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This conceptual paper proposes a model to describe the quality of student dialogue during 
participative collaborative problem solving. Drawing on the participation metaphor of 
learning, we argue that the construct of mathematical sophistication is useful to describe the 
quality. We then present two frameworks, mathematical competencies and mathematical 
practices, as ways to operationalise the construct in the collaborative problem-solving setting. 
We argue that by using a networking theories approach, the two frameworks will provide 
nuances of levels of mathematical sophistication that can be observed in student interaction.  
In addition, they could provide an analysis of both individual and group contributions to 
mathematical sophistication in a collaborative task setting. Implications of using two 
approaches for conceptualizing mathematical sophistication for future mathematics 
education research and teaching practices are provided. 

Optimising the quality of students’ mathematical knowledge is a major goal of 
mathematics education.  A major focus of research has been on the knowledge gained 
following one or more teaching sessions.   A second parallel focus that has attracted scant 
empirical attention is the transitory change in mathematics knowledge during learning and 
problem solving.  The focus of this study is on these changes in knowledge as students 
interact with mathematics information.  It proposes a conceptual framework for monitoring 
changes in student knowing and understanding during interactions with mathematics 
information in a collaborative problem-solving. 

During collaborative problem-solving, students participate collaboratively to solve a 
problem.   Analysis and description of the quality of the dialogue can inform future teacher 
action and researcher investigation of student learning. The shared dialogue can be recorded 
and unpacked in terms of its mathematical quality. In this paper, we use mathematical 
sophistication (Seaman & Szydlik, 2007) as a way to document the quality. Drawing on the 
participation metaphor of learning (Sfard, 1998), we examine why mathematical 
sophistication is appropriate to use for capturing the quality. We describe how the construct 
was initiated, and by using a networking theories approach, we operationalize it using two 
analytical frameworks that had been used previously for other purposes in alternative 
settings. 

Two Metaphors of Learning, Acquisition vs. Participation, and Mathematical 
Sophistication 

Two alternative metaphors underpin discussion about mathematical knowing and 
learning: the acquisition and the participation metaphors (Sfard, 1998). The acquisition 
metaphor focuses on the possession of mathematics knowledge, such as concepts and skills.  
The participation metaphor focuses on knowing and learning mathematics knowledge and 
skills by “doing it” in mathematical cultures.  In the latter metaphor, learning is defined as 
legitimate peripheral participation (Lave & Wenger, 1991) or as an apprenticeship in 
thinking (Rogoff, 1990) in a mathematics community of practice (Bauersfeld, 1993).  The 
teacher plays the role of a more experienced participant who inducts students into the 
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community.  Students interact in it and learn its characteristic actions and language. This 
metaphor of learning replaces knowledge with knowing, and having with doing (Sfard, 
1998).  

It is possible for mathematics to be learnt through the types of actions that characterize 
mathematical communities (Cobb, Stephan, McClain, & Gravemeijer, 2010). Seaman and 
Szydlik (2007) proposed that the process by which children construct mathematical 
knowledge might match in some ways the practices of mathematicians when they create 
mathematics. They identify nine main mathematics community’s values and characteristic 
actions.  These include: (a) seeking to understanding patterns, (b) making analogies by 
finding the same essential structure in different mathematical objects, (c) making and testing 
conjectures about mathematical objects, (d) creating models and examples and non-
examples of mathematical objects, (e) valuing precise mathematical definitions, (f) valuing 
an understanding why relationship make sense , (g) valuing logical argument and 
counterexamples, (h) valuing precise language and possessing fine distinctions about 
language, and (i) valuing symbolic representation and notation. These nine characteristic 
actions are referred to as mathematical sophistication traits.   

Mathematical sophistication refers to the multiple avenues for knowing how to construct 
mathematics generally using the above characteristic actions (Seaman & Szydlik, 2007).   It 
comprises three components: beliefs about the nature of mathematics, values concerning 
what it means to do mathematics, and avenues for experiencing mathematics through use of 
the actions.   It is learnt through “enculturation into the community of practicing 
mathematicians” (p. 170).   It applies across all content areas of mathematics rather than to 
“an understanding of a specific definition, mathematical object, or procedure” (p. 172).  

