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In regression analysis courses, there are many settings in which the response variable under study is con-

tinuous, strictly positive, and right skew. This type of response variable does not adhere to the normality

assumptions underlying the traditional linear regression model, and accordingly may be analyzed using a

generalized linear model assuming either a lognormal or gamma distribution. As such, students oftentimes

become confused about which of these two distributions should be chosen to model a given daset. In this

article, we argue that the comparability of these two models should be taught through both simulation and

real data analysis. Students will learn to identify the cases in which these two models can be used somewhat

interchangeably through this teaching methodology.
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1 INTRODUCTION

In the analysis of data with non-normal error distributions, generalized linear models (GLMs) assuming

either a gamma or lognormal distribution can oftentimes both suitably model the phenomena under study.

In particular, the gamma and lognormal distributions are appropriate choices when modelling continuous,

positively skewed data with a constant coefficient of variation (CV).

In this article, we demonstrate that students can be taught about the comparable results between these

analyses using both real and simulated data. Students will learn about the data features and distributional

assumptions that must be met in order for these gamma and lognormal models to be used rather inter-

changeably. In particular, the sensitivity of these models to the sample size and gamma shape parameter of

the given dataset are explored.

The issue of whether or not analyses assuming these distributions will produce similar results has been

discussed in the literature (Firth 1988; Atkinson 1982). Nath and Das (2012) demonstrated that, although

the assumption of a constant coefficient of variation may be met, regression estimates may be different be-

tween gamma and lognormal models. Wiens (1999) explored how censoring, model misspecification, and

the presence of outliers can contribute to the discrepancies in lognormal and gamma analysis in real data

sets. Atkinson (1982) indicated that, given a non-constant variance, lognormal and gamma analyses may

yield dissimilar results. However, these analyses are largely carried out on real datasets that tend to deviate

from the assumptions of the gamma and lognormal models; in contrast, our analyses are first carried out

on simulated data. As such, we are able to clearly demonstrate how adherence to these model assumptions

produces similar results between gamma and lognormal analyses.

The purpose of this article is not to discuss the dissimilarities between gamma and lognormal analyses

in certain cases (as is the case in the aforementioned articles). Instead, we want to present a method of in-

struction by which students will come to understand the situations in which both analyses assuming gamma

and lognormal distributions are appropriate.

The structure of this article will be as follows. In section 2, data simulated from a gamma distribution

over various shape parameters are produced. Analyses of this dataset assuming gamma and lognormal distri-

butions are shown to yield similar results, and inferences are drawn about the sensitivity of these models to

the shape parameter and sample size of the simulated data. In section 3, this instruction is then extended to

a real insurance claim severity dataset. Analyses assuming lognormal and gamma distributions are carried

out in both interaction and non-interaction models, and are found to give comparable results in both cases.

Conclusions about the effects of the variance and gamma shape parameter of the dataset on the similarity

of these analyses are presented.
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1.1 Teaching Gamma and LogNormal Analysis Using Simulations

Students in regression courses are often taught that the gamma and lognormal distributions are appro-

priate choices when modelling continuous, positively skewed data with a constant coefficient of variation.

These students, however, are often confused as to which distribution they should assume the response data

follows. We have found that fitting both gamma and lognormal models to simulated data is an effective

way of demonstrating that either model choice is adequate in many cases. The use of simulated data is,

in this context, an excellent way to ensure that the data is continuous, unimodal, positively skewed, and

adhering to the model assumptions of constant coefficient of variation and constant variance. Real datasets

are not guaranteed to meet all of these model assumptions, and may further confuse the issue for these

students. Moreover, simulations can readily demonstrate that datasets with large sample sizes and gamma

shape parameters will yield similar results between analyses assuming gamma and lognormal distributions,

as these data features can be specified in the simulation.

1.2 Determination of Gamma Shape Parameter

Simulations produced from the gamma distribution with a small shape parameter α may be subject to

some numerical inaccuracies. In particular, as α tends to zero, the gamma distribution similarly converges

to a concentrated point mass at zero. The algorithm employed by the rgamma function in R encounters this

particular problem; for small values of α, the gamma distribution may return values so small that they will

be represented as zero in computer arithmetic (Liu et al. 1993). The glm function in R is fitted using the

iteratively reweighted least squares method, which in this case maximizes the log-likelihood of the gamma

distribution function.

`(α, β) = −nα lnβ − n ln Γ(α) − 1

β

n∑
i=1

xi + (α− 1)
n∑

i=1

lnxi (1)

Exact values of zero in the data sample will then necessarily cause the simulation to fail. Omission of

these zero values will render the simulation viable, but will also effectively reduce the sample size of the

simulation (a result that becomes untenable for small sample sizes as the number of parameters increases).

