
Detecting Suggestions in Peer Assessments

Gabriel Zingle, Balaji Radhakrishnan, Yunkai Xiao, Edward Gehringer, Zhongcan Xiao, Ferry
Pramudianto, Gauraang Khurana, and Ayush Arnav

Department of Computer Science
North Carolina State University

Raleigh, NC 27606
+1 919-515-2066

{gzingle, bradhak, yxiao28, efg, zxiao2, fferry, gkhuran, aarnav}@ncsu.edu

ABSTRACT
Peer assessment has proven to be a useful strategy for increasing
the timeliness and quantity of formative feedback, as well as for
promoting metacognitive thinking among students. Previous
research has determined that reviews that contain suggestions can
motivate students to revise and improve their work. This paper
describes a method for automatically detecting suggestions in
review text. The quantity of suggestions can be treated as a metric
for the helpfulness of review text. Even before a review is
submitted, the system can tell a reviewer when a review is lacking
in suggestions and consequently advise that they be added. This
paper presents several neural-network approaches for detecting
suggestions and compares them against traditional natural language
processing (NLP) methods such as rule-based techniques, as well
as past machine-learning approaches.

Our network-based classifiers outperformed rule-based classifiers
in every experiment. Our neural-network classifiers attained F1-
scores in the low 90% range, outperforming the support vector
machine (SVM) classifier whose F1-score was 88%. The naïve
Bayes (NB) classifier had an F1-score of 84% and the rule-based
classifier had an F1-score of 80%. As in other domains such as
determining sentiment, we found that neural-network models
perform better than the likes of naïve Bayes and support vector
machines when classifying suggestions in text.

Keywords

Peer assessment, suggestion mining, classification techniques, text
analytics, text mining.

1. INTRODUCTION
Peer assessment is known to have several advantages for student
learning [1]. It provides students with prompt and rich feedback that
helps them improve their performance and learning readiness [2].
It gives students an opportunity to learn from others by observing
their approaches to solving a problem. Not only do students learn
from the feedback they receive; they also benefit from reviewing
others. In fact, they probably learn more from reviewing than they
do from receiving feedback [3, 4, 5, 6, 7, 8]. Finally, reviews from
other students may help instructors to assign more informed grades.

However, these advantages can only be achieved with high-quality
feedback. Nelson and Schunn [2] showed that high-quality
feedback comprises several features, including suggestions on how
to address problems in the work. Having concrete suggestions
makes the feedback actionable for the reviewee and also trains the
reviewer to solve problems [2], instead of just focusing on the
existence of the problems.

So it is desirable for peer reviews to contain suggestions, but it is
not easy for the instructor to give students credit for making them.
The instructor would have to look through each review and keep a
tally. If this could be done automatically, particularly before the
reviewer submits a review [9, 10], it could help reviewers to
improve the quality of their feedback, which in turn would help
reviewees to improve their work.

2. LITERATURE REVIEW
Before digging in further, we must first decide what constitutes a
suggestion. Negi and Buitelaar [11] state that, due to the variation
in the definition of suggestion, previous results may be
incompatible with each other. In this paper, we define suggestions
as comments that constitute advice for making improvements [12].

Suggestions normally contain some or all of the components of
specificity [2]: locating the problem, identifying the problem,
offering a solution to the problem. Specificity has proven to have a
direct correlation to understanding. Understanding is found to be
the only significant mediator that directly contributes to the
likelihood of implementing the feedback, thus improving the
student’s work.

Some effort has been made to detect suggestions through
conventional natural language processing. These NLP approaches
usually utilize rules that match the feedback to a set of predefined
linguistic patterns, as well as part-of-speech (POS) tagging and a
carefully crafted thesaurus relevant to each domain on which the
approach is going to be implemented [13, 14, 15]. The main
drawback of these approaches is that they require the knowledge of
engineers to define the rules and patterns in the software logic.
However, it is almost impossible to foresee all possible rules and
patterns that indicate the existence of suggestions in a text
document. Thus, as the number of patterns and rules grow, it
becomes very difficult for engineers to maintain the software.

