regression function. The results are showing in 

Figure 1. 

The transformed time series does not satisfy any single type of 

distribution but presents the characteristics of a multimodal 

distribution. In addition to the main peak in the middle of the curve, 

at least one small peak may appear near the beginning or the end of 

the curve. In order to evaluate the goodness of fit, we use maximum 

likelihood estimation to fit the set of curves. Note that the current 

curve has a more pronounced symmetrical property near each peak 

than the original curve, which inspired us to try a gaussian mixture 

model. Suppose a curve approximates a k , 2k  normal mixed 

distribution, the probability density of the curve can be expressed 

as: 

1

( ) ( )
k

i i

i

p x p x
=

= ，                                 (1) 

where i  is the weight of the 'i th  gaussian distribution, satisfying 

1

1
k

i

i


=

= , and ( )ip x  is probability density function of the 'i th  

gaussian distribution, satisfying 
2( ) ~ ( , )i i ip x u  . To prevent 

overfitting due to empirical selection, we consider only the simplest 

2k =  here, and compare its goodness of fit with a single normal 

distribution to choose the right fitting model.  

Evaluation metrics include root mean square error (RMSE), 

adjusted 2R , and Akaike's Information Criterion (AIC). They are 

showing in Table 1 that for all courses the binormal distribution is 

better than the single normal distribution. Numerically, it always 

has 2 1k kRMSE RMSE= = ,
2 2

2 1k kR R= = , and 2 1k kAIC AIC= = . We 

can also find that in the two models, the biggest improvement is LA, 

which means that its binormal distribution feature is more 

significant. While for MS with little improvement, both single and 

binormal distributions can be used for fitting. This may depend on 

the course setting. MS is a campus-wide elective course, which has 

large number of samples and thus shows more characteristics of 

normal distribution according to the central limit theorem[22]. 

Additionally, EF, MI, and HA courses have smaller AIC values, 

indicating that they are suitable for a binormal distribution. In order 

to quantitatively evaluate the improved effect size, we focus on the 

AIC indicator considering that it imposes more stringent penalties 

on the complexity of the model compared to other indicators, so 

that the model we choose not only has the minimum parameters but 

also prevents overfitting[23, 24]. The effect size can be calculated 

as the improvement ratio of the AIC value while using the binormal 

distribution versus the single normal distribution. Results show that 

the most improved course when using binormal distribution fitting 

is HA, followed by MI, and the least improvement is MS.  

The statistical characteristics of the bimodal distribution indicate 

that there are different dropout and retention patterns for students 

in all courses; courses with greater differences in the goodness of 

fit between single and binormal distributions, say LA and MM, 

show higher retention rates; instead, courses with smaller 

differences in goodness of fit between single and binormal 

distributions such as MS show a more prominent dropout pattern, 

which should be given sufficient attentions by course organizers 

and educators.  

Table 1. Evaluation of distributions. 

 Single normal 

distribution 

Binormal       

distribution 

RMSE Adj.R2  AIC RMSE Adj.R2 AIC 

MS 2.297 0.912 223.8 2.236 0.917 172.9 

PE 2.973 0.890 223.9 1.629 0.967 109.6 

LA 4.948 0.652 325.8 1.705 0.959 118.7 

EF 2.142 0.922 158.3 1.097 0.980 30.5 

MM 5.461 0.780 345.6 2.233 0.963 172.7 

MI 2.542 0.916 192.6 1.029 0.986 17.7 

HA 2.775 0.917 208.7 0.92 0.991 -4.6 

Repeating the above experimental process, we find that the 

distribution of the viewing completion rate is more complicated 

than that of the viewing time. If we use k mixed distribution for 

fitting, usually the goodness of fitting can be obtained when 3k  . 

Since the discussion of 3k   is too complicated, we will deal with 

it by generalizing the model for arbitrary k values in Section 5. In 

order to reflect more details of the student learning process, we 

borrow the concept of temporal structure. We argue that it reflects 

the change of students' time investment when watching the courses, 

which is helpful for further analysis of students' preferences for in-

 

Figure 1. Curve smoothing with respect to video viewing time 
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course parts. It should be noted that viewing time is different from 

time investment. The former is a static quantity that measures how 

much time is invested, and the latter is a dynamic quantity that 

measures the difference in structure of time investment. 

4.3 Variation of Temporal Structure 
In order to quantitatively describe the difference in the temporal 

structure of the viewing sequences, we use the coefficient of 

variation termed CV, which can be calculated by dividing the 

standard deviation by the mean. 

/xCV x= ,                                        (2) 

where x  is the standard deviation and x  is the mean. The 

results are shown in the third column of Table 2. The numbers 

outside the brackets indicate the coefficient of variation of the 

original data, and the numbers inside the brackets indicate the 

transformed coefficient of variation. 

Given that the amount of student watching is positively 

proportional to the time the student spends on the courses, we can 

evaluate the temporal structure of the video viewing sequence to 

reflect the rationality of the time allocation when students watches 

the courses. In this regard, Gini coefficient is a suitable indicator, 

which is shown in columns 6 and 7. It can be learned that the Gini 

coefficient with respect to viewing time (G-VT) and the Gini 

coefficient with respect to viewing completion rate (G-VCR) in the 

same course are relatively close. The two courses with the largest 

Gini coefficients are EF and MI, and the smallest are LA in G-VT 

and MM in G-VCR. This result shows that the time structure of the 

student's consumption ratio of EF and MI is slightly less reasonable 

than other courses. 

Table 2. Measures of temporal structure 

 CV G-VT G-VCR 
 

MS 0.744(0.428) 0.399(0.234) 0.392(0.228) 0.999 

PE 0.709(0.323) 0.391(0.237) 0.398(0.239) 1.000 

LA 0.688(0.400) 0.377(0.223) 0.392(0.234) 1.000 

EF 0.770(0.451) 0.410(0.252) 0.405(0.253) 0.990 

MM 0.750(0.433) 0.400(0.244) 0.369(0.232) 0.993 

MI 0.772(0.441) 0.412(0.246) 0.406(0.234) 0.992 

HA 0.780(0.423) 0.397(0.234) 0.388(0.224) 0.948 

It is worth noting that CV and Gini characterize the difference in 

the temporal structure with respect to viewing time and the 

completion rate of learning, but they show amazing consistency in 

values. According to literature[25], The Gini coefficient can be 

approximated as: 

1
( , )

3

y
G y r

y


= ,                             (3) 

where y  represents the standard deviation, y  represents the 

mean, and ( , )y r  is the correlation coefficient between the 

student's cumulative viewing and his rank in the population. Both 

the CV and Gini calculation formulas have the same component, 

i.e. standard deviation and mean. There is a strong positive 

correlation between the CV of the transformed data and the G-VT 

of the original data obtained by the spearman rank correlation test 

at a significance level of 0.01(coef. = 0.929, p = 0.003); and there 

is a positive correlation between the CV of the transformed data 

and the transformed G-VT at a significance level of 0.05(coef. 

=0.683, p = 0.033). Bringing the mean and standard deviation of 

Table 2 into the formula, we obtain the   values.  

5. Course Similarity 

5.1 Metric 
In order to make the model scalable, we assume that other courses 

can also be fitted with the gaussian mixture model by choosing the 

appropriate k value.  

For each course, we run GMM clustering algorithm and obtain 

parameters of GMM. The log-likelihood function can be written as: 

( )
1 1

( , , ) log ; ,
N K

k i k k
i k

l p x    
= =

 
=  

 
   .              (4) 

K-means algorithm is used to initialize model parameters and EM 

algorithm is used to optimize the parameters.  

Given two course samples iC  and jC , we model them as gaussian 

mixture model 
11 2{ , ,..., }i i i i

K   =  and 
21 2{ , ,..., }j j j

K

j    =  

where 1K and 2K  are the number of components of i  and j  

respectively. Then, the average similarity of the two course 

distributions[26] can be computed by: 
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where ( , )i i

m md   is the Bhattacharyya distance that measures the 

pair-wise similarity of multivariate normal distributions. The 

bigger of the S  value, the similar of the course samples. 

5.2 Discussion 
The distribution-based course similarity can be applied to 

personalized course recommendation that addresses the 

information overload issue by customizing the learning content for 

students[27]. In previous studies, teachers describe the attributes of 

courses by analyzing their content, or pre-define corresponding 

learning goals as the extent to which students would acquire 

knowledge and skills[28]. The obvious limitation is the lack of a 

dynamic description of the learning process. Existing course 

similarity calculation are mainly based on the traditional text 

mining approaches with a vector space model been constructed 

according to the knowledge points that each course contains[29]. 

They mainly suffer from not considering the real-time temporal 

access patterns towards courses. The courses in the same cluster 

summarize students' similar learning patterns, which is helpful for 

assessing the learning process of students. 
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ABSTRACT
In data collected from virtual learning environments (VLEs),
item response theory (IRT) models can be used to guide the
ongoing measurement of student ability. However, such ap-
plications of IRT rely on unbiased item parameter estimates
associated with test items in the VLE. Without formal pi-
loting of the items, one can expect a large amount of non-
ignorable missing data in the VLE log file data, and this
is expected to negatively impact IRT item parameter esti-
mation accuracy, which then negatively impacts any future
ability estimates utilized in the VLE. In the psychometric lit-
erature, methods for handling missing data are mostly cen-
tered around conditions in which the data and the amount
of missing data are not as large as those that come from
VLEs. In this paper, we introduce a semi-supervised learn-
ing method to deal with a large proportion of missingness
contained in VLE data from which one needs to obtain un-
biased item parameter estimates. The proposed framework
showed its potential for obtaining unbiased item parameter
estimates that can then be fixed in the VLE in order to
obtain ongoing ability estimates for operational purposes.

Keywords
virtual learning environment, semi-supervised learning, item
response theory, missing data

1. INTRODUCTION
In contrast to physical learning environments such as class-
rooms, a virtual learning environment (VLE) refers to a sys-
tem that delivers learning materials to students in a digital
space. Item response theory (IRT) [3] refers to a family

∗The research reported here was supported by the Insti-
tute of Education Sciences, U.S. Department of Education,
through Grant R305C160004 to the University of Florida.
The opinions expressed are those of the authors and do not
represent views of the Institute or the U.S. Department of
Education.

of mathematical models that attempt to explain the rela-
tionship between latent traits (unobservable skills or knowl-
edge) and their manifestations (i.e. observed outcomes, re-
sponses or performance) using different statistic functions
(e.g. Rasch Model, 2PL-IRT, multidimensional IRT). To es-
timate the item parameters for further personal adaptive
learning (e.g., providing appropriate item which matches
student’s ability could encourage student to complete it),
IRT models are widely used to determine the psychometric
properties of items through analyzing students’ responses in
VLE [9].

How to reduce the impact of missing values on item parame-
ter estimation of IRT models is a very common issue for data
analysis and attracts lots of research attention. Generally,
missing values could be categorized to 4 classes: structurally
missing data, missing completely at random (MCAR), miss-
ing at random (MAR) and missing not at random (i.e. non-
ignorable missing values) [12]. In contrast to other types
of missing values, nonignorable missing values in assessment
are more complicated because they are usually caused by
latent factors to be measured by IRT models. For assess-
ment data, researchers has proposed different model-based
approaches to reduce the impacts from nonignorable missing
values [10]. One model-based approach, the latent approach,
includes missing tendency via a latent missing propensity
that is accounted for in a multidimensional IRT model [4];
another model-based approach, the manifest approach, in-
cludes missing tendency by modeling a manifest missing
variable that is accounted for in a unidimensional missing-
ness propensity [11].

However, in contrast to assessment, the data collected in
VLE often contain large proportion of missingness when stu-
dents are allowed to skip questions in some online courses.
It makes that the missing data in VLEs are caused by a va-
riety of cognitive and motivational factors (e.g., excess chal-
lenge, lack of challenge or lack of time). The model-based
approaches are not suitable to deal with such kinds of miss-
ingness in the data collected from VLE, because determin-
ing the latent missing propensity will be very complicated
for drawing inferences to model the joint distribution of the
missingness and the item responses [6].

The technological changes across learning, instruction and
assessment start to bring machine learning techniques into
psychometrics because machine learning algorithms have the
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capability to analyzing complex and high-dimensional data.
Applying data mining and machine learning techniques to
VLE data is a mechanism to improve research in technology-
enhanced educational environments [1, 8]. For example, IRT
psychometric models are usually based upon logistic regres-
sion techniques which are used to be popular in solving clas-
sification problem in machine learning [7]. As a sub-field
of machine learning, the primary goal of deep learning is
to extract the latent variables from the input distribution
using artificial neural networks (ANNs) which is a compu-
tational system inspired by biological neural networks [5].
In educational research area, deep learning has been ap-
plied for different tasks, such as automatic item generation
(AIG) [14], automated scoring [13], and item characteristics
prediction [17].

Inspired by the research using deep learning and semi-supervised
learning techniques for cognitive diagnostic classification [15],
we proposed a semi-supervised deep learning framework to
reduce the impact on item parameter estimation caused by
nonignorable missing values when applying two-parameter
IRT (2PL-IRT) model to the data collected in VLE. The re-
search in this paper consists of two parts: (1) exploring the
real data collected within a statewide-used VLE to test if the
missingness was caused by student ability and item difficulty
which were measured in 2PL-IRT; and (2) proposing a semi-
supervised learning method using deep learning techniques
to adjust the bias in estimation caused by missingness. In
the following part of this paper, we will firstly introduce the
operational data exploration on the data collected within
a VLE; then the semi-supervised learning method will be
described in detail; the simulated study shows the perfor-
mance of the proposed framework in dealing with nonignor-
able missingness; lastly, we will conclude the findings and
limits in this framework and discuss some potential future
research.

2. OPERATIONAL DATA EXPLORATION
The data collected in this research were students’ responses
to the “Algebra I” items within a statewide-used VLE sys-
tem. The dataset contains 10 algebra domains, and we
treated each domain as having its own ability to measure.
The number of items ranged from 41 to 89 across domains.
The total number of students was 63,625. Since students
were allowed to skip items in the learning environment when
they responded to the items which were selected by the sys-
tem randomly, the responses to each item contained large
amount of missing values. The proportion of missingness
for each item is between 55% to 75%. Generally, the re-
sponse patterns of students could be classified into 3 cate-
gories: 1) skipped the domain (i.e., no responses to any test
items within the domain), 2) completed the domain (i.e.,
responded to all test items within the domain), 3) mixed
response (i.e., responded to some items within the domain).

To test if the missingness was related to the item and person
parameters in the 2PL-IRT model, a hierarchical logistic re-
gression (Figure 1) was conducted for each domain individu-
ally. The hierarchical logistic regression was consisted of (1)
skipping domain test was to test if skipping a domain re-
lated to the students’ ability; (2) completing domain test
was to test if completing a domain related to the students’
ability; (3) mixed response test was to test if student

Student

Skipping 
Domain

Not Skipping 
Domain

Completing 
Domain

Mixed 
Response

Item 1 Item 2 Item N

Responded Skipped Responded Skipped Responded Skipped

……

1st Level Logistic regression

2nd Level Logistic regression

3rd Level Logistic regression

Figure 1: The diagram of the hierarchical logistic
regression.

skipping an item related to the item difficulty and students
ability. As an area of mathematics, there is high correlation
between the math skills and algebra skills. Thus, we used
the pretest mathematical scores on the state standardized
test, S, as student’s true ability for the data exploration.
To evaluate the relationship between ability and skipping
a domain, all the students’ responses were classified to two
groups: students skipped the domain and students didn’t
skip the domain. The second group contained students com-
pleted the domain and students with mixed responses. Then
the logistic regression test was conducted for each school dis-
trict individually as following:

logit(skipping domain) = β0,ij + β1,ijS (1)

where j indicates the jth educational district and i refers
to the ith domain. After fitting the models, we found that
for most school districts and most students, β1,ij were sig-
nificant negative. We can conclude that students with high
ability level had a lower probability to skip a domain, and
students with low ability level had higher probability to skip
a domain.

After doing skipping domain test, in the completing domain
test, the dataset only contained students who didn’t skip the
domain. The dataset was divided to two groups: students
completed domain and students with mixed response. The
logistic regression test was conducted for each school district
individually as following:

logit(completing domain) = β0,ij + β1,ijS (2)

where j indicates the jth educational district and i refers
to the ith domain. In contrast to the observation of “skip-
ping domain”, it was not reasonable to reach a consistent
conclusion about the relationship between the ability and
completing domain.

In the last subtest, two factors, students’ ability and item
difficulty, were assumed to impact the probability that a stu-
dent responded to an item. We chose the observed incorrect
response rate of the item, Dk, to indicate the item difficulty.
The logistic regression was as following:

logit(skipping kth item) = β0,ik + β1,ikS + β2,ikDk (3)

where i is the ith domain and k indicates the kth item.
The logistic regression test showed that students with lower
ability level had higher probability to skip an item shown to
them; and student had a higher probability to skip item with
higher difficulties. From the data exploration, we could con-
clude that the missing values in the data collected contained
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nonignorable missingness because they were caused the fac-
tors have relationship with the latent variables measured in
the 2PL-IRT model.

3. SEMI-SUPERVISED DEEP LEARNING-
BASED BIAS ADJUSTMENT

Intuitively, there was no missing value in the response from
the anchor students, who completed all items in a domain.
However, directly applying 2PL-IRT model to the anchor
students would impact a parameter invariance because from
the data exploration also showed there existed difference be-
tween the sub-population of anchor students and whole pop-
ulation. To adjust the biased ability estimates and item
parameters estimates through directly applying 2PL-IRT
model to the anchor students, we proposed a semi-supervised
deep learning-based bias adjustment procedure which con-
sisted of the unbiased ability estimation through a semi-
supervised deep learning architecture, and the item param-
eter adjustment methods.

3.1 Semi-supervised deep learning architecture
The thinking of semi-supervised learning was used to im-
prove the robustness of binary latent person variables (e.g.
attribute mastery status) estimation [15]. In this research,
because the latent person variables measured in 2PL-IRT
model were continuous, the semi-supervised learning tech-
niques were conducted based on the following two assump-
tions:

1. Given the unbiased latent trait Θ for each student,
the biased estimation θ̂ directly using 2PL-IRT could
be represented through a function: θ̂ = φ(Θ);

2. The unbiased latent trait Θ could maximize the like-
lihood function P (X = 1; Θ) = L(Θ) which indicates
the relationship between latent trait Θ and item re-
sponse pattern X = {x};

Figure 2: The diagram of the proposed semi-
supervised deep learning architecture for unbiased
ability estimation. In this framework, a deep learn-
ing architecture with 3 hidden layers was used to
convert the observed response patterns to the unbi-
ased ability. To train the deep learning architecture,
the distance between two outputs of the DFN and
two targets was minimized.

Regarding to these assumptions, the goals of the proposed
semi-supervised deep learning structure to extract the unbi-
ased latent trait Θ from the anchor students response data
and approximate the function φ(Θ) which indicated the re-
lationship between unbiased latent trait Θ and biased esti-
mation θ̂ and L(Θ) which indicates the relationship between

latent trait Θ and item response pattern X = {x}. From
Figure 2, there were three hidden layers between the input
layer and the latent trait layer. The number of hidden layers
were set based on the previous research of using deep learn-
ing method for cognitive diagnostic models [16, 2]. To bring
the nonlinearity to the DFN, Rectified Linear Units (ReLU)
was chosen as the activation function. The unbiased latent
trait Θ̃ extracted using the DFN could be represented as:
Θ̃ = Φ(X;ω). ω were the connection weights in the DFN.
The parameters of DFN, ω, were estimated by minimizing
the following weighted cost function:

ω = arg min(w1MSE(θ̂, φ(Θ̃)) + w2H(X̃,X)) (4)

where θ̂ is the biased students’ ability estimation directly
fitting 2PL-IRT model to the anchor students’ responses;
X = {x} is the observed response patterns of the anchor
students. In the weighted cost function, we used two kinds
of error functions corresponding to two outputs respectively:
the mean square error (MSE) was used to calculate the dif-

ference between continuous variables θ̂ and φ(Θ̃); the cross-
entropy (H) was used to calculate the difference between

binary variables X and X̃. The two hyperparameters, w1

and w2, were determined using the elbow method in valida-
tion test.

3.2 Two item parameter adjustment methods
After obtaining the parameter estimation through the train-
ing procedure, the DFN converted observed response pattern
X to unbiased ability estimation Θ̃ . To reduce the biases
contained in the item difficulty, two kinds of adjustment
methods, item equating adjustment (IEA) and bootstrap-
ping adjustment (BA), were proposed using the unbiased

ability estimation Θ̃.

IEA was inspired by the common group equating design
in IRT. In IEA, the ability distribution of anchor students
was the frame of reference. Then the biased item diffi-
culty estimates were placed onto unbiased item difficulty via

b̃j = b̂j − ( ¯̃Θ− ¯̂
θ).

¯̂
θ and ¯̃Θ are the average of biased ability

estimates and unbiased ability estimates respectively, b̂j is

the biased item difficulty estimates for jth item, and b̃j is
the adjusted item difficulty estimates. IEA only reduced the
biases contained in the item difficulty estimates because it
held an assumption that the item discrimination estimates
were not biased.

In contrast to IEA, BA was proposed to reduce the biases
contained in both item difficulty and item discrimination
parameters using bootstrapping in statistics. There were 4
steps contained in BA method:

1. Randomly sampled from the anchor students based on
the unbiased ability estimates Θ̃ to make the ability
distribution of the new sample set is standard normal
distribution and the sample size was same as the orig-
inal anchor students;

2. Apply 2PL-IRT to the new sample set and estimate
the item difficulty parameters and item discriminating
parameters;

3. Repeated step 1 and step 2 K times, a group of esti-
mates of difficulty and discriminating of jth item could
be obtained {ãj,k, b̃j,k}, where k = 1,K;
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Table 1: Comparison of the distribution of ability
estimates between directly 2PL-IRT model fitting
(θ̂) and the proposed semi-supervised deep learning

architecture (Θ̃).

Domains True Θ(σ) θ̂(σ) Θ̃(σ)
1 0.090 (0.93) -0.001 (0.99) 0.095 (0.90)
2 0.169 (0.85) 0.000 (0.98) 0.157 (0.82)
3 0.203 (0.83) 0.000 (1.01) 0.198 (0.85)
4 0.152 (0.88) -0.001 (0.99) 0.160 (0.81)
5 0.178 (0.87) -0.001 (1.00) 0.180 (0.88)
6 0.228 (0.75) -0.001 (0.99) 0.232 (0.73)
7 0.168 (0.85) -0.001 (1.01) 0.171 (0.83)
8 0.218 (0.79) -0.000 (1.00) 0.207 (0.80)
9 0.241 (0.77) -0.000 (1.00) 0.241 (0.79)
9 0.312 (0.72) -0.000 (0.98) 0.320 (0.69)

4. Then the estimate of item discrimination equaled to
1
K

∑K
1 ãj,k, and the estimate of item difficulty equaled

to 1
K

∑K
1 b̃j,k.

The BA method relies on less constraint and could reduce
the biases contained in both item discrimination and diffi-
culty estimates. The BA has the potential for applying on
more complicated IRT models, such as 3PL-IRT.

4. SIMULATED STUDY
The proposed methods were tested through a simulation
study under 2PL-IRT model. In the simulated study, we
used “mirt” package in R to conduct data simulation and
IRT model fitting and used “Tensorflow” toolbox in python
to achieve the unbiased ability estimates through the semi-
supervised deep learning architecture. To create data un-
der 2PL-IRT, the known pretest mathematical ability were
used as the students’ ability, and the biased item param-
eters obtained through directly applying 2PL-IRT to the
anchor students were used as item parameters. The fitted
functions 1, 2, and 3 in data exploration were used to predict
the students’ response patterns (e.g., skipping domain, com-
pleting domain, mixed response). We selected the response
of anchor students who completed all items in a domain as
the input of our proposed method.

First, we applied the 2PL-IRT model directly to the sim-
ulated anchor students’ responses for each domain to esti-
mate the item parameters and students’ ability. Then, the
proposed semi-supervised deep learning architecture was ap-
plied using the simulated anchor students’ responses as input
and using the anchor students’ ability estimates and their re-
sponse patterns as two targets. By minimizing the weighted
cost function in Equation 4, the unbiased ability of anchor
students was estimated. The validating test was conducted
in the training procedure to avoid over-fitting and determine
the two hyperparameters w1 and w2 in Equation 4. Table 4
compares the distribution of ability estimates be- tween di-
rectly 2PL-IRT model fitting and the proposed semi- super-
vised deep learning architecture.

Using the estimation of the anchor students’ ability through
the semi-supervised deep learning architecture, the two pro-
posed adjustment methods, IEA and BA, were conducted
to reduce the biases contained in the item difficulty pa-
rameters. We chose two criteria, rooted mean squared er-

ror (RMSE) and variance, to evaluate the bias adjustment
methods. RMSE indicates the distance between item diffi-
culty estimates and true item difficulty parameters, and the
variance indicates the consistency of the estimates from dif-
ferent methods. From Figure 3, in contrast to the directly
2PL-IRT model fitting, both IEA and BA achieved much
less RMSE for each domain. For variance, since the IEA
adjusted the difficulty estimates based on a parallel shift
of the ability distribution, the variance of IEA and directly
2PL-IRT results were the same. However, the BA method
obtained more consistent estimates because bootstrapping
in BA created standard normal distributed samples which
matched the assumption of original IRT estimation. From
the experimental results, both IEA and BA had the abil-
ity to adjust the biases contained in the estimates of item
difficulty using directly 2PL-IRT model fitting. Compared
with IEA which only reduce the biases of item difficulty pa-
rameters, BA method had the potential to reduce the biases
contained in the item parameters for different IRT models.
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Figure 3: Comparison of the item difficulty esti-
mates among direct applying 2PL-IRT model fitting,
item equating adjustment (IEA) and bootstrapping
adjustment (BA).

5. CONCLUSION
Nonignorable missingness impacts applying psychometric mod-
els to the data collected in VLE. To reduce the impacts of
nonignorable missingness, this research explored a statewide-
used VLE data to test the hypothesis that the missing val-
ues were non-ignorable missingness and related to the fac-
tors that 2PL-IRT model measures. The data exploration
showed that the non-ignorable missingness would impact the
parameter estimation of 2PL-IRT without pre data analy-
sis. To adjust the biased item difficulty parameter estimates
caused by the non-ignorable missingness, a semi-supervised
learning framework was designed. In the framework, the
idea of semi-supervised learning was first time used in IRT
area to improve the robustness of latent trait estimation.
To convert the observed response pattern to the continu-
ous latent trait and approximate some continuous functions
which were hard to specify mathematically, deep learning
techniques were also introduced. The combination of semi-
supervised deep learning and IRT model improved both ac-
curacy and robustness of the parameter estimation for IRT
on noisy data with weak constraint. The experimental re-
sults showed that the proposed framework adjust the biases
contained in both students’ ability estimation and item pa-
rameter estimation for 2PL-IRT model.
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ABSTRACT 

Sequential pattern mining is a useful technique for understanding 

learning behavior. However, it can be challenging to select the most 

“interesting” patterns discovered through sequence mining. The 

work presented in this paper proposes an effect-size-based (ESB) 

method to help researchers identify temporally interesting 

sequential patterns. ESB is extended from the Temporal 

Interestingness of Patterns in Sequences (TIPS) technique [4] and 

distinguishes itself by 1) considering a different association 

direction between the sequential pattern usage and time, 2) 

providing a more interpretable ranking metric, and 3) providing a 

different ranking order for temporally interesting sequential 

patterns. Both ESB and TIPS are applied to interaction log data to 

demonstrate their differences in selecting sequential patterns. 

Keywords 

Sequential pattern mining, effect size, interestingness metric, 

learning behavior evolution. 

1. INTRODUCTION 
Sequential pattern mining (SPM) aims to find temporal 

relationships between events [1]. It is a useful tool to understand 

students’ learning behavior and becomes increasingly popular in 

the field of education [10, 18]. For example, SPM has been applied 

to investigate the evolution of cognitive and metacognitive 

behavior within a computer-based science learning environment 

[7], to understand students’ problem-solving behavior and to 

explore the associations among metacognitive monitoring, 

scientific inquiry skills, and task performance within game-based 

learning environments [4, 16].   

Due to the exploratory nature of SPM, researchers need to expend 

considerable efforts to interpret them and obtain actionable insight 

for teaching and learning from the discovered sequential patterns 

[5]. However, the number of sequential patterns discovered through 

SPM may be huge, and, as such, it is inefficient and sometimes 

impossible to investigate these patterns one by one. To ease 

selecting patterns, researchers proposed interestingness metrics to 

rank sequential patterns or association rules [9].  

There has been interest in the topic of temporal analyses of learning 

data [11], especially in the context of self-regulated learning [12]. 

As such, patterns that vary across time may be particularly 

interesting because they may reveal additional information. For 

instance, the variation of pattern occurrences across time can be 

used to evaluate the effectiveness of learning support [7]. If the 

evolution of some sequential patterns in the group who received 

support from the environment is different from the group without 

support, the support may have effects on learners’ behavior. The 

evolution of sequential patterns may also provide insights into 

improving the learning environment. For example, if a sequential 

pattern beneficial for learning frequently occurs during the whole 

learning processes except for a particular period, what happens in 

this period may be interesting. Understanding events in this period 

may further inform designing intervention to prevent students from 

stopping this behavior pattern in this period.  

In order to ease the selection of temporally interesting patterns, 

Kinnebrew, Segedy, and Biswas [5] proposed the Temporal 

Interestingness of Patterns in Sequences (TIPS) technique, an 

information gain-based approach, to rank patterns contingent on 

their variation across time. This research extends the TIPS 

technique by proposing an effect-size-based (ESB) method. ESB 

was applied to interaction log data of students’ using the Betty’s 

Brain learning environment [2] to demonstrate its relative 

advantages in identifying temporally interesting sequential patterns 

in comparison with TIPS.    

1.1 The procedure of TIPS 
TIPS firstly segments each student’s log file into n ordered bins 

(e.g., five ordered bins) with equal sizes [5]. Then, for each student, 

it calculates the occurrences (also known as instance values) of 

each frequent sequential pattern in each bin. Thirdly, it takes the 

occurrences of a pattern per bin per student as the feature and the 

bin number (e.g., 1, 2, 3, 4, 5) as the label and calculates the 

information gain (IG) of this pattern. IG refers to the reduction in 

Shannon entropy about the label from knowing the feature. Its 

calculation is [14]: 

𝐼𝐺(𝐿, 𝐹) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿|𝐹)            (1) 

L refers to the label, while F refers to the feature. 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿) is 

the priori Shannon entropy about the label, while 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐿|𝐹) is 

the conditional Shannon entropy about the label given the feature. 

Finally, TIPS ranks all frequent sequential patterns based on their 

IG, and the top-ranking sequential patterns may be temporally 

interesting.  

2. Effect-size based (ESB) temporal 

interestingness metric 

2.1 The procedures of ESB        
The ESB approach also needs the first two steps of TIPS, i.e., 

computing the occurrences per bin per student for each sequential 

pattern. However, in the next step, the ESB adopts the idea of 
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repeated-measures designs [13] and regards the occurrences of a 

pattern as a variable that is measured several times. One bin is one 

time. Under this framework, one-way repeated ANOVA can be 

conducted with the occurrences as the dependent variable and the 

bin number (i.e., the time) as the independent within-subject 

variable. Then, ESB calculates the effect size to characterize the 

association strength between the bin number and the occurrences 

of a pattern. The ESB regards the effect size as a temporal 

interestingness metric for sequential patterns. Given that the 

number of students and bins within a study is constant, the sample 

sizes for all frequent patterns are the same. Thus, the effect size is 

comparable across sequential patterns.  

There are several effect size measures for ANOVA. Lakens [8] 

suggested using omega squared for comparisons of effects within a 

study. The meaning of omega squared is analogous to R squared in 

linear regression. It estimates the percent of variance explained by 

the independent variable (the bin in this case). For instance, an 

omega squared of 0.1 means that 10% of pattern occurrence 

variance can be explained by the bin number (i.e., time).  

Omega squared is used for parametric repeated ANOVA. However, 

in practice, the distribution of sequential pattern occurrences may 

violate the assumptions of parametric ANOVA, such as the 

normality assumption and the homogeneity of variance. For 

example, some temporally varying sequential patterns may rarely 

happen at the beginning or end of learning activities. Their 

occurrence values have many zero in these periods, and their 

distributions are highly skewed. In this case, it would be better to 

conduct a non-parametric repeated ANOVA, such as the Friedman 

test. The effect size corresponding to the Friedman test is Kendall's 

W [17]. Its calculation is: 

𝑊 =
𝜒2

𝑁(𝑘 − 1)
                                            (2) 

𝜒2 is the Friedman test statistic value. N is the number of subjects, 

and k is the number of measurements per subject. Kendall’s W is 

interpreted similarly to omega squared and ranges from 0 (no 

relationship) to 1 (perfect relationship).  

2.2 Differences between TIPS and ESB 

2.2.1 Implicit assumptions.  
The direction of the relationship between the occurrences of 

patterns and time is opposite in the two methods. TIPS examines 

the extent to which the occurrences of a pattern can distinguish 

different bins. In other words, TIPS implies that the occurrences of 

a pattern influence the bin number. In contrast, the ESB assumes 

that the bin number influences the occurrences of a pattern. While 

both approaches look at the evolution of the usage of patterns, 

ESB’s assumption is more natural since the assumption is that the 

bin number is fixed, and the frequency of the pattern is what varies 

over time. Nevertheless, this distinction between the TIPS and ESB 

is conceptual and may not have a practical impact. 

2.2.2 Interpretability.  
The interpretability of ESB may be better than TIPS. As 

demonstrated above, the meaning of effect size (e.g., omega 

squared and Kendall's W) is straightforward. Besides, for 

researchers having experiences with ANOVA, they may already be 

more familiar with such measures of effect size. This characteristic 

of ESB can facilitate setting a threshold to filter patterns that may 

be less temporally interesting. For example, a general rule of thumb 

on magnitudes of Kendall's W is that W higher than 0.1 but smaller 

than 0.3 represents a small effect, W no less than 0.3 but less than 

0.5 represents a medium effect, and W no less than 0.5 is a large 

effect [3]. If researchers are only interested in patterns that have at 

least medium variation across time, they can use 0.3 as the 

Kendall's W threshold to filter patterns. However, it is more 

challenging to decide the information gain threshold because the 

scale of information gains depends on contexts, such as the number 

of categories (i.e., the number of bins) of the label and the number 

of distinct values of the feature.  

3. Application example 
In order to demonstrate the differences of TIPS and ESB in 

identifying temporally interesting sequential patterns, they were 

applied to data from a recent study where 88 sixth-grade students 

learned climate change within Betty’s Brain, a computer-based 

learning environment [2]. Students firstly received a training 

session on how to use Betty’s Brain and used it to study climate 

change in the next four school days around 45 minutes per day. The 

action logs of students’ working on Betty’s Brain were analyzed. 

The output of TIPS and ESB were compared to investigate the 

relative advantages of ESB. 

3.1 Betty’s Brain 
In Betty’s Brain, students learn about scientific phenomena, such 

as climate change, by teaching Betty, a virtual pedagogical agent. 

They teach Betty by adding scientific concepts and directed causal 

links among the concepts on a blank page. Students can access 

hypermedia resource pages on relevant scientific concepts and 

causal relationships. Students can evaluate the causal links by 

asking Betty to take quizzes. By looking at Betty’s correct and 

incorrect answers, students can identify problems in their 

understanding. 

3.2 Data preprocessing 
Firstly, irrelevant actions, such as actions initiated by the system, 

were removed from the raw action logs [6]. Then, actions were 

contextualized based on the duration and coherence. Viewing quiz 

results actions were labeled long vs. short, depending on whether 

the duration was higher than 3 seconds. Reading page actions were 

labeled long vs. short, depending on whether the duration was 

longer than 10 seconds. Long reading pages, adding, revising, and 

marking links were labeled coherent vs. incoherent, depending on 

whether these actions were based on prior actions [15]. Finally, the 

same consecutive actions were collapsed into a single action but 

labeled multiple. For example, two consecutive short reads were 

collapsed into an action named multiple short read. 

3.3 Applying ESB and TIPS 
Traditional sequence mining was applied to the preprocessed 

dataset to get frequent sequential patterns. The threshold for the 

support value was 0.5. The maximum gap was 2. This step resulted 

in 176 frequent sequential patterns. Then, each student’s 

preprocessed log file was segmented into five bins of equal size. 

For each frequent sequential pattern, its occurrences were 

calculated per bin per student. Next, Kendall's W and IG of each 

pattern were computed. These patterns were ranked based on 

Kendall's W and IG, respectively. 

3.4 Results 
Some patterns had a high W-based ranking but a comparably lower 

IG-based ranking or a high IG-based ranking but a comparably 

lower W-based ranking. Table 1 presents the ranking, Kendall’s W, 

and IG of four such patterns. View notes → Multiple short read and 

Read short → Multiple incoherent read were ranked in the top 10 
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based on Kendall's W, but 33rd and 35th based on IG. In contrast, 

Short read → Coherent read and  Taking a quiz → Prompt → 

Coherent revision were ranked in the top 10 based on IG, but 37th 

and 39th based on Kendall’s W.  

Figures 1 to 4 use boxplots to display the occurrences of the four 

patterns in each bin. The evolutions of View note → Multiple short 

read and Short read → Multiple incoherent read was quite similar. 

Both their usage was more frequent in the first bin than in the others 

and had little variation among the four last bins. Forty percent of 

students made View note → Multiple short read in the first bin, 

while less than 16% of students made this pattern in the other bins. 

Similarly, thirty-four percent of students executed Short read → 

Multiple incoherent read in the first bin, but less than 12.5% of 

students did so in the others. 

By contrast, Short read → Coherent read and  Taking a quiz → 

Prompts → Coherent revision were less frequent in the first bin 

than the others. Thirty percent of students executed Short read → 

Coherent read in the first bin, but over 55% of students did so in 

the others. Twenty-five percent of students made Taking a quiz → 

Prompts → Coherent revision in the first bin, but over 40% of 

students did so in the others.  

There are also similarities between ESB and TIPS. For instance, 

fourteen patterns were ranked in the top 20 most interesting patterns 

by both Kendall’s W and IG, and ten patterns were ranked in the 

lowest 20 by both metrics.  

 

Table 1. Four selected sequential patterns. 

Pattern 
W - 

ranking 

IG - 

ranking 

Kendall's 

W 
IG 

View note → Multiple 

short read 
10 33 0.117 0.051 

Read short → Multiple 

incoherent read 
8 35 0.133 0.049 

Short read → Coherent 

read 
37 10 0.062 0.073 

Taking a quiz → Prompts 

→ Coherent revision 
39 7 0.061 0.078 

 

Figure 1. The boxplot of the occurrences of View note → Multiple 

short read. 

Figure 2. The boxplot of the occurrences of Short read → Multiple 

incoherent read. 

Figure 3. The boxplot of the occurrences of Short read → Coherent 

read. 

Figure 4. The boxplot of the occurrences of Taking a quiz → 

Prompts → Coherent revision. 
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4. Discussion 
This paper highlighted three differences between ESB and TIPS. 

The first one is that the implicit assumption of ESB may be more 

natural than TIPS. ESB assumes that the bin number (i.e., time) 

influences the occurrences of a pattern, while TIPS implies that the 

occurrences of a pattern influence the bin number (see section 2.2).  

The second difference is the interpretability. It is easier to interpret 

the ESB metric (i.e., effect size) than the TIPS metric (i.e., IG). For 

instance, the Kendall’s W of View note → Multiple short read and 

Short read → Multiple incoherent read was 0.117 and 0.133, 

respectively, and their IG were 0.051 and 0.049, respectively. A 

Kendall’s W greater than 0.1 but smaller than 0.3 means a small 

effect [3], so the two patterns have small variation across time. 

However, it is hard to understand what an IG of 0.051 or 0.049 

means as both the number of bins and the number of distinct values 

of pattern occurrences may influence the range of IG.   

The results of the application example revealed the third difference: 

the rankings of sequential pattern based on the effect size and IG 

were different. This difference is understandable because the 

formulas for the effect size and information gain are quite different.  

Based on Kendall’s W, sequential patterns with more occurrences 

in the first bin and few occurrences in the others were ranked higher 

than patterns with fewer occurrences in the first bin and more 

occurrences in the others. By contrast, based on IG, the former was 

ranked lower than the latter. 

Although for all the above sequential patterns, there is a big 

difference in pattern usage between the first bin and the others, 

Kendall’s W prefers View note → Multiple short read and Short 

read → Multiple incoherent read because the variation of their 

occurrences across students (between-student variation) were small 

within each of bin 2 to 5. Recall that less than 16% and 12.5% of 

students made these patterns in bin 2 to 5, respectively. This means 

that most of their occurrence values were zero in bin 2 to 5. In 

contrast, many occurrence values of Short read → Coherent read 

and  Taking a quiz → Prompts → Coherent revision in bin 2 to 5 

was non-zero (over 55% and 40% of students did them, 

respectively), and their usage had higher variation within each of 

bin 2 to 5 than View note → Multiple short read and Short read → 

Multiple incoherent read (see Figure 1 to 4). In one-way repeated 

ANOVA, the between-student variation is an error term. 

Considering the error term, the variation across bins were higher 

for View note → Multiple short read and Short read → Multiple 

incoherent read than for Short read → Coherent read and  Taking 

a quiz → Prompts → Coherent revision. Therefore, the former 

patterns had a greater Kendall’s W than the latter.    

IG prefers Short read → Coherent read and  Taking a quiz → 

Prompts → Coherent revision because many of their occurrence 

values in bin 2 to 5 were non-zero, and the distribution of these non-

zero values varied across bins. For example, the number of students 

that did Short read → Coherent read two times was the biggest bin 

2, but the number of students that did this pattern four times was 

the biggest in bin 4. Knowing this occurrence differences of Short 

read →  Coherent read among bin 2 to 5 could decrease the 

uncertainty about the bin number (the label). However, most 

occurrence values of View note → Multiple short read and Short 

read → Multiple incoherent read were zero in bin 2 to 5. Knowing 

their occurrences provided less information about the bin number 

than knowing the occurrences of Short read → Coherent read and  

Taking a quiz → Prompts → Coherent revision.   

In summary, the ESB approach may assign higher rankings than 

TIPS to patterns with more occurrences in one bin but few and 

similar occurrences in the others, while the latter may assign higher 

rankings than the former to patterns with fewer occurrences in one 

bin but more and similar occurrences in the else.  

Thus, ESB would be useful if the goal is to identify sequential 

patterns that mainly appear in only one bin. Such patterns may 

inform the intervention and learning design. For instance, both 

View note → Multiple short read and Short read → Multiple 

incoherent read, patterns that mainly occurred in the first bin, are 

generally considered as bad strategies in Betty’s Brain. This 

suggests that students might not be familiar with how to utilize the 

resource page when they start using Betty’s Brain to learn climate 

change. Therefore, the training session may need to teach students 

more about how to read the resource page effectively. 

4.1 Next steps 
The application of TIPS and ESB to the example data provided 

initial insights about the relative advantages of these approaches, 

but it is necessary to obtain a more comprehensive understanding 

of their differences in ranking sequential patterns. This goal will be 

achieved by conducting a larger scale investigation where TIPS and 

ESB will be applied to dataset from various learning environments. 

Such investigation will demonstrate under which situation one 

method has better utilities than the other so that researchers can 

make an informed decision about which approach is most 

appropriate given a research purpose. 

While our preliminary application example suggests the utility of 

ESB to provide insights into improving learning intervention,  the 

goal of the current paper was to propose a new methodological 

approach for mining temporally interesting sequential patterns. As 

such, further work will be necessary to leverage ESB to answer 

formal research questions, such as whether an intervention is 

effective [7]. 
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ABSTRACT 
There has been considerable interest in techniques for modelling 
student learning across practice problems to drive real-time 
adaptive learning, with particular focus on variants of the classic 
Bayesian Knowledge Tracing (BKT) model proposed by Corbett 
& Anderson, 1995. Over time researches have proposed many 
variants of BKT with differentiation based on their treatment of 
the underlying parameters: (a) general across student and 
questions; (b) individualized for students; and (c) individualized 
for questions. Yet at the same time, most of these variants are 
similar in that they utilize the same Hidden Markov (HMM) 
architecture to model student learning and share many of the same 
drawbacks, including less effective balancing between recent and 
historical student data and assuming that students learn at the 
same rate across all the attempts irrespective of if they get the 
question right. At the same time, these variants share the virtue of 
parameter interpretability, a virtue not seen in recent efforts to re-
cast knowledge tracing as a deep learning problem. 

This paper proposes a different architecture that replaces learning 
rate with recency weights which capture student improvement 
wholly through data rather than assuming constant learning across 
attempts and manages recent and historical data more 
appropriately while retaining the interpretability of BKT 
parameters. The proposed model was tested on multiple public 
datasets from ASSISTments and Mindspark and performed 
similarly to classic BKT model on unseen data.   

Keywords 

Intelligent tutoring system, Bayesian Knowledge Tracing, Student 
modelling, Hidden Markov Model (HMM) 

1. INTRODUCTION 
One of the most common forms of adaptivity in intelligent 
tutoring systems is mastery learning, where a system provides 
content on a skill until a student demonstrates they know the skill 
[8]. Most intelligent tutoring systems rely on “Knowledge 
Tracing” models which predict whether a student has learned a 
skill or not based on the interactions with the learning resources 
related to that skill within the tutoring system. Currently, most 
systems used at scale rely on Corbett and Anderson’s (1995) 

Bayesian Knowledge Tracing (BKT) model or a close variant of 
it. Most of these models differ in their treatment of the parameters 
L0, G, S and T, but leave the basic structure of the underlying 
HMM model unchanged, and thus share many of the limitations 
and drawbacks of the BKT model (e.g. [7, 10, 9, 10]). Recently 
there have been some attempts to use deep learning-based models 
in education, termed Deep Knowledge Tracing (DKT) [6, 5]. 
Though DKT models have performance advantages over BKT, it 
is extremely difficult to interpret the implicit knowledge model. 
Khajah and colleagues [6] found that it is possible to make 
meaningful enhancements to BKT that bring its performance to 
the same level as DKT models. 

In this paper, we propose an algorithm, MS-BKT (Multistate 
BKT) to address two particular shortcomings of the classic BKT 
model. First, BKT assumes a constant learning rate after each 
practice opportunity, irrespective of the student responses. which 
can lead to bias in estimating student mastery level. Second, BKT 
represents latent student knowledge as a binary variable with 
known and unknown states, which is a simplification and assumes 
that the probability of being in a state at step n depends only on 
the previous step n-1. We suspect that these assumptions limit the 
BKT model from considering the entire history of responses for 
students in a balanced manner by giving unproportionately high 
weight to the most recent attempt. The MS-BKT addresses these 
issues through two modifications: 

 The MS-BKT model gives more weight to recent 
responses over older ones during the iterative Bayesian 
update in order to capture changes in student mastery 
level from data and excludes learning rate T so there is 
no assumption of fixed learning after each attempt. 
Please note that this paper uses ‘Recency’ weights 
differently than previous papers such as Galyardt & 
Goldin [3] or Gong et al., [4], where they used a decay 
function to down-weight the older attempts. In 
comparison, this paper incrementally increases the 
weight of the newer attempts. 

 MS-BKT expands the knowledge node from the typical 
2 states (‘Not learned’, ‘Learned’) to 21 states. Adding 
multiple states to the knowledge node allows MS-BKT 
to better capture complex sequences of correct and 
incorrect responses as multiple states make it possible to 
fine tune the knowledge level more granularly after each 
new observation than the 2 state model. Given that real 
world data can be very noisy, MS-BKT model estimates 
lead to smoother learning curves than classic BKT 
models. 
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2. APPROACH 
2.1 Classic BKT Model Architecture 
Classic BKT employs a Hidden Markov Model (HMM) with a 
two-state (‘Not learned’, ‘Learned’) latent node representing 
student mastery level of the skill and a binary observed node 
indicating whether the student solved the question correctly or 
incorrectly as shown in Figure 1. The model assumes that the 
student can make the transition from not knowing the skill to 
knowing after every practice opportunity, fit as the learning 
probability p(T). The model also incorporates the probability that 
the student may answer a question incorrectly despite knowing the 
skill (called slip) or may get the answer correct despite not 
knowing the skill (called guess). 

The probability that the student knows the skill gets updated after 
every practice opportunity through the following equations – 

 
2.2 Multistate BKT Model Architecture 
The architecture for MS-BKT, shown in Figure 2, is similar to 
that of classic BKT with two changes: 

 The “knowledge node” consists of 21 states instead of 2 
(Knowledge states are denoted by Lin where i is in range 

0 to 20 and Σi p(Lin) = 1). 21 discrete states were 
selected as it was granular enough to give a precise 
estimate with manageable calculation overhead. The 
choice of number of states can be explored further in 
future work, including the possibility of a continuous 
distribution function. 

 A recency weight parameter R is introduced in place of 
the transition probability p(T). The model assigns a 
default weight of 1 to the first attempt and thereafter 
weight increases incrementally by a fixed quantum R 
for each new attempt. The optimal value of R can be 
learnt from data. Recent attempts are incrementally 
weighted more based on the intuition that the recent 
data will reflect current learning level better but at the 
same time, older attempts cannot be ignored completely 
as data can be inherently noisy. 

