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ABSTRACT
Success prediction in Massive Open Online Courses (MOOCs)
is now tackled in numerous works, but still needs new case
studies to compare the solutions proposed. We study here
a specific dataset from a French MOOC provided by the
OpenClassrooms company, featuring 12 courses. We exploit
various features present in the literature and test several
classification models.

1. INTRODUCTION
Multiple models and data mining methods for learner suc-
cess prediction in a Massive Open Online Courses (MOOCs)
are proposed by many works in the literature [1], with dif-
ferent conclusions about which model provides the best per-
formance. The quality of the results seems to highly depend
on the input dataset, and on the selected or computed fea-
tures. Generalization of the methodology for success pre-
diction seems now ongoing [1], but we still need new case
studies to improve the accuracy and insights obtained by
these methods.

This work presents a case study on a new dataset, pro-
vided by OpenClassrooms, a major online courses french
company. We test several models using classification algo-
rithms and sequence-based approaches, such as process and
pattern mining. Our study aims at enriching previous results
obtained for different datasets published in the literature.

Our first contribution in this work is the comparison of
8 classification models. Random Forest, AdaBoost, Sup-
port Vector Machine (SVM), logistic regression and neu-
ral networks are first applied, followed by sequence-based
approaches: an LSTM neural network, a process mining
method and a proposal of a solution based on a sequence
mining method. The second contribution consists in ex-
perimental results obtained from a new dataset for a suc-
cess prediction task. While most papers only focus on 1-5
courses [1], we use here 12 different courses from the same
platform.

The remainder of this paper is organized as follows: sec-
tion 2 surveys previous work related to success prediction.
Section 3 presents the dataset used for the experiments with
details on the raw data used to compute features. Sec-
tion 4 describes features obtained from the literature and
their adaptation to our context. Section 5 presents the clas-
sification methods that we applied. The result of our exper-
iments are detailed and discussed in section 6. We conclude
by summarizing our work and drawing perspectives in sec-
tion 7.

2. RELATED WORK
Prediction of dropout or success in MOOCs is carried out in
numerous works [1]. The goal is to improve the performance
of the learners by detecting a possible failure in advance.
Such a detection could for instance lead to a teacher inter-
vention to increase the learner engagement in the course.

The input data for such a prediction is based either on as-
signments [2, 3, 4, 5, 6] or clickstreams [7, 8, 9, 10]. Social
activities can also be included to assess the learner engage-
ment in a course [2, 3, 5].

Classification methods rely on common approaches such as
linear regression, logistic regression, K-nearest neighbors,
random forests, decision trees, support vector machines, hid-
den Markov models and neural networks. Because the course
context is different for each study, it is hard to determine
which model will be the best for a prediction task. Support
vector machine is the best method obtained for [5] while
random forest performs better in [6]. The conclusion of [2]
states that prediction performance depends more on the fea-
tures computed than on the model.

Several temporal data mining methods are proposed in the
literature [1, 8, 9]. Recurrent neural networks are assessed
for dropout detection and experiments conclude that LSTM
recurrent networks present the second best results in [11]
(where a Nonlinear State Space Model is slightly better). [9]
proposes a solution based on process mining to emphasize a
correlation between the way learners browse the course and
their performances. Other approaches use sequence mining
algorithms to predict learner skills [8].

In the present work, we test some of the common shallow
methods proposed in the literature, as well as neural network
approaches. We also explore a solution based on process
mining, and propose one based on sequence mining. For all
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Name # users # pass # fail

Java 7761 34 (0%) 7727 (100%)
XML 855 10 (1%) 845 (99%)
Ionic 960 46 (1%) 914 (99%)

Rubys 149 5 (3%) 144 (97%)
Node JS 2227 81 (4%) 2146 (96%)
Arduino 2487 115 (5%) 2372 (95%)

Bootstrap 8402 727 (8%) 7675 (92%)
Audace Entr. 225 26 (12%) 199 (88%)

JavaScript 8105 1803 (22%) 6302 (78%)
Gestion Projet 1808 666 (36%) 1142 (64%))

Twitter 817 328 (40%) 489 (60%)
Web 7947 3502 (44%) 4445 (56%)

Table 1: Number of learners per group for
each course of the OpenClassrooms dataset, after
cleanup. The first column presents the total number
of learners and the two last ones detail the number
of passing and failing learners.

these algorithms, we assess a large set of features adapted
from the literature.