Another approach that has shown promising results for detecting
patterns is based on machine-learning techniques. For instance,
researchers have utilized machine-learning methods such as SVM
with some degree of success to find patterns that indicate the
sentiment polarity of a text [9].

Machine-learning algorithms are able to discover patterns and rules
automatically based on training samples [16]. For software

Gabriel Zingle, Balaji Radhakrishnan, Yunkai Xiao, Edward
Gehringer, Zhongcan Xiao, Ferry Pramudianto, Gauraang
Khurana and Ayush Arnav "Detecting suggestions in peer
assessments" In: Proceedings of The 12th International
Conference on Educational Data Mining (EDM 2019), Collin F.
Lynch, Agathe Merceron, Michel Desmarais, & Roger Nkambou
(eds.) 2019, pp. 474 - 479

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 474

engineers, this is a game-changer since it allows them to keep the
complexity of the software consistent and manageable. There are
many machine-learning algorithms that can be used for classifying
text as to whether it contains suggestions or not, such as decision
trees (DT) and support vector machines [17]. Machine-learning
approaches can usually outperform rule-based approaches once
they are trained with sufficient and representative samples that have
been labeled. However, obtaining labeled data is usually very
expensive.

Recently, the neural network approach has stood out for its ability
to solve classification problems in different domains, e.g., image
and voice recognition, and text classification [11]. This work tries
to apply neural networks to suggestion detection and compares the
results with the rule-based and traditional machine-learning
classifiers.

3. DATA
In this experiment, we used a balanced dataset of peer reviews with
a total of 3878 peer reviews, each labeled as containing a
suggestion (1) or as not containing a suggestion (0). It is extracted
from the Expertiza [18, 19] platform, which we would describe
later on in this section. The dataset has two main components: (i)
the input text, and (ii) a label indicating whether suggestions were
present in the text. The datasets for the neural network classifiers
were broken down into an 80–10–10% split for training, validation,
and test sets. For the naïve Bayes classifier and the support vector
machine classifier, split for training and test sets was 90-10%. All
the models were trained and tested on the same dataset.

The platform we mentioned in the previous paragraph, Expertiza,
is a web-based peer-review system that allows students to exchange
ideas and build shared knowledge. It facilitates anonymous reviews
for students’ submissions. In this paper, we use reviews submitted
to Expertiza to test our approaches. Authors who received reviews
manually labeled 15,067 review comments as to whether they
contained a suggestion. The labeling of these reviews was
incentivized by giving extra credit to students in a class who tagged
review comments. A team made up of the instructor, TAs, and
authors of this paper went through the labels and removed labels
assigned by students whose labels were clearly not trustworthy.
Untrustworthy labels included random labels unrelated to review
content, all no’s or all yes’s on reviews with obvious variety of
status of containing suggestions. Inter-rater reliability of the dataset
was calculated between each team of students labeling peer reviews
with a Krippendorff alpha [20] of 0.69 before removing unreliable
labels and 0.74 afterwards. Students receiving these reviews were
an ideal choice for annotating these reviews, since the reviews were
of their own work. Thus, they were capable of judging whether they
really contained suggestions. In the preprocessing stage, entries that
are invalid to the experiment, such as blank entries, duplicated
entries, entries with unrecognizable symbols and marks, as well as
html tags, were striped from the dataset. After preprocessing, the
dataset contained 5,842 entries without suggestions, and 1,939
entries with suggestions.

With an imbalanced dataset, the process of machine learning is
greatly compromised. Classifiers such as naïve Bayes that have
been trained on too great a prevalence of a single label type can
create a classifier that will only predict that single label. Machine-
learning algorithms tend to focus much more on a prevalent class
and much less on rare cases, even if the rare cases are trustworthy
[21].

