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Examining the Reliability of Student Growth Percentiles using

Multidimensional IRT

Abstract

Student Growth Percentiles (SGP, Betebenner, 2009) are used to locate a student’s
current score in a conditional distribution based on the student’s past scores. Currently,
following Betebenner (2009), quantile regression is most often used operationally to es-
timate the SGPs. Alternatively, multidimensional item response theory (MIRT) may also
be used to estimate SGPs, as proposed by Lockwood and Castellano (2015). A benefit
of using MIRT to estimate SGPs is that techniques and methods already developed for
MIRT may readily be applied to the specific context of SGP estimation and inference.
This research adopts a MIRT framework to explore the reliability of SGPs. More specifi-
cally, we propose a straightforward method for estimating SGP reliability. Additionally,
we use this measure to study how SGP reliability is affected by two key factors: the cor-
relation between prior and current latent achievement scores, and the number of prior
years included in the SGP analysis. These issues are primarily explored via simulated
data. Additionally, the quantile regression and MIRT approaches are compared in an
empirical application.

Keywords: Student Growth Percentiles, Item Response Theory, High-Stakes Testing,
Teacher Evaluation
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1 Introduction

Numerous states use the Student Growth Percentile (SGP, Betebenner, 2009) method-

ology to make inferences about student academic progress. An SGP locates a student’s

current achievement score in a conditional distribution dependent on the student’s prior

achievement scores. In this way, an SGP provides context for the current achievement.

Some states also aggregate SGPs (e.g., using a mean) for the purposes of teacher eval-

uation. The original methodological framework for SGPs is quantile regression (QR),

and an R package (Betebenner, VanIwaarden, Domingue, & Shang, 2014) has been de-

veloped in support of the methodology. Within this framework, which has been the

focus of several recent research efforts (e.g., Castellano & Ho, 2013; Shang, VanIwaar-

den, & Betebenner, 2015; McCaffrey, Castellano, & Lockwood, 2015), SGPs are calculated

in multiple steps. First, student scores are generated for each year’s test. Second, based

on the observed scores, QR is used to obtain conditional quantiles. Optionally, a bias

correction is applied to the conditional quantile estimates (Shang et al., 2015). Finally,

the quantiles and observed scores are used to estimate SGPs.

Given that SGPs may be used for high-stakes decisions, such as teacher evaluation,

it is important that the statistical properties of the estimates are well understood. The

present research focuses primarily on the reliability of SGP estimates. Generally, research

has shown that SGP estimates have low levels of reliability at the student level. Examples

of research reaching this conclusion include Wells, Sireci, and Bahry (2014), Shang et al.

(2015), and McCaffrey et al. (2015). In all of the cited research, true SGPs are used

to determine that estimates produced via the QR framework have large amounts of

random error. However, some questions remain. For instance, what is responsible for

the low reliability? And, are there realistic conditions, as yet unconsidered, where the

reliability attains an acceptable level? Finally, can reliability be estimated without true

SGPs, available only in a simulation study? Answers to these questions will not only

offer methodological insights but are also relevant to policy discussions.
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In this research, we explore these questions. First, we propose a straightforward

method for estimating marginal reliability that does not depend on true SGPs. An ad-

vantage of this measure is that it is familiar and easily interpretable. Then, using simu-

lated data examples, we study how reliability is affected by two key features of the SGP

analysis: the correlations among the latent achievement scores, and the number of prior

years included in the analysis.

Instead of adopting the QR framework for SGPs, we use a multidimensional item

response theory (MIRT) framework, as advocated by Lockwood and Castellano (2015),

among others. This latter approach is appealing because MIRT is a relatively flexible

modeling framework and the focus of much ongoing research. Consequently, techniques

and tools already developed for MIRT may readily be applied to the specific context of

SGP estimation and inference.

For instance, in the present research, a standard error of the SGP estimate is needed

for the proposed reliability measure. In the MIRT framework, standard errors for SGPs

are readily available, as established methods used to estimate latent traits and their

standard errors may easily be extended to SGPs (Lockwood & Castellano, 2015). In

contrast, in the QR framework, defining and computing a standard error appear more

involved. Ideally, the standard error should account for the uncertainty in each of the

multiple steps (i.e., calibration and linking of the instruments, scaled score computations,

quantile regression, etc.). We will demonstrate that integrating SGP estimation into

MIRT provides straightforward methods for studying the uncertainty of the resulting

estimates by leveraging existing knowledge in latent variable modeling.

Since, in practice, SGPs are mostly calculated using QR, an important question con-

cerns the relevance of results obtained from studying MIRT-based SGPs. Generally

speaking, due to the fact that MIRT-based SGPs (in particular, the EAP estimator to

be discussed later) make use of all available information from the item response data

set across multiple years, the MIRT-based reliability may be considered a best-case sce-
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nario, to which alternative methods tend to approximate. Thus, the proposed method

does provide useful information about the statistical properties of QR-based SGPs. Also,

we believe and show that patterns found in the reliability results hold across modeling

frameworks, thus contributing to the understanding of when individual SGPs will be

most and least useful.