This effectively means that MS-BKT is the same as classic BKT 
in that new data is integrated with a past estimate aggregating all 
past data, but differs in that the past estimate is now a distribution 
and that the weight of the new data increases over time. 

 
Figure 1. Classic BKT model

 
Figure 2. MS-BKT model architecture. 
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2.3 Updating Student Knowledge 
Given an observation of the student’s response at time opportunity 
n (correct or incorrect), updated student knowledge (Ln) is 
calculated using Bayes’ rule. Since Ln now consist of 21 states, 
the probability of each state needs to be updated after every new 
observation as follows: 

Where: 
 p(Lin | Cn ) represents the probability of the ith knowledge 

state given the observation Cn 
 p(Cn | Lin-1) is the likelihood factor. p(Cn | Lin-1) = Lin-1 * 

(1- p(S)) + (1- Lin-1)*p(G) 
 p(Lin-1) is the prior probability of the ith knowledge state 
 1 + (n-1)*R is the weight for the nth response, where n is 

the number of actions so far and R is a free parameter 
estimated during model fitting 

  is the normalizing factor which is computed at each 
iteration to be the value that ensures that probabilities 
across all the 21 states sum to 1 
 

Once new probabilities are calculated, Ln value is estimated using 
maximum a posteriori probability (MAP) estimate that equals the 
mode of the posterior distribution. The advantage of using a MAP 
estimate over an EAP estimate is that it provides sharper updates 

even at the initial responses stage. The overall model parameters 
are learned from data using ‘Expectation Maximization’. 

3. RECENCY WEIGHTS SUCCESSFULLY 
CAPTURES REAL TIME LEARNING 
FROM DATA 
In this section we use a hypothetical example to show that the 
MS-BKT model is capable of capturing learning and forgetting 
from data itself by the property of recency weights and does not 
need an external fixed amount of learning to be added after each 
attempt, unlike classic BKT. This example tracks how the mastery 
level of three fictitious students changes as they attempt 10 
questions on a skill for MS-BKT model. Parameter values used 
for the below illustration are as follows: L0: 0.5; G: 0.1; S: 0.1; 
and T: 0.3. 
All three students answer five questions out of 10 correctly, but 
their patterns are different. Student1 answers questions correctly 
and incorrectly consecutively. Student2 answers more questions 
correctly in later attempts, whereas for Student3 the situation is 
reversed, suggesting that Student2 displays a learning behavior 
whereas Student3 displays forgetting. 
As the following table shows, the mastery level estimate from 
MS-BKT for Student2 (pattern with learning) is considerably 
higher than for Student3 (pattern with forgetting), though both 
students answer 5 out of 10 questions correctly. The mastery 
estimate of Student1, which was added as a base case, is close to 
0.5 as expected. 

 
Table 1. Response patterns used for generating posterior distribution curves 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
Mastery 
Estimate 

Student1 0 1 0 1 0 1 0 1 0 1 0.55 
Student2 0 0 0 0 1 0 1 1 1 1 0.67 
Student3 1 1 1 0 1 0 0 1 0 0 0.37 

 

4. OTHER OBSERVATIONS 
In the BKT model, Ln values get updated very aggressively after 
each observation and result in large fluctuations in the value of Ln 
(though, with reasonable parameter values, BKT still has lower 
fluctuation than has been reported for DKT, e.g. Yeung & Yeung, 
2018). In comparison to classic BKT model, the MS-BKT model 
does not fluctuate that widely for the same set of skill parameters. 
MS-BKT model also takes in account the entire history of the 
student’s responses in a more balanced manner whereas in BKT, a 
student’s response history prior to the third or fourth attempt may 
become irrelevant due to aggressive updates. 
Table 2 and Figure 3 illustrate the above two points using 
fictitious student data. The underlying BKT and MS-BKT models 
use the same parameter values for L0, G, and S; L0: 0.5, G: 0.1, 
and S: 0.1. T value for BKT model is 0.1 and R value for MS-
BKT is 0.3. The comparison of Ln values for Student4, Student5, 
and Student6 show that Ln values have significantly higher 
fluctuations for BKT model in comparison to MS-BKT model. 
Also, in the cases of Student4 and Student7, Ln estimates are 

extremely high for the BKT model and does not correspond to the 
respective response patterns. For Student4, Ln shoots up 
drastically to 0.75, even though there is a long history of incorrect 
responses on previous attempts and learning rate is only 0.1. By 
comparison, the Ln value is around 0.30 for the MS-BKT model. 
For Student7, Ln value is 0.83 in the case of the BKT model even 
though 3 out of last 4 responses were incorrect. This is largely due 
to the fact that the BKT model considers fixed learning rate 
irrespective of the student responses. The same Ln value for the 
MS-BKT model is 0.45, as the model is able to derive learning or 
forgetting directly from the data. Comparison of the response 
patterns of Student5 and Student6 shows some trade-offs between 
models. MS-BKT model estimates the Ln value to be 0.55 for 
Student6 in comparison to 0.90 estimated by the classic BKT 
model – probably a better fit, since the student has alternated 
between answering the questions correctly and incorrectly. By 
contrast, for student5 MS-BKT estimates Ln value to be 0.70 
giving the student more credit as for recent responses being 
correct – perhaps a little too low compared to BKT. Of course, all 
of these estimates can be adjusted by tuning the parameters during 
model development. 
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Table 2. Response patterns used for comparing the two models 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Average BKT MS-BKT 
Student4 0 0 0 0 0 1 0 1 0.25 0.75 0.30 
Student5 0 0 0 0 1 1 1 1 0.50 1.00 0.70 

Student6 0 1 0 1 0 1 0 1 0.50 0.90 0.55 

Student7 0 1 1 1 0 1 0 0 0.50 0.83 0.45 

 
  

  
 

 

 

 
Figure 3. Comparison of Ln estimate for BKT and MS-BKT. 

 
 
 

Table 3. L0, G, S, T values for BKT and MS-BKT models 

   BKT    MS-BKT    
Dataset #Student #Attempts L0 G S T L0 G S T 
G6_207 620 6 0.42 0.28 0.15 0.08 0.56 0.27 0.29 0.25 

G7_233 540 7 0.73 0.26 0.22 0.01 0.65 0.09 0.25 0.25 

G6_217 500 5 0.61 0.30 0.13 0.10 0.60 0.29 0.21 0.25 
PER015 855 5 0.50 0.11 0.30 0.15 0.58 0.15 0.29 0.25 
WNO021_57 536 6 0.80 0.24 0.18 0.11 0.66 0.27 0.19 0.50 
WNO021_48 536 6 0.78 0.30 0.08 0.30 0.74 0.29 0.09 0.25 
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Table 4. Comparison of BKT and MS-BKT models 

   BKT  MS-BKT  
Dataset #Students #Attempts AUC ROC RMSE AUC ROC RMSE 
G6_207 156 6 0.707 0.457 0.712 0.460 

G7_233 138 7 0.663 0.464 0.640 0.468 

G6_217 126 5 0.664 0.442 0.650 0.446 
PER015 171 5 0.659 0.480 0.652 0.483 
WNO021_57 134 6 0.618 0.421 0.639 0.425 
WNO021_48 134 6 0.702 0.337 0.664 0.345 

 

5. PREDICTION QUALITY 
We used 6 datasets across 2 different ITS (Assistments - G6_207, 
G7_233, G6_217; Mindspark - PER015, WNO021_57, 
WNO021_48) to compare the performance of the MS-BKT model 
against classic BKT model. Mindspark is an adaptive online tutor 
for Math and English, developed by Educational Initiatives (EI). 
Mindspark Math currently has 80,000 users across India, 
primarily from private schools, in grades 1 to 9. ASSISTments is 
an online tutor that supports student learning through the use of 
scaffolding, hints, and immediate feedback. All the datasets 
consist of student responses in the form of correct or incorrect 
answers from specific problems tagged by skill. The performance 
was compared on a hold-out data set consisting of 20% of the 
data. Table 3 lists out the parameter values for the two models for 
all the datasets using training data. The parameters for each model 
were tuned using the simple Brute Force approach. Table 4 
compares the performance of both the models on hold-out dataset. 
Results show that the classic BKT model performs better than 
MS-BKT model on most of the datasets (except G6_207 and 
WNO021_57) but the differences are not very large. 

6. CONCLUSION 
This paper highlights two issues related to the classic BKT model 
and tries to address them by proposing a new model (MS-BKT). 
The paper demonstrates that applying a recency adjustment to 
Bayesian updates can lead to better properties of knowledge 
estimation, compared to using a static learning rate. The paper 
also proposes considering latent student knowledge as a multistate 
variable instead of 2 states, leading to smoother updates in the 
learning level estimate. In summary, the MS-BKT model displays 
some useful properties that are worth considering. Ultimately, 
models should both capture data well and have desirable 
properties for actual use, whether for use in a running system or 
discovery with models analysis. There is considerable future work 
to be done in refining the MS-BKT model further – such as 
selection of the appropriate number of knowledge states, 
implementation of recency weights, and effective ways to tune the 
model parameters. 
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ABSTRACT
A good diagnostic assessment is one that can (i) discriminate
between students of different abilities for a given skill set,
(ii) be consistent with ground truth data and (iii) achieve
this with as few assessment questions as possible. In this pa-
per, we explore a method to meet these objectives. This is
achieved by selecting questions from a question database and
assembling them to create a diagnostic test paper according
to a given configurable policy. We consider policies based on
multiple attributes of the questions such as discrimination
ability and behavioral parameters, as well as a baseline pol-
icy. We develop metrics to evaluate the policies and perform
the evaluation using historical student attempt data on as-
sessments conducted on an online learning platform, as well
as on a pilot test on the platform administered to a subset of
users. We are able to estimate student abilities 40% better
with a diagnostic test as compared to baseline policy, with
questions derived from a larger dataset. Further, empirical
data from a pilot gave an 18% higher spread, denoting bet-
ter discrimination, for our diagnostic test compared to the
baseline test.

Keywords
Diagnostic Test Paper, Question Paper Generation, Item
Response Theory, Quality Evaluation

1. INTRODUCTION
Learning theory is an important field of research, which in-
corporates insights from such diverse fields as psychology,
pedagogy, neuroscience, and computing to model how well a
student learns the taught information. Insights from learn-
ing theory are applicable in a wide variety of applications,
such as creating intelligent tutor systems and learning plat-
forms, designing courses, designing test papers for exams,
and teaching a learner a skill. A prerequisite for any of these
activities is to diagnose the current skill level of a new stu-
dent. This is akin to the cold start problem in recommender
systems. One proven technique to assessing the current skill

level of a new student is to use a set of assessment challenges,
most commonly taking the form of a test paper. A good test
paper is one that has specific characteristics in terms of ac-
curacy and discrimination: The test paper should be able
to accurately diagnose the ability level of a student for the
skill set being evaluated, and it should be able to discrimi-
nate between students of different abilities. Additionally, it
should be able to meet these objectives using as few ques-
tions as possible.

(a) (b)

Figure 1: (a) A test in which students of different abilities
perform similarly, i.e. get similar scores, is not a good test
(b) A better test which can discriminate between students
of different ability

If a test paper has questions that many, or all, students
answer equally correct or wrong, it will not provide any
meaningful information about students. An ideal test paper
would reflect student performance such that students with
low ability level would get fewer questions correct (lower
marks scored) while students with high ability level would
get more questions correct (higher marks scored) Fig. 1 il-
lustrates both types of test papers.

In this paper, we present an approach to select questions
from a question bank, using configurable policies, that meet
the above criteria. We use the selected questions to create
a test paper. We then evaluate the generated test paper
as per the criteria of accuracy and discrimination, and thus
decide on the goodness of the policy. Finally, we validate the
generated test paper with the best policy on a pilot study of
students attempting the test paper. The rest of the paper is
organized as follows. Section 2 looks at related work in test
paper generation. Section 3 describes our approach to model
the problem. Section 4 outlines multiple policies to select
questions to compose a test paper. Section 5 discusses the
quality evaluation criteria. Section 6 discusses and analyses
the results on the simulated and pilot test papers. Finally,
Section 7 concludes the paper and presents directions for
future work.

2. RELATED WORK

Soma Dhavala, Chirag Bhatia, Joy Bose, Keyur Faldu and Aditi
Avasthi "Auto generation of diagnostic assessments and their
quality evaluation" In: Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020), Anna N.
Rafferty, Jacob Whitehill, Violetta Cavalli-Sforza, and Cristobal
Romero (eds.) 2020, pp. 730 - 735
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Cen et al. [1] described the architecture of an automated
test generation system, using random selection and other
strategies to generate questions. They focused on the archi-
tecture and not on the effectiveness of the selected questions
in diagnosing student ability. A number of studies have been
performed on the effectiveness of adaptive test generation,
using algorithms to select test questions dynamically from
a given pool. Linacre [2] surveyed computer adaptive test-
ing (CAT) in relation to its history and advantages such as
needing fewer questions and a shorter time frame than clas-
sical tests to diagnose a student’s skill level. The questions
are selected from a question database, and models such as
the Rasch model (a variant of the popular item response
theory (IRT) model [3]) are used. CAT starts by present-
ing questions with average calibrated difficulty at first, then
increasing or decreasing the difficulty level of subsequent
questions depending on whether the student got the answer
right or not. This continues until the system has reached a
good estimate of the student’s true ability. CAT testing has
limitations such as restrictions on re-calibration if the stu-
dent changes their mind about a previous answer. Another
limitation is that the calibration methodology is based on a
single parameter, that of difficulty, and not other parame-
ters such as behavior. Kingsbury [4] suggested an approach
to improve the adaptive calibration process in a CAT test by
considering the student’s momentary trait level estimate, in
addition to item difficulty, while selecting questions. Also,
the estimated difficulty of each question, initially tagged by
experts, is continually calibrated based on how many stu-
dents have answered correctly in the tests given. They found
this approach yielded better results in estimating the diffi-
culty of an item. Makransky [5] compared calibration strate-
gies for test questions, including a random strategy and a
strategy where the questions are calibrated at the end of a
phase or multiple phases, in order to estimate the item dif-
ficulty accurately. They implemented the strategies on 1PL
and 2PL models of IRT, and found that a continuous up-
dating strategy performed best. Wim [6] surveyed student
ability estimation as well as item selection for CATs, using
models such as Maximum Likelihood and Bayesian criteria
to estimate ability and mean absolute error as the evaluation
parameter. Our paper also uses similar models, and addi-
tionally realtime data of administered tests to evaluate the
accuracy of the models as well as the discrimination ability.

Some researchers have studied factors other than item diffi-
culty when selecting questions. Liu et al [7] found that be-
havioral factors such as test-taking motivation in students
can play an important role in determining learning out-
comes. Similarly, Tsaousis [8] suggested a variant of the IRT
model in which behavioral parameters like item response
time can be incorporated. In another study on behavior as a
factor, Jaworski [9] discussed the calibration of control ques-
tions in a personalized polygraph test, using emotion and
behavior as parameters in selecting the questions. Daroudi
et al. [10] surveyed reinforcement learning as a strategy to
model the sequencing of instructions in order to maximize
learning.

3. PROBLEM FORMULATION
For our analysis, we use a question database taken from
Embibe, an online learning platform, along with responses
from a set of students on each question. The student’s abil-

ity is a latent variable, which when estimated with statisti-
cally adequate data samples gives a better estimation of the
ground truth. For this paper, we consider the ability derived
from a larger dataset (in this case, the question database) as
ground truth, and abilities derived from a single test as the
predicted abilities. For each question in the database, we
have the following parameters: Discrimination factor, Diffi-
culty level, Chapter number (represents the chapter number
in the syllabus which the question comes from) and Student
behavior data for the question. For each student, we have
the Ability and Discrimination factor parameters (from the
fitted IRT model). The difficulty level and chapter num-
ber of each question are annotated by human experts. The
anonymized data related to the student responses is collected
by the platform.

Out of this ground truth dataset, our objective is to select
a subset of questions to assemble into a test paper, which
meets the criteria such as best discriminative ability and
best match of the identified student ability with the ground
truth.

Figure 2: Ground truth dataset of questions taken of a learn-
ing platform, with IRT parameters and chapter information

Fig. 2 illustrates the ground truth dataset of questions,
along with data on the correctness of students’ past re-
sponses on each question (whether they answered the ques-
tion correctly or not). Out of this matrix, we select a small
subset of exam questions that can discriminate between stu-
dents of different abilities.

As per the Item Response Theory (IRT) model, for each
question we have a measure of its difficulty and discrimina-
tive ability, as well as a measure of the student ability for
each student. The standard IRT model gives a relation be-
tween the ability and the difficulty, based on one or more
parameters and predicts the likelihood that the student will
answer that question correctly. We use the 2PL IRT model
to calibrate and evaluate our generated test papers.

As per the 2PL IRT model, the probability or likelihood of
the student answering a question correctly is given by the
following equation:

P (X = 1|θ, α, β) =
eα(θ−β)

1 + eα(θ−β)
(1)

Here, θ represents the student’s skill/ability level, α repre-
sents the discrimination factor of the question, β represents
the difficulty level of the question and P represents the prob-
ability that the student will answer correctly.
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We infer the IRT model parameters (α, β, θ) from our
ground truth dataset by fitting a fully connected deep neu-
ral network (modeled using Keras [11] library). The inputs
to the neural network are one-hot encodings of the student
and question vectors, and the output is the correctness of the
student’s response for that question, which is a binary value.
The IRT parameters are estimated by fitting the neural net-
work using Binary Cross Entropy (BCE) loss. The fitted
model is scalable and can handle missing data and imbal-
anced classes very well. Fig. 3 shows the architecture of the
deep neural network for 1PL IRT model. Other IRT models
can be realized using the same template.

Figure 3: Neural network architecture for estimating 1PL
IRT parameter values.

Our problem of selecting an optimal set of questions to form
a test, following various constraints, can be modeled in the
following manner: Let A be a K-dimensional tensor of size
n1, n2, . . . , nK . Each entry of this tensor is either 0 or 1
indicating whether a question with a particular set of at-
tributes was sampled or not. Each dimension of this tensor
represents a question attribute, such as a chapter number,
difficulty level, etc. For example, let us say we are inter-
ested in creating a test such that four chapters are to be
covered, with difficulty levels ranging from 1-10. Then we
have n1 = 4, n2 = 10. Here A[i, j] = 1 means that we select
a question from chapter i with difficulty level j. We can
then set constraints on this tensor to reflect some desired
characteristics. For example, the following constraint says
that there has to be at least one question from each chapter.∑

j

A[i, j] ≥ 1

Likewise, we can say that difficulties should follow a certain
distribution. Let dj be the number of questions we like to
have whose difficulty level is j. Then,∑

i

A[i, j] = dj

Now we can count how many times the above condition is
not met, as a way to measure the quality of the assign-
ment/sampling. Using this, we can form an objective func-
tion that evaluates how well the chosen test reflects the
above loss, which simply counts the number of disagree-
ments.

min
∑
j

I(
∑
i

A[i, j] 6= dj)

The above objective function is zero when conditions are
met exactly (hard constraint). We can generalize this idea

to include constraints about all the question attributes (that
are factor variables). Let there be nk levels for the k − th
dimension of the tensor A. These levels represent, for each
attribute, the range of values that attribute can take. Let
dk(i) be the number of questions needed where the ques-
tion’s k − th attribute has level ck(i). Notice that different
attributes can have different number of levels.

min

K∑
k=1

λk

nk∑
i=1

I(
∑

Ak[i] 6= dk(i))

Here
∑
Ak[i] means that, we select the k − th dimension of

the tensor, and its i− th cube, and summing along the cube.
In particular, when ∀k(i)dk(i) = 1 then Latin HyperCube
sampling can be used. The above objective can also be used
as a fitness function in genetic algorithms or other search
techniques, both stochastic and deterministic, to allocate
questions to a test paper. λk is a weight parameter which
we can tune, for our purposes in this paper we set all the
values of λk to be equal.

The above objective function, which can be coupled with
other IRT based test design objectives, is dealing with do-
main constraints. Test designs that consider the variance-
covariance matrices of parameters in the IRT are also widely
used[12]. In particular, the relationship between the item
difficulty, discrimination and ability has been addressed from
a D-optimality sense. Based on those insights, we formulate
a theorem along with proof as below. This is used to develop
one of our question selection policies.

Theorem 1. In a 2PL IRT model, when the difficulty of
an item is close to the ability of the person, an item with high
discrimination will have high information, and is locally D-
optimal.

Proof. The Item Information function for the 2PL IRT
model introduced earlier is given as:

I(θ;α, β) =
α2eα(θ−β)

(1 + eα(θ−β))2

The above equation can be rewritten as:

I(ε;α) =
α2eεα

(1 + eεα)2

where ε = θ − β. Let us consider another item with higher
discrimination α′ = α+ δ, δ > 0, but with difficulty close to
the ability. Then,

lim
ε→0

I(ε;α′)

I(ε;α)
=

(
α+ δ

α

)2

> 1

Hence, an item with high discrimination will have higher
asymptotic relative efficiency, when the difficulty is in the
neighbourhood of the ability. We can claim that such a
policy is D-optimal.

4. TEST PAPER GENERATION
In order to generate a test paper, we propose a set of can-
didate policies to select questions from the ground truth
dataset and assemble the selected questions to form a test
paper. All policies assume that the syllabus is covered ad-
equately, i.e. questions are selected from each area of the
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syllabus. Based on theorem 1 and [12], we select questions
with a mix of difficulty levels. We evaluate these policies as
per their effectiveness in distinguishing students. To eval-
uate each policy, we measure parameters such as spread of
the scores obtained by different students on the test and how
well the diagnosed abilities of the students correspond with
the ground truth abilities (by computing the Mean Square
Error, Spearman’s Rank Correlation and a scatter plot of
diagnosed ability vs. true ability). We then choose the best
policy to generate a test paper to validate our model by
testing on a real world group of students using the same
online learning platform where we sourced the ground truth
dataset. Fig. 4 shows a flowchart illustrating this method.

Figure 4: Flowchart showing a method to generate test pa-
pers from a question bank by selecting questions using a
configurable policy, and evaluating how well the policy di-
agnoses different kinds of students

The candidate policies are described in the following subsec-
tions.

4.1 Baseline policy πBSP
As a baseline, we select N questions from the ground truth
dataset, by randomly selecting over other question attributes
after ensuring a mix of difficulty levels and syllabus coverage.
This selection of questions becomes our standard baseline -
BSP.

4.2 Discrimination only policy πDOP
We use the discrimination parameter values inferred from
the fitted 2PL IRT model. We select questions with a mix-
ture of difficulty levels, and the highest values of the discrim-
ination factor for each given difficulty level. We select N
questions from the ground truth dataset, ensuring syllabus
coverage (at least one question from each chapter), but also
ensuring that the overall discrimination factor of the ques-
tions is maximized. This policy, DOP, ensures that high
discrimination questions are selected, at any given difficulty
level.

4.3 Discrimination+behavior policy πDBP
In this policy, we incorporate behavior parameters along
with discrimination, difficulty and syllabus coverage, while
selecting questions. Behavior parameters refer to the stu-
dent behavior when taking the test, captured by the learn-
ing platform. These include parameters such as number of
questions that are likely to be answered too fast and incor-
rectly, or questions that are answered too slow but correctly,
among others. The questions are tagged as per which pa-
rameters are mostly manifested by students answering that
question and the top questions from each parameter are se-
lected. This policy, DBP, ensures that high discrimination
questions as well as student behavior are taken into account.

5. QUALITY EVALUATION CRITERIA
In order to evaluate the generated test papers, we use two
criteria: accuracy and discrimination. Accuracy refers to
how closely the diagnosed ability using the student responses
to the test paper corresponds to the actual ability of the
students. We use the RMSE between the ground truth and
the inferred ability as a measure of the accuracy. The rank
correlation between the ground truth rank and the estimated
rank, and scatter plot between the inferred and ground truth
ability, also indicate the accuracy.

Discrimination measures how successful the test paper is in
discriminating between students of different abilities. We
evaluate the accuracy and discrimination for the generated
test papers on a subset of M students (evaluation student
set) from our ground truth dataset. We use the spread and
distribution of scores as a measure of the discrimination.

Evaluation using RMSE
Using the IRT model, we predict the probability of each stu-
dent in the evaluation set answering the questions correctly,
and compute the average ability from the scores of the stu-
dents if they were to attempt the generated test paper. We
also determine the ground truth ability of each student from
the IRT model. Finally, we compute the root mean squared
error (RMSE) between the ground truth ability and inferred
ability to get a measure of the accuracy.

Evaluation using Spearman’s ρ
Here we sort the abilities of students obtained from the
ground truth data and from the generated test, and deter-
mine the rank correlation ρ between the two ranks.

Evaluation using scatterplots
We plot the abilities of students, inferred from the ground
truth, against the diagnosed abilities from the generated test
papers. The degree of scatter gives an indication of how
much the ability matches the inferred ability.

6. RESULTS AND DISCUSSION
We have an initial ground truth dataset, obtained from the
online learning platform, of close to 1300 questions and 1700
students along with the responses for each of the students on
each question, along with the derived IRT parameters. From
the dataset, we filter those students who have attempted less
than 25% of the questions in each paper, so that we have
sufficient data to estimate their abilities.

6.1 Simulated tests
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We choose 75 questions from the ground truth dataset for
each policy, in effect simulating a test of 75 questions. In
selecting the questions, we ensure syllabus coverage. Table
1 shows various test statistics.

Table 1: Comparison of test results from simulated tests
generated by the three policies

BSP DOP DBP
No. of students 312 312 312
No. of questions 75 75 75

Max. score possible 300 300 300
Max. score achieved 188 251 218
Min. score achieved -22 -17 -23

Score at 95th percentile 118.4 148 144.5
Score at 5th percentile 3 4 0

Avg. score achieved 60.80 79.25 77.18

Fig. 5 shows the comparison in spread of student scores for
the simulated tests on test papers generated using the three
policies.

Figure 5: Comparison of the spread in score obtained from
the simulated tests generated using following policies: BSP,
DOP and DBP.

For each of the test papers selected using different policies,
we evaluate the accuracy and discrimination as mentioned
in the previous section. We also calculate the ability of each
student from the remaining questions in the ground truth
dataset, which are not included in any of the generated test
papers.

Table 2: Comparison of RMSE (inferred ability and ability
from ground truth) and rank correlation ρ in tests generated
by different policies

Policies RMSE Rank corr ρ
BSP 0.844 0.59
DOP 0.549 0.83
DBP 0.615 0.788

We find that the DOP test gives 24.8% better spread of
scores (score at 95th percentile of students - score at 5th

percentile), as compared to the BSP baseline. DBP test
gives 25.2% better spread. The mean squared error for the
inferred ability of the students compared to the ground truth
ability is 0.844 for the BSP, 0.549 for the DOP and 0.615
for DBP. Table 2 shows the comparison between the policies

with respect to root mean square error (RMSE) and Spear-
man rank correlation. We obtain a 40% higher correlation
for the DOP policy as compared to BSP.

(a) BSP (b) DOP

(c) DBP

Figure 6: Scatterplots of the abilities of the generated test
papers, against the ground truth abilities. Degree of scatter
is highest for the BSP paper

Fig. 6 shows a scatterplot of the abilities of the student from
the test papers using the three policies, plotted against their
ground truth abilities. We can see that the paper generated
using BSP policy has the highest degree of scatter and the
DOP paper has the lowest, i.e. it most closely matches the
ground truth abilities of the student.

6.2 Analysis of the simulated test results
Comparing the policies from the score distribution in the
generated test papers, we can see that the DOP and DBP
policy give a better spread of scores than BSP, meaning they
are better in discriminating between students of different
abilities. Tests generated by both DOP and DBP policies
also had a higher rank correlation than the BSP test, mean-
ing we get a better accuracy at diagnosing the ability of the
students.

The DBP test had a lower spread and lower rank correlation
as compared to the DOP test. This could be because we only
used the standard 2 PL model of IRT, without any modifi-
cations to include behavior parameters. Moreover, behavior
parameters, such as time spent not attempting questions,
give a more holistic view of how the student performs in a
test (such as indicating the confidence level of the student)
than simply the academic performance i.e. how many ques-
tions the student answered correctly. Perhaps future test
papers could be designed in a way that takes into account
these factors when computing the student’s score.

6.3 Pilot test
To further validate our model, we conducted a pilot study as
follows: We selected a group of M students and asked each
student to attempt two test papers, using the same online
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Table 3: Comparison of pilot test results generated by BSP
policy and DBP policy

BSP DBP
Number of students 98 99
Number of questions 30 30
Max/Min/Total score 92/0/120 111/-1/120

Score at 95th/ 76/5 85/1
5th percentile
Average score 43.94 42.56

Figure 7: Scores distribution of students in the DBP gener-
ated pilot test vs BSP pilot test

learning platform we used for the earlier test generation. For
the first paper, we generated the questions using BSP policy
and for the second, we generated the questions using DBP
policy. We then compared the spreads of scores for these
test papers. The results are shown in table 3.

On the pilot test papers generated using the two policies, we
found that the DBP test gives 18% higher spread of scores
(95th percentile score - 5th percentile score), as compared
to the BSP test. The mean squared error for the inferred
ability of the students compared to the ground truth ability
was 1.08 for the BSP test, and 0.86 on DBP. This is 20% less
RMSE for DBP compared to BSP. From the scatterplots in

(a) BSP (b) DBP

Figure 8: Scatterplots of the inferred abilities of the pilot
test papers, against the ground truth abilities

fig. 8 for the inferred vs ground truth ability, we can further
confirm that the degree of scatter is lower in the DBP pilot
test and higher in the BSP pilot test paper. This confirms
that the DBP test paper more accurately reflects the ability
of the student, and is also better at discriminating between
students of different abilities. The spread of scores in the
DBP is better than that of the BSP policy. This validates
our findings from the simulated tests, where also we obtained

a better spread for the diagnostic policies (DOP and DBP).
Moreover, the higher accuracy of the inferred ability for the
DBP pilot test is confirmed by a lower value of the RMSE
and lesser degree of scatter compared with BSP.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a few policies to generate test pa-
pers by selecting a list of questions from a question database.
We validated the policies by a pilot test of test papers gener-
ated using two policies. We found that the policy of selecting
questions based on highest discrimination ability for a given
difficulty level yielded the best results.

In future, we intend to extend the IRT model to include
behavioral parameters and further validate our method of
selecting policies with more candidate policies and a larger
sample size of students.
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ABSTRACT 

Educators are increasingly embracing personalization in online 

and blended learning programs as a means of focusing students’ 

investment of time and energy into learning plans that are best 

tailored to their individual needs. When personalized learning 

tools are deployed into structured learning environments like 

schools, however, educators and students must consider program 

provided recommendations alongside potentially immutable 

factors like set daily schedules, mandated curricula, and student 

needs in other content areas. These on-the-ground factors make 

researching the impacts of personalized learning challenging 

because they are difficult to measure directly, especially for digital 

programs deployed at scale. Inspired by a widely influential 

methodology in brain imaging, we tackled this challenge by 

employing an event-related approach that emphasizes changes in 

student behavior that are time-locked to changes in program 

provided usage recommendations. Our analysis reveals that while 

student usage time can often be quite far from the amount 

recommended, students nevertheless respond to changes in 

program recommendations by adjusting usage in a corresponding 

manner. We further extend this general approach to demonstrate 

that students more often stayed on track toward their end of year 

goals following a week where they met or exceeded their program 

provided recommendation. Through these examples, we 

demonstrate the value of an event-related approach towards 

understanding how personalized paths can positively influence 

student learning.   

Keywords 

Personalized learning, event-related analysis, time management, 

K-12 schools, personalized recommendations. 

1. INTRODUCTION 
As schools and communities embrace a rapidly changing world, a 

growing emphasis on the personalization of learning has emerged 

[10]. Learning is considered personalized if it is tailored to each 

learner’s strengths, needs, and interests, encouraging flexibility in 

a student’s pursuit of mastery and enabling learners to take an 

active role in what, when, where, and how they learn [22]. In the 

competition for instructional time, personalized learning 

approaches also hold the promise of helping students achieve 

mastery as efficiently as possible [10], and can facilitate 

educators’ work in guiding students’ learning efforts towards 

educational activities that best match their current needs. 

Online and blended learning programs are uniquely positioned to 

enable personalized learning because they can support student 

agency through independent pacing, delivery of differentiated 

content and support, and the ability to engage with learning 

anytime and anywhere [22]. However, the double-edged sword of 

personalized learning is that “the process of personalization puts 

enormous pedagogical and procedural burden on the students—as 

well as teachers—to make critical instructional decisions” [4; also 

see 5]. This includes decisions about how much time students 

should spend on specific programs and components of programs 

to maximize learning. While studies often find that students fail to 

spend as much time in educational technology programs as 

recommended by the program or researchers [23], students can 

also over-use, spending time on one set of activities that might be 

better spent in other areas. 

One response from the designers of learning technologies has 

been the inclusion of embedded recommendations and self-

monitoring tools to scaffold student and teacher support for self-

regulation. Recommendations are tailored to help students and 

teachers make good decisions within a personalized learning 

environment without enforcing rigid requirements that may reduce 

student agency and be unrealistic for particular educational 

contexts. Individualized usage time recommendations do not 

appear to be common in most learning technologies; many 

continue to provide one-size-fits-all usage recommendations [9]. 

However, they hold the promise of facilitating self-pacing by 

helping students who are at different levels and progressing at 

different speeds to stay on track toward reaching their goals. 

Despite the recognition of learning scaffolds as critical and 

effective for self-regulation in general [15] and in computer-based 

learning environments in particular [27, 28], relatively little 

research has been done into the impacts of recommendations. 

While the desire to enact personalization grows, the reality is that 

many educational institutions, particularly K-12 schools, continue 

to look much as they have for the past century, with set daily 

schedules and highly-regulated or mandated paths through content 

material [10]. When individualized learning tools are deployed 

into schools with structured learning environments, educators and 

students must consider program provided recommendations 

alongside these potentially immutable factors. While a program 

may recommend a different usage time to individual students 

within the same class or to the same student in different months, 

they may be unable to follow those recommendations with fidelity 

because of set schedules of technology access [25], challenges 

associated with implementing flexible learning time [20], or 

teacher and parent beliefs about learning technologies and screen 

time [6, 18]. Furthermore, researchers often have data on the 

usage recommendations a student received and their time spent 
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using the program, but lack direct insight into the specific 

contexts in which the program is implemented [26]. 

We addressed this research challenge by examining how students 

respond to personalized usage time recommendations within 

Lexia® Core5® Reading (hereafter “Core5”) - a blended learning 

literacy program that provides instruction in foundational literacy 

skills for students in grades preK-5. To isolate the impacts of 

program provided recommendations from the largely unknown 

aspects of school context, we model an analytic approach after 

one widely used in the field of brain imaging - event-related 

design [for a general overview see 12, 13; for a widely-cited early 

example see 11]. The key aspect of this methodology with respect 

to our present application is that we focus on changes in actual 

student usage time that occur time-locked to changes in 

personalized recommendations. That is, we ask how student 

behavior responds to changes in program suggestions rather than 

whether it is aligned to recommendations, as consistent student 

responses to changed program recommendations could be 

observed even if baseline student usage is widely variable across 

diverse school contexts. Utilizing this approach, we find that 

students indeed adjust the amount of time per week that they 

spend using Core5 in a manner that differentially relates to the 

direction and magnitude of the recommended change. We also 

extend our analysis to examine events defined directly by student 

behavior and find that the act of meeting one’s recommendation 

in a given week is associated with more frequently staying on 

track toward end-of-year goals in future weeks. Together, these 

examples highlight the power of an event-related approach, and 

reveal positive associations between the personalization of 

learning and student progress within school contexts. 

2. DATA 

2.1 Usage time recommendations in Core5 
To personalize the learning path for each individual student, 

Core5 recommends a number of minutes per week that the student 

should use the online portion of the program, promoting regular, 

right-sized use and proactive time management throughout the 

school year to enable student success [7]. Each student’s usage 

recommendation reflects the estimated amount of time needed to 

reach their end of year “benchmark” - that is, to complete all 

program content for their grade level by the end of the school 

year. It is based on a predictive model that takes into account a 

student’s current place in the program, the amount of material left 

for them to reach their benchmark, and their time spent and 

progress made in the prior month [16]. These recommendations 

are shared prominently with educators in the program’s online 

data portal, and are visible to students while logged in to Core5. 

Critically, student usage recommendations are not fixed 

throughout the school year, but are recalculated at the start of each 

month to reflect student progress and pace (see Figure 1). At the 

start of the year, before enough data has been collected to 

personalize recommendations, all students are set to a default 

recommendation of 40 minutes per week. At the start of the next 

calendar month (first Monday), a student’s recommendation 

changes to 20, 30, 50, or 60 minutes per week. With the 

beginning of each new month, a student’s usage recommendation 

is recalculated, resulting in either an additional change or a static 

recommendation. This cadence was chosen to allow regular 

revisions that reflect student’s usage and progress, while still 

remaining implementable for teachers. The goal in personalizing 

and updating these recommendations is that students use the 

program enough to stay on pace to end the year at their grade 

level benchmark, without spending more time than necessary that 

could be invested in other learning activities. Previous research 

has shown that students who consistently meet recommended 

usage in Core5 make more progress and more often reach their 

grade-level benchmark than those students who infrequently or 

never meet their usage recommendation [17]. 

 

Figure 1: Usage recommendation profiles for two example 

students. Each line illustrates how usage recommendations for 

an individual student change across the time frame under 

study. Student 1 began the school year in early August, and 

like all students was initially recommended 40 minutes per 

week. On the first Monday of September, Student 1’s 

recommendation changed to 50 minutes per week, and at the 

start of October it was adjusted again to 60 minutes per week. 

Student 2 was also initially set at 40 minutes per week, but 

began the school year later (in mid-September). Following the 

same rules, however, Student 2’s recommendation was 

adjusted at the start of the next calendar month (October) to 

30 minutes per week. For this student, the recommendation 

remained there for the duration of this time frame. 

2.2 Sample Details 
Weekly usage records for Core5 students in Kindergarten through 

3rd grade were used for the analyses presented in this paper. 

Although Core5 also provides usage recommendations for pre-K, 

4th, and 5th grade students, the specific time values differ for 

these grade levels. We therefore restricted our sample to K-3 

students for clarity of interpretation, though we anticipate that 

results would be similar for students in other grades. 

To obtain the records, schools were chosen at random from 

among those who had at least one student using Core5 in the fall 

of 2018 (total of 168 schools chosen). These schools were 

geographically diverse, located across 39 US states and 4 

Canadian Provinces. Student-level demographic data is 

unavailable for this dataset. All weekly Core5 usage records 

between August 6, 2018 and December 31, 2018 were obtained 

for all students at these schools. To be included in the final 
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sample, students must have used Core5 for at least 7 weeks within 

this date range, and had their usage recommendation change at 

least once (as described in Section 1, the goal of the event-related 

approach is to focus on these changes). In addition, students who 

met their end of year benchmark (completed all grade level 

material) within this timeframe were excluded (this sets ones’ 

usage recommendation to 0 minutes per week). Furthermore, 

students must have had a usage target of 40 minutes in their first 

week of program use within this timeframe. As previously 

described, Core5 assigns a default recommendation of 40 minutes 

per week during a student’s first month of use in a school year, 

and any other value at that time point is an indication that there 

was a manual override (this is rare - 0.9% of students in our 

sample - but an available option for educators). The final sample 

contained 10,851 students (2,838 in Kindergarten; 3,213 in 1st 

grade; 2,836 in 2nd grade; 1,964 in 3rd grade). To ensure that these 

exclusion criteria did not produce non-representative results, we 

ran robustness checks using different cutoffs for minimum weeks 

of program use (6 or 8) and repeated our analyses with two 

additional samples of students based on new random selections of 

schools. We found that all results were qualitatively consistent 

with our reported findings. 

The weekly Core5 records obtained contain aggregated usage data 

for each week that a student logged into the program. The metrics 

collected that are relevant to the presented analyses include the 

total time of Core5 use during that week, the recommended use 

time for that week, whether or not a student met their 

recommendation (total time greater than or equal to recommended 

time), and the Monday date of the week reported. 

3. RESULTS 

3.1 Alignment to usage recommendations 
Our primary research aim is to assess whether students’ usage 

time is responsive to Core5’s personalized recommendations. 

Before presenting our results, however, it is critical that we 

distinguish this question of students’ responsiveness to 

personalized recommendations from a related question about 

alignment between recommended and actual usage time. 

Specifically, we could observe changes in actual Core5 usage 

following a change in the program provided recommendation (i.e. 

a personalized response) without necessarily finding that students 

used the program for a particular number of minutes that is close 

to their recommended value (i.e. alignment). Indeed, because 

Core5’s personalized recommendations serve as only one factor 

within the school context, it would not be surprising if a student’s 

usage time in a given week was quite far from their personalized 

recommendation value, and more closely related to unknown 

(from a researcher’s perspective) contextual factors such as the 

amount of time dedicated in their school’s schedule to literacy 

learning or student-directed after school usage. Critically, even if 

there is poor alignment, we may find that when recommendations 

are changed that students’ time spent using the program 

systematically adjusts in a manner consistent with those changes - 

a result indicative of responsiveness to Core5 recommendations.  

We indeed find that alignment between Core5’s usage 

recommendations and actual student usage time is weak. Although 

most students had a mean weekly usage time that fell within the 

range of Core5 recommendations (Figure 2, top panel; 70.0% of 

students with weekly mean between 20 and 60 minutes), there was 

a small negative correlation between actual and recommended 

program use time in aggregate (Pearson r = -0.117; 95% CIs = -

0.137, -0.098). Honing in on a snapshot of one particular week in 

our dataset (Figure 2, bottom panel), it is evident both that there is 

poor alignment to recommendations, and that there is widespread 

individual variability in usage time. While the average within-

student mean for actual and recommended usage time were similar 

(46.2 and 43.3 minutes per week, respectively) the across-student 

standard deviations for these metrics were widely disparate (SDs 

= 22.9 and 11.1 minutes, respectively). 

 

Figure 2: Distributions of students’ Core5 usage time. (top) 

Though mean weekly usage across students was in a range 

similar to Core5’s usage recommendations, there was a 

notable extent of individual variability. (bottom) A snapshot of 

the distribution of actual use (y-axis) for students with each 

unique recommended usage time during a particular week (x-

axis) revealed no apparent relationship between the two. The 

data shown is for one example week that had the largest 

number of unique students using Core5 (week beginning 

November 26, 2018; 9,606 students, or 88.5% of full sample, 

had Core5 use), but other weeks had qualitatively similar 

relationships. The correlation between recommended and 

actual usage was similar for this sample week (Pearson r = -

0.043, 95% CIs = -0.063, -0.023) to that seen for the aggregate 

results. 
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3.2 Event-related approach to 

recommendation changes 
In light of these observations indicating a lack of positive 

alignment (Figure 2), we turned to our key question of whether 

student usage time in Core5 was nevertheless responsive to 

changes in personalized recommendations. Because of the 

complex and largely unknown (from a researcher’s perspective) 

context in which these personalized recommendations are 

implemented, we turned to an event-related analytic approach. 

This methodology allows for context-independent examinations of 

an event of interest by effectively contrasting responses that occur 

in temporal coordination with that “event” against a baseline 

period just before the event occurred [11]. 

 

Figure 3: Event-related analysis of usage recommendation 

changes. When a student’s weekly usage recommendation 

changes from 40 minutes (Time -1) to another duration (Time 

0-2) early in a new school year, student usage tends to change 

in the direction of (and with magnitude correlated to) the 

change in recommendation. Each bold line represents the 

median change in actual weekly usage time across students, 

with all usage times in the analysis expressed as a difference 

from Time -1 (this is why all lines converge to 0 at Time -1). 

Shaded areas around each line represent 95% confidence 

intervals on the median generated via a bootstrap resampling 

procedure. 

The first step in conducting this analysis is to define the event of 

interest - here, we focused on how each student’s first change in 

recommendation influenced their usage time within Core5. Note 

that because all students began the school year with a 

recommendation of 40 minutes, this event reflects a change from 

40 minutes (at Time -1 in Figure 3) to one of the other four 

possible usage recommendations (20, 30, 50, or 60 minutes at 

Time 0-2 in Figure 3). We next aligned all student data to a 

temporal reference frame defined by this event. In other words for 

each student, we defined Time -1 as their last week of program 

use prior to the recommendation change, Time 0 as the week 

when the new recommendation first appeared, and Times 1 and 2 

as the next two weeks during which that same recommendation 

remained. Note that these weeks are ordered but are not 

necessarily consecutive, as students do not always use the 

program every week. This means it was possible for a student’s 

recommendation to change again at Time 1 or 2 if it fell in the 

next calendar month. To ensure that the time-course analyzed in 

Figure 3 reflects the response to the initial target change, we 

excluded 363 students (3.3%) for whom this occurred, leaving a 

sample of 10,488. Finally, we subtracted out each student’s actual 

usage time at Time -1 from all 4 time points to yield a difference 

metric (this is why all lines converge at 0 for Time -1). 

Figure 3 shows the median event-related change in actual student 

usage time when a recommendation changes from 40 minutes per 

week at the start of the school year to another value. A two-factor 

ANOVA (factors of recommendation and time from 0 to 2 in 

Figure 3, the latter as a repeated measure) revealed significant 

main effects of both recommendation and time (F3, 10484=93.564, p < 

0.0001, partial η2 = 0.0260; F2, 20968 = 5.71, p < 0.0001, partial η2 = 

0.0005, respectively), as well as a significant interaction between 

time and recommendation (F6, 20968 = 10.10, p < 0.0001, partial η2 = 

0.0030). Repeating this statistical test with a sample that excluded 

outliers (353 students, or 3.4%, with a change at any time point 

more than 3 SDs from the mean) produced the same pattern of 

results. These findings clearly indicate differential responses to 

Core5 usage recommendations, with decreases in recommended 

usage (from 40 to 20 or 30 minutes per week) tending to result in 

decreases in program use, and increases in recommended usage 

(from 40 to 50 or 60 minutes per week) tending to result in 

increases. Interestingly, the response to a recommendation change 

appears to unfold in time, with students continuing to adjust usage 

time in the direction that their recommendation changed over the 

next few weeks. This finding further emphasizes the limitations of 

using snapshot analyses like those in Figure 2 to tease apart 

effects with unknown temporal dynamics. 

It is notable that the median change in program use was smaller in 

magnitude than the recommended change, especially when one’s 

Core5 recommendation increased. This observation is consistent 

with the explanation that contextual factors specific to each 

student’s school and situation are weighed alongside the 

program’s personalized recommendations. We also found that 

despite the visible responses to recommendation changes (Figure 

3), that average usage time for all recommendation categories 

tended to hover around 40 minutes per week (e.g. means in Figure 

2, bottom). Such a result suggests a continued reliance on the 

initially recommended value of 40 minutes per week for all 

students (see Section 4). 

3.3 Event-related approach to student fidelity 

of program use 
As we have demonstrated, taking an event-related approach to 

studying learning paths in Core5 can clearly reveal differentiated 

student responses to personalization. While the analysis illustrated 

in Figure 3 represents one application of this approach to events 

defined directly by program-driven occurrences (changes made by 

Core5 at specific points in time), a key advantage of event-related 
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designs is their flexibility to define new events based on the 

nature of student actions as well [c.f. 8, 13]. To exemplify this 

type of approach and to gain more insight into how personalized 

recommendations influence students’ program use, we next define 

new events based on whether or not a student met or exceeded 

their recommended usage time in a given week.  

Using this definition, we can now ask whether the “event” of a 

student meeting or exceeding Core5’s usage recommendation in a 

given week is associated with a lasting impact on a student’s 

fidelity of program use, relative to weeks when that same student 

did not meet her Core5 usage recommendation. In other words, 

are these helpful recommendations that encourage students to set 

achievable targets, appropriately pace themselves, and use with 

fidelity throughout the year [19]? Because it is critical that this 

analysis be conducted in a within-student fashion (i.e. comparing 

how the same student responds to both event types), we included 

only students who had at least one instance of both meeting and 

not meeting their usage recommendation within the timeframe 

under study (N=8,911; 82.1% of full sample). 

Results indicated that students more often met or exceeded their 

Core5 usage recommendation if they had also met or exceeded 

their recommendation during their prior week of program use 

(56.0%, vs. 50.5% when they did not meet or exceed their 

recommendation during the prior week; odds ratio = 1.248). We 

also found that while it was very likely overall for students to use 

Core5 in consecutive weeks, that this was even more frequent 

following a week of meeting than not meeting one’s usage 

recommendation (88.0% vs. 83.6%, odds ratio = 1.438). Together, 

these results suggest that following personalized usage 

recommendations is associated with staying on track toward end 

of year goals and maintaining regular program use. 

4. DISCUSSION 
While measuring the impacts of personalized learning in school 

settings carries significant challenges, we demonstrate the power 

of an event-related analytic approach toward revealing how 

student behavior responds to program provided recommendations. 

Clearly, educators and students must make decisions about 

personalized recommendations within the context of their school 

environment and alongside myriad other considerations. The 

apparent lack of alignment between actual program use and Core5 

recommendations (Figure 2), then, is a manifestation of these 

important but competing priorities. Using an event-related design, 

we were able to reveal that even within this complex ecosystem, 

students’ Core5 usage time does change in a manner that directly 

corresponds (and is time-locked) to changes in their personalized 

recommendations. Furthermore, our results demonstrated that 

students more often stayed on track toward their end-of-year 

target following weeks in which they met, versus lagged behind, 

their suggested pace.  