One way to deal with this problem is to apply selection techniques.
A well-known method is to down-sample the dataset. One should
always keep all rare positive samples that need to be focused on and
only prune out negative samples [22].

We applied this technique on our dataset in order to minimize the
impact of an imbalanced dataset. Down-sampling kept all 1,939 of
the positive cases in our dataset and randomly selected 1,939
negative cases to form a new balanced dataset that we used for
analysis. Table 1 shows sample review comments with their
respective labels. The dataset is available upon request.

4. METHODOLOGY
This section describes the methodology for each classifier. Our
input data for these Classifiers is document level review text instead
of sentence level, frequently we would observe students describing
their solutions in sentences or even paragraphs, and we believe
keeping them in their original form would be beneficial for the
study. Currently, we are rating the quality of a review based on the
presence of a single suggestion. Later on, we can generalize our
approach to count the number of sentences that contain suggestions.

4.1 Traditional Machine Learning and Rule-
based Methods
Section 4.1 discusses the formation of the rule-based, naïve Bayes,
and support vector machine classifiers. Text preprocessing in the
form of stop-word removal and stemming was not used except for
stemming the data for the naïve Bayes classifier. The reason behind
this was due to decreased classifier performance by experimenting
with these preprocessing techniques and then testing the classifiers.

4.1.1 Rule-based NLP Methods
Part-of-speech tagging was used to determine the word class of
each processed word. The relevant tags used for this classifier
included MD (modal auxiliary), VB (verb, base form), VBZ (verb,
present tense, 3rd person singular), VBP (verb, present tense, not
3rd person singular), NNS (noun, common, plural), and NNP
(noun, proper, singular).

Table 1: Sample review comments.

Review Comment Contains a
suggestion?

“Very well written and very obvious how
much of an impact the refactoring had.”

No

“Yes, all the functionality are covered in
the design document.”

No

“The test plan talks about automated tests, but
then goes on and talks about 2 manual testing
scenarios. Details for automation test cases are
missing. If the team does not plan on writing
automated test cases, then it should be
mentioned in the documentation. Otherwise,
the team should provide more details about the
test plan for automated test cases.”

Yes

"Code is good. Just in tests, the code could've
been reduced in some cases where same object
is being mocked multiple times. "

Yes

475 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

The idea and rules for this rule-based classifier were derived from
Gottipati et al. [17]. We used pattern-matching and part-of-speech
tagging methods, based on the work of Brun and Hagège [14], Bird
et al. [13], and Marcus et al. [15]. The patterns we used are as
follows.

• The first rule utilized a pattern-matching technique that locates
specific phrases and keywords that indicate the likely presence of a
suggestion. The phrases used included “have more”, “suggestion”,
“perhaps”, and “better if”.

• The second rule uses part of speech tagging through the Natural
Language Toolkit (NLTK) [13] to find a sequence of verb pairs in
a review. If a word was tagged as a modal (MD) and the word
directly following this was tagged as either of the verb types VB,
VBZ, or VBP, then the review would be classified as a suggestion.
For example, in the sentence “You should have included a diagram
to visualize your results.” the words “should have” would be tagged
as MD and VB respectively. This sentence would be classified as a
suggestion.

• Following Gottipati, the third rule also used POS tagging.
Reviews were classified as a suggestion if a word tagged NNS or
NNP was followed by a word of type VB, VBZ, or VBP. This is
similar to rule 2 and it was used due to the fact that some words
would be labeled with different tags depending on whether they
were the first word in a sentence or were located within the
sentence. An example of this rule would be the processing of a
sentence such as “Could include more examples in your lab report.”
where the words “Could include” are tagged as NNP and VBP
respectively by the NLTK POS tagger. It is important to note that a
word such as “Could” will be tagged as NNP or MD depending on
whether it starts a sentence or not. This would classify the sentence
as a suggestion. Rule three was later removed from the classifier
due to decreased performance as discussed in the results section.

