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Appendix A. Summary Statistics by Postsecondary Degree Type 
 

PANEL A. TEXAS 

 

Variable  
No postsecondary 

degree  
A.A. degree  

B.A. degree or 
more  

 Mean SD Mean SD Mean SD 

Age 38.40 (8.63) 38.50 (8.53) 38.60 (8.66) 
Years of education 11.50 (2.42) 14.00 (0.00) 16.70 (1.27) 
Years of experience 20.90 (8.84) 18.50 (8.53) 15.90 (8.61) 
Hourly wage 12.90 (9.66) 16.70 (13.40) 23.50 (19.70) 
Family size 3.31 (1.66) 3.00 (1.45) 2.82 (1.40) 
Female (proportion) 0.45  0.51  0.48  

Non-white (proportion) 0.17  0.18  0.20  

N 45,710 6,368 17,682 

PANEL B. HOUSTON AREA 

 

Variable  
No postsecondary 

degree  
A.A. degree  

B.A. degree or 
more  

 Mean SD Mean SD Mean SD 

Age 38.30 (8.56) 38.60 (8.55) 38.50 (8.62) 

Years of education 11.40 (2.52) 14.00 (0.00) 16.70 (1.28) 
Years of experience 20.90 (8.74) 18.60 (8.55) 15.80 (8.64) 
Hourly wage 11.60 (0.04) 18.10 (13.30) 25.20 (20.00) 
Family size 3.27 (1.68) 2.98 (1.46) 2.77 (1.42) 
Female (proportion) 0.44  0.45  0.47  

Non-white (proportion) 0.25  0.26  0.28  

N 9,395 1,340 4,194 

Notes: Data from CPS IPUMS, 1979-2016. All dollar values were deflated by the Consumer Price Index (CPI), 1999. 
CPS sampling weights were used in all calculations. 
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Appendix B. Summary Statistics by STEM Occupation 
 

  PANEL A. TEXAS  

Variable  
STEM    Non-STEM  

Mean  SD Mean SD 

Age 38.50 (8.56) 38.50 (8.64) 
Years of education 14.20 (2.74) 12.90 (3.08) 
Years of experience 18.30 (8.98) 19.50 (9.02) 
Hourly wage 20.80 (15.17) 15.10 (13.80) 
Family size 3.05 (1.54) 3.16 (1.60) 
Female (proportion) 0.36   0.49  

Non-white (proportion) 0.21   0.17  

N 12,330  57,430 

  PANEL B. HOUSTON AREA  

Variable  
STEM    Non-STEM  

Mean  SD Mean SD 

Age 38.60 (8.64) 38.30 (8.60) 

Years of education 14.40 (2.92) 13.00 (3.20) 
Years of experience 18.20 (9.09) 19.40 (8.95) 
Hourly wage 22.60 (15.20) 16.50 (15.50) 
Family size 3.03 (1.60) 3.10 (1.60) 
Female (proportion) 0.32   0.48  

Non-white (proportion) 0.29   0.25  

N 2,934  11,995 

Notes: Data from CPS IPUMS, 1979-2016. All dollar values were deflated by 
the Consumer Price Index (CPI), 1999. CPS sampling weights were used in all 
calculations. 
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Appendix C. Labor Force Composition by STEM Occupation, 1990-2030 

This graph plots trends in labor force composition by STEM occupation in Texas and the Houston area 

between 1990 and 2016. In 2016, 20 percent of the workforce in Texas and 22 percent of the workforce 

in Houston was employed in a STEM occupation. Despite declines in the late 1990s and 2000s (likely due 

to economic recessions), the percentage of workers employed in a STEM occupation increased between 

1990 and 2016. The graphs also project trends through 2030, with the shaded regions representing 95% 

confidence intervals. It is estimated that the percentage of workers in STEM occupations will decline in 

the early 2020s before increasing to 18 and 20 percent in 2030 in Texas and Houston, respectively. 

 

 
 

Notes: The sample was limited to individuals between 25-34 years old. All series 
were six-year moving averages after model estimation at yearly frequencies. The 
shaded regions after 2016 are 95% confidence intervals. Please see Appendix I for 
additional details. 



  Appendices  

4 

 

 

Appendix D. Labor Force Composition by Postsecondary Degree Type and STEM 

Occupation among Females and Non-Whites, 1990-2030 

Figures D1 and D2 plot trends in labor force composition by postsecondary degree type and STEM 

occupation for females and non-whites in Texas and Houston. Between 1990 and 2016, female and non- 

white workers represented a growing share of the labor force with an associate’s degree, with a 

bachelor’s degree or more, and in STEM occupations. Projections through 2030 suggest that for females 

and non-whites, levels of educational attainment and STEM occupation participation will, for the most 

part, remain stable. Two exceptions are the share of non-whites with a bachelor’s degree or more and 

the share of non-whites working in STEM occupations at the state level, both of which may experience 

growth. 
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Panel A. Associate’s degree 

 

Females Non-whites 

Panel B. Bachelor’s degree or more 
 

Females Non-whites 
 
 
 
 
 
 
 
 
 

 
Panel C. STEM occupation 

 

Females Non-whites 
 
 
 
 
 
 
 
 

 

Notes: The sample was limited to individuals between 25-34 years old. All series were six-year moving 
averages after model estimation at yearly frequencies. The shaded regions after 2016 are 95% 
confidence intervals. Please see Appendix I for additional details. 

Figure D1. Texas 
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Panel A. Associate’s degree 
 

Females Non-whites 

 
 

Panel B. Bachelor’s degree or more 
 

Females Non-whites 
 
 
 
 
 
 
 
 
 

 
Panel C. STEM occupation 

 

Notes: The sample was limited to individuals between 25-34 years old. All series were six-year moving 
averages after model estimation at yearly frequencies. The shaded regions after 2016 are 95% 
confidence intervals. Please see Appendix I for additional details. 

