
 

2014. In Liljedahl, P., Oesterle, S., Nicol, C., & Allan, D. (Eds.) Proceedings of the Joint Meeting 4 - 17 
of PME 38 and PME-NA 36,Vol. 4, pp. 17-24. Vancouver, Canada: PME. 

INVENTION OF NEW STATEMENTS FOR COUNTEREXAMPLES 

Kotaro Komatsu1, Aruta Sakamaki2 

1Faculty of Education, Shinshu University, Japan; 2Nagano Junior High School 
Attached to the Faculty of Education of Shinshu University, Japan 

 
From a fallibilist perspective, mathematics gradually develops with problems, 
conjectures, proofs, and refutations. To attain such authentic mathematical learning, it 
is important to intentionally treat refutation in mathematics classrooms, such as facing 
or proposing counterexamples and coping with them. In particular, analysing 
students’ behaviour in response to counterexamples can lead to a design of teaching 
materials and instruction based on students’ existing knowledge and strategies. In this 
paper, we construct a framework for capturing students’ actions of inventing a new 
statement that holds for counterexamples to an original statement. We then illustrate a 
specific aspect of this framework with an episode that took place in an eighth grade  
classroom, and discuss two approaches to deductively generating a new statement.  

INTRODUCTION 

According to Lakatos (1976), mathematics progresses through the consideration of 
conjectures, proofs, and refutations, not just by monotonously increasing the number 
of indubitably established theorems. To introduce this authentic process in 
mathematics classrooms (Lampert, 1990), it is essential to deal with not only proving 
that a statement is true, but also refuting a conjecture by counterexamples, restricting 
the domain of the conjecture to exclude the counterexamples, and inventing a new 
statement to account for the counterexamples. In particular, it is fundamental to 
construct frameworks of analysis for students’ behaviour in response to 
counterexamples, because these frameworks will enable mathematics teachers and 
educators to deepen their understanding of students’ thought processes; such 
understanding may provide insights into a more effective design of teaching materials 
and instruction based on students’ existing knowledge and strategies. 
There are at least two research strands on students’ behaviour related to 
counterexamples. The first centres on the production of counterexamples; researchers 
have investigated whether students and teachers can produce a proper counterexample 
to show that a statement is false, how they generate counterexamples, and what types 
of counterexamples they create (e.g. Hoyles & Küchemann, 2002; Peled & Zaslavsky, 
1997; Weber, 2009). The second strand of research focuses on the recipients of 
counterexamples (Zazkis & Chernoff, 2008). In particular, some researchers utilise the 
mathematical actions shown in Proofs and Refutations (Lakatos, 1976) to analyse how 
students respond to counterexamples (Balacheff, 1991; Reid, 2002; Yim, Song & Kim, 
2008). For instance, Larsen and Zandieh (2008) construct a framework that consists of 
“monster barring”, “exception barring”, and “proof analysis” (lemma incorporation), 
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and they describe an undergraduate classroom episode to argue that this framework can 
serve as a description and explanation of students’ mathematical activity. This paper 
intends to contribute to this second strand of research.  
However, most researchers of the latter strand have focused on students’ behaviour to 
exclude counterexamples, and they have not dealt with the invention of a new 
statement that holds for the counterexamples. In fact, monster barring, exception 
barring, and lemma incorporation were formulated as methods for excluding 
counterexamples in Lakatos (1976). Although Balacheff (1991) shows that some 
students created new conjectures to account for counterexamples to their initial 
conjectures, he summarises various student responses as “modification of conjectures” 
and does not examine in detail how the students modified the conjectures or what 
relationships the modified conjectures had with the original ones. It is valuable to focus 
on the invention of a new statement for counterexamples because this invention can be 
regarded as a brave attempt to explain the counterexamples rather than disregard them.  
Consequently, this paper has two research purposes. First, we construct a framework 
for capturing students’ action to invent a new statement that holds for the 
counterexamples to an original statement. Second, we illustrate a specific aspect of this 
framework by describing an episode that took place in an eighth grade classroom, and 
discuss two approaches to deductively generating a new statement. 