4.1.2 Naïve Bayes
The Naïve Bayes classifier was formed using a train-and-test split
of 90-10%. The functionality for creating this classifier is provided
by libraries from Scikit-learn [23]. A pipeline of transformers was
used to facilitate the construction of the classifier. These
transformers include a count vectorizer that converted a collection
of text documents to a matrix of token counts for future use. Then
the count matrix was transformed into a normalized tf-idf
representation to form the linguistic features. These fractional
counts from the tf-idf representation then enabled the naïve Bayes
classifier to fit the model. As previously noted, stemming the data
did result in a slight increase in classifier performance, therefore
composing part of the preprocessing for the final model.

4.1.3 Support Vector Machine
The support vector machine classifier was formed using a similar
approach to that of the naïve Bayes classifier. The train-and-test
split was 90-10%. The same count vectorizer and tf-idf transformer
were used to prepare the data as with the naïve Bayes model. Scikit-
learn’s [23] stochastic gradient descent training for a linear model
was then used to form the support vector machine classifier.

4.1.4 Tools: Traditional Machine Learning and
Rule-based
The Python natural language toolkit [13] was used for tokenization
and part-of-speech tagging to prepare the text for analysis by the
rule-based classifier. Stop-word removal from NLTK was
attempted in the rule-based and naïve Bayes classifier, though later
abandoned due to the exclusion of vital words for finding patterns

for suggestions, which decreased classifier performance. The
Python library Pandas [24] was used to read the dataset into a data
frame for reference within the program. Scikit-learn [23] was also
used to calculate and present the resulting F1-score for the
classifiers. Scikit-learn provided feature extraction and linguistic-
feature processing for the naïve Bayes and support vector machine
classifiers. The Scitkit-learn functionality utilized included a count-
vectorizer and tf-idf transformer to prepare the data for
classification by these two classifiers.

4.2 Artificial Neural-Network Methods
Neural networks are a state-of-the-art method when it comes to
classification. They generally tend to perform well across domains
as well as across different types of data such as images, text, and
speech. The core idea behind this work is to convert the task of
detecting suggestions into a text-classification task and using neural
networks to perform this classification. Neural networks work well
for this kind of text classification. This is especially true for any
kind of recurrent model, such as RNN or LSTM. Recurrent models
are widely used for processing any kind of sequential data such as
text, speech, and patterns. This is due to their inherent ability to
process data in a sequential manner, one step of the sequence at a
time. Thus, they are an ideal choice for tasks involving text, such
as text classification and text generation.

In this paper, we have focused on utilizing recurrent models to
perform text classification. More specifically, we focus on LSTMs
and bi-directional LSTMs to achieve the best performance. In
addition to the aforementioned recurrent models, we also explore
the feasibility of using convolutional neural networks (CNNs) to
perform the same tasks. CNNs have traditionally been used to deal
with images, but there has been a recent trend toward using them
for text-classification tasks. CNNs are not as optimized as recurrent
models are for inputs in the form of a sequence, but they offer other
benefits such as significantly improved model training times.
CNNs can be used either on their own or in conjunction with
recurrent models such as LSTMs. We implemented both variants.
As is the norm with applying CNN’s to text classification tasks, we
used a 1-D CNN everywhere in this paper.

4.2.1 LSTM
LSTM networks are a type of RNNs (Recurrent Neural Networks).
They improve upon RNNs by avoiding their single biggest pitfall,
the inability to capture long-term dependencies. They incorporate
memory into the network in the form of a cell state, thus allowing
for relevant information to be retained for long periods of time.
LSTMs are preceded by word embeddings, and these embeddings
may be pre-trained or not. In this work, we used pre-trained word
embeddings only with the Bi-LSTM model which will be discussed
next. We do not use pre-trained word embeddings with the
“vanilla” LSTM model. For the vanilla LSTM model, we use the
embeddings trained as a part of the Keras [25] embedding layer.
We use an LSTM of size 100 (100 hidden units). We use dropout
as a regularization mechanism to try to combat overfitting. Finally,
we use a sigmoid layer to make the predictions.