The remainder of this article is organized as follows. First, SGPs are defined, and

their calculation illustrated with graphical examples. Next, the QR and MIRT frame-

works for estimating SGPs are introduced and compared, and the proposed method for

calculating marginal reliability for SGPs is presented. Then, using the MIRT framework,

simulated data examples are provided to explore what factors drive the SGP reliability.

This is followed by an empirical data example where both the QR and MIRT approaches

are used. Finally, there is a discussion and potential directions for future research are

presented.

2 Details and Definitions

2.1 Student Growth Percentiles

As observed test scores contain measurement error, observed growth likewise con-

tains measurement error. Thus, we assume that instead of observed growth, the proper

focus of inquiry is latent, or “true”, growth. Let θc be the current latent achievement

of a student, and θp be an m × 1 vector of past latent achievement scores, where m is

the number of prior years to be included. Then, let θ = (θc, θ′p)
′, and let g(θ) be the

distribution for the latent achievement scores. To simplify the presentation, we assume

that each latent variable has a mean of zero and variance of one, so that Var(θ) = Σ is a

correlation matrix. Following Lockwood and Castellano (2015), the SGP is defined as

S(θc, θp) =
∫ θc

−∞
p(t|θp)dt, (1)
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where the integrand p(θc|θp) is the conditional distribution of the current score given

prior scores. That is, S(θc, θp) is a conditional cumulative distribution function (CDF).1

Generally, p(θc|θp) depends on the form of g(θ), as well as the latent (i.e., unobserved) θ.

But, regardless of the form of g(θ), S will be uniformly distributed over random samples

of θ. Note that as defined in Equation (1), S is on a scale of 0 to 1. For reporting, this

value would be multiplied by 100.

As an example of the SGP definition, assume that g(θ) is multivariate normal. Then,

θc

θp

 ∼ N1+m


0

0

 ,

 1 σ′pc

σpc Σpp


 , (2)

where Σpp is an m×m matrix and σpc is an m× 1 vector. By standard normal distribution

theory, the conditional density p(θc|θp) is that of univariate normal. The mean of the

conditional distribution is

E(θc|θp = x) = σ′pcΣ−1
pp x, (3)

and the conditional variance is

Var(θc|θp = x) = Var(θc|θp) = 1− σ′pcΣ−1
pp σpc, (4)

where x is a realized value of the random variable θp. So, by Equation (1), S would be

found by evaluating the normal CDF defined by Equations (3) and (4). Continuing with

this example, let m = 1 (i.e., one prior year is included) so that g(θ) is bivariate normal.

Further, let the correlation r be equal to 0.85, a value that is representative of correlations

we have observed in analyses of operational state summative assessments. Then, g(θ)

is fully defined and shown as a contour plot on the left of Figure 1. On the right of

Figure 1, corresponding conditional percentiles are shown. In both plots, the triangle and

1As noted in the literature (e.g., Betebenner, 2009; Castellano & Ho, 2013), and made clear by Equation
(1), SGPs are conditional status measures, and, as such, should not be interpreted as magnitudes of growth.
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square symbols represent true latent achievement values, with corresponding S ≈ .10

and S ≈ .99, respectively.

Figure 1: Graphic Representation of SGP Definition: Normal Distribution
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Note. Distribution is a standard bivariate normal with correlation r = .85. The triangle
and square symbols represent two points in the bivariate space with S ≈ .10 and S ≈ .99,
respectively.

2.2 Quantile Regression Framework

Before introducing the MIRT framework, we briefly describe the QR approach to

estimating SGPs. The QR approach has many implementation details that we will not

review. Interested readers are referred to Betebenner (2009) and Shang et al. (2015). Let

θ̂c and θ̂p be estimates of the current and prior achievements, respectively. Often, each

year’s achievement estimate is obtained via independent unidimensional IRT analyses.

Then, QR is used to estimate a large number of conditional quantiles via β̂, a vector

of QR coefficient estimates. For example, 100 quantiles, ranging from .005 to .995, may

be estimated. For each student, conditional on θ̂p, the observed current score, θ̂c, is

compared to these quantiles. θ̂c will be positioned between two estimated quantiles

(e.g., .665 and .675). The mean of these two quantiles (.670) is the estimate of S.
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Measurement error in the observed scores, however, implies that β̂ will be biased

(Shang, 2012). That is, the quantiles estimated from the observed scores, without further

adjustment, will be biased estimates of the quantiles of g(θ). This bias then spills over

into estimates of S. To address this issue, the SIMEX algorithm (Shang, 2012; Shang et

al., 2015) has been proposed as an additional step for the QR approach. Application

of the SIMEX method can be viewed as an effort to obtain unbiased estimates of the

quantiles of g(θ) and, by extension, S as defined in Equation (1).

Ideally, standard errors for QR-based estimates of S should account for the uncer-

tainty in all steps of the overall procedure. That is, the standard errors should repre-

sent the uncertainty in the estimates of the observed achievement scores, the QR coeffi-

cients, and, if applicable, the estimated parameters of the SIMEX method. However, fully

accounting for the uncertainty may be computationally demanding, particularly if the

SIMEX step is included (see Carroll, Küchenhoff, Lombard, & Stefanski, 1996). Further,

each of the steps has a number of implementation details, which makes it challenging to

find a sufficiently general approach.

