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Proof is a central concept in mathematics education, yet mathematics educators have 
failed to reach a consensus on how proof should be conceptualized. I advocate 
defining proof as a clustered concept, in the sense of Lakoff (1987). I contend that this 
offers a better account of mathematicians’ practice with respect to proof than previous 
accounts that attempted to define a proof as an argument possessing an essential 
property, such as being convincing or deductive. I also argue that it leads to useful 
pedagogical consequences. 

PROOF CONCEPTUALIZATION IN MATHEMATICS EDUCATION 

It is widely accepted that having students successfully engage in the activity of proving 
is a central goal of mathematics education (e.g., Harel & Sowder, 1998). Yet 
mathematics educators cannot agree on a shared definition of proof (Balecheff, 2002; 
Reid & Knipping, 2010; Weber, 2009). This is recognized as problematic: without a 
shared definition, it is difficult for mathematics educators to meaningfully build upon 
each another’s research and it is impossible to judge if pedagogical goals related to 
proof are achieved (e.g., Balacheff, 2002; Weber, 2009). Until now, most mathematics 
educators have sought to define proof as an argument that possesses one or more 
desirable properties, such as employing deductive reasoning (Hoyles & Kuchemann, 
2002) or being convincing to oneself (Harel & Sowder, 1998) or community 
(Balacheff, 1987). However, there is not a consensus on which property or properties 
capture the essence of proof. The main thesis of this paper is that, in mathematical 
practice, there are no properties that are the essence of proof and viewing proof as a 
clustered model in the sense of Lakoff (1987) offers a better account of how proof is 
practiced by mathematicians. 

Two approaches to defining proof 

There are two approaches that philosophers and mathematics educators have used to 
define proof (CadwalladerOlsker, 2011). In the analytic philosophical tradition, some 
have sought to define a proof as a formal object, usually as a strictly syntactic object 
within a formal theory. Unfortunately, there is little intersection between the objects 
satisfying definitions of these types and the arguments that mathematicians refer to as 
proofs. Consequently, such a definition cannot provide a reasonable account of how 
proofs are produced or how they advance our mathematical knowledge (cf., Pelc, 
2009). Further, from an instructional perspective, this can imply the pedagogically 
dubious suggestion of focusing on the form of proof rather than its meaning. 

A second approach to proof is to define proofs as the proofs that mathematicians 
actually read and write or as the arguments that mathematicians label as proofs. 
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However, such a characterization is too broad to do useful philosophical or 
pedagogical work. What is needed is a sense what types of arguments mathematicians 
recognize as proof. Further, this sense should be philosophically and pedagogically 
pertinent. For instance, the observation that mathematicians usually publish their 
proofs is LaTEX will not inform instructional practice. If we accept Larvor’s (2012) 
observation that, “the field [the philosophy of mathematical practice] lacks an 
explication of ‘informal proof’ as it appears in expressions such as ‘the informal proofs 
that mathematicians actually read and write’” (p. 716), then it is clear that there is more 
work to do in this area. 

DIFFICULTIES IN FINDING AN ESSENCE OF PROOF 

A common approach to defining proof is to locate a characteristic (or set of 
characteristic) that is shared by all arguments that mathematicians consider to be 
proofs and not present in all other arguments. If successful, this approach would yield a 
clear way of characterizing proof. Unfortunately, this approach has not been 
successful. For instance, a proof has sometimes been defined as an argument that 
convinces oneself (or one’s community) that an assertion is true (e.g., Harel & Sowder, 
1998). However, Tall (1989) noted that there are convincing arguments that would not 
qualify as proofs. For instance, Eccheveria (1996) claims that the empirical evidence in 
support of Goldbach’s Conjecture is so overwhelming that the mathematical 
community is certain of its truth, but the claim is not proven. Proofs are sometimes 
defined to be a priori deductive arguments that do not depend on one’s observations or 
experience, but Fallis (1997) noted that computer-assisted arguments would not satisfy 
this description. 