THEORETICAL FRAMEWORK 

Lakatos (1976) referred to the invention of new conjectures to account for the 
counterexamples to a primitive conjecture, though the description has not been 
sufficiently considered in mathematics education research. It was mentioned as 
“increasing content by deductive guessing”, which means the deductive invention of a 
more general conjecture that holds even for the previous counterexamples (Lakatos, 
1976, p. 76). Komatsu (2011) demonstrates that Lakatos’s notion of increasing content 
by deductive guessing is useful for describing certain behaviour by ninth grade 
students. 
However, it may not be appropriate to directly introduce this notion for describing 
students’ behaviour in general because Lakatos’s main interest lay in describing a 
process of growth in the discipline of mathematics, and there are differences between 
mathematicians’ and students’ behaviour. In addition, Lakatos seemed to think that his 
heuristic rules, which included increasing content by deductive guessing, were not 
universal or obligatory (Kiss, 2006). Therefore, in the following, we examine 
alternatives to increasing content by deductive guessing to construct a framework for 
capturing students’ invention of a new statement that holds for previously given 
counterexamples. 
There are two characteristics of increasing content by deductive guessing. The first is 
related to ‘increasing content’, that is, the product of invention. As mentioned earlier, 
increasing content by deductive guessing refers to inventing a general conjecture that 
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holds even for the counterexamples to the previous conjecture. Therefore, the new 
generated conjecture is more general than the previous one in that it includes the 
counterexamples to the previous conjecture as its examples. However, there may be 
another case in which even if students can produce a statement for counterexamples to 
an original statement, the original statement and the produced statement do not always 
have such a particular-general relationship. In other words, the students may generate a 
statement separated from the original one, and these two statements may be regarded 
as just case analysis (see the following sections for an example). 
The second characteristic is related to ‘by deductive guessing’, that is, the approach to 
creating a new conjecture. When Lakatos mentioned increasing content by deductive 
guessing, he seemed to consider the deductive invention of conjectures that were 
difficult to find through empirical or perceptual approaches (Lakatos, 1976, p. 82). 
However, there are types of mathematical reasoning other than deduction, such as 
induction and analogy. Therefore, it is expected that students may generate a new 
statement for previous counterexamples in non-deductive ways, such as through 
inductive, perceptual, analogical, and ad-hoc methods. 
From the above, it is possible to construct a framework as shown in Table 1 for 
capturing students’ actions to invent a new statement that holds for counterexamples to 
an original statement. Regarding the horizontal structure of this framework, a 
particular-general relationship is more desirable than a case-analysis relationship 
because the former can unify an original statement and its counterexamples under a 
new statement, without separating them (Nakajima, 1982). Although the vertical 
direction does not have this desirable structure, a deductive approach may be more 
difficult for students than a non-deductive approach. In addition, the vertical structure 
of this framework is relevant to the functions of proof (De Villiers, 1990). A deductive 
approach involves the discovery function of proof, especially if students use the proof 
of an original statement to generate a new statement. On the other hand, the 
verification and explanatory functions of proof are relevant to a non-deductive 
approach if students produce a statement in a non-deductive way and then prove it. 

Invention approach 
Relationship between original and new statements 

Case analysis Particular-general 

Non-deductive Type I Type II 

Deductive Type III Type IV 

Table 1: A framework for invention of new statements to account for counterexamples 
Lakatos’s notion of increasing content by deductive guessing corresponds to Type IV 
in this framework, and this framework implies three possibilities of students’ 
behaviour other than increasing content by deductive guessing. Nevertheless, this 
framework is derived from purely theoretical considerations, and it therefore needs 
empirical support, which we describe in the following sections. 
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METHODS 

