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ABSTRACT
In this study, we fitted a mixed-effects nonlinear continuous-
time mutualism model of skill development proposed by van
der Maas et al. (2006) to naturally collected irregularly
spaced time series data from an online adaptive practice sys-
tem for mathematics called Math Garden. Results showed
that the mutualism model provided a better fit to the data
than a g-factor model. The paper illustrates continuous-time
modeling of irregularly-spaced multivariate time series data
that are increasingly prevalent in modern learning systems.
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1. INTRODUCTION
For the past century, generations of researchers have contin-
ued to pursue explanations for the consistent positive corre-
lations between diverse sets of cognitive ability tests, known
as the positive manifold [25, 29]. Heated debates went on
about whether there is a potential biologically based g-factor
that causes the development of general intelligence as well
as the positive manifold [26, 7, 27, 11, 9]. Although re-
searchers have not reached consensus, there is a shift from
conceptualizing cognitive development as merely reflective,
as in factor analysis, to thinking of it as formative [2, 14,
27]. In a formative model, the positive manifold is an emer-
gent property that results from within-person changes and
connections over time. This ontological stance implies that
research needs to focus on understanding the causal relation-
ships that underlie cognitive development to guide effective
efforts to predict and intervene in students’ learning.

Various mathematical representations encompassing contin-
uous and discrete variables have been proposed to describe
the mechanistic changes and sources of individual differences
in cognition [28, 9, 32, 21]. From a developmental perspec-
tive, cognitive abilities develop as a dynamic system with
reciprocal interactions between the elements of the system
causing the developmental pathways of each of the elements
[29]. In the Mutualism model of intelligence, elements of a
system interact with each other in a collaborative way to
achieve mutual benefits. This provides an alternative ex-
planation for the positive manifold, other than the g-factor
approach, and only requires sparse, weak, and even some
negative interactions to produce positive correlations [28].

In the current study, we take advantage of massive time se-
ries data collected with an online learning environment for
mathematics [12] and propose a method to fit the mutualism
model to this dataset. We aim to examine potential recip-
rocal interactions of mathematical skills in two domains —
counting and addition — in children’s learning and practic-
ing mathematics online. We build a model that takes into
account individual differences in the learning processes by
allowing individuals to start in different positions and by
including random effects in key parameters of an otherwise
group-based mutualism model. Note that this is the first
application of the nonlinear mutualism differential equation
model to empirical data, providing an evaluation of how
well the theoretical account proposed by van der Maas et
al. [29] can capture changes in children’s mathematical skill
development over time. In addition, we pioneer the use of
continuous-time models to analyze irregularly-spaced data
that arise when students use educational technology in real-
istic settings, and show that the estimation framework im-
plemented in the dynr R package [19, 20] can handle nonlin-
ear equations and mixed effects that explain both between-
person and within-person differences.

In summary, the contribution of the work is three-fold: 1)
providing new evidence of reciprocal interactions in mathe-
matics skill development as a pioneer in fitting the nonlinear
mutualism model to empirical data; 2) presenting a way to
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analyze the irregularly spaced multivariate time series data
commonly seen in learning systems; and 3) demonstrating
the use of state-space approaches in estimating parameters
of mixed-effects dynamic models.

In the following sections, we first explain the mathematical
model we use to characterize the learning processes, and the
estimation procedure. We then present how the empirical
data in the current study were collected, and the sample
characteristics. The paper ends with a discussion of the re-
sults and their implications for education.

2. THE MUTUALISM MODEL
In biology, the term Mutualism is used for a relation be-
tween species populations where different species organically
interact with each other to maintain sustainable growth [1].
Biologists routinely use the Lotka-Volterra model [16, 30]
to study the dynamics of such relations, which inspired van
der Maas and colleagues [29] to propose the same model, re-
ferred to as the mutualism model, to study the dynamics of
cognitive development, where elements of a cognitive system
interact with each other to achieve mutual benefit.