It is natural to try to define proof as a category of objects sharing some properties. After 
all, this is how mathematical concepts are defined (Alcock & Simpson, 2002). 
However, I argue that proofs are not mathematical concepts, they are discursive 
concepts. And I further argue that there is no property that distinguishes proofs from 
non-proofs. 

Three proofs 

To highlight the difficulties of characterizing proofs, consider these three proofs as 
they appear in the mathematics literature. 

Theorem 1: If n is a number of the form 6k-1, then n is not perfect. 

Proof 1: Assume n is a positive integer of the form 6k-1. Then (mod 3) and 

hence n is not a square. Note also that for any divisor d of n, (mod 3) 

implies that (mod 3) and (mod 3) or (mod 3) and (mod 

3). Either way, (mod 3) and (mod 3). 

Computing 2n=2(6k-1) (mod 3), we see that n cannot be perfect. (from Holdener, 
2002) 
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Theorem 2:  

Proof 2: Here is a proof using Mathematica to perform the summation. 

FullSimplify[TrigtoExp[FullSimplify[ 

 ]]/. 

a_Log[b_]+a_Log[c_]:>a Log[b c]]. 

S�����(from Adamchik & Wagon, 1997) �

Theorem 3: (Fixed Point Theorem) Let f(x) be continuous and increasing on [0, 1] 
such that f([0,1])�[0,1]. Let  f2(x)=f(f(x)) and fn(x)=f(fn-1(x)). Then under iteration of f, 
every point is either a fixed point or else converges to a fixed point. 

Proof 3: The only proof needed is: 

(from Littlewood, 1957) 

These proofs vary widely in terms of the types of inferences that were made, the 
representation systems used, their level of transparency, and the level of detail they 
provide. At this point, the reader may want to make three objections: (1) Some of these 
“proofs” are not really proofs; (2) These proofs are outliers; (3) These proofs are 
considered controversial. 

I do not think (1) is a fair objection. If we were defining what proof ought to be, one 
could say Proof 2 or Proof 3 ought not be considered as a proof. However, if we wish to 
describe the proofs that mathematicians actually read and write, we must account for 
Proof 2 and Proof 3 because they were published in the literature by mathematicians as 
proofs. With (2), Proof 2 and Proof 3 were deliberately chosen to be provocative, yet 
they are also representative of the wider categories of computer-assisted proofs and 
visual proofs. 

With (3), these proofs are controversial. In Adamchik and Wagon’s (1997) paper in 
which their proof was presented, they admitted that, “Some might even say this is not 
truly a proof! But in principle, such computations can be viewed as proofs” (p. 852). In 
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an experimental study, Inglis and Mejia-Ramos (2009) demonstrated that 
mathematicians collectively find Proof 3 significantly less convincing than more 
conventional proofs. I accept that these proofs are controversial, but argue this 
controversy has important consequences for the nature of a descriptive account of 
proof. 

Proof* 

Aberdein (2009) coined the term, “proof*”, as “species of alleged ‘proof’ where there 
is no consensus that the method provides proof, or there is a broad consensus that it 
doesn’t, but a vocal minority or an historical precedent point the other way”. As 
examples of proof*, Aberdein included “picture proofs*, probabilistic proofs*, 
computer-assisted proofs*, [and] textbook proofs* which are didactically useful but 
would not satisfy an expert practitioner”. As Proof 2 is a computer-assisted proof and 
Proof 3 is a picture proof, these qualify as proofs*. 

Proofs* do not pose a problem for analytic philosophers who attempt to pose 
normative judgments for what should be considered a proof. Recently, there have been 
arguments that picture proofs, such as Proof 3, are perfectly valid and ought to be on 
par epistemologically with the more traditional verbal-symbolic proof (e.g., Kulpa, 
2009). Granted there may be some mathematicians who disagree, such as those in 
Inglis and Mejia-Ramos’ (2009) experimental study, but the proponents of picture 
proofs can argue that these mathematicians are simply mistaken.  