Females Non-whites 

Figure D2. Houston Area 
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Appendix E. Estimates of Wage Premiums by STEM Occupation, 1990-2030 

These graphs plot trends in wage premiums for workers employed in STEM occupations relative to 

workers employed in non-STEM occupations. In both Texas and the Houston area, STEM workers earned 

higher wages than non-STEM workers in all years between 1990 and 2016. In 2016, STEM workers in 

Texas and Houston earned 100 percent higher wages than non-STEM workers, representing an overall 

increase since 1990. Projections suggest STEM workers will still earn about 100 percent more than non- 

STEM workers in 2030. 

 

 
 

Notes: All series were six-year moving averages after model estimation at yearly 
frequencies. The shaded regions after 2016 are 95% confidence intervals. Please see 
Appendix I for additional details. 
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Appendix F. Change in Supply in Demand by STEM Occupation, 1990-2015 

These graphs plot trends in the supply and demand for STEM workers over time. Each point on the graph 

represents the change relative to 1984 (Texas graphs) or 1989-1990 (Houston area graphs). At both state 

and regional levels, the demand for STEM workers increased faster than the supply. The figures also show 

that Houston, compared to Texas, had a slightly higher demand for STEM workers, but a lower supply of 

them in 2015. 

 

Notes: All series were six-year moving averages after model estimation at yearly frequencies. 
Please see Appendix I for additional details. 
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Appendix G. Change in Supply and Demand for Labor and Wage Premiums by 

Postsecondary Degree Type and STEM Occupation, 1984-2016 

This table details changes in supply and demand for workers with associate’s degrees, with bachelor’s 

degrees or more, and in STEM occupations over different time periods between 1984 and 2016. It also 

contains the changes in wage premiums for these groups (relative to workers with no postsecondary 

credential or in a non-STEM occupation), allowing one to draw a connection between changes in supply, 

demand, and workers’ wages. In most cases, when the demand for a group of workers grew faster than 

the supply, the wage premium for that group increased. For example, between 2014 and 2016, the 

demand for workers with a bachelor’s degree or more increased by 63 percent in Texas, whereas the 

supply for that group increased by 11 percent. This corresponded to a 35 percent increase in the wage 

premium. In most cases, the reverse was also true: when changes in supply outpaced changes in demand, 

there was downward pressure on wages and the premium decreased. This could be seen in workers in 

STEM occupations in 2013-2016 in Houston, where the supply increased faster than demand, leading to a 

slight decrease in wage premiums. 

 
 

  PANEL A. TEXAS  
   A.A. degree       B.A. degree or more       STEM occupation   

Period  Change in 
  supply  

Change in 
demand  

Change in 
wages  

Change in 
  supply  

Change in 
demand  

Change in 
wages  

Change in 
  supply  

Change in 
demand  

Change in 
wages  

1984-1989 19.70 -6.50 -17.50 17.00 -17.20  -22.90 7.30 -3.50 -7.20 
1990-1995 -18.80 22.20 27.30 -9.20 41.80  34.00 -0.50 42.20 28.50 
1996-2001 4.20 -6.20 -6.90 1.50 7.90  4.30 9.60 11.90 1.50 
2002-2007 8.10 23.10 10.00 9.60 -2.80  -8.30 -3.10 -14.90 -7.90 
2008-2013 6.10 26.40 13.50 18.70 57.80  26.10 6.30 35.50 19.50 
2014-2016 9.80 45.60 23.90 11.20 63.10  34.70 0.40 -3.00 -2.20 

  PANEL B. HOUSTON AREA  
   A.A. degree       B.A. degree or more       STEM occupation   

Period  Change in 
  Supply  

Change in 
Demand  

Change in 
Wages  

Change in 
  Supply  

Change in 
Demand  

Change in 
Wages  

Change in 
  Supply  

Change in 
Demand  

Change in 
Wages  

1989-1994 -0.20 -1.60 -0.90 12.10 43.60  21.00 0.30 0.30 0.00 
1995-2000 -20.60 -3.80 11.20 -14.20 -8.00  4.20 -0.20 -32.90 -21.80 
2001-2006 4.30 24.00 13.10 -9.70 13.40  15.40 4.00 41.40 25.00 
2007-2012 15.90 24.00 5.40 9.30 49.30  26.60 4.90 55.30 33.60 
2013-2016 13.40 -3.60 17.00 13.30 54.20  9.10 4.50 -15.40 -1.60 
Notes: The statistics reported came from the same analyses as Figure 3 in Section I and Appendix F. Additional details are available in Appendix I. 
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Appendix H. OLS Regression Models Predicting Log Wages (College Completers Only) 

As a robustness check, a supplementary model controlling for college degree major group was estimated. 

The sample size reduced to 3,537 cases because the analysis focused on students who earned a 

postsecondary credential within six years of high school. The results showed students who majored in 

engineering and engineering technology, business, and health care fields earned significantly more than 

students who majored in general studies, the reference category. Students who majored in the natural 

sciences, social sciences, and humanities earned lower wages than students who majored in general 

studies. Like the previous models, the analysis found females earned lower wages than males and blacks 

earned lower wages than whites. TAKS exemption status negatively predicted wages, while earning a 

bachelor’s degree or higher positively predicted wages. 
 

Variable β S.E. Sig. 