Mathematical sophistication has been investigated both when individuals solve open-
ended problems and also in multiple-choice contexts. Individuals differ in the frequency with 
which they use the characteristic actions and therefore their level of mathematical 
sophistication. Preservice teachers, for example, who ranged from average to low 
mathematics achievers, used them infrequently when solving mathematics problems 
independently (Seaman & Szydlik, 2007) and presented as “profoundly mathematically 
unsophisticated” with limited their problem-solving ability.  Szydlik, Kuennen, and Seaman 
(2009) trialed a multiple-choice instrument, the Mathematical Sophistication Index (MSI) 
with preservice teachers.  The items assessed the use of the nine sophistication traits. 

It is reasonable to expect that the level of mathematical sophistication will vary between 
students and that what students know at a point in time about mathematical ideas and how 
students interact with mathematical information will influence their final understanding.  
Seaman and Szydlik (2007) investigated whether the possession or absence of mathematical 
sophistication influenced problem solving.  The present conceptual paper extends this 
research. It examines the levels of mathematics sophistication displayed during collaborative 
problem solving. The motivation is mathematics educators have identified the need to teach 
aspects of it (e.g., National Council of Teachers of Mathematics [NCTM], 2000; Turner, 
Dossey, Blum, Niss, 2013).  

 

Networking Theories Approach: The Analytical Frameworks 
Mathematical sophistication is operationalised using two conceptual analytic 

frameworks that focus on the process aspect of learning and doing mathematics. The use of 
multiple interpretive theories or frameworks to study mathematics learning provides a richer 
understanding of it (Font Moll, Trigueros, Badillo, & Rubio 2016). The present paper 
conceptualises the extent to which the integrated use of multiple frameworks provides a more 
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elaborate perspective on student learning during collaboration and a more comprehensive 
conceptual tool for comparing students’ activity (Bikner-Ahsbahs & Prediger, 2010).  

In order to operationalise the construct of mathematical sophistication during student 
collaborative problem solving, it is necessary to identify evidence of it in students’ 
mathematics learning activities. The present study used two frameworks to do this: Turner 
et al.’s (2013) mathematical competencies and Common Core State Standards for 
Mathematics’ (Common Core State Standards Initiative [CCSSI], 2010) set of mathematical 
practices.   

Mathematical Competencies Framework (Turner et al., 2013)  
The mathematical competencies framework (Turner et al., 2013) describes the essential 

actions students use when solving mathematical problems. It identified interrelated 
competencies: (a) dealing with mathematical rules, formalism and symbols, (b) reasoning 
and argumentation (logical inference), (c) solving problems mathematically (strategies), (d) 
communication, and (e) representation. This framework was adapted from the eight 
mathematical competencies specified in the KOM project (Niss & Hojgaard, 2011) that 
guides curriculum development, teachers training and the evaluation of student learning in 
Scandanavian countries. The competencies overlap with the list suggested by Seaman and 
Szydlik (2007), for example, reasoning and argumentation competencies match valuing 
logical argument and counter examples and valuing precise mathematical definition and 
symbolic representation and notation match the symbols and formalisms competencies. Each 
competency lies of a dimension of increasing complexity of mathematical thoughts and 
actions.  Descriptors for each level of each dimension are shown in Table 1.  
Table 1.  
Mathematical competencies framework  

Level Symbols and 
formalism 

Reasoning and 
argumentation 

Solve problems 
mathematically 

Communication 
 

Representation 
 

0 No 
mathematical 
rules or 
symbolic 
expressions are 
used beyond 
basic 
arithmetic 
calculations, 
operating with 
small or easily 
tractable 
numbers 

Make direct 
inferences 
from the 
instructions 
given. 

 

Take direct 
actions, where 
the strategy 
needed is 
stated or 
obvious. 

 

Understand a 
short sentence or 
phrase about a 
single familiar 
concept that gives 
immediate access 
to the context, 
where it is clear 
what information 
is relevant, and 
where the order of 
information 
matches the 
required steps of 
thought. 

Directly handle 
a given 
representation 
where minimal 
interpretation 
is required for 
example, go 
from text to 
numbers, read 
a value directly 
from a graph 
or table. 

 

1 Make direct use 
of a simple 
functional 
relationship, 
either implicit 
or explicit; use 
formal 

Infer by linking 
information, 
(for example, 
link separate 
components in 
a problem, or 
use direct 

Decide on a 
suitable 
strategy that 
uses the 
relevant given 
information to 

Identify and 
extract relevant 
information. Use 
links within a text 
to understand the 
context and task, 
or between the 

Select and 
interpret one 
standard or 
familiar 
representation 
in relation to a 
situation 
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mathematical 
symbols or use 
directly a 
formal 
mathematical 
definition, 
convention or 
symbolic 
concept 

reasoning 
within one 
aspect of the 
problem).  