2.3 MIRT Framework

Provided item-level data are available to the researcher, the MIRT framework can

naturally accommodate SGP estimation (Lockwood & Castellano, 2015). This is because

MIRT presupposes a latent distribution, which in the current context is g(θ), the distri-

bution of the latent achievement scores. In this section, a MIRT model that facilitates the

estimation of S is outlined. Then scoring for θ and estimation of S are both presented,

as the latter may be considered an extension of the former (Lockwood & Castellano,

2015). Some equations supporting the presentation in this section may be found in the

Appendix.

For SGP estimation, the MIRT model is specified as a correlated-traits between-item

MIRT model (e.g., Reckase, 2009). In this model, each item loads on one and only one

latent variable, and the latent dimensions may be correlated. As a simple example,
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again consider m = 1 prior year. In this case, the item responses from the current year

depend only on θc, and the responses from the prior year depend only on θp. In the

factor analysis literature, this pattern of loadings is referred to as the independent cluster

pattern.

After the MIRT model is specified, the unknown parameters of the model are es-

timated in a step known as calibration. Let γ collect together the free parameters of

the MIRT model. So, γ typically includes free parameters of the item response mod-

els (e.g., intercepts and slopes), but may also include free parameters of the model for

g(θ). Importantly, for SGP estimation, the correlations of g(θ) are free parameters to be

estimated. Typically g(θ) is specified as multivariate normal. However, recent research

has also investigated specifying g(θ) as a more flexible distribution (Monroe, 2014). Use

of this distribution for MIRT-based SGPs has been explored in Monroe, Cai, and Choi

(2014). In this latter case, additional free parameters of g(θ) are estimated from the data.

Calibration of the MIRT model results in estimates γ̂ of γ based on a calibration

sample. Then, estimates of individual achievement scores θ may be produced using

various estimators, such as Maximum Likelihood (ML) or Expected A Posteriori (EAP)

scoring. In this research, we consider EAP scoring, as it is the minimum mean squared

error estimator of the latent variables θ (Bock & Mislevy, 1982). For the ith examinee,

let the EAP estimates be EAP(θi) and the corresponding standard errors be SE(θi). Both

EAP(θi) and SE(θi) are functions of the posterior distribution of θi, given the examinee’s

observed item responses. Conceptually, EAP(θi) averages the latent achievement over

the uncertainty in estimating θi as characterized by the posterior distribution.

As with θ, estimates of S may be produced using various estimators, and we again

opt for the EAP estimator in this research. For the ith examinee, let the EAP estimate

be EAP(Si) and the corresponding standard error be SE(Si). As with EAP(θi), EAP(Si)

is found by averaging over the posterior distribution. However, while EAP(θi) aver-

ages the latent achievement over the posterior distribution, EAP(Si) averages the (latent)
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definition of S in Equation (1) over the posterior distribution. Expressions for the EAP

estimators and standard errors are provided in the Appendix.

2.4 Proposed Reliability Index

The reliability of the SGP estimate, for either MIRT or QR modeling frameworks,

can be calculated in a straightforward manner. The proposed index is analogous to

the marginal reliability index used to describe test precision in a unidimensional IRT

framework, suggested by Green, Bock, Humphreys, Linn, and Reckase (1984). Thus, it is

instructive to review marginal reliability for IRT before presenting the proposed measure

for SGP estimates.

For IRT, the reliability coefficient may be written as

ρθ = 1− σ2
e (θ)

σ2
θ

, (5)

where σ2
θ is the prior value of the variance of θ, and σ2

e (θ) is the marginal or average

error variance of θ.2 Often, σ2
θ is fixed to one for purposes of model identification, and

the right-hand side of Equation (5) simplifies to 1− σ2
e (θ). Thus, all that is required to

compute the marginal reliability of the test is an estimate of the average error variance.

In IRT, the magnitude of error variance depends on the level of the latent trait. The

conditional error variance may be averaged, however, using one of two methods. The

first approach uses expected error variance. This expectation may be calculated by inte-

grating the conditional standard error of measurement function over the latent variable

distribution of θ. The conditional standard errors, in turn, depend solely on the expected

test information function (see, e.g., Thissen & Orlando, 2001). Alternatively, σ2
e (θ) may

be calculated as an average over a random sample of individuals from the population

2Marginal reliability for IRT is comparable to, but distinct from, reliability as defined in classical test
theory (e.g., Lord & Novick, 1968). For comparisons between the two measures, interested readers are
referred to Green et al. (1984), Sireci, Thissen, and Wainer (1991), and the references therein.
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distribution,

SE2
(θ) =

1
N

N

∑
i=1

SE2(θi), (6)

where SE2(θi) is the squared standard error for the ith examinee. In other words, given a

large random sample from the examinee population, and the availability of standard er-

rors of individual θ estimates, the empirical average in Equation (6) provides a consistent

estimate of σ2
e (θ) by law of large numbers.

The proposed method of calculating reliability for estimates of S is completely anal-

ogous. Let the SGP reliability coefficient be

ρS = 1− σ2
e (S)
σ2

S
, (7)

which parallels the construction of Equation (5). By definition, S is distributed as a

uniform(0,1) random variable. Since the variance of a standard uniform is 1/12, this

value is used for σ2
S, and the right-hand side of Equation (7) simplifies to 1− 12σ2

e (S).