2.1 The Lotka-Volterra Model
Mathematically, the mutualism model can be expressed us-
ing generalized N-subject Lotka-Volterra equations as

dx(t) = F (x1(t), x2(t), · · · , xN (t))dt (1)

=

ρixi(t)
1−

xi(t) +
∑
i6=j

aijxj(t)

Ki


 dt, (2)

where i, j = 1, 2, · · · , N indicates different elements of a dy-
namic system, and t is continuous time. Here, the elements
are the counting and addition skills. The differential of vec-
tor x(t) with respect to t denotes the change in x(t) within
an infinitely small time interval.

The model assumes logistic growth. The ρi are growth pa-
rameters that determine the steepness of the logistic growth
function associated with each xi(t), and the Ki are the carry-
ing capacity parameters that represent the limited resources
in the system, such as limited attention and working memory
one can allocate in learning. The aij are interaction parame-
ters that specify the relations between each pair of xi and xj
in development. With all aij = 0, the change of the latent
variable xi(t) follows a simple logistic curve that converges
to an equilibrium state of Ki, regardless of its starting posi-
tion. The system is collaborative if the Jacobian matrix ∂F

∂x
is positive definite, and is competitive otherwise. If, for all i,
xi(t) and ρi only take positive values, then it is possible to
show that as long as the combined consumption of resources
xi(t)+

∑
i6=j

aij does not exceed the carrying capacity Ki, xi(t)

will continue to increase to its equilibrium. Further, when
the interaction parameters aij are negative (or −aij are pos-
itive) for all j 6= i, xi(t) can develop even beyond the original
carrying capacity Ki, as a benefit of the collaboration with
the other processes. On the other hand, when the param-
eters aij , j 6= i are positive, xi(t) can never reach the full
potential Ki, as a loss due to competition. van der Maas
and colleagues [29] showed that when −ai,j is positive and

less than 1, the mutualism model can result in the positive
manifold.

2.2 State-space Representation
If we take into account individual differences in the mutual-
ism model, as well as process noise and measurement errors1

that may occur alongside the manifestation of the mutual-
ism process, we obtain a state-space representation of the
mutualism model:

dxs(t) = F s(xs(t))dt+ dws(t) (3)

F s(xs(t)) =

ρ1x1,s(t)(1− x1,s(t)+a12x2,s(t)

K1+b1,s

)
ρ2x2,s(t)

(
1− x2,s(t)+a21x1,s(t)

K2+b2,s

) (4)

ys(ts,k) = xs(ts,k) + εs(ts,k), (5)

εs(ts,k) ∼ N
(

0,Σε =

[
σ2
ε,1 0
0 σ2

ε,2

])
, (6)

where the subscript s indexes individuals, and k = 1, 2, · · · , Ts
indexes the kth discrete person-specific measurement occa-
sions ts,k. The vector xs(t) contains the latent counting
and addition skills x1,s(t) and x2,s(t) for an individual s,
manifested as ys(ts,k) in a measurement model with serially
independent Gaussian measurement errors εs(ts,k). The dif-
ferential of xs(t) is determined by the systematic dynamic
functions F s(·) and the differential of process noise ws(t)
that follows a Wiener process (i.e., a continuous-time ver-
sion of random walk, [10]), with a diffusion matrix Q =[
σ2
w,1 0
0 σ2

w,2

]
. Person-specific random effects

[
b1,s
b2,s

]
are added

to the carrying capacity parameters, and are assumed to fol-
low a normal distribution with mean 0 and a covariance

matrix of Σb =

[
σ2
b,11 σ2

b,12

σ2
b,12 σ2

b,22

]
.

The initial condition, or the distribution of the variables at
the first available time point, of the dynamic process xs(ts,1)
is assumed to follow a multivariate normal distribution with

mean

[
µ1,1

µ1,2

]
and variance

[
σ2
1,11 σ2

1,12

σ2
1,12 σ2

1,22

]
.