Figure 1: LSTM Architecture

In: 50 In: 50 In: 50,100 In: 50,100 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 100 Out: 100 Out: 1

--->

Input Embedding Dropout LSTM Dropout Dense

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 476

I I I I I I I I I I I I

Figure 1 shows the LSTM architecture that we implemented with a
detailed description of its various layers and their respective shapes
in Keras.

4.2.2 Bidirectional LSTM
Bidirectional LSTMs are an extension of LSTMs. A drawback of
Vanilla LSTMs is that they can learn representations only from the
previous time steps. This means that when processing a given word,
the model only has access to all the words that came before this
word. This way, the model might lose out on a lot of valuable and
relevant information that might be present after the word that is
currently being processed. In order to combat this problem, we need
to be able to look ahead of the current word. A Bidirectional LSTM
has the ability to use words both preceding and following the word
being processed. This should give it an edge over a vanilla LSTM.
We use the pre-trained Glove embeddings [26] in tandem with the
bidirectional LSTM. We chose a Glove embedding that generates
a 300-dimensional vector embedding for every word. The size of
this bidirectional LSTM is 150 (150 hidden units). As with the
vanilla LSTM, we use dropout for regularization and sigmoid as the
final classification layer.

Figure 2 shows the Bidirectional LSTM architecture that was
implemented with a detailed description of its various layers and
their respective shapes in Keras [25].

4.2.3 CNN
CNNs are a type of feed-forward deep neural network that is
primarily applied to data in the form of images. They require
minimal pre-processing and are shift invariant. They are used in the
domains of image and video recognition, recommender systems
and, more recently, NLP. They have already achieved human-level
performance on image recognition and have recently made the
transition to text classification, where they have been shown to
work surprisingly well. CNNs work well with images because they
preserve the 2D spatial orientation of the input image. In contrast,
texts have a 1D orientation, wherein the sequence of the input
words matter. So, we use a 1D CNN to be able to capture this
orientation in text. Here we utilize a 1D CNN, followed by a dense
layer of size 100. We continue to use sigmoid for the final
classification.

Figure 3 shows the CNN architecture that is implemented in this
paper with a detailed description of its various layers and their
respective shapes in Keras [25].

4.2.4 CNN + LSTM
It is interesting to combine the CNN and the LSTM models. LSTM
models are very well suited for text classification, but due to their
inherent design and sequential processing, they take a long time to
train. CNNs, on the other hand, are highly parallel in nature and
process the entire data at once. This allows for very short training
times, especially when compared to an LSTM. To avoid this
shortcoming of LSTMs, we add a convolutional layer before the
LSTM layer. This convolutional layer passes a filter over the input
text and generates a high-level representation of the input. This
high-level representation is then fed to the LSTM instead of the
word embeddings. This has a significant positive effect on training
times of the LSTM model. Thus we can achieve the best of both
worlds by following a CNN with an LSTM, and reducing the
training times of the LSTM while retaining its sequence-processing
abilities. In this paper, we use a 1D CNN followed by an LSTM of
size 100 (100 hidden units). As is the case with all other models,
we stick with dropout for regularization and sigmoid for the final
classification layer.

Figure 4 shows the CNN+LSTM architecture that is implemented
in this paper with a detailed description of its various layers and
their respective shapes in Keras [25].

4.2.5 Tools: Artificial Neural Network
Keras was the deep learning framework of choice that was used to
implement the various neural network models. Scikit-learn’s
classification report was used to generate metrics including
precision, recall, and F1-Score. The inbuilt tokenizer from Keras
was used to tokenize the peer reviews before feeding them to the
neural network models.