3. INPUT DATA
OpenClassrooms is a MOOC platform that provides courses
in various domains, from art and culture to computer sci-
ence. All courses are freely accessible anytime, and paid ser-
vices are proposed for supplementary features such as online
help and certificates of achievement. Courses are generally
composed of texts, videos or e-books that users can browse,
read or download after a registration process. Based on the
properties proposed in [1], these courses can be characterized
as follows:

• massive, open and online: thousands of learners can
follow the courses freely. Paid access is provided to
get an access to a tutor or a completion certificate;

• no-stakes: the learner can complete a course without
certification or credit;

• asynchronous: learners are free to register, browse the
content, or complete a course. There is no constraint
on dates for enrollment or assignments. This point is
important and has an impact on the choice of features
used as input for the prediction model;

• heterogeneous: learners have various motivations and
mostly come from francophone countries since courses
are in french.

In this study, we are considering a dataset covering 12 courses
in the domains of programming languages, project manage-
ment and startup creation. The two leftmost columns of
table 1 present for each course its name and the total num-
ber of learners that followed it, from 2014 to 2016.

The provided courses are composed of static web pages and
quizzes/assignments, and do not contain any video. A course
is composed of chapters, divided in sections, and of exer-
cises based on quizzes and assignments. To succeed in a
course, a learner must obtain an average grade on all exer-
cises higher than 70/100 (the exercises are quizzes automat-
ically graded).

The input format of learner activity is a clickstream dataset.
Each access to a resource is recorded as one event in a log
file. The granularity of the retrieved events varies among
different courses. Apart from Audace Entreprendre, Node
JS, XML and Java (in bold in table 1), which are traced at
the section level, all courses present a chapter granularity.

The first step applied on the raw dataset consists in seg-
menting the learners’ sequences of events into sessions. This
session detection step aims to enrich some features related
to the learners’ regularity, the duration, or the number of
events in the working sessions. The learners’ sessions are de-
termined from the raw sequences with the method proposed
in [12], where a session is defined as a delimited and sustained
set of pages visited by the same user within the duration of
one particular visit to a particular website. Once sessions
are determined, a cleaning task is performed: learners with
only one session and no exercise attempt are removed. We
associate this behaviour to learners that want to check the
content of the course and do not really intend to follow it.

Discussion with the OpenClassrooms company about their
needs lead us to define two groups for our goal of success
prediction:

• passing group: set of learners that obtained an average
grade equal to or higher than 70/100 for a course;

• failing group: set of learners that did not obtain an
average grade higher than 70/100. This group contains
all the learners that either quit the course or completed
all exercises but failed to obtain a grade higher than
the 70/100 validation threshold.

Our choice for the terms ”Pass / Fail” is based on [1], where
it is defined that A student typically passes a course if they
meet or exceed an instructor-specified overall grade thresh-
old; otherwise they fail.

The two rightmost columns of table 1 present the number
of learners in each group for the 12 courses of the dataset,
after the cleaning step. As commonly encountered in MOOC
contexts, these groups are clearly unbalanced: on average,
the passing group represents 15% of the learners. Courses
of table 1 are ordered according to the percentage of passing
learners.

4. FEATURES
Table 2 presents our candidate features set. This set re-
groups an adaptation of the best features identified in [2, 7,
13, 14, 15]. We needed to adapt some of the features due
to differing contexts for our MOOC. A set of regularity fea-
tures proposed in [10] was also used in our experiments: the
features PDH, PWD, WS1, WS2, WS3, FDH, FWH and
FWD were tested for our classification task. Check [10] for
more details on these features.

Several options are possible to generate features depending
on the considered machine learning approach:

• basic features: features are computed for the whole
considered period (after x weeks of the course for in-
stance). These features do not evolve with time;

• temporal features: features are computed for succes-
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Category name description abbrev.

total duration total time spent on the course totalDuration
window duration time spent from the first event to the last

one
windowDuration

linearity ratio between the number of correct transi-
tions, w.r.t. the structure of the course and
the number of transitions in the sequence

linearityRatio

Activity # events per resource # of accesses per resource #eventPerR
duration per resource total time spent on each resource durationPerR

average duration per resource avg duration spent on each resource avgDurationPerR
average session duration avg duration of user sessions avgSessionDuration

average # events in session avg number of events in each user session avg#eventSession
median of intertime median of the time spent between sessions medianInterTime

duration before assessment∗ time spent before each assessment durationBeforeA
# events before assessment∗ # of events before each assessment #eventBeforeA

# sessions before assessment∗ # of sessions between each assessment #sessionBeforeA
Inter-
activity
periods

# events per day before assessment∗ average number of events per day between
each assessment

#eventPerDayBeforeA

# sessions per day before assessment∗ avg # of sessions per day between each as-
sessment

#sessionPerDayBeforeA

time since last event∗ time without activity after 1, 2,. . . , n
weeks (n=7 weeks in our experiment)

timeSinceLastEvent

Assignment marks∗ all marks obtained for each quiz marks

Table 2: Features used for our experiments: this set is composed of features identified in our litterature
review, adapted to the characteristics of our dataset (* indicates the features defined by a set of values).

sive time periods in order to emphasize their evolution
all along the course. The period commonly used in the
literature seems to be one week [1];

• temporal features with stacking: similar to the previ-
ous method but each feature of a period is stacked with
the previous one. Practically, it consists in adding the
values of week n with those of week n+1.