2.3 An Alternative G-factor Model
In order to explore the fit of the mutualism model to empiri-
cal data compared to the g-theory, a comparable state-space

1Process noise is distinct from measurement error in that the
former is associated with random behavior in the underly-
ing process, whereas the latter depends on the measurement
process, device, and other environmental influences that may
affect the accuracy of the measurements. In an educational
context, a correct guess without knowing an item can be seen
as a measurement error, while a child having a good or bad
day could contribute to the process noise. Whereas mea-
surement error does not influence growth at the next time
point, the process noise does steer the dynamical system.
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one-factor model without interactions can be developed as

dxs(t) = ρ1xs(t)

(
1− xs(t)

K1 + b1,s

)
+ dws(t) (7)

xs(ts,1) ∼ N(µ1,1, σ
2
1,11),Q =

[
σ2
w,1

]
,Σb =

[
σ2
b,11

]
ys(ts,k) =

[
1
λ

]
xs(ts,k) + εs(ts,k), (8)

εs(ts,k) ∼ N
(

0,Σε =

[
σ2
ε,1 0
0 σ2

ε,2

])
,

where the observed variables are linearly linked with the

single latent variable through a loading matrix of
[
1 λ

]>
.

3. ESTIMATION
To estimate the random effects in the models, we augmented
the latent variables xs(t) with random effects bs to yield a

new latent variable vector, x∗s(t) =
[
xs(t) bs

]>
. We then

modified the differential equations, the measurement model,
and the initial condition to incorporate this change of x∗s(t).

We used the dynr R package [19, 20] to estimate the param-
eters in the mixed-effects mutualism model, as well as the
baseline g-factor model, by numerically optimizing an ap-
proximate log-likelihood function obtained as a by-product
of the continuous-discrete extended Kalman filter [15]. Akaike
Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC) were constructed to compare models. Details
of the estimation algorithms can be found in [4, 20].

Figure 1: Screen shots of the counting and addition
games in the Math Garden. Children give responses
by clicking an option. The coins at the bottom dis-
appear one per second, and reflect the scoring rule
based on accuracy and response time.

4. EMPIRICAL STUDY
Here, we describe an application of the mutualism model.

4.1 Math Garden
We sampled data using a popular Dutch online adaptive
practice and monitoring system called Math Garden [13].
The system consists of games that measure different math-
ematical skills, including counting and addition, as players
practice their arithmetic skills through answering items. Fig-
ure 1 shows screen shots of two example items.

The system applies an explicit scoring rule for both speed
and accuracy [17], visible to players as the number of coins
they collect. For each item, a limit number of coins can be
collected, and the number decreases by one at each addi-
tional second used to come up with the answer. In case of

a correct answer, the score equals the remaining time. If
the answer is incorrect, the score is the negative remaining
time. The scoring rule takes speed-accuracy trade-off into
account, penalizes quick but incorrect answers, and encour-
ages thoughtful responses.

Skill rating and item difficulty are estimated on-the-fly us-
ing the Elo-algorithm [6] which was originally developed for
chess competitions between two players, and now has been
adapted for pairing a player with an item [13]. The skill
and difficulty estimates for a player and an item are up-
dated at each “match” they are involved in, depending on
the weighted difference between observed and expected cor-
rectness, the latter of which is entailed by the measurement
model [17]. Evidence has shown high validity and reliability
of the skill and difficulty estimates [13].

In the current study, our observed data are the continuous
end-of-day skill ratings in different domains, rather than bi-
nary correctness for each item. Comparisons of Math Gar-
den’s underlying measurement model [17] and the adapted
Elo-algorithm [13] to other common models for binary re-
sponses in educational data mining — the Rasch model [23],
additive factor models [3], performance factor analysis [22],
and Bayesian knowledge tracing models [5] — are worth ex-
ploration, but beyond the scope of this paper.

4.2 Data Description
We selected a sample of children in grades 3–6, between the
ages of 6 and 10 years old, who practiced counting and ad-
dition skills during at least 4 different months in the school
year from September, 2016 to July, 2017, and had played at
least 20 different days in each domain, with a minimum of 10
items per day. We excluded children whose parents indicated
unwillingness to participate in Math Garden-related scien-
tific research that was approved by the Ethics Committee of
the psychology department of University of Amsterdam.

The resulting sample included a total of 2485 children, 51.07%
male. The average age at which a child started to use Math
Garden for practicing counting and addition during the school
year was 7.23 years old (SD = 1.03). The original skill rat-
ings could be negative, so we shifted them to the positive
range by respectively adding 20 and 25 to the counting and
addition scales. The over-time ebb-and-flow and variability
of the skill ratings remain the same. From the second-by-
second time stamps of the data points, we constructed con-
tinuous measures of time where each unit represents a week.
Figure 2 shows the shifted skill ratings for three randomly
selected individuals over time.