Although usage recommendations are visible to students in the 

Core5 program, given our sample’s age group (K-3) we expect 

that teachers and school administrators are primarily responsible 

for monitoring Core5 usage time, responding to 

recommendations, and weighing program time against other 

educational priorities. This balancing act likely explains why 

students’ usage time adjustments were typically smaller than was 

recommended (Figure 3). Together with our other findings, this 

pattern is consistent with program provided recommendations 

influencing but not determining student usage time when they are 

considered alongside additional factors in each unique school 

context. In future work it will be interesting to investigate whether 

responsivity and/or alignment to usage recommendations changes 

with student age, perhaps reflecting increasing self-regulation and 

autonomy as they advance in school. 

While the ability to isolate one factor of interest from within a 

complex, dynamical system is a key strength of an event-related 

approach, it is also a limitation in that it does not afford the ability 

to quantify influences of other factors or to provide insight as to 

their relative importance. From the perspective of those designing 

and improving personalized learning tools, however, an event-

related approach is powerful for exactly that reason - it allows for 

isolated study of a personalized feature that is directly within the 

designer’s control, thus facilitating improvement of the program’s 

design and iteration on these enhancements [c.f. 14]. For example, 

we noted an interesting finding that even as student usage times 

changed in response to program provided recommendations, they 

seemed to remain tied to the initial, impersonal value of 40 

minutes per week (e.g. Figure 2, bottom). This pattern may reflect 

a well-studied cognitive bias known as anchoring, which typically 

manifests as a continued reliance on an initially given value when 

making numerical judgments [24]. It may also be that educators 

have more flexibility to adjust student schedules early in the year 

than they do as school progresses. In either event, this result 

suggests that personalizing a student’s usage recommendation 

earlier in the school year could yield larger impacts. 

By extending our event-related approach, we found that weeks in 

which a student met or exceeded their personalized 

recommendation were more often followed by continued on-track 

behavior and more regular program use, which have previously 

been shown to be positive predictors of student performance in 

online courses [c.f. 7, 21]. Such an effect may stem from 

integration of Core5’s personalized recommendations within 

educators’ learning plans and/or with students’ emerging self-

regulation [1, 2, 19]. As previously described, our event-related 

approach limits our ability to quantify effects beyond those owing 

to program provided recommendations by intentionally filtering 

them out to isolate only a single factor. That said, these findings 

motivate further study of the mechanisms through which usage 

recommendations facilitate students’ ability to stay on track for 

success throughout the school year.  

We also note that while our approach is inspired by one 

developed for the analysis of brain imaging data, it differs in 

important ways. First and foremost, event-related designs in brain 

imaging research are typically used in the context of randomized 

studies, where an experimenter controls many aspects of the 

timing and context of “events” (although note that the ability to 

flexibly define events post-hoc is a key methodological advantage, 

c.f. 8). In contrast, Core5 students are assigned usage 

recommendations based on their pace through content material 

and the amount they have left to finish that year. By definition, 

then, students who are farther behind in class will tend to receive 

higher Core5 usage recommendations. Although the analyses we 

present highlight within-student usage changes in response to 

time-locked events, it is important to note that the groups of 

students at each recommendation level (e.g. at Times 0-2 in 

Figure 3) likely differ in other key ways. For example, we may 

speculate that one reason why usage time increases were typically 

of smaller magnitude than usage time decreases (Figure 3) could 

be that students who are farther behind tend to receive offline 
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interventions at school rather than additional time in the online 

program. 

Analytic applications in the field of brain imaging also suggest 

extensions of this work that could yield continued insights into 

the impact of personalization in learning. For example, once well 

characterized, event-related time courses serve as a template for 

identifying structural brain regions with particular functional 

properties [8, 13]. Analogously, having defined the typical time 

course of how student usage responds to recommendation changes 

(Figure 3), we could now use these expected functions as 

regressors to identify schools where recommendations are or are 

not strongly implemented. This in turn could help guide vendors 

to better help schools resolve issues and successfully implement 

digital learning tools. It could also motivate additional research 

studies that compare student outcomes in school contexts where 

personalized recommendations either were or were not 

implemented with fidelity. Such investigations will yield a deeper 

understanding of the value of personalized recommendations 

within schools, and in turn provide examples that enable 

educators to operationalize personalization in their classrooms. 
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ABSTRACT
Intelligent Tutoring Systems (ITSs) have been developed to
provide students with personalized learning experiences by
adaptively generating learning paths optimized for each indi-
vidual. Within the vast scope of ITS, score prediction stands
out as an area of study that enables students to construct
individually realistic goals based on their current position.
Via the expected score provided by the ITS, a student can
instantaneously compare one’s expected score to one’s actual
score, which directly corresponds to the reliability that the
ITS can instill. In other words, refining the precision of pre-
dicted scores strictly correlates to the level of confidence that
a student may have with an ITS, which will evidently en-
sue improved student engagement. However, previous stud-
ies have solely concentrated on improving the performance
of a prediction model, largely lacking focus on the bene-
fits generated by its practical application. In this paper, we
demonstrate that the accuracy of the score prediction model
deployed in a real-world setting significantly impacts user en-
gagement by providing empirical evidence. To that end, we
apply a state-of-the-art deep attentive neural network-based
score prediction model to Santa, a multi-platform English
ITS with approximately 780K users in South Korea that
exclusively focuses on the TOEIC (Test of English for Inter-
national Communications) standardized examinations. We
run a controlled A/B test on the ITS with two models, re-
spectively based on collaborative filtering and deep atten-
tive neural networks, to verify whether the more accurate
model engenders any student engagement. The results con-
clude that the attentive model not only induces high student
morale (e.g. higher diagnostic test completion ratio, number
of questions answered, etc.) but also encourages active en-
gagement (e.g. higher purchase rate, improved total profit,
etc.) on Santa.

Keywords
Intelligent Tutoring System, Score Prediction, Engagement,
Deep Learning, Transformer

1. INTRODUCTION
The significance that standardized examinations (e.g. SAT
and TOEIC) currently hold is to provide an objective crite-
ria in which each individual’s academic performance is mea-
sured. Accordingly, Intelligent Tutoring Systems (ITSs),
which generate optimized learning paths for each student,
often include functions such as estimating expected perfor-
mance on standardized examinations. In this regard, mea-
suring the expected academic performance of a student has
become an interesting area of study in Artificial Intelligence
in Education (AIEd). These studies focus on modelling a
student’s understanding of a target subject based on their
learning activities. For instance, Matrix Factorization (MF)
[10, 22, 16, 17, 23, 7, 25, 24] is a prevalent method used
for grade prediction, in which the latent vectors of students
and courses are learned by factorizing a student-grade ma-
trix into two low-rank matrices. Markov and semi-Markov
models are also some other popular approaches for grade
prediction [11, 7, 23]. With the advances in deep learn-
ing, neural network based models with deeper hidden lay-
ers, such as Multi-Layer Perceptron, Recurrent Neural Net-
works and Convolutional Neural Networks, were introduced
to predict student’s academic performance [21, 9, 11, 8]. In
[3], the Transformer-based [29] bidirectional encoder model
was first pre-trained to predict masked assessments and then
fine-tuned to predict exam score, resulting in a state-of-the-
art score prediction model. Although precision of academic
performance prediction is significant as it is directly associ-
ated to a reliability of an ITS, previous studies have mainly
focused on improving the accuracy of the prediction, leaving
discussion about the benefits of precise prediction on student
engagement fairly opaque.

In this paper, we direct our attention towards the correlation
between the precision of score prediction and student en-
gagement. Our study starts by hypothesizing that students
will show higher level of engagement if they experience a
more precise score prediction while interacting with ITS. We
empirically verify our hypothesis on Santa, a multi-platform
English ITS with approximately 780K users in South Ko-
rea that exclusively focuses on the TOEIC (Test of English
for International Communications) Listening and Reading
Test Preparation. In the experimental studies, we run a
controlled A/B test with two score prediction models that
differ in accuracy, which are respectively based on collab-
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orative filtering with Mean Absolute Error (MAE) of 78.9
and deep attentive neural networks with MAE of 49.8. The
results show that the superior performing, deep attentive
neural network based score prediction model induces more
student engagement. These benefits range from ones that
are derived from learning behavior (e.g. preliminary test
completion ratio, membership rates, the average number of
questions a student answered after the diagnostic test) to
more active engagement (e.g. purchase rate, average rev-
enue per user, and total profit). To the best of our knowl-
edge, this is the first work studying the benefits of accurate
score prediction of ITS on student engagement.

2. RELATED WORKS
The related works of this study can be grouped into two
categories: academic performance prediction and student
engagement.

2.1 Academic Performance Prediction
Predicting a student’s academic performance is a signifi-
cant aspect in solving the problems within AIEd. A suc-
cessful prediction model can be used to recommend appro-
priate courses, provide interventions for at-risk students,
and optimally allocate learning materials. Extensive work
has been conducted on performance prediction, exploring a
wide range of methodologies from simple regressions to deep
learning.

The most widely used methodology in grade prediction is low
rank Matrix Factorization (MF) [10, 22, 16, 17, 23, 7, 25,
24]. Low rank MF assumes that there is a low-dimensional
latent space containing features that can effectively repre-
sent both students and the academic tasks students will be
graded on. These features can be interpreted as represen-
tations of a student’s knowledge. We find these features
by decomposing a student-grade matrix into a product of
two low-rank matrices. The authors of [22] show that the
MF-based model outperforms other course/student-specific
regression models. [16] improved the model by assuming
that different courses share a common latent feature space,
since the totality of a student’s knowledge should not change
based on the courses they are taking.

Markov and semi-Markov models are another popular set
of models for grade prediction [11, 7, 23]. These models
capture the dynamic evolution of a student’s learning status
and leverage it to effectively predict outcomes. [7] develops
course-specific hidden Markov and semi-Markov models for
grade prediction. [11] models student behavior in MOOCs
by using Hidden Markov Models (HMMs) and Multinomial
Mixture Models (MMMs) to cluster sequences of student
actions. The study applies an LSTM model to predict the
students’ final grades. Markov models are also used to esti-
mate a student’s performance on educational games [28] or
to predict student retention in MOOCs [1].

[21, 9, 11, 8] introduce deep-learning based prediction mod-
els. The authors of [9] introduce two types of Bayesian deep
learning models for grade prediction using Multi-Layer Per-
ceptron and LSTM architectures. Their results show that
their model outperforms several baseline models (including
MF-based models and course-specific regression models) in
detecting at-risk students. The authors of [3] propose As-

sessment Modeling (AM), a pre-training method applicable
to general ITSs. In AM, a model is first pre-trained to pre-
dict several assessments of a student automatically made by
ITS during one’s learning process. Their results show that a
Transformer [29] based neural network model with AM im-
proves model accuracy compared to the same network with
other state-of-the-art pre-training methods (such as BERT
[5] based word embedding and QuesNet [31] question em-
bedding) on exam score prediction and review correctness
prediction.

2.2 Student Engagement
Student engagement is also an actively studied topic in the
field of AIEd. Several works have analyzed student engage-
ment patterns to figure out which factors vastly impact en-
gagement. [30] studied how people use digital textbooks
and compare engagement patterns among high school stu-
dents, college students, and online website viewers. [18] in-
vestigated student engagement in an online learning system
which outperformed a traditional classroom on key indica-
tors of engagement, such as time on-task, engaged concen-
tration, and boredom. [26] found correlations between se-
mantic features of mathematics problems and indicators of
engagement. [14] discriminated behavioral engagement and
cognitive engagement, and argued that most of students who
were behaviorally engaged were not cognitively engaged.

Another line of student engagement research focused on pre-
dicting engagement level. [20] proposed a two-phased ap-
proach for automatic engagement detection, which utilized
contextual logs and appearance information to infer behav-
ioral engagement. [19] investigated the relationship between
engagement and performance. Firstly, this work analyzed
log traces for each learner to calculate engagement indica-
tors that represent learner’s engagement level. Based on the
quantified engagement indicators, prediction on the learner’s
performance were attempted.

Enrollment is a sign of strong engagement since it involves
determination that a student must invest to take a certain
course. Accordingly, predicting and promoting enrollment
is highly relevant to student engagement research. [6] pro-
posed a novel extension of Factorization Machines to in-
fer students’ course enrollment information from incomplete
data. [2] presented a course enrollment recommender system
which recommended selective and optional courses based
on students’ skills, knowledge and interests. [27] identified
factors that affect the likelihood of enrolling. This work
analyzed the enrollment predictability of such factors us-
ing logistic regression, support vector machines, and semi-
supervised probability methods.

With the development of Massive Open Online Courses (MO
OCs), several works studied student engagement in a MOOCs
environment. [12] proposed a recommender which provides
each student with an individual list of contacts based on
their own profile and activities to foster their engagement
in MOOCs. [15] investigated the relationship between stu-
dents’ self-evaluation of their previous knowledge and stu-
dents’ engagement behaviors in MOOCs through a polyto-
mous item response theory model.

3. SCORE PREDICTION MODELS
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Figure 1: Pre-training/fine-tuning scheme of Assessment Modeling for score prediction. First, a model is
pre-trained to predict two assessments: response correctness and timeliness. After pre-training, the last layer
of the model is replaced with a layer with randomly initialized weights and appropriate dimension for score
prediction. The parameters in the model are fine-tuned to predict exam scores.

Our studies are based on comparing the two approaches for
score prediction: a collaborative filtering based approach
and Assessment Modeling. The following subsections briefly
cover each approach. More detailed descriptions can be
found in [13] and [3].

3.1 Collaborative Filtering based Approach
There are two phases in the Collaborative Filtering (CF)-
based score prediction approach. First, the CF-based model
developed in [13] estimates the probability that a student re-
sponds correctly to each potential question. In this model,
each user or question is represented as a k-dimensional la-
tent vector, where k is the number of hidden concepts. For
instance, if there are n users with m questions, we have user
vectors L1, L2, · · · , Ln and question vectors R1, R2, · · · , Rm
each with dimension k. The knowledge level of user i under-
standing question j is represented as Xij = Li ·Rj . Accord-
ingly, the probability of user i getting question j correct is
modeled as

φ(Xij) = φa +
1 − φa

1 + e−φc(Xij−φb)
,

where φa, φb, and φc are parameters appropriately set, in-
dependently of questions or users. The learning algorithm
then finds the maximum likelihood estimator by minimiz-
ing the negative of log-likelihood of observed user-question
entries with Frobeinus norm regularizer terms through the
projected stochastic gradient descent.

Given the response correctness probabilities calculated from
the CF-based model, scores for Listening Comprehension
(LC) and Reading Comprehension (RC) are calculated through
the following quadratic equations

scoreLC = θ2x
2
LC + θ1xLC + θ0

scoreRC = θ5x
2
RC + θ4xRC + θ3,

where xLC and xRC are each the average of predicted re-
sponse correctness probability of potential questions in LC
and RC, and θs are properly set parameters. The final score
is the sum of scoreLC and scoreRC .

3.2 Assessment Modeling
[3] introduced Assessment Modeling (AM), a fundamental
pre-training method for general class of ITSs. The moti-
vation behind the works of AM is to deal with label-scarce
problems in AIEd. Score prediction is a typical example
of such label-scarce educational problems since standard-
ized exam scores are not obtainable within ITS. Collecting
the exam scores involves student action taken outside ITS.
The approach proposed in [3] is based on a pre-training/fine-
tuning paradigm. In the pre-training phase, the Transformer-
based [29] bidirectional encoder model is trained to predict
randomly masked assessments, which are interactive educa-
tional features available in ITS. Examples of these assess-
ments include response correctness (whether a student pro-
vides a correct response to a given question) and timeliness
(Whether a student responds to each question within the
time limit specified by domain experts). In the fine-tuning
phase, the last layer of the pre-trained model is replaced with
a randomly initialized layer with an appropriate dimension
for a specific downstream task. Afterwards, the parameters
in the model are updated to predict labels in the downstream
task. In the experimental studies conducted on EdNet [4],
AM outperformed pre-training methods that learn the con-
tents of learning materials in several downstream tasks in-
cluding score prediction. See Figure 1 for graphical descrip-
tion of AM.

4. EXPERIMENTS
4.1 Santa service
Santa is a multi-platform English ITS with approximately
780K users in South Korea that exclusively focuses on the
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Figure 2: The flow of score prediction.

TOEIC (Test of English for International Communications)
standardized examinations. TOEIC is an English proficiency
test that consists of two timed sections (listening and read-
ing) each with 100 questions that adds up to a combined
total score between 0 to 990. Santa utilizes several AI tech-
niques to optimize the preparation process of the TOEIC
examination for students. When the application is first ini-
tiated, a preliminary placement test with 7 to 11 problems
is given to diagnose the student’s current state and predict
their expected score in real-time. After the diagnostic test, a
user response prediction model is used to dynamically sug-
gest problems which corresponds to the student’s current
position within the TOEIC ladder. The prediction model
is calculated by computing a user’s overall correctness rate,
eliminating problems that students have answered correctly
with high probability and then selecting the best possible
content based on expert heuristics. Based on the user’s pre-
vious data, the predicted scores can be provided in various
forms throughout the service, as shown in Figure 3. Figure
2 shows the flow of score prediction.

Figure 3: Various representations of predicted
scores within the application.

4.2 Performance of Score Prediction Model
Santa has previously used a CF-based model for score pre-
diction which has recently been replaced with a deep at-
tentive model. To train the model, we aggregate the real
TOEIC scores reported by users of Santa. Santa offered to
reward to the users who have reported their score and was
able to obtain a total of 2,594 score reports for 6 months.
The data is then divided into a training set (1,302 users, 1815
labels), validation set (244 users, 260 labels), and a test set
(466 users, 519 labels). We use EdNet as pre-training task
data and the student sequence data as the label (TOEIC
score). Table 4.2 shows the MAE (Mean Absolute Error) of
the two models for the test set.

CF Deep Attentive model
MAE 78.91 49.84

Table 1: MAE of collaborative filtering and attentive
model

4.3 A/B test setup
From February 24th to April 2nd, we conducted an A/B
test by randomly administering two different score predic-
tion algorithms to the application users: one based on a
collaborative-filtering algorithm and another one based on
deep-learning. 50,451 students were allocated to the collabo-
rative filtering algorithm and 17,019 students were provided
a deep-learning algorithm. We analyzed each student’s re-
sponse and action (such as time of registration, question
response time, purchase rate, etc.) to spot any noteworthy
statistics that can validate our experiment.

4.4 Experimental Results
In this section, we discuss how a high quality of the predicted
scores can significantly impact student morale.

4.4.1 Student Motivation
Our first test statistic is the preliminary test completion
ratio. The completion rate of the initial placement test is a
crucial indicator that could represent a student’s motivation,
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Figure 4: Comparison of the number of questions solved per day between the users of the A/B test.

as only students who are willing to learn will try to finish
their diagnostic test. For each question a student answers
in SANTA, a predicted score that is updated in real-time is
projected on the top left corner. This allows for the user to
immediately check the quality of the expected score, thus
strengthening the trust that the user may have with the
application. A/B test results show that the deep attentive
model has a higher completion rate of 64.93% than the CF-
model with 65.90%.

Next, we look at changes in membership rates. A member-
ship rate of an application in a sense signifies greater mag-
nitude of student motivation than the completion rate as it
directly indicates the determination of a user who wishes to
use the application. Out of a total of 67,470 users that have
used Santa during the A/B test period, 44,297 users finished
their diagnostic tests and 28,065 users have registered to sign
up with the application. The A/B test shows that the deep
attentive model has a registration rate of 43.13% while the
CF-based model has 44.55%.

The average number of questions a user answered after the
diagnostic test is also significant proof of a student’s educa-
tional drive. The A/B test results show that with a deep
attentive model a student solved an average of 22.73 ques-
tions, while with a CF-based model the user only solved
20.03. Figure 4 shows the comparison of the number of
questions answered per day between the users of the A/B
test. The x-axis represents the date and the y-axis repre-
sents the gap between average number of questions answered
in a deep attentive model and a CF-based model. If the gap
is positive, the former model has on average more questions
solved, and vice versa. We can observe that more questions
from the deep attentive model were solved mostly through-
out the A/B test time period.

CF Deep Attentive model
Completion rate (%) 64.93 65.90
Registration rate (%) 43.13 44.55
# of solved questions 20.03 22.73

Table 2: Experimental results of student motivation

4.4.2 Active Student Engagement
In this section, we demonstrate active student engagement
based on different score prediction models via taking a look
at the financial benefits the models bring. Monetary prof-
its are an essential factor in evaluating a service, since it is

an important indicator of user engagement as a high level
of user engagement directly results in financial success. We
measure business impact with 3 metrics : purchase rate, Av-
erage Revenue Per User (ARPU), and total profit. In this
context, purchase rate is defined as the number of users that
decided to purchase full access to the app during the A/B
test period. The test results show that the purchase rate
for the deep attentive model was 2.73% while the CF-based
model had a 2.37% rate, showing a 15.19% increase for the
deep attentive model. For ARPU, the deep attentive model
averaged $3.23 whilst a CF-based model averaged $2.83. To-
tal profit during testing period also yielded $162,933.88 for
the former while it only gathered $142,949.55 for the lat-
ter (since the two models had different parameters, these
values were normalized based on the ratio of the model pa-
rameters). Comparing these 3 metrics, we conclude that
the model with higher accuracy in the deep attentive model
shows better results as well.

CF Deep Attentive model
Conversion rate (%) 2.37 2.73

ARPU ($) 2.83 3.23
Total profit ($) 142,949.55 162,933.88

Table 3: Experimental results of student engage-
ment

5. CONCLUSIONS
Recent developments in ITS have enabled customized educa-
tion by suggesting optimal strategies for individual students
to approach studying. SANTA has also assisted its users
to better prepare for the TOEIC English fluency standard-
ized examinations by utilizing various learning techniques.
Recently, SANTA has shifted from a collaborative-filtering
model to a deep attentive model that has proved to be an
upgrade over the former. To inquire about the benefits of
using a fastidious model, this paper conducts various experi-
ments and investigates their results. Analyzing the results of
various experiments leads us to believe that deep attentive
model entails a higher level of student motivation and en-
gagement. Therefore, we claim that a more accurate model,
in this case, the deep attentive model, could induce improved
student engagement.
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ABSTRACT
With the development of personalized learning in techno-
logical platforms, more data and information are given to
instructors on what contents are appropriate for a learner’s
next step, with an aim of helping them support their stu-
dents in navigating an optimized learning path that can
promote an enhanced learning outcome. In this study, we
collected data from an online learning platform, LearntaR©

TAD , which allows teachers to distribute tasks based on sys-
tem recommendations. The recommendations are directed
by the system’s knowledge graph algorithm, determining
whether the student is ready to learn the task (i.e. the
task is within the student’s Zone of Proximal Development),
whether the student is not yet ready to learn the task, or
whether the student has already mastered the task. We used
the acquired data to investigate whether giving content in
each of these groups results in different learning outcomes.
Statistical methods such as subgroup analysis, Fisher’s ex-
act test, and logistic regression are conducted to address the
proposed topic. Replicating a prior, smaller-scale study, our
findings suggest that the student gains more mastery when
assigned Ready-to-Learn tasks than when assigned Unready-
to-Learn tasks, across Math and English, more and less suc-
cessful students, and in-class and homework. Moreover, stu-
dents who are given already mastered tasks perform better
than those who are given Ready-to-Learn and Unready-to-
Learn tasks across all groups.

Keywords
Zone of Proximal Development · Knowledge Graph · Ready-
to-Learn · Unready-to-Learn
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1. INTRODUCTION
Increasingly, teachers’ decisions are driven by data [3], with
increasing data becoming available from online learning en-
vironments [9]. Using reports from online learning systems,
educators are able to track and evaluate each student’s learn-
ing based on data [1]. However, even though data are given
to teachers by these systems, instructors are still impeded
by having insufficient knowledge about how to use the data
[7]. In other words, teachers still have difficulties in using
data effectively to decide what students need to learn next,
to maximize learning outcomes and expedite the learning
process.

This problem is exacerbated in online learning systems that
give relatively more agency to teachers in choosing which
content their students will work with. Although such sys-
tems are easier to integrate with existing pedagogical prac-
tices, they raise questions as to whether teachers will assign
the best possible content. We can consider this decision in
terms of whether a teacher selects content that falls within
a learner’s zone of proximal development (ZPD) [8]. A task
within a learner’s ZPD is one that he or she can succeed in,
but only with external support or scaffolding. Tasks that
a learner can succeed in without support, and tasks that
a learner cannot succeed in even with support, fall outside
of the learner’s ZPD. Although the ZPD has been a pop-
ular concept in the educational literature for decades, only
limited attention has been paid to ZPD in educational data
mining and related communities [4].

However, recent research has found evidence that Vygotsky’s
concept of the ZPD can be beneficial to the design of adap-
tive learning systems [10]. In that work, Zou and colleagues
investigated whether teachers make good instructional deci-
sions based on student performance data. They compared
”Ready-to-Learn” (RtL) content inside the ZPD to content
that students were ”Unready-to-Learn” (UtL), using auto-
mated assessments of student progress through a curriculum
based on a knowledge graph.

We replicate and build on this work with a larger student
sample, assessing whether a task is RtL for a specific student
using the prerequisite structure within a knowledge graph.
Our hypothesis is that, like in [10], students will gain more
mastery (successfully complete more objectives within the
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system) if they are assigned RtL tasks instead of UtL tasks.
We also investigate whether the findings in [10] are robust to
whether the student is completing tasks as homework as op-
posed to in class. We hypothesize that students working on
content in class will gain more mastery than students com-
pleting tasks as homework, due to the availability of greater
learning support and scaffolding in an in-class context [6].
We also investigate whether the findings in [10] are robust to
the general level of success of the student. If some students
are simply faster or better learners than others in a domain
(e.g. [2]), then they may be able to perform better even
when given UtL. However, one could also argue that if the
knowledge graph is correct, then all students should have
similar (poorer) outcomes for UtL content, since regardless
of their general ability they lack the building blocks to ac-
quire the content they are given. Finally, we investigate
whether the results in [10] are robust across two different
learning subjects, English and Mathematics.

2. THE ONLINE LEARNING PLATFORM
The system used in this study is a learning platform for
K-12 students in China, called LearntaR© TAD, developed
by Learnta Inc.. LearntaR© TAD, an acronym of “Teacher +
Artificial Intelligence + Data”, is a system which gives teach-
ers data on student learning progress and makes recommen-
dations on optimal learning path using AI algorithms, and
then allows teachers to decide which content students should
work on. LearntaR© TAD is primarily used in blended learn-
ing, where teachers give students face-to-face instructions in
classroom.

Figure 1: Teacher’s Interface of Learnta R© TAD sys-
tem

In TAD, teachers assign learning tasks that contain several
target skills to the students. The system infers each stu-
dent’s mastery of each skill using Bayesian Knowledge Trac-
ing (BKT) (Corbett & Anderson, 1995) by predicting the
student’s latent knowledge state according to the student’s
correctness on questions related to the skills. Learnta’s di-
rected knowledge graph maps content to a prerequisite struc-
ture, representing which prerequisite content is necessary to
know to learn a particular piece of content. Based on the
mastery of the student and the prerequisite structure of each

skill, LearntaR© TAD recommends RtL contents for teachers
to instruct. More specifically, content is considered RtL if
the student has mastered all the prerequisites of that skill;
UtL indicates that the student is missing one or more of a
skill’s prerequisites. Whether or not the teachers choose to
follow the recommendations, the system collects data on the
students’ performance and learning outcomes. Teachers can
assign material that is RtL, UtL, or even Already Mastered
(AM).

Figure 2: Teacher using Learnta R© TAD in class-
room

3. DATA COLLECTION
To investigate our research questions around ZPD status and
students’ learning outcomes, we collected data from 7913
middle school and elementary school students who studied
250,783 task cards (one task card contains several skills) in
LearntaR© TAD, during 2019.

In the context of both English and Math, we categorized stu-
dents into different levels based on their earlier assessment
test performance: 1) Excellent students; 2) Normal students;
3) Struggling students. Excellent students are those who
mastered at least 80% of the skills in the assessment, ac-
cording to Bayesian Knowledge Tracing. Normal students
are those who mastered at least 60% but less than 80% of
the skills in the assessment. Struggling students are those
who mastered less than 60% of the skills in the assessment.
The proportion of these three student categories is 32.39%,
53.78% and 13.83%, respectively.

In addition to that, we compare the use of the system in a
classroom setting to its use as homework. In-class, students
complete the assigned tasks under the supervision of their
teachers during a class session. Within the homework con-
text, students are expected to complete their tasks at home.
The percentage of these two scenarios are 57.5 % and 42.5
%, respectively.

4. STATISTICAL ANALYSIS
We compare the learning outcomes of teachers’ decisions of
what skills the student should work on. The analyses are
conducted on two topics - Math and English - separately.
The outcome of interest is whether the student mastered
the skill according to BKT. The percentage of skills that are
mastered are tabulated for each type of teaching decisions:
RtL, UtL, and AM.
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In addition to descriptive statistics, we conduct Fisher’s ex-
act test to assess the association between instructional deci-
sions and student mastery. Our hypothesis is that students
are more likely to master RtL skills than UtL skills.

In addition, a logistic regression model is used, with learning
outcome as the independent variable, and teacher’s decision,
student’s level, and whether learning occurs in a classroom
as predictors.

P values are calculated in R version 3.6.3 using the fisher.test()
function for Fisher’s exact test and the glm() function for
logistic regression.

5. RESULTS
For the tasks in Math, the completion rates were 76.5%,
70%, and 65%, respectively, for the excellent, normal and
struggling students. The completion rates were 79%, 72%,
and 66.5% in English. Those findings indicate that the stu-
dents’ completion rates vary depending on overall student
success, χ2(df = 2, N = 93874) = 650.29, p < 0.001 for
Math and χ2(df = 2, N = 146127) = 1465.87, p < 0.001 for
English.

The completion rates for in-class tasks were 75.7% for Math
and 74.7% for English, and for homework tasks the comple-
tion rate were 65.3% for Math, and 70.3% for English (see
Figures 3 and 4). Fisher’s exact tests show the in-class tasks
were more likely to be completed than the homework tasks
for both Math (p < 0.001) and English (p < 0.001).

Figure 3: Completion Rate in Math

Figure 4: Completion Rate in English

The mastery rates by subject and student success level are
presented in Figures 5 and 6. We conducted the Fisher’s

exact tests and it demonstrated that the excellent students
had a better performance in terms of mastery rates com-
pared to the normal students (Math, 68.6% vs. 52.1%, p <
0.001; English, 63.6% vs.54.7%, p < 0.001). The mastery
rates were much lower for the struggling students (Math,
36.9%, p < 0.001; English, 11.9%, p < 0.001).

Figure 5: Mastery in Math subject

Figure 6: Mastery in English subject

Figures 7 and 8 show that the average mastery rate of RtL
tasks was significantly higher than that of UtL tasks, p <
0.001 for each of the three student success levels in each
subject, using Fisher’s exact test.

The logistic regression provided further evidence that ZPD
status was associated with students’ learning outcome (F(2,
38891) = 119.85, p < 0.001 for Math and F(2, 1996) = 30.74,
p < 0.001 for English), with adjustment for task type and
student success levels. In particular, a RtL task was more
likely to be mastered than a UtL task (Math, OR = 1.710, p
< 0.001; English, OR = 7.709, p < 0.001), but was less likely
to be mastered than an AM task (OR = 0.241, p < 0.001 for
Math and OR = 0.185, p< 0.001 for English). Moreover, the
logistic regression also suggested that students were more
likely to master a math skill in class compared to homework
(t(38891) = 2.676, p = 0.007), while the mastery rates of
English skills were similar between the two settings (t(1996)
= 0.706, p = 0.480).

Moreover, interaction terms were added to the logistic re-
gression model in order to test the hypothesis that the re-
lationship between ZPD status and learning outcome was
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Figure 8: ZPD v.s Mastery in English subject

different for students with various success levels (i.e., ex-
cellent, normal, struggling), It turned out that, within the
subject Math, the improvement on learning outcome asso-
ciated with RtL status were comparable among the three
student groups (F(2, 30664) = 4.374, p = 0.126), which was
consistent with the observation that three lines correspond-
ing to different success levels are almost parallel in Figure 7.
Within the English subject, however, the analysis results in-
dicated an interaction effect between RtL status and student
success levels (F(2, 1587) = 8.763, p < 0.001): the excellent
students tended to benefit less from being assigned a RtL
task instead of a UtL task than either normal students (p
< 0.001) or struggling students (p = 0.002). The conclusion
with respect to AM tasks was less clear because there were
fewer struggling students to begin with.

Lastly, we did not find statistical evidence for there being
an interaction effect between ZPD status and whether the
system was used in class or as homework (t(38891)= -0.282,
p = 0.778 for Math and t(1996) = 1.859, p = 0.063 for En-
glish). This suggests that it is likely important to assign RtL
content to students regardless of which setting the system
is used in, although it may be warranted to continue inves-
tigating whether RtL content has more benefit for students
studying English in class, based on the marginally significant

p value in that analysis.

6. DISCUSSION & CONCLUSION
In the light of these results, we can re-consider our origi-
nal research questions. We hypothesized that, as in [10],
students would master more tasks if presented with content
thought to be in their ZPD (Ready-to-Learn content) than
content outside of their current ZPD (Unready-to-Learn con-
tent). Our findings are compatible with this hypothesis, pro-
viding a replication of the earlier work in [10]. We also find
that this pattern replicates across two domains, Math and
English.

Our second hypothesis was that students would have higher
mastery rates in class than when completing homework; this
hypothesis was upheld for math subject but not upheld for
English subject. Our finding is that students were slightly
more likely to master a math skill in class than as a home-
work, while the mastery rates of English skills was compara-
ble between the two contexts. This finding may suggest that
the learning support within the platform was more effective
than anticipated; alternatively, it may be that the instruc-
tors using the platform in their classes have not yet learned
effective pedagogies for teaching students using this type
of technology. Effective teaching in these contexts involves
different pedagogies than are necessary within traditional
classrooms [6], and there is increasing evidence that many
teachers do not adopt these pedagogies until their second
year of teaching with a new technology [5].

Our third research question asked whether generally more
successful students would perform better than other stu-
dents, even for content seemingly outside their zone of proxi-
mal development. In line with past work by Liu and Koedinger
(2015) [2], it seemed that these more successful students
were more able to succeed, even on this content that was
anticipated to be highly difficult. However, they still per-
formed more poorly on this content than on content thought
to be in their ZPD.

Overall, these results suggest that assigning content with
regards to a student’s zone of proximal development can
lead to a higher probability of the student mastering the
content they are given. This result, a replication of [10],
appears to hold in more than one learning domain. However,
there are several important areas of future work before this
finding can truly be held to be robust. First, this finding
should be replicated in a broader range of contexts – other
learning systems, other learning domains, and a wider range
of learner populations and countries. Second, it is probably
warranted to look at other definitions of the ZPD to refine
this finding – is there an optimal degree of prior mastery for
assignment of a student within the knowledge graph? Would
alternate definitions of ZPD, such as seen in Murray and
Arroyo’s work (2002)[4], be equally or more effective? Does
this type of finding also hold within systems where content
is not consolidated into skills but is more factual in nature?
By learning the answer to these questions, we can improve
the effectiveness of adaptive learning systems more broadly,
while helping to better operationalize and understand one of
the classic theories in the history of thought on education.
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ABSTRACT 

The communication presents a doctoral research currently 

underway in the context of adult e-education. It’s interested in 

spontaneous mutual helping behaviors between learners engaged 

in fully online learning. It aims to identify the nature of this 

mutual help and to examine the influence of the feeling of social 

belonging on this mutual aid. 

In order to give an overview of this thesis work, we were inspired 

by research carried out on mutual aid behaviors, prosocial 

behaviors and the feeling of social belonging. The basic 

psychological needs theory has also provided theoretical support 

for this research.   

For the empirical study, we favored a comprehensive approach 

integrating a mixed methodology involving various sources of 

data collection and different methods of analyzing this data: 

correlation analysis on quantitative data from a survey 

questionnaire, lexicometric and thematic analysis on qualitative 

data from interviews and analysis of traces of mutual help on the 

platform's forums. The results of these analysis shed light on the 

perception of the feeling of social belonging and its role in 

helping behavior. 

Keywords 

Mutual help, feeling of belonging, distance learning. 

1. INTRODUCTION 
With the evolution of online communication tools, the learner 

engaged in an e-learning system has multiple possibilities 

to interact with his teachers, tutors or peers as part of his 

training. These interactions make it possible to create a socio-

emotional climate favorable to transactions between learners 

(confrontation of their points of view, mutual adjustments, 

negotiations) and to break the isolation [1]. The development of 

interactions between all actors of a device can be realized only if 

there is commitment between each other.  In a context of adult e-

education, engaging in a training project and persevering depends 

on several factors: individual psychological factors influenced by 

the social environment and the relationship with others, social 

experience, favorable or unfavorable dispositions training, 

personal and professional projects [2]. ]. It is in this particular 

context of adult education and elearning that this search is 

registered. It aims to describe spontaneous helping behaviors 

between learners i.e. helping behaviors initiated by the caregiver 

without having been invited [3] and to examine the feeling of 

belonging effect on these behaviors. In this perspective, our 

research aims to answer the following questions: 

How do learners help each other? Are their mutual help 

behaviors linked to a sense of social belonging? 

First, we are going to describe the theoretical framework. We will 

give the definition of our research dimensions, than we will detail 

the research methodology. Finally, we will present the results and 

the first conclusions. 

2. THEORETICAL FRAMEWORK  

2.1 Mutual help 

Mutual help has been the subject of several researches in various 

fields and on different groups of people. Peer support experiences 

in primary and general secondary education, described either as 

"tutoring" or as "monitoring", cover identical practices. These are 

always mediation situations where a learner helps another learner 

in his academic, methodological learning and in the organization 

of his personal work [4]. In the context of e-learning, a helping 

relationship refers to tutoring where the help consists of 

psychological support which adopts empathy, active listening and 

non-judgment [5]. In their review of the literature on the learners 

e-learning experience, Dieumegard and Durand have shown that 

in several systems, learners tend to move away from 

institutionalized exchange spaces to help each other [6]. In 

addition, other research has also shown the emergence of mutual 

help networks at a given time in e-learning [7]. The analysis made 

on the exchanges between learners on the forums revealed, among 

other things, that these networks could consolidate the learning 
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process, recreate a space-time of meeting in order to reduce the 

"distance" and to overcome technical problems. Furthermore, in 

the context of work and organizations, helping behavior has been 

identified as an important form of organizational 

citizenship [8]. Paillé defines mutual help as a helping 

behavior which “consists for a person in providing assistance to a 

colleague to enable him to solve a problem or to avoid the 

emergence of difficulties encountered in the performance of his 

work "[9]. This helping includes four dimensions: altruism which 

is a voluntary actions that help another person with a work 

problem, peacemaking defines the actions that help to prevent, 

resolve or mitigate unconstructive interpersonal conflict; 

cheerleading which means the words and gestures of 

encouragement and reinforcement of coworkers’ accomplishments 

and professional development and finally courtesy  which 

involves helping others by taking steps to prevent the creation of 

problems for coworkers [8] . 

2.2 The feeling of social belonging  
Several names for the concept of the feeling of social belonging 

are used in an undifferentiated way in the research work [10, 11, 

1] such as “Affiliation”, “relatedness”, “Connectedness”, 

“belongingness". This feeling cannot be formed individually [10] , 

it can only exist if the individual is accepted and recognized by 

the other or more precisely by the members of the group with 

whom he wants to be and wishes to share his values [12]. 

The feeling of social belonging is expressed by two sub-

dimensions [11]: the feeling of intimacy and proximity between 

two or more people expressed by the fact of being attached, united 

or friend with the other, the second sub-dimension refers to the 

feeling of acceptance which expresses the fact of being accepted, 

understood, valued, listened to or even in trust with the 

other. Acceptance by others leads to a variety of positive emotions 

(happiness, delight, well-being, calm) while being rejected, 

excluded or ignored leads to powerful negative feelings such as 

depression, grief, jealousy and loneliness. The emotions that 

people experience, which are both positive and negative, are 

linked to the feeling of belonging [13]. It should be noted that 

the feeling of social belonging is strongly linked to the need to 

belong. Indeed, the first is centered on others and the second is 

linked to the image given to others [14]. This need according to 

Deci and Ryan is part of the fundamental psychological needs 

inherent in human nature [15].  

3. METHODOLOGY 
This research is based on a comprehensive approach. It integrates 

several sources of data collection. Also, it takes into 

account different levels of analysis to obtain a richer 

understanding of the feeling of social belonging and its role in 

helping behavior. The chosen field of study concerns two 

promotions of the online training Master 2 “Multimedia 

Pedagogical Engineering” (IPM). This master is provided by the 

Department of Education Sciences and Adult Education (SEFA) 

of Lille University. The first promotion was at the beginning of 

the course and the second at the end of the course. The majority of 

learners are adults continuing their studies. Teaching is done 

through an e-learning platform ACCEL (Collaborative Learning 

and Online Community). ACCEL is an online learning platform 

for group animation based on organized asynchronous exchanges 

enriched with documents [16]. 

Data collection was carried out in three stages: a first stage aimed 

at examining the field through the administration of a survey 

questionnaire sent to 114 learners distributed as follows: 62 

learners at the end of the course and 52 learners at the beginning 

of the course. The questionnaire was designed on the basis of 

psychometric scales validated theoretically and empirically: ESAS 

scale [11] which measures the feeling of social belonging and the 

mutual helping scale [8] which measures the helping behavior as 

defined by Podsakoff and al. [9] . 
The second data collection comes from semi directed interviews 

conducted by VoIP with a panel of 20 volunteer students: 12 

students at the end of course and 08 learners at the beginning of 

course. The interview guide was designed considering the 

indicators of the feeling of social belonging and mutual help.  

Finally, third collection of data was taken from the traces of 

mutual help between learners on the platform's forums, 1400 

contributions were analyzed. 
4. RESULTS AND ANALYSIS  
The correlation analysis conducted on the quantitative 

results reveals that there are no significant links between mutual 

help and the feeling of social belonging at the beginning of the 

course (Table 1). There is a negative correlation between the 

indicators of mutual help and the feeling of intimacy. On the other 

hand, for respondents from the promotion at the end of the course, 

the analysis shows that there is a significant link between the 

feeling of intimacy (indicator of the feeling of social belonging) 

and peacemaking (indicator of mutual help) (table 2)  
Table 1: Correlations analysis at the start of the course 

 Acceptance Intimacy 

Altruism 0,121 -0,008 

Courtesy -0,075 -0,333 

Peacemaking 0,034 -0,254 

cheerleading 0,083 -0,257 

* Significant correlation at level 0.05; ** significant correlation at 

level 0.01  

Table 2: Correlations analysis at the end of the course  

 Acceptance Intimacy 

Altruism 0,134 0,210 

Courtesy 0,035 0,310 

Peacemaking 0,066 0,508** 

cheerleading 0,058 0,136 

* Significant correlation at level 0.05; ** significant correlation at 

level 0.01  

Learners who show altruistic behavior and donate their time, feel 

close to their peers and united with them. These results clearly 

show the development throughout the formation of socio-

emotional relationships between learners. 
The qualitative data, resulting from the transcription of 20 

interviews, underwent a double analysis. The first is a textual 

statistical analysis and the second is a qualitative analysis by using 

the conceptualizing categories approach [17]. The categories were 

extracted from the literature and represent the different indicators 

of our two research dimensions. 
A statistical textual analysis of the frequencies of the words used 

in the 19 transcribed interviews was conducted using the Iramuteq 

lexical analysis software. This free software studies groups of 

significant words and proposes groupings. Three major classes 
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emerge from the first analyses (Figure 1): A class characterized by 

the forms "diploma", "career", "professional" which reflects the 

professional trajectory of the learners as well as their motivation 

for training. A second class characterized by the forms "group", 

"phase", " integration" reflects the group organization aspect. The 

third class is rather related to the moods and feelings of the 

learners, there are forms related to the dimension of mutual help 

and the dimension of belonging.  This analysis reveals that mutual 

help takes place in a small working groups. 

 

 

 

 

Figure 1. Descending hierarchical classification 

A qualitative analysis highlights two group profiles, groups 

where, understanding and empathy prevail, and groups 

with difficulties related to both conflicts and agitations between 

the members of the working group. Given the results, the feeling 

of belonging is strong mainly in working groups where, 

understanding and empathy reign. We find in these groups, 

essentially, altruistic and cheerleading behaviors. 

The table of data and variables (Figure 2) shows the results of 

qualitative analysis. It highlights two group profiles, groups 

where, understanding and empathy prevail, and groups 

which have experienced difficulties related either to conflicts and 

agitations between the members of the working group or 

abundance of one of the members group. Feeling of belonging is 

strong mainly in working groups where, understanding and 

empathy reign. We find in these groups, essentially, altruistic and 

cheerleading behaviors.   

 

Figure 2. Data table and variables 

Traces analysis of mutual help on the platform's forums is still in 

progress. 1400 contributions on the thematic forums of the 

promotion at the beginning of the course were browsed in order to 

identify those, which describe mutual helping behavior 

between learners. The first results reveal a weak tendency of 

learners to provide help to their peers. Requests for help are rather 

directed towards tutors. The rare helps provided spontaneously by 

peers categorized as altruistic behaviors mainly concern the 

organization of the platform such as access to a space, production 

depot, access to documents. It seems that requests for help are 

made through non-formal networks [7] or via communication 

tools other than those present on the platform. 

5. CONCLUSION 
The mutual help behaviors as we have apprehended them are 

found in the small working groups, the latter are divided into two 

groups. Groups in which there is a stable climate of understanding 

and empathy and groups that have broken up because of the 

abundance of one of their members, or in which the work has 

been carried out in anguish and agitation. In the first groups, there 

is a strong feeling of social belonging (acceptance and intimacy). 

Learners feel understood and supported and help each other all 

the time. These behaviors are present at the end of the 

training course. It seems that the fact of having shared several 

activities collectively during the whole training favored the 

development of interpersonal, intimate and regular 

relationships. However, the feeling of social belonging is low in 

the groups that have experienced unrest situations or that have 

broken up due of their member’s abandonment. In view of the 

results, it seems that a third dimension on group dynamics is at the 

origin of the feeling of social belonging development and the 

appearance or not of mutual help behaviors. 
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ABSTRACT 

Scoring an essay is an exhausting and time-consuming task for 

teachers. Automated Essay Scoring (AES) facilitates the scoring 

process to be faster and more consistent. Nevertheless, AES system 

lacks transparency about the reasoning behind the score given to 

the students. This research aims to find a suitable framework for 

providing an informative score explanation. In our experiment, we 

develop a regression model using Gradient Boosting, then analyze 

the overall features contribution and local interpretation of the score 

prediction. We construct the feedback summary by decomposing 

the feature contributions and categorizing similar features into a 

structural explanation. The results indicate that structural 

explanation can help researchers to recognize and improve the 

performance of the system when dealing with problems such as 

gibberish, autocorrect, and spelling errors. The feedback can also 

highlight the strength and weakness of a student’s answer. 

Keywords 

Automated Essay Scoring, Structural Explanation, Feature 

Contribution 

1. INTRODUCTION 
There is a growing interest to use computer software as tools to 

facilitate the evaluation of student essays. Theoretically, 

Automated Essay Scoring (AES) system works faster, reduces 

costs in terms of evaluator’s time, and eliminate concerns about 

rater consistency. However, AES system lacks transparency about 

the reasoning behind the score prediction. It is highly needed to 

build trust in machine learning models trained for classroom 

contexts [1]. Furthermore, AES system must provide good quality 

and useful feedback to its users, which can be inspired by the field 

of Learning Analytics. Researchers from the University of 

Technology Sydney, Australia, are designing personalized and 

automated feedback to develop students’ research writing skills [2]. 

They develop a system called AcaWriter for providing formative, 

actionable feedback on HDR (Higher Degree Research) student 

writing. The system implements a genre-based approach and the 

CARS model [3], which describes the rhetorical and linguistic 

patterns that authors make in their research article introduction. The 

students stated that AcaWriter helped them think about the 

structure of their article introduction and focus on the rhetorical 

moves in their writing. They also found that immediate feedback 

and text highlighting in the system useful. Pigaiwang [4] is another 

system providing feedback which is used in more than 1000 schools 

in China, including some top universities, such as Tsinghua 

University, Nanjing University, Fudan University, and so on. 

Pigaiwang has made an essential contribution to English writing 

education at university. Pigaiwang provides students with 

opportunities to revise their writing and continues giving feedback, 

which improves their writing ability. Revision Assistant is another 

work which is a tool for providing sentence-level and rubric 

specific feedback to students [5]. 

The system feedbacks from previously mentioned studies are 

mostly provided in the revising phase. Students are expected to 

revise their work in order to get a better score. In this research, we 

focus on the final score feedback, which explains to students why 

the system gives them the generated score. Students are not able to 

revise their works, but the students can still take advantage of such 

feedback to perform better in their future exam. 

The main contribution of this paper is to enable an AES explanation 

framework reproducible for researchers to develop their AES 

system. Unlike the proprietary systems, we develop our system in 

a transparent way by using open-sourced libraries. We use open and 

free libraries for the feature extraction, machine learning model 

training, and the model interpretation. This paper begins with the 

motivation for finding a suitable framework for score explanation. 