For each of these networks, a series of hyper-parameters are
isolated and tuned, which include parameters such as input batch
size, number of memory states, recurrent dropout rate, dropout rate
between layers, padding rules, CNN window size and stride size,
activation methods, number of epochs to train. Based on
classification accuracy on the validation dataset, we have tuned the
network into their respective final stages and have achieved results
described in the next section.

5. RESULTS
Table 2 displays the total number of suggestions present in the peer
review dataset used for this experiment, along with a summary of
the weighted average F1-scores. Dataset reformatting was

accomplished prior to this so that the number of
suggestions to non-suggestions resulted in a mostly
equal proportion within the dataset. Abbreviations for
the tables are as follows: Rule (as itself), NB (Naïve
Bayes), SVM (Support Vector Machine), and N1-N4
as the neural network classifiers (LSTM, BiLSTM,
CNN, and CNN+LSTM respectively).

From the results obtained by testing on the Peer
Review dataset, we found that the LSTM, CNN, and
CNN+LSTM neural network architectures
outperform the other classifiers used in this
experiment. This relates to our discussion in the
literature section where the neural network
approaches have demonstrated the greatest potential

Figure 2: Bi-LSTM Architecture

In: 50 In: 50 In: 50,300 In: 50,300 In: 300 In: 300

Out: 50 Out: 50,300 Out: 50,300 Out: 300 Out: 300 Out: 1

Embedding Dropout BiLSTM Dropout Dense

--->

Input

Figure 3: CNN Architecture

Figure 4: CNN+LSTM Architecture

In: 50 In: 50 In: 50,100 In: 50,100 In: 48,100 In: 100 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 48,100 Out: 100 Out: 100 Out: 100 Out: 1

Dropout Dense

--->

Embedding Dropout Conv1D
GlobalMax

Pooling
DenseInput

In: 50 In: 50 In: 50,100 In: 50,100 In: 46,50 In: 11,50 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 46,50 Out: 11,50 Out: 100 Out: 100 Out: 1

Dense

--->

Input Embedding Dropout Conv1D MaxPooling LSTM Dropout

477 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I

for text classification tasks like suggestion detection. The BiLSTM
classifier was the second best at detecting suggestions, followed by
the support vector machine, rule-based, and naïve Bayes classifiers.
Tables 3 and 4 display the extended breakdown of the results of the
classifiers.

These results show precision, recall, and F1-score as generated by
the classification report function by Scikit-learn. The number of
data points that are false and true is noted in the Support column.
The rates of classification for both positives and negatives are
included in the table as False and True, along with the support for
each. Finally, the weighted average was used to demonstrate the
classifier’s overall effectiveness by combining the metrics for
positives and negatives using a weighting based upon the quantity
in Support.

The weighted average is calculated by taking the mean of the false
and true predictions by their relevance in the dataset. In terms of
these results tables, the weighted average is determined by
multiplying the metric (precision, recall, or F1-score) of the false
predictions by the percentage of these predictions over the whole
dataset. The same calculation is made for the true predictions. Then
the value calculated by the False row is added to the value
calculated for the True row.

The classifiers performed similarly on overall accuracy, with
some deviation in the performance for False and True observations.
The F1-scores of the classifiers ranged from 80% up to 93%, where
the neural network classifiers were close in performance. Rule 3 of
the rule-based classifier was removed due to the tagging of some

words as NNS or NNP that were not indicative of a suggestion. This
resulted in numerous false positive classifications and therefore a
net loss of overall performance. Rule 2 can also have result in a
high false-positive classification rate since it does not consider the
context of a tagged pair of words within a sentence, although it was
the most effective rule at finding suggestions.

6. DISCUSSION AND FUTURE WORK
In this study, we have compared the performance of a few neural
network classifiers against a rule-based classifier on suggestion
detection towards multiple datasets. We found that neural network
classifiers outperformed existing rule-based and traditional
machine learning classifiers across the board.