Female -0.12 (0.03) *** 

Race/ethnicity 
(ref. = White) 

   

Black -0.18 (0.05) ** 
Hispanic -0.05 (0.06)  

Asian -0.09 (0.07)  

Economically disadvantaged 0.00 (0.04)  

11th-grade composite TAKS score 0.04 (0.03)  

Exempt from TAKS -0.36 (0.12) ** 
Course grades (in 10s) 0.05 (0.03)  

Number of college-level credits 0.01 (0.01)  

Highest degree completed 
(ref. = Certificate/diploma) 

   

Associate’s degree -0.06 (0.07)  

Bachelor’s degree 0.28 (0.06) *** 
Master's/doctorate/prof. degree 0.52 (0.10) *** 

Major group 
(ref. = General studies and other) 

   

Computer and information sciences 0.08 (0.13)  

Engineering and engineering technology 0.33 (0.08) *** 
Biological, physical, and other natural sciences -0.29 (0.06) *** 
Social sciences -0.34 (0.05) *** 
Humanities -0.24 (0.06) *** 
Health care fields 0.13 (0.06) * 
Business 0.16 (0.05) ** 
Education 0.00 (0.09)  

Other applied -0.12 (0.06) + 
Intercept 8.50 (0.28) *** 

Notes: From HERC multi-year data. Sample was limited to high school seniors in fall 
2006-2008 who graduated from high school the following spring, were present in the 
wage data seven years after high school, had non-missing data on postsecondary 
attainment, and had a postsecondary credential. Native American respondents were 
excluded due to small sample size. The model included cohort fixed-effects and 
standard errors were clustered at the school level. 
+ p<0.10, * p<0.05, ** p<0.01, *** p<0.001 (two-tailed tests) 
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Appendix I. Methods for Section I 

This appendix details the empirical methodology used to examine gaps between supply and demand for 

workers with an associate’s degree1 or a bachelor’s degree or more, relative to workers with a high school 

diploma or less. The theoretical framework relied on previous work by Goldin and Katz (2007, 2008), who 

analyzed the skills gap, or the shortfall between supply and demand for skilled workers. This study 

extended their methodology to analyze a degrees gap, or the shortfall between supply and demand for 

college-educated workers. The following subsections outline the steps taken to calculate this gap. 

Theoretical link between the wage premium from postsecondary attainment and the relative 

supply and demand for workers 

First, a constant elasticity of substitution (CES) production function was set up: 

 

 
where Qt was aggregate output; LNONE,t, LAA,t, and LBA,t were three production inputs referring to the 

amount of employed labor with a high school diploma or less, an associate’s degree, and a bachelor’s 

degree or more at time t; 𝛼𝑡, 𝛽𝑡 , and 𝛿𝑡 were time-varying technology parameters that added up to one 

and could be interpreted as the fraction of activities allocated to the multiplying factor of production; and 

at, bt, and ct represented labor-augmenting technological change. 

Taking the ratio of first-order conditions yielded the following equations: 

 

 

The first term in parentheses on the right-hand side with the coefficient 1 was the relative demand 
𝜎 

variable Dt. Relative demand increased if there was factor-augmenting technological change or an 

increase in the intensity of factor use. For example, in the second equation in (2), both an increase in δt, 

which represented technological change biased in favor of workers with a bachelor’s degree or more, or 

an increase in ct, which represented the intensity with which workers with a bachelor’s degree or more 

were employed in the production process, increased demand for workers with a bachelor’s degree or 

more, relative to demand for workers with a high school diploma or less. The parameter σ represented 

the elasticity of substitution and was equal to 1 . This elasticity could be understood as the ease with 
1−𝜌 

which employed labor with a high school diploma or less could be substituted for labor with some type of 

postsecondary degree. If σ > 1, then labor with a high school diploma or less was sufficiently substitutable 

 
 

1 It was difficult to distinguish workers with postsecondary certificates or some postsecondary education from 
workers with associate’s degrees in the data. These workers combined to form the associate’s degree category in 
the analyses. Please contact the authors for additional details. 
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for labor with a postsecondary degree. If σ < 1, then the different types of labor inputs would be treated 

as complements rather than substitutes. 

Theoretical link between the wage premium from STEM occupations and the relative supply 

and demand for workers 

Production technology for the analysis of relative supply and demand for workers in STEM occupations 

was defined similarly: 

 

 
Taking the ratio of first-order conditions yielded following equation: 

 

where  

Primary system of regression equations 

The set of equations in (2) and (3) led to the following system of regression equations: 

 

where and  

were relative demand terms capturing the increase in demand for labor with an associate’s 

degree relative to no postsecondary degree, demand for labor with a bachelor’s degree or more relative 

to no postsecondary degree, and demand for labor in STEM occupations relative to non-STEM 

occupations. 

By estimating the system of regression equations in (4), gaps in relative supply and demand for labor in 

terms of postsecondary education and STEM occupations could be estimated. However, before 

estimating this system of equations, it was necessary to estimate additional equations in which relative 

supply and demand for labor were entered on the right-hand side and the natural log of the wage 

premium, the dependent variable, was entered on the left-hand side. After constructing appropriate 

measures of the dependent and independent variables in (4), the system was estimated such that the 

coefficient on the log of relative supply was equal across the first two estimating equations in (4). The 

final equation in (4) was for the analysis of relative supply and demand for STEM occupations. It was 

estimated once measures of the wage premium from STEM occupations, the dependent variable, and the 

relative supply for labor in efficiency units, the independent variable, were constructed. 
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Estimation of the wage premium for postsecondary attainment and STEM occupations 

Workers were not assigned to the three educational categories or to STEM occupations at random. For 

example, workers with a bachelor’s degree might have had certain characteristics that predisposed them 

to attending a four-year college. It became necessary to account for this selection bias before calculating 

the wage premium for postsecondary education and STEM occupations. 