5. PREDICTION TASK
In this section, we present different classification methods
tested for our prediction task of passing/failing. We start
with the baseline methods commonly applied for this kind
of task and then detail a process mining approach and our
proposal based on a sequence mining solution.

5.1 Baseline approaches
In order to compare our results with other available works in
the literature, we experimented with the following methods:
Random Forest, AdaBoost, SVM, logistic regression, dense
neural network and LSTM neural network.

A first step of feature selection is necessary for logistic re-
gression and SVM models. We rely here on a wrapper
method with a forward selection to emphasize the best fea-
tures. A subset of features is iteratively built, starting from
an empty set and adding one by one the features that best
improve our model’s accuracy for the whole set of courses.
The process is stopped when accuracy does not increase any-
more.

Except for LSTM neural network that directly relies on a
sequence of features, other methods can deal with several

types of input features: basic features, temporal features and
temporal features with stacking. We test each possibility in
our experiment, to determine in what measure this choice
impacts the performance of the prediction.

5.2 Process mining approach
Process mining was initially a method to analyze business
processes for process discovery, process conformance check-
ing and process improvement. In the context of online cour-
ses, this method proposes to study the behavior of learners
during a course, by emphasizing common paths in course
resource navigation.

The classifier for our prediction task is built from the out-
puts of process discovery and conformance checking meth-
ods. Our process discovery relies on the Heuristic Miner
algorithm [16]. This algorithm is robust, and deals with the
majority of common problems in process detection. Models
for failing and passing are built with this algorithm for each
course. Our conformance checking solution relies on an al-
gorithm based on an alignment method [16]. Our prediction
task is carried out by computing the fitness of a learner on
both failing and passing models, and affecting him to the
group with the best fitness.

The input dataset of a process mining algorithm is a set of
traces, where each trace represents the sequence of activities
of one learner. In our context, an activity is an access to a
resource and is defined with the id of this resource. Because
the grades and the duration of each access are lost, a cat-
egorization step is carried out on each event of a learner’s
trace. It consists in updating the resource ids (the activity)
as follows: for an exercise id, the new id depends on suc-
cess or failure. For a chapter/section, the new id depends
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Sequence
length

Random forest AdaBoost SVM Logistic regression

25% marks, durationPerR,
#sessionPerDayBe-
foreA, #eventBeforeA,
avgDurationPerR

marks,
avg#eventSession,
durationPerR, avgDura-
tionPerR

marks, #eventPerR,
#sessionPerDayBe-
foreA, durationBeforeA

#eventPerR, marks,
durationBeforeA, #ses-
sionBeforeA, #event-
PerDayBeforeA

50% marks, #sessionPerDay-
BeforeA, #eventPerDay-
BeforeA

marks, avgDura-
tionPerR, durationPerR,
#eventPerR

#eventPerR, marks,
#eventBeforeA, #event-
PerDayBeforeA

#sessionBeforeA,
#eventPerR, marks,
#eventBeforeA

75% marks, #sessionPerDay-
BeforeA, #eventPerDay-
BeforeA

marks, avgDura-
tionPerR, durationPerR

marks, #eventPerDay-
BeforeA, #eventPerR,
#sessionBeforeA

marks, #eventPerR

100% marks marks marks marks

Table 3: Best features for the different sequence lengths for random forest, AdaBoost, SVM and logistic
regression models. This result is an aggregation of the best features obtained on each course separately. For
each model and sequence length, features are ordered from most to least pertinent.

on the duration spent on the resource, using 3 classes of
short/medium/long durations.

5.3 Sequence mining approach
With this approach, our goal is to determine whether differ-
ent groups of learners present distinct frequent sub-sequences
of events in their traces.

Our first step is to build the passing model (by retrieving
the frequent sequence on only the passing learners) and the
failing model. We rely on the VMSP algorithm to generate
the maximal frequent sequences on both groups. Note that
all sub-sequences of a maximal sequence are also frequent
sequences, thus we still obtain all the frequent sequences.