However, proofs* do pose a problem for philosophers and mathematics educators who, 
as Larvor (2012) put it, wish to describe “the proofs that mathematicians actually read 
and write”. Take picture proofs*, for instance. A proposed criteria of proof must either 
admit some picture proofs* as proofs or claim that all picture proofs* are not. If the 
former occurred, one could challenge this claim by citing the large number of 
mathematicians who do not produce such proofs and reject such proofs when they read 
them. If the latter occurred, one could rebut the claim by citing the picture proofs in the 
published literature as well as the large number of mathematicians (or at least the vocal 
minority) who accept such proofs. Similar arguments could be made for all types of 
proofs*.  

PROOF AS CLUSTER MODEL 

Cluster concepts 

Lakoff (1987) noted that “according to classical theory, categories are uniform in the 
following respect: they are defined by a collection of properties that the category 
members share” (p. 17). This perspective has dominated the way that philosophers 
have attempted to define proof. However, Lakoff’s thesis is that most real-world 
categories cannot be characterized this way. In particular, he argued that some 
categories might be better thought of as clustered models, which he defined as 
occurring when “a number of cognitive models combine to form a complex cluster that 
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is psychologically more basic than the models taken individually” (p. 74). I will argue 
that mathematical proof should be regarded in the same way. 

As an illustrative example of a clustered concept, Lakoff considered the category of 
mother. According to Lakoff, there are several types of mothers, including the birth 
mother, the genetic mother, the nurturance mother (i.e., the adult female caretaker of 
the child), and the marital mother (i.e., the wife of the father). These concepts are 
highly correlated-- the birth mother is nearly always the genetic mother and more often 
than not the caretaker. In the prototypical case, these concepts will converge—that is, 
the birth mother will also be the genetic mother, the nurturance mother, and so on. And 
indeed, when one hears that the woman is the mother of a child, the default assumption 
is that the woman assumes all roles. However, this is not always the case. 

Lakoff raised two points that will be relevant to this paper. First, there is a natural 
desire to pick out the “real” definition of mother, or the true essence of motherhood. 
However, Lakoff rejected this essentialist disposition. Different dictionaries list 
different conceptions of mother as their primary definition. Further, sentences such as, 
“I was adopted so I don’t know who my real mother is” and “I am uncaring so I doubt 
I could be a real mother to my child” both are intrinsically meaningful yet define real 
mother in contradictory ways. Second, in cases where there is divergence in the 
clustered concept of mother (e.g., a genetic but not adoptive mother), compound words 
exist to qualify the use of mother. Calling one a birth mother typically indicates that 
she in not the nurturance mother; calling one an adoptive mother or a stepmother 
indicates that she is not the birth mother.  

Proof as a clustered concept 

The main thesis of this paper is that it would be profitable to consider proof as a 
clustered concept. The exact models that should form the basis of this cluster should be 
the matter of debate, but I will propose the following models as a working description 
to highlight the utility of this approach: (1) A proof is a convincing argument that 
convinces a knowledgeable mathematician that a claim is true. (2) A proof is a 
deductive argument that does not admit possible rebuttals. The lack of potential 
rebuttals provides the proof with the psychological perception of being timeless. 
Proven theorems remain proven. (3) A proof is a transparent argument where a 
mathematician can fill in every gap (given sufficient time and motivation), perhaps to 
the level of being a formal derivation. In essence, the proof is a blueprint for the 
mathematician to develop an argument that he or she feels is complete. This gives a 
proof the psychological perception of being impersonal. Theorems are objectively true. 
(4) A proof is a perspicuous argument that provides the reader with an understanding 
of why a theorem is true. (5) A proof is an argument within a representation system 
satisfying communal norms. That is, there are certain ways of transforming 
mathematical propositions to deduce statements that are accepted as unproblematic by 
a community and all other steps need to be justified. (6) A proof is an argument that 
has been sanctioned by the mathematical community.  
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Of course, the criteria above are not original. All have previously been proposed by 
other philosophers and mathematicians. What is original here is claiming that one 
cannot demarcate proofs from non-proofs by saying that proofs must satisfy some 
subset of the criteria above.  