This subsection outlines two Roy models: (1) wage outcomes from completing a high school diploma or 

less, an associate’s degree, or a bachelor’s degree or more and (2) wage outcomes from working in STEM 

and non-STEM occupations. Let 

X = [1 gender white exper exper2] 

denote the vector of covariates that entered the outcome equations predicting logarithmic wage, and 

Z = [1 gender white family size] 

denote the vector of covariates that entered the selection equations. The variable exper was defined as 

potential years of experience = age − 6 − years of education by the given age. 

The utility accruing to an individual i from choosing different levels of postsecondary attainment was 

defined as 
 

while the utility accruing to an individual i from choosing to work in a STEM or a non-STEM occupation 

was defined as 

 
 

 
The distributional assumption for the shocks, including the taste shocks 𝜀𝑢 and 𝜀𝑢 are given below. 

Let 
𝐷𝑇𝑌𝑃𝐸 𝑆𝑇𝐸𝑀 

 

 
 

denote three possible choices that determined the postsecondary attainment of person i, where c1 was 

normalized to 0. The choice set in (5) demonstrated the ordered nature of the problem. Let 

 

 

denote individual i’s choice of working in a STEM or a non-STEM occupation. 
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The observed wage was  
 , while the observed wage was  

The wage equation for the analysis of the wage premium from postsecondary attainment was 
 
 

 

while the wage equation for the analysis of the wage premium from STEM occupations was 

 

These two outcome equations could be written more compactly as     and 

. 
 

Estimation of the Heckman selection model 

The estimation proceeded in two steps. In step one, an ordered probit model was estimated. Choice 

probabilities were given by: 

 

In step two, estimates of c2 and γ from step one were used to construct the appropriate inverse Mills 

ratios, which were subsequently included as regressors for consistent estimation of the wage parameters 

𝛽𝑗 in equation (7). This proceeded according to the following derivation: 

were set equal to 1. 
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The two-step estimation of the ordered probit model first accounted for selection into different levels of 

postsecondary attainment, then calculated the wage premium to postsecondary attainment. These 

estimates were made annually for Texas and biannually for the Houston area. All estimates incorporated 

survey weights. A similar two-step estimation process was repeated in the analysis of STEM occupations. 

Once the two-step Heckman procedure was run — annually at the state level and biannually at the 

metropolitan statistical area (MSA) level from 1979-2016 — the wage premium for the two 

postsecondary attainment categories, relative to high school or less, and for STEM occupations, relative 

to non-STEM occupations, was calculated as follows: 
 

 
Forecasts and prediction intervals from 2017-2030 were calculated following this estimation. 

Family size as an exclusion restriction in the Heckman selection model  

Appendix A shows workers with bachelor’s degrees or more had, on average, smaller family sizes than 

workers with associate’s degrees, who in turn had smaller family sizes than workers with a high school 

diploma or less. The same relationship is observed in Appendix B between STEM and non-STEM workers. 

Information on family size was used an exclusion restriction in model estimation, assuming workers with 

lower levels of postsecondary attainment or in non-STEM occupations were more likely to come from 

large families. Family size was assumed to have an indirect, rather than a direct, relationship with wages. 

The inverse relationship between family size and educational attainment is documented in sociological 

literature (Blake, 1989; Steelman, Powell, Werum, & Carter, 2002), arguing that parents with more 

children likely devote fewer resources per child, pointing toward a quantity-quality tradeoff. 
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Estimation of supply and demand for postsecondary attainment and STEM occupations 

Measures of relative supply by postsecondary attainment were constructed in efficiency units, a standard 

in the literature (e.g., Acemoglu & Autor, 2012; Autor, Katz, & Kearney, 2006; Katz & Murphy, 1992). 

Construction of relative supply in efficiency units essentially adjusted the total hours of work supplied by 

a given employee in a given year by the human capital accumulation of that person. Let 

 
 

 
where Yij was the annual wage of individual i with postsecondary degree type or STEM occupational status 

j, rj was the rental rate of labor to a worker with postsecondary degree type or STEM occupational status 

j, Lij was the total hours of work individual i supplied in a year when working in category j, and Hi was the 

human capital of individual i. Individual i’s annual wage and total hours worked were observed in the 

March Current Population Survey (CPS) data, but Hi was not. However, it was possible to proxy for Hi such 

that Hi = exp{𝛽1experi + 𝛽2(experi)2}, where exper referred to potential years of experience. 

Substituting the proxy for human capital into the expression for annual income gave 
 
 

 

Thus, an individual with postsecondary degree type j (none, associate’s degree, or bachelor’s degree or 

more) or occupational status j (STEM or non-STEM) supplied labor in efficiency units measured by LijHi. An 

estimate of Hi was given by 

 

 

It became possible to obtain 𝛽  and 𝛽  as sample selection-adjusted coefficients on quadratic experience 

using the methodology discussed earlier. Steps one and two in this context included period dummies. 

𝐿𝑖𝑗 𝐻 𝑖  was obtained by taking the exponent of both sides in the previous expression for the log of human 

capital, then multiplying by total hours of work supplied by individual i in category j in a given year. In this 

manner, 𝐿𝑖,𝑁𝑂𝑁𝐸,𝑡𝐻 𝑖,𝑡, 𝐿𝑖,𝐴𝐴,𝑡𝐻 𝑖,𝑡, 𝐿𝑖,𝐵𝐴,𝑡𝐻 𝑖,𝑡, 𝐿𝑖,𝑁𝑂𝑁𝑆𝑇𝐸𝑀,𝑡𝐻 𝑖,𝑡, and 𝐿𝑖,𝑆𝑇𝐸𝑀,𝑡𝐻 𝑖,𝑡  were constructed for each      
individual at time t, given the observed postsecondary degree type and occupational status. 