 

reach a 
conclusion 

text and other 
related 
representations.  
Constructive 
communication is 
simple, but is 
more than the 
presentation of a 
single numeric 
result 

1. 2 Use and 
manipulate 
symbols 
explicitly; use 
mathematical 
rules, 
definitions, 
convent-ions, 
procedures or 
formulae using 
a combination 
of multiple 
relationships or 
symbolic 
concepts. 
 

 

Analyse 
information 
(for example to 
connect 
several 
variables) to 
follow or 
create a multi-
step argument; 
reason from 
linked 
information 
sources.  
 

. 

Construct a 
strategy to 
transform 
given 
information to 
reach a 
conclusion.  
 

Revisit the text to 
understand 
instructions and 
decode the 
elements of the 
context or task; 
interpret 
conditional 
statements or 
instructions 
containing 
multiple elements; 
or actively 
communicate a 
constructed 
description or 
explanation. 

Translate 
between or use 
two or more 
different 
representation
s in relation to 
a situation, 
including 
modifying a 
representation; 
or devise a 
simple 
representation 
of a situation.  
 

 

3 Multi-step 
application of 
formal 
mathematical 
procedures; 
working 
flexibly with 
functional or 
involved 
algebraic 
relationships; 
using both 
mathematical 
technique and 
knowledge to 
produce 
results. 

Synthesize and 
evaluate, use 
or create 
chains of 
reasoning to 
justify 
inferences or 
to make 
generalization
s, drawing on 
and combining 
multiple 
elements of 
information in 
a sustained 
and directed 
way 

Construct an 
elaborated 
strategy to find 
an exhaustive 
solution or a 
generalized 
conclusion; 
evaluate or 
compare 
strategies. 

 

Create an 
economical, clear, 
coherent and 
complete 
description or 
explanation of a 
solution, process 
or argument; 
interpret complex 
logical relations 
involving multiple 
ideas and 
connections. 

Understand 
and use a non-
standard 
representation 
that requires 
substantial 
decoding and 
interpretation; 
or devise a 
representation 
that captures 
the key aspects 
of a complex 
situation; or 
compare or 
evaluate 
representation. 

 
 

The competencies were used to describe individual students’ levels of proficiency in 
PISA mathematics assessments and predicted 70% of the variability in the difficulty of PISA 
tasks (Turner et al., 2013). 
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The mathematical competencies framework, by representing increasing complexity of 
mathematical thoughts and actions, can provide a lens to capture the nuances of 
sophistication students exhibit when solving mathematical problems.  We propose that this 
framework can be used in a different way, to examine the interactions between students 
during collaborative problem solving and to infer their level of sophistication. However, the 
framework does not assist in describing the quality of individual students’ contributions; the 
mathematical practices framework is used for this. 

Mathematical Practices Framework (CCSSI, 2010) 
Some researchers (e.g., Cobb et al., 2010; Selling, 2016) have described mathematicians’ 

ways of thinking and doing mathematics as “mathematical practices” (MPs).  A variety of 
MPs have been identified (e.g., CCSSI, 2010; NCTM 2000; RAND Mathematics Study 
Panel, 2003). They are linked with the development of conceptual understanding (Boaler & 
Staples, 2008) and positive dispositions of learners (Cobb, Gresalfi, & Hodge, 2009). 

MPs in a classroom can be conceptualized as both emergent, following normative ways 
of working and disciplinary (mathematics) ways of working (Selling, 2016).  Earlier studies 
examined the MPs in specific mathematics topics (e.g., Cobb et al., 2010).  The present study 
examines their use more generally, across multiple topics in mathematics (CCSSI, 2010; 
Selling, 2016).   

The use of individual actions during mathematics learning has been investigated 
extensively.  This includes representing (e.g., Goldin, 1998), generalizing (e.g., Carraher, 
Martinez, & Schliemann, 2008), problem solving (e.g., Hiebert et al., 1996; Schoenfeld, 
1992), and justifying (e.g., Ball & Bass, 2003).  What has received less attention is the use 
of two or more actions during a mathematics learning event. The next section describes 
studies that examine this.  