Then, we present the proposed framework and the experiment 

settings for generating the score feedback from feature 

contributions. Afterwards, we discuss the experiment results, 

system evaluation and improvement. Finally, we conclude our 

research and plan our future work. 

2. PROPOSED FRAMEWORK  
Figure 1 describes how the system works. By the time the student 

submits his/her answer, the raw text answer will be extracted into a 

feature vector. The regression model will then predict a score for 

this specific feature vector. The score prediction should be 

accompanied by the reasoning behind the score in the form of 

feedbacks. The feedbacks should highlight the strengths and 

weaknesses of the answer. The strengths are summarized from the 

feature categories with positive contribution towards the score, and 

the weaknesses are summarized from the ones with negative 

contribution.  

Feedback in AES system provides transparency about the grading 

process. This can ensure fairness for all students and make sure that 

each students’ essay is evaluated by the same standard. Students 

can also identify their strength and weakness, which is beneficial 

for their future exam. Teachers can take advantage of the feedback 

feature in AES to assess the performance of the system, and to 

check whether specific learning objectives have been fulfilled. 

Score explanation also enables researchers to evaluate and to 

improve the performance of their AES system by analyzing the 

model interpretation behind the score prediction. 
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3. SCORE ANALYSIS FROM FEATURE 

INTERPRETATION 
We develop our Automated Essay Scoring model using Gradient 

Boosting algorithms. Ensemble model such as Gradient Boosting 

(GB) is especially hard to interpret because of the complexity. The 

trade-off between model performance and model interpretability is 

known among researchers. Generally, a more complex model 

outperforms a simple linear model. Therefore, we choose to 

understand the model decision using several interpretation 

techniques rather than sacrifice the system performance. 

3.1 Overall Feature Interpretation 
Using XGBoost library, we can train the model and also extract the 

importance of the features from our model. Identifying the essential 

features can help us in understanding the behavior of the model in 

general. 

3.2 Score Analysis from Local Interpretation 
Local interpretation means that we are interested in understanding 

which variable, or combination of variables, determines the specific 

prediction. We use shap values to help in determining the most 

predictive variables in a single prediction. In AES, the system 

output is a real number. Each variable contribution will either 

increase or decrease the output value.  

4. EXPERIMENTS 

4.1 DATASET 
We use the Automated Student Assessment Prize (ASAP) dataset1, 

hosted by the Kaggle platform, as our experiment data. In this 

research, we use specifically dataset #6 from ASAP. The dataset 

comprises 1800 essays, which then split into the training set and 

testing set in 80:20 ratio. The score range in this dataset is 0 – 4.  

4.2 FEATURES EXTRACTION 
The essay features are extracted using EASE (Enhanced AI Scoring 

Engine) library2, written by one of the winners in ASAP Kaggle 

competition. This features set have been proven to be robust [6]. 

EASE generates 414-length features. We added one more  feature 

(spelling error) later at the evaluation phase, so that we have 415 

features in total. 

4.3 MODEL TRAINING 
We train the regression models using Gradient Boosting 

algorithms. We use Quadratic Weighted Kappa (QWK) score as the 

                                                                 

1 https://www.kaggle.com/c/asap-aes 

evaluation metric. QWK measures the agreement between system 

predicted scores and human-annotated scores. The mean QWK 

score for our Gradient Boosting (GB) model using 5-fold cross 

validation is 0.7667. 

5. RESULTS 

5.1 Overall Features Interpretation 
XGBoost Python package includes the plotting function to reveal 

the importance of each feature from the model. We show 15 

features with the highest importance. Answer length appears to be 

the most important feature in predicting the essay score. Average 

word length, prompt overlap ratio, and good n-gram ratio are also 

among the most important features. Meanwhile, some of the other 

features are not interpretable because they are merely the bag-of-

words representation of the answer. We did not eliminate the bag-

of-words features because the model performance, indicated by 

mean QWK score, is slightly lower without their presence. 

 

Figure 2 The 15-most important features from Gradient 

Boosting 

5.2 Local Interpretation 

Local interpretation deals with a single instance prediction, it helps 

us to analyze the reasoning behind the model prediction. Figure 3 

shows each feature’s contribution to obtain the score prediction 

from an essay in the test set. We examined the prediction of essay 

2 https://github.com/edx/ease 

Figure 1 Score Explanation for AES Framework 
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sample from the ASAP dataset #6 with essay ID: 15360, taken from 

the testing set. This answer has a score of 3 out of 4, which is the 

correct prediction. We can observe that the most influential 

contributor in predicting the score is the answer length, which has 

the largest impact on increasing the score. It seems that the student 

wrote his/her answer above the average length of the other answers. 

There is a tendency that a longer answer is generally awarded a 

higher score. Although it remains unclear whether longer essay also 

provides better ideas and arguments.  

Prompt overlap is the second interpretable feature that also 

improves the score. Prompt overlap means the number of same 

tokens that are found between the answer and the prompt. Too high 

overlap score might indicate that the student is not creative or 

original enough in writing his/her own ideas and words as the 

answer. However, too low overlap score is also a warning that the 

answer might be out of topic. 

Meanwhile, the average word length affects negatively to the score. 

Average word length feature can provide an insight that longer 

word could mean a more sophisticated word choice and help the 

students to achieve a better score.  

 

Figure 3 GB Feature Contribution for essay ID: 15360 

5.3 Structuring the Feedback 
We believe that categorizing the feedback in a more structural way 

is better and can provide a higher level of feedback to the users. 

Therefore, we propose our structural explanation of score 

prediction by AES system. 

Our framework explains the score prediction in five categories, as 

we can see in Table 1. The features in the second column are from 

EASE library, plus one spelling error feature, which we added later 

in the evaluation and improvement part. Each feature has a different 

contribution value; it can be either positive or negative. The 

feedback summary in the first column categorizes similar features 

and gets its value by summing the contribution values of those 

features. The summation results with negative values belong to 

negative feedback, and the ones with positive values belong to 

positive feedback.  

Our first category deals with answer length, and it is the sum of the 

contribution values of two features; answer length (number of total 

characters in the answer) and word counts. Relevance factor 

combines four features from EASE which are related to the degree 

of overlap between the prompt and the answer, including the 

synonyms. Grammar measures the number of good n-gram and its 

ratio in the essay. The essay is extracted into its POS-tags and we 

compare them with a list of valid POS-tag combinations in English. 

The usage of punctuation in the answer, combined with how many 

spelling errors found, defines the mechanics feedback. Under the 

assumption that a longer word means a more difficult or 

sophisticated word, we put the contribution of feature average word 

length in its own category, namely Difficult Word Usage. 

Table 1 Feedback Categories for Score Explanation 

Categories with positive contribution are shown in green. On the 

other hand, categories which are proven to be negatively affecting 

the score are displayed in red. We exclude the bag-of-words 

features from our feedback summary because they are less 

interpretable. Feedback for essay ID: 15360 is shown in Figure 4. 

5.4 Evaluating and Improving the System 
It is important to note that all of our feedbacks are based on the 

general assumption about the text features, and what we can infer 

from them. In the dataset (ASAP Dataset#6), the final scores are 

not accompanied by rubric scores or scoring criteria. Thus, we 

cannot understand the actual reasoning behind the scoring process 

by the persons who annotate the data. Therefore, we come with our 

proposed solution to provide score explanation from text feature 

extraction and see their contribution from the model interpretation. 

Based on that condition, we can only test our system using some 

extreme essay samples. The reason is that we are looking for 

examples that we are confident about the score that should be given. 

We can observe three examples of inaccurate predictions or 

feedbacks from the system in Table 2. The first example (Answer 

ID: 1) test the system’s ability to handle gibberish. We want to 

avoid users from tricking the system using invalid answers, and 

undeservedly get a score other than zero. However, the system 

incorrectly awards the first answer with a score of one. Using our 

framework, it is possible to analyze the cause of a wrong prediction. 

The feedback summary in Figure 5 (left) shows that this answer has 

positive feedback from difficult word usage category. The reason 

is that the gibberish contains many words with high average word 

length, which indicates the usage of difficult words from the users. 

And the usage of more sophisticated words tends to improve the 

user’s score. 

Feedback Summary Contributing Features 

Answer Length 
- Answer Length 

- Word Counts 

Relevance 

- Prompt overlap 

- Prompt overlap ratio 

- Prompt overlap (synonyms) 

- Prompt overlap (synonyms) 

ratio 

Grammar 
- Good n-gram 

- Good n-gram ratio 

Mechanics 

- Comma Counts 

- Apostrophe Counts 

- Other punctuation counts 

- Spelling errors 

Difficult Word Usage - Average word length 
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Figure 4 System Feedback for Essay ID: 15360 

To improve the system, we modified one of our feature in the 

feature extraction phase. The model will only count the average 

word length for valid English words. We use Python spellchecking 

library PyEnchant3 to validate whether each word belongs to 

English vocabulary. Modifying this feature is able to correct the 

system prediction. The first answer gets the score of zero, and the 

system displayed the correct feedback summary, as shown in 

Figure 5 (right). 

Table 2 Evaluating Wrong Predictions 

Answer 

ID 

Problem Actual 

Output 

Expected 

Output 

1 Long gibberish 1 0 

2 Long gibberish with 

inaccurate spell 

correction 

1 0 

3 Perfect score (4 out of 4) 

for an essay that have 

too many spelling errors 

4 3 

The second essay (Answer ID: 2) suggests that gibberish possess 

another form of risk. It seems that the autocorrect feature inside 

EASE library (Aspell spell checker) may transform the gibberish 

into a valid word. In the second essay, the sequence of characters 

such as “sigsigisghsi” is transformed into “zigzags”, “emoybgat” 

into “embark”, and “adjghadoigda” into “adjudicate”. These valid 

words, although not meant by the user, increase the average word 

length value which is correlated to difficult word usage category. 

Based on this problem, we decided not to implement spell 

correction while counting the average word length feature. 

Whereas, spell correction is still applied for the other features. 

Finally, the system is able to provide the expected prediction for 

the second answer, which is also zero. 

The third answer is actually from the testing set (Essay ID: 15073), 

and it has the perfect score of 4 out of 4. However, we edited this 

answer so that it has many spelling errors (15 words). We cannot 

clarify whether spelling errors is influential in the score according 

to the human expert who annotated this data. However, we assume 

that any answer which has that many spelling errors should not be 

awarded a perfect score. For this reason, in addition to EASE 

features, we include one more feature, namely spelling errors. It 

counts the number of spelling errors that appear in the submitted 

answer. 

We rebuilt the Gradient Boosting model with 415 features (414 

features from EASE + 1 spelling error feature). The new mean 

QWK score is 0.7623. Interestingly, the spelling error feature also 

appear in the top-15 features with the highest importance for the 

model. Finally, our new model predicts the third answer (Answer 

ID: 3) with the score 3 out of 4. Moreover, the spelling error feature 

has the highest negative contribution to the final score for this 

answer. 

6. CONCLUSION AND FUTURE WORK 
The purpose of this research is to develop an Automated Essay 

Scoring (AES) system that can be used in practice. We focus on the 

score explanation aspect of AES. We demonstrated that our 

structural explanation framework can be beneficial for researchers 

to evaluate and to improve the performance of an AES system. Our 

experimental study shows that by analyzing the system explanation 

feedback, we can detect faulty behavior of the system prediction 

such as when dealing with gibberish, autocorrect, and spelling 

errors problems. Nevertheless, since little is known about the 

effectiveness of the model and the features for application in 

different domains, we plan to investigate the suitable design for an 

adaptable domain setting in the future work. Our current approach 

still lacks the pedagogical aspects of essay scoring. This is our other 

future work direction that we expect to improve the system in 

general and presentation of the focused feedback in particular, thus 

being more helpful for teachers and students. 
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ABSTRACT
Intelligent tutoring systems continue to enable teachers in-
sight into their students in an immediate fashion. With deep
fine-grained data provided to the teachers, they can gain a
deeper understanding of the student’s learning. While mul-
tiple systems exist, most are limited to specific, close-ended
questions; these include questions with a set of known ac-
ceptable answers, such as solving for ‘x’ in an equation (i.e.
in ‘x+4=6’, the clear answer would be 2). Questions of
this variety are implemented within these systems and al-
lot for timely feedback to the students. A system can eas-
ily decipher certain values to be incorrect answers and help
can be offered to the student. While close-ended problems
provide a wide range of insights into the student’s process,
they are often unable to gain the deeper discernment of the
student’s understanding. Open response questions elicit a
greater scope of the student’s understanding. However, very
few intelligent tutoring systems provide support to teachers
and students for these types of questions. Within the few
that can, they are not able to offer automation for the pro-
cess. One of the greater appeals of computer-based systems
is that they provide teachers automated grading and give
students immediate feedback. It is therefore my goal to fur-
ther the study and development of automated assessment
and feedback tools to support open-ended problems within
computer-based systems. Toward this goal, my focus of re-
search is on the development and deployment of automatic
grading models, exploration of fairness within such models,
and expansion of existing systems to leverage this research.

Keywords
Natural language processing; machine learning;
word-embeddings; intelligent tutoring systems; automated
grading; automated feedback

1. INTRODUCTION
Intelligent tutoring systems (ITS) have been around for some
time, and their benefits have been discussed and noted in

studies such as [13][17]. These benefits, however, have been
limited to close-ended problem types. As such, problems
with close-ended answers are at the core of most ITS; in-
cluding ASSISTments [5], McGraw Hill’s ALEKSTM and
Carnegie Learning’s Cognitive TutorTM. This limitation
comes from the overall goal of ITS; to provide automated
feedback to students and timely reports to teachers about
their students. Questions with close-ended answers allow
these systems to achieve this goal. For instance, its very
simple to set up a system to understand the correct an-
swers when 1/2 or .5 are the only acceptable student an-
swer. Studies such as [14] have discussed why multiple choice
questions (close-ended questions) are so appealing: they’re
easy, accurate and timely to grade. While it is evident that
the teachers gains a substantial understanding of the stu-
dents comprehension from these questions, there is more to
student’s process of thinking. If the student selects A, the
teacher can assert the student’s rationale; however, this is a
summation from other students selecting the same answer.
Open responses questions provide students the opportunity
to explain their own personal rationale; giving teachers an
even more in depth understanding of the student’s process
of thinking. Studies such as [6] called attention to the fact
that there are vast advantages to a greater spectrum of ques-
tions types; when focusing on evaluations with a single ques-
tion type, it’s insufficient in testing the students actual un-
derstanding and rationale/critical thinking. By providing
support for open response questions, teachers are able to
discern, in greater detail, what point the student became
confused or if they ever understood. This is also supported
by [7] which discussed the wider range of cognition required
with open response questions as compared to close-ended
multiple choice questions. However, as mentioned earlier,
few intelligent tutoring systems support this type of ques-
tion.

While not the only system to support open response prob-
lems, ASSISTments, the system through which much of my
prior research has been conducted, is developing tools to
improve the support of these problems for teachers. The ca-
pability to automatically grade student answers or provide
immediate feedback to students is still lacking in comparison
to what is possible for close-ended problems. For open re-
sponse questions, natural language processing (NLP) must
to be utilized to provide such tool. Additionally, the in-
frastructure needs to be in place to support these machine
learning algorithms for real-time use within classrooms.
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Table 1: Rasch Model Performance from Erickson et al., 2020

Model AUC RMSE Kappa

Rasch Model with teacher component 0.696 1.09 0.162
Rasch Model without covariates 0.827 0.709 0.370

Rasch Model with number words covariates 0.829 0.696 0.382
Rasch Model number words and Random Forest covariates 0.850 0.615 0.430

Rasch Model number words and XGBoost covariates 0.832 0.679 0.390
Rasch Model number words and LSTM covariates 0.841 0.637 0.415

In this paper I will be discussing my previous work, which
has attempted to develop machine learned models for au-
tomatically grading student open response questions within
ASSISTments, in addition to current and proposed future
projects pertaining to the further study and development
of tools to support these problems in classroom settings.
Among this proposed future research, I will describe my in-
tention to study similarity measures to allow students to
see similar open ended response rationales to theirs; in this
regard, I have drawn inspiration from an existing system,
known as myDALITE [2], and propose an extension of this
idea utilizing open-ended response problems.

2. PREVIOUS CONTRIBUTIONS
It’s clear there is an advantage to developing a tool which
can assist in automating open responses in mathematics
within intelligent tutoring systems (ITS). If we can bridge
the gap between the ITS capabilities within close-ended prob-
lems and open response problems, we can further empower
teachers with a deeper knowledge of their student’s logic.
With this, I focused on starting from the ground up. Ex-
ploring our ability, within ASSISTments, to automatically
grade open response student answers within open response
questions in a mathematical domain.

2.1 Automated Grading
While others have utilized a multitude of NLP approaches
to interpret and grade open response questions, [16] [15] [12]
[18] , most have been working with non-mathematical con-
tent. Much of the NLP research has consisted of essays and
sentences with a standard corpus. This is why so many ap-
proaches looked to utilizing deep learning approaches, such
as word embeddings Word2Vec [8] and GloVe [10] to gain a
vector relational understanding of words. For my research
[3], I set out to automatically grade open response questions
within the mathematical domain. Contrary to previous re-
search, the corpus within this study was unique in the sense
that student answers would be a diverse assortment of words
and mathematical functions. Not only was the corpus di-
verse in words and functions, but the answers were diverse
in length. Some student answers consisted of one or two
words, while others responded with multiple sentences.

Within this research, the route was taken to approach the
NLP task with a wide variety of approaches and methods.
With models developed from traditional NLP approaches
such as a term-frequency inverse document frequency, tf-
idf (bag of words model which counts the number of occur-
rences of the word and re weights the word), to deep learning
approaches with word embeddings, a wide spectrum of ap-
proaches were attempted.

Overall, 6 different models were developed to predict the stu-
dent’s grade on an open response mathematics question. In
Table 1, the baseline model was a Rasch model which didn’t
take into account any NLP developed models. From there,
we supplemented the Rasch model with a teacher component
and number of words covariate. Each of those performed
worse than either the tf-idf, or the word embedding ap-
proaches. By augmenting the models with NLP approaches,
the Rasch model was able to improve and provide a stronger
performing model with our data (c.f. [3] for further detail
pertaining to this study and analyses).

3. CURRENT WORK
While the top performing model in my previous study showed
promise with an AUC of .850, RMSE of 0.615, and Kappa
0.430, beating the baseline and all other models, it was de-
cided to ensemble the 3 top performing models. The ensem-
ble, along with the individual previous 3 top models, are now
currently being used within a randomized control trial and
integrated within ASSISTments. What has become more
and more evident is that when utilizing pre-trained word
embeddings, there needs to be close consideration of model
fairness. As studies such as [1] noted, there can be underly-
ing biases within word embedding models.

3.1 Assessing Fairness
Since multiple of the models within the automated grading
study utilize pre-trained word embeddings, my research has
progressed towards exploring potential bias within our mod-
els. Its imperative that models being implemented within an
ITS, or any study, should minimize bias; especially as it per-
tains to grading. The grades should be based solely on the
content, nothing else. As stated earlier, [1] notes that it
doesn’t matter which embedding approach you use (or pre-
trained embeddings in our case), biases, such as gender bias,
can sneak in. As the paper references, embeddings can teach
models that woman is to homemaker as male is to computer
programmer. This is something we explicitly want to avoid
in any predictive models within an ITS.

Currently, work is being done to identify potential bias within
models from my previous automated grading study. What is
imperative is to be able to clearly identify the bias, if there
is evidence of bias, and if its coming from pre-trained word
embedding (when we account for the different word usages
of males and females) or the models the grade predictions
are trained with. By developing steps to directly compare
models, and word representations, to predict grades given
women responses/male responses, we can hopefully identify
whether bias is present. We are building our approach from
prior works (c.f. [4][9]), and if we can clearly identify which
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models have the least amount of bias, then we push those
models to production. Additionally, we will be exploring
how to handle the bias, if needed, within the suspected mod-
els.

3.2 Randomized Control Trial
Currently, my research also is simultaneously being applied
to a randomized control trial. This is a study in which the
automated grading models are being used to provide stu-
dent’s with their potential grade before they submit an an-
swer. So, once the student’s have submitted a answer to the
open response mathematics question, one of the conditions
will take the strongest performing grade prediction model for
the problem and suggest a grade. This grade is then pre-
sented to the student and the student will be presented with
the option to edit their answer. This poses many interesting
questions such as: will the student’s edit their answers? If
they do, by how much have the answers changed and how
much has their grade changed. This is ongoing research and
I will continue to develop new models and take into consid-
eration the bias study previously discussed here.

3.3 Comment Suggestions
As discussed previously, one of the main attractions to ITS
is the automation. While I have presented multiple models
that predict the students grade with reasonable accuracy,
within our data, it is clear there is another step. Providing
automated feedback is the next optimal tool for teachers
and students. Currently, work has been done developing an
approach which suggest responses by utilizing similarity cal-
culations. Recently, our team collected data where teachers
graded a set of student open response answers. This allowed
us to have multiple teachers grade the same student answer,
as well. Within this, teachers would grade and create a cat-
egory which they would place the student answer in. This
was performed across multiple problems.

With this, there is now a more robust dataset of answers and
associated teacher responses. By utilizing similarity calcu-
lations, ranging from Levenshtein distances to SBERT [11],
when a student submits an answer to a problems (one which
we have previous data on) the most similar student answer
on file is calculated and we then can suggest those associated
teacher responses with that most similar answer.

Additionally, its being explored how these methods could be
validated. For instance, aside from manually looking at the
suggested responses, how could there be an offline evaluation
of these methods (that does not require teachers to select
from the undoubtedly poor suggestions produced by early
iterations of such a tool). For each problem, the 3 most
similar answer for each individual answer (which has been
graded and categorized by our teachers) are selected using
both SBERT and Levenshtein distances. From there, it is
calculated how many of the teacher categories are the same
for the similar answer and the original answer. The method
with the most agreement, for each problem, is selected to
use for future student answers for said problem.

4. FUTURE WORK
With accurate grade prediction models, a potential method
to identify bias, and an approach to selecting similar student

answers, I have a set of approaches which lends itself to the
next step I wish to take. I am looking to explore whether
we can expand upon just suggesting the student to go back
and edit (the randomized controlled trial); can we use NLP
to take the students answer, discover which are the most
similar, find those similar answers and share their rationale
with the student. Then allowing the students the opportu-
nity to go back and either chose their submission or re-write
their answers to reflect what they have learned from other
similar (or possibly dissimilar) answer rationale. This re-
quires a similarity calculation, a grade predictions (to see if
the student’s answers and most similar answer would retain
the same or different grade) and then a way to show are cal-
culations are accurate. Then once the student’s answer has
a top 3 similar student answers, the rationale (not answers)
are shared. As identified earlier, this practice is in-part anal-
ogous to how an existing system, myDALITE [2] functions.
It is for this reason that these same methods might be suited
to expand upon this idea to provide teachers with new tools
that can be used in the classroom.

In this system, students are presented with a multiple choice
question and asked to provide an explanation, or rationale,
for their work. Students are then presented with other ra-
tionales and asked if they would like to keep their answer or
if a rationale for a different response has convinced them to
change their answer. I wish to explore if this approach could
be performed with open response questions. Instead of an
initial multiple choice question the student writes a answer
and rationale to an open response question and then similar
responses are presented, giving the student the option to ei-
ther change their response or continue. This would require
multiple of my previous and current research to prepare such
a approach.

This would be a fascinating exploration into how confident
a student is in their response. If after seeing others ratio-
nal, does that convince students to re-evaluate or edit their
answers? We may be able to explore what types of answers
are confident answers and how much they differ from less
confident answers. Additionally, I would like to continue to
use NLP to help identify gaming behavior with this type
of system; it would be important to identify students an-
swering with “I don’t know” types of responses and avoid
them simply being presented with other rationales. There
are also questions into whether seeing other’s rationale could
hurt the students learning and cause more confusion. This
is an aspect of the study which would need to be expanded
upon.

Overall, there have been direct effects of my research, in-
cluding the implementation of the automatic grader in AS-
SISTments using the models built in my previous research.
Additionally, the current RCT provides an opportunity to
see how these predicted grades could impact a student’s an-
swer if they were exposed to the grade. Lastly, there is po-
tential for my work calculating similarities between student
answers to impact how ASSISTments suggest responses for
teachers to students. Hopefully, saving the teacher time and
increasing the amount of open response questions given out.
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ABSTRACT
The role of self-regulated learning (SRL) behaviors for read-
ing scientific texts has been largely recognized by researchers.
Unfortunately, not all learners are effectively self-regulating.
To provide effective support for SRL activities, it is neces-
sary for us to understand how students adapt their self regu-
lation behaviors during reading. This study investigates stu-
dents’ SRL behaviors in science reading using historical data
from a K-12 digital reading platform, Actively learn (AL).
We analyze reading related SRL in four contexts, such as,
domain-specific sequential pattern, question features, ques-
tion and content difficulty, and teachers’ interaction with the
platform. We present findings of our work and seek advice
on how the insight that we get from these findings can be
used in our proposed methodology.

1. INTRODUCTION
Scientific literacy has been a central goal of international
science education reforms for last decades, and researchers
consider reading science texts as an integral part of science
literacy [9]. Despite the importance of reading comprehen-
sion, students in the US lack reading proficiency. According
to National Assessment of Educational Progress (NAEP)
2019 report, 37% 8th-graders in the US performed at or
above NEAP reading proficiency level 1 and this number is
lower than that of 2017. An integral skill for reading is self
regulated learning (SRL) [14]. Unfortunately, the typical
teacher/student ratio and teachers’ priority for topic com-
pletion make it difficult for students to learn and practice
reading skills and other SRL skills.
Digital reading platforms can provide opportunities to learn
and practice SRL strategies in classroom settings. Retro-
spective analysis of rich data from digital platforms of can
provide insight about students’ learning pattern to support
tailored interventions by instructors.
The present dissertation proposes four research questions

1https://nces.ed.gov/nationsreportcard/reading/

(RQs) to investigate students’ reading and reading-related
SRL behaviors within the AL platform 2.The RQs are de-
scribed as follows.

• RQ1. [SRL Patterns and Performance Differ-
ence] How do students’ score connect with their read-
ing and SRL patterns?

• RQ2. [SRLs and Question Features] How do
reading and SRL strategies vary with question features?

• RQ3. [SRLs and Content Difficulty] How do read-
ing and SRL strategies vary with question and text dif-
ficulty?

• RQ4. [SRLs and Teachers’ Interaction] How do
teacher interactions with the system connect with stu-
dents’ reading and SRL behaviors?

In the following subsections we present subquestions, mo-
tivations, and possible contributions associated with each
RQ.

1.1 RQ1: SRL Patterns and Performance
We split the RQ1 into a subquestion as follows.
RQ1: Which reading and SRL patterns differ between high
and low performing student?
RQ1.1 How reading patterns differ for science and social
study?
The motivation of RQ1 is to identify reading and SRL be-
haviors for productive and unproductive students. Addi-
tionally, to understand how these behaviors vary for cross
domain subjects. Findings of this RQ can be used to develop
recommendation system targeted for specific group of stu-
dents. Also, data driven analysis will be helpful for teacher
to make tailored interventions for students.

1.2 RQ2: SRLs and Question Features
To conduct preliminary experiment, we split RQ 2 as fol-
lows:
RQ2: How do students’ SRL strategies vary with question
features?
RQ2.1 Does the association of SRL vary depending on ques-
tion formats?
RQ2.2 How do other question feature: placement in the text,

2https://www.activelylearn.com/
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length of question stem, standard usage are connected with
students SRL behaviors?
The motivation of this RQ is twofold. First, to understand
which question features prompted what types of SRLs? Sec-
ond, to understand how question features predict perfor-
mance in assignment score? While previous SRL researchers
[1,5] focused mainly on question formats (i.e., multiple choice
question, short answer, ...), our research will examine more
fine grained question features to understand students’ SRLs.

1.3 RQ3: SRLs and Content Difficulty
We will analyze RQ 3 into two phases as follows: RQ3.1
How do SRL strategies vary with question difficulty?
RQ3.2 How do SRL strategies vary with text complexity?
Previous two RQs do not distinguish difficulty level between
question formats. RQ3.1 assesses question difficulty from
student interaction data at class level. We compared our
proposed approach with the IRT [10] approach.

1.4 RQ4: SRLs and Teachers’ Interaction
The first three RQs analyze students SRL behavior consider-
ing their study pattern and question and text features. This
RQ focuses on teachers usage the AL system and how it
contributes to students SRL usage. We will focus on several
teacher-behavior including: how frequently teachers are giv-
ing feedback and what question standards are they assigning
to questions.

2. METHODS AND CURRENT PROGRESS
Currently, the analysis of the first research question, RQ1 is
complete (accepted), a subquestion of the second research
question, RQ2.1 is complete (accepted), and a subquestion
of the third research question, RQ3.1 is under revision. As
RQ3.1 is under submission, we present methodology and
results of RQ1 and RQ2.1.

2.1 SRLs in AL
Our scope of this study is evaluating students’ SRL usage in
middle school science reading within the AL platform. AL
reading assignments follow Next Generation Science Stan-
dards (NGSS) and have text embedded questions. Question
formats can be multiple choice (MCQs) and short answer
questions (SA) (i.e., fill in the blank and free texts). Ques-
tions are graded on a [0-4] scale. The platform’s developers
claim the platform promotes deep learning by close reading:
annotating, highlighting, and engaging with text.
We identify three reading support features of AL as SRL:
annotating [8], highlighting [13], and vocabulary lookups,
as we believe these features serve as proxies for SRL be-
haviors. Science text involves concept words and vocab-
ulary terms. Students’ reading comprehension and moti-
vation has been decreased due to introduction of concept
words [4]. Vocabulary lookups help students to understand
concepts when they come across new vocabularies. Anno-
tating requires students comprehend text and write down in
their own words [8]. Azevedo described taking notes, sum-
marization, and reading notes in context of SRL strategies
for science learning with hypermedia [2]. To select texts
for highlighting, students monitor information and connect
those to their prior knowledge [13].

2.2 Methodology of RQ1
We describe clustering approach followed by generating se-
quences, and applying differential sequence mining technique
with 12,566 science and 16,240 social study student assign-
ment data.
Clustering Students by Performance Score We calculated

four types of scores for each MCQ and SA, resulting in eight
performance features. These are: first attempt score, last
attempt score, Norm last, and Long Submission, Norm last
is the multiplication of last score by normalized attempts
–the ratio of attempts a student’s attempt to all students’
attempts on that question in a class. Long Submission com-
putes proportion of attempts a student made after the me-
dian time for all students on that question in a class. After
observing the Silhouette width, we applied K-means clus-
tering with K= 4 on both science and social study data .
Coding Student Actions Student activities in the AL are

attempts on question answering and SRL. We codded fol-
lowing question answering first attempts of MCQ (M) and
SA (S) and resubmissions of MCQ (m) and SA (s). SRL ac-
tivities are a reading (R), annotating (A), a highlighting (H),
and a vocabulary lookup (V). As the AL system does not
record student sessions, we relied on a data-driven approach
to identify sessions as described by Kovanovic et al. [7] and
Adithya et al. [12]. We plotted histograms of time intervals
between consecutive actions to identify last action of any
time period. Based upon this analysis we chose a cutoff of
30 minutes as a session duration. We split all student activ-
ities within a single assignment by session. We compacted
repeated events by + as done by Kinnenbrew et al. [6].
Frequent Patterns within Clusters Within each cluster, we

applied the n-gram sequencing technique and include pat-
terns containing at least one letter from the set {R, A, V,
H}. Differential sequence mining algorithm [6], requires two
parameters: s-support (frequency of a pattern within a clus-
ter) and i-support (frequency of a pattern within one action
sequence). We applied s-support = 0.5 to filter patterns ex-
hibited by at least half of students within that cluster. Next,
we applied the Kruskal-Wallis test to identify if a significant
difference existed in the mean i-support value within the
groups.

2.3 Methodology of RQ2
2.3.1 Methodology of RQ2.1

We used hierarchical linear models (HLMs) to model the
relationship between observed behaviors and performance,
with assignment at level one, nested within students (level
two), nested within classes (level three). We built three
models for three different response variables: overall assign-
ment score, MCQ score, and SA score. The fixed-effect
variables were the SRL features and number of questions
in assignment; these variables were at Level 1. Assignment,
student, and class were all modeled as random intercepts.

3. RESULTS
In this section we present results of RQ 1 and RQ 2.1.

3.1 Results of RQ1
Four resulting science clusters with student counts (n) were:
SA sc (SA performers in science, n = 4,474 ), MC sc (MCQ
performers in science, n= 3114 ), L sc (low performers in
science, n =2,363), and H sc (high performer in science, n =
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Figure 1: Science Student Clustering by Score

2,636). Similar as in science student clustering, we observe
four different groups in social studies: H ss (n = 8,948) ,
L ss (n = 2760), MC ss (n =2928), and SA ss(1604). We
focused primarily identifying high and low performing stu-
dent behaviors.

Science Cluster Analysis: Considering H sc vs L sc group,
two more frequently used patterns describing SA answering
behaviors by H sc students were RS (I-supp Diff = 0.17, p
< 0.001) and RS+ (I-supp Diff = 0.08, p < 0.001,). RS and
RS+ describe reading prior attempting one (S) or multiple
(S+) SAs. Thus, reading prior SA attempt were linked to
high performances. H sc group students also exhibited more
annotation behavior than L sc students (I-supp Diff = 0.03,
p < 0.001). Three MCQ attempt related patterns were more
exhibited by L sc group students: RM (I-supp Diff = -0.16,
p <0.001), and V+M (I-supp Diff = -0.001, p < 0.05), and
RH+M (I-supp Diff = -0.002, p < 0.001). From Figure 1, we
observe L sc group students have more MCQ Long submissions
and lower MCQ Last scores. We conclude L sc group stu-
dents struggled in choosing the correct MCQ option.

Social Study Cluster Analysis: Our analysis showed
higher-performing students in social study assignments read
more frequently before attempting SA and MCQs. Addi-
tionally, they looked up more vocabulary. In contrast, low
performing students read after attempting SAs. They also
had higher resubmission rate of SA questions followed by
read event. Our observed patterns explain the way high
and low performing students navigated the SA questions.
We conclude reading and looking up vocabularies for com-
prehending the concept prior answering a SA led to score
differences for social study subject.

Differential Sequence Mining: Science vs Social Study:
We begin with our results for the H sc vs H ss comparison.
Science students exhibited reading behavior after SA sub-
missions compared to social studies: SR (I-sup Diff = 0.16,
p <0.001), S+R (I-sup Diff = 0.12, p < 0.001).
Examining the descriptive statistics, we noticed the mean
SA score is higher in social study assignments (SA First =
2.56, SA Last = 2.62) compared to science (SA First = 2.46,
SA Last = 2.58 ) ones. Additionally, mean MCQ scores of
science is higher (MCQ first = 2.80, MCQ Last = 2.89)
than those of social study (MCQ First = 2.17, MCQ Last
= 2.19). Thus, we compared MC sc vs MC ss and SA sc
vs SA ss group. The relatively lower mean SA score in sci-

ence can be explained by SR (I-sup Diff = 0.16, p < 0.001)
and S+R (I-sup Diff = 0.14, p < 0.001). Analyzing MC sc
vs MC ss group, students with science assignments exhib-
ited more reading behavior before attempting MCQ as de-
scribed by pattern R+M (I-sup- Diff = 0.0192, p <0.001).
Although the two subject domains are different, our analysis
shows reading prior attempting a question associated with
higher score in both domains.

3.2 Results of RQ2.1
Table 1: Results from HLM Measuring Association
between SRL and Science Score

L1 Level β B SE p
(Assignment)
Overall Score
Intercept 6.533 0.402 <0.001
A 0.055 0.582 0.062 <0.001
H 0.028 0.492 0.072 <0.001
V 0.021 0.275 0.055 <0.001
MCQ Score
Intercept 5.510 0.369 <0.001
A 0.024 0.206 0.038 <0.001
H 0.016 0.228 0.045 <0.001
V -0.003 -0.036 0.031 0.259
SA Score
Intercept 1.699 0.232 <0.001
A 0.040 0.271 0.038 <0.001
H 0.019 0.210 0.043 <0.001
V 0.036 0.289 0.035 <0.001

We report standardized effect size using the formula ß =
(B ∗ SDx)/SDy (see e.g., [11]). Table 1 presents our find-
ings. All SRL-related variables had positive and statistically
significant association with overall science score. Consider-
ing question format, the predictive power of note taking was
highest (B = 0.271, ß = 0.041, p < 0.001) followed by high-
lighting (B = 0.210, ß = 0.019, p < 0.001), and vocabulary
lookups (B = 0.289, ß = 0.036, p < 0.001). Considering
MCQ format, all but the vocabulary lookups continued to
be statistically significant positive predictors of MCQ score.

4. FUTURE WORK AND ADVICE SOUGHT
Proposed Methodology of RQ 2.2 We will use multi-task

learning to predict common SRL behavior of students for
each question (considering question features) and perfor-
mance on the question. Thus, we will be able to identify
students who need help.
Proposed Methodology of RQ 3.2 We will analyze text read-

ability and complexity including lexical, semantic, and argu-
mentation of the text and SRL usage. To analyze readability
of science text, we will examine Coh-Metrix [3] and Python’s
readability package 3. Additionally, we will examine the ar-
gumentation analysis in SA response, particularly questions
asking for reasoning, e.g. Why, How, and Explain.
Proposed Methodology of RQ 4 To answer RQ 4, we will

perform exploratory analysis to answer the sub questions
and calculate association with students’ SRL behaviors.
A key limitation of our analysis is, we do not know many
confounding variables such as, how teachers used AL assign-
ments (in-class, homework assignment, or extra reading),
demographic of students, and how they were using SRLs
(i.e., teacher might instruct to take notes). Thus, we seek
advice on following aspects:

3https://pypi.org/project/readability/
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• Is our proposed method of RQ 2.2 generalizable to
other context, considering the limitation of our study?
The motivation of RQ 2.2 is to provide data-driven
recommendation to researchers and educators.

• Beyond my proposed methodology, what other anal-
ysis could be more beneficial to understand students’
SRL strategies in science reading?
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ABSTRACT
This research focuses on developing graduate employability
among university students. The ability to find a graduate
position became one of the key tertiary education goals for
enrolled students. However, there are lots of factors that
affect graduate employability. At the same time, students
could be unaware of employability complexity, and their
choices may be made blindly. I aim to create a graduate
employability model that will help to build a learning path
and strategy to the desired career. I am using curriculum
profiling, and student performance data to model skills and
abilities students develop in their subjects. Besides, I am
building a student social network model to analyse students’
interactions and ties. Ultimately, my research aims to pre-
dict graduate employment and recommend options for bet-
ter student choices.

Keywords
Graduate employability, curriculum analytics, network anal-
ysis

1. INTRODUCTION
Graduate employability became one of the key indicators of
university performance. Despite the desire to be standalone
institutes and the fact that university education is much
broader than simple skill training, universities accepted em-
ployability development as one of the goals for tertiary edu-
cation to satisfy student and industry needs. For instance,
graduate attributes, derived from professional industry re-
quirements, are injected into the curriculum, and work-integrated
learning became a part of the learning process, aimed at pro-
viding work-related experience to students. However, after
completing the course, students are not equally employable;
one of them find a relevant position upon graduation, while
others are stuck without any job offers. What makes one
graduate more employable than another?

Literature reveals different factors that affect graduate em-

ployability [1, 8]. They can be aggregated as social, human,
behavioural and environmental factors [4]. Social factors de-
fine the position of a graduate person in society. As the re-
sult, attending a better university, having a large network,
belonging to certain social classes will benefit employabil-
ity chances. In addition, human factors describe personal
traits a person have. So, skills developed during the learn-
ing course and previous work experience will improve grad-
uate’s employability in comparison with another graduate,
who is missing these abilities and practice [5]. Furthermore,
behavioural factors combine one’s attitude toward successful
employability [3]. For example, being an active job seeker
and dedicated participant of career-related events and work-
shops makes a difference with a passive waiting for a good
position on market demand. Finally, environmental factors
are not related to a graduate, but the market situation in
general [8]. Economics recession has a negative impact on
employability in general, without regards to any personal
factors. However, mentioned facets of graduate employabil-
ity relatively objective and can be analysed by data-driven
approaches [2]. There is another, subjective, dimension of
perceived employability, which effects chances to be em-
ployed based on individual self-evaluation and believes [8].

In my research, I aim to create a student or graduate em-
ployability model. However, I understand the complexity of
all factors. Moreover, the nature of some factors, such as
the economic situation, cannot be altered on a graduate or
even university level, falling into the mercy of global pro-
cesses. Thus, I decided to focus on skills and competences
as human factors, and student networks as social factors for
my research.

2. GRADUATE EMPLOYABILITY MODEL
In my research, I focus on creating a graduate employability
model and investigating the effect of skills, developed by
students at university, and student social networks, build
through various subjects and courses, on employability after
graduation.

2.1 Developing skills through the degree
Students are required to undertake a number of credit points
to obtain the degree, which is done by completing multiple
subjects. At the same time students are developing their
skills and abilities, going through various tasks, assignments
and group activities. Knowledge and skill development are
integrated into the curriculum and it makes curriculum the
source for skill data mining. While curriculum data shows
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quantitative skill outcomes, students performance will be
used for quality research. Clearly, students with in-depth,
comprehensive approach will benefit more from the subjects
in comparison with effortless students. Implementing these
aspects of skill development is part of my project.

2.1.1 Current work
Recently, I created a curriculum profile for the university.
Curriculum profile is a hierarchical data structure with skills
as the basis nodes, which are aggregated into larger nodes,
such as subjects, courses, degrees, faculties or the whole uni-
versity. Course coordinators benefit from curriculum profile
by visualising course outcomes and comparing intended ex-
pectations with reality. Students will be able to make more
rational choices selecting from the various subjects and nav-
igate their degree with more predictable results.

The curriculum profile is build using off-the-shelf ontology
and automated data curriculum data collection. However,
the idea behind curriculum profiling requires modular struc-
ture with replaceable components. Thus, any ontology that
works according to aligned rules can be used as a data source
for the curriculum profile via application programming in-
terfaces (APIs).

2.1.2 Future work
Firstly, current curriculum profile is working for one uni-
versity and has only two modes: the whole university and
three selected data science courses. Future development will
include all courses from the university available for analysis
and comparison.

Secondly, curriculum data is miscellaneous and exist in mul-
tiple forms. On the one hand, different universities or even
faculties have incompatible curriculum data. On the other
hand, some part of the curriculum, such as“Teaching Strate-
gies” or “References”, are less meaningful for text analytics,
while others, such as “Content” or “Learning Outcomes”, are
richer. The planned research aims to compare each part of
the curriculum data to reshape and refine a data source for
better text analytics. In addition, it eases the compatibility
issues between faculties and universities.

Finally, the created curriculum profile will be matched with
student performance data to provide quality perspective on
developed skills and market data of employed graduates. It
will allow visualising learning path leading to the successful
employment, revealing key subjects and skills that helped
to achieve it in comparison with other graduates.

2.2 Student networks
Another part of graduate employability model is student
social networks. During the learning process, students are
involved in multiple subjects. Over the years of study, they
interact with hundreds of students, tutors, industry rep-
resentatives [6, 7]. Even more, indirectly, they can know
thousands of other students via the people they know. The
process of forming these networks is random. However, net-
works are reported as an important factor that affects em-
ployability [2], and student social networks are a great source
of strong and weak ties useful for graduate employability. In
my research, I aim to model student networks and predict

how they change the ability to become employed after grad-
uation.

2.2.1 Future work
As part of network analysis, I plan to create a bipartite uni-
versity network by semester for a selected period of time.
The nodes of the network will be students, and edges will
be subjects they have selected. Overall network visualisa-
tion will help to understand student relationships, identify
key subjects and dynamics of network spread. The finalised
network will be compared with career data from graduates,
who were part of the network as students, to identify choices
they made in networking and career outcomes. The contri-
bution of this study will be a student networking model that
can predict employment chances for a given student and rec-
ommend networking strategies to become more employable.

3. ADVICE SOUGHT
For this doctoral consortium, I seek for advice regarding
two questions. Firstly, what mathematical, probabilistic and
statistical methods could benefit my curriculum and network
analysis. I identified several common methods used for other
studies. So, skills can be presented as vectors, and fur-
ther comparison will be reduced to vector comparison, met-
rics, and space projections. Similarly, I adopted networking
methods that allow evaluating network density, clustering,
diameter and reach. However, I am looking for more models
and methods for my curriculum and network analysis.

Secondly, are there other factors that affect graduate employ-
ability and can be improved at university. Currently, I use
the curriculum data for extracting skills and related careers
to identify possible outcomes after completing a subject or
course. After that, I will use student performance data to
normalise skills outcomes. Also, I use student enrolment
data to build bipartite networks. After that, all this results
will be matched against actual employment data after grad-
uation. My method creates investigates learning paths and
strategies that could lead to successful employment. Thus,
I consider human capital (personal skills and abilities) and
social factor (student networks), as factors of graduate em-
ployability to be improved through the degree. However, I
acknowledge the complexity of other factors and their inter-
actions. My research will benefit from experts opinion on
developing graduate employability at universities.
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ABSTRACT
The interactions between learning and emotions are bidi-
rectional. Positive emotions such as motivation, engage-
ment, and happiness induce learning gain. Negative emo-
tions such as anxiety, confusion, and frustration weaken
learning achievements. Understanding the learner’s men-
tal and emotional state would promote their positive emo-
tion and diminish their negative emotion, which in return,
increases learning acquisition. One of the most negative
emotions that affect foreign language learning is anxiety.
Through our study, we would like to investigate how to de-
tect foreign language anxiety (FLA) then how to reduce and
eventually overcome FLA. In the context of FLA, we propose
a sensor-free anxiety detector. To overcome FLA, we pro-
pose a pedagogical animated agent that provides emotional
support. Our preliminary findings showed that a pre-test
of a Foreign Language Classroom Anxiety Scale (FLCAS)
is effective to predict FLA in the context of an e-learning
system.

Keywords
Foreign language anxiety, Emotion, Affect, Intelligent Tu-
toring System, Sensor-free, Animated Agent

1. INTRODUCTION
Learning and emotions are interrelated. The brain architec-
ture allows complex interactions between emotion and cog-
nition. The brain region work in the integration of the emo-
tional and cognitive process that impact behaviors [18]. A
positive, supportive learning environment can escalate pos-
itive emotions, which in return, can increase learning gains.
On the other hand, a negative learning environment could
increase negative emotions, which would weaken learning
achievement [9]. Learning a foreign language is challeng-
ing because of the cognitive, emotional, and native language
proficiency [14]. Anxiety plays critical role in reducing for-
eign language acquisition [19]. There are several reasons that
induce Foreign Language Anxiety (FLA) such as fear of neg-

ative evaluation, communication apprehension, test anxiety
[8], task complexity [12], and lack of emotional intelligence
[20]. FLA impacts the learner’s production and retention
[19]. Moreover, FLA produces unwillingness to communi-
cate in the foreign language [15, 17] and reduces the motiva-
tion to learn [16]. Furthermore, it divides attention between
emotion and cognition which makes performance less effi-
cient [11].

To measure FLA, researchers have used physical measure-
ments [9], self-report [8], and facial recognition [7].

To overcome FLA, researchers have used ITSs [13], robots
[3], or games [21]. Each study employs different strategies
such as animated agents that provide communicating strate-
gies and affective backchannels [5], soothing music [13], or
adjusting the difficulty to suit the learner’s level [1, 4, 6, 13].

In our research, we are focusing on foreign language anxi-
ety (FLA). We would like to build a sensor-free emotionally
intelligent tutoring system that reduces and eventually over-
comes FLA. To achieve or goal we need to understand the
causes of FLA, to detect FLA, and to provide interventions
that overcome FLA.

The first research question is how to detect the student’s
anxiety level in an e-learning system. Based on [8], three
main reasons produce FLA; fear of negative evaluation, com-
munication apprehension, and test anxiety. In previous stud-
ies, we used sensor-lite approach which uses minimal sensors
like self-report. We analyzed language difficulty self-report,
system difficulty self-report, score of exercise, and pre-test
of FLCAS to predict anxiety level [9]. However, for future
studies, we would like to investigate sensor-free approach
to avoid asking the learner. Consequently, we hypothesized
that a pre-test of FLCAS which consists of these three parts
would be effective for predicting FLA in the context of an
e-learning system.

The second research question is what is the best interven-
tion to reduce FLA in an e-learning system. According to [2],
the experimental condition which included animated agents
showed positive effects on reducing language barriers while
the control group showed shyness and worry when learning
Russian as a foreign language. Providing emotional support
reduces anxiety[10]. Consequently, we hypothesized that an-
imated agents that provide emotional support are effective
for reducing FLA.
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2. PROPOSED CONTRIBUTIONS
Our project is significant because we will use a sensor-free
emotionally intelligent tutoring system that overcomes anx-
iety when learning English as a second language. Using a
sensor-free approach will allow the learner to use the product
in any environment without the interruptions of a physical
sensor. Also, it will be capable of recognizing FLA without
asking the learner about their feeling. The ITS will be able
to identify learner’s anxiety levels and provides adequate
support.

The proposed project is unique because it uses animated
agents that provide emotional support to reduce FLA. The
benefits of this work are decreasing and eventually overcom-
ing FLA. It will help foreign language learners defeat their
negative emotions. Moreover, it will generate a relaxing, en-
couraging, and motivating learning environment which ulti-
mately improves the learning gain.

