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Horizon Content Knowledge (HCK, Ball, Thames & Phelps, 2008), knowledge that teachers hold 
about the interconnectedness of mathematics, has been recognized as an integral component of 
Mathematics Knowledge for Teaching, yet little is known about how or where it is taught in the 
preservice teacher (PST) curriculum or how researchers should study HCK. This study used 
network analysis to examine HCK in the context of undergraduate PST textbooks. I describe my 
approach to the study and report on the analytical questions I encountered. I then describe the 
affordances and constraints of network analysis for understanding HCK and reflect on the power 
of this tool to understand HCK in a variety of contexts.  
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Ball, Thames, and Phelps (2008) developed a framework for the Mathematical Knowledge 
for Teaching (MKT) which divides MKT into six subdomains, three of which are oriented 
around subject matter knowledge (SMK) and three around pedagogical content knowledge 
(PCK). SMK is further divided into three dimensions: Common Content Knowledge (CCK), 
Specialized Content Knowledge (SCK) and Horizon Content Knowledge (HCK). CCK is 
mathematical content that is generally known outside of the world of teaching; SCK is 
mathematical content that teachers rely on to teach; and HCK is often noted as knowledge 
teachers hold about the interconnectedness of mathematics. One example of HCK is the 
knowledge that teachers possess regarding how addition and multiplication are connected 
mathematical domains.  

Little work has been done to examine what HCK is being taught to PSTs. One place to look 
for answers to these questions is in PST textbooks. Because of the varying definitions of HCK in 
the literature, and because the interconnectedness of mathematics may be more difficult to define 
and analyze than CCK or SCK, the study of HCK presents unique analytical challenges that 
network analysis may address. For this study, I examined three texts for a mathematical content 
course for elementary PSTs using network analysis to examine HCK in the context of addition of 
whole numbers. I present my methodological approach to this study, along with reflections on 
the use of network analysis for examining HCK. I discuss the analytical choices that I 
encountered and the affordances and constraints of network analysis for understanding HCK in 
PST textbooks. Finally, I outline how network analysis may be used in future work on HCK.  

Theoretical Framework and Purpose of Study 
 PSTs come to understand disciplinary knowledge within a socio-cultural environment. As 

Lave and Wenger (2007) note: “This world is socially constituted; objective forms and systems 
of activity, on the one hand, and agents’ subjective and intersubjective understandings of them 
on the other, mutually constitute both the world and its experienced forms” (p. 51). Thus, the 
HCK of individual teachers is the result of a process of socially reproducing culturally and 
socially situated knowledge. In that process of social reproduction, PST textbooks, as artifacts, 
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transmit cultural tools the mathematics community values in the education of PSTs (Wertsch, 
1998). As such textbooks play an important role in cultivating the HCK of PSTs.  

This study, situated in a socio-cultural framing, makes three major assumptions. First that 
PST textbooks, as cultural artifacts, describe some of the cultural tools PSTs are exposed to 
during a math content course. Second, that the Common Core State Standards for Mathematics 
(CCSSM; National Governors Association Center for Best Practices, Council of Chief State 
School Officers, 2010) as a community-generated artifact, represents the domains of CCK that 
teachers are expected to be familiar with. The final assumption is that I, as a full participant in 
the mathematical community and the community of teacher educators, understand the cultural 
tools and norms of this community. This positions me to create a reflection of the HCK that I 
recognize in PST textbooks. A result of this framing is that the HCK I have identified is one of 
many representations of HCK that may facilitate PST understanding of the interconnectedness of 
mathematics. Results about HCK from this study are bounded by the cultural artifacts included 
in the analysis and by my own knowledge. This is a socially, culturally, and historically situated 
analysis of HCK from three textbooks.  