Our second step is to compute a similarity score between
a model and a learner’s sequence. Our proposal consists
in tessellating the new learner sequence with the larger fre-
quent sub-sequences of the models. Practically, we try to
map each frequent sequence on the learner sequence. The
mapping obtained is used to compute a similarity score:

1. for a frequent sequence of length n in the model, gen-
erate all k-grams with k between 2 and n;

2. map all k-grams one by one on the learner sequence,
keeping the mapping with the larger k-gram;

3. repeat the steps 1-2 for all frequent sequences;
4. for each item position of the learner sequence, a score is

computed as the length of the longer k-gram that maps
this position. The similarity score is then obtained by
summing up all these positions’ scores.

The input dataset for this method is similar to the one used
for our process mining approach. Each learner’s event is
categorized with our previous method (see section 5.2).

6. EXPERIMENTS
For all the following experiments, a cross validation 80%
train - 20% test is carried out 10 times on each course sepa-
rately. For the neural network approaches, the training set
is divided into a train set, a validation set and a test set. In-
put features are standardized. The computation of temporal
features is carried out by grouping the sessions into 7 days

periods. For each period, all features, except the regularity
ones, are computed.

Neural networks present the advantage of avoiding the la-
borious feature selection step, but still need some tuning
for determining a correct architecture with its optimization
parameters. Our first task was to assess several candidate
architectures, varying the number of layers and units. Our
prediction tasks were carried out on all courses and results
were aggregated. The best accuracies were obtained with the
following parameters: [Dense Layer of 512 units, Dropout
layer, Dense Layer of 256 units, Dropout layer, Dense layer
of 1 unit with a sigmoid activation].

A similar search was carried out for the architecture of the
LSTM solution, leading to the following parameters: [LSTM
layer of 32 units, Dense layer of 1 units with a sigmoid ac-
tivation]. The input of the LSTM algorithm, a time series,
was computed as follows: each session is considered as a time
step. For a specific learner, the input features for time t is
computed with the learner tth session and each element of
a learner’s time step is stacked with its previous element (a
padding is applied to provide the same time’s series length
for each learner).

Finally, in order to assess our prediction at different time
steps of the learning process, classification tasks are tested
on truncated versions of the sequences. Experiments provide
results for 25%, 50%, 75% and 100% of learner’s sequence
length (number of events).

In the following, the best features for random forest, logistic
regression, SVM and AdaBoost models are first presented.
Second, the results of the prediction task are detailed for
each model.

6.1 Best features selection
The best features obtained for the shallow methods are pre-
sented in table 3. The best features for SVM and logistic
regression are obtained with the wrapper method described
in section 5.1. Best features on each course were computed
with a 10 times 80%-20% cross validation, leading to a score
for each feature depending on its ranking. These scores were

393 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)



25% 50% 75% 100%
A. P. F. A. P. F. A. P. F. A. P. F.

Basic
features

Random forest 91% 28% 96% 93% 36% 96% 94% 47% 96% 98% 77% 98%
AdaBoost 91% 41% 94% 93% 48% 95% 94% 59% 96% 99% 96% 99%
SVM 88% 61% 90% 91% 64% 92% 92% 69% 93% 98% 89% 99%
Logistic Reg. 88% 66% 89% 91% 71% 91% 93% 84% 93% 99% 100% 99%
Dense NN 91% 37% 94% 93% 47% 95% 94% 59% 95% 98% 82% 99%
LSTM 90% 38% 93% 91% 47% 93% 93% 55% 95% 97% 78% 98%
Process mining 66% 47% 64% 72% 49% 71% 67% 54% 65% 64% 54% 58%
Seq. mining 24% 85% 13% 24% 88% 9% 22% 95% 5% 18% 100% 0%

Temporal
features

Random forest 92% 9% 99% 92% 11% 99% 92% 12% 98% 92% 11% 99%
AdaBoost 90% 42% 94% 92% 46% 95% 92% 46% 96% 95% 55% 98%
SVM 88% 60% 90% 89% 65% 90% 92% 72% 92% 99% 87% 99%
Logistic Reg. 87% 58% 91% 91% 67% 92% 92% 76% 92% 99% 90% 99%
Dense NN 89% 36% 93% 90% 41% 93% 92% 48% 94% 94% 59% 96%

Temporal
features
with
stacking

Random forest 89% 16% 97% 90% 22% 98% 91% 24% 97% 92% 29% 96%
AdaBoost 91% 43% 94% 92% 47% 95% 93% 51% 96% 97% 67% 99%
SVM 91% 66% 93% 87% 23% 95% 91% 57% 92% 91% 61% 92%
Logistic Reg. 89% 64% 90% 90% 61% 92% 92% 76% 92% 98% 91% 98%
Dense NN 88% 36% 92% 83% 18% 88% 79% 17% 82% 78% 18% 83%

Table 4: Accuracies of the different models tested. A., P. and F. stand respectively for All, Pass and Fail

then aggregated among the courses. For random forest and
AdaBoost, the weights provided by the learning algorithms
have been used. For each method and sequence length, we
selected the features with the best scores until a sudden drop
appeared (the elbow method).