Despite using a small dataset, we were able to obtain F1 scores in
the low 90% range. This demonstrates the potential of the neural
network classifiers. When large-scale datasets are obtained,
classification scores in the upper 90% range will be probable,
therefore reaching the high accuracy levels that some sentiment
analysis models have obtained.

One of the biggest challenges we’ve encountered in this study is the
insufficient amount of readily labeled data in hand. Most of the
times we would need to manually label datasets that we acquired.
Larger datasets would help with tuning and training the classifier.
They would also give us the opportunity to train on more balanced
sets of data, while not excluding too large of a portion of the overall
dataset. Larger training samples would help alleviate the concern
that the models may not be able to generalize to new input strings
that aren’t similar enough to the current training set. However, as
noted in Section 2 we removed around 7000 duplicate observations
from the dataset, indicating that there are commonly occurring
review comments that the model would be tuned for. Additional
pattern-matching phrases can be added to the rule-based classifier
to improve its accuracy, although additional conditions would be
required to consider the context of the phrases within a larger body
of text. Also, the inclusion of more types of classifiers such as a
decision tree can provide an extended comparison of what
classifiers perform best for this text classification task.

As discussed in the introduction, the domain of primary
interest revolved around peer reviews. Later on, we might find a
way to let instructors use the classifier to grade the quality of peer
reviews. We would seek feedback on the effectiveness of the
classifier, and suggestions for its improvement. This system could
also notify the reviewer that a review should have more

Table 3: Breakdown of accuracy of non-neural network classifiers on peer review

Peer
review

Precision Recall F1 score Support

Rule NB SVM Rule NB SVM Rule NB SVM Rule NB SVM

False 0.76 0.87 0.87 0.88 0.81 0.90 0.82 0.84 0.89 1939 205 205

True 0.86 0.80 0.89 0.73 0.87 0.85 0.79 0.83 0.87 1939 183 183

Avg. 0.81 0.84 0.88 0.80 0.84 0.88 0.80 0.84 0.88 3878 388 388

Table 4: Breakdown of accuracy of neural-network classifiers on peer review

Peer
review

Precision Recall F1 score Support

N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 All

False 0.90 0.94 0.90 0.90 0.92 0.93 0.94 0.90 0.91 0.93 0.92 0.90 189

True 0.92 0.93 0.94 0.90 0.90 0.94 0.90 0.90 0.91 0.93 0.92 0.90 199

Avg. 0.91 0.93 0.92 0.90 0.91 0.93 0.92 0.90 0.91 0.93 0.92 0.90 388

Table 2: Accuracy of classifiers
on peer-review dataset

of comments 3878

containing suggestions. 1939

F1
score

Rule 0.80

NB 0.84

SVM 0.88

N1 0.91

N2 0.93

N3 0.92

N4 0.90

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 478

suggestions. Furthermore, the reviewer could have the opportunity
to identify any suggestions that were missed by the system. This
would function as a useful method for generating labeled training
data. These missed suggestions indicated by the reviewer could
enable analysis in the form of determining what types of sentences
are not being properly detected as suggestions. This system could
be deployed as a supplement to instructor grading until enough data
has been obtained to train a sufficiently accurate classifier for
automatic suggestion extraction.

7. CONCLUSION
In this paper, we have demonstrated several models that parse and
classify suggestions. The greater performance of neural network
architectures over rule-based methods in this task demonstrates the
advantage of classifiers that train on text in a certain domain, rather
than following strict rules for classification. Furthermore, forming
an extensive list of phrases and keywords that improve a rule-based
classifier's performance in a domain is more time consuming than
training a statistical classifier. While rule-based approaches have
the advantage of being simpler to implement and not requiring data
to train on, they are typically outperformed by statistical classifiers
provided they have access to enough labeled data.

8. ACKNOWLEDGMENTS
The authors acknowledge the support of the National Science
Foundation, through grant #1432347.

9. REFERENCES
[1] Topping, K.J. 2009. Peer Assessment. Theory into practice.

48, 1 (Jan. 2009), 20–27.