For σ2
e (S), we may use the empirical average

SE2
(S) =

1
N

N

∑
i=1

SE2(Si), (8)

which is analogous to Equation (6). With this approach, individual standard errors for

SGP estimates are needed to calculate ρS. Within a MIRT framework, using the EAP

estimator, these standard errors may are described in Section 2.3 (and defined in the

Appendix). This approach is equally applicable to the QR framework, assuming the

availability of reasonably accurate standard errors for the individual SGP estimates (see

Section 2.2).

2.5 Factors That Affect SGP Reliability

With the foregoing development, we can explore why the reliability of individual

SGPs tends to be low in practice. From another perspective, made clear by Equation
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(7), we are interested in why σ2
e (S) tends to be large. One possibility is that estimation

uncertainty for θ tends to be too large. As estimation uncertainty for θ is reduced, σ2
e (S)

will decrease, and ρS will increase. In the most extreme case, the tests are perfectly

reliable, σ2
e (S) = 0, and ρS = 1. While this relationship is true, it is unsatisfying as an

explanation of empirically observed low reliabilities. After all, the marginal reliabilities

of the annual summative tests measuring achievement are typically high, usually in the

0.9 range. Hence, the estimation uncertainty for θ is typically small.

A second possibility is that larger correlations among the latent achievement vari-

ables lead to lower reliability of SGPs. Though this idea has been previously presented

(McCaffrey et al., 2015), it has not been examined with respect to the SGP definition (i.e.,

Equation 1). To facilitate the presentation of why the correlations might be so important,

we make a few simplifying assumptions. We temporarily assume that the analysis is

based on the current and immediate past year’s achievement data, so that m = 1 and

there is a single correlation, r. Also, we assume that g(θ) is bivariate normal.

As r increases, the prior achievement θp holds greater predictive power for θc. This

will be directly reflected in a decrease of Var(θc|θp), the variance of the conditional dis-

tribution p(θc|θp) in Equation (1). When g(θ) is bivariate normal, the variance of the con-

ditional distribution, stated in Equation (4), is completely determined by r: Var(θc|θp) =

1− r2.

And, as Var(θc|θp) decreases, ρS will almost certainly decrease. Recall that, in op-

erational settings, the estimation uncertainty for θ is typically small. As Var(θc|θp) ap-

proaches zero, the small (though non-negligible) estimation uncertainty for θ will lead

to greater and greater estimation uncertainty for S. On the other hand, as Var(θc|θp)

increases, the small estimation uncertainty for θ should lead to relatively smaller estima-

tion uncertainty for S. Thus, we argue that large correlations across years contribute to

small ρS, due to the relationship between Var(θc|θp) and the estimation uncertainty for

θ.
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There are likely other systematic causes of low SGP reliability. However, given the

complex interplay between the definition of S, the form of g(θ), and uncertainty in

the estimate of θ, it is challenging to identify these causes. Additionally, given our

observations regarding Var(θc|θp), it is unclear whether including more prior years in

the analysis will increase ρS.

3 Simulated Data Examples

3.1 Generating Conditions

We use simulated data examples to further study the reliability of SGP estimators,

focusing on the correlation of the latent dimensions r, as well as the number of prior

years m included in the analysis. To generate latent true scores θ, N = 10, 000 random

vectors were sampled from a 4-dimensional normal distribution (i.e., m = 3) with zero

means and covariance matrix Σ.

Two generating covariance structures were considered, an auto-regressive structure

(AR), and a compound-symmetric (CS) structure. These structures are defined as

ΣAR =



1 r r2 r3

r 1 r r2

r2 r 1 r

r3 r2 r 1


, and ΣCS =



1 r r r

r 1 r r

r r 1 r

r r r 1


,

respectively, for four time points. The AR and CS covariance matrices were chosen

because of their importance in longitudinal data analysis. Each represents a plausible

interpretation of the underlying structural relationship among the latent achievement

variables. The AR structure models the first-order dependence (Markovian) nature of

individual longitudinal data. The CS structure can be understood as arising from mod-

eling the dependence over time with the inclusion of a common random effect on the

intercept. Values of r ranged from 0.05 to 0.95 in increments of 0.05.

For each simulee, three true S values were computed, corresponding to the inclusion
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of m = 1, 2, or 3 prior years. Generally, for each simulee, the values of S will be different

depending on m, and the extent of the difference will depend on the form of g(θ) and

its covariance structure. An exception to this rule is discussed in the results section.

Item response data were simulated according to the three-parameter logistic model

(Birnbaum, 1968). As described earlier, each item loaded on one and only one latent

dimension, corresponding to the testing year. For each year, 50 items were used. The

true item parameters were chosen to resemble values encountered in typical large-scale

assessment programs. Further, the item slopes were chosen in such a manner that the

marginal reliability for each dimension (calculated using test information for the corre-

sponding 50 items) was 0.9. We consider this value to be high, but not unrealistic.