Following the construction of labor supply in efficiency units for each observation, data were aggregated 

annually for Texas and biannually for the Houston area. In order to construct relative labor supply in 

efficiency units, aggregates of the labor supply with associate’s degrees and bachelor’s degrees or more 

were divided by aggregates of the labor supply of the base category, high school diploma or less. The 

result was then logged. A similar process was used for the STEM occupation analysis. Thus, 

1 

2 
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Having constructed series of relative labor supply in efficiency units, six-year moving averages were 

calculated for use in graphs. 

Relative demand was not observed in the CPS data. The following equations were used to estimate the 

demand for labor with an associate’s degree, relative to high school or less, and the demand for labor 

with a bachelor’s degree or more, relative to high school or less: 

 

 

An estimate of the demand for labor in STEM occupations, relative to non-STEM occupations, was given 

by: 

 

 
These equations were a rearrangement of the equations in (4). Estimation of the wage premium series 

(adjusted for sample selection) and the relative labor supply series (in efficiency units) at the Texas and 

Houston-area levels were described earlier. The only unknowns were the elasticity of substitution 

parameters, 𝜎 and 𝜎′. These parameters were calibrated to other studies like Katz and Murphy (1992) and 

Ciccone and Peri (2005), and were typically shown to lay between 1.5 and 3, with 1.5 as the preferred 

estimate of the elasticity of substitution between skilled and unskilled labor. Relative demand schedules 

at both geographical levels for different calibrations of 𝜎 and 𝜎′ are available upon request. 

Reduced-form estimation of the wage premium 

By estimating the following reduced-form model, the wage premium without adjusting for sample 

selection was obtained. For the analysis of postsecondary attainment, log hourly wage was regressed on 

dummy variables indicating whether an individual completed an associate’s degree, completed a 

bachelor’s degree or more, was female, and was non-white. For the analysis of STEM occupations, log 

hourly wage was regressed on dummy variables indicating whether an individual worked in a STEM 

occupation, was female, and was non-white. 
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2 

Sample selection-unadjusted results came from the following equations: 

 

and 
 

 

where ℓ = {1979-82, 1983-86, 1987-1990, 1991-1994, 1995-98, 1999-2002, 2003-06, 2007-10, 2011-14, 

2015−16}. The equations were estimated by pooling March CPS subsamples at four-year intervals for 

Texas and the Houston area without accounting for selection bias. In (10), 𝛽  × 100% was the expected 

percentage hourly wage differential of workers who had an associate’s degree, relative to those with no 

postsecondary degree, while 𝛽  × 100% was the expected percentage hourly wage differential of workers 

who had a bachelor’s degree or more, relative to those with no postsecondary degree. In (11), 𝛽  × 100% 

was the expected percentage hourly wage differential of STEM workers relative to non-STEM workers. 

Figures I1-I3 show the sample selection-unadjusted estimates of wage premiums in Texas and the 

Houston area. 
 

 

Figure I1: Sample selection-unadjusted estimates of the wage premium from postsecondary attainment 

relative to high school or less in Texas, 1979-2016 

1 

1 
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Figure I2: Sample selection-unadjusted estimates of the wage premium from postsecondary attainment 

relative to high school or less in the Houston area, 1979-2016 

Figure I3: Sample selection-unadjusted estimates of the wage premium from STEM occupations 

relative to non-STEM occupations in Texas and the Houston area, 1979-2016 
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March CPS 1979-2016 data processing 

March CPS data from 1979-2016 were processed following the steps taken in Autor, Katz and Kearney 

(2006). Top-coded wage values were multiplied by 1.5. Wage values were also deflated by the 1999 

Consumer Price Index. All analyses were limited to individuals 25-55 years old who were employed, 

worked at least 40 weeks in the previous calendar year, and worked 35 to 45 hours per week. Individuals 

whose potential experience was shown to be negative or greater than 39 were considered outliers and 

dropped from the sample. Survey weights were incorporated in summary statistics, regression analyses, 

and maximum likelihood estimation. 

Labor force composition by postsecondary attainment and STEM occupations, 1979-2016 

and projections, 2017-2030 

This subsection describes the decomposition of the labor force in Texas and the Houston area by 

postsecondary degree attainment and participation in STEM occupations. From 1979-2016, the data were 

used to estimate the percentage of workers with different levels of postsecondary attainment and the 

percentage of workers in STEM occupations. From 2017-2030, these estimates were forecasted, and 

might be subject to error. In addition to the main series, additional series examined trends by gender and 

race/ethnicity. All analyses were limited to workers 25-34 years old. To reduce statistical noise, a six-year 

moving average of the series was used in graphs. The forecasting exercise relied on the following AR(p) 

model: 
 

 
2 where, the stochastic process {yt} was defined as the six-year moving average series of the percentage 

of the labor force with an associate’s degree, with a bachelor’s degree or more, or working in a STEM 

occupation. The lag order, p, of the AR process for each of these series was determined by relying on 

standard diagnostic checks, which are available from the authors upon request. 

 

Table I1. Lag orders of AR pr 

Series 

ocesses used at the 

Texas 

Texas and Houst on-area leve ls, 1979-2016 

Houston Area 

State Females Non-whites MSA Females Non-whites 

Associate’s degree 2 2 3 1 1 6 

Bachelor’s degree or more 3 3 3 2 2 3 
STEM occupations 3 3 1 3 2 1 

 
 
 
 
 
 
 
 

 

2 Observations for the years 1979-1983 were dropped when calculating six-year moving averages. 
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Lists of high-skill and middle-skill STEM occupations based on the BLS SOC 2010 

classification 

The STEM occupations category relied on combining occupations that were high- or middle-skill STEM 

occupations based on the Bureau of Labor Statistics (BLS) Standard Occupational Classification (SOC) 

system, 2010. 