3. RESULTS SO FAR
3.1 Previous Studies
We did an experiment to identify FLA. 30 participants who
are non-native English speakers join the study. They com-
pleted FLCAS and demographic information. Then, they
answered 27 exercises in grammar, vocabulary, speaking,
and listening. We did a correlation analysis to understand
the relationship between physical measurements and level
of anxiety self-report. We found a significant positive cor-
relation between level of anxiety self-report, blood pressure,
heart rate, and eye fixation. Also, we identified FLA by an-
alyzing interaction of learners with e-learning system. We
found that time on task, and number of mouse clicks were
not significant. While language difficulty self-report, system
difficulty self-report, and score of exercise were effective to
predict FLA in context of e-learning system [9].

We did other analyses to predict FLA in the context of e-
learning system. We predicted FLA based on subject and
regardless of type of exercise using pre-test FLCAS compo-
nents. Depending on exercise type, we used sensor-free pre-
diction using various components of FLCAS. For example,
average communication apprehension score was 40% effec-
tive to predict FLA in context of listening exercise. Gram-
mar and vocabulary predictions were not significant. For
overall FLA, we predicted that average fear of negative eval-
uation, average communication apprehension, language dif-
ficulty self-report, system difficulty self-report, and exercise
score account for about 43% of variation in anxiety. We used
sensor-lite in this prediction by using language and system
difficulty self-report to increase accuracy of prediction.

3.2 Current Study
There will be 180 participants randomly assigned to six
groups. They should be non-native English speakers and
non-fluent. Their age should be above 18 years old.

The participants start the study by answering some demo-
graphic information (native language, age, educational level,
and English level). Then they complete FLCAS. After that,
they are assigned to one of the six groups (control, textbase
supportive feedback, voice supportive feedback, voice feed-
back, agent supportive feedback, or agent feedback). All the

six groups have the same material which teaches and provide
practice in English listening, vocabulary, grammar, writing,
and reading. The difference between the groups is in the
way feedback is provided. The participants are expected to
learn the material then do 20 exercises. After each exer-
cise, there is a self-report that includes language difficulty,
system difficulty, and anxiety level. When the participant
finishes all the exercises and self-report we send them a $20
Amazon e-gift card.

For the first research question, we will do a statistical anal-
ysis to understand the relationship between FLCAS and
learner’s current level of anxiety when using an e-learning
system. We would like to predict the learner’s current level
of anxiety using three main components of FLCAS: com-
munication apprehension, fear of negative evaluation, and
test anxiety [8]. We will use regression and 10-fold cross-
validation to verify the results. For the second research
question, we will use Mann Whitney U test to understand
which intervention is effective to reduce anxiety.

Then we will use the data from both research questions to
build an ITS that reduces FLA.

4. ADVICE SOUGHT
There are two main aspects of research on which advice is
sought. First, the set of features used to predict FLA using
a sensor-free approach. Our preliminary study showed that
using sensor-lite is effective to predict FLA. Sensor-lite uses
language difficulty, system difficulty, score, and pre-test of
FLCAS as predictors. We would like to use sensor-free with-
out having the language and system difficulty self-report but
the model fit drops from 40% to 20%.

Second, algorithms, tools, and applications to build an En-
glish foreign language intelligent tutoring system which re-
duces FLA. So far, we built an e-learning system but we want
to upgrade it to be intelligent tutoring system. We tried us-
ing CTAT as platform but it was not compatible with the
animated agent application we are using. We would like to
find the best practices to build the ITS.

5. CONCLUSIONS AND FUTURE WORK
Foreign language anxiety is a major obstacle to learning
a foreign language. Identifying FLA then reducing it and
eventually overcoming it is a novel approach to improving
foreign language acquisition. Using sensor-free anxiety de-
tector and altering the system to reduce anxiety is a promis-
ing approach. Through our study, we hope we can predict
anxiety using sensor-free approach and reduce anxiety using
emotional supportive agent.
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ABSTRACT 

Recently, online learning has been increasingly used due to its 

advantages that allow people to study anytime and anywhere. 

Learners, on the other hand, are separated from the instructor in 

video-based learning, which makes learners difficult to maintain 

their motivation until the end of the activity. Therefore, it is 

required to provide instructional treatment so that learners keep 

their motivation and be immersed in learning. Visual cues, 

lowering cognitive load, are known a putative way in which 

learners can distinguish essential information from irrelevant one. 

The aim of this study is to explore the effect of visual cues on 

cognitive load depending on the level of self-regulation. The 

result shows that self-regulation lower cognitive load in the non-

visual-cue group as time series, but self-regulation doesn’t have 

an effect on cognitive load in the visual-cue group. This indicates 

learners in the non-visual-cue group experience difficulty to keep 

their motivation so that they are hard to put mental effort into the 

learning. This study suggests that the pupil dilation which reflects 

cognitive load can be predicted by behavior log which indicates 

self-regulation. Therefore, it is necessary to enhance learners’ 

cognitive strategies, as well as the reduction of the factors causing 

unnecessary cognitive load. 

Keywords 

Visual Cues, Cognitive Load, Self-Regulation, Video-Based 

Learning, Learning Analytics 

1. INTRODUCTION 
With the development of technology, online learning has been 

dramatically increased and people can easily watch videos from 

different platforms on diverse terminals, such as desktop, tablet, 

phone [16]. It allows learners to study anytime and anywhere [6]. 

Learners, on the other hand, are separated from the instructor in 

video-based learning, which makes learners difficult to maintain 

their motivation until the end of the activity. Therefore, it is 

required to provide instructional treatment so that learners can 

keep motivation and be immersed in learning. 

According to Mayer, meaningful learning requires learner to 

select relevant information, organize the information into coherent 

representation and integrate this representation into existing 

knowledge [11]. Multimedia instructions are effective when it is 

designed in accordance with how human mind works [7]. 

Working memory has limited capacity when dealing with novel or 

unorganized information, since it needs more cognitive processing 

[17]. Cognitive load theory (CLT) is based on the concept that 

people have a limited working memory and processing capacity 

[23]. Therefore, the ease of information processing in working 

memory is main interest of cognitive load theory [13].  

 CLT consists of three elements: intrinsic load, extraneous load, 

and germane load [12]. Among them, extraneous load and 

germane load are affected by instructional design. Extraneous 

load is risen when unnecessary cognitive processing is needed. 

Germane load is decreased when learners are not involved in deep 

cognitive processing, such as organizing or relating the material to 

prior knowledge [15]. Relatedly, using cues when designing 

instruction can draw learners’ attention to essential elements in 

learning. Therefore, providing visual cues can lower extraneous 

load and increase germane load [8].  

The relationship between cognitive load and self-regulation 

sheds light on when and why learners adopt their behaviors and 

how these behavioral changes are related with cognitive load [5]. 

Self-regulated learning (SRL) refers to learning with student’s 

goal-directed self-generated thoughts, feelings, strategies, and 

behaviors [14]. A self-regulated learner plans, monitors, reflects, 

and adjusts his/her learning process metacognitively, so he/she 

shows self-paced learning behaviors in computer-mediated 

learning environment [19, 24]. Learners’ regulating behaviors can 

be assessed as how frequently learners use the learning strategy 

with the Learning Management Systems (LMSs) in real learning 

time [4, 18]. Therefore, learners’ online behaviors in an e-learning 

player can be used to analyze self-regulation. 

In sum, two hypotheses are created. Firstly, visual cues would 

be a factor to promote germane load with decreasing extraneous 

load in time series, which is measured by pupil dilation. Secondly, 

self-regulation would have a moderate effect on learners’ 

cognitive load. This study aims to explore the effect of the 

instructional design with visual cues in regard with learners’ 

cognitive load depending on the level of self-regulation.  

2. METHODOLOGY 

2.1 Participants 
Participants were recruited through online notices for a month. 

Since an ophthalmic disease influences the eye-tracking, 

participants were asked if they suffered from any of it. A total 100 

undergraduate students (46 female, M = 24, SD = 1.79) took part 

in the study on a voluntary basis. Then they were randomly 

assigned to the group with or without visual cues. Among 100 

participants, 23 participants were excluded from the analysis due 

to mechanical faults (e.g., calibration was cancelled or failed, 

recording was stopped). In the end, 77 participants’ data were 

used and analyzed.  
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2.2 Procedures 
Table 1. Research procedures 

Recruitment Online Notices (Korean Undergraduates) 

Screening Based on Eyesight, Major, Sex 

Orientation 

(5 min) 

Explanation about Research and IRB 

approval, Informed Consent  

E
x
p
er

im
en

t 

(8
0
 m

in
) 

Questionnaire 

(10 min) 

Motivated Strategies  

for Learning Questionnaire (MSLQ)  

Pre-Test 

(25 min) 
6 Multiple-choice Items (from PSAT) 

Video-Based 

Learning 

(17 min) 

Learning Material  

for PSAT Problem Solving Strategies  

Post-Test 

(25 min) 
6 Multiple-choice Items (from PSAT) 

Questionnaire 

(3 min) 

The ITC-Sense of Presence Inventory 

(ITC-SOPI) 

Interview 

(60 min) 
Interview with Eye Movement Data  

The experiment proceeded in five phases (Table 1). Before 

starting the experiment, each participant took a 5-minute 

instruction about the procedure. All the phases were carried by 

computer. In the first stage, participants responded to Motivated 

Strategies for Learning Questionnaire (MSLQ). In the second 

stage, with eye calibration for the eye tracking, a 25-minute pre-

test were administered to assess participants’ prior knowledge. In 

the third stage, participants watched the 17-minute video lecture. 

The video lectures had been designed as two versions whether 

providing visual cues or not. In the meantime, participants’ eye 

movement and behavior log were recorded with the e-learning 

player. In the fourth stage, participants took a 25-minute post-test 

for measuring learning achievement. Finally, they filled out the 

ITC-Sense of Presence Inventory (ITC-SOPI) scale and then they 

were interviewed for the comparison between the eye movement 

and the subjective learning experience response. 

2.3 Learning Materials 
Learning materials for Public Service Aptitude Test (PSAT) 

problem solving published by online distance educational 

institution [26] were used after having been edited. In South 

Korea, PSAT was devised to test the public officer applicants how 

well they deal with the public service. For the purpose of this 

research, the ‘data interpretation ability’ section in PSAT was 

only used. This material consists of four problem solving items 

and total learning time is about 17 minutes. 

 Two versions of the learning materials were developed with 

visual cues or without them. Both versions of the learning 

materials have an illustrated document and a spoken explanation. 

The experimental group was provided additional colored visual 

cues when an instructor explains or emphasizes the learning 

content. That is, colored visual scribbles are added in real time by 

the instructor while he/she speaks. By contrast, the visual cues 

were not given to the control group. 

2.4 Measures 
2.4.1 Physiological measure of cognitive load 

Pupillary response measures people’s cognitive processing load 

as a physiological measure [25]. Especially, pupil dilation reflects 

capacity utilization and relates to cognitive demand [1]. Mean 

pupil dilation is a useful for measuring cognitive load [2, 13]. 

Therefore, mean pupil dilation is measured to analyze 

participants’ mental effort and cognitive load during test and 

learning time. A Tobii Pro X2-30 eye-tracker and Tobii Studio 

software was operated at a sampling rate of 30 Hz. Pupillary 

response was calibrated to the environmental brightness and 

display luminance for controlling external noise.  

2.4.2 Behavioral measures of self-regulation 
In order to measure and analyze learners’ self-regulating 

behavior, behavioral log data were collected via e-learning player 

automatically (figure 1). The learning-related behavior was 

counted to assess learners’ self-regulation [3]. In this study, self-

regulation is defined as the sum of frequencies corresponding to 

every operation to regulate learners’ learning and learning 

environment. Therefore, the frequencies of play, pause, skip, 

replay, volume change, and rate change were used to analyze 

learners’ self-regulation. The e-learning player was developed by 

4CSoft and EduTech Convergence Lab in South Korea.  

2.4.3 Learning achievement 
Learning achievement was measured as the difference between 

pre-test scores and post-test scores. Pre-test and post-test were 

designed based on PSAT. Each test material consists of 6 multi 

choices items. Both pre-test and post-test were verified by PSAT 

subject matter expert. 

2.4.4 Questionnaires  
2.4.4.1 Motivated Strategies for Learning 

Questionnaire (MSLQ) 
In order to investigate learners’ motivation, MSLQ was used. 

MSLQ is a self-report instrument designed to assess a general 

cognitive view of motivation and learning strategies [20]. 

According to MSLQ manual, it consists of two sections: the 

motivation section and the learning strategies section. Among 81 

questions, 10 questions about peer learning, help seeking, and 

specific course were excluded because they do not fit to this study. 

Finally, 71 questions were used after adjusting to 5-point scale. 

2.4.4.2 The ITC-Sense of Presence Inventory (ITC-
SOPI) 
When learners perceive presence in distance learning, learners 

have more sense of being in and belonging in learning [22]. To 

find out learners’ learning experience in video-based learning 

environment, ITC-SOPI was used. 11 of 38 questions are not 

appropriate in the context of video-based learning environment, so 

27 questions are only used with 5-point scale. 

 

Figure 1. Example of the e-learning player  
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3. RESULTS 

3.1 Descriptive Statistics 
Table 2. Means of participants’ characteristics 

Variables 

Mean(sd) 
χ2 

(p) 

t(W) 

(p) 
No Cue  

(n=36) 

Cue 

(n=32) 

Sex (F) 17 20 
.040 

(.841) 
 

Major (STEM) 19 15 
.236 

(.627) 
 

Age 
23.8 

(1.80) 

24.2 

(1.69) 
 

-.897 

(.373) 

M
o
ti

v
a
ti

o
n

 

Intrinsic Goal 

Orientation 

3.68 

(.69) 

3.59 

(.79) 
 

(619) 

(.599) 

Extrinsic Goal 

Orientation 

3.91 

(.70) 

3.68 

(.74) 
 

(700.5) 

(.125) 

Task value 
4.14 

(.56) 

4.05 

(.57) 
 

.674 

(.503) 

Control Beliefs 
3.81 

(.42) 

3.80 

(.47) 
 

(580) 

(.965) 

Self-Efficacy 
3.60 

(.51) 

3.38 

(.62) 
 

1.604 

(.114) 

Test Anxiety 
3.29 

(.69) 

3.26 

(.74) 
 

.152 

(.880) 

L
ea

rn
in

g
 S

tr
a

te
g

ie
s 

Rehearsal 
3.94 

(.56) 

4.00 

(.60) 
 

-.445 

(.658) 

Elaboration 
3.98 

(.52) 

3.94 

(.42) 
 

(639.5) 

(.435) 

Organization 
3.98 

(.66) 

3.96 

(.81) 
 

(590.5) 

(.863) 

Critical Thinking 
3.54 

(.61) 

3.51 

(.66) 
 

.212 

(.832) 

Metacognitive  

Self-regulation 

3.56 

(.39) 

3.50 

(.51) 
 

.535 

(.595) 

Time and Study 

Environment 

3.50 

(.58) 

3.49 

(.71) 
 

.098 

(.927) 

Effort Regulation 
3.44 

(.66) 

3.35 

(.71) 
 

.517 

(.607) 

STEM: Sciences, Technology, Engineering, or Mathematics. 

Total 68 participants’ data were used in analysis after 9 outliers 

of either pupil dilation or behavioral log had been excluded. There 

is a difference in the participants’ pre-test scores (Wilcoxon rank 

sum test: U = .883, p < .01). Except for this, all the other 

differences are not found (pall = n.s., see Table 2). Regarding the 

pre-test scores difference between two groups, the level of prior 

knowledge should be considered when interpreting the results. 

Because the pupil dilation is affected by time goes, the data 

should be analyzed as time series [21]. Section division for data 

analysis was implemented based on four problem solving items at 

the 17-minute video learning. The mean and standard deviation of 

pupil dilation in each section were analyzed between groups (No 

Cue: MTotal = .11(.12), M1 = .16(.12), M2 = .13(.12), M3 = .08(.12), 

M4 = .06(.15); Cue: MTotal = .13(.14), M1 = .16(.16), M2 = .16(.14), 

M3 = .10(.15), M4 = .10(.15), see Table 3).  

3.2 Pupillary Responses 
3.2.1 Pupil dilation in time series 

Average pupil dilation is gradually decreased as learning 

sections proceeded (F(3, 268) = .5.834, p = .001, see figure 2). 

The pupil size of all participants in 1st section is higher than those  

Table 3. Means of dependent variables 

Variables 

Mean(sd) 
t(W) 

(p) No Cue 

(n=36) 

Cue 

(n=32) 

Total Pupil Dilation 
.11 

(.12) 

.13 

(.14) 

-.656 

(.51) 

Pupil Dilation 

in 1st section 

.16 

(.12) 

.16 

(.16) 

.004 

(.997) 

Pupil Dilation 

in 2nd section 

.13 

(.12) 

.16 

(.14) 

-.874 

(.385) 

Pupil Dilation 

in 3rd section 

.08 

(.12) 

.10 

(.15) 

(475) 

(.218) 

Pupil Dilation 

in 4th section 

.06 

(.15) 

.10 

(.15) 

-.873 

(.386) 

Behavior Frequency 
18.2 

(22.0) 

18.8 

(20.8) 

(518) 

(.479) 

Pre-test Scores 
4.03 

(.88) 

3.47 

(.95) 

(760) 

(<.05*) 

Post-test Scores 
4.89 

(1.04) 

4.47 

(1.19) 

(685) 

(.165) 

Improvement  

in Test Scores 

(= posttest - pretest) 

0.86 

(1.25) 

1.00 

(1.61) 

(540) 

(.655) 

Learning Presence 
3.05 

(.55) 

3.16 

(.52) 

.813 

(.419) 

of participants in both 3rd and 4th sections (Tukey’s post hoc: 1st vs 

3rd, p < .05; 1st vs 4th, p < .01). Similarly, this tendency is shown 

between 2nd and 4th sections (p < .05). This indicates when the 

sections proceed, the overall pupil size is decreased. 

3.2.2 The Effect of Visual Cues on Pupil dilation in 
time series 

The result shows that pupil dilation of the group without visual 

cues in 1st section is higher than those of participants in both 3rd 

and 4th sections (Kruskal-Walis test: H(3) = 14.203, p < .01; 

Nemenyi post hoc: 1st vs 3rd, p < .05; 1st vs 4th, p < .05, figure 3). 

This indicates that pupil dilation of the group without visual cues 

is statistically decreased as time goes by. However, this tendency 

is not shown in the group with visual cues (F(3, 124) = 1.824, n.s.). 

Figure 2. Pupil dilation in time series 

(*, <.05; **, <.01; error bar, SEM) 
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 Figure 3. The effect of visual cues on pupil dilation  

in times series (*, <.05; error bar, SEM) 

3.2.3 The Effect of Visual Cues on Pupil dilation in 

time series depending on self-regulation 
 Multiple linear regression was conducted to test the effect of 

visual cues on cognitive load depending on self-regulation. 

Results indicate that the frequencies of self-regulated behavior 

predict pupil dilation in the non-visual cue group in time series 

(R2 = .137, adjusted R2 = .112, p < .001, see Table 4). Especially, 

pupil dilation in 3rd section (B = -.082, β = -.263, SE = .030, p 

= .007) and 4th section (B = -.101, β = -.324, SE = .030, p = .001) 

are predicted in the non-visual cue group. Behavior frequency is 

also explained in the non-visual cue group (B = .002, β =.221, SE 

= .001, p = .006). On the other hand, the frequencies of self-

regulated behavior do not predict pupil dilation in the visual-cue 

group in time series (R2 = .043, adjusted R2 = .012, n.s.).  

4. DISCUSSION 
Effective instructional design is crucial to maintain learners’ 

motivation and promote cognitive processing in video-based 

learning. When an ineffective learning material is provided to  

Table 4. Multiple linear regression analyses predicting 

cognitive load and self-regulation  

Variables B β SE p 

N
o

 C
u

e 

Pupil Dilation 

in 1st section 
.029 .000 .023 .197 

Pupil Dilation 

in 2nd section 
-.032 -.102 .030 .290 

Pupil Dilation 

in 3rd section 
-.082 -.263 .030 .007** 

Pupil Dilation 

in 4th section 
-.101 -.324 .030 .001** 

Behavior 

Frequency 
.002 .221 .001 .006** 

C
u

e 

Pupil Dilation 

in 1st section 
.049 .000 .029 .091 

Pupil Dilation 

in 2nd section 
-.004 -.011 .038 .921 

Pupil Dilation 

in 3rd section 
-.060 -.170 .038 .117 

Pupil Dilation 

in 4th section 
-.068 -.194 .038 .074 

Behavior 

Frequency 
.000 .035 .001 .691 

learners, learners have to effort to distinguish key elements from 

irrelevant information. Being distracted by irrelevant information 

causes extraneous cognitive load. Based on the CLT and SRL, 

cueing was used to investigate whether it moderates learners’ 

cognitive load depending on their self-regulatory capacity. 

The present study shows pupil dilation of the non-visual-cue 

group statistically is decreased time goes by. By contrast, there is 

no statistical difference in the visual-cue group as learning 

sections proceeded. This implies that learners’ cognitive load can 

be affected by visual cues in time series. Visual cues have an 

effect on cognitive load in time series within each group. By 

contrast, pupil dilation was not differed between those groups. 

This indicates that learners in the non-visual-cue group experience 

difficulty to keep their motivation and put into mental effort in 

learning, due to ineffective learning. Next, learners’ self-regulated 

behavior explains cognitive load in the non-visual cue group. In 

the visual-cue group, learners’ self-regulated behavior does not 

predict cognitive load. Although the interaction between self-

regulation and cognitive load is not figured out, the results 

partially suggest that self-regulation would have the effect on 

cognitive load within time change by showing different tendencies 

between two groups. 

The previous research said pupil dilation is affected by time and 

tiredness [9], but the visual-cue group could keep deep cognitive 

processing and the arousal status until the end of learning. 

Furthermore, reduction of extraneous cognitive load and 

increasement of germane cognitive load are expected when cue is 

provided [10]. Consistently, learners’ germane cognitive load can 

be kept and increased when extraneous cognitive load is reduced 

by the effect of visual cues in this study. Therefore, instructional 

designers have to consider the effect of visual cues with time 

series in video-based learning. 

This study has several limitations. The first limitation is the 

difficulty in classifying specific elements of cognitive load. 

Although, pupillary response is useful way to predict learners’ 

cognitive load, pupil dilation has a problem that pupil dilation can 

be interpreted in two ways: an increase in germane cognitive load 

(or mental effort) or extraneous cognitive load (or allocation of 

attentional resources as task demands increased) [21]. In other 

words, pupil dilation can reflect both extraneous load and 

germane load in the same way.  

The second limitation is that the group differences in pupil 

dilation are not figured out, though there are statistically 

significant differences in time series within each group. This may 

be caused by the difference of the level of the prior knowledge. 

Learners’ prior knowledge is related to intrinsic cognitive load. 

This intrinsic load is hard to be affected by instructional design 

[12]. Considering this, the group’s prior knowledge difference 

may offset the effect of the visual cues on the pupillary response.  

Third limitation is about the analytic method of self-regulated 

behavior. Individual difference of behavior frequency was not 

controlled in this study. To minimize the variation, behavior 

frequency was analyzed by the sum over all sections, not by the 

division of each section. For more accurate measurements of self-

regulation, the number of self-regulation behaviors should be 

analyzed within time goes. 

Future research should continue to explore the effect of visual 

cues on cognitive load depending on self-regulation. With the 

combination of different measurements for assessing cognitive 

load, separating specific aspects of cognitive load is expected. 

When learners’ cognitive load is divided and analyzed in each 

element of cognitive load, designing effective instruction is 

possible to improve learning effectiveness in video-based learning.  
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ABSTRACT
The objectives of this ongoing research are to build Real-
Time AI-Powered Educational Dashboard (RAED) as a de-
cision support tool for instructors, and to measure its im-
pact on them while making decisions. Current developments
in AI can be combined with the educational dashboards to
make them AI-Powered. Thus, AI can help in providing
recommendations based on the students’ performances. AI-
Powered educational dashboards can also assist instructors
in tracking real-time student activities. In this ongoing re-
search, our aim is to develop the AI component as well as
improve the existing design component of the RAED. Fur-
ther, we will conduct experiments to study its impact on
instructors, and understand how much they trust RAED to
guide them while making decisions. This paper elaborates
on the ongoing research and future direction.

Keywords
Decision support tool, Educational dashboard, Interactive
visualizations, Impact, Unsupervised learning, Recommen-
dations

1. INTRODUCTION
A dashboard is a collection of wisely selected visualizations
that assists in understanding raw information stored in data-
bases, which helps human cognition [6]. A dashboard can
be viewed as a container of indicators [13], but Bronus et
al. provided the most accurate definition of the dashboard.
Bronus et al. defined the dashboard as “an easy to read, of-
ten single page, real-time user interface, showing a graphical
presentation of the current status (snapshot) and historical
trends of an organization key performance indicators (KPIs)
to enable instantaneous and informed decisions to be made
at a glance” [5]. This type of visual displays are critical in
sense-making as humans are able to process large amounts of
data if presented in a meaningful way [17]. The use of learn-
ing analytics tools and visualizations have the potential to
provide effective support to instructors by helping them to

keep students engaged and achieve learning objectives [15].
Yoo et al. [21] conducted a review of educational dashboards
in which they underline the usefulness by mentioning dash-
boards present the results of the educational data mining
process and help teachers to monitor and understand their
student’s learning patterns. We can apply the same prin-
ciple to the data collected from a student’s quiz questions.
The responses received from the quiz can be used for un-
derstanding conceptual and meta-cognitive knowledge com-
ponents [4]. It has also been noted that very few of the
deployed learning dashboards addressed the actual impact
on instructors [20]. Thus, we see a need for a Real-Time AI-
Powered Educational Dashboard (RAED) that is designed
for assisting instructors. There are two main objectives of
the proposed research.

Objective 1: Build a RAED, which will act as a decision
support tool for instructors.

Objective 2: Measure the impact of the RAED on instruc-
tors and understand their trust in using the RAED while
making decisions.

The proposed dashboard consists of two components - the
visualization component and the AI component. The visual-
ization component will present an entire classroom’s actions
in real-time on the dashboard. This will help instructors
to answer two questions: (i) where are most of the stu-
dents struggling? and (ii) on which questions are most of
the students using hints? Answers to these questions can
be useful for providing further explanations of certain con-
cepts immediately after the quiz. The AI component of the
dashboard will perform unsupervised learning on the col-
lected responses. It will produce clusters of students and
also generate recommendations based on the results, which
will be displayed on the dashboard. These recommendations
made by the AI component will also be included in the vi-
sualizations of the dashboard. These visuals will facilitate
the instructors’ decision-making process. For instance, an
instructor may decide to give additional questions or teach
a particular concept again after getting recommendations.
Therefore, the current research will also be useful for un-
derstanding the usability, impact, and trust in the fusion of
visualizations and AI in real-time.
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Figure 1: Proposed architecture of the RAED

2. RELATED WORK
There is a growing interest in the design and development of
real-time systems, such as [14] and [19], that can provide ac-
tionable teaching analytics in real-time for decision making.
These real-time systems are also beneficial from students’
perspective because it gives more time to teachers to provide
one-on-one support to students [11]. A user-centric teacher
dashboard has been developed by Aleven et al. [2] for un-
derstanding interaction data and analytics from intelligent
tutoring systems (ITS). Aleven et al. [2] noted that a dash-
board could be useful to teachers for helping the class while
teaching, and for preparation for the next classes. Diana et
al. [7] displayed real-time analytics of interactive program-
ming assignments on an instructor dashboard. From the re-
sults, Diana et al. [7] concluded that student outcomes could
be accurately predicted from the student’s program states.
In addition to that, for helping more students in a classroom,
Diana et al. [8] also used the machine learning model along
with approach maps for identifying and grouping students
who need similar help in real-time. Holstein et al. [12] devel-
oped the Luna dashboard by collecting data from interpre-
tation sessions and affinity diagramming from middle-school
teachers. The goal was to understand the dashboard’s us-
ability from the teacher’s aspect, as well as its effect on stu-
dents learning. In a recent paper [10], a wearable classroom
orchestral tool for K-12 teachers was tested by Holstein et al.
The classroom was represented as a dashboard. In that re-
search, mixed-reality smart glasses were connected to ITSs
for understanding real-time student learning and behavior
within the ITSs. A framework consisting of five dimensions
(Target, Attention, Social visibility, Presence over time, and
Interoperation) has also been proposed for the design and
analysis of teaching augmentation in [3].

3. PROPOSED CONTRIBUTIONS
This section presents the architecture and design of our pro-
posed RAED. It further describes the features of the RAED
and discusses its desirable properties, such as portability and
explainability. It also includes information on the current
state of our RAED development.

3.1 Architecture and design
The architecture of RAED is shown in Figure 1. Students
will get a quiz interface on which they will see the questions
and respond to them. The responses will get stored in a
database, which can be queried by the dashboard engine.
The dashboard engine will be responsible for data prepro-
cessing and data cleaning. The resulting clean data will then
be given as input to the visualization and AI components.
The visualization component will produce visualizations on

Figure 2: Design component of the RAED

the dashboard, and the AI component will perform clus-
tering of the data in real-time. The results from the AI
component will be visualized and interpreted in terms of
recommendations. Currently, we have developed a quiz in-
terface1 for experimental purposes, using R and Shiny. This
interface stores results on a Google sheet, and currently this
Google sheet acts as our database. The dashboard engine is
connected to the Google sheet, which queries data every 6
seconds. Thus, the dashboard is refreshed every 6 seconds.

In this on-going research, we have implemented a design
component of the dashboard (shown in Figure 2), which
displays real-time visualizations 2. The essential character-
istics of the dashboards noted by Few [9] are taken into
consideration while designing our dashboard. We also will
be following four elements of the learning analytics process
model [20] as a foundation for the conceptual design. These
four elements are awareness, reflection, sensemaking, and
impact. At the current state, our design includes the first
three. Awareness refers to the data, which can be visualized
or represented in tables as it streams. Reflection focuses on
mirroring teaching practices, and sensemaking can deal with
the understanding at-risk students [20].

3.2 Features of the dashboard
We propose five unique features of the RAED. We have im-
plemented a majority of the features, and details are as fol-
lows.

1) Interactive visualizations – The visualizations gener-
ated on the dashboard are fully interactive (shown in Fig-
ure 3) and can be downloaded in Portable Network Graph-
ics (PNG) format. Instructors can interact with them by
zooming in, zooming out, selecting different components of
the visualizations, etc. These visualizations can also provide
meaningful information if the cursor hovers over them. Cur-
rently, our dashboard visualizations include scatter plots,
bar plots, and histograms. The scatter plot and bar plots
are used for understanding the quiz score and number of
hints requested by students. Histograms are used to under-
stand the score distribution of the class. Another essential
role of the RAED is enhancing the perception of instructors
as they can decide what to focus on.

1https://tinyurl.com/qnp46y9
2https://tinyurl.com/yx3pht5e
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Figure 3: Interactive visualizations of the RAED

Figure 4: Dynamic tables on the RAED

2) Dynamic tables – One of the unique features of the
RAED is its dynamic tables. We have provided a summary
of the class and scorecard in the form of tables. These tables
get updated in real-time, and instructors can search as well
as sort the tables. The RAED also provides functionality to
download these tables into CSV format for further analysis
(shown in Figure 4).

3) Portability – The dashboard is designed in R and de-
ployed on the Shiny server. This dashboard is portable and
can be connected to any database or tool.

4) Real-time – The dashboard provides updates of the
data every 6 seconds, which can help to capture student’s
real-time interaction during the quiz. Further, we provide
the additional feature of pausing and resuming real-time
streaming. This feature can be especially useful when ana-
lyzing the dashboard.

5) AI and explainability – This feature is currently un-
der development. We plan to employ explainable AI on the
dashboard. It will help instructors to understand how AI
provides results to the dashboard, i.e., how it chooses the
number of clusters and how it produces recommendations.

4. FUTURE DIRECTION
The future direction of this research is to develop a prototype
of the RAED, test it in classrooms, and then conduct surveys
to measure its impact and trust. Future research will be held
in the following four phases.

• Phase 1 (AI component): Currently, we can store

student ids, names of the course topics, responses,
scores, whether hints are used, and what is the to-
tal number of requested hints. We will be using this
information for clustering students and generating rec-
ommendations for them. The process of clustering can
be useful for focusing attention on students with simi-
lar characteristics and learning rates. This information
can help instructors to form support groups within the
class and to provide personalized guidance to partic-
ular students. For example, students from the high-
performance group can be paired with students in the
low-performance group, which can help to improve per-
formance.

In the first step, similar students will be identified by
performing clustering on the data. The goal of this
step is to identify three clusters (high performance,
average performance, and low performance). It is es-
sential to visualize the process of clustering for imple-
menting explainable AI. Thus, the implementation of
Agglomerative Hierarchical Clustering makes a suit-
able choice. Using this approach, clustering process
will begin with points as individual clusters, and at
each step, the similar points will be merged into a
larger cluster [18]. This entire process of clustering
can be visualised by plotting a dendrogram, which ful-
fills our goal of explainability. The other advantage
of using Agglomerative Hierarchical Clustering is that
it provides good results when given small datasets as
input [1], as is the expected number of students in a
class. In the next step, information of students from
these clusters will be obtained, and a list of concepts
that students need to improve will be derived from the
responses. It will also provide suggestions on pairing
students during in-class activities. This information
will act as recommendations to instructors and can
also help to understand conceptual as well as meta-
cognitive knowledge components of the class.

• Phase 2 (Design): We will focus on the design aspect
of the RAED using the iterative design process. In this
step, the prototype will be shown, and functionalities
will be explained to the instructors for getting their
insights on RAED. Surveys will be provided to the
instructors for evaluations and to know their additional
needs. Questions in the survey will be based on the
questionnaire created by Park et al. [16].

The results will help us to get inputs on information
usefulness, visual effectiveness, appropriateness of vi-
sual representation, user-friendliness, and understand-
ing of the information. Changes will be made in the
design after analyzing responses from the survey. In
the next iteration, RAED will be shown again to the
instructors, and their feedback will be requested. In
this way, at the end of this phase, the prototype will
be ready for testing.

• Phase 3 (Testing): In this phase, the prototype will
be tested in classrooms. The quiz interface will be
provided to students, and RAED will be made avail-
able to instructors. This phase will help us understand
the technical problems that may occur, such as server
issues. Improvements will be made as necessary.
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• Phase 4 (Survey): In this final phase, surveys will be
provided to instructors to understand their changes in
behavior, the achievement of the objective, trust in the
system, effect on motivation and decision making due
to the RAED. The responses will help us to measure
the impact of the RAED on the instructor’s decision
making. It will also give us insights about the trust
instructors have in the RAED.
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ABSTRACT 
When designing a video-based learning such as MOOC, it is very 
important to understand the cognitive aspects of learning and 
reflect them in the design. Many studies use subjective and 
physiological data as indicators of cognitive load. To fully 
understand the cognitive load, we need to understand both of them 
simultaneously. Therefore, this study is to investigate whether eye 
data(Mean Pupil Dilation, Mean Fixation Duration) predicts 
subjective cognitive load during video learning. Furthermore, as a 
second research question on a broader scale, we examined 
whether eye data predicts high and low states of subjective 
cognitive load during video learning. Through this, we expected 
to find the possibility of Video Annotation and Eye data as a way 
to measure Cognitive Load during video learning. The experiment 
was conducted in a controlled laboratory environment with 100 
students. In the video learning situation, the learner's eye data was 
measured using an eye tracker. Immediately afterwards, a video 
annotation(VA) interview technique was used to put markers 
according to the cognitive load types such as A(Understanding), 
B(Easy), C(Complicated), and D(Discomfort). The collected data 
will be analyzed by Support Vector Machine, a machine learning 
technique that is considered appropriate for the physiological data.  
 
Keywords 

Video-based learning, Physiological data, Eye data, Video 
Annotation, Eye tracking, Cognitive Load, Support Vector 
Machine 

1. INTRODUCTION 
Recently video-based learning has become a common form of 
learning for both corporate and school education as well as open 
contents such as MOOCs and Coursera. However, since 
instructors and learners are separated in time and space in video-
based learning, it is difficult to immediately reflect learner's 
response to the instructional design. In addition, universal 
instructional design does not reflect the characteristics of each 
learner. For this reason, universal instructional design in video-
based learning tends to result in learner neglect or dropout, as can 
be seen in MOOC's high dropout rate. Therefore, instructional 
design considering the learner's learning process is important in 

video-based learning. 
Cognitive load is the one of the most remarkable factors in  
human learning process. In many studies, including Moreno’s 
work[8], we have accumulated evidence that cognitive load is a 
reliable factor for effective video-based learning design. In 
addition, various data left by learners during video-based learning 
are important resources for instructional design considering 
individual cognitive load. However, most pedagogical studies 
measure the learner's internal processes using a psychometric 
scale. This approach has problem to be solved that memory 
distortion may occur because it is usually measured after learning. 
Hence, physiological data are used as an objective measurement 
index. Especially, eye data can be measured in real time. 
Moreover, in case of pupillary reflex, it is under control of 
autonomous nervous system and cannot be voluntary controlled 
by the subject. However, despite its advantages, it is sensitive to 
environmental variations such as luminance [3][5][18]. Therefore, 
using both psychometric subjective scales and eye data can 
complement each other.  
In this study, we will examine how the physiological data predicts 
the subjective measurements of learners using Support Vector 
Machine which is machine learning techniques. Also, in case of 
subjective measurement, video annotation is used to prevent 
memory loss after learning. This study proceeded with Video 
Annotation right after eye tracking experiment. This study aims to 
discover the possibility of using both of physiological data and 
Video Annotation to measure cognitive load reliably. Through 
this study, we expect that indicators of cognitive load will be used 
as more reliable resources for video-based instructional design. 
 

2. LITERATURE REVIEW  
2.1 Cognitive Load Theory 
According to the Cognitive Load Theory proposed by Sweller[9], 
Cognitive Load is defined as the sum of mental activities imposed 
on human working memory when processing new information. 
There are three types of cognitive loads, and each type of 
cognitive load is additive. First, external cognitive load is a 
cognitive load imposed by inappropriate instructional design, 
which can be controlled by efficiently structured and designed 
learning environment and tasks[11]. 
Since external cognitive load is not a desirable load for learning, it 
needs to be minimized through instructional design. Second, the 
intrinsic cognitive load is the cognitive load caused by the element 
interactivity of the learning contents. As the task becomes more 
complicated, the intrinsic cognitive load felt by the learner 
increases. Finally, the germane load is the cognitive load used to 
handle schema acquisition and automation in learning. Germane 
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load is a very important load to facilitate learning. If these three 
types of cognitive loads exceed working memory, information 
processing, including learning, will be threatened. Therefore, the 
purpose of instructional design is to minimize the external 
cognitive load and increase the intrinsic load within the learner's 
memory capacity. Instructional design considering each type of 
cognitive load presented by Cognitive Load Theory can provide 
more customized learning for individual students[19]. 
 

Cognitive Load Measurement Methods 
The development of a method to measure cognitive load more 
effectively plays an important role in the study of cognitive loads 
[10]. Researches measuring cognitive load are largely divided into 
subjective and objective measurement methods. First, the 
subjective measurement method is measured through rating scales. 
This subjective item tool has the advantage of being able to 
measure each element of cognitive load separately. It is also 
widely used to measure cognitive load in many studies because it 
can be measured by learners relatively easily[13][14]. Cognitive 
Load mainly uses subject ratings of mental effort and task 
difficulty as indicators of cognitive load[12]. However, the 
subjective scale has a disadvantage in that the memory is distorted 
because it is influenced by the learner's bias and occurs after 
learning. In addition, there are objective measurement methods 
measuring through physiological data using EEG, eye data and 
skin sensitivity. In particular, the eye data measured by the eye 
tracker has attracted attention in recent studies[18]. Since eye data 
is measured at the moment of learning, it can be measured without 
affecting learning process. However it has a problem to be solved 
that it is sensitive to the external environment. 
The preceding studies comparing subjective data and eye data are 
as follows. Korbach, Brünken and Park[6] set up three groups that 
distinguish external, intrinsic, and intrinsic cognitive loads, and 
then identified the differences through rhythm methods, subjective 
ratings, and eye data. As a result, both objective and subjective 
measures significantly distinguished the differences between 
groups. Most of the studies that classify cognitive load use 
subjective measurement methods or use both objective and 
subjective measurements together. However, studies that deal 
with both subjective and objective data should be preceded more 
by classifying cognitive load types in various learning contexts. 
 

2.2 Eye data 
This study utilizes Pupilary data and Fixation Duration among eye 
data. For Pupil data, Mean Pupil Dialation(MPD) is used. MPD 
has been used as a reliable indicator of cognitive load. In most 
cases, MPD expands in according to increasing cognitive load[1]. 
However, as mentioned earlier, it needs to be careful when 
collecting because it responds to not only psychological changes 
but also visual stimuli caused by environmental changes. 
Marquart & Winter[7] measured cognitive loads while the driver 
was driving using blinking eyes, eye fixation, and pupil dilation 
indicators. As a result, the expansion of the pupil size was 
observed statistically when the workload occurred during 
operation. Fixation Duration also can be used to measure the 
attention that individuals have paid to stimuli which means that 
Fixation Duration can be one of factors that increase cognitive 
load[16].  
 

2.3 Video Annotation 
Video Annotation is a kind of retrospective technique. 
Retrospective technique is a follow-up observation method that 
uses visual or auditory clues to access a subject's memory and 
recall the thoughts and strategies that occurred while performing a 
specific action or task[2]. The video annotation presents the 
learning video to the learner immediately after the learning ends 
for recall. Learners stop the video where they want it and record 
their thoughts[4]. It is a promising approach to facilitating video 
retrieval but also it can avoid the intensive labor cost of pure 
manual annotation[17]. 
The study used Techsmith's Morae software for video annotation. 
Notes settings were A(Understanding) which indicates germane 
load, B(Easy) and C(Complicated) which indicate low and high 
intrinsic load and D(Discomfort) for extraneous cognitive load. 

3. METHODS 
3.1 Research Question 
The research questions of this study are as follows. 
1. Does eye data (pupil response, eye fixation duration) predict 
subjective cognitive load during video-based learning? 
2.  Does eye data (pupil response, eye fixation duration) predict 
the total amount of subjective cognitive load(high and low) during 
video-based learning? 
 

3.2 Experiment Settings 
This study was approved according to the Institutional Review 
Board (IRB) Institutional Review Board (EBH), and was 
conducted on 100 male and female college students. 

3.2.1 Procedure 
This study was conducted in the Edutech Convergence laboratory 
at Ewha Womans University in order to provide an optimal 
environment in consideration of illuminance and noise that affect 
measurement data. The window in the laboratory was covered so 
that the laboratory was not affected by light intensity. The height 
of the chair and the pedestal were adjusted to each subject just 
before measurement, so that the environment of the participant's 
pupils was accurately tracked. The experiment time for each 
subject lasted about 100 minutes and one person at the same time. 
 

 
Figure 1. Experiment procedure 

 
As shown in Figure 1, the study purpose, the duration of the 
experiment, and the precautions related to the experiment were 
announced before entering the controlled experiment site. 
Subsequently, the basic personal information and learning 
motivation strategy which is called MSLQ[15]. They were 
collected through the 5 Likert questionnaire. After the survey, the 
subject enters a laboratory where light and noise are controlled. 
The controlled laboratory is shown in Figure 2. 
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Figure 2. Environment 
setting for eye tracking 

Figure 3. Environment 
setting for video annotation 

 
According to Tobbi eye tracker's manual, it was recommended to 
keep the distance between the study subject and the measuring 
device constant for accurate measurement. Chin pedestal was used 
to maintain constant distance. Concerned about an increase in the 
subject's fatigue, they were guided to rest for 30 seconds at the 
end of each step. In each step (pretest, video study, posttest), the 
sequence was set to stare at the front for 10 seconds to find the 
baseline of the pupil. 
As shown in Figure 3, video annotation was performed in the 
room prepared for the interview. To implement a special interview 
method called video annotation, we used TechSmith's Morae 
program. 
 

3.2.2 Participants 
This study estimates the cognitive load in the video-based 
learning situation and recruits the most accessible adults (college 
students) in the video-based learning context such as MOOCs and 
Coursera. For accurate measurement, only those who do not have 
eye-related diseases and who can replace glasses when wearing 
lenses were allowed to participate in the experiment. In addition, 
the gender and major categories were selected to be evenly 
distributed. Even if there were no eye-related diseases, if the eye 
tracker did not track the eye during calibration, the ear was taken 
because no data could be collected. In addition, subjects whose 
data exceeded the recommended range for eye tracking during 
pretreatment or missing more than 50% of the data due to missing 
values based on pupil range outliers were excluded from the 
analysis. 
Of the total 100 participants, 96 participated endlessly without 
returning home halfway. Among them, 82 were studied except for 
missing values. Thus, 18% of the participants were excluded from 
the analysis. The demographic information of the study subjects 
used for analysis in this study is as follows. 
 

Table 1. Demographic Information of Subjects(n=82) 

Gender 
Male 39 

Female 43 

Major 
Liberal arts 42 

Science and Engineering 40 
 

3.2.3 Stimuli 
The stimuli given to the subject during eye tracking are as follows. 
 

Pre-test and post-test 

 
Figure 3. A screen shot of pre-test 

The pre- and post-examination tests consisted of PSAT questions, 
a test to select South Korean civil servants. The problem is that 
both the pre- and post-test have a total of six questions and the 
time limit is 25 minutes. 
 

Video-based learning 

 
Figure 4. An example of video screen 

 
As shown in Figure 5, video-based learning is a learning video 
that teaches PSAT problem solving strategies. In order not to 
distract the learners' attention other than the contents of the study, 
the lecturer was selected as a video in which the lecture was 
conducted only by voice. 
 

3.2.4 Instruments for measurement 
 
Eye tracker 
In this study, Tobii Pro X2-30 (30Hz) eye tracker was used to 
measure 30 frames per second to measure pupil response and eye 
fixation duration. As can be seen in Figure 2, pupils can be 
measured non-intrusively simply by keeping the 50 ~ 70cm 
distance between the measuring device and the subject without 
additional wearing. Therefore, data can be collected without pre- 
and post-testing and video-based learning. The collected data was 
extracted in the form of csv data that can be analyzed using Tobii 
Pro Studio program, Excel and R Studio program. 
 

Morae for video annotation 

787 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)



 
Figure 5. A screenshot of Morea for video annotation 

 
Figure 6 shows an example of TechSmith's Morae program. As 
you can see from the enlarged figure, Morae program screen is 
replayed by the learner at the time. In the upper left corner, the 
face image of the learner was taken in the previous experiment. 
The screen shows the points and paths that the subject looked at 
then with red dots and lines.. 
The learner entered the thoughts and feelings he had heard at the 
moment while looking at the screen, his gaze, and facial 
expressions that he stared at in the previous experiment. Press Ctrl 
+ M to select one of A (Understanding), B (Easy), C (Complex), 
or D (Discomfort), and then type the sentence directly for the 
reason. During the direct entry by the subject, the researchers 
looked at the screen together and helped when confused about 
which markers to choose. 
 

3.3 Data Analysis 
3.3.1 Datasets 
The variables selected for the research question are shown in 
Table 2 below. 
 

 Table 2. Variables(Eye data and video annotation) 

Variables Description 

Eye 
data 

LocalTime 
Stamp 

Timestamp counted from the start of the 
recording 

GazeEven 
tType 

Type of eye movement event classified 
by the fixation filter settings 

GazeEvent
Duration Duration of an eye movement event 

Distance 
Right/Left 

Distance between eyes and the eye 
tracker 

Pupil 
Right/Left Estimated size of the right(left) eye pupil 

Validity 
Right/Left 

Indicates the confidence level that eyes 
have been correctly identified 

Video 
Annot
ation 

Elapsed 
Time Timestamp when subjected noted markers 

Details Indicate markers which subjects noted 
 

3.3.2 Data pre-processing 
As mentioned earlier, even if the experiment was completed, the 
subjects whose data were more than 50% that could not be used 
for analysis due to missing values in the preprocessing process 
were excluded from the analysis. Eye data was excluded from the 
analysis when the recommended distance was out of 50 ~ 70cm. 
In the case of the pupil size, the difference between the pupil size 

of the left and the right is more than 0.4 mm and was also 
determined as the pupil portion. 
In the case of the pupil size, the average of the baseline measured 
in each section was calculated, and then derived by subtracting the 
baseline from the measured pupil size. Therefore, because the 
pupil size measured every second is the baseline minus, the pupil 
expansion indicators are positive when the pupil is larger than the 
baseline, but may be negative when the pupil is reduced. 
After that, the LocalTimeStamp and Elapsed Time variables of the 
eye data were changed to the same time expression, and then 
preprocessed by matching the note and eye data shown by time 
zone. Therefore, the variables used for the actual predictive 
analysis are as follows: Markers from Video Annotation (VA), 
Mean Pupil Dilation (MPD), Mean Fixation Duration (MFD) 
The first research question analyzed SVM classification of 
preprocessed data. The second study divided the A 
(Understanding), C (Complicated), and D (Discomfort) groups 
with high cognitive loads and the B (Easy) markers with low 
cognitive loads. Since the high group of the three markers 
combined had more than three times the number of data, we 
randomized and set the same number as the low group. After that, 
we checked whether the high and low groups were predicted. 