To summarize the conditions, two covariance structures were crossed with 19 dif-

ferent correlations to create 38 datasets. Each of these 38 datasets, however, could be

analyzed using m = 1, 2, or 3 prior years.

3.2 Estimation and Evaluation Statistics

The true generating models were fit to the data by maximum likelihood, using

flexMIRT R© (Cai, 2013). For g(θ), all variances were fixed to one, and all correlations

were estimated as free parameters. Thus, the data-generating covariance structures were

not imposed on the estimated covariance matrix, but rather an unstructured covariance

matrix was estimated. No misspecification is introduced (albeit there may be a slight loss

in statistical efficiency), but an unstructured covariance matrix is operationally more

feasible and realistic, given software capabilities. For m = 2 and 3 (i.e., the 3 and 4-

dimensional models), the MH-RM algorithm (Cai, 2010a, 2010b) was used in order to

improve the computational speed of model fitting. Adopting the MIRT framework, EAP

estimates and error variances were produced for both θ and S.

The list of collected evaluation statistics from the simulation is quite brief. First, the

SGP marginal reliability ρS was computed. Second, the conditional variance of current

year achievement Var(θc|θp) was collected, to examine its relation to ρS. Finally, the mea-
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surement error variance for the current year achievement σ2
e (θc) was collected, using the

empirical average in Equation (6). Since the true marginal reliability for each dimension

is the same, the scalar-valued σ2
e (θc) is representative of the estimation uncertainty for

θ. Also, because the total variance of θc is fixed to one as part of model identification,

1− σ2
e (θc) provides an empirical estimate of ρθc , the marginal reliability of the current

year’s test. Given the data-generating process, if only the current year’s test items are

used to estimate θc, then σ2
e (θc) should be around 0.10, and the empirical value of ρθc

should be around 0.90. But, if additional years’ items are taken into account, as with

EAP scoring, then σ2
e (θc) may be less than 0.10, and ρθc may exceed 0.90. This is because

the EAP estimator can “borrow strength” from other parts of the model to produce more

efficient estimates (Cai, 2010c) by utilizing the latent variable correlations in the MIRT

model. The magnitude of the decrease depends on the specific structure of the MIRT

model, but generally, it will be greater for larger r and m.

3.3 Results: One Prior Year

For both the ΣAR and ΣCS conditions, the covariance structure for m = 1 is identical.

That is, Σ reduces to the correlation matrix of a standard bivariate normal variable,

with a single correlation to be estimated. Therefore, for m = 1, differences between the

ΣAR and ΣCS conditions are solely due to sampling variability (as they are independent

conditions under the simulation design). As the sample size is quite large (N = 10, 000),

we observe little effect of sampling variability, so only the results from one condition,

ΣAR, are presented.

Figure 2 displays empirical estimates of ρθc (plus signs), Var(θc|θp) (triangles), and ρS

(circles) as r increases from 0.05 to 0.95. While the values of ρθc , the marginal reliability

for the current year’s test, are relatively stable, they do increase slightly from around

0.90 to 0.93 as r increases. This is simply an example of how the EAP estimator is able

to “borrow strength.” Solely focusing on ρθc , we would predict that ρS would increase

with r.
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Figure 2: Marginal Reliability of SGP for One Prior Year
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Note. ρθc = marginal reliability for current year’s test; Var(θc|θp) = conditional variance
of current year achievement; ρS = SGP marginal reliability.

Examining the role of Var(θc|θp), we see that it decreases rapidly as r increases.

In fact, as g(θ) is specified as multivariate normal, the points in Figure 2 correspond

exactly to 1− r̂2, where r̂ is the maximum likelihood estimate of r. This functional form

is responsible for the accelerating change in Var(θc|θp) (being quadratic in r).

Finally, Figure 2 displays ρS, the SGP marginal reliability. Interestingly, the values

vary greatly, from around ρS = 0.9 for small values of r, to ρS = 0.33 at r = 0.95. For

small correlations, ρS is nearly indistinguishable from ρθc . For moderate correlations,

such as 0.5, ρS is still quite high (0.85). But, for values of r typical for state achievement

tests, such as 0.7 to 0.9, ρS decreases quickly, dropping from moderate to low values. It

appears that ρS is more influenced by Var(θc|θp) than by ρθc .

To further elucidate the relationship between r and ρS, Figure 3 presents conditional

percentile plots for r = 0.10 (left panel) and r = 0.90 (right panel). Each plot also displays

representations of average posterior distributions of latent achievement given observed

item responses from the simulation. More specifically, the ellipses are based on bivariate
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normal approximations of the average posterior covariance matrix across simulees, and

demarcate 68% and 95% of the central density. The ellipses are arbitrarily centered on

the 75th conditional percentile in both plots with no loss of generality in interpretation.

Figure 3: Effect of Correlation on SGP Uncertainty
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Note. For each plot, the ellipses demarcate 68% and 95% of the central density of an
average posterior distribution. The locations (i.e., centers) of the ellipses are arbitrary.