The classroom episode examined in this paper is taken from our larger study that aims 
to develop, through design experiments, a set of tasks and associated teachers’ 
guidance to foster student engagement in proofs and refutations (Komatsu & 
Tsujiyama, 2013). We selected this episode because it is suitable for one of the 
purposes of this paper, that is, illustration of the framework in Table 1. 
The second author, who has over 10 years of experience teaching in secondary schools, 
carried out a teaching experiment that consisted of two lessons (50 minutes per lesson) 
with 36 Japanese eighth graders (13–14 years old). He was not familiar with the above 
framework, but he took an active role in the lessons, encouraging the students to think 
of counterexamples and challenging the students’ thinking. Both authors were 
involved in the lesson design, and the first author observed all the lessons. 
On average, the students’ mathematical abilities were above standard. They could 
prove geometric statements related to various properties of triangles and quadrilaterals, 
using conditions for congruent triangles, and had learnt counterexamples as well.  
All the lessons were recorded and transcribed. The data for analysis included these 
transcripts, the students’ worksheets, and field notes taken during the lessons. We 
analysed the data with a focus on the students’ behaviour after proof construction, in 
particular, how they invented new statements to account for counterexamples to the 
original statement. We translated the problem sentences, the students’ words and 
proofs from Japanese to English. All the students’ names used here are pseudonyms. 

RESULTS 

Original statement and its proof 

We used the problem shown in Figure 1 in our teaching experiment because it enables 
students to find counterexamples to the statement PQ = DQ – BP, as described later. 

 

Figure 1: The problem in the lesson 
The teacher presented this problem at the start of the first lesson. We describe only 
briefly how the students proved the statement, because the focus of this paper is on 
their processes after proof construction. After discussing a plan for solving the 
problem, the students worked individually. Next, the teacher had a student, Emi, write 
her proof on the blackboard. Her proof was examined in a classroom discussion, which 
revealed that the part which showed the congruence of angles ABP and DAQ was 
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complicated for the other students. The teacher therefore had Mai give a 
complementary explanation with a different expression (Figure 2). 

 

Figure 2: The proof constructed by the students 
Counterexamples and new statements 

After this proof, the teacher asked, “Now, we drew line l which passed point A like this 
[Figure 1], but when the place of this line l is different from here [Figure 1], is it 
possible to say that this [PQ = DQ – BP] is true?” A few students responded “maybe 
impossible”. Then, the teacher told the students, “Draw various lines, l, which pass 
point A and investigate by drawing your own diagrams”. The first lesson finished with 
the students individually drawing diagrams on their worksheets. 
Analysing their worksheets after the lesson, we found that many students drew 
diagrams similar to those shown in Figure 3 (these figures are examples of the 
students’ actual drawings). In the case of Figure 3-a, the students wrote, “Segment BP 
becomes longer than segment DQ” or “DQ – BP becomes negative”. For Figure 3-b, 
they wrote, “Segment PQ is longer than segments DQ and BP” or “[DQ – BP] becomes 
negative as well”. Their worksheets evidenced that they grasped these cases as 
counterexamples refuting the statement in the original problem, PQ = DQ – BP. 

 

Figure 3: Counterexamples drawn by the students 
In the second lesson, the students investigated what relationships among PQ, DQ, and 
BP held in the cases in Figure 3. At this point, the teacher told them they were allowed 
to utilise the previous proof by Emi and Mai (Figure 2). 



Komatsu, Sakamaki 

4 - 22 PME 2014 

After the students engaged in this investigation individually, the teacher had Manabu 
and Ken write their ideas on the blackboard. Regarding the case represented by Figure 
3-b, Manabu wrote, “I prove the congruence of triangles ABP and DAQ as we did in 
the last lesson, and from PQ = AQ + PA, it should be true that PQ = BP + QD”. Thus, 
Manabu deductively invented a new statement, PQ = BP + QD, for this case that had 
been a counterexample to the original statement, by utilising the congruence of 
triangles ABP and DAQ as a reason which, he thought, could be shown by the same 
proof as the previous one. Ken thought similarly to Manabu, writing his idea for Figure 
3-a as follows: “[From the previous proof, I found DQ = AP and AQ = BP.] Since PQ = 
AQ – AP is true, the relationship among PQ, DQ, and BP is PQ = BP – DQ” (he wrote 
the square brackets on his worksheet, but not on the blackboard). 
Next, the students examined whether the congruence of triangles ABP and DAQ could 
actually be shown by the same proof as Emi and Mai’s one. For example, the teacher 
asked the students whether Emi and Mai’s proof was directly applicable to the case 
shown in Figure 3-b. Daisuke answered that it was possible to apply this proof up to its 
part deducing AP = DQ and BP = AQ, and many students seemed to agree. Then, the 
teacher urged the students to inspect this applicability in more detail, and some 
students had doubts as to the part stating that since an interior angle of a square is 90 
degrees, the degrees of angle DAQ are 90 – a (Figure 2). More concretely, Satoshi 
stated, “Because both angles DAQ and BAP are not inside it [angle BAD], I think it is 
not true”. After that, other students added that it was enough to use the degrees of angle 
PAQ (180 degrees) to prove that the degrees of angle DAQ are 90 – a. 