3.3.3 Data Analysis 
The analysis was performed using R Studio, a statistical analysis 
program. The preprocessed data is analyzed by Support Vector 
Machine (SVM) technique. The reason for analysis by SVM 
method is as follows. First, because of experimental data 
characteristics. Since eye data is measured at 30 frames per 
second for 82 subjects, a very large amount of data is collected. In 
addition, due to the nature of the physiological data, even a 
laboratory set up is susceptible to microenvironmental influences. 
Therefore, we chose SVM that is less affected by outliers and has 
higher accuracy. Second, SVM has the advantage of less 
overfitting than other neural network techniques. Finally, it is 
suitable for the markers (A, B, C, D) variables obtained through 
video annotation because they can be classified and predicted 
simultaneously. 
The first research question analyzed SVM classification of 
preprocessed data. The second study divided two groups with high 
cognitive loads which consists of A (Understanding), C 
(Complicated), and D (Discomfort) and low cognitive loads which 
consists of B (Easy) markers with low cognitive loads. Since the 
high group of the three markers combined had more than three 
times the number of data, we randomized and set the same 
number as the low group. After that, we checked whether the high 
and low groups were predicted. 
 

5. REFERENCES 
[1] Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary 

system. Handbook of Psychophysiology, 2, 142-162. 
[2] Colasante, M., & Douglas, K. (2016). Prepare-Participate-

Connect: Active learning with video annotation. Australasian 
Journal of Educational Technology, 32(4). DOI= 
https://doi.org/10.14742/ajet.2123 

[3] Di Stasi LL, Antolí A, Cañas JJ. 2011. Main sequence: an 
index for detecting mental workload variation in complex 
component analysis study. International Journal of 
Psychophysiology, 77(1), 1-7. DOI= 
https://doi.org/10.1016/j.ijpsycho.2010.03.008 

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 788

https://doi.org/10.14742/ajet.2123
https://doi.org/10.1016/j.ijpsycho.2010.03.008


[4] Ethel, R. G., & McMeniman, M. M. 2000. Unlocking the 
knowledge in action of an expert practitioner. Journal of 
Teacher Education, 51(2), 87-101. DOI= 
https://doi.org/10.1177/002248710005100203 

[5] Jainta, S., & Baccino, T. 2010. Analyzing the pupil response 
due to increased cognitive demand: An independent tasks. 
Appl Ergonomics 42. 807–813. DOI= 
https://doi.org/10.1016/j.apergo.2011.01.003 

[6] Korbach, A., Brünken, R., & Park, B. 2018. Differentiating 
different types of cognitive load: A comparison of different 
measures. Educational Psychology Review, 30(2), 503-529. 

[7] Marquart, G., Cabrall, C., & de Winter, J. 2015. Review of 
eye-related measures of drivers’ mental workload. Procedia 
Manufacturing, 3, 2854-2861. 

[8] Moreno, R. 2010. Cognitive load theory: Historical 
development and relation to other theories. In J. L. Plass, R. 
Moreno, & R. Brünken (Eds.), Cognitive load theory, 9–28. 
Cambridge University Press. DOI= 
https://doi.org/10.1017/CBO9780511844744.003 

[9] Sweller, J. 1988. Cognitive load during problem solving: 
Effects on learning. Cognitive Science, 12(2), 257-285. 

[10] Sweller, J. 2018. Measuring cognitive load. Perspectives on 
medical education. 7(1). 1-2. DOI= 
https://doi.org/10.1007/s40037-017-0395-4 

[11] Sweller, J., Ayres, P., & Kalyuga, S. 2011. Cognitive Load 
Theory. New York, NY, US: Springer. 

[12] Paas, F. G. 1992. Training strategies for attaining transfer of 
problem-solving skill in statistics: A cognitive-load approach. 

Journal of Educational Psychology, 84(4), 429. DOI= 
https://doi.org/10.1037/0022-0663.84.4.429 

[13] Paas, F. G., Van Merriënboer, J. J., & Adam, J. J. 1994. 
Measurement of cognitive load in instructional research. 
Perceptual and Motor Skills, 79(1), 419-430. 

[14] Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. 
2010. Cognitive load measurement as a means to advance 
cognitive load theory. Educational Psychologist, 38(1), 63-
71. DOI= https://doi.org/10.1207/S15326985EP3801_8 

[15] Paul R. Pintrich, Davide A. F. Smith, Teresa Garcia, and 
Wilbert J. McKeachie. 1991. A Manual for the Use of the 
Motivated Strategies for Learning Questionnaire (MSLQ) 

[16] Vertegaal, R., & Ding, Y. (2002, November). Explaining 
effects of eye gaze on mediated group conversations: amount 
or synchronization?. In Proceedings of the 2002 ACM 
conference on Computer supported cooperative work. 41-48. 

[17] Wang, Q., Yang, S., Liu, M., Cao, Z., & Ma, Q. 2014. An 
eye-tracking study of website complexity from cognitive 
load perspective. Decision support systems, 62, 1-10. 

[18] Winn, M. B., Wendt, D., Koelewijn, T., & Kuchinsky, S. E. 
2018. Best practices and advice for using pupillometry to 
measure listening effort: An introduction for those who want 
to get started. Trends in hearing, 22. 1-32. DOI= 
https://doi.org/10.1177/2331216518800869 

[19] Young, J. Q., Van Merrienboer, J., Durning, S., & Ten Cate, 
O. 2014. Cognitive load theory: implications for medical 
education: AMEE Guide No. 86. Medical teacher, 36(5), 
371-384. 

 

 

789 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

https://doi.org/10.1177/002248710005100203
https://doi.org/10.1016/j.apergo.2011.01.003
https://doi.org/10.1017/CBO9780511844744.003
https://doi.org/10.1007/s40037-017-0395-4
https://doi.org/10.1037/0022-0663.84.4.429
https://doi.org/10.1207/S15326985EP3801_8
https://doi.org/10.1177/2331216518800869


Exploration Maps, Beyond Top Scores: Designing
Formative Feedback for Open-Ended Problems

Aditi Mallavarapu
University of Illinois at Chicago

Chicago, IL
amalla5@uic.edu

Leilah Lyons
New York Hall of Science

Corona, NY
llyons@nysci.org

ABSTRACT
Learners are being exposed to abstract skills like innovation,
creativity and reasoning through collaborative open-ended
problems. Most of these problems, like their real-world
counterparts, have no definite starting or ending point, and
have no fixed strategies to solve them. To help the learners
explore the multiple perspectives of the problem solutions
there is an urgent need for designing formative feedback in
these environments. Unfortunately, there are barriers to us-
ing existing EDM approaches to provide formative feedback
to learners in these environments: (1) due to the vast so-
lution space, and the lack of verifiability of the solutions it
is impossible to create task and expert models, thus mak-
ing the detection of the learners progress impractical; (2)
formative feedback based on individual learner models does
not scale well when many learners are collaborating to solve
the same problem. In this work, we redefine formative feed-
back as reshaping the learning environment and learners’
exploration paths by exposing/enlisting “fugues” as defined
by Reitman [28]. Through a case study approach we, (1) val-
idate methods to extract learners’ “fugues” from a collabora-
tive open-ended museum exhibit, (2) design formative feed-
back for learners and educators using these extracted fugues
in real-time, (3) evaluate the impact of exposing fugues to
group of learners interacting with the exhibit.

Keywords
Data-driven, Formative feedback, Open-ended learning en-
vironments, Ill-defined problems, collaborative learning

1. INTRODUCTION
With the recent advances in storage and retrieval methods
of data and increased computing power the way we look
into learning processes has changed [2]. We are now able
to collect data to the most minute detail which was not
possible in the absence of tracking devices and computer-
based interactive learning environments. These improve-
ments in instrumentation make rich interactive ”classrooms

of the future” [32] amenable to computer-driven monitor-
ing and support, but it’s not a matter of just applying ex-
isting analytic approaches. The vast majority of learning
analytic techniques are predicated on assumptions about
learning environments that may not hold. While there have
been many examples of using data mining to track students’
progress through interactive learning environments using log
files (e.g.,[12, 1, 23, 10, 27, 3, 5, 14, 6, 24]) most of these
learning experiences have been developed with reference to
expert envisioned solutions which act as a strong model that
the learners need to follow [9]. For example, learners are
given a well-defined, fixed goal with known, optimal num-
ber of steps to reach this goal, and known, fixed number of
choices that can be made by the learner at each step. In such
circumstances any user action can easily be judged as taking
them closer to or farther away from the goal [20]. This clar-
ity often underpins the structure of model based Intelligent
Tutoring Systems (ITS), which typically combine exhaus-
tive, a priori“strong”models of the content domain and prior
learner performances with models of the student’s current
progress to generate guidance [35]. These well-constrained
problem spaces have successfully been used by data miners,
who rely on a priori models and on post hoc analysis to pro-
vide formative feedback to the students [10, 3] or to their
teachers [23], to provide formative feedback to the environ-
ment designers [12, 23], or to provide evaluative feedback on
the nature and scope of mistakes made by learners in the
environment [1, 27].

However, these constrained problem spaces often do not re-
flect problems found in the real world. Real-world prob-
lems often possess multiple solutions, where each can be
attempted with multiple alternative theories, or sometimes
lack the theories to verify solutions; or possess multiple task
structures leading to overlapping sub-problems which thus
demand novelty rather than replication from the learner [19,
9]. Additionally, these problems are often solved by groups
of people who each bring in a new perspective, perspectives
which are critical to preserve in order to develop workable
solutions for real-world problems like climate change, so-
cial change and many others. Due to the varying dimen-
sions wherein open-endedness can exist, the notion of open-
endedness is quite vague, and oftentimes it is difficult to dif-
ferentiate open-ended problems from well-defined problems;
in actuality these problems seem to exist on a continuum.
Simon [31], defined open-ended problems as having three
features: (1) indefinite starting points, (2) indefinite ending
points, which constitute goals - either are not clearly de-
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fined or are complex and imprecise, and (3) with no clear
strategies to solve the problem. While presenting learners
with simplified and constrained problems can be a good way
to help them come to understand the core properties of a
domain, exposing learners to less constrained, more open-
ended problems can help them get experience with disci-
plinary processes and dispositions [20]. Owing to the rec-
ommendations of many educational standards both formal
and informal educational settings are giving the learners op-
portunities to practice these disciplinary processes and de-
velop disciplinary dispositions by exposing the learners to
open-ended, project-based student centered approaches [29].
Since these problems expose the learners to a rather large so-
lution space, some researchers have argued that open-ended
learning environments, and the exploratory learning styles
often promoted to go along with them, are simply not work-
able in educational settings [17]. While other educational re-
searchers have argued that rather than giving up on exposing
learners to open-ended problems, educators and researchers
should instead seek to support learners in their explorations
via proper supports [13], like scaffolds and formative feed-
back. We argue that data mining offers great potential for
supporting open-ended learning via data-driven formative
feedback.

1.1 Formative Feedback
Formative feedback has been defined as “information com-
municated to the learner that is intended to modify the
learner’s thinking or behavior for the purpose of improving
learning” [30]. Formative feedback has been used extensively
to support learners while solving well-defined problems, as
when a learner is given a hint based on his “distance” from
the goal, or a suggestion based on the expert model to get
him ”closer” to this model. These forms of formative feed-
back are inherently tied to an assumption of one fixed goal,
making them unsuitable for open-ended problems which can
have a dynamically evolving state space thus demanding
that the learners’ goals evolve with them. Moreover, it can
be challenging to fit a fixed goal perspective to collaborative
learning environments, both pragmatically (instrumentation
is a challenge) and conceptually (how one can go about as-
cribing “credit” to multiple learners when they jointly create
a solution - is a theoretically undefined proposition - we
don’t yet have theories of learning, and thus metrics, that
fully account for and embrace the multifaceted ways groups
of learners support one another and their joint endeavors).

Summarizing, there are two main barriers to adapting exist-
ing formative feedback approaches for use in open-ended col-
laborative learning environments: (1) due to the vast solu-
tion space, and the frequent lack of solution verifiability, it is
difficult to create an exhaustive task or expert models, thus
making the detection of the learners’ progress challenging
[25]; (2) Most of the formative feedback in well-constrained
problems is based on individual learner models, which does
not scale well when many learners are collaborating to solve
the same problem, a known problem in the field. To supply
formative feedback for open-ended collaborative learning en-
vironments, a fundamental re-conceptualization of how for-
mative feedback is structured, and the techniques used to
distill it from collected data, are needed.

2. PROPOSED CONTRIBUTION

This research proposes to re-conceptualize formative feed-
back (and how it is derived from logged data) so as to sup-
port learners in open-ended, collaborative learning environ-
ments. First, we make the deliberate decision to step away
from measuring or modeling individual learner “progress” -
rather than placing the learner, and his or her actions, at the
center of our analytics, we instead place the solution space
at the heart of our analysis. We conceptually relate forma-
tive feedback for open-ended problems to what Lynch et al.
[19] called Discovery Support Systems. We redefine it to be
about modeling/capturing the aspects of the problem space
explored by the learner(s) so far - and how the course of
that exploration has unfolded so as to have exposed aspects
of the problem space to the learner.

There has been considerable research on design and im-
pact of feedback in both ill-defined tasks and problems (E.g
[4, 8, 11, 26, 9]) with methods like partial task models and in
well-defined ([16, 7]) tasks and problems with model-based,
constraint-based and expert solution-based approaches (See
Lynch et al. [19], Fournier-Viger et al. [9] for extensive re-
view). However, these studies have designed feedback by
constraining some aspects of the open-ended problem mak-
ing it less open-ended [9] and have reported findings and
issues related to feedback design as very complex and often
mixed [19]).

The purpose of our proposed data-driven formative feed-
back methods is to empower the learners themselves to re-
shape their exploratory path through the problem space such
that it can be made more amenable for exposing learners
to critical events, insights, and contrasts. These can range
from simple evaluative feedback suggesting “correct” or “in-
correct” where verifiable solutions are available, to complex
elaborate maps illuminating the trajectory of exploration,
or even tying the highlights of the exploration path with
external concepts and theories. As an analogy - if prior
methods of formative feedback are akin to giving a tourist
step-by-step directions to reach a destination, we are at-
tempting to produce an annotated map. We thus re-situate
the problem-solving decision-making with the learners them-
selves, and see our mission as providing them with relevant,
situationally-salient information to make those decisions.

We desire to give learners a sense of how their explorations
map to the larger space of possibilities within the learn-
ing environment. In a truly open-ended learning environ-
ment, the space of possible action may be infinite, but there
are often nonetheless common repeating patterns in action-
response pairings. The more data we collect on how learners
make use of a given learning environment, the better our
map of the problem space - much like a travel guide that
has been annotated by multiple tourists. To conceptualize
what it means to provide a data-derived “annotated map”
to learners in open-ended environments, we thus lean on the
“fugue” construct developed by Reitman [28]. In music, a
“fugue” is a short melody or phrase which is taken up by
other instruments. We argue that data mining can be used
to detect “fugues” developed by prior learners in response to
certain situations within the problem space, “fugues” that
could be presented to new learners as potential directions
to pursue. Additionally, the “fugue” concept can be used
to help learners reflect on their own exploration paths: are
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they relying on very similar “melodies”, or branching out
and trying new compositions? The value of the “fugue” con-
cept is that it is not in contradiction with a multi-learner
environment - the piece of music, as produced by the whole
orchestra, is the subject of analysis.

2.1 Research Questions
We follow Reitman [28] recommendation of conceptualizing
the problem solving in open-ended learning environments as
“fugues” (like in music) where the learners could adopt a
component solution and successively develop interweaving
parts to that component of the solution. This leads us to:

RQ 1: What kinds of methods can be used to design domain-
independent formative feedback to enable exploration and
conceptualization of such “fugues”?

The idea of adopting problem solving in this manner implic-
itly includes metacognitive support (by providing learners
with an exploration map of known “fugues”), and implicitly
invites collaboration where the developmental work of one
group can be picked up and further developed by others. We
explore what features of the problem-solving would best mo-
tivate this kind of learning and how we could exploit these
features through data-driven methods to design formative
feedback.

RQ 2: How do these“fugues”of solutions repositories evolve
as we expose more solutions? What limitations and advan-
tages evolve as we expose more solutions?

As more and more groups attempt the problems the repos-
itory of known “fugues” expands, thus surfacing new possi-
bilities for formative feedback and teaching methods in the
existing domain like (1) a view into how learning, collab-
oration, innovation takes place in such ill-defined domain,
(2) provide guidance for intervention by any humans-in-
the-loop (e.g., educators), (3) use the repository to design
context-specific (for learners directly) feedback for known
actions/tasks, and motivate the design for similar domains
by laying down foundations for (4) for the design of Intelli-
gent Tutoring Systems which might not have a expert model
readily available, and (5) for designing adaptive learning
environments for ill-defined problems, where the problem
can change difficulty level by tracking learners to have ex-
plored certain paths or length of paths. For my disserta-
tion, I will explore the utility of formative feedback for the
in-domain applications ((1)-(3)). However, the expansion
of the “fugues” also references potential limitations of the
methods, for example (1)the running time constraints for
processing the data- a real-time formative feedback poses
certain limitations on the time spent in processing the re-
sult which makes effectiveness rather than efficiency of the
feedback a priority, (2) detecting and referencing the most
commonly occurring “fugue” from/to the learners might po-
tentially indicate tunnel vision, so helping the learners diver-
sify “fugues” while preventing recursion problem must take
precedence. Maintaining an effective balance to resolve these
limitations would also be the scope of my dissertation.

RQ 3:What impact does the use of these “fugues” based
formative feedback have on the learning opportunities in an
open-ended learning environment?

We would like to measure the impact of the redefined forma-
tive feedback for open-ended learning environments designed
in RQ 2 (with visitors and the educational staff) to validate
our conceptualization and usefulness of formative“fugues” in
aiding exploration and the effects of scaling on the formative
feedback.

2.2 Case: Collaborative Open-Ended Simula-
tion Based Museum Exhibit

We propose to design formative feedback for a mixed reality,
simulation-based museum exhibit. Connected Worlds is an
open-ended complex systems exhibit that can support up to
50 simultaneous users to explore and manipulate the ecosys-
tem. Visitors interact with the simulation by diverting the
flow of simulated water on the gallery floor, and by planting
seeds in the biomes simulated on the wall projections. They
are tasked with maintaining the diversity of four different
biomes via planting and managing water resources. It serves
as a good testing ground because the exhibit does not pro-
vide the learners with fixed goals or constraints for strategies
encapsulating the two characteristics of open-ended learning
environments: no verifiable solutions or end goals and no
clear strategies to solve/ maintain the diversity. The visitors
have to constantly work together to maintain the diversity
and manage resources in the ecosystem, and there can be a
varied different ways of doing the same, with interaction of
the actions varying substantially across contexts nominally
of the same type, producing different results across-context,
a recognized quality of an open-ended task [33].

2.3 Preliminary Work and Future Directions
We have designed and built a system for unobtrusively col-
lecting the “collective” interaction data while the visitors
groups interact with the system and with each other, which
is undergoing iterations to capture more facets of data. In
prior work, Mallavarapu et al. [21] the data capturing system
was validated by the use of a mobile interface to visualize
the data for visitors, and the study showed that formative
feedback influenced the problem-solving strategies the visi-
tors were using. This study helped us establish the impact
of formative feedback in an open-ended learning environ-
ment like our test site. In addition to the experimental and
control contrasts in the above study we have collected inter-
action log-data from 32 school sessions which can be used for
post-hoc processing, identification, validation of methods to
design formative feedback. We propose a taxonomy of meth-
ods that can be used on the well-defined to ill-defined con-
tinuum to design formative feedback (See Table 1). Another
work has recently used the school groups data to study and
decipher the temporal cause-effect relationships between the
learners’ collective interactions and the systemic responses
[22]. This provided a conceptualization to the design of Pre-
diction based Feedback (See Table 1). Our immediate future
efforts will focus on applying and validating these methods
with the current data in extracting and designing formative
feedback for this environment. These methods will then be
used through the mobile device to evaluate the impact on
the exploration taking place in the exhibit.

3. ADVICE SOUGHT
1. What validation methods can be used to evaluate the

methods that can extract the “fugues”? We acknowl-
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Type of formative
feedback

Information needed by
recipient

Information
needed by An-
alytics

Applicable analytic ap-
proaches

Applicable
to ”fugues”

Model based Feed-
back

Next steps to take, demon-
stration of a certain step,
evaluation of skills and
actions, Progress towards
goals

“Goal” decomposi-
tion tree, Correct
example(s), metric
of correctness, task
to action and skill
mapping

Knowledge tracing map
from goals to skills and
tasks, expert models.

Violation based
Feedback

“Favourable” actions and
”distance” from goals due to
the action

Set of constraints on
the “correct” behav-
ior, Rules for task

Detecting when certain rule
is violated.

Sequence based Feed-
back (showing only
ongoing interaction)

Solution paths, actions on
the path

Definition of what
constitutes a solution
path, temporal order
of current actions

Sequence mining where con-
sequences of frequent previ-
ously seen sequences can be
used as feedback.

X

Prediction based
Feedback (show-
ing only ongoing
interaction)

Predicted Consequence of
actions

Causal model of the
learner interactions

Causal Inference, Regres-
sion.

X

Contrast based Feed-
back

examples that contrast on
one or more dimensions of
goals

Definition of dimen-
sion(s) of contrast
and highlights for
goals

Sequence mining, Ability to
extract “Highlights”, goals
from interactions, clustering
using defined dimensions of
contrasts.

X

Trajectory based
Feedback

A exploration map of path
travelled placing them on
continuum of paths

definition of dimen-
sion(s) of path char-
acterizations, differ-
entiating metrics

Sequence mining, Ability to
extract/ differentiate trajec-
tories, clustering.

X

Task/Events based
Feedback

attempted tasks/ uncovered
events on the trajectory

definitions of tasks
and/ or events and
their temporal order,
definitions of trajec-
tory

Ability to extract “tasks”
from the actions, consti-
tuting them as trajectories,
clustering depending on the
definitions of tasks.

X

Comparison based
Feedback

collection of trajectories at-
tempted (till now)

definitions of trajec-
tories, differentiating
metrics

Ability to extract/ differen-
tiate trajectories, clustering.

X

Table 1: Types of Formative feedback, information conveyed by them and details of the methods for the
continuum of Learning Environments

edge that we are using the existing EDM methods to
validate their applicability to our problem-space. We
would want to evaluate each method for the same.

2. What other external factors need consideration when
designing formative feedback for open-ended learning
environments. For example, when designing formative
feedback for problems tackled by individual learners
researchers have explored the effect of individual dif-
ferences [15, 34] on the impact of formative feedback
through individual learner models; While evaluating
the impact of formative feedback in collaborative open-
ended learning environments - what factors do we need
to consider?

3. Should we consider to establish a generalizability to
this redefinition of formative feedback and its impact
by validating our approach through another equivalent
environment?

4. CONCLUSIONS

As we move from individually tackled well-defined problems
to open-ended real-world problems to allow the 21st cen-
tury learners to explore with their peers, we also need to
make a move from “solution” based formative feedback to
a more Socratic method [18] of providing feedback to en-
able explorations, thus giving the learners an opportunity
to contemplate the implications of their decisions. Working
synergistically with the learning environment the feedback
should expose to the learners the opportunities to learn and
practice abstract skills like reasoning, creativity, innovation,
and encouraging the same in a collaborative environment.
We identify the feedback for collaborative open-ended learn-
ing environments to have characteristics like meta-cognitive
support, support for“collective”learner efforts, and be predi-
cated on the characteristics of the problem space rather than
the learner actions.
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ABSTRACT
Determining when and whether to provide personalized sup-
port is a well-known challenge called the assistance dilemma.
A core problem in solving the assistance dilemma is the need
to discover when students are off-track or unproductive, so
that the tutor can intervene. Such a task is particularly
challenging for open-ended domains such as logic proofs,
and programming. In this paper, we present a data-driven
method to determine step-level productivity in a logic proof
tutor. This approach leverages and modifies the Markov
decision processes in the Hint Factory, a data-driven hint
generator, to develop four productivity metrics. Our results
provide evidence suggesting that, for each productivity met-
ric, students’ training productivity significantly correlates to
their posttest performance. We conclude with a discussion
outlining challenges posed when comparing these produc-
tivity metrics to a ground truth, and propose a preliminary
approach to address them.

Keywords
productivity, open-ended, hint timing, assistance dilemma,
logic proofs

1. INTRODUCTION
Intelligent Tutoring Systems (ITSs) provide individuals with
adaptive feedback and hints, improving learning [25]. Stud-
ies suggest that hints, when provided appropriately, can aug-
ment students’ learning experience [10, 22] and improve their
performance [7]. However, researchers often find that stu-
dents display poor help-seeking behavior [2, 21]; some abuse
hints to expedite problem completion, and some avoid seek-
ing help when they are in need [1, 20].

To deal with non-optimal help-seeking behavior, several ITSs
provide unsolicited assistance [3, 18, 13]. However, deter-
mining when to provide proactive assistance, i.e., unsolicited

∗This reseach was supported by the NSF grants 1726550 and
1651909.

assistance in anticipation of future struggle, is particularly
challenging in open-ended domains where there are many
possible correct solutions. The assistance dilemma is a well-
recognized challenge in the domain of ITSs, where a trade-
off exists between giving and withholding information to
achieve optimal learning [14]. On one hand, providing assis-
tance may reduce frustration and save students’ time, but
may lead to shallow learning or a lack of motivation to learn
by oneself. On the other hand, withholding information can
encourage students to learn by themselves, but may lead
to frustration and wasted time [14, 16]. A core problem of
the assistance dilemma is the need to discover when students
are off-track or unproductive so that the tutor can intervene.
We hypothesize that developing a proactive hint policy for
a logic tutor, where tutor interventions are delivered upon
predictions of unproductivity in training, can improve stu-
dents’ logic proof strategies in a posttest without hints.

Contributions. In this paper, we present our novel, data-
driven approach to measure productivity in an open-ended
logic ITS. We extend the Hint Factory [24], a generalizable
data-driven method for hint generation, to define four met-
rics of productivity. We then present our preliminary anal-
ysis on evaluating these metrics in the logic tutor.

2. RELATED WORK
Several studies have used the term “unproductive” to refer
to undesirable behavior during training [12, 9, 19]. For ex-
ample, Beck and Gong [8] define unproductive persistence or
“wheel-spinning”based on whether or not a student achieved
mastery (three correct problems) in 10 problem attempts.
Their definition of unproductivity has been used in recent
studies to predict when an intervention can help students
by distinguishing between productive and unproductive be-
havior using decision trees [12] and Recurrent Neural Net-
works [9]. However, this definition of problem-level and
problem-completeness based productivity is not suitable for
our objective of guiding students toward efficient problem-
solving strategies at a finer step-level granularity, specifically
in open-ended domains.

McLaren et al. in a study on an open-ended inquiry-learning
program defined unproductive events as the actions taken
by the student that do not help them achieve the goal of a
particular level, i.e., the steps that students take that are
unlikely to advance their understanding of the concepts be-
ing taught [16]. Similar to this study, we define productivity
on a step level to identify student steps that are not likely
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to advance their problem-solving strategies. However, our
definition is different in that we did not use a pre-defined
domain-specific metric for efficient and inefficient strategies;
rather we focused on solution length or optimality, which is
valued across problem-solving domains.

In many multi-step open-ended but well-structured problem-
solving domains, shorter solutions are considered to be more
optimal than longer ones, and solving problems in less time
reflects both learning and fluency [15, 23, 26, 11]. We use
these basic assumptions about time and solution length to
design a data-driven, domain-agnostic approach to model
productivity on problem-solving steps. The Hint Factory is
a data-driven approach for hint generation. The approach
uses prior students’ transaction log data to form an inter-
action network and assign scores to problem-solving states
(snapshots of an on-going or completed proof) [24, 5]. A
core insight of the work in this paper is that we can similarly
use interaction networks to score productive problem-solving
steps without the need to model the domain.

3. METHOD & PRELIMINARY RESULTS
In this section, we define productivity, a data-driven mea-
sure quantifying how much a student’s most recent step
contributes to an efficient solution. We explore four new
productivity metrics defined using the combination of the
quality of each state (local or global), and the amount of
progress made in a step (absolute or relative). First, we
present the Hint Factory. Next, we present our extension of
the Hint Factory, and how we use it to define productivity.

3.1 Hint Factory
Hint Factory is a method for generating hints in multi-step
open-ended domains [6]. In the Hint Factory, historical stu-
dent solutions are used to form Markov decision processes
(MDP) from interaction networks, where vertices are ob-
served student problem-solving states (snapshots of their
on-going or completed proof), and edges are problem-solving
steps, i.e, a transition between states. The Hint Factory uses
value iteration, a reinforcement learning technique, given in
Equation 1, to assign an expected value LQV (s) to each state
s, where LR(s) is the state’s reward, γ is the discount fac-
tor, and Pa(s, s′) is the proportion of the observed solutions
in state s that lead to state s′ using the action (i.e. step) a.
In the Hint Factory, a large reward is set for the problem-
completion or goal states (100), penalties for incorrect states
(10), and a cost for taking each action (1) [5]. A non-zero
cost on actions causes the MDP to penalize longer solutions.

LQV (s) := LR(s) + γmax
a

∑
s′

Pa(s, s′)LQV (s′) (1)

3.2 State Quality - Extending the Hint
Factory metrics

In this section, we leverage the Hint Factory approach to
generate two quality metrics that determine the expected
values for each observed problem-solving state. The first
metric of state quality was defined as part our prior work
on the Hint Factory, which we label as local quality. Local
quality provides insights about how far a state is from the
closest goal state, weighted by the probabilities of transi-
tions, but it cannot provide information about whether the
state is on an efficient path to a solution.

GQV (s) := GR(s) + γ
∑
s′

Pa(s, s′)GQV (s′) (2)

Global Quality. We devised a novel, data-driven global
quality value function, GQV in Equation 2, to give higher
values to states on efficient solution paths. Equation 2 sums
GQV (s′) over all states s′ reachable from s, weighted by
Pa(s, s′), taking into account all future actions from a cur-
rent state, rather than just the one with the max expected
value. The global rewards GR are identical to LR for errors
and actions, but are different for goals, giving shorter, more
efficient solutions higher rewards. The global reward GR(g)
for each goal state g on a problem is GR(g) = 100− p ∗ δ(g)
where δ(g) is the difference between the solution length of
g and that of the shortest solution, and p is a penalty for
longer solutions. We set p = (100 − 80)/δmedian) where
δmedian is the difference between the median and shortest
solution lengths for each problem because median student
solution lengths are assigned a global reward of 80. Mean-
ing, the student’s performance with a median solution length
represents a low B grade. The proof of convergence for the
modified value iteration equation 2 is given in appendix A.

We now demonstrate the differences between local and global
quality metrics using solution trajectories (series of steps) of
varying solution lengths: Tshort, Tmedium, and Tlong in Fig-
ures 1 and 2. Tshort is the shortest solution (four steps),
with all nodes (logic statements) used. Note that a node is
said to be used if it contributes towards deriving the conclu-
sion of the problem. Tmedium has five steps with one unused
node D; and Tlong has eight steps, and all nodes used.

We generated interaction networks to determine the qual-
ity values for each problem using our historical data for N =
796 students. Figure 2 shows the quality values for the three
trajectories in Figure 1. The start state in Figure 2 consists
of the three given logic statements (the topmost state). Ar-
rows between states represent steps, i.e, transition between
states by logic rules applications. Non-start states are repre-
sented by a +(XYZ), where XYZ is the new logic statement
derived in a step. The start state has a high global quality,
but low local quality. The start state’s global quality is high
because all efficient paths contain it, but its local quality is
low because it is probabilistically farther away from goals
than any other state in the figure. The local quality for
states that are only found in incomplete attempts is lower
than that for the start state. The local quality of the goal
states on all three trajectories is 100. The global quality
value for the goal state in each solution trajectory differs,
with 100 for the Tshort goal (since it’s the most efficient), 95
for Tmedium, and 80 for Tlong goal states.

From the start state to the goal in Tshort, both local and
global quality state values increase monotonically since it is
the most efficient solution. Note that not all quality values
increase over every trajectory. For example, step Tmedium−
2’s pre-state (+A→ E) global quality is higher than that for
its post-state (+D) since the pre-state is on a more efficient
path, but the local quality increases from pre- to post-state.
Step Tlong−3’s pre-state (+¬E) has higher local and global
quality values than its post-state (+¬E → ¬A) since the
post-state is farther from and less likely to reach Tlong’s
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Figure 1: Three Solutions with Varying Number of Steps for a logic problem in Deep Thought

(a) Trajectory Tlong : Eight Steps
and all used nodes

(b) Trajectory Tshort: Four Steps
and all used nodes

(c) Trajectory Tmedium: Five
Steps and four used nodes

Figure 2: Illustration for the concepts of State Quality and Productive steps in 3 trajectories Tshort, Tmedium, and Tlong

goal than the pre-state is to Tshort’s closer goal. The global
quality decreases for two reasons: (1) Tlong goal is on a less
efficient path, and (2) global quality performs a weighted
sum over all the subsequent, previously-observed states in
the larger (unshown) interaction network, many of which
lead to incomplete attempts.

These examples demonstrate the differences between local
and global state quality metrics. The main strength of gen-
erating these quality values is the MDP approach which en-
sures that each state quality value is based not only on the
distance from a solution but also on the probability of tran-
sition at each of the successive steps. This allows us to rate
steps in a more probabilistic manner than a simplistic com-
parison based on the distance from the most efficient expert
solution.

3.3 Progress - Change in Quality

Since state quality is a measure of relative ”goodness”, we
compare the quality of the current state with that of the pre-
vious and start states to evaluate the productivity in a step.
In this section, we define two measures for progress: relative,
the change in state quality from the previous problem-state,
and absolute, the change in state quality from the start.

Relative progress is the difference between the quality values
of the current and previous states. Relative progress with
local quality identifies whether the previous or current state
is closer to the goal. When using the global quality values,
the relative progress identifies the state closer to a goal, and
provides additional information detailing which one of the
two is on a more efficient solution path.

Consider a valid, but long solution attempt. A relative
progress measure reveals whether a student is progressing
toward a solution in a step, but not whether their trajec-
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Quality-Progress Productivity Formula
Global-Absolute (GQVpost−state −GQVstart−state) ≥ 0
Global-Relative (GQVpost−state −GQVpre−state) ≥ 0
Local-Absolute (LQVpost−state − LQVstart−state) ≥ 0
Local-Relative (LQVpost−state − LQVpre−state) ≥ 0

Table 1: Step Productivity formula based on state Quality
values and step Progress

tory is efficient. Therefore, we define absolute progress as
the difference between the current and start states’ quality,
using either quality measure. Absolute progress using local
quality reveals whether a student’s current state is farther or
closer from any goal states than when they began working on
the proof. Global quality based absolute progress reveals the
amount of efficient progress a student has made between the
start and the goal. For example, if we compare the absolute
progress on two consecutive steps of a solution attempt, if a
student is taking efficient steps, then the absolute progress
will increase on every step.

3.4 Productivity - Quality & Progress
We define four kinds of productivity measures based on qual-
ity {Local, Global} and progress {Relative, Absolute}. A
step is considered productive if the progress of its post-state
using either quality measure is a non-negative number, and
unproductive otherwise, as shown in Table 1.

In consultation with an expert who has more than twenty
years of experience teaching discrete math, we labeled the
steps as productive or not in each of the three trajectories
(Tshort, Tmedium, Tlong) shown in Figure 1. Expert-assigned
unproductive steps in Figure 2 are displayed in red and oth-
ers are in green. According to the local quality and absolute
progress (local-absolute) productivity metric, all the steps
are productive because they eventually lead to a solution.
However, this metric is not sensitive to variations in the
solution lengths. When we use local-relative productivity,
only the Tlong−3 step is unproductive, as it is the only step
where a post-state is probabilistically farther from a solu-
tion than the pre-state. Using the global-relative measure,
steps Tmedium − 2 and Tlong − 3 are unproductive because
they have a pre-state on a more efficient path to the solution
than the post-state. The global-absolute metric is the only
measure that labels the four expert-identified unproductive
steps correctly. 1. Note that each type of productivity cap-
tures a different perspective on a step towards the solution.
Overall, the global-absolute productivity metric aligns per-
fectly with the expert’s labels for the sample trajectories.
However, using a panel of experts to rate each step would
provide a more robust assessment of the ground truth. A
major challenge in a manual inspection by a panel of experts
is our vast state-space (N = 72,560).

3.5 Selecting a Productivity Metric
1Note that these four unproductive states also correspond to
the four infrequently used (yellow) nodes in the student solu-
tion shown in Figure 1a. However, some unproductive nodes
have been observed to be frequently used, and some produc-
tive nodes to be infrequently used in our tutor, suggesting
that the use-frequency alone cannot determine productivity

Productivity Using Corr
Global-Absolute 0.328
Global-Relative 0.261
Local-Absolute 0.294
Local-Relative 0.236

Table 2: Correlation between students’ Training Productiv-
ity and Posttest Optimality (all correlations are significant
with p < 0.01)

To understand which one of the four productivity metrics is
most indicative of how students’ work in the tutor’s train-
ing section affects their posttest solution optimality, we con-
ducted a correlation test. Note, we evaluate students on
an optimality score, which is as an exponential decay func-
tion on normalized steps e−steps to account for the small
variance in the number of steps. Steps are normalized to
the interquartile range for each specific problem to account
for varying lengths/difficulties. Very short solutions with
step count less than or equal to Q1 (first quartile) have,
optimality = 1, and those with step count greater than Q3
(third quartile) have an optimality score of 0.36 or less based
on the exponential decay curve.

For each student in our dataset (N = 437), we computed
their posttest optimality and the proportion of training steps
that are productive using each productivity metric. We
then calculated the correlation between each type of training
productivity with posttest optimality using Pearson’s coef-
ficient. Table 2 shows that higher productivity in training is
significantly correlated to better posttest optimality for all
the productivity metrics. Among them, the global-absolute
metric is the most correlated with posttest optimality.

4. CONCLUSION & ADVICE SOUGHT
In this paper, we provide a unique extension of the Hint
Factory to determine productivity on a step-level in a logic
ITS. Outside the scope of this paper, we assessed the impact
of intervening with hints using a predictor of unproductivity
(global-absolute) in a controlled study with two conditions:
control and adaptive. Students in both conditions could re-
quest hints, but interventions using the predictor were given
only in the adaptive condition. We found that the adaptive
condition students had significantly better posttest optimal-
ity and time than their control peers. Our long term aim is
to assess the generalizabitily of this approach in other open-
ended domains such as programming, and to address the
assistance dilemma for open-ended problem-solving.

For this doctoral consortium, we would like advice on how to
further assess and compare the productivity metrics against
a ground truth. We plan to form a panel of experts to rate
a larger number of steps, but it is infeasible for them to rate
each step in our vast state-space. Do we employ data-driven
methods to determine the ground truth? I would like to dis-
cuss data-driven ways to evaluate the productivity metrics
such as using inferring rewards from Gaussian processes [4]
or using procedural solution generators [17].

Our preliminary results are promising, and through this con-
sortium, we seek to determine a method to assess the ground
truth of step-level productivity in the logic tutor.
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influencing students’ help-seeking behavior while
programming with human and computer tutors. In
Proceedings of the 2017 ACM Conference on
International Computing Education Research, pages
127–135. ACM, 2017.

[21] T. W. Price, R. Zhi, and T. Barnes. Hint generation
under uncertainty: The effect of hint quality on
help-seeking behavior. In International Conference on
Artificial Intelligence in Education, pages 311–322.
Springer, 2017.

[22] M. Puustinen. Help-seeking behavior in a
problem-solving situation: Development of
self-regulation. European Journal of Psychology of
education, 13(2):271, 1998.

[23] M. U. Smith. Toward a unified theory of problem
solving: Views from the content domains. Routledge,
2012.

[24] J. Stamper, T. Barnes, L. Lehmann, and M. Croy.
The hint factory: Automatic generation of
contextualized help for existing computer aided
instruction. In Proceedings of the 9th International
Conference on Intelligent Tutoring Systems Young
Researchers Track, pages 71–78, 2008.

[25] K. VanLehn. The relative effectiveness of human
tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist,
46(4):197–221, 2011.

[26] K. Yacef. The logic-ita in the classroom: a medium
scale experiment. International Journal of Artificial
Intelligence in Education, 15(1):41–62, 2005.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 800



APPENDIX
A. PROOF OF CONVERGENCE FOR THE

MODIFIED BELLMAN BACKUP FUNC-
TION

Theorem: The modified Value iteration (Eqn 2) converges
to GQV ∗ for any initial estimate GQV , i.e.,

lim
k→∞

GQVk = GQV ∗ ∀GQV

For any estimate of the value function GQV , we define the
modified Bellman backup operator B̂ : R|S| → R|S|

B̂GQV (s) = GR(s) + γ
∑
s′∈S

Pa(s, s′)GQV (s′)

Before we provide the proof of convergence, we provide the
proof of contraction, i.e, for any two value functions GQV
and GQV’:

||B̂GQVk − B̂GQV ′k || ≤ γ||GQVk −GQV ′k ||

where the max norm:

||GQV || = max
s∈S
|GQV (s)|

||v − v′|| = Infinity norm (max difference over all states)

Proof of contraction:

||B̂GQV − B̂GQV ′||

=

∣∣∣∣∣
∣∣∣∣∣
[
GR(s) + γ

∑
s′∈S

Pa(s, s′)GQV (s′)

]
−

[
GR(s) + γ

∑
s′∈S

Pa′(s, s′)GQV ′(s′)

]

= γ

∣∣∣∣∣
∣∣∣∣∣
[∑
s′∈S

Pa(s, s′)GQV (s′)−
∑
s′∈S

Pa′(s, s′)GQV ′(s′)

]∣∣∣∣∣
∣∣∣∣∣

= γ

∣∣∣∣∣
∣∣∣∣∣
[∑
s′∈S

Pa(s, s′)(GQV (s′)−GQV ′(s′))

]∣∣∣∣∣
∣∣∣∣∣

≤ γmax
s

∑
s′∈S

Pa(s, s′)|GQV (s′)−GQV ′(s′)|

≤ γ
∑
s′∈S

Pa(s, s′)||GQV −GQV ′||

= γ||GQV −GQV ′||

since Pa(s, s′) are non-negative and sum to one

Proof of Convergence:

||GQVk+1 −GQV ∗||∞
=
∣∣∣∣∣∣B̂GQVk −GQV ∗

∣∣∣∣∣∣
∞

≤ γ ||GQVk = GQV ∗||∞ ≤ ...

≤ γk+1 ||GQV0 −GQV ∗||∞ −→ 0
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ABSTRACT
The delivery of programming courses online offers great
promise to provide quality programming education in an ac-
cessible manner. However, it also introduces new challenges,
including how to maintain course quality as the ratio of stu-
dents to teaching staff increases. In particular, the provi-
sion of effective feedback, detailed course evaluations and
the promotion of equity can all become more challenging as
the size of a course increases. This work explores, integrates
and develops potential data mining and artificial intelligence
techniques that could be utilised to address these issues in
the context of programming education.

Keywords
programming education, automated feedback, course evalu-
ation, equity, computer science education, student behaviour

1. INTRODUCTION
In recent decades, online programming courses have become
increasingly numerous, with a diverse range of languages
being taught on a variety of platforms. Due to their online
nature, these courses are highly accessible and available to
a large number of students. In addition, they do not require
teachers and students to be in close proximity, making them
more robust to disruptions from global events, such as the
COVID19 pandemic [1]. Considering these benefits, meth-
ods for increasing the effectiveness of these courses are of
great significance, with the potential to benefit many thou-
sands of students.

One important challenge in educational settings is ensur-
ing there is effective information flow between teachers and
students. In particular, there should firstly be a way for
instruction and feedback to flow from teachers to students
so that students can learn. In addition, there should also
be a way for information about student understanding and
progress to flow from students to teachers so that teachers
can adapt and improve the instruction and feedback (re-

ferred to as “closing the loop” [3]). This challenge becomes
increasingly significant in the context of online education,
where teachers and students may not be in direct contact
and there may be a large number of students per teacher.

Some approaches to improving information flow in online
education have focused on opening communication channels
between teachers and students. For example, discussion
boards [16], one-on-one chats with tutors [7] and student
surveys [17] all allow teachers to provide instruction to or
receive feedback from students. One issue with these ap-
proaches, however, is that they can suffer from scalability
issues. For example, as the ratio of students to teachers
increases, it becomes more difficult for teachers to monitor
every discussion board question, to engage in every chat or
to carefully read all open-ended survey responses. In addi-
tion, approaches to dealing with this, such as making surveys
quantitative, can limit the detail of the feedback.

Since direct communication channels for closing the loop
can suffer from scalability issues, another approach is to in-
troduce automated systems as interfaces between teachers
and students. In particular, teachers can configure an au-
tomated system for providing instruction and feedback to
students, thereby allowing information to flow from teach-
ers to students. In addition, automated systems can be used
to analyse student behaviour and report back information
about student progress to teachers, which they can use to
re-configure the system, forming a loop as shown in Figure
1. This model can then be extended to consider additional
loops, such as between students and the feedback system.
Such systems are a highly promising approach to providing
scalable education to students.

This work focuses on addressing a few key challenges associ-
ated with this approach that are both particularly important
in the context of programming education and also less de-
veloped in the field at large. In particular, it first considers
automated feedback techniques, and how these can be in-
tegrated together to gain a coherent picture of the current
state of the field. In addition, it develops new EDM tech-
niques for analysing student behaviour in order to evaluate a
course generally, and also in the context of equity. As such,
this work acts as a step towards improving the scalability
and effectiveness of online programming education.

2. CONTRIBUTIONS
2.1 HINTS: A Framework for Automated Hints

Jessica Mcbroom, Kalina Yacef and Irena Koprinska "Scalability
in Online Computer Programming Education: Automated
Techniques for Feedback, Evaluation and Equity" In:
Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 802 - 805
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Figure 1: An example of scalable information flow
between teachers and students. First, the teacher
configures a system to provide automated feedback
to students. Then, EDM techniques are used to
analyse the behaviour of students and inform the
teacher of their progress, thereby “closing the loop”.
The teacher can then make improvements to the sys-
tem based on this information. The section labels
indicate how the work described in the next section
relates to this model.

When undertaking a programming course, students are often
presented with various programming exercises to complete in
order to gain practical experience. Since students commonly
find these tasks challenging, an important component of an
automated feedback system is the ability to provide hints
to students experiencing difficulty on programming tasks.
Such hints could include suggestions about where the stu-
dent went wrong, how to proceed or concepts to revise.

A wide range of interesting techniques have been devel-
oped to provide automated hints to students, including hints
that use data from peers, model solutions and test cases
and utilise a diverse range of methods to produce hints, in-
cluding neural networks [2], Markov Decision Processes [15],
program synthesis techniques [6] and a variety of other ap-
proaches [4, 5, 13]. In addition, systems employing auto-
mated hint techniques differ with respect to the program-
ming language taught, evaluation method, student cohort
and learning context. While this diversity offers great promise
for producing high quality hints and represents the great in-
terest in the area, it also increases the difficulty of under-
standing the types of techniques that are available and how
they fit together.

The first contribution of this work, described in detail in
[9], is a framework and survey to draw these techniques to-
gether into a coherent picture. In particular, the contribu-
tion is the Hint Iteration by Narrow-down and Transforma-
tion Steps (HINTS) framework. This framework focuses on
understanding hint techniques by decomposing the process
they use to produce hints into a series of smaller steps, which
can then be fit into two categories: narrow-down and trans-
formation steps. For example, in [14] the first step is to find
the closest solution to a student’s program, and the second
step is to then find edits from the student’s program to that
solution. Once hint techniques are considered as a series of
smaller steps, it becomes much easier to relate techniques

based on their steps to see how they fit together and the
potential avenues for further developing them.

A summary of the five most important insights gained by
surveying automated hint techniques in this manner are as
follows:

1. Even if hint techniques appear very different overall,
they can be related together by their smaller steps.
This allows, for example, for them to be collected to-
gether into a single diagram to provide a coherent pic-
ture of the current state of hint techniques.

2. It is important to consider individual steps of hint
techniques when evaluating, discussing and develop-
ing hint techniques, since these can often be mixed
and matched.

3. there appears to be a theoretically motivated rela-
tionship between some hint technique steps and data-
driven evaluation techniques, which would be interest-
ing to explore further

4. The question of why hint techniques can be fit together
in this way provides insight into the nature of auto-
mated hint generation. In particular, the fact that hint
techniques can be decomposed into a series of smaller
steps that fit into only two simple categories suggests
this structure may be necessitated by the problem in
general.

5. Further work on hint technique evaluation methods is
necessary - there are so many possible combinations of
steps that the efficiency of evaluation techniques must
be improved.

Since understanding the types of hint techniques that are
available and how they fit together is an important step in
developing and evaluating automated feedback systems, this
work contributes to improving such systems, which are an
important component of scalable programming education.

2.2 A Technique for Clustering Student Pro-
grams

An important aspect of understanding student learning in a
programming course is the ability to visualise the behaviour
of students on programming exercises. In particular, under-
standing how beginner students behave during the first few
exercises is of particular importance, since these students are
more likely to make many mistakes, be least equipped to cor-
rect these mistakes and potentially be discouraged from the
area if they experience too much difficulty.