For r = 0.10, the ellipses are intersected by two of the displayed conditional percentile

lines. The corresponding ρS value is 0.91. For r = 0.90, the ellipses are somewhat more

compact than those for r = 0.10, reflecting the smaller value of σ2
e (θc). Nevertheless,

the ellipses for r = 0.90 intersect more of the displayed conditional percentiles. The fact

that the conditional percentiles in the r = 0.90 plot are closer to one another is a direct

consequence of the smaller value of Var(θc|θp). For r = 0.90, the corresponding ρS value

is 0.50. To summarize the interpretation of Figure 3, the extent to which the ellipses

intersect the conditional percentiles provides information about the uncertainty in deter-

mining the SGP (as represented by σ2
e (S)), and by extension, the marginal reliability ρS.

In general, more intersections imply lower values of ρS.
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3.4 Results: Multiple Prior Years

Before presenting results for ρS, we briefly discuss how true S values change with

the inclusion of additional years in the analysis. In general, for any simulee, including

an additional prior year will result in a change in true SGP. That is, for any simulee, true

S will be different depending on m. However, it can be shown that for ΣAR, assuming

a multivariate normal distribution, S does not depend on m. In this case, S is the same

no matter how many prior years are included. This is because of the particular structure

of ΣAR. The underlying structural interpretation of a first-order AR model stipulates

that dependence is solely modeled by the immediately preceding data point. Therefore,

both the mean and variance of the conditional distribution p(θc|θp) remain unchanged

as additional prior years are included.

Table 1 presents correlations among various true S values for the AR and CS struc-

tures, for typical values of r. For ΣAR, since S does not vary with m, all of the corre-

sponding correlations are one. On the other hand, for ΣCS, the correlations between the

true S values decrease with increases in m and r. At the most extreme, for r = 0.9, the

correlation between S based on m = 1 and m = 3 years is 0.82. Information regarding

whether S varies with m could be used to determine the most appropriate number of

years to include in an analysis. Also relevant to this determination would be how m

affects ρS.

Table 2 presents results for ρS for m = 2 and m = 3 prior years. To focus attention

on the results most relevant to realistic testing scenarios, results are only reported for r

between 0.7 and 0.9. The first set of entries in Table 2, for m = 1 prior year, corresponds

to points from Figure 2.

Overall, the inclusion of additional prior years has little effect on ρS, regardless of the

structure of Σ. For the ΣAR conditions, this is entirely predictable given that increasing

m has no effect on Var(θc|θp) at the population level. The differences in Var(θc|θp) for

the ΣAR conditions are entirely due to sampling variability. There is a small decrease in
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Table 1: Correlations Among Various True SGPs

Correlation (r)
Cov. Structure 0.70 0.75 0.80 0.85 0.90

ΣAR cor(S(1), S(2)) 1.0 1.0 1.0 1.0 1.0
cor(S(1), S(3)) 1.0 1.0 1.0 1.0 1.0

ΣCS cor(S(1), S(2)) .90 .89 .89 .88 .87
cor(S(1), S(3)) .86 .85 .84 .83 .82

Note. ΣAR = auto-regressive covariance structure for g(θ). ΣCS = compound-symmetric
covariance structure for g(θ). S(m) = S based on m prior years.

Table 2: Marginal Reliability of SGP for Multiple Prior Years

Correlation (r)
Cov. Structure Prior Years (m) 0.70 0.75 0.80 0.85 0.90

Σ 1 ρS .768 .722 .677 .610 .502
Var(θc|θp) .527 .432 .360 .279 .191

σ2
e (θc) .092 .088 .085 .082 .078

ΣAR 2 ρS .774 .729 .689 .631 .542
Var(θc|θp) .508 .441 .362 .289 .196

σ2
e (θc) .091 .088 .085 .081 .077

3 ρS .774 .729 .692 .634 .549
Var(θc|θp) .517 .450 .371 .267 .198

σ2
e (θc) .091 .087 .086 .080 .076

ΣCS 2 ρS .750 .708 .663 .596 .496
Var(θc|θp) .420 .365 .295 .225 .148

σ2
e (θc) .087 .084 .081 .075 .070

3 ρS .742 .703 .655 .596 .490
Var(θc|θp) .398 .334 .265 .194 .134

σ2
e (θc) .085 .082 .078 .073 .066

Note. ρS = marginal reliability of SGP. Var(θc|θp) = conditional variance of θc given θp.
σ2

e (θc) = average error variance for θc.
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σ2
e (θc) as m increases, again demonstrating how the EAP estimator borrows strength to

estimate θc more efficiently. And, there is a small corresponding increase in ρS.

For the ΣCS conditions, Table 2 shows that Var(θc|θp) actually decreases as m in-

creases. As demonstrated in Section 3.3, a decrease in Var(θc|θp) can be expected to

correspond to a decrease in ρS, which is what we observe for the ΣCS conditions. So, in

the case of the ΣCS covariance structure, increasing the number of years in the analysis

actually leads to a slight decrease in ρS.

4 Empirical Application

As an illustration of the methods discussed in this research, we used MIRT to ana-

lyze longitudinal assessment data in order to estimate S and characterize its reliability.

Additionally, we used the QR-based approach to produce another set of estimates as

a comparison. The item-level data come from a mathematics assessment with 4th and

5th grade data for N = 10, 000 students in a mid-western state. To be consistent with

our notation, we consider the 4th and 5th grade years to be the prior and current years,

respectively. The state is not identified for legal reasons.