Distributions of the initial and ending skill ratings are plot-
ted in Figure 3. At the first available time point for each
individual, the counting skill ratings for all sampled children
had a mean of 13.84 and a variance of 1.51, whereas the ad-
dition skill ratings had mean 12.94 and a larger variance of
10.56. At the last available time point for each individual,
the ending counting estimates had a mean of 14.83 and vari-
ance of 1.49, while the ending addition estimates had a mean
of 15.92 and variance of 9.05. Generally speaking, during the
school year, more development is observed in the addition
skill compared to the counting skill. There was more vari-
ability in children’s initial and ending addition skill ratings
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Figure 2: Individual time series data of counting and
addition skill ratings for three children.

than in the counting domain.

Figure 3: Histograms of the initial and ending skill
ratings

The correlation between the initial addition and counting
skill ratings was .73, and the correlation between the ending
ratings was .79, confirming the positive manifold. Figure 4
shows the boxplot of within-person correlations between the
skill ratings in the two domains. The mean of the within-
person correlations was .55 (SD = 0.38). However, some neg-
ative values were observed at the significance level of 0.05 of
the asymptotic p-values computed by the Hmisc R package
[8]. For example, in Figure 2 the child with identification
number 1344 had upward growth in the addition skill rat-
ings and downward decline in the counting skill ratings. The
downward decline may be due to an unexpected bump in
the skill ratings that was higher than the child’s equilibrium
and hence resulted in a return to the equilibrium. Another
possible explanation would be that, the child learned and
practiced counting at school before addition, but forgetting
took place as the child started to learn addition and prac-
ticed counting less. In such a case, there was a competition
for attention and learning time between the skills in differ-
ent domains, instead of a collaboration. Either case can be
captured by the mutualism model.

The length of the individual time series of the counting skill
ratings ranged from 20 to 177 days with a median of 29
days, and that of the addition skill ratings ranged from 20
to 192 days with a median of 42 days. The length of the
interval between two time points represents the inactivity
gap between two practice days of an individual for a math-
ematical skill, and ranged from 1 day to 18.29 weeks. The
minimal gap length of a single time series had a median of 1
day across the sample in both domains, whereas the median
maximum gap length was 4.86 weeks in the counting domain
and 4 weeks in the addition domain. In Figure 5, the data of

Figure 4: A boxplot of the within-person correla-
tions of the addition and counting skill ratings.

ten randomly selected individuals illustrate the irregularly-
spaced measurement occasions, as well as the unbalanced
practices in each domain on a single day and across time.
The mutualism model assumes a continuous integrative pro-
cess of change even though we do not have measurements of
each skill at all times.

Figure 5: An illustration of the irregularly spaced
time intervals of ten randomly selected individuals.
Different colors represent the domains that an indi-
vidual practiced during a specific day.

4.3 Empirical Results
The parameter estimates and model fit indices of both the
mutualism model and the g-factor model were summarized
in Table 1. All parameters were estimated to be significantly
different from zero (p < .05). The estimates of the initial
condition parameters (µ1,1, µ1,2, σ2

1,11, σ2
1,12, and σ2

1,22) in
both models were consistent with the sample mean and vari-
ance of the initial states. With lower AIC and BIC values,
the mutualism model provided a better fit to the data com-
pared to the g-factor model. Figure 6 shows the fit of the
mutualism model to the observed data of four randomly se-
lected individuals. The fitted trajectories were able to cap-
ture the changes of the observed paths for the individuals
in both domains, suggesting a decent fit of the model to the
data. In the mutualism model, the steepness parameters ρ1
and ρ2 were estimated to be close to zero, indicating that
the overall development in skills was small and slow. The
group-level equilibrium states K1 and K2, for when there
was no interaction between the processes, were estimated to
about 10, but individual differences captured by the random
effects b1 and b2 contribute to an estimated co-variance of[
1.04 0.09
0.09 1.06

]
. Estimates of the interaction parameters a12

and a21 were found to be significantly negative, so the inter-
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Table 1: Parameter estimates (standard errors) and
model fit indices