The USA curriculum standards document (CCSSI, 2010) includes eight MPs: making 
sense of problems and persevering in solving them (MP1), reasoning abstractly and 
quantitatively (MP2), constructing viable arguments and critiquing the reasoning of others 
(MP3), modelling with mathematics (MP4), using appropriate tools strategically (MP5), 
attending to precision (MP6), looking for and making use of structure (MP7), and looking 
for and expressing regularity in repeated reasoning (MP8). This list is similar to that of 
Seaman and Szydlik (2007) in identifying verbs that describe how mathematicians work.  It 
also specifies mathematical behaviours that can be promoted in classrooms.  It can be used 
to analyse student mathematical sophistication in a collaborative problem-solving setting in 
which there is limited teacher intervention.  

Teachers can scaffold and direct students to use the MPs through explicit teaching 
(Selling, 2016).  However, a goal of mathematics education is that students learn to use them 
independently and to self-direct their use. We propose that teachers and researchers can 
observe independent student use of the actions, that is, without explicit scaffolding by an 
expert participant. In addition, by identifying the student who initiates an MP and how the 
MP is maintained, developed or ignored in the group, teachers and researchers can unpack 
individual contributions in the collaborative setting.  

Why Do We Need Two Frameworks? 
In collaborative problem-solving contexts, two or more students interact to develop a 

solution to a problem that can be solved in multiple ways. When investigating the thinking 
processes the students use, researchers analyse what they know and how they think. Their 
problem-solving activity is inferred from the sequentially organised statements they share.  
This dialogue can be analysed for evidence both of mathematical competencies and the use 
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of MPs.  The quality of their mathematics actions is described by their competencies (Turner 
et al., 2013).  How they think and use their actions is captured by the mathematical practices 
(CCSSI, 2010). The two frameworks can be used in a networked or synthesised way. The 
actions repertoire the students use can be described as interactions or networking between 
the two frameworks.  

The two frameworks can be used to infer mathematical sophistication in classroom 
settings more generally.  They provide complementary lenses both on interactions between 
the students in a collaborative group and on individual student thinking.  The competencies 
framework is developmental or hierarchical in its nature while the MPs framework describes 
the breadth or range of mathematical behaviours used at each level of the hierarchy.  
Together they potentially capture the nuances of mathematical sophistication in students’ 
reasoning by focusing on the experience aspect (Seamna & Szydlik, 2007).  

This experience aspect in collaborative problem-solving settings includes both the 
process aspect of doing mathematics during the collaboration and the transitory knowledge 
contributions of individuals during this activity. An observer can track changes in the dyads 
joint/negotiated understanding of the task and the thinking participants used to advance their 
understanding. Comparisons across dyads/groups permit the identification of more 
sophisticated mathematical competence and the use of the MPs. 

Summary 
 The conceptual framework described in this paper provides a lens for monitoring, 

analysing and evaluating students’ interactions during collaborative problem solving. The 
analysis and evaluation using the networking theories approach offer an insight into 
individual student thinking at any time and the quality of their interaction. Together these 
provide an insight into mathematical sophistication and its role in problem solving and 
mathematics learning more generally. It extends Tran and Chan’s (2017) work by 
elaborating an operational definition of sophistication and providing greater insight into the 
nuances of individual students’ contributions in a collaborative problem-solving setting. 

The metaphor of learning as participation underpins the study, with its focus on the 
quality of a student’s contribution to the knowledge of the group at any point in time and the 
process associated with it. The conceptual framework draws on the student’s transitory 
mathematics knowledge at any time. This is the focus on mathematics knowing rather than 
on fixed mathematical knowledge. It is the trajectory through the various states of knowing 
during a period of learning that leads to mathematics knowledge. Any stage of knowing on 
the trajectory is influenced by the student’s level of mathematical sophistication as a 
mathematical thinker.  

An implication of this conceptual framework is that mathematics education might benefit 
from the analysis of mathematical sophistication during problem solving and learning 
generally. To this end, future research could investigate empirically the framework and offer 
more nuanced versions to describe a range of levels of mathematical sophistication.  

Implications for Teaching and Pedagogy 
This conceptual paper draws attention to the value of focusing on transitory knowing 

and the negotiation of meaning during mathematics learning and the need to do this. The 
framework developed in the paper opens up this perspective on mathematics learning and its 
implications for enhancing mathematics knowledge. The mathematical competencies 
framework provides means to identify levels of sophistication of students’ way of knowing. 
Teachers could use these data formatively to inform their pedagogical actions in order to 
advance their competencies towards the characteristic behaviours of mathematicians. The 
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breadth of MPs used by students also has an impact on mathematical sophistication. To 
broaden the range of MPs used by students, teachers can provide a range of learning 
opportunities that elicit the appropriate range of MPs.  
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