For each year, 44 dichotomous items were modeled using the three-parameter logistic

model. The MIRT approach followed the methods presented in Section 2.3, and EAP

estimates were produced for S. For the QR approach, observed scores for the QR were

produced in the following way. A unidimensional IRT model was fit to the data for each

grade separately, to mimic how the state usually produces the test scores. Within each

year, a set of EAP scores and standard errors was produced. These EAP estimates were

used as the observed scores for the QR analysis. Additionally, these unidimensional

analyses provided marginal reliability values for the 4th and 5th grade tests. These test

reliabilities were 0.87 and 0.89, respectively.

Next, the “SGP” package (with default settings) was used to obtain QR-based esti-

mates of S. This analysis also yielded estimates of the conditional quantiles of g(θ). As

this research focuses on variability for the SGP estimate, we decided it was unnecessary
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to apply the SIMEX method to correct for any bias in the quantile estimates. To obtain

standard errors for the QR-based SGP estimates, we used the following imputation-

based scheme.

To explain the scheme, we focus on one student. A normal distribution was defined

using the student’s 4th grade EAP score (i.e., mean) and standard error (i.e., standard de-

viation). 400 imputations were drawn from this distribution. This process was repeated

with the 5th grade EAP score and standard error. Thus, 400 pairs of imputed scores were

created. Then, the pairs of imputed scores, along with the original estimated quantiles,

were used to create a distribution of SGP estimates. The standard deviation of this dis-

tribution was used as a standard error for the QR-based SGP estimate. In turn, the SGP

standard errors for all students could be used to calculate the average error variance, as

in Equation (8).

One way to compare the QR and MIRT approaches is to evaluate model fit for the

respective IRT models. The QR approach, with two unidimensional IRT models, is for-

mally equivalent to a 2-dimensional IRT model where the latent achievement correlation

is constrained to zero. In other words, the QR and MIRT approaches specify the same

model, except they differ in whether r is constrained to zero or estimated. (Note, how-

ever, that with the QR approach, the empirical correlation of scores across years need

not be zero.) The MIRT model (with r̂ = 0.88) is preferred by both −2×log-likelihood

and Bayesian information criteria values.3

Another obvious point of comparison for the two approaches is ρS. For the QR ap-

proach, ρS = 0.52, while for the MIRT approach, ρS = 0.51. Given r̂ = 0.88, it is unsur-

prising that the values are low. What is, perhaps, surprising is that the two approaches

produce such similar values. Figure 4, inspired by a similar figure in Betebenner (2009),

illustrates some of the differences in the approaches.

3The two models were also compared using a likelihood-ratio test. The test statistic is highly significant
(χ2

1 = 9183.72, p < 0.001), suggesting that estimation of the correlation parameter yields a better-fitting
model.
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Figure 4: Plots of Score Estimates for Longitudinal Test Data

Note. Gray circles show EAP scores using a 2-dimensional IRT model (MIRT) and two
unidimensional models (QR). The lines mark, from left to right, the 1st, 25th, 50th, 75th,
and 99th percentiles. For each plot, the ellipses demarcate 68% and 95% of the central
density of an average posterior distribution. The locations (i.e., centers) of the ellipses
are arbitrary.
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First, consider the distributions of EAP scores for the two approaches, given by the

gray circles. A byproduct of the QR approach, using two unidimensional models, is

that the score estimates are not as highly correlated as in the MIRT case. Compared

to the model-based r̂ = 0.88 in the MIRT case, the empirical correlation for the scores

is 0.77 in the QR case. Also, with the QR approach, we observe certain unlikely score

combinations, such as those where θp ≈ −3 and θc > 0.

A second obvious difference between the two plots is the shape and location of the

conditional quantiles. In the MIRT case, the conditional quantiles are linear, and en-

tirely determined by the multivariate normal assumption for g(θ) and r̂ = 0.88. On

the other hand, for the QR approach, the conditional quantiles are curvilinear, and de-

pend on the empirical distribution of score estimates. Interestingly, at the left of the

plot, the conditional quantiles curve upwards, to better fit the “unlikely” score combi-

nations mentioned above. Additionally, compared to the QR conditional quantiles, the

MIRT conditional quantiles are relatively close to one another, which reflects the higher

correlation for the latent achievement dimensions.

A third clear difference is the size and shape of the ellipses, which are representative

of an average uncertainty in estimates of θ. Since the QR approach utilizes two unidi-

mensional IRT models, the standard errors for estimates of θp and θc are uncorrelated.

For the MIRT case, the standard errors for θp and θc are correlated, since their calcula-

tion depends in part on g(θ). Also, for the MIRT approach, the EAP estimator “borrows

strength” which leads to smaller average standard errors, and smaller ellipses.