Mutualism Model g-factor Model
ρ1 0.08 (0.002) 0.02 (0.001)
ρ2 0.09 (0.001)
a12 -0.48 (0.005)
a21 -0.58 (0.004)
K1 10.04 (0.005) 15.98 (0.124)
K2 10.05 (0.004)

σ2
w,1 0.34 (0.002) 0.10 (0.001)

σ2
w,2 0.42 (0.001)

σ2
ε,1 0.29 (0.001) 4.92 (0.025)

σ2
ε,2 0.34 (0.002) 0.08 (0.001)
µ1,1 13.85 (0.006) 13.87 (0.013)
µ1,2 12.92 (0.001)

σ2
1,11 1.67 (0.014) 1.74 (0.068)

σ2
1,12 1.34 (0.045)

σ2
1,22 10.55 (0.056)

σ2
b,11 1.04 (0.005) 1.71 (0.310)

σ2
b,12 0.09 (0.004)

σ2
b,22 1.06 (0.005)
λ 1.02 (0.001)

AIC 388981.81 472908.58
BIC 389155.46 472995.41

Figure 6: Observed and fitted skill ratings from the
mutualism model.

actions between counting and addition ratings had a positive
effect on their level changes. These results indicated that
counting and addition skills collaborate, instead of compet-
ing, to form a positive manifold in the long run.

In summary, we have found beneficial interactions between
children’s addition and counting skill ratings as being better
at one skill helps being better at the other. The mutualism
model was a better fit to the data than the g-factor model.
Individual differences are present in the data in both starting
positions of the change trajectories and key model parame-
ters that represent limited resources in the system, providing
potential evidence for both the g-theory and the mutualism
model of general intelligence, according to [29]. We concur
with van de Maas and colleagues (2006) that individual dif-

ferences cannot be ignored in educational applications.

5. CONCLUSIONS
In this paper, we presented a state-space expression of the
continuous-time mutualism model proposed by [29] where
individual differences, process noise, and measurement er-
rors were taken into account. The mutualism model allowed
us to tackle the underlying mechanism of the skill devel-
opment from a micro perspective. We fitted the theoretical
model to empirical data naturally collected online in authen-
tic educational settings. Results showed that improvement
in addition skill could positively influence the development
in the counting domain, and vice versa. The better fit of
the mutualism model to the data compared to the g-factor
model suggested that the collaboration between the count-
ing and addition skills in their co-development served as a
better interpretation of the observed positive manifold.

The characteristics of the time series data in the current
study are not uncommon in education as digital technology
has transformed our way of collecting data about learning.
The paper illustrates one way to fit dynamic models to the
multivariate noisy irregularly spaced data that are rich in
our real life. We appreciate the potential to apply the cur-
rent method to different learning data to improve our un-
derstanding of cognitive and non-cognitive developments.

Nevertheless, this work has limitations that future work should
aim to overcome. First, only two variables were considered
in the current sample, while the mutualism model could be
extended to multiple dimensions. The estimation algorithm
is well suited for multivariate time series data, but the in-
terpretation of the multivariate model can become compli-
cated. Second, the estimation framework permits only a lim-
ited number of random effects in the current study [18]. In
addition to the two carrying capacity parameters, one may
be interested in adding random effects in the interaction pa-
rameters because of the potential competition between skills
under time and attention constraints as we discussed above.
The limitation of the estimation framework may be circum-
vented by utilizing sampling-based algorithms although they
may be computationally heavy.

The fitting of the model to the data does not exclude other
probable ways of interpreting cognitive development. In-
tervention studies with deliberate experimental designs are
needed to establish causal relations in a dynamic system.
These interventions may take the form of randomized as-
signment of skills to practice, for example, with groups of
students assigned to practice only counting or only addition,
but with progress measured on both skills after some period
of practice. The cross-skill influence of practice can then be
evaluated relative to practiced skill improvement.

Future work should also aim to evaluate how the mutual-
ism account of skill development relates to other findings in
education. For example, evidence suggests that interleaving
practice on different problem types produces more robust
learning and generalization than does blocking practice by
problem type [31, 24]. It is possible that some of the benefit
from interleaving relates to mutualism, with practice from
different problem types influencing the development of the
other skills.
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