Though the MKT framework is well-established, there is not full agreement in the literature 
on what constitutes HCK (Ball & Bass, 2009; Ball, Thames & Phelps, 2008; Figueiras, Ribeiro, 
Carrilo, Fernández, and Deulofeu, 2011; Zazkis & Mamolo, 2011). Ball, Thames, and Phelps 
(2008) defined HCK as "an awareness of how mathematical topics are related over the span of 
mathematics included in the curriculum" (p. 403). The following year, Ball and Bass (2009) 
expanded on this idea and outlined four aspects of HCK: (1) "A sense of the mathematical 
environment surrounding the current ‘location’ in instruction"; (2) Major disciplinary ideas and 
structures"; (3) Key mathematical practices; and (4) Core mathematical values and sensibilities 
(p. 6). For this study, I operationalize HCK using Ball and Bass’s (2009) first and second aspects 
of HCK and also integrate a similar definition proposed by Figueiras et al. (2011) which defines 
HCK as "connections between mathematical concepts and ideas, grounded in the coherence of 
mathematics, in which all concepts and ideas are precisely defined and logically interwoven" (p. 
28). Based on these two definitions, I identify eighteen broad mathematical concepts (major 
disciplinary ideas) present in four cultural artifacts (the CCSSM and three PST texts).  I consider 
HCK present when two or more of those eighteen mathematical concepts are connected by the 
textbook author in a coherent way (within a single paragraph).  

Method 
Sampling and Coding 

Three textbooks were chosen for this study on the HCK based on a single criterion: the 
needed to be reasonable to use in a mathematical content course for elementary undergraduate 
PSTs. The three books selected were: Manes and Holmes (2018); Sowder, Sowder and 
Nickerson (2017); and Caldwell, Karp, and Bay-Williams (2011). Manes and Holmes (2018) 
authored an Open Educational Resource written to help students "think like a mathematician," (p. 
1) and which emphasized the Common Core Standards for Mathematical Practice (SMP). 
Similarly centering the SMP, Sowder et al. (2017) aimed to support classrooms where "students 
take an active part in learning" (p. xi) and provide students insight into "children’s mathematical 
thinking" (p. xi). Caldwell et al. (2011) is a text written solely about addition and subtraction as 
part of a larger series of texts published by the National Council of Teachers of Mathematics. I 
consider this to be a high-level text for an undergraduate PST content course and a possible 
exemplar of HCK. After texts were chosen, I selected a single topic for study: addition of whole 
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numbers. Sections of the book that explicitly referenced addition of whole numbers were coded 
and analyzed. Data were chunked into paragraphs, using one paragraph as the base level of 
analysis. Relying on the definitions by Ball and Bass (2009) and Figueiras et al. (2011), 
paragraphs were coded as containing HCK if they connected two different mathematical 
concepts in a coherent picture of mathematics. I did not code paragraphs as containing horizon 
content knowledge if the text only implicitly relied on previous concepts, as many new 
mathematical concepts rely on existing mathematical knowledge. For this study, I was interested 
in the information explicitly presented to students, not what they might intimate from the text. I 
also chose, because of the exploratory nature of this study, to code two concepts as “connected” 
without being more specific about the relationship of that connection (Carley, 1993). For this 
analysis, I make no assumptions about the linearity in mathematical domains. For example, I do 
not assume counting precedes addition or that addition precedes subtraction. I only document 
that the textbook describes a “connection” between the two concepts by discussing them in the 
same paragraph. This choice impacts the resulting analysis and I discuss those limitations below.  

The study relied on the CCSSM to identify disciplinary ideas that Ball and Bass’s 
conceptualize. When applied, the CCSSM was problematic for uncovering HCK in the textbook 
content because of differences in the level of content detail between the CCSSM and the PST 
textbooks. Once I identified this analytical issue, I developed emerging categories from the PST 
texts, in light of CCSSM standards. I formalized these emerging categories into new conceptual 
codes (Saldaña, 2016) and these were used to code the disciplinary ideas that defined HCK. 
These conceptual codes, developed in the first round of coding, more faithfully described the sort 
of concepts that were connected in the textbooks. The final eighteen codes arose from the 
CCSSM in the context of the PST textbooks, and described eighteen different disciplinary ideas 
that I found to be present in the textbooks and standards. The codes are addition (A), subtraction 
(S), multiplication (M), division (D), word problems (WP), concrete models (C), decomposing 
(DEC), properties (P), place value (PV), unknown addend (or the relationship between addition 
and subtraction; UA), counting (CNT), mental math (MM), equations (EQN), algorithms (ALG), 
definition of addition (DEF), measurement (MEAS), estimation (EST), and functions (FCN). For 
consistency, all paragraphs were coded a second time using the conceptual codes. Finally, the 
conceptual codes were checked against the initial CCSSM codes for alignment.  
Analysis 