Several issues were encountered when fitting gamma and lognormal GLMs to data generated from gamma

distributions with a shape parameter α ≤ 0.4. The glm function in R failed to converge for many of these

cases. In the few instances that the glm function did converge, the confidence intervals associated with the

predicted values for both the gamma and lognormal models were unreasonably large. As a result of these

practical limitations, one-parameter analyses were carried out using a shape parameter of α = 0.5, 0.6, 0.7,

0.8, 0.9, 1, 5, and 10. Two-parameter simulations were analyzed only in the cases with a shape a parameter
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of α = 0.7, 0.8, 0.9, 1, 5, and 10. Alternative algorithms, which promise improved accuracy and efficiency

when simulating from a gamma distribution with a small shape parameter, have been established by Liu et

al. (1993) and Kundu and Gupta (2007).

1.3 Simulation Method

We began the simulation process by drawing explanatory variables from a uniform distribution Xi ∼

Uniform(n, 0, 1) using the runiform function in R. We carried this process out across sample sizes n=15,

30, 50, 100, and 1000, as well as for one and two parameter trials. Response data was simulated from the

gamma distribution Xi ∼ Gamma(α, β), where the values of the gamma scale parameter β were taken to be

β = α/exp(β0 + β1X1 + . . .+ βpXp) (2)

and the values of the shape parameter α were established as above. We used the rgamma function to draw

samples of the appropriate size according to these parameters α and β. Gaussian and gamma family GLMs,

both using log-links, were fit to this data set assuming the model y ∼ X1 +. . . +Xi according to the number

of parameters, i, under simulation.

1.4 Analyses of the Simulated Data

When presenting these analyses in class, we would start by discussing the single parameter simulations

using a small shape parameter (α < 1). In many of the smaller sample cases (n = 30), the gamma and

lognormal regression estimates fell within ±0.25 units of one another. However, as sample size was increased

to n=1000, these estimates began to approximate both one another as well as the true covariate values (see

Table 1). We would here note that the proximity of regression estimates to the true covariate values appeared

to be very sensitive to changes in sample size when using response data with a small shape parameter.

Table 1. Regression estimates of Gamma and Lognormal models given response data with a shape parameter

α = 0.5 and true values of β0 = 0.5 and β1 = 1.2.

Gamma Lognormal Sample

Size

β̂0 0.74579 0.84002
30

β̂1 0.82767 0.64991

β̂0 0.47852 0.49283
1000

β̂1 1.39043 1.36859
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Once the students have grasped the behaviours of these comparable models over datasets with small

gamma shape parameters, we extend our discussion into the single parameter simulations using a larger

shape parameter (α > 1). The lognormal and gamma GLM regression estimates in these cases converged to

both one another as well as to the true covariate values, even at smaller sample sizes (see Table 2 and 3).

Table 2. Regression estimates of gamma and lognormal models given response data with a shape parameter

α = 10 and true values of β0 = 0.5 and β1 = 1.2.

Gamma Lognormal Sample

Size

β̂0 0.43801 0.44984
30

β̂1 1.21189 1.19330

β̂0 0.48510 0.47447
1000

β̂1 1.19923 1.21693

Table 3. Some of the predicted values of the gamma and lognormal models given response data with a shape

parameter α = 10, sample size of n = 30, and true values of β0 = 0.5 and β1 = 1.2.

Prediction Output

Gamma Lognormal

2.508154 2.588879

2.404936 2.500109

3.079315 3.069642

2.031268 2.173056

2.870337 2.895657

2.907224 2.92652

We would note that the proximity of these regression estimates to the true covariate values appeared far less

responsive to changes in sample size than did those fitted to small-α response data.

As a part of this instruction, we also present the measures of goodness of fit by which a student can

assess how each model fits the given dataset. In particular, we compare model fit using deviance residuals

(see Table 4). We also present a comparison of the ninety-five percent confidence intervals for the predicted

values between the models (Figures 1 and 2).
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Table 4. Gamma and Lognormal Deviance Residuals over various sample sizes given α = 10

Sample

Size

Gamma

Deviance

Residual

Lognormal

Deviance

Residual

30 0.016923 0.09876944

50 0.35656 0.97976655

100 0.508188 2.49771439

1000 0.048169 0.13175174

Figure 1. Gamma (left) and lognormal (right) prediction plots and associated confidence intervals for a

dataset sample of size n=100 simulated from a gamma distribution with a shape parameter of α = 5.
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Figure 2. Gamma (left) and lognormal (right) prediction plots and associated confidence intervals for a

dataset sample of size n=30 simulated from a gamma distribution with a shape parameter of α = 10.

Two parameter simulations with a large shape parameter (α > 1) produced covariate estimates that were

similar within ±0.15 units across simulations with large sample sizes (n=1000). Instruction of this section

should be concluded by explaining that, given a large shape parameter α, the gamma distribution approx-

imates the normal distribution with a mean of µ=αβ. In particular, as the shape parameter α increases,

the skew of the distribution decreases. As such, the student should grasp that these two analyses will yield

similar results given a dataset with a sufficiently large estimate of the gamma shape parameter, or given a

sufficiently large sample size.