Table I2. H 

Code 

igh-skill STEM occupations list 

Description 

110 Computer and Information Systems Managers 
300 Architectural and Engineering Managers 
360 Natural Science Managers 
1000 Computer Scientists and Systems Administrators 
1010 Computer Programmers 
1020 Software Developers, Applications 
1060 Database Administrators 
1100 Network and Computer Systems Administrators 
1200 Actuaries 
1220 Operations Research Analysts 
1230 Statisticians 
1240 Mathematical science occupations 
1300 Architects, Except Naval 
1310 Surveyors, Cartographers, and Pho 
1320 Aerospace Engineers 
1350 Chemical Engineers 
1360 Civil Engineers 
1400 Computer Hardware Engineers 
1410 Electrical and Electronics Engineers 
1420 Environmental Engineers 
1430 Industrial Engineers, including H 
1440 Marine Engineers and Naval Archit 
1450 Materials Engineers 
1460 Mechanical Engineers 
1520 Petroleum, mining and geological 
1530 Engineers, nec 
1600 Agricultural and Food Scientists 
1610 Biological Scientists 
1640 Conservation Scientists and Fores 
1650 Medical Scientists and Life Scientists 
1700 Astronomers and Physicists 
1710 Atmospheric and Space Scientists 
1720 Chemists and Materials Scientists 
1740 Environmental Scientists and Geoscientists 
1760 Physical Scientists, nec 
3010 Dentists 
3040 Optometrists 
3050 Pharmacists 
3060 Physicians and Surgeons 
3250 Veterinarians 
3410 Health Diagnosing and Treating Practitioners, All Other 
4930 Sales Engineers 
4840 Sales Representatives, Wholesale and Manufacturing, Technical and Scientific Products 
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Code Description 

 

205 Farmers, Ranchers, and Other Agricultural Managers 
1050 Computer Support Specialists 

1540 Drafters 
1550 Engineering Technicians, Except Drafters 
1560 Surveying and Mapping Technicians 
1900 Agricultural and Food Science Technicians 
1910 Biological Technicians 
1920 Chemical Technicians 
1930 Geological and Petroleum Technicians 
1960 Life, Physical and Social Science Technicians, All Other 
2900 Broadcast and Sound Engineering Technicians 
3130 Registered Nurses 
3150 Occupational Therapists 

3160 Physical Therapists 
3200 Radiation Therapists 
3220 Respiratory Therapists 
3260 Health Diagnosing and Treating Practitioners 
3300 Clinical Laboratory Technologists 
3310 Dental Hygienists 
3320 Diagnostic Related Technologists 
3400 Emergency Medical Technicians and 
3410 Health Diagnosing and Treating Practitioners 
3500 Licensed Practical and Licensed Vocational Nurses 
3510 Medical Records and Health Inform 
3520 Opticians, Dispensing 
3530 Health Technologists and Technicians 
3540 Healthcare Practitioners and Technicians 
3610 Occupational Therapy Assistants 
3620 Physical Therapist Assistants 
3640 Dental Assistants 
3650 Medical Assistants and Other Heal 
4010 First-Line Supervisors of Food Preparation and Serving Workers 
6005 First-Line Supervisors of Farming 
6120 Forest and Conservation Workers 
6355 Electricians 

7000 First-Line Supervisors of Mechanics 
7010 Computer, Automated Teller, and Office Machine Repairers 
7020 Radio, Cellular, and Tower Equipment Installers and Repairs 
7030 Avionics Technicians 
7040 Electric Motor, Power Tool, and Repairers 
7100 Electrical and electronics repair 
7110 Electronic Equipment Installers a 
7120 Electronic Home Entertainment Equipment Installers and Repairers 
7125 Electronic Repairs, nec 
7140 Aircraft Mechanics and Service Technicians 
7200 Automotive Service Technicians an 
7240 Small Engine Mechanics 
7260 Vehicle and Mobile Equipment Mechanics 

Table I3. Middle-skill STEM occupations list 
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Code Description 

7360 Millwrights 

7720 Electrical, Electronics, and Elec 
7900 Computer Control Programmers and 
8030 Machinists 
8140 Welding, Soldering, and Brazing Workers 
8250 Prepress Technicians and Workers 
8630 Plant and System Operators, nec 
9030 Aircraft Pilots and Flight Engineers 
9410 Transportation Inspectors 

Table I3. Middle-skill STEM occupations list (cont.) 
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Appendix J. Methods for Section II 

First, Occupational Employment Statistics (OES) data from the U.S. Bureau of Labor Statistics were used. 

OES data listed the employment level and average annual wage for each occupation. For the analysis, the 

research team focused on occupations in the Houston metropolitan area in two periods, 2005-2007 and 

2014-2016. Across these early and late periods, three-year averages of employment and wages for each 

occupation were calculated. The rate of change in employment and wages across the early and late 

periods was then determined, denoted as Δ𝑗𝑜𝑏 and Δ𝑤𝑎𝑔𝑒 , respectively. Among all occupations, average 

rates of change in employment and wages were calculated, denoted as  ̅Δ̅𝑗̅𝑜̅𝑏̅ and ̅Δ̅𝑤̅̅𝑎̅̅𝑔̅𝑒̅. Each occupation        was 

classified into four groups based on Δ𝑗𝑜𝑏 and Δ𝑤𝑎𝑔𝑒 and their relationships to the average rates of change ̅Δ̅𝑗̅𝑜̅𝑏̅ 

and Δ̅̅𝑤̅̅𝑎̅̅𝑔̅𝑒̅. In the classification, occupations with job growth greater than or equal to the         average rate of 

job growth were defined as “high supply growth rate” and occupations with job growth lower than the 

average rate of job growth were defined as “low supply growth rate.” Occupations with wage growth 

greater than or equal to the average rate of wage growth were “high demand growth rate” and 

occupations with wage growth lower than the average rate of wage growth were “low demand 

growth rate.” Figure J1 illustrates the classification schema. The low supply, high demand category, 

highlighted in red, was the focus of this analysis as it illustrated a gap between supply and demand. These 

occupations appeared to be increasingly needed by the Houston-area economy, and due to a shortage of 

individuals in these occupations, economic returns showed a high growth rate. 