Once data was coded, I used network analysis to examine the connections (Borgatti, Mehra, 
Brass, & Labianca, 2009). Network analysis relies on nodal graphs to visualize connections 
between objects (in this case, mathematical disciplinary ideas). Borgatti et al. (2009) list several 
types of analysis that can be conducted using network theory, including an analysis of types of 
connections, and an analysis of the underlying structure of connected systems. Network analysis 
has been used in education in a variety of contexts (Carolan, 2013) and network analysis is 
widely used outside of education to understand connected or relational data (Scott, 2013).  

Since network analysis has not been previously used to analyze HCK, I briefly describe how 
the resulting visualizations originate from the initial coding. Here is an example paragraph from 
Sowder, Sowder, and Nickerson (2017). This paragraph was coded as containing addition, 
subtraction, concrete representations (the paragraph references a picture of addition which I omit 
for space considerations), word problems, and definitions. Codes are noted in brackets. The 
paragraph mentions “situations” which, in context, is about word problems. A network graph of 
this paragraph is given on the left side of Figure 1. 
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Although the above distinction between meanings for addition [A; DEF] may be subtle, the 
distinction between meanings for subtraction [S] is quite stark. In Take-from situations [WP], 
part of a quantity is removed and another part is left over. Such situations [WP] are 
consistent with the familiar take-away meaning of subtraction [S]. This meaning tends to be 
emphasized in instruction in the primary grades and tends to be more familiar to students. In 
Compare situations, by contrast, there is no removal action. Two quantities are simply being 
compared additively. Children who associate subtraction with take-away may have difficulty 
solving Compare problems (p. 48).  

Each of the eighteen conceptual codes is represented by a node on the graph. The entire network 
(all nodes) are displayed, even if there are no connections to them. Lines are drawn between 
nodes that are connected in the paragraph (these are called edges). The five codes from the 
example paragraph will lead to ten total connections. All codes in the paragraph are connected 
with edges, so addition is connected to each of the other four topics, subtraction is connected to 
each of the other four topics, word problems is connected to each of the other four topics, and 
similarly for concrete representations and definitions. In my analysis, these connections were 
considered bidirectional, though unidirectional analysis is possible. The number 1 written along 
the edge is called the edge weight, and it indicates that one paragraph connected these two topics.  
 

  
Example paragraph Example and second paragraphs 

 
Note. Codes begin with A on the west pole of each graph and progress counter-clockwise 
Addition (A), Subtraction (S), Multiplication (M), Division (D), Word Problems (W), Concrete (C), 
Decomposing (DEC), Properties (P), Place Value (PV), Unknown Addend (UA), Counting (CNT), Mental Math 
(MM), Equations (EQN), Algorithms (ALG), Definition of Addition (DEF), Measurement (MEAS), Estimation 
(EST), and Functions (FCN). 

Figure 1: Example Network Analysis Graphs of HCK 

If I add another paragraph coded with addition, word problems, and measurement, the graph 
changes to look like the right side of Figure 1. The edge weight for addition to word problems 
now increases to 2 (meaning 2 paragraphs contain this connection) and new edges are added 
linking addition to measurement and word problems to measurement. Each new paragraph adds 
edges or adds to the edge weight in the visualization. 
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Results and Discussion 
For HCK, I present a nodal network for each textbook and discuss the results. I consider 

these results the affordances of using network analysis, namely, the ability to structure and 
visualize the sorts of HCK textbook authors have discussed. These results are best analyzed as a 
comparison, so in Figure 2, I provide the three individual graphs for Caldwell et al. (2011), 
Manes and Holmes (2018) and Sowder et al. (2017), along with a graph that combines their HCK 
across texts. Looking at Figure 2, Addition and Subtraction are connected in 32 paragraphs in 
Caldwell et al. (2011). Addition and division are only connected in eight paragraphs, and 
surprisingly, addition and multiplication are never connected (there is no line between addition  

 

  
Caldwell et al. (2011) Manes and Holmes (2018) 

  
Sowder et al. (2017) Combined Graphs for all 3 texts 

 
Note. Codes begin with A on the west pole of each graph and progress counter-clockwise 
Addition (A), Subtraction (S), Multiplication (M), Division (D), Word Problems (W), Concrete (C), Decomposing 
(DEC), Properties (P), Place Value (PV), Unknown Addend (UA), Counting (CNT), Mental Math (MM), Equations 
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(EQN), Algorithms (ALG), Definition of Addition (DEF), Measurement (MEAS), Estimation (EST), and Functions 
(FCN). 