The second contribution of this work is a technique for clus-
tering beginner student programs in order to visualise trends
in student behaviour when completing programming tasks.
This technique, described in more detail in [12], involves first
applying transformations to group logically equivalent pro-
grams. The resulting groups are then further combined if
the structures of the programs in the groups are the same
up to a customisable threshold and they pass the same test
cases. In this way, programs with a similar functionality are
clustered together, and it is possible to understand all pos-
sible programs in a cluster using a single sample program
from the cluster.
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After the clustering is performed, the clusters can be organ-
ised into a network with edges showing how students transi-
tion between clusters as they work on an exercise. Sequential
pattern mining can also be performed to discover the most
frequent transitions. This can then reveal information about
where students experience difficulty (indicated by loops in
the network) and the strategies they follow to complete an
exercise. Example applications are also discussed in [12].

Planned extensions of this work include a more thorough
evaluation beyond the case study in [12], and also an explo-
ration of this technique in the context of equity, as discussed
in Section 2.4.

2.3 DETECT: A General Clustering Technique
for Temporal Trends in Student Behaviour

Many EDM techniques utilise clustering to understand stu-
dent behaviour since clustering can condense highly com-
plex information into simpler and more manageable sub-
sets. This can allow the results to be more easily interpreted
and thereby provide greater insight into student behaviour.
However, while existing techniques can be readily applied
to discover different types of student behaviour, it can of-
ten be more challenging to use them to discover particular
behavioural trends in time. This is because the objective
functions they use, which guide the cluster formation, often
do not consider temporal information.

The third contribution of this work is DETECT (Detection
of Educational Trends Elicited by Clustering Time-series
data), a customisable hierarchical clustering algorithm for
detecting trends in student behaviour over time. This algo-
rithm, described in detail in [11], produces clusters similar
in structure to a decision tree, with clusters defined by de-
cision rules (e.g. a cluster may be all examples where the
time taken was ≤ 5 mins and the student’s grade was A). To
form these clusters, DETECT uses a customisable objective
function, which governs the types of temporal trends that
are found. For example, these could include behavioural
changes between the start and end of a course, or behaviours
that make an exercise stand out from the ones before and
after it. The algorithm then works by recursively dividing
the examples into subsets in the manner that maximises the
objective function.

Some advantages of DETECT in an educational context are
as follows:

1. It is applicable to a wide range of educational datasets.
A core feature of educational courses is that they tend
to have a repeating structure. For example, they may
have a series of lectures, homework tasks, assignments,
tutorials, readings or practice exercises, which each
have a similar structure. As such, these courses can be
divided into time steps with similar features, which is
the type of data DETECT is applicable to. For exam-
ple, time steps could be homework tasks and features
could include the time taken and grade. This allows
DETECT to be applied to a wide range of educational
data set, including programming data.

2. The objective function is customisable and has few
constraints. In [11], two different objective function
examples are given: one for finding differences between

the start and end of a course, and one for finding be-
haviours that characterise a particular exercise. How-
ever, this function can be customised to find other
types of trends with minimal constraints (e.g. the
function doesn’t need to be differentiable). This al-
lows DETECT to be highly flexible.

3. The results are easy to interpret. Since the clusters
are defined by decision rules, it is easy to understand
exactly which examples belong to each cluster, thereby
improving the interpretability of the results

4. The algorithm is more robust to dependencies between
features than traditional clustering methods, since the
objective function can use temporal information to
evaluate cluster quality. In particular, DETECT places
higher weight on features that reveal interesting trends
in time beyond what has already been found. As such,
highly correlated features are penalised, making DE-
TECT more robust to dependencies between features.

Planned extensions of this work include a deeper exploration
into potential objective functions beyond the two discussed
in [11] and a more thorough evaluation of the algorithm.

2.4 Adapting Techniques to Explore Equity Is-
sues

One important issue when applying data mining techniques
to student data is that patterns from under-represented groups
can sometimes be obscured by collective trends. For exam-
ple, if clustering is used to find the general types of student
behaviour overall, this may obscure the potentially unique
behaviour of subgroups, especially if they are small. As such,
an important aspect of closing the loop between teachers and
students is ensuring that analysis techniques not only pro-
vide information about the majority of students, but also
minority groups.

The fourth contribution of this work is an exploration of
equity issues in the context of programming education, and
how the proposed techniques might be adapted to provide
information about under-represented student groups. This
work is still in progress, but so far has included:

1. an exploration of gender differences in enrolment and
exercise completion rates in a series of programming
courses, described in [10]. In particular, the courses
were run for school students during a 5 week Python
programming challenge in Australia in 2018, and in-
cluded both block-based and text-based courses of dif-
ferent difficulty levels. In general, there were approxi-
mately twice as many male enrolments as female, but
little difference in exercise completion rates between
genders. Such an analysis acts not only as an im-
portant first step in understanding the nature of stu-
dent differences in a course, but also as a baseline with
which to compare data mining techniques

2. adapting DETECT to consider gender and school grade
differences among students in the lead up to them
dropping out. [8] In particular, this involved select-
ing 10 evenly spaced out programming exercises for
each student who dropped out (i.e. the first exercise
they completed, the last exercise they completed and
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8 equally spaced out exercises in between). These ex-
ercises could then be used as time periods that were
relative to the students (i.e. time 1 was when he stu-
dent first began, time 2 was 10% of the way through
their interaction with the course, and time 10 was
the last exercise they completed before dropping out).
DETECT could then be applied to this data to see
the largest changes in student behaviour approaching
dropping out, which could then be filtered based on
gender and school grade to observe differences in the
lead up to dropout for different groups.

Planned extensions to this work include adapting the pro-
gram clustering technique from Section 2.2 to consider eq-
uity, and to extend the analyses by considering data from
consecutive years.

3. CONCLUSION
In the context of programming education, one approach to
increasing information flow between teachers and students
in a scalable manner is to introduce automated systems as
interfaces between teachers and students. This work aims to
address a few key theoretical challenges in working towards
this, with a focus on the automated techniques necessitated
by such an approach. In particular, it presents a framework
for integrating automated programming hint techniques, two
clustering techniques for analysing student behaviour and
an exploration of how such techniques can be adapted to
investigate equity issues. As such, it acts as a step towards
increasing information flow between teachers and students
in a scalable manner, with the ultimate aim of improving
programming education.

4. ADVICE SOUGHT
Any general feedback on this work, including its contribu-
tions and the problems it addresses would be most welcome,
particularly in the context of thesis writing. Additionally,
any suggestions for improving the coherence or complete-
ness of the work, or other ideas for improvement would be
of great value. For context, this work has been conducted
over 2.5 years of PhD study, with up to 1.5 years remaining.
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ABSTRACT 
Due to the increasing interest in the online learning environment, 

particularly in Massive Open Online Courses (MOOCs), 

predictions and education data mining have rapidly gained 

prominence in education studies over the past decade. The 

massive amount of student data available in MOOC platforms 

enables us to gain insight into students’ learning behaviours. 

Therefore, this paper outlines the doctoral work that explores the 

idea of ‘student roles’ and their linguistic changes to analyse the 

students’ learning behaviours in MOOCs. A multi-class classifier 

has been built to identify user roles (e.g. information seeker, 

information giver) with 82.30% F-measure.  Preliminary results 

on linguistic experiments demonstrate, distinguish linguistic 

behaviours can be observed in different user roles. The outcome 

of this research study will contribute to a learning model that can 

be used to understand students’ learning process.  

 

Keywords 

MOOCs, Discussion forums, User Role, Natural Language 

Processing, Machine Learning. 

1. INTRODUCTION 
 

Learning Analytics has been gaining high popularity in recent 

years among research scholars due to the challenges it imposes; 

two of which are increasingly complex, large-volume data and 

heterogeneous data. Integrating several sources of data that are 

generated during learning activities is of major need for the 

education sector to provide timely enhanced services to both 

students and instructors. Integrating and analysing student data 

can contribute immensely towards reducing dropout rates, timely 

instructor interventions, and many other [4]. 

In the 21st century, students are more exposed to Massive Open 

Online Courses (MOOCs) and online learning environments as 

they believe it is more beneficial than the traditional learning 

environment such as flexible study hours, availability for 

everyone [7]. As many of the MOOCs are freely available for 

students, it draws the interest of thousands of learners. However, 

accessing the success rate of a student learning in online platforms 

has become difficult as students enrol for varying purposes. 

Knowing that students may enrol in courses for other purposes, 

we need to explore other perspectives of learning success beyond 

completion. 

MOOC contains many types of resources to support students in 

their learning activities. These elements can be categorised as 

videos, lecture series, reading materials, quizzes, assignments, 

discussion forums etc. According to Anderson [1], discourse 

enables the learner to come up with their own reasoning and 

logical thinking by communicating with others. Thus, 

investigating discussion forums will help researchers to 

understand the actual situation of the students in the learning 

lifecycle. 

The overarching aim of this doctoral work is to understand 

students’ learning with time within MOOCs. To this end, the 

research mainly focuses on examining user role transformation 

and linguistic change that occurs in discussion forums with time. 

We believe analysing these roles and associated linguistic changes 

will eventually result in a deeper understanding of the student’s 

learning lifecycle. Further, this research will also investigate the 

influencing factors (e.g. course structure, learners’ demographic) 

that influence these observable features (i.e. student role, 

linguistic expression) and their correlations.  

To achieve the aforementioned aim, our investigations are driven 

by two main research questions (RQ):  

RQ 1: Can student role and linguistic expressions be used to 

understand student learning? (1. How to build a predictive model 

that predicts students’ roles in an online learning environment? 2. 

How to track the linguistic change of each student roles in the 

online learning environment?).  

RQ 2: To what extent students’ learning is affected by external 

factors? (1. What are the external factors that affect these 

transformations (user role and linguistic change)? 2. What are the 

correlations between external factors and these transformations?).  

The contribution of this doctoral work includes a predictive model 

that leverages linguistic-only features to predict student roles in 

discussion forums. Further, this doctoral work develops a 

linguistic framework to understand students’ learning. This 

demonstrates distinguish linguistic behaviours of different student 

clusters in discussion forums. Moreover, identifying the external 

factors such as course structure, learners’ demographic that affect 

students’ learning and their correlation.  

2. RELATED WORK 
 

2.1 Post classification and role identification 

in discussion forums 
 

User role classification is grounded by post-classification 

methodologies that prevail in the existing literature. In other 

words, post-classification is the foremost step that needs to be 

carried out in order to identify the user roles in discussion forums. 

With the examinations on speech acts by Searle [9], there are 
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several post-classification methodologies have been introduced to 

the research community. 

While prior studies classify forum posts into different categories 

such as question, answer, solutions, Hecking et al. [6] have 

carried out post-classification by generalising the categories that 

prevail in the existing studies [2]. The study presents three 

different classes namely: information seeking, information giving 

and other. Hecking et al. [6] achieved 70% accuracy using 

content-related features (e.g. phrases – “need help or helps you”) 

and contextual features (e.g. position in the thread, number of 

votes) for classification purposes. However, relying on contextual 

features for forecasting is not feasible in a real-time system as 

these contextual features changes with time. And predictions can 

only be made at the end of the course as they occur during the 

course. Therefore, our study aims to build a predictive model for 

discussion forum classification using linguistic-only features 

while eliminating contextual and structural features. 

2.2 Linguistic change in online communities 
 

For decades, researchers in the linguistic discipline have explored 

the language change in many different spheres starting from 

historical linguistics to sociolinguistic. Research scholars believe 

exploring temporal changes in user’s language will provide useful 

insights to research communities. Linguistic research has taken 

various paths with time to exhibit correlations between the 

linguistic and other aspects such as historical change, community 

norms, user lifespan etc.  

The work by Nguyen et al. [8]  identifies the relationship between 

community membership and language use. According to their 

findings, forum specific jargons and informal linguistic style can 

be observed in long-term participants’ discourse.  Dowell et al. 

[5] have conducted a study on MOOC data to identify the 

conversion in learner’s language and discourse characteristic with 

time. However, the research did not investigate the linguistic 

changes associated with each user role. It is said that learner’s 

language changes with time, especially discourse in discussions 

forums will be topic-oriented and reflective of deep learning with 

the consequent offerings of a course [5]. Nevertheless, 

investigating linguistic change for a student role has not been 

addressed. Even though preliminary work on linguistic change has 

been conducted in other online communities, there is a lack of 

work conducted in MOOCs. 

3. METHODOLOGY 
 

This doctoral work will be conducted in two main phases namely: 

1. Pilot study - Identifying potential features from discussion 

forums.   

2. Building machine learning model - Implementing a model to 

understand student learning. The phase two will be further divided 

into three sub tasks to address aforementioned research questions 

as follows: 

Task 1: Developing predictive model to identify user roles (IG/IS 

and O) in discussion forums.  

Task 2: Developing a machine learning model to track linguistic 

change. 

Task 3: Identifying external factors and their correlations with 

user roles and linguistic expressions. 

 

4. EXPERIMENTS AND RESULTS  
 

The study collected 9,497 user posts from 923 users from the 

AdelaideX1 ‘Introduction to Project Management’ and ‘Risk 

Management for Projects’ courses offered in 2016 and 2017 

respectively. The current study was conducted using 6000 posts 

from ‘Introduction to Project Management’. Two independent 

human evaluators carried out a manual annotation with a high 

inter-rater agreement (Cohen's kappa = 0.925) and annotated the 

user posts as information seeker (IS), information giver (IG) and 

other (O). 

4.1 How to build a predictive model that 

predicts students’ roles in an online learning 

environment? (RQ1) 
 

A multi-class classifier was built to predict user roles (IG, IS and 

O) for a given forum post using discourse features and linguistic 

features. The features were extracted using Pennebaker’s 

Linguistic Inquiry and Word Count (LIWC) tool2 which generates 

different linguistic measures for an input text. The study selected 

sixteen optimal features using Recursive Feature Elimination with 

Cross-Validation feature selection technique.  

We implemented following multiclass classifiers with different 

sets of algorithms using Weka: Naïve Bayes, Random Forest, 

Simple Logistic Regression, Logistic Regression and Sequential 

Minimal Optimisation (SMO). All these classifiers were tested 

using 10 Fold Cross-Validation to assess the accuracy. Among 

these, the Random Forest classification model performed best 

with 82.30 of F measure.  

Further, we also fine-tuned the parameters for Random Forest 

classifier using the scikit-learn library (RandomizedSearchCV and 

GridSearchCV). The results show that Random Forest classifier 

performs at its best in the following parameter setting: 

n_estimators':400, ‘min_samples_split':10, ‘min_samples_leaf': 4 

and max_depth': 70. 

Table 1: Results of classifier performance 

Classifiers Accuracy Precision Recall F1 
Cohen’s 

Kappa 

Naïve Bayes 71.28 74.40 71.30 71.00 0.5117 

Random Forest 82.17 82.30 82.20 82.20 0.6955 

Simple Logistic 79.35 79.60 79.40   79.40 0.6473 

Logistic 79.43 79.70 79.40 79.50 0.6498 

SMO 74.80 76.50 74.80 75.30 0.5770 

 

The work by Hecking et al. [6] is the only existing work in our 

workspace that classify the discussion forums posts as information 

giving, information seeking and other. They have achieved an 

overall of 71.5 F-measure for IS and IG class while obtained an 

average of 70 and 66 for precision and recall respectively across 

all three classes. With 82.30% of F-measure, we have 

demonstrated that analysing the language of post content itself is 

sufficient to predict user roles. Therefore, it is evident that 

linguistic features have a high impact on user role prediction in 

discussion forums. 

                                                                 

1 https://www.edx.org/school/adelaidex  

2 https://liwc.wpengine.com/  
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4.2 How to track the linguistic change of each 

student roles in the online learning 

environment? 
 

An important component of this research study is to propose a 

linguistic framework that can exhibit the linguistic characteristic 

of different student clusters that will be identified by this study. 

Afterwards tracking their changes associated with each student 

role.  To achieve this, we carried out linguistic experiments to 

identify distinguishing characteristics between these student roles.  

We started with a simple word count and performed the one-way 

analysis of variance (ANOVA) for different student roles. The 

analysis shows that the mean value of information giver is higher 

than information seeker, and there is a significant difference 

between the mean values (p<0.005).  The results indicate that 

information giver tend to use more words when reflecting their 

thoughts than the information seeker in discussion forums.  

Using a similar approach, we computed the frequency of n-grams 

in given user posts. We created a vocabulary list using n-grams 

from lecture transcripts. Then, the study computed the lexical 

frequency profile (LFP) for each user role. We created a Phrase 

Matcher Object and applied the matcher object on each user post 

to extract the keywords. For a given user, the number of keywords 

used in information giving post increases – reach an optimal 

number and decreases with time, whereas for information seeking 

post it increases/decreases with time — also, a minimum level of 

changes observed in other user post. Moreover, information giver 

uses more keywords from the lecture transcript than information 

seeker and other. Further, there is a considerable amount of drop-

in ‘other’ user role. Figure 1 shows the Lexical Frequency Profile 

for a sample of five users with time. 

 

Figure 1: Lexical frequency profile across user role 

Information embeddedness is one of the key elements that 

contribute toward student learning. This study attempts to find the 

level of information embeddedness using clause extraction. 

Clause extraction has been used to determine the relationship 

between the clauses per sentence and language development. We 

develop a novel approach in which clauses have been extracted 

from the parse tree using a rule-based approach. A pipeline is 

being built with Part-Of-Speech (POS) tagging using Stanford 

CoreNLP3 to get the basic interpretation of a student post. Tree 

Annotation is used to extract a parse tree for a given sentence. 

Initially, clause-level tags (e.g. SBAR) and word-level 

coordinating conjunction (e.g. CC) have been extracted from the 

parse tree. Then, we implemented a rule-based approach to extract 

the number of clauses.  

According to Crossley et al. [3], discourse complexity can be 

measured by any given reading level measures. Therefore, we 

used Flesch-Kincaid reading level measure to explore discourse 

complexity with time for each user. Figure 2 demonstrates the 

discourse complexity for five students with time. The results 

indicate that if a particular user role can be seen in consecutive 

posts the level of complexity increases/decreases with minimum 

change and when there is a role change (e.g. IS  IG or IG  IS 

or O  IG) there is a dramatic change in discourse complexity. 

 

Figure 2: Discourse complexity across user roles with time 

An initial exploratory analysis was performed on topic modelling 

using state of the art topic modelling technique known as Latent 

Dirichlet Allocation (LDA). We try to identify the topics that have 

been discussed in each user post and lecture transcripts. Figure 3 

shows the percentage of each topic discussed by information 

givers and information seekers. According to the analysis, 

information givers are more involved in discussing the latter part 

of the course topics than information seekers while information 

seekers show interest towards the beginning of the lecture content. 

In future, further analysis will be performed to discover the 

reasons behind this observed trend.  

Moreover, we calculated the affective state of each user posts 

using LIWC tool. Affect features measures the positive and 

negative sentiment and more specific emotion such as anger, 

anxiety and sadness. The results of one-way analysis of variance 

(ANOVA) show that information seekers express more lexical 

                                                                 

3 https://stanfordnlp.github.io/CoreNLP/ 
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semantics associated with affective state than information givers. 

Likewise, we would like to perform several other linguistic 

experiments to develop a linguistic framework that will 

demonstrate the linguistic characteristics of different student 

clusters in discussion forums.  
 

 
 

Figure 3: Topic modelling across user role 

With the insight gained from existing experiments on user role 

and linguistic changes, our next step will be to predict the student 

grading using linguistic-only features. We have done a 

preliminary analysis on how to divide the student grading into 

different categories (e.g. pass, fail) and predicted student grades. 

However, further analysis needs to be performed on feature 

selection and deploying several other machine learning algorithms 

to fine-tune the obtained results.  

5.  CONCLUSION AND FUTURE WORK 
 

The aim of our doctoral work is to understand student learning in 

MOOCs by investigating user roles and their associated linguistic 

change. As an initial stage, we have presented a multi-class user 

role classification in MOOC discussion forums using linguistic-

only features with the intention of eliminating the drawbacks (e.g. 

contextual features) that exist in previous studies. Our model 

performed well compared to the baseline model, with 82.30 % of 

F-measure.  

As future work, we try to integrate this classification with content 

and non-content user posts. Thus, it results in a novel 

classification on user role classification in MOOC discussion 

forum. On the other hand, our linguistic study gives us a clear 

differentiation of linguistics aspects associated with each role. 

Further, we hope to do a meticulous analysis to explore these 

patterns in future with the intention of discovering the possible 

reasoning behind the observed trends.  Further analysis will be 

conducted to identify the discourse measures that can contribute 

to understanding student learning. The study would also like to 

explore diverse methods/techniques that can discover correlations 

between these linguistic measures and students’ learning in 

MOOCs. Understanding how these linguistic measures can 

contribute directly/indirectly to students’ learning will help us to 

propose novel methods to understand students’ learning in an 

online learning environment. In addition, experiments will be 

performed to identify the correlations between the external factors 

(e.g. course structure, assignment deadlines) and user role 

transformations.  

As a proof of concept, our technique demonstrated the potential of 

identifying the linguistic behaviours for each user role. This novel 

approach holds a great promise for user role classification and the 

associated linguistic behaviour in MOOC discussion forums. 

Additionally, we believe that tracking these role changes and 

associated linguistic changes will help to understand the student 

learning in MOOC discussion forums. Thus, this doctoral work, 

will eventually try to find an answer to ‘are students’ really 

learning from MOOCs?’ 

6. ADVICE SOUGHT 
 

For this doctoral consortium, the study would like advice 

regarding the following concerns mainly focusing on linguistic 

study:  

1. Discuss language and discourse measures that can 

contribute to understanding student learning. 

2. Discussion on possible reasoning behind the observed 

trends (e.g. the readability level of the information giver is 

low (i.e. discourse complexity is high) when compared to 

the information seeker and other user roles, the level of 

information embeddedness (number of clauses) is high 

within the information giver compared to the remaining 

classes). 

3. Discussions on understanding the correlations between 

external factors (e.g. course structure, learners’ 

demographic) and learner’s role (e.g., information seeker, 

information giver) transformations. 

4. Discussions on how existing learning frameworks (e.g. 

ICAP framework) associate with learner roles. 
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ABSTRACT
Modern e-Learning systems offer a wide variety of function-
alities, from basic ones like accessing courses or online com-
munication to more advanced ones like providing person-
alized feedback or assets. The learning environment can
benefit from recommendations by providing students with
tailored learning pathways, or assessment materials, thus en-
suring the personalization and adaptation of the e-Learning
platform to the student’s individual needs. It can also al-
low for tracking and evaluation of the learner’s progress,
showing potential for improving the user experience for both
students and professors. This research aims to investigate
how a recommendation system can be used for building per-
sonalized tests in the context of education. The system’s
main goal is to improve the efficiency of the overall testing
activity of learners by recommending questions relative to
their knowledge level. It extracts input data based on past
test results and uses learning analytics to provide a personal
ranking of questions for each student based on their personal
and their peers’ experience with the studied concepts in a
course. Contributions are foreseen on four different levels.
First is the design and implementation of the recommenda-
tion algorithm. Second, raw data needs to be pre-processed
by defining and extracting the features that can be used
as input for the recommendation algorithm. Third, a post-
processing step is needed for applying data analytics, rules
and constraints to the resulted model in order to obtain
proper recommendations. Last but not least, the presenta-
tion layer must be updated by providing a user interface for
students and professors.

Keywords
e-learning; recommender system; user customization

1. INTRODUCTION
Most recommenders aim at providing recommendations to
users based on their personal likes and dislikes. These sys-
tems use a specific type of information filtering technique

that attempt to recommend information items to the user.
In an e-learning environment, both personal and collective
information should be taken into account, as well as the
links/relationships between the concepts covered in a chap-
ter, as these could provide an insight into the level of knowl-
edge of the student and uncover the missing gaps in the
learning process a student is going through for each course.

Using a recommender system, in the context of e-assessments
(i.e. online tests), enables the personalization and adapta-
tion of the e-learning platform to the student’s individual
needs. The information it provides also allows for the track-
ing and evaluation of a student’s progress by both learner
and professor. By further analysing it, the information can
provide a better understanding and structuring of the ma-
terial which follows in subsequent chapters, thus providing
a more logical chaining of concepts covered for a specific
course.

Question recommendations in a test can provide a useful
tool in the learning process of students for both the student
(through tailored learning paths) and professor (by employ-
ing the means of defining and refining learning materials to
a more logical and easy-to-understand chain of topics) with
a direct impact in the application domain of e-Learning.

2. RELATED RESEARCH
Basic techniques for recommender systems (collaborative,
content-based, knowledge-based, and demographic techniques)
have known shortcomings such as the well known cold-start
problem for collaborative and content-based systems (what
to do with new users with few ratings) and the knowledge
engineering bottleneck [7] in knowledge-based approaches,
as Wikipedia states in [8].

According to an MIT tutorial for SVD (Singular Value De-
composition) [3], calculating the SVD for a matrix M (i.e.
finding U and V such that M = U×Σ×V ) reduces to finding
the eigenvalues and eigenvectors of MMT and MTM . The
eigenvectors of MMT make up the columns of U , while the
eigenvectors of MTM make up the columns of V . Also, the
singular values in Σ are the square roots of eigenvalues from
MMT or MTM . These singular values represent the diag-
onal entries of the Σ matrix and are arranged in descending
order. They are always real numbers. If matrix M is a real
matrix, then U and V will also be real.

Recommender systems for e-Learning platforms are based on
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many approaches like web mining and information retrieval
[4], recommender systems based on the context [13] or even
using intelligent agents [14]. One interesting approach of us-
ing collaborative filtering in e-Learning systems [2] was to
assign greater weights for users with higher knowledge than
users with lower knowledge and the authors propose some
new equations in the nucleus of the memory-based collabo-
rative filtering. Another interesting paper, presenting clear
results regarding recommender systems in smart e-Learning
environments shows their approach [9] along with their en-
couraging results and their aim to extend the system for
more faculties.

A concept map or conceptual diagram is a diagram that de-
picts suggested relationships between concepts, which are
defined as “perceived regularities or patterns in events or
objects, or records of events or objects, designated by a
label” and are depicted as shapes in the diagram [10]. It
is a graphical tool that instructional designers, engineers,
technical writers, and others use to organize and structure
knowledge [6].

3. RESEARCH QUESTIONS
Research questions that need to be addressed are primarily
related to the area of recommender systems and selecting
the proper recommendations in the context of e-Learning.
The main focus is on the actors, which are both learners
and professors using the system. The following questions
arise:

Q1. How can a recommender system be efficiently used in
the context of e-Learning?
A recommender system can give the student personalized
tests, find learning gaps and suggest areas of improvement
or concept revisions.

What data can a recommender system use as input?
Data from previous usage of the system by the student and
his/her peers is required for a good output of the recom-
mender system.

Q2. Are all types of recommender systems “recommended”
in e-Learning?
There are majorly six types of recommender systems which
work primarily in the Media and Entertainment industry:
Collaborative, Content-based, Demographic based, Utility
based, Knowledge based and Hybrid recommender system.
Which type is better suited for the e-Learning system or
how can these types be merged to obtain the most of the
recommender for specific target (students of a specific group
age, area of study etc.)? This is one of the questions that
the research aims to answer.

Q3. How can the recommender system help the student in
his/her learning process?
For a student, the recommender system can potentially help
the student see his/her current level of knowledge, provide
ways of revision and improvement, provide a general indi-
cation of the final results before a potential test and assess
accumulated knowledge over time.

Q4. How can the recommender system help the professor in
the learning process of his/her students?

For a professor, the recommender system can potentially
show a student’s progress, point out the difficulties each
student has at certain areas of a course and moments when
he/she might need a tutor’s help, provide hints on how a
student is expected to perform at a test/exam, provide in-
sight on how well the students acquire new concepts based
on past ones, identify out-of-order topics or missing infor-
mation from the course materials.

4. PROPOSED CONTRIBUTIONS
4.1 Research Context
Classical on-line learning environments aim to create a sup-
port for learners to get their learning resources and take
exams or to be evaluated by the professors; the next learn-
ing environments should be more personalized, analyzing
each users’ needs and adapting the interface to their con-
cerns and needs. If we consider a usual learning platform,
we can say that the learning progress should be considered
to be good by the professor for every student, but not all the
students have the same needs, nor do they have the same
performances at school. A tool that employs a recommender
system can create intelligent interfaces capable to adapt to
the users’ specific needs, to aggregate learning materials in
order to provide the content necessary for the user at that
moment and to create an order ranking over the learning
materials and among students.

4.2 Research Activities
The main goal of this research proposal is to enhance the
effectiveness of the e-Learning environments. In order to
achieve this goal, three prerequisites need to be accomplished.

4.2.1 Prerequisites
P1. Analysis and formalization of recommender system’s
usage in e-Learning An in-depth study should be conducted
in order to assess the way recommender systems are cur-
rently used in the e Learning environment. Furthermore,
an investigation on new ways to integrate them, along with
other information retrieval algorithms for the definition and
refinement of the input and output data of the recommended
items, into existing e-Learning tools should be made.

P2. Adaptation and definition of data analysis pipelines for
input data provided by e-Learning systems A data analysis
must be performed on data available for processing in the
e-Learning environment in order to filter out unnecessary
data, fill in missing information and/or transform it into
input data which can be then used by the recommender sys-
tem. The format of the input data for the recommender
system’s algorithm must be defined and updated as the in-
ternal processes of the algorithm itself are also updated.

P3. Application and validation of recommender system in
student’s and professor’s activity on e-Learning system The
aim of the recommender system is to prove itself useful in
the context of an e-Learning environment. For this, the rec-
ommender system must be integrated in tools that have real
application in e-Learning. Upon using and refining its pro-
cess, a validation must be performed in order to ensure that
it provides an increase in productivity of the learning process
of the students and the objective evaluation of the profes-
sors. For this, certain evaluation methodologies or metrics
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have to be devised for a reliable evaluation of the improve-
ments and benefits the new system offers when using the
recommender system.

4.2.2 Methodology
Figure 1 presents a generic workflow with 3 main layers and
4 general steps for designing, implementing and validating a
recommender system in the context of e-Learning. The divi-
sion of the system into four steps is inspired by [1] in which
the authors propose a framework for an adaptive learning
of MOOCs. We identify 3 actors that influence the system:
learners (i.e.: students), professors and data analysts.

Data Representation Layer. From this layer, data needs to
be gathered. Most systems use a database or log files to keep
raw data about users and their activity. The data is taken
from this layer and transformed as needed for the recom-
mendation process. This is a layer responsible for providing
data input for the Learning Analytics layer. The steps that
manipulate data from this layer are the Data gathering and
Pre-processing steps. The actors involved in this layer and
the associated steps are the data analysts.

Learning Analytics Layer. This layer is responsible for data
processing and data analytics, transforming data, defining
rules and constraints, preparing data for the algorithms used
and applying the final recommendation engine. It communi-
cates with the Data Representation layer for data input and
Presentation layer for data output. The specific steps for
this layer are the Pre-processing step (for transforming data
to the needed format and building data models) and Rec-
ommendation step (for employing needed rules, constraints,
custom logic and algorithms needed for the recommendation
engine). The actors involved in this layer are both data an-
alysts (for building the data model, defining pre-processing
logic, rules and constraints, defining and refining the recom-
mendation engine based on experimental results) and users
interested in the system (learners and professors) as they are
the ones that enforce the domain-level constraints.

Presentation Layer. This layer is responsible with defin-
ing the graphical user interface of the system and providing
services to the users, such as learner self-testing and online
communication (a key feature in modern e-Learning plat-
forms). It communicates with the Learning Analytics layer
for data input. The Presentation step is specific to this layer
and handles the user interface aspects of the end-user appli-
cation. The actors involved in this layer are learners and
professors which actively use the features of the system.

5. CURRENT STATUS
As research status, three papers have been written so far and
an incremental approach is being used to actively improve
the recommendation engine based on past results.

In paper [5], which I have co-authored, a custom recom-
mender system based on SVD has been implemented in the
context of extending an existing e-learning platform used
for distance-education students enrolled in our local univer-
sity. The recommender has been subsequently tested on
students from our university in collaboration with profes-
sors for defining the pool of questions and concept maps
in the system, with small adjustments being applied after

each year of study. The initial implementation of the rec-
ommender, presented in [5], was relying on a collaborative
SVD algorithm applied on aggregated test results from all
students enrolled in a course. The algorithm selected the
proper questions from the available pool of questions, with
the only constraints on question repetition and unknown
question exploration in case of no questions in the initial
aggregation matrix. This approach suffered from the cold-
start problem, since it first resulted in generating random
recommendation vectors and gradually getting to the de-
sired recommendation mechanism.

Data visualization was implemented in the second paper
[11] by building a concept map for the course and assign-
ing concepts to each question in the system. This way, a
concept map status could be generated for each student
after each test, in which the concept would be colored in
red/orange/green to highlight the progress of the student.
Greener nodes would indicate that a student is starting to
answer most questions in the concept correctly, while red-
der nodes would indicate that the student answered most
questions in the concept incorrectly. Orange nodes were the
middle point of the representation, signaling a half-correct
distribution of the answers for that concept.

After the first experiment, a custom validation mechanism
was implemented, as part of the third paper [12], in which
a special function called Correctly Recommended Concepts
(CRC) function was implemented. The CRC function was
defined as a set of CRC values, plottable for each individual
student. A concepts for revision functionality was imple-
mented, which enabled the professor to mark which concepts
should be recommended next based on a previous test result
of a student. The CRC value was then computed for each
test of a student (except the first, for which no revision con-
cept would be defined) as the accuracy of matched concepts
by the recommender system relative to the revision concepts,
marked by the professor, on a scale of 0 to 1. More specif-
ically, it was computed by dividing the number of matched
concepts to the total number of concepts in the test. These
values were then plotted for the student on a timeline hav-
ing the test number on the X axis and CRC value on the
Y axis. By observing the slope between tests, the relative
performance could be computed by distinguishing 2 main
categories of situations: negative slope for learners with a
lower performance for the student in the next test and zero
or positive slope for improvements in the performance of the
student in the next test.

A second experiment has been conducted, with results to be
analysed comparatively for students in a subsequent year of
study as part of an incremental approach of improving the
system based on results from previous work. The recommen-
dation engine has been refined to consider the order defined
in the concept map when choosing questions from the con-
cepts. Also, the cold-start problem has been eliminated by
using the old model alongside the new one, as previous test
results from the former year have not been deleted from the
database and will be used when aggregating input matrix
data for the recommender system.
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Figure 1: Generic layers and steps for defining a recommendation engine in the context of e-Learning

6. CONCLUSIONS
The main goal of the recommender system is to provide a
personalized set of questions depending on both their cur-
rent status and the status of their peers that have previously
taken tests. Visual analytics of the experimental results
in terms of knowledge coverage of the concept map show
promising initial results.

Future work may regard not only the correctness by which
the recommender manages to assign questions from right
concepts, but also checking if recommended questions im-
prove the student’s learning rate or knowledge level. More
work needs to be performed in terms of defining and in-
tegrating appropriate quantitative and qualitative metrics
for measuring accumulated knowledge with and without the
usage of the recommender system. Another future plan
is providing the recommender as a software package such
that integration into other e-Learning platforms can also be
achieved.
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ABSTRACT
Personalized learning environments rely on repositories of
digital learning materials, and on meta-data that provides
semantic information about the digital content. The seman-
tic information is typically generated by domain experts, but
this process is very time consuming, and fails to address the
dynamic nature of the content and the contexts in which it
is used. In addition, experts may fail to capture semantic
properties that are not within their area of expertise. Over-
all, expert-based semantic generation processes do not scale,
and produce limited information. Thus, the goal of my re-
search is to study means to scale and improve the process of
collecting and updating semantic information, using two dif-
ferent approaches: crowdsourcing from teachers and learners
and automatic tagging that is based on machine-learning al-
gorithms. As a proof-of-concept, two pilot experiments were
conducted: the first was with two groups of physics teachers
who are using an Open Educational Repository. The main
goal was assessing the quality of the semantic information
that the teacher-sourcing produces, and factors affecting it.
The second experiment aimed at automatic tagging, and
focused on comparing several ML approaches to automati-
cally tag learning resources in a K-12 Math online learning
environment. In this paper I will present the preliminary
findings from these experiments, discuss future directions
for my research, and seek advice concerning several issues
involved with my research.

Keywords
Personalized Learning, Semantic Information, crowdsourc-
ing

1. INTRODUCTION
Personalized learning environments rely on repositories of
digital learning materials (e.g., interactive questions, online
labs, videos), and on meta-data that provides rich semantic

information about the digital content. The term ‘semantic
information’ refers to information describing the content and
different attributes of the online learning resources, such as
the topic, the level of difficulty, its intended use - whether as
a test, class practice or homework, which grade it is appro-
priate for, the estimated amount of time required to com-
plete the activity, the technological aids required for it (e.g.,
a computer, projector, mobile devices), and more.

The semantic information is fundamental to the ability of AI
agents to make ‘intelligent’ decisions such as recommending
content to learners, to assist teachers in search & discovery
of learning resources, and for re-using and sharing materials
between contexts [1, 2, 3]. However, while high-quality dig-
ital content is in many cases readily available on the web,
it is the semantic information that is usually missing, in-
adequate, or partial. Thus, having scalable processes for
generating high-quality semantic information can contribute
significantly to the development of personalized learning en-
vironments.

Semantic information is typically generated by domain ex-
perts, but this process is very time consuming, and the ex-
perts may fail to capture semantic properties that are not
within their area of expertise [5]. In addition, the content
repository and the context in which it is used are dynamic,
requiring frequent revisions and updates. Overall, expert-
based semantic generation processes do not scale, and pro-
duce limited information. My research aims to address these
issues, by studying means to produce semantic information
at scale, as detailed in the next section.

2. RESEARCH DIRECTIONS
The high-level goal of my research is to study two main ap-
proaches for collecting and updating semantic information:
The first is crowdsourcing (more accurately: teacher- and
learner-sourcing, which are the terms that are used here-
after), and the second is automatic tagging using machine
learning algorithms. More specifically, this goal is further
divided into the following issues:

Semantic Information Required. The first issue that I
want to examine is what types of semantic information as-
sist teachers in search & discovery of educational resources in
open repositories. With the transfer of a growing number of

Elad Yacobson "Crowd-sourcing and Automatic Generation of
Semantic Information in Blended-Learning Environments" In:
Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 815 - 817
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teachers to blended learning, teachers often rely on learning
resources found online. These resources are commonly or-
ganized in Open Educational Repositories (OER) that offer
teachers a large pool of instructional materials. For teach-
ers, selecting appropriate and effective instructional materi-
als from an OER is a challenging and time-consuming pro-
cess. Thus, I wish to explore what semantic information is
required for supporting teachers in this process.

Sources for Obtaining Semantic Information. As afore-
mentioned, I will focus on two approaches for obtaining
semantic information about the learning resources: crowd-
sourcing from teachers and learners, and automatic tagging
that is based on ML algorithms. I will compare two as-
pects of the information obtained from these approaches:
the accuracy of the information, and coverage – how much
information can be obtained from each of these sources.

Factors That Affect the Quality of Teacher and Learner-
Sourced Information. The goal of this research direction
is to study the different factors that affect the quality of
teachers and learner-sourced semantic information. I will
address both the issue of teachers’ and learners’ ability to
accurately tag learning resources with semantic information,
and their motivation to do so. In terms of ability, I will study
issues and task definitions that support accurate tagging.
For instance, can teachers and students tag resources with-
out having full knowledge of the taxonomy from which the
tags are taken? to which resolution do teachers and learn-
ers need to go in analyzing the questions in order to provide
accurate tags? The second issue is teachers and learners mo-
tivation to contribute time and effort to tagging, as this is a
time-consuming and cognitively demanding process, with no
perceived reward. Providing incentives for crowdsourcing is
a known issue [4], and it is reasonable to assume that en-
gaging teachers and learners in crowdsourcing would require
appropriate incentive design.

Effect of Tagging Process on Teachers and Learners.
The last aspect of crowdsourcing that I wish to examine is
the effect (if there is any) of the tagging process on teachers’
professional development, and on students’ learning. With
respect to teachers, I will focus on the effect of participation
on their ability to provide personalized learning and adapt
tasks to individual needs of different students. With respect
to learners, I intend to focus on whether the reflective nature
of the tagging process contributes to student understanding,
as reflective processes has been repeatedly shown to improve
learning.

3. PRELIMINARY RESULTS
To date, two pilot experiments were conducted, each ad-
dressing a different approach for obtaining semantic infor-
mation. The first experiment was held with two groups of
Physics teachers. The teachers were requested to tag ques-
tions taken from a blended-learning environment named Pe-
TeL (described below), and their tagging was compared to
that of domain experts. In the second experiment, a su-
pervised machine-learning approach was applied to ∼ 400

activities taken from a Math learning environment named
STEP (see below), which are tagged according to different
dimensions, such as their topic (Geometry, Algebra, Verbal
Problems, Infinitesimal Calculus etc.)

3.1 First Experiment - Teacher Sourcing
The first experiment was designed as a proof-of-concept for
teachers’ ability to accurately tag learning resources with
semantic information. The participating teachers were re-
quested to tag questions taken from a learning unit on Mag-
netism according to a detailed taxonomy prepared by a group
of expert teachers and researchers.

Learning Environment - PeTeL. The experimental setup
is based on a learning environment named PeTeL, which is
both an OER, and an LMS that also includes social network
features and learning analytics tools. It is developed within
the Department of Science Teaching at Weizmann Institute
of Science, with the goal of providing STEM teachers with
a blended learning environment for personalized instruction.
PeTeL is divided into separate modules for each subject mat-
ter: Biology, Chemistry and Physics. The Physics module
is currently being used by approximately 200 teachers and
7000 high school students. All the teachers who participated
in the experiment use PeTeL in their classes.

Procedure and Results. Two groups of Physics teachers
participated in this experiment. The first group consisted of
eight teachers who were presented each with three questions
from PeTeL. Each question contains a picture or diagram of
a certain Physics situation (e.g. a particle moving through
a magnetic field, or an electric circuit), and a question re-
garding that diagram (See example in Figure 1). For each
question i, the teachers were presented with four tags. Then,
for each tag, the teachers were requested to decide whether
it applies to i. Overall, we received 95 responses. In 74 out
of 95 responses, the teachers agreed with the domain expert
as to whether the content knowledge described in the tag is
required for solving the question (78% agreement, Cohen’s
kappa: 0.56).

Figure 1: Tagging Task Example
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The second part of the experiment took place about a month
after the first one, with a different group of seven Physics
teachers, and followed a similar protocol. A total of 56 re-
sponses were collected. In 43 out of 56 responses, the teach-
ers agreed with the domain expert as to whether the content
knowledge described in the tag was required for solving the
questions (77% agreement, Cohen’s kappa: 0.54).

3.2 Second Experiment - Automatic Tagging
The second experiment was conducted in the context of
STEP, an OER for junior-high and high-school Math, which
was developed by the Department of Math Education in the
University of Haifa.

Procedure. 407 learning activities were taken from STEP.
Fifty keywords were selected as features (e.g., ‘angle’, ‘func-
tion’, ‘speed’, ‘derivative’, ‘linear’, ‘sinus’, etc.). Each activ-
ity was encoded as a one-hot vector according to the pres-
ence of these keywords, and labeled with its Math topic (Ge-
ometry, Algebra, Verbal Problems, etc.). Then, three ML
algorithms (Naive Bayes, Random Forest, and Logistic Re-
gression) were applied to the data in an attempt to evaluate
the feasibility of classifying activities into topics based on
these features.

Results. Measured with k-fold cross-validation, the accu-
racy of the classification produced by the ML algorithms
was 95% (achieved by the Naive Bayes and the Random
Forest algorithms).

3.3 Conclusions
The results of these two small-scale experiments suggest that
regarding teacher-sourcing, when the tagging task is formu-
lated in a certain way (e.g., ”yes/no” questions), teachers
can tag items relatively accurately (Cohen’s kappa: 0.56)
without being trained on the taxonomy from which the tags
are taken. Regarding automatic tagging by ML algorithms,
these preliminary results are encouraging as to the ability to
produce quality semantic information without the need for
human intervention.
On the next step, we intend to run these experiment on a
larger scale, using a technological tool to teacher-source se-
mantic information from a much larger pool of teachers, to
expand our work to learner-sourcing as well, and to apply
learning algorithms to a multitude of learning resources in
an attempt to reach much more fine-grained semantic infor-
mation.

4. PROPOSED CONTRIBUTION
I hope that my work will have both a practical contribu-
tion to the learning environments that I study, and through
this, to teaching and learning, and will contribute to EDM
research by providing a better understanding of effective
means to enrich learning environments with semantic infor-
mation.

5. DISCUSSION AND ADVICE SOUGHT
I seek advice regarding four major issues in my research:
the first is what are the most effective means to enhance
teachers’ and learners’ motivation to invest time and effort

in the tagging process? In this regard, since we saw indi-
cations that teachers’ motivation affects the quality of their
tagging, I feel that positive incentives, rather than negative
ones (e.g., requiring participation for receiving access to ma-
terials) are more likely to produce quality results.
The second issue is how to optimize the relationship between
coverage (i.e. how many tags are requested from each teacher
or learner) and motivation. On one hand, presenting the
teacher/learner with numerous requests for tagging could
easily deter him/her and would result in low rates of par-
ticipation. On the other hand, minimizing the interaction
with the user would result in low coverage.
The third aspect is how to evaluate the quality of the seman-
tic information received from teachers and learners? After
receiving tags produced by either teachers or learners, there
is the question of how reliable those tags are. Possible so-
lutions are random evaluation by an expert, or wisdom-of-
the-crowd based ranking solutions.
And last, regarding the process of automatic tagging – a
main challenge is abstracting different types of information
representation (text, figures, symbols) into a common layer
of semantic meaning, probably relying on NLP, object recog-
nition, etc. I would appreciate receiving information regard-
ing relevant research that I can build upon.
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ABSTRACT 
We describe a half-day online workshop for researchers interested 
in learning about—and contributing to—the work of the Learner 
Data Institute (LDI), an initiative funded by the U.S. National 
Science Foundation (NSF) and based at the Institute for Intelligent 
Systems, University of Memphis, in collaboration with Carnegie 
Learning, Inc., and other partners. LDI’s mission is to foster and 
support science convergence to address major challenges in 
learning with technology (online and blended) through an 
expanding, global network of expert panels, school-based 
practitioners, interdisciplinary research teams, and task-oriented 
special interest groups. Founding members of the LDI have been 
working together to plan mechanisms and processes for building 
shared understanding, and for exploring methods of extracting and 
packaging actionable knowledge from the massive datasets 
generated by current computer-supported instructional systems 
and from the stores of text, sound, graphics, video, and other data 
modalities that are rapidly accumulating on cloud-based servers 
around the world. The community at large is invited to participate 
in the workshop to hear about our work, help us refine our ideas 
through paper and talk contributions, and explore how they too 
can become involved in this important new enterprise. 

Keywords 

big data in education, educational data science, educational data 
mining, learning analytics, educational technology, science 
convergence, interdisciplinary research, trans-disciplinary 
research, multi-disciplinary research. 

1. WORKSHOP DESCRIPTION 
1.1 Interdisciplinary solutions 
Historically, the proceedings of the International Conference on 
Educational Data Mining (and related conferences, including the 
International Conference on Artificial Intelligence in Education, 
the ACM Conference on Learning at Scale, and Learning 
Analytics and Knowledge) demonstrate inherent linkages across 
traditional and emerging academic disciplines and research areas. 
Whether efforts are described as inter-disciplinary, multi-
disciplinary, or trans-disciplinary, providing solutions to 
compelling challenges faced by learners, those individuals and 
institutions that facilitate learning, and other learning stakeholders 
must draw on expertise across boundaries of disciplines as diverse 

as, but not limited to, psychology, economics, cognitive and 
learning science(s), mathematics, computer science (e.g., machine 
learning, artificial intelligence), statistics, human-computer 
interaction, public policy, education, neuroscience, social work, 
moral and political philosophy, and any of a number of sub-fields 
and research areas at the intersection of these disciplines. 

The need for such multi/inter/trans-disciplinary solutions is even 
more relevant today as the vast and diverse repositories of digital 
data available can make such solutions viable. Indeed, 
recognizing both substantial scientific challenges and the need for 
innovative scientific frameworks to solve them, the U.S. National 
Science Foundation has identified the notion of “convergence” 
research as one of ten “big ideas” for its on-going investment 
strategy [1]. Two attributes are crucial to NSF’s notion of 
convergence research [2], namely that such research is “driven by 
a specific and compelling problem” and emphasizes “deep 
integration across disciplines.” Such integration is achieved 
when:  

“…experts from different disciplines pursue common 
research challenges, [and] their knowledge, theories, 
methods, data, research communities and languages 
become increasingly intermingled or integrated. New 
frameworks, paradigms or even disciplines can form 
sustained interactions across multiple communities” 
[2]. 

The NSF-funded Learner Data Institute (LDI) focuses on such 
science convergence solutions for major challenges in learning 
with technology (online and blended). Furthermore, LDI will 
contribute to at least two of the ten new Big Ideas for Future 
Investment announced by NSF: Harnessing the Data Revolution 
for 21st Century Science and Engineering (HDR) and The Future 
of Work at the Human-Technology Frontier (FW-HTF). 

1.2 The Learner Data Institute 
LDI is an NSF-funded “data-intensive research in science and 
engineering” (DIRSE) initiative seeking to set out compelling, 
specific, big data research challenges for educational data science 
researchers and large-scale scientific and data convergence 
approaches to address them. 