2 EXAMPLE: INSURANCE CLAIM SEVERITY

In this section, we carry out both a gamma and a lognormal analysis on a real data set from the French

Motor Personal Line dataset five (freMPL5) within the R package CASdatasets (see Figure 3). This data set

includes claim amount, claim history, and risk predictors for a set of autoinsurance policies from the year 2004.

The purpose of this analysis was to determine how the number of claims made in the past four years would

impact the current claim severity, after discriminating for previous claim type. The explanatory variables

under study were as follows:

� ClaimNbResp – Number of responsible claims in the 4 preceding years.
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Figure 3. Autoinsurance claim amounts for a sample of n= 2297 from the freMPL5 dataset in CASdatasets

� ClaimNbNonResp – Number of non-responsible claims in the 4 preceding years.

� ClaimNbParking – Number of parking claims in the 4 preceding years.

� ClaimNbFireTheft – Number of fire-theft claims in the 4 preceding years.

� ClaimNbWindscreen – Number of windscreen claims in the 4 preceding years.

Interactions between these predictors were also tested for. The response variable, ‘ClaimAmount’, was

the total claim amount of the guarantee. An initial model assuming a gamma distribution with a log-link

was fit using selection by AIC. This same model was then fit assuming a gaussian distribution with a log-link.

Presentation of this dataset should indicate that, while the assumption of a constant coefficient of varia-

tion was not met for this dataset, regression estimates between the models were still comparable (Table 5).

Across both models, the number of responsible, non-responsible, and windscreen claims in the past 4 years

appeared to significantly affect the current claim size. After removing the interaction term from this model,

analysis was again carried out assuming both gamma and lognormal distributions with a log-link (see Figure

4). Covariate estimates were again comparable between the models (Table 6).
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Table 5. Regression estimates from interaction models assuming a gamma (top) and lognormal (bottom)

distribution.

Gamma Model

Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.18943 0.0367 195.899 < 2e-16 ***

ClaimNbResp 0.15235 0.04375 3.482 0.000506 ***

ClaimNbNonResp 0.06684 0.04374 1.528 0.126629

ClaimNbParking 0.10293 0.07159 1.438 0.150612

ClaimNbWindscreen -0.16272 0.03758 -4.33 1.56e-05 ***

ClaimNbNonResp:ClaimNbWindscreen 0.07184 0.05214 1.378 0.168389

Shape Parameter 0.886829

Lognormal Model

Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.20493 0.03629 198.541 < 2e-16 ***

ClaimNbResp 0.14954 0.03604 4.15 3.45e-05 ***

ClaimNbNonResp 0.04522 0.0374 1.209 0.226709

ClaimNbParking 0.07317 0.06484 1.129 0.259203

ClaimNbWindscreen -0.18419 0.04857 -3.793 0.000153 ***

ClaimNbNonResp:ClaimNbWindscreen 0.10698 0.05046 2.12 .034122 *

Table 6. Regression estimates from non-interaction models assuming a gamma (top) and lognormal (bottom)

distribution.

Gamma Model

Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.17831 0.03582 200.391 < 2e-16 ***

ClaimNbResp 0.15157 0.04371 3.468 0.000535 ***

ClaimNbNonResp 0.10151 0.03735 2.718 0.006626 **

ClaimNbParking 0.10072 0.07152 1.408 0.159177

ClaimNbWindscreen -0.13692 0.03219 -4.253 2.19e-05 ***

Shape Parameter 0.886115

Lognormal Model

Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.19085 0.0357 201.446 < 2e-16 ***

ClaimNbResp 0.14911 0.03613 4.127 3.81e-05 ***

ClaimNbNonResp 0.07548 0.03182 2.372 0.017778 *

ClaimNbParking 0.06833 0.06473 1.056 0.291212

ClaimNbWindscreen -0.12919 0.03835 -3.369 0.000767 ***
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Figure 4. Prediction plots and associated confidence intervals for each predictor in the gamma (left) and

lognormal (right) non-interaction models.
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Atkinson’s criterion states that two analyses should provide similar results given the condition that the

variance σ2 ≤ 0.6 (Atkinson 1982). This dataset does not adhere to the assumption of constant variance, and

as such this modest discrepancy between analysis results is consistent with Atkinson’s criterion not being met.

Students presented with this example will learn that, even in the cases where the assumption of a con-

stant coefficient of variation is not met, the gamma and lognormal model will oftentimes produce comparable

results when analyzing continuous, positively skewed data. An emphasis will be placed on the fact that the

proximity of these regression estimates can especially be predicted by the size of the dataset under study (as

in agreement with the simulation analyses).

3 CONCLUDING REMARKS

Simulation analysis can unambiguously convey the manner in which certain dataset parameters produce

similar regression estimates under comparable models. As such, teaching methods that make use of simula-

tions help to demonstrate the conditions under which analyses assuming gamma and lognormal distributions

will produce the same results. Following these methods, students will learn about the data features and

distributional assumptions that must be met in order for these gamma and lognormal models to be used

fairly interchangeably.
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