Figure 2: Network Analysis Graphs of HCK 

and multiplication). Because this analysis centered on addition of whole numbers, addition is 
well connected to many topics with significant edge weights, indicating its importance in this 
network. Subtraction is similarly connected, again with significant weights, as is decomposing 
indicating that Caldwell et al. routinely linked these concepts. However, division is only linked 
to three other topics (properties, algorithms and addition) and all with a weight of 1, indicating 
that Caldwell et al. did not strongly connect division to other topics in the addition section. 
Topics that were not connected by Caldwell et al. (2011) include multiplication, measurement, 
and the definition of addition. Caldwell et al. is the only text that connected to functions. 

The graph for Manes and Holmes (2018) is less dense than the one for Caldwell indicating 
fewer paragraphs were coded as containing connections. The graph shows seven disconnected 
nodes: word problems, decomposing, unknown addend, counting, mental math, estimation and 
functions. Nodes that connect heavily with addition in Manes and Holmes (2018) are concrete 
models (16), place value (10), equations (9), and the definition of addition (11). Concrete models 
are also heavily connected to place value. The graph is less dense for Manes and Holmes than for 
Caldwell et al., but it is difficult to tell if that is the result of a real difference or because of the 
disproportionate number of paragraphs coded for Caldwell et al. (2011). Finally, the graph for 
Sowder et al. (2017) shows even fewer connections. Addition is still heavily connected. Nodes 
that are completely disconnected are decomposing, unknown addend, estimation, and functions. 
Word problems connect to eight other topics, which confirms that word problems were heavily 
emphasized in this text. Thirteen is the highest edge weight here (between word problems and 
addition) with weights decreasing significantly away from the addition subtraction or word 
problem nodes. Counting is only related to concrete models, word problems and addition, all 
with a weight of 1. Finally, the combined graph that visualizes the connections present across 
texts is useful to analyze what sort of HCK textbook authors were emphasizing across texts. So, 
if the research question were not comparative, but interested in the sort of HCK knowledge that 
the community of textbooks authors valued, the combined graph would be the tool to answer that 
question. I consider decisions to make that knowledge more accessible in the next section where 
I reflect on my analytical techniques and suggest future work. 

Analytical Questions and Constraints 
Operationalizing HCK and Descriptive Validity 

This paper presents a fundamentally new approach to analyzing HCK. As such, there are still 
ongoing analytical questions and decisions that need to be made before utilizing network 
analysis. I operationalized HCK by claiming that HCK was present if two concepts were present 
in a single paragraph in a cohesive way, even if the book did not make the exact nature of the 
connection explicit. For example, my results claim that addition to subtraction HCK is present if 
addition and subtraction were present in the same paragraph. This operationalization and the 
resulting analysis raised questions about the descriptive validity of my operationalized variable 
as compared to the definitions by Ball and Bass (2009) and Figueiras et al. (2011). First, is 
addition to subtraction HCK “present” in a textbook, if a single paragraph mentions addition and 
subtraction together? This answer must be no. Single mentions of two topics in one paragraph do 
not present a "sense of the mathematical environment surrounding the current ‘location’ in 
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instruction" (Ball & Bass, 2009, p. 6). However, if a textbook contains 34 paragraphs that all 
mention “addition and subtraction,” does that present a more cohesive picture of mathematical 
terrain? I believe the answer here is yes.  