The LDI will help us learn: (1) how to transform a far-flung group 
of interdisciplinary researchers, developers, and practitioners into 
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a community of practice that can fully exploit the data revolution 
through data and science convergence; (2) how adaptive 
instructional systems and data science can be used as research 
vehicles to further our understanding of how learners learn; (3) to 
explore the human-technology partnership with data and data 
science to improve learners’ and teachers’ ability to employ 
technology in a way that facilitates learning, while at the same 
time improving the affordability, effectiveness, scalability of these 
systems; and (4) more generally, how to extend the frontiers of 
data science to include: new methods of data collection and 
design; more interpretable machine learning methods (e.g., by 
combining deep learning with more interpretable inference 
frameworks like Markov Logic); scalable new algorithms (e.g., 
for joint inference in Markov Logic Networks); and methods for 
identifying causal mechanisms from unstructured, semi-
structured, and structured data.  

More specifically, LDI contributors from university-based 
research groups, industry, and government are focusing on 
cutting-edge, big data approaches to assessment, learner 
modeling, instructional design, modeling subject-area domains in 
instructionally useful ways, socio-cultural aspects of learning, 
ethical aspects of working with learner data, and the human-
technology frontier, among other areas of interest.  

Approximately 40 LDI contributors were recently surveyed as a 
part of the initiative to envision the future of convergence research 
in educational data science; they were asked to identify areas of 
challenge and societal need with respect to improving education 
and learning, compelling opportunities, and ways in which big 
data can be harnessed to address both. Portions of this workshop 
will be devoted to presenting and discussing the findings of this 
survey. In addition, the workshop convenes a diverse set of 
researchers and developers, some associated with LDI and others 
not, working with big data from contexts in which learning takes 
place, seeking to better understand state-of-the-art 
interdisciplinary research as well as compelling, specific societal 
needs and challenges and the scientific, big data frameworks that 
might be leveraged to solve them in the future. 

We expect that this convening of a diverse, highly experienced 
group of researchers will stimulate substantial growth and interest 
in the notion of science convergence, including helping to set the 
direction of the LDI and the framework that it is tasked by NSF 
with developing.  

2. WORKSHOP FORMAT 
The half-day workshop will take the form of an introductory talk 
introducing the LDI, presenting results of the LDI contributor 
survey, and situating those results within the goals of LDI and the 
broader notion of convergence research for educational data 
science. Two invited speakers will deliver keynote talks 
(including Q&A) laying out their visions for convergence research 
in educational data science, situating this idea within their 
individual research program(s), and/or discussing the results of 
the LDI survey. A selection of peer-reviewed contributed research 
papers (generally concerned with state-of-the-art big data 
methodology, applications, and research in educational data 
science, ideally with an emphasis on science convergence) and/or 
position papers (on similar topics with an eye toward where future 
research should be directed) will also be presented as a part of the 
workshop. A panel discussion will also take place, involving a 
moderator, keynote speakers, and 1-3 invited contributors. 

3. SCHEDULE 
The half-day workshop will include introductory remarks 
presenting an overview of the LDI as well as its recent 
survey/envisioning results, two invited keynote talks, and several 
presentations from selected paper submissions and/or invited 
contributors from LDI and the broader community at large. Time 
will be allotted for Q&A for each presentation as well as a panel 
discussion given sufficient time. 

4. SPEAKERS 
4.1 Overview of the LDI Mission, Activities, & 
Accomplishments: Vasile Rus, University of 
Memphis, Department of Computer Science & 
Institute for Intelligent Systems 
Vasile Rus, William Dunavant Professor of Computer Science 
and Institute for Intelligent Systems, University of Memphis, will 
provide the introductory presentation and is Lead Principal 
Investigator of the Learner Data Institute. His research, funded by 
NSF, the U.S. Department of Education Institute for Education 
Sciences, the Office of Naval Research, and other funding 
agencies, centers on topics of natural language processing and 
understanding, including semantic similarity, question answering, 
and knowledge representation, especially with applications to 
adaptive instructional systems and software defect knowledge 
management. Before joining the University of Memphis, Dr. Rus 
received a Ph.D. in Computer Science at Southern Methodist 
University and was an Assistant Professor of Computer Science at 
Indiana University. 

4.2 LDI – The Developer and Practitioner 
Perspective: Stephen E. Fancsali, Carnegie 
Learning, Inc. 
Stephen E. Fancsali is Director of Advanced Analytics at 
Carnegie Learning, Inc., and Co-PI of the Learner Data Institute. 
His work focuses on statistical and causal modeling using data 
from adaptive systems for learning like Carnegie Learning’s 
MATHia intelligent tutoring system (formerly Cognitive Tutor). 
This work includes developing practical progress monitoring 
metrics usable by teachers and learners in K-12 classrooms, 
statistical early warning systems that indicate when students are 
struggling unproductively, causal modeling of learner behavior, 
and scaling up semi-automated methods for improving cognitive 
models that underlie such adaptive learning systems to produce 
deployable instructional improvements. Before joining Carnegie 
Learning, Inc., he received a Ph.D. in Logic, Computation, & 
Methodology at Carnegie Mellon University. 

4.3 Invited Keynote Speaker: Jason Hartline, 
Northwestern University, Department of 
Computer Science 
4.3.1 Keynote Abstract 
The talk will provide an overview of a peer grading system that is 
under development at Northwestern U. In courses that use the 
system it has (a) reduced the grading load of course staff by over 
75%, (b) expanded and improved the students’ interaction with 
the course material, and (c) improved turn-around time of 
feedback on student work (students receive comments on their 
work after three days, rather than two weeks).  As a research 
platform, this system enables a dialogue between theory and 
practice for algorithms, machine learning, data science, and 
mechanism design. Of particular focus for the talk is on 
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mechanisms that incentivize peers to produce accurate reviews 
and the connection between these mechanisms and auction theory. 

4.3.2 Keynote Speaker Biography 
Jason Hartline is a professor of computer science at Northwestern 
University and a co-director of the Institute for Data, 
Econometrics, Algorithms, and Learning (IDEAL). His research 
introduces design and analysis methodologies from computer 
science to understand and improve outcomes of economic 
systems. Optimal behavior and outcomes in complex 
environments are complex and, therefore, should not be expected; 
instead, the theory of approximation can show that simple and 
natural behaviors are approximately optimal in complex 
environments. This approach is applied to auction theory and 
mechanism design in his graduate textbook Mechanism Design 
and Approximation, which is under preparation 
(http://jasonhartline.com/MDnA/). Professor Hartline received his 
Ph.D. in 2003 from the University of Washington under the 
supervision of Anna Karlin. He was a postdoctoral fellow at 
Carnegie Mellon University under the supervision of Avrim Blum 
and subsequently a researcher at Microsoft Research in Silicon 
Valley. He joined Northwestern University in 2008. 

4.4 Invited Keynote Speaker: Carolyn Penstein 
Rosé, Carnegie Mellon University, Language 
Technologies Institute & Human-Computer 
Interaction Institute – “Towards Computer-
Supported Collaborative Learning in the 
Workplace Enabled by Language Technologies” 
4.4.1 Keynote Abstract 
Well meaning companies offer training opportunities to their 
employees, but when push comes to shove, companies are known 
to push for short-term productivity over learning and higher 
productivity in the long term.  The practical goal of the research is 
to enable learning during work, with a focus on software 
development teams. 

Building on over a decade of AI-enabled collaborative learning 
experiences in the classroom and online, in this talk we report our 
work in progress beginning with classroom studies in large online 
software courses with substantial teamwork components.  Project 
courses provide an effective test bed to begin our investigations 
due to similar tensions imposed by the reward structure.  Project 
courses are believed to be valuable experiences for students to 
engage in reflection on concepts while applying them in practice. 
However there is a concern that the reward structure encourages 
students to engage in performance oriented behaviors, such as the 
most capable student taking on the lion's share of the work while 
leaving the others behind. These behaviors undercut the 
opportunity to use the project experience for each student to gain 
practice and for the students to reflect together on underlying 
concepts. In our classroom work, we have adapted an industry 

standard team practice referred to as Mob Programming into a 
paradigm called Online Mob Programming (OMP) for the purpose 
of encouraging teams to reflect on concepts and share work in the 
midst of their project experience.  At the core of this work are 
process mining technologies that enable real time monitoring and 
just-in-time support for learning during productive work.  This 
talk will offer an overview of a series of classroom studies and 
introduce a corpus available through Learnsphere.org’s 
DiscourseDB facilities: 
https://erebor.lti.cs.cmu.edu/discoursedb/index.html. 

4.4.2 Keynote Speaker Biography 
Dr. Carolyn Rosé is a Professor of Language Technologies and 
Human-Computer Interaction in the School of Computer Science 
at Carnegie Mellon University.  Her research program is focused 
on better understanding the social and pragmatic nature of 
conversation, and using this understanding to build computational 
systems that can improve the efficacy of conversation between 
people, and between people and computers. In order to pursue 
these goals, she invokes approaches from computational discourse 
analysis and text mining, conversational agents, and computer 
supported collaborative learning.  Her research group’s highly 
interdisciplinary work, published in over 240 peer reviewed 
publications, is represented in the top venues in 5 fields: namely, 
Language Technologies, Learning Sciences, Cognitive Science, 
Educational Technology, and Human-Computer Interaction, with 
awards in 3 of these fields.  She is a Past President and Inaugural 
Fellow of the International Society of the Learning Sciences, 
Senior member of IEEE, Founding Chair of the International 
Alliance to Advance Learning in the Digital Era, and Co-Editor-
in-Chief of the International Journal of Computer-Supported 
Collaborative Learning.  She is a 2020-2021 AAAS Fellow under 
the Leshner Institute for Public Engagement with Science, with a 
focus on public engagement with Artificial Intelligence. 

5. WORKSHOP WEB SITE 
https://sites.google.com/view/learnerdatainstitute/ldiedm  
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ABSTRACT 
In this tutorial, participants explore the fundamentals of        
feedforward neural networks such as the backpropagation       
mechanism and Long Short Term Memory neural networks. The         
tutorial also covers the basis of Deep Knowledge Tracing, the          
attention mechanism and the application of neural networks in         
education. There will be some hands-on applications on open         
educational datasets. The participants should leave the tutorial        
with the ability to use neural networks in their research. 

A laptop capable of installing and running RapidMiner, Python         
and the Keras library is required for full participation in this           
tutorial. 

Keywords 

Neurons, Neural networks, LSTM, Attention mechanism. 

1. INTRODUCTION 
Neural networks (NN) are as old as the relatively young history of            
computer science: McCullogh and Pitts already proposed nets of         
abstract neurons in 1943 as Haigh and Priestley report in [5].           
However, their successful use, especially under the form of         
convolutional neural networks (CNN) or Long Short Term        
Memory (LSTM) neural networks, in areas such as image         
recognition and language translation in the last years have made          
them widely known, also in the Educational Data Mining (EDM)          
community. This is reflected in the contributions that are         
published each year in the proceedings of the conference.  

The upper green curve labeled “Neural Networks + LSTM” of          
Figure 1 shows the percentage of contributions (long and short          
papers, posters & demos, young research track, doctoral        
consortium, and papers of the industry track) that have used some           
kind of neural networks in their research while Table 2 -at the end             
of this paper- shows in the column “Total” the number of these            
contributions. Contributions that mention neural networks in the        
related works or future works only are not counted. One notices           
two jumps: in 2016 and 2019; the total goes from two to ten and              
then from 16 to 32 while the number of contributions goes from            
147 to 132 and then from 112 to 139. This shows that neural             
networks are becoming more and more important in our field. In           
Figure 1, the blue curve “Neural Networks + no LSTM” gives the            
percentage of the contributions that have used neural networks         
other than LSTM neural networks, simply called LSTM in the          
following, while the orange curve “LSTM” shows the percentage         
of papers that have used LSTM in their research (these          
contributions might have used LSTM and also other kinds of          
neural networks). Till 2015, the green curve and the blue curve           
overlap, as there is no contribution using LSTM. In Table 2, the            

columns “Neural Network” and “LSTM” give the numbers        
instead of the percentages.  

 

 

Figure1. Evolution over the years of the percentage of         
contributions using neural networks in the EDM proceedings.  

Recognizing the growing importance of neural networks in the         
EDM community (see Figure 1 and Table 2), this tutorial aims to            
provide 1) an introduction to neural networks in general and to           
LSTM neural networks with a focus on the attention mechanism,          
and 2) a discussion venue on these exciting techniques. This          
tutorial targets 1) participants who have no or very little prior           
knowledge about neural networks and would like to use them in           
their future work or would like to better understand the work of            
others, and 2) participants interested in exchanging and discussing         
their experience with the use of neural networks. 

A simple kind of neural network is a feedforward neural network           
also often called a multilayer perceptron. It propagates the         
calculation of each neuron from its inputs through all layers in a            
directed way forward to its outputs. In education, such NN are           
often used to predict the performance of students. The work of           
Romero et al. [12] presented at the first EDM conference in 2008            
use them to predict the final mark of students in a course taught             
with the support of the learning platform Moodle.  

While their primary use was in Natural Language Processing         
(NLP) Tasks, LSTM have recently been used in education and          
have achieved remarkable results [17, 16]. Opposed to        
feedforward neural networks that cannot remember the past,        
LSTM have cycles and are a kind of recurrent neural network.           
The LSTM [6] architecture can learn long-term dependencies        
using a memory cell that can preserve states over long periods. It            
is suitable for contexts where sequential information and temporal         
prediction is important such as in education, where we are          
interested in the prediction of students’ outcome based on past          
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behavior. Deep Knowledge Tracing [8] is probably the best         
example of using LSTM to track students’ knowledge states while          
they interact with a tutoring system. Numerous variants of LSTM          
have been proposed, such as the Gated Recurrent Unit (GRU) [3],           
or the LSTMs with Attention.  

Attention [2] in machine learning refers to a model’s ability to           
focus on specific elements in data. It helps the LSTM to learn            
where to look in the data. It was initially designed in the context             
of Neural Machine Translation using sequence to sequence        
(Seq2Seq or encoder-decoder) [13] models. However, since the        
attention mechanism can improve prediction results of NN        
models, it is now widely used in text mining in general. Especially            
in the education domain, it has been used for questions answering           
tasks, sequential modeling for student performance prediction or        
to predict essay or short answer scoring [18, 11].  

2. THE TUTORIAL 
2.1 Schedule 
Table 1. Tutorial schedule 

Time Item 

45 minutes Introduction - Feedforward neural networks 
and backpropagation 

45 minutes Application - Discussion - Hands-on with 
RapidMiner 

30 minutes Break 

60 minutes LSTM and Attention Mechanism 

 60 minutes Application - Implementation of a LSTM for 
student performance prediction - Discussion 

 
2.2 Introduction to feedforward neural 
networks 
This part begins with artificial neurons and their structure - inputs,           
weight, output, and the activation function - and the calculations          
that are feasible and not feasible with one neuron only. It           
continues with feedforward neural networks or multi-layer       
perceptrons (MLP). A hands-on example taken from [7] illustrates         
how a feedforward neural network calculates its output.  

Further, this part introduces the backpropagation algorithms and        
makes clear what a feedforward neural network learns.        
Backpropagation is demonstrated with the hands-on example       
introduced before.  

2.3 Application 
This part discusses the use of feedforward neural networks in          
EDM research. These networks are often used to predict students’          
performance and students at-risk of dropping out, see for example          
[4, 1, 15]. However, other uses emerge. For example, Ren et al.            
use them to model the influence on the grade of course taken by a              
student of all other courses that the student has co-taken [10]. 

The main activity of this part is for participants to create, inspect,            
and evaluate a feedforward neural network with the free version          
of the tool RapidMiner Studio [9]. The data that will be used            

comes from a German university. The task is to predict whether a            
student will drop out of a degree program. RapidMiner Studio is a            
graphical tool for Data Science which requires no programming.         
The tool will be introduced and participants will learn to load           
data, explore them, and classify them with neural networks. In          
particular, the following steps will be covered: discovering the         
operators “Neural Net” and “AutoMLP”, cross-validation, models       
comparison, and grid optimization of the parameters with        
RapidMiner. Processes will be provided so that participants do not          
have to design them from scratch and can learn more efficiently. 

2.4 LSTM 
In this part of the tutorial, basic concepts of LSTM are covered.            
We will focus on how the different elements (cell, state, etc.) of            
the architecture work. Participants will learn how to use an LSTM           
for the prediction of learners' outcomes in an educational system.          
Concepts such as the Deep Knowledge Tracing (DKT) will be          
also covered. 

2.5 Attention Mechanism 
In this part, the attention mechanism is introduced. Participants         
will learn how this mechanism works and how to use it in            
different cases. We will explore concepts such as global and local           
attention in neural networks. 

2.6 Application 
In this hands-on part, we will explore existing real-life         
applications of LSTM (especially Deep Knowledge Tracing) in        
education. We will also explore the combination of LSTM with          
Expert Knowledge (using the attention mechanism) for Predicting        
Socio-Moral Reasoning skills [14]. Participants will implement an        
LSTM with an attention mechanism for the prediction of students’          
performance in a tutoring system. We will use Python especially          
the Keras library for coding. We will also use open educational           
datasets (e.g. Assistments benchmark dataset).  

 

3. OBJECTIVES AND OUTCOMES 
The objectives of this tutorial are twofold: 1) introduce the          
fundamental concepts and algorithms of neural networks to        
newcomers, and then build on these fundamentals to give them          
some understanding of LSTM and the attention mechanism; 2)         
provide a place to discuss and exchange about experiences while          
using neural networks with educational data. 

Newcomers should leave the tutorial with a good understanding of          
neural networks and the ability to use them in their own research            
or to appreciate better research works that use neural networks.          
Participants already knowledgeable about neural networks get a        
chance to discuss and share about this topic and connect with           
others. 

A website will be created to display important information to          
participants: schedule, slides, data, software to download and        
install. 

Table 2. Number of contributions using neural networks in         
the EDM proceedings 

Year Neural 
Network 

LSTM Total Number 
Contributions 

2008 1 0 1 31 

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 822



2009 2 0 2 33 

2010 2 0 2 64 

2011 1 0 1 67 

2012 1 0 1 49 

2013 4 0 4 98 

2014 3 0 3 120 

2015 2 0 2 147 

2016 4 6 10 132 

2017 7 6 13 98 

2018 6 10 16 112 

2019 19 19 38 139 
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ABSTRACT 
This workshop will explore the reproducibility and replication of 
research and analytics in the EDM field through LearnSphere, an 
NSF-funded, community-based repository that facilitates sharing 
of educational data and analytic methods. The workshop 
organizers will discuss the unique research benefits that 
LearnSphere affords. We will focus on Tigris, a workflow tool 
within LearnSphere that helps researchers share analytic methods 
and computational models. Authors of accepted workshop papers 
will integrate their analytic methods or models into LearnSphere’s 
Tigris in advance of the workshop, and these methods will be 
made accessible to all workshop attendees. We will learn about 
these different analytic methods during the workshop and spend 
hands-on time applying them to a variety of educational datasets 
available in LearnSphere’s DataShop. Finally, we will discuss the 
bottlenecks that remain, and brainstorm potential solutions, in 
openly sharing analytic methods through a central infrastructure 
like LearnSphere. Our goal is to create the building blocks to 
allow groups of researchers to integrate their data with other 
researchers to advance the learning sciences as harnessing and 
sharing big data has done for other fields.   

Keywords 

Learning metrics; data storage and sharing; reproducibility; 
replication; data-informed learning theories; modeling; data-
informed efforts; scalability. 

1. INTRODUCTION 
The use of data to improve student learning has become more 
effective as student learning activities and student progress 
through educational technologies are increasingly being tracked 
and stored. There is a large variety in the kinds, density, and 
volume of such data and to the analytic and adaptive learning 
methods that take advantage of it. Data can range from simple 
(e.g., clicks on menu items or structured symbolic expressions) to 
complex and harder-to-interpret (e.g., free-form essays, discussion 
board dialogues, or affect sensor information). Another dimension 
of variation is the time scale in which observations of student 
behavior occur: click actions are observed within seconds in 
fluency-oriented math games or in vocabulary practice, problem-
solving steps are observed every 20 seconds or so in modeling 
tool interfaces (e.g., spreadsheets, graphers, computer algebra) in 
intelligent tutoring systems for math and science, answers to 
comprehension-monitoring questions are given and learning 
resource choices are made every 15 minutes or so in massive open 
online courses (MOOCs), lesson completion is observed across 
days in learning management systems, chapter/unit test results are 

collected after weeks, end-of-course completion and exam scores 
are collected after many months, degree completion occurs across 
years, and long-term human goals like landing a job and achieving 
a good income occur across lifetimes. Different paradigms of 
data-driven education research differ both in the types of data they 
tend to use and in the time scale in which that data is collected. In 
fact, relative isolation within disciplinary silos is fostered and fed 
by differences in the types and time scale of data used (cf., 
Koedinger et al., 2012). 

Thus, there is a broad need for an overarching data infrastructure 
to not only support sharing and use within the student data (e.g., 
clickstream, MOOC, discourse, affect) but to also support 
investigations that bridge across them. This will enable the 
research community to understand how and when long-term 
learning outcomes emerge as a causal consequence of real-time 
student interactions within the complex set of instructional options 
available (cf., Koedinger et al., 2010). Such an infrastructure will 
support novel, transformative, and multidisciplinary approaches to 
the use of data to create actionable knowledge to improve learning 
environments for STEM and other areas in the medium term and 
will revolutionize learning in the longer term. 

LearnSphere transforms scientific discovery and innovation in 
education through a scalable data infrastructure designed to enable 
educators, learning scientists, and researchers to easily collaborate 
over shared data using the latest tools and technologies. 
LearnSphere.org provides a hub that integrates across existing 
data silos implemented at different universities, including 
educational technology “click stream” data in CMU’s DataShop 
(Stamper et al., 2011), massive online course data in Stanford’s 
DataStage and analytics in MIT’s MOOCdb (Veeramachaneni et 
al., 2014), and educational language and discourse data in CMU’s 
new DiscourseDB (Jo et al., 2016). LearnSphere integrates these 
infrastructure building blocks in two key ways: 1) with a web-
based portal that points to these and other learning analytic 
resources and 2) with a web-based workflow authoring and 
sharing tool called Tigris. A major goal is to make it easier for 
researchers, course developers, and instructors to engage in 
learning analytics and educational data mining without 
programming skills. 

The main goal of this workshop is to provide attendees with 
hands-on experience using Tigris for learning analytics. We hope 
that this year we will be able to attract attendees that have been 
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exposed to LearnSphere from these past events, although we will 
have some tutorial activities included for new attendees as well. 
This workshop builds off a successful LAK 2018 Tutorial, 
workshop at AIED/EDM 2017, and workshops at EDM 2019.	

2. ORGANIZATIONAL DETAILS 
2.1 Type of Event 
Workshop 

2.2 Proposed Schedule 
Table 1. Proposed Half-day Schedule 

Time Item 

8:30 Introductions 

9:00 Tigris workflow tool (Lecture & Demos) 

10:10 Coffee Break 

10:20 Hands on: Build custom analysis workflows 
using existing Tigris components 

11:20 5-minute participant talks about proposed or 
created workflows 

12:00 Closing / High-level Discussion 
 

2.3 Type of Participation 
Mixed participation will be through submission of reviewed 
abstracts, invited guests, and open registration. For participants 
who have accepted abstracts or are invited by the workshop 
committee, we have allocated approximately $15,000 from our 
grant funding to cover registration and some travel costs of select 
participants based on quality of submissions, attract students and 
junior faculty, and a goal to create a diverse set of participants. 

2.4 Activities 
Activities will include presentations from workshop organizers, 
invited guests, and short presentations from accepted abstract 
presenters. Hands on sessions will include demos and group work 
towards implementing analytics. 

2.5 Expected Numbers 
We expect 15-20 participants based on previous workshops. 

2.6 Activities to Recruit Attendees 
We will create a website to announce the workshop and method of 
submitting abstracts. The Learning Analytics, Educational Data 
Mining, and LearnLab mailing lists will be used to direct potential 
attendees to the workshop website. In addition, we will include a 
number of invited guests. Both accepted submissions and invited 
guests will have the chance to receive funding to attend. 

2.7 Required Equipment 
Projector and screen will be required by organizers. Attendees 
will need to bring laptops and will need adequate internet 
connectivity. 

3. OBJECTIVES AND OUTCOMES 
Broadly, this workshop offers those in the Learning Analytics 
community an exposure to LearnSphere as a community-based 

infrastructure for educational data and analysis tools. In opening 
lectures, the organizers will discuss the way LearnSphere 
connects data silos across universities and its unique capabilities 
for sharing data, models, analysis workflows, and visualizations 
while maintaining confidentiality. 

More specifically, we propose to focus on attracting, integrating, 
and discussing researcher contributions to Tigris, the web-based 
workflow authoring and sharing tool. Workshop submissions in 
the form of abstracts will involve a brief description of an analysis 
pipeline relevant to modeling educational data as well as 
accompanying code. Prior to the workshop itself, the organizers 
will coordinate with authors of accepted submissions to integrate 
their code into Tigris. A significant portion of the workshop will 
be dedicated to hands-on exploration of custom workflows and 
workflow modules within Tigris. Authors of accepted submissions 
will present their analysis pipelines, and everyone attending the 
workshop will be able to access those analysis pipelines within 
Tigris to a variety of freely available educational datasets 
available from LearnSphere. The goal is to generate -- for each 
workflow component contribution in the workshop -- a 
publishable workshop paper that describes the outcomes of openly 
sharing the analysis with the research community.		

Finally, workshop attendees will discuss bottlenecks that remain 
toward our goal of a unified repository. We will also brainstorm 
possible solutions. Our goal is to create the building blocks to 
allow groups of researchers to integrate their data with other 
researchers we can advance the learning sciences as harnessing 
and sharing big data has done for other fields.  
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ABSTRACT
There is a growing community of researchers at the intersec-
tion of data mining, AI and computing education research.
The objective of the CSEDM workshop is to facilitate a dis-
cussion among this research community, with a focus on how
data mining can be uniquely applied in computing education
research. For example, what new techniques are needed to
analyze program code and CS log data? How do results
from CS education inform our analysis of this data? The
workshop is meant to be an interdisciplinary event at the
intersection of EDM and Computing Education Research.
Researchers, faculty and students are encouraged to share
their AI- and data-driven approaches, methodologies and ex-
periences where data is transforming the way students learn
Computer Science (CS) skills. This full-day workshop will
feature a panel, paper presentations, discussions to promote
collaboration, and a kick-off of the 2nd CSEDM Data Chal-
lenge.

Keywords
Computer Science Education, Educational Data Mining, AI
in Education, Learning Analytics

1. WORKSHOP GOALS
Computing is an increasingly fundamental skill for students
across disciplines. It enables them to solve complex, real
and challenging problems and make a positive impact in the
world. Yet, the field of computing education is still facing
a range of problems from high failure and attrition rates,
to challenges training and recruiting teachers, to the under-
representation of women and students of color.

Advanced learning technologies, which use data and AI to
improve student learning outcomes, have the potential to
address these problems. However, the domain of CS educa-
tion presents novel challenges for applying these techniques.

CS presents domain-specific challenges, such as helping stu-
dents effectively use tools like compilers and debuggers, and
supporting complex, open-ended problems with many pos-
sible solutions. CS also presents unique opportunities for
developing learning technologies, such as abundant and rich
log data, including code traces that capture each detail of
how students’ solutions evolved over time.

These domain-specific challenge and opportunities suggest
the need for a specialized community of researchers, work-
ing at the intersection of AI, data-mining and computing
education research. The goal of this 4th Educational Data
Mining for Computer Science Education (CSEDM) work-
shop1 is to bring this community together to share insights
for how to support and understand learning in the domain
of CS using data. This field is nascent but growing, with
researching in computing education increasingly using data
analysis approaches, and researchers in the EDM commu-
nity increasing studying CS datasets. This workshop will
help these researchers learn from each other, and develop
the growing sub-field of CSEDM.

The CSEDM workshop is co-organized with CS-SPLICE
(cssplice.org), an NSF-funded organization that seeks to
build infrastructure for intelligent learning content in CS ed-
ucation. The workshop will build on three successful prior
CSEDM workshops at: 1) the International Educational
Data Mining Conference (EDM) in 20182, 2) the Interna-
tional Learning Analytics and Knowledge Conference (LAK)
in 20193, and 3) and the International Conference on AI in
Education (AIED) in 20194. Each were fruitful and well-
attended. We hope to keep our our momentum with a 4th
CSEDM Workshop, returning to EDM in 2020. We also
build on the success of 5 prior SPLICE workshops at CS
education conferences (ACM SIGCSE, ACM ICER).

1.1 Relevant Topics
The workshop encourages contributions from the following
topics of interest:

• Predictive and descriptive modelling for CS courses

1sites.google.com/ncsu.edu/csedm-ws-edm-2020/
2sites.google.com/asu.edu/csedm-ws-edm-2018/
3sites.google.com/asu.edu/csedm-ws-lak-2019/
4sites.google.com/asu.edu/csedm-ws-aied-2019/
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• Adaptation and personalization within CS learning en-
vironments

• Intelligent support for collaborative CS problem solving

• Machine learning approaches to analyze massive CS datasets
and courses

• Online learning environments for CS: implementation,
design and best practices

• Multimodal learning analytics and combination of stu-
dent data sources in CS Education

• Affective, emotional and motivational aspects related to
CS learning

• Adaptive feedback, adaptive testing for CS learning

• Discourse and dialogue research related to classroom,
online, collaborative, or one-on-one learning of CS

• Peer-review, peer-grading and peer-feedback in CS

• Teaching approaches using AI tools

• Visual Learning Analytics and Dashboards for CS

• Network Analysis for programming learning environments

• Self-Regulated learning for CS environments

• Writing and syntax analysis for programming design
learning

• Natural Language Processing for CS forums and discus-
sions

• Analysis of programming design and trajectory paths

• Recommender systems and in-course recommendations
for CS learning

We will invite researchers who are interested in further ex-
ploring, contributing, collaborating and developing data-
and AI-driven techniques for building educational tools for
Computer Science to submit paper on any of these topics.

2. WORKSHOP ORGANIZATION
The workshop will be organized by a team with a history of
CSEDM research:

Thomas Price is an Assistant Professor of Computer Sci-
ence at North Carolina State University. His primary re-
search goal is to develop learning environments that auto-
matically support students through AI and data-driven help
features. His work has focused on the domain of computing
education, where he has developed techniques for automat-
ically generating programming hints and feedback for stu-
dents in real-time by leveraging student data. He has helped
organized a number of efforts at the intersection of AIED,
Data Mining and CS Education, including the CS-SPLICE
working group on programming snapshot representation and
prior CSEDM and CS-SPLICE workshops.

Peter Brusilovsky is a Professor of Information Science
and Intelligent Systems at the University of Pittsburgh, where
he also directs Personalized Adaptive Web Systems (PAWS)
lab. He has been working in the field of adaptive educational
systems, user modeling, and intelligent user interfaces for
more than 30 years. He published numerous papers and

edited several books on adaptive hypermedia and the adap-
tive Web. He is a founder of CS-SPLICE and has advanced
research and infrastructure for CSEDM.

Sharon I-Han Hsiao is an Assistant Professor at the School
of Computing, Informatics & Decision Systems Engineering
in Arizona State University. Her research lies in the inter-
sections of Informatics & Computational Technologies for
Learning with a focus on Intelligent Tutoring Systems, Com-
puter Science Education, Adaptive Educational Systems,
Open User Modeling, Data Sciences, Visualization, Social
Computing, and Learning Technologies.

Ken Koedinger is Professor of Human-Computer Inter-
action and Psychology at Carnegie Mellon. He explores
how people think and learn by developing and studying
technology-enhanced learning. He leads the LearnSphere ef-
fort (learnsphere.org), which integrates learning data and
analytics across multiple resources. And he directs Learn-
Lab (learnlab.org), which started with 10 years of Na-
tional Science Foundation funding and is now the scientific
arm of CMU’s Simon Initiative (cmu.edu/simon). He is also
a founder of CS-SPLICE .

Yang Shi is a PhD student at North Carolina State Univer-
sity. His research focuses on developing data-driven methods
for representing program code to enhance the ability of intel-
ligent learning environment to support students and model
their learning. Yang’s research interest includes CSEDM,
Automatic Hint Generation, Programming Language Pro-
cessing, Software Representations, Software Analysis and
Deep Learning.

2.1 Program Committee
The 4th CSEDM Workshop’s program committee includes:

• Austin Cory Bart (University of Delaware, USA)

• Barbara Ericson (University of Michigan, USA)

• Petri Ihantola (University of Helsinki, Finland)

• Juho Leinonen (University of Helsinki, Finland)

• Cliff Shaffer (Virginia Tech University, USA)

• Alan Smeaton (Dublin City University, Ireland)

• Sergey Sosnovsky (Utrecht University, Netherlands)

• John Stamper (Carnegie Mellon University, USA)

• Michael Yudelson (ACT)

3. CALL FOR PARTICIPATION
We will solicit two types of research contributions:

4-8 page Research Papers: Original, unpublished work
or work-in-progress, addressing any of the topics of interest
above.

2-4 page Presentation Abstracts: Researchers will present
their work at CSEDM in a conversational format. Presen-
tations might include:

• Descriptions of shareable Computer Science (CS) datasets
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• Descriptions of data mining / analytics approaches ap-
plied to specifically Computer Science datasets

• Descriptions of tools or programming environments
that use/produce data

• Case studies of collaboration where reproducible prac-
tices were used to integrate or compose two or more
data analysis tools from different teams

• Descriptions of infrastructures that could collect and
integrate data from multiple learning tools (e.g. forum
posts, LMS activity and programming data)

4. WORKSHOP ACTIVITIES
The workshop will be a half day workshop, held online on
July 10th, 2020. It will primarily consist of paper presenta-
tions, discussions to facilitate collaboration, and a kickoff of
the 2nd CSEDM Data Challenge. The full schedule can be
found at the workshop website: sites.google.com/ncsu.

edu/csedm-ws-edm-2020

4.1 2nd CSEDM Data Challenge – Kickoff
A unique aspect of the CSEDM workshops is the CSEDM
Data Challenge. The goal of this challenge is to bring re-
searchers together to tackle a common data mining task that
is specific to CS Education. We are building on the success
of the first CSEDM Data Challenge5. The first challenge fo-
cused on the task of modeling students’ programming knowl-
edge in order to predict their performance on future tasks.
Researchers competed to build the best predictive model, us-
ing a common dataset. This year, we will use the CSEDM
workshop to kick off a second Data Challenge. Our goal is
to use the workshop as a space to build researcher interest
in the challenge, introduce the datasets to be used, and get
input from the community on their goals for the challenge.

5. SOLICITATION PLAN
Building on our growing network of contributors to prior
workshops, we intend to solicit participation on the work-
shop through the following mailing lists and research net-
works:

• ACM’s Special Interest Group on Computer Science
Education (SIGCSE)

• Computer Science Education (CSED) research list (from
the ICER community)

• European Association of Technology-Enhanced Learn-
ing (EATEL) community

• User Modeling (UM) mailing list

• Asia-Pacific Society for Computers in Education (AP-
SCE) community

• PSLC community list

• Relevant EU project consortia

• The International Educational Data Mining Society

• The Society for Learning Analytics Research (SoLAR)

5github.com/thomaswp/CSEDM2019-Data-Challenge
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Causal Inference in Educational Data Mining

Half-day workshop
EDM 2020
Fully Virtual

1. OVERVIEW
The goal in crafting intelligent tutoring systems, educational
games, MOOCs, and other computerized learning tools, is
to improve student learning. To that end, EDM research
typically focuses on methods to identify, measure, and pre-
dict learner behaviors or outcomes. Causal research seeks
to estimate the impacts of different factors on these behav-
iors or outcomes—not only predicting who will wheel-spin,
experience frustration, or successfully learn a new skill, say,
but determining causes these? Causality lies at the heart
of both learning science, which seeks to understand how in-
puts in an educational system affect the system’s outputs,
and of policy, which seeks to design educational systems that
improve learning.

The field of causal inference, which spans statistics, philos-
ophy, economics, computer science, and other more tradi-
tional academic disciplines, has itself experienced rapid and
exciting developments in the recent past. The new science of
causality encompasses new ways of estimating effects under
challenging circumstances, such as possible confounding, but
also new questions—how do impacts vary between learners?
What mechanisms drive causal effects? How may we con-
struct optimal individualized policies for specific learners?

This workshop is intended to raise awareness of the ubiquity
and importance of causal questions in EDM, some of the
exciting methods available to address those questions, and
some of the open questions of causal inference in EDM. It
will include invited discussions of ongoing projects address-
ing causal questions, and short talks about relevant work in
progress, including work in any stage of development.

Lastly, the workshop will give an opportunity for EDM re-
searchers to submit open problem related to causality in
EDM research, in an exercise motived by the Quantitative
Methods Program seminar at the University of Michigan
Institute for Social Research. In five minute presentations,
researchers will briefly present problems they have encoun-

tered in research, or that they just think are interesting,
but that they do not yet know how to solve. Each presenta-
tion will be followed by an open-ended discussion among the
workshop participants, hopefully suggesting ways to solve,
or at least better refine the problem. This sub-workshop
will hopefully give the presenting researchers constructive
suggestions, and spur collaborations.

In general, the workshop will be organized to stimulate dis-
cussion among participants, including, hopefully, construc-
tive suggestions for open problems.

2. TOPICS OF INTEREST
We will solicit work on topics including, but not limited to:

• A/B Testing

• Graphical causal models/Bayesian networks

• Analyzing data from randomized experiments

• Multi-armed bandits

• Investigations of causal mechanism/mediation analysis

• Estimating EDM program impacts

• Identifying and predicting differential effects

• Connections between machine learning and causal in-
ference

• Dynamic treatment regimes

• Principal stratification

• Causal inference in EDM without randomization

3. ORGANIZERS
• Adam Sales (University of Texas, Austin/Worcester

Polytechnic Institute)

• Stephen Fancsali (Carnegie Learning)

• Anthony Botelho (Worcester Polytechnic Institute)

• Joseph Jay Williams (University of Toronto)

• Neil Heffernan (Worcester Polytechnic Institute)

Adam Sales "Workshop: Causal Inference in Educational Data
Mining" In: Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 829 - 830
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0:00-0:30 Introduction: Causal questions in EDM (Adam Sales)
0:30-1:30 Two long (20 minute) talks, with discussion
1:30-2:15 Three talks describing work in progress (10 minutes each), with discussion
2:15-3:15 Open problems workshop
3:15-3:30 concluding discussion

Table 1: Preliminary Schedule

4. IMPORTANT DATES
• Submission deadline (Extended): Monday, June 15,

2020

• Acceptance notification (Extended): Monday, June 29,
2020

Reviewing process: The workshop organizers will review pa-
pers, alongside external reviewers whose expertise is appro-
priate for the submissions. These may include Anna Rafferty
(Carleton College), Thanaporn March Patikorn (Worcester
Polytechnic Institute), Peter Schaldenbrand (Carnegie Mel-
lon University) and others.
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ABSTRACT
This document outlines a proposed full-day workshop fo-
cused on the intersection of fairness, accountability, trans-
parency, and educational data mining (EDM). The work-
shop aims to provide a multidisciplinary perspective on fairness-
related work from both “sides” of the EDM community (ed-
ucation and data mining) along with other relevant fields
(human–computer interaction, machine learning, etc.). Our
workshop aims to be an inclusive opportunity for EDM re-
searchers to learn about an emerging field, as well as to
define a research agenda for this area of critical importance
to the field.

1. BACKGROUND
As data-driven algorithms are increasingly relied upon to
shape user experiences, deliver content, and make decisions
across a variety of domains, concerns have grown around the
fairness, equity, accountability, transparency, and inclusiv-
ity of algorithmic systems and the broader pipelines within
which they exist (e.g., training data, human decisions made
using algorithmic outputs). The field of educational data
mining, being concerned with the use of data about human

subjects for the purposes of studying educational processes
and improving learning outcomes, is intimately tied to these
concerns about fairness, accountability, and transparency.

On the other hand, equity is at the heart of the develop-
ment goals of education across the globe, given the per-
sonal, economic and social benefits of education [26]. Ac-
cordingly, decades of education research have been devoted
to understanding existing inequities and finding ways to ad-
dress them [11, 5]. Concerns around fairness in data mining
used in educational contexts must therefore be viewed in
the broader context of educational concerns around equity.
In fact, early work on fairness in educational testing dating
back to the 1960s preempted many contemporary definitions
of fairness that have emerged in the machine learning (ML)
literature [16].

Because this cluster of topics1 is still an emerging field both
within the EDM community and the broader field of data
mining, we believe that it is the responsibility of EDM re-
searchers to be at the forefront of defining the future re-
search of such a field, and to incorporate FATE-related in-
quiries into their work. Towards this ends, this document
describes a full-day workshop to explore the intersection of
fairness research (broadly construed) and educational data
mining. We propose a “bidirectional” approach, wherein the
workshop focuses both on synthesizing past research as well
as defining an agenda for future work in the field. Our or-

1As an emerging subfield, the area of Fairness, Accountabil-
ity, Transparency (and often also Ethics) does not have a
single agreed-upon name; in this document, we use the term
“FATE” to refer to these topics jointly.

Nigel Bosch, Christopher Brooks, Shayan Doroudi, Josh Gardner,
Kenneth Holstein and Renzhe Yu "FATED: Fairness,
Accountability, and Transparency in Educational Data (Mining)"
In: Proceedings of The 13th International Conference on
Educational Data Mining (EDM 2020), Anna N. Rafferty, Jacob
Whitehill, Violetta Cavalli-Sforza, and Cristobal Romero (eds.)
2020, pp. 831 - 834
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ganizing committee draws from a broad set of disciplinary
backgrounds, including machine learning, human–computer
interaction (HCI), and education, and we intend the work-
shop to serve as a unifying forum for a variety of research
and disciplinary perspectives.

We believe that the proposed workshop will provide a firm
foundation for participants to conduct future impactful FATE-
related EDM research by providing both a foundation in past
work and a well-defined set of research goals for future work
to address. Furthermore, we believe that this workshop will
serve to advance the EDM2020 theme, “Improving Learning
Outcomes for All Learners.”

2. PRIOR WORK
This section does not attempt to provide an exhaustive list
of work relevant to the workshop. Instead, it is intended
to provide a sense of the work in this area which we hope
to introduce to participants and build upon in our intended
outcomes.

2.1 FATE in Data Mining and ML
Over the past decade, a rich subfield of fairness research has
emerged within the data mining and machine learning com-
munities. Research has investigated the (un)fairness of data
mining and machine learning algorithms applied to several
different applications, including image classification [8] and
natural language processing [6]. Additionally, there is a rich
and ever-growing body of literature on methods and met-
rics for fair data mining and machine learning [3]. This has
also included research into the biases inherent to data itself,
as our workshop title implies. Finally, work has also begun
to explore the relationship between the utility, fairness, and
privacy of statistical models [19, 18], all of which are critical
to the success of educational models in certain contexts [15].

While several conferences and other publication venues have
emerged to share research related to fairness 2 as well as
subgroup-specific venues for advancing such work within
specific subfields 3, EDM has not yet offered a workshop
to address such topics directly.4

2.2 Equity in Education
Educational equity and achievement gaps are topics that
have been studied by education researchers and have been
of paramount importance to the practice of education for
generations [11]. Empirical research in the past few decades
have found consistent evidence of systematic gaps in educa-
tional opportunities and outcomes by socioeconomic status,
immigration status and gender [5]. Of relevance to educa-
tional data mining, [16] surveys several notions of testing-
related fairness in education and employment, demonstrat-
ing that several recent conceptions of fairness were antici-
pated in prior works as early as the 1960s. In the context
of educational technology, a number of studies have shown

2ACM FAccT https://facctconference.org/,
AAAI/ACM AIES https://www.aies-conference.
com/2020/
3See e.g. Fair ML for Health https://www.
fairmlforhealth.com/
4For a related effort, see https://sites.google.com/view/
fairlak.

that even with equal access, more privileged students may
disproportionately benefit from technologies than less priv-
ileged or marginalized students, often due to socio-cultural
factors [24]. Relatedly, recent work on online learning has
found that usage patterns vary by demographic groups in
diverse global learning environments [14] and that identity-
based interventions have disparate impact in adaptive learn-
ing environments [7, 21]. Work on fairness in EDM should
situate itself in the context of this broader work on educa-
tional equity. One of the goals of this workshop will be to
bring voices from educational researchers to help ensure a
desirable path forward for FATE in EDM.

2.3 Fairness in EDM
Within the EDM community, some earlier research has in-
vestigated the generalizablity of student models to new stu-
dent populations and/or learning contexts (aka external va-
lidity) but found mixed results [2, 25]. While this inves-
tigation remains a critical research direction of EDM re-
search [1], the fairness perspective speaks more to the inter-
nal validity of data mining models. Towards this end, recent
research in educational data mining and learning analyt-
ics has evaluated the fairness of on-time graduation mod-
els [17], mastery learning algorithms in tutoring systems
[12], dropout models in MOOCs [13], and the effects of
perceived AI (un)fairness in college admissions [23]. Com-
bined with the influence of socio-cultural factors as men-
tioned above, these works collectively suggest that the ways
in which fairness-related issues intersect with the methods
and goals of educational data mining systems are complex,
multidimensional, and in need of further research.

2.4 Transparency in EDM
Data mining is often integrated into educational systems to
automate or enhance decision-making processes that might
otherwise be performed by humans, such as homework grad-
ing [10] or personalizing learning content [4]. Automated
decision-making may affect students in large ways (e.g., au-
tomatic homework grading assigning a failing grade) as well
as relatively minor ways (e.g., selecting the next topic of
study), though even minor effects may accumulate into large
outcomes. For students, teachers, and other stakeholders to
trust decisions made by data mining algorithms, it is essen-
tial that those algorithms provide transparent explanations
of their decision-making process at an appropriate level [20].

However, even simple models such as linear regression with
a few variables or Bayesian knowledge tracing [9] can be dif-
ficult for many users to understand [22]. Previous work has
explored the possibility of creating explanations specifically
for Bayesian knowledge tracing [27], and found a great deal
of heterogeneity in the level of explanation needed across
users (e.g., students), as well as the desire different users
had for an explanation. Given that the difficulty of creating
and selecting an appropriate explanation is enhanced by fac-
tors such as age, native language, and neurodiversity that
vary across individuals, this is a large area of potential re-
search that we propose to discuss and define with respect to
educational data mining in this workshop.

3. WORKSHOP STRUCTURE
We propose a “bidirectional” workshop structure, with a
backward-looking component focused on synthesis of both
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historical and state-of-the-art work, as well as a forward-
looking component focused on defining a research agenda
for the field.

3.1 Backward-Looking Activities
The backward-looking component will be focused on bring-
ing together a comprehensive and multidisciplinary view of
how to measure, identify, and correct for lack of fairness in
fields relevant to educational data mining research. Given
that there has been an explosion of work on fairness in ma-
chine learning over the past few years, it can be difficult
for researchers to begin working in this literature without
getting lost. Rather than providing a broad tutorial of all
definitions and approaches to fairness, we aim to provide an
introduction that more thoroughly examines a smaller set
of approaches and recent discussions relevant to the field of
educational data mining. We intend for this section to in-
clude a mix of presenter-led synthesis presentations as well
as participant-led presentations (invited or submitted) pro-
viding perspectives from specific research studies. The goal
for this component is to provide a firm foundation in the
state of the field for interested researchers, including those
new to fairness-related research.

3.2 Forward-Looking Activities
The forward-looking component will be focused on identify-
ing measures of success, key open problems, and a research
agenda for the emerging work in fairness for educational
data mining. This section will be largely participant-driven.
One possible activity for this section is a reverse assump-
tions activity (a method from HCI and UX design), wherein
participants iteratively construct “positive” and “negative”
design fictions for fairness-related research in EDM. In this
way, we can not only pinpoint concrete ways in which un-
fairness can creep into well-intentioned solutions (negative
design fictions), but also identify solutions that can miti-
gate concerns around fairness and equity (positive design
fictions). Finally, we aim to conduct work on a collabora-
tive document providing a taxonomy of fairness-related work
in EDM and a list of open problems to focus efforts in the
field. We will facilitate these activities through a series of
brainstorming activities that will consist of individual idea
generation, synthesis and refinement of ideas via group dis-
cussion, and subsequent group work toward formalizing and
expanding ideas through groups formed around interest in
specific ideas.

4. INTENDED OUTCOMES
Our intended outcomes for this workshop are twofold. First,
we aim to provide a foundation for workshop participants in
prior fairness-related work relevant to the EDM community.
The resources used for this component of the workshop will
be made available open-source, and we hope that this will
support the larger EDM community and provide a catalyst
for future learning. Second, we aim to provide a set of con-
crete community-created resources for fairness-related work
in EDM. These include the results of our design fictions ac-
tivities, definitions of open problems in the field, and a tax-
onomy to direct future research efforts in this burgeoning
subfield. These outputs will be disseminated to the broader
educational data mining community. Ultimately, the long-
term goal of this workshop is not to create a niche commu-

nity of EDM researchers interested in fairness, accountabil-
ity, and transparency, but to encourage all researchers and
practitioners in the EDM community to think about how to
ensure FATE in the work they do.
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