Clearly, the number of best features decreases with the in-
crease of the sequence length available for the classification
task, leading to the sole use of marks (feature marks) for
full length. The marks feature is obviously pertinent for all
sequence lengths.

If we ignore marks, random forest, logistic regression and
SVM seem more related to inter-activity periods features
while AdaBoost is associated to activity features. The best
features concern mainly the marks, the activity intensity and
the activity intensity between assessments. No regularity
feature appears in the best features list for any model.

In the following, the aggregated best features obtained for
SVM and logistic regression models are used to provide the
results of our prediction task.

6.2 Best models
Table 4 presents the aggregated accuracies obtained for each
model on each course separately, with basic features, tem-
poral features and temporal features with stacking.

Each row is associated to a model and the columns present
the sequence length used to fit the model (25%, 50%, 75%
and 100%). The sub-columns (A., P., F.) stand for All, Pass
and Fail, respectively for the overall accuracy, the accuracy
for the passing learners and the accuracy for the failing learn-
ers.

Among the shallow classification methods, the Adaboost
and logistic regression models present the more balanced
results on both the passing and failing groups: Adaboost

seems more reliable to detect the failing learners while the lo-
gistic regression model performs better on the passing group.
The Random Forest solution provides good results on bal-
anced courses but clearly fails on very unbalanced ones (see
the 28% accuracy on the passing group). The SVM model
presents results similar to the logistic regression model, ex-
cept for the passing learner accuracies which are clearly
lower.

Compared to the best shallow models, the dense neural net-
work presents a poor performance on passing learners and
does not significantly outperform failing learner prediction.
In our opinion, the lack of passing learners for each course
in the train set does not enable to fit appropriately the pa-
rameter of the network. The LSTM model provides a result
similar to the dense neural network, but with a higher com-
putation cost. Hence we do not recommend these neural-
based models in our context.

The process mining model presents very low scores. Our
explanation is that the graphs generated by the heuristic
miner algorithm on the two learner groups (passing and fail-
ing) contain the same navigation paths. Traces for passing
or failing learners can then be replayed on both graphs with
a good fitness.

A similarly bad result is also obtained with the sequence
mining model. It can be explained by the fact that frequent
sequences of failing learners are short and almost all included
in the frequent sequences of the passing learners. Passing
frequent patterns are more numerous and longer (longer pat-
terns involve an increase of the similarity score between a
model and an input learner trace). It is then more likely
to find a better similarity between a learner sequence and
the passing learner model. Our conclusion for the process
and sequence mining approaches is that passing and failing
learners do not present a discriminant behavior on the way
they browse the courses.
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The second and third parts of table 4 present the average
accuracies when temporal features are used for the input
dataset of the models, without and with stacking. Compared
to the results obtained with the basic features, the results
with the temporal features with and without stacking are
lower for all models on all sequence lengths, with a clear
drop on the accuracies of the passing learners. To conclude,
the temporal features do not provide any improvement in
our experiments.

To summarize, our experiments show that shallow models
present the best results for our dataset. Among them, Ad-
aBoost and logistic regression present the best results re-
spectively for the failing group and the passing group. An-
other observation is that contrary to several experimental
results [8, 9], our temporal data mining approaches (tem-
poral features, LSTM, process mining and sequence mining
solutions) do not perform well on our data set. Our con-
clusion here is that no difference can be found in the way
learners access the course resources.

7. CONCLUSION
The objective of our work was to assess several solutions for
predicting success in the context of Massive Online Open
Courses, using a new dataset provided by the OpenClass-
rooms company, a major online course enterprise in France.

From our experimental results, we reached the following con-
clusions:

• failing and passing learners do not seem to present
differences in the way they browse a course. Neither
specific paths nor specific patterns are identified with
our proposed solutions to discriminate between passing
and failing learners;

• best features depend on the model used for the predic-
tion tasks;

• temporal features do not increase the performance of
the prediction task;

• the best models to detect failing and passing learners
are respectively based on AdaBoost and logistic regres-
sion solutions.

A short term perspective work is to apply the same predic-
tion tasks on other MOOC datasets, in order to validate our
previous conclusions in other learning environments.
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