 

 Δ𝑗𝑜𝑏 < ̅Δ̅𝑗 ̅𝑜 ̅𝑏̅ Δ𝑗𝑜𝑏 ≥ ̅Δ̅𝑗 ̅𝑜 ̅𝑏̅ 

Δ𝑤𝑎𝑔𝑒  < ̅Δ̅𝑤̅̅𝑎̅̅𝑔̅𝑒̅ 
Low supply growth rate, 
low demand growth rate 

High supply growth rate, 
low demand growth rate 

Δ𝑤𝑎𝑔𝑒  ≥ ̅Δ̅𝑤̅̅𝑎̅̅𝑔̅𝑒̅ 
Low supply growth rate, 

high demand growth rate 
High supply growth rate, 
high demand growth rate 

 

In an effort to facilitate comparisons and understand patterns, occupations were summarized using the 

nine-category job classification developed by the U.S. Equal Employment Opportunity Commission 

(EEOC): 

1. Officials and managers (e.g., chief executives, sales managers) 

2. Professionals (e.g., accountants, engineers) 

3. Technicians (e.g., dental hygienists, pharmacy technicians) 

4. Sales workers (e.g., cashiers, sales representatives) 

5. Administrative support workers (e.g., legal secretaries, office clerks) 

6. Craft workers (e.g., carpenters, machinists) 

7. Operatives (e.g., parking lot attendants, taxi drivers) 

8. Laborers and helpers (e.g., painters, plumbers) 

9. Service workers (e.g., bartenders, waiters) 

Figure J1. Growth of supply and demand job classification 
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Using the supply and demand growth rate and EEOC classifications, the typical education required, 

average annual wage, and primary skills needed for each job category were described. Education and 

wage data came from the Texas Workforce Commission (TWC), a state agency that provides workforce 

development services to job seekers and employers. For each occupation, TWC listed the typical 

education required and average annual wage in 2015. The table for the Gulf Coast Workforce 

Development Area, which included Houston and its environs, was used in this analysis. The level of 

education required was reported in degrees, but was converted to years of education completed to 

simplify the analysis.3 

To determine the primary skills needed for each occupation, an approach similar to the one advanced by 

economists Daron Acemolgu and David Autor (2011) was developed. First, data on abilities, work 

activities, and work contexts were downloaded from the Occupational Information Network (O*NET) 22.1 

Database. O*NET is a database comprised of occupational definitions and information to promote greater 

understanding of work in the U.S. O*NET collects survey information from employees and trained job 

analysts about individual occupation characteristics. Employees and analysts rate each characteristic on a 

1-5 Likert scale indicating how important a characteristic is to the occupation.4,5 
 

Table J1. Abilities, work activities, and work contexts 

Abilities: enduring attributes of the individual that influence performance  
Spatial orientation 
Manual dexterity 

Work activities: general types of job behaviors occurring on multiple jobs  

Analyzing data/information 
Thinking creatively 
Controlling machines and processes 
Operating vehicles, mechanized devices, or equipment 
Interpreting information for others 
Establishing and maintaining personal relationships 
Guiding, directing and motivating subordinates 
Coaching/developing others 

Work contexts: physical and social factors that influence the nature of work  
Spend time using hands to handle, control or feel objects, tools or controls 
Spend time making repetitive motions 
Importance of being exact or accurate 
Importance of repeating the same tasks 
Structured v. unstructured work 

  Pace determined by speed of equipment  
Source: Occupational Information Network website. 

 

3 Levels of education were converted to years of education in the following way: no formal educational credential (11 
years); high school diploma or equivalent (12 years); postsecondary non-degree award (13 years); some college, no degree 
(13 years); associate’s degree (14 years); bachelor’s degree (16 years); master’s degree (18 years); and doctoral or 
professional degree (22 years). 
4 Employees did not provide ratings of abilities; only analysts did. Both employees and analysts rated work activities and 
contexts; employee ratings had the most complete data and were used in the analysis. 
5 The characteristics analyzed had scales which indicated the importance or level required for the job. The importance and 
level scales were highly correlated, so in the analysis, importance scales were used. 
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The items listed in Table J1, which Acemolgu and Autor used to develop composite measures of 

occupational skills, were selected for the analyses. Using the occupation-level dataset with ratings for 

each of the selected abilities, work activities, and work contexts, an exploratory factor analysis revealed 

four separate factors.6 Four skill indices were created by factor scoring and labeled: 1) blue-collar; 2) 

white-collar: routine; 3) white-collar: non-routine, analytical; and 4) white-collar: non-routine, 

interpersonal. These indices were similar to the skills described by Acemolgu and Autor and are defined in 

Table J2. The indices were not practically interpretable except higher scores meant a particular skill was 

more common within an occupation, while lower scores meant it was less common. 

 
Table J2. Occupational skills definiti 

Blue-collar  

ons 

 Required low levels of education 
 Was physically-demanding 

 
White-collar: routine  

 Required low-to-medium levels of education 

 Involved problem-solving and repetitive 
activities 

 
White-collar: non-routine, analytical  

 Required medium-to-high levels of education 

 Involved problem-solving and 
mathematical/formal reasoning 

White-collar: non-routine, 
interpersonal  

 Required medium-to-high levels of education 

 Involved problem-solving and in-person 
interactions/management 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 Factor loadings and scores are available from the authors upon request. 
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Appendix K. Methods for Section III 

Three restricted-use data sources were used for the analyses: HERC multi-year data, National Student 

Clearinghouse (NSC) data, and Texas Workforce Commission (TWC) data. Raw data files were provided by 

the Houston Independent School District (HISD) and used to build a dataset of high school seniors in the 

2006-2007 through 2008-2009 school years. Students were tracked longitudinally, allowing measurement 

of labor market outcomes seven years after high school graduation. 