Given these observations, I propose it may be useful to set a bottom required edge weight. 
Consider the graphs in Figure 3, which represent the same network as Figure 2, but assume, for 
discussion, a required bottom edge weight of 4 (meaning, four separate paragraphs need to 
mention the connection in order to be included in the graph). This bottom edge weight privileges 
concepts that are mentioned at least four times in the text, which may help to more precisely 
operationalize HCK in texts. Setting a bottom edge weight also lowers the visual complexity of 
the figure, allowing the most prominent connections to be easily understood. It highlights both 
the interconnectedness of the Caldwell text and that most of the connections in Sowder et al. had 
an edge weight of 1, 2 or 3. 
 

  
Caldwell et al. (2011) Manes and Holmes (2018) 

  
Sowder et al. (2017) Combined Graphs for all 3 texts 

 
Note. Codes begin with A on the west pole of each graph and progress counter-clockwise 
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Addition (A), Subtraction (S), Multiplication (M), Division (D), Word Problems (W), Concrete (C), 
Decomposing (DEC), Properties (P), Place Value (PV), Unknown Addend (UA), Counting (CNT), Mental Math 
(MM), Equations (EQN), Algorithms (ALG), Definition of Addition (DEF), Measurement (MEAS), Estimation 
(EST), and Functions (FCN). 

Figure 3: Network Analysis Graphs of HCK with Bottom Edge Weight of 4 

But other questions arise about how to define and operationalize connections between 
content. Other types of connectedness in the context of HCK may be present. For example, HCK 
can refer to both knowledge across grade bands as well as knowledge across domains. It is 
possible that the four types of HCK (Ball & Bass, 2009) should be coded independently. Other 
ways to possibly categorize HCK may be: explicit connection made in the text, implicit 
connection made in the text, across grade band connection, or within grade band connection.  It 
may also be possible to conceptualize an analysis that does rely on a linear conception of these 
mathematical ideas, for example, using the knowledge from learning trajectories to map the 
unidirectional connections present (Clements & Sarama, 2004; Confrey et al., 2011). Regardless 
of the refinement, refining the operationalization of HCK is necessary for more nuanced analysis 
and a fuller understanding of the content present in texts. 
Sampling and Bounding the Analysis 

As Scott (2013) noted, inorganic bounding of relational data can lead to false conclusions 
about the full network. In the context of textbook analysis, bounding is a necessary pragmatic 
decision. In this study, the sample was bounded to paragraphs that were explicitly focused on 
addition. Because of this, my network does not faithfully represent the entire network of 
connections authors made even for addition because I did not code every paragraph in the text 
that mentioned addition. In other words, sampling decisions in network analysis not only impact 
the edges present in the network, they impact the network nodes as well. For example, perhaps 
an author does not mention the connection between addition and multiplication in the sections on 
addition but mentions that connection in the section on multiplication. In that circumstance, and 
because of the way I have bounded my analysis here, the network I create would obfuscate the 
actual HCK presentation in the text. If a researcher wanted to create a full network for a text, it is 
reasonable to expect significant difficulties in generating the network (i.e. the coding scheme) for 
all content knowledge that PSTs are exposed to across textbooks. Understanding that network 
analysis of a bounded sample leads to a partial network is essential for interpreting these results.  

Conclusion  
I have presented what PST texts present as HCK as defined by Ball and Bass (2009), 

outlining the affordances and constraints of network analysis for HCK and posing some of the 
analytical questions that require further work and reflection to optimize network analysis for 
HCK. If these questions can be answered, network analysis can be a significant tool to examine 
the connectedness of HCK in a variety of situations, not just PST textbooks. A logical next step 
after textbook analysis is a study of the impact of HCK heavy textbooks on PST knowledge.  

 The amount and density of information presented in a text for PSTs should be a conscious 
and strategic choice by textbook authors and teacher educators. There are real differences across 
populations of students; different teaching environments require different texts. Teacher 
educators need to be aware of the choices they are making in order to select an appropriate text 
for their own classes. Further, the teacher education community needs to reach a consensus 
around what HCK should be included in PST content courses. Taking a careful inventory of what 
HCK may currently be presented in PST textbooks is one step in that process. An understanding 
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of HCK is essential to the teacher education community so we can understand what textbooks 
emphasize, what they leave out and develop consensus in the community about what should be 
taught in an undergraduate content course for PSTs. Because of the vital role of content courses 
in PST education, careful attention to HCK in these courses is warranted.  
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