Despite these differences in the QR and MIRT approaches, the results for the esti-

mates of S are surprisingly similar. In addition to the similar values for ρS, the correla-

tion between the two sets of SGP estimates is 0.98. This is not to say that the estimates

are interchangeable, as they may differ in important ways with respect to bias (see Shang

et al., 2015; McCaffrey et al., 2015).
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5 Discussion & Conclusion

In this research, we proposed a measure to characterize SGP reliability. It is straight-

forward to calculate and has the advantage that it is easily interpretable. The measure

was demonstrated using a MIRT approach with simulated data, and also calculated

using the conventional QR approach in an empirical data analysis. This research also

identified a major contributing factor to low SGP reliability: high correlations between

latent achievement variables. The high correlations mean that most of the variation in

the current achievement score can be explained by past achievement scores. Thus, the

variance of the conditional distribution of current achievement given past achievement

is typically small. Yet, the uncertainty of the latent achievement estimate is sizable, rel-

ative to the conditional distribution’s variance. In this scenario, the reliability for SGP

will tend to be low. Finally, this research demonstrated that including additional years

of prior test scores should not be expected to increase ρS much, if at all. In fact, via sim-

ulation, it was shown that under certain circumstances, ρS will actually decrease when

additional years are included.

While SGP estimates at the student level will typically have low reliability, aggregate

estimates currently used in numerous states may have higher reliability. Nevertheless,

given the high-stakes nature surrounding the use of aggregate SGPs, it is important to

assess the reliability of these aggregate measures, particularly when a formal multilevel

measurement model may be specified. The methods presented in this research may be

applicable to this aggregate setting. This is one direction for future research.

Another direction for future research concerns the generalization of the MIRT ap-

proach along the lines of the semi-nonparametric MIRT (SNP-MIRT) model used in

Monroe et al. (2014) for SGPs. There are numerous questions to explore, such as whether

the SNP-MIRT approach can accommodate multiple prior years. Another question, di-

rectly related to the present research, is how the reliability of SGP estimates using SNP-

MIRT would compare to the reliabilities using either the QR or MIRT approaches.
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A final set of questions raised by this research stems from the findings regarding the

inclusion of additional prior years. Generally speaking, the motivation for including ad-

ditional years is to more fully contextualize current student achievement. Our research

shows, however, that the effects of including additional years are hard to predict. The

true S values sometimes, but not always, change as more years are included. And, ρS

may (slightly) increase or decrease. The outcomes depend on subtleties in the specifi-

cations of the models that are used to summarize the data. Given these findings, when

should additional years be included in the analysis? While this question is more policy-

oriented, the longitudinal structure of the data also provokes methodological questions.

For instance, can modeling techniques popularized in other fields, such as econometrics

(e.g., Baltagi, 2008), be fruitfully applied to longitudinal student achievement data?

Due to interesting measurement issues and policy questions surrounding SGPs, the

related methodologies deserve further attention, particularly by research psychometri-

cians and assessment policy experts. This research was an attempt to explore and clarify

aspects of the methodology, but much work remains.
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Appendix

This Appendix presents some technical details regarding the MIRT model used for

estimating SGPs, as well as the EAP estimators for θ and S. Let yc be observed responses

on the current year’s test, and yp be observed responses for all of the prior tests. More

formally, let yp be partitioned into m sub-vectors yp = (y′p1, . . . , y′pm)
′. Recall also the

vector of past latent achievements θp = (θp1, . . . , θpm)′. The likelihood of the response

pattern y = (y′c, y′p)′, conditional on the latent variables is

L(y | θ; γ) = L(yc, yp | θc, θp; γ) = L(yc | θc; γ)
m

∏
j=1

L(ypj | θpj; γ), (9)

where γ collects together the free parameters of the MIRT model. Upon introducing the

latent variable distribution g(θ), the marginal likelihood of y can be found by integrating

over the unobserved latent variables θ

L(y; γ) =
∫

L(yc | θc; γ)
m

∏
j=1

L(ypj | θpj; γ)g(θ; γ)dθ. (10)

Maximizing the marginal likelihood in Equation (10) yields γ̂, the vector of maximum

likelihood estimates.

Whereupon plugging in the estimates of MIRT model parameters γ̂, the EAP estima-

tor is defined as

EAP(θi) = E(θ | yic, yip) =
∫

θ π(θc, θp | yic, yip; γ̂)dθ, (11)

for a given individual i’s item response pattern yi = (y′ic, y′ip)
′ on the current and all

prior years’ tests. The posterior distribution π(θc, θp | yc, yp; γ) is defined as

π(θc, θp | yc, yp; γ) =
L(yc | θc; γ)∏m

j=1 L(ypj | θpj; γ)g(θ; γ)

L(y; γ)
.
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The accompanying standard errors, SE(θ), are taken as the square roots of the diagonal

elements of Var(θ|yc, yp), the posterior covariance matrix.

The EAP estimator of S is defined as

EAP(Si) = E
[
S(θc, θp) | yic, yip

]
=
∫

S(θc, θp)π(θc, θp | yic, yip; γ̂)dθ. (12)

As with the standard errors for EAP(θi), the standard error for EAP(Si) is the square

root of the posterior variance,

SE(Si) =
√

E
{
[S(θc, θp)]2 | yic, yip

}
− E2

[
S(θc, θp) | yic, yip

]
, (13)

where the first term on the right-hand side is

E
{
[S(θc, θp)]

2 | yic, yip

}
=
∫
[S(θc, θp)]

2π(θc, θp | yic, yip; γ̂)dθ.
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