I argue that each of these more basic models do not, by themselves, characterize proof 
completely. I previously argued that (1) fails because there are convincing empirical 
arguments that are not proofs. Fallis (1997) notes that computer-assisted proofs fail to 
satisfy (2) and (3), since a possible rebuttal is that the computer software was faulty 
and since the proof does not give a blueprint for how a human could perform the 
computer checks for himself or herself. Similar arguments can be given for (4), (5), and 
(6). 

If we accept proof to be a clustered concept as defined above, we would expect the 
following to occur: (a) proofs that satisfied all of these criteria should be 
uncontroversial, but some proofs that satisfy only a subset of these criteria might be 
regarded as contentious; (b) compound words exist that qualify proofs that satisfy 
some of these criteria but not others; (c) it would be desirable for proofs to satisfy all 
six criteria. 

Regarding (a) and (b), Aberdein’s (2009) discussion of proofs* supports these points. 
He explicitly highlighted compound words delimiting the sense that arguments are 
proofs. For instance, computer-assisted proofs* are not transparent and it is not clear 
how a mathematician can fill in every gap of the proof and probabilistic proofs* are not 
deductive. Not only do these qualifying compound words exist, but as Aberdein (2009) 
argued, there is not a consensus on their validity amongst mathematicians. For (c), we 
can consider Dawson’s (2006) analysis of why mathematicians re-prove theorems. 
Dawson’s analysis demonstrated that sanctioned proofs are reproven to avoid 
controversial methods, fill in perceived gaps, become more perspicuous, and increase 
mathematician’s conviction, which correspond to the first four components of the 
cluster model described above. 

IMPLICATIONS FOR PEDAGOGY 

If we view proof as a cluster concept, like that of mother, we might expect that this 
concept is perhaps not best taught by direct instruction, but instead through practice in 
a community. For instance, Thurston (1994) described how he sought a clear definition 
in proof in graduate school; he did not find one but through experience, he began to 
“catch on”. Of course, we know that mathematics majors often do not catch on and 
remain deeply confused about the meaning of proof when they graduate. Here the 
instructor might help by pointing to features of the argument that make the argument a 
better or worse example of proof, rather than solely presenting the argument as right or 
wrong. 

At a broad level, the components of the clustered model of proof are correlated with 
one another. For instance, as an argument becomes more deductive, it often tends to 
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become more convincing, easier to translate into a formal proof, and more likely to be 
sanctioned by one’s peers. Hence, encouraging students to make their arguments more 
deductive would usually make their arguments more proof-like in other respects as 
well. However, this is not the case if we take some of these criteria to extremes. 

For a first example, suppose we strive to present students with arguments that are as 
convincing as possible in geometry. In many cases, an exploration on a dynamic 
geometry package would be entirely convincing, both for mathematicians and for 
students (de Villiers, 2004). For a student, such explorations would probably be more 
convincing than a complicated deductive argument because the student may worry that 
he or she has overlooked an error in the argument. If we view the mode of reasoning 
(deductive vs. perceptual) and the representation system in which an argument is 
couched as irrelevant, it is difficult to argue why demonstrations on dynamic geometry 
software packages are not proofs. 

A similar claim relates to how formal an argument is. Increasing the formality of an 
argument usually makes the argument more deductive and more acceptable to the 
mathematical community. However, it is generally accepted that there is a point where 
an argument is “formal enough” and making it more rigorous would be detrimental. 
Filling in all the gaps would make the proof impossibly long and unwieldy. The result 
would be a proof that masks its main ideas. As understanding these ideas is important 
for determining the validity of the proof, so increasing the rigor of the proof would 
lessen its persuasive power. 

If we want students and teachers to present proofs that satisfy all or most of the criteria 
above, it would be best not to focus on a single criterion. Not only would the other 
criteria be ignored, a singular focus on one criterion might actually lessen the 
possibilities of the other criteria being achieved. 
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