DISCUSSION 

In this episode, the students proved the original statement (Figures 1 and 2) and then 
faced counterexamples that refuted it (Figure 3). In response, they produced new 
statements, that is, PQ = BP – DQ for the case as Figure 3-a, and PQ = BP + QD for the 
case as Figure 3-b. The original statement and these new statements written for the 
counterexamples do not have a particular-general relationship, and they are regarded as 
case analysis according to the position of line l. In theory, it is possible to generate a 
general statement that holds for all cases if we represent PQ as the absolute value of the 
sum of vectors BP and DQ (Shimizu, 1981). However, the students in this episode had 
not learnt vector, and it was impossible for them to consider such a generalisation. 
The students invented the new statements for the counterexamples (Figure 3) in 
deductive ways, such as utilising a part of the previous proof as a reason for their 
thinking or constructing new deductive arguments. In addition to Manabu and Ken, 
Yuko wrote on her worksheet that “I had thought PQ = DQ – BP [in the case of Figure 
3-a], similar [to the case shown in Figure 1], because the right and left were only 
reversed, but I found [PQ = DQ – BP was] not true through copying [the previous] 
proof”. Toru also wrote that “In the process of making proofs, I gradually understood 
that I could represent the relationships between PQ, DQ, and BP by using + and –” (our 
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emphases). In summary, these students’ behaviour corresponded to Type III in the 
framework shown in Table 1. 
This episode implies a possibility of dividing a deductive approach to invention of a 
new statement into at least two categories. The students in this episode thought that the 
congruence of triangles ABP and DAQ, which had been shown by Emi and Mai for the 
original statement, held for the counterexample shown in Figure 3-b as well, and they 
used this congruence as a reason to produce a new statement, PQ = BP + QD. At that 
point, they did not examine this congruence in detail, such as by considering whether 
the previous proof by Emi and Mai was directly applicable to the case as Figure 3-b. 
These students’ behaviour can be regarded as modularly deductive in the sense that 
they thought a certain encapsulated part was true and invented the new statement by 
utilising this part as a reason for their thinking.  
Considering an alternative to a modularly deductive approach, it is possible to think up 
a sequentially deductive approach that refers to confirming, from the beginning, that 
each detailed point is true and piling these points step by step to invent a new 
statement. This approach is only a research hypothesis because we could not directly 
capture the relevant students’ behaviour in the episode reported in this paper. 
However, the relevant process can be seen in Lakatos (1976), which dealt with the 
Descartes-Euler conjecture on polyhedra, expressed as V – E + F = 2, where V, E, and 
F are the numbers of vertices, edges, and faces of polyhedra, respectively. In this 
literature, an imaginary teacher and students sequentially constructed polygons and 
polyhedra by marking points, connecting them, and pasting polyhedra whose values of 
V – E + F were already known. They then examined each increase and decrease in the 
numbers of vertices, edges, and faces to invent a more general conjecture than the 
above conjecture. In the future, it will be necessary to investigate whether a 
sequentially deductive approach can be observed in actual students’ activity. 
Another future task should explore the characteristics of a modularly or sequentially 
deductive approach. In the episode reported here, the students who took a modularly 
deductive approach first believed that part of the previous proof by Emi and Mai, up to 
deducing AP = DQ and BP = AQ, was directly applicable to the case shown in Figure 
3-b. After that, when the teacher urged the students to inspect this applicability in more 
detail, they could realise the necessity of modifying the part showing that the degrees 
of angle DAQ are 90 – a. In addition to such a pitfall, it will be valuable to investigate 
the advantages of each approach. 
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