HERC data provided measures of student characteristics, which are described later in the section. 

Measures of educational attainment came from the NSC, an organization that collects information on 

college enrollment and completion. The variables of interest — wages and unemployment insurance 

receipt — were made available through the TWC. 

Although the initial dataset included more than 27,000 students, the analytical samples were much 

smaller. Table K1 summarizes sample restrictions for each analysis. 
 

Table K1. Analytic samples for section III  

 
 
 

Restriction  

 

Limited to 
high school 
seniors in 
fall 2006- 

2008  

Limited to 
students who 

graduated 
high school in 
spring 2007- 

2009a  

 
Limited to 
students 

working in 
Texasb  

Limited to 
students 

working in 
Texas or who 

received 
unemployment  

insurancec  

 

Limited to 
students with 

data on 
postsecondary 

attainment  

 

Limited  
to non- 
Native 

American 
studentsd  

Summary 
statistics of 
wages 
(N = 12,434) 

 
X 

  
X 

   
X 

Regression 
models predicting 
wages 
(N = 10,996) 

 
X 

 
X 

 
X 

  
X 

 
X 

Summary 
statistics of 
unemployment 
insurance 
(N = 12,497) 

 
 

X 

   
 

X 

  
 

X 

a This restriction was necessary because NSC data were available for high school graduates only. While some seniors might 

have graduated later, this could not be observed completely: no data was available for students who completed a 

Certificate of High School Equivalency outside HISD. 
b The wage data was restricted to individuals working in Texas (i.e., excluded people who were not in the labor force, 

unemployed, living outside the state). 
c The sample for the unemployment insurance analysis included individuals in the wage data as well as individuals in the 

unemployment insurance data. 
d There were too few Native American students to produce precise estimates for that subgroup. 
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Since one-quarter of the students in the dataset had missing information on at least one covariate, 

missing values were filled in using multiple imputation with chained equations. The statistics reported 

were averages across 10 imputed datasets, adjusting means, coefficients, and standard errors 

accordingly. 

The key dependent variables in the analyses were early career wages and unemployment insurance 

receipt seven years after high school. These measures were pulled from the second fiscal quarter. To ease 

interpretation in the summary statistics table, second quarter wages were multiplied by four to 

approximate an annual wage. In regression analysis, the natural log of second quarter wages was used to 

normalize the wage distribution. Regression coefficients could, therefore, interpreted as percent changes 

in quarterly wages. The unemployment insurance variable was binary and measured whether a student 

received benefits. 

Summary statistics of wages and unemployment insurance for the whole sample and by gender (male, 

female), race/ethnicity (white, black, Hispanic, Asian), and economic disadvantage (no, yes) were 

produced. These variables were also included in the wage regression models. The models controlled for 

three measures of academic performance: 11th-grade composite test scores, grades across all courses 

taken in the 12th grade, and the number of college-level credits earned in the 12th grade. To generate 

the composite test score variable, reading, mathematics, science, and social studies scores from the Texas 

Assessment of Knowledge and Skills (TAKS) were averaged. The measure was reported in standard 

deviation units. A number of students, mostly those in special education, were exempt from the TAKS, so 

a binary indicator that accounted for those individuals was included in the models. The course grades 

variable showed the average percentage grade among all courses taken in the 12th grade, while the 

college-level credits variable showed the number of credits earned in Advanced Placement, International 

Baccalaureate, and academic dual enrollment courses.7 In terms of postsecondary attainment, a 

categorical variable that measured the most advanced credential earned within six years of high school 

was included: no postsecondary credential, certificate/diploma, associate’s degree, bachelor’s degree, 

 
 

7 Career & Technical Education dual enrollment courses were excluded from this measure. Each semester-long 
course that a student passed (grade of 69.5 and above) counted as 0.5 credits. 

A special note on the unemployment insurance analysis 

Unemployment insurance receipt is not the same as unemployment. Not all unemployed persons file 

claims for unemployment insurance. In addition, people may still be unemployed once their 

unemployment benefits expire. Therefore, unemployment insurance receipt is an underestimate of 

unemployment overall. 

Only 43 percent of the sample was working in Texas seven years after high school. The remaining 57 

percent included 1) students who continued living in Texas and were either unemployed or not in the 

labor force (e.g., in school, stay-at-home parents) or 2) students who were living outside the state. 

For the unemployment insurance analysis, summary statistics were produced. The sample size was 

too small to use multivariate regression (i.e., too few students received unemployment insurance). 
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and master’s/doctorate/professional degree. All statistical models controlled for 12th grade cohort fixed- 

effects (i.e., 2006-2007, 2007-2008, 2008-2009). 

Finally, in a robustness check, the sample was limited to students with a postsecondary credential and 

controlled for their college major (see Table K2); these results are reported in Appendix H. 
 

Computer and information sciences 
Engineering and engineering technology 
Biological and physical sciences, science technology, mathematics, and agricultural sciences 
General studies and other 
Social sciences 
Humanities 
Health care fields 
Business 
Education 
Other applied 
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About HERC. Focusing on the most pressing challenges facing the region, the Houston 

Education Research Consortium (HERC) is a research-practice partnership between Rice 

University and 11 Houston-area school districts. HERC research is developed directly 

alongside district leaders with findings shared with decision makers – culminating in 

long-term, equity-minded solutions, opportunities and growth for Houston and beyond. 
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