[2] Nelson, M.M. and Schunn, C.D. 2009. The nature of
feedback: how different types of peer feedback affect writing
performance. Instructional Science. 37, 4 (Jul. 2009), 375–
401.

[3] Demiraslan Çevik, Y. et al. 2015. The effect of peer
assessment on problem solving skills of prospective teachers
supported by online learning activities. Studies in
Educational Evaluation. 44, (Mar. 2015), 23–35.

[4] Liu, X. and Li, L. 2014. Assessment training effects on
student assessment skills and task performance in a
technology-facilitated peer assessment. Assessment &
Evaluation in Higher Education. 39, 3 (Apr. 2014), 275–292.

[5] Lundstrom, K. and Baker, W. 2009. To give is better than to
receive: The benefits of peer review to the reviewer’s own
writing. Journal of Second Language Writing. 18, 1 (Mar.
2009), 30–43.

[6] moocs peer to peer:
https://docs.google.com/presentation/d/1wkJOFgH0DYihsfH
_tddcYeI5DMNl9uP1qYgHMPRf_UY/edit. Accessed: 2018-
10-01.

[7] Van Popta, E. et al. 2017. Exploring the value of peer
feedback in online learning for the provider. Educational
Research Review. 20, (Feb. 2017), 24–34.

[8] Tsivitanidou, O.E. and Constantinou, C.P. 2016. A study of
students’ heuristics and strategy patterns in web-based
reciprocal peer assessment for science learning. The Internet
and Higher Education. 29, (Apr. 2016), 12–22.

[9] Ramachandran, L. et al. 2017. Automated Assessment of the
Quality of Peer Reviews using Natural Language Processing
Techniques. International Journal of Artificial Intelligence in
Education. 27, 3 (Sep. 2017), 534–581.

[10] Xiong, W., & Litman, D. 2011, Automatically predicting
peer-review helpfulness. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume 2 (pp.
502-507). Association for Computational Linguistics.

[11] Negi, S. and Buitelaar, P. 2017. Chapter 8 - Suggestion
Mining From Opinionated Text. Sentiment Analysis in
Social Networks. F.A. Pozzi et al., eds. Morgan Kaufmann.
129–139.

[12] Austin, J. L. 1962. How to do things with words. Cambridge:
Harvard University Press.

[13] Bird, S. et al. 2009. Natural Language Processing with
Python. O’Reilly Media, Inc.

[14] Brun, C. and Hagège, C. 2013. Suggestion Mining: Detecting
Suggestions for Improvement in Users’ Comments. Research
in Computing Science. 70, 79.7179 (2013), 5379–5362.

[15] Marcus, M.P. et al. 1993. Building a large annotated corpus
of English: The Penn Treebank. Computational Linguistics.
(1993).

[16] Murphy, K.P. 2012. Machine Learning : A Probabilistic
Perspective. MIT Press.

[17] Gottipati, S. et al. 2018. Text analytics approach to extract
course improvement suggestions from students’ feedback.
Research and Practice in Technology Enhanced Learning.
13, 1 (Jun. 2018), 6.

[18] Gehringer, E. et al. 2007. “Reusable learning objects through
peer review: The Expertiza approach,” Innovate—Journal of
Online Education 3:6

[19] Gehringer, E. et al. 2006. “Expertiza: Reusable learning
objects and active learning for distance education,”
Proceedings of the UNC Teaching and Learning with
Technology conference, Raleigh

[20] Krippendorff, Klaus. "Computing Krippendorff's alpha-
reliability." (2011).

[21] Menardi, G. and Torelli, N. 2014. Training and assessing
classification rules with imbalanced data. Data mining and
knowledge discovery. 28, 1 (Jan. 2014), 92–122.

[22] Kubat, M. et al. 1997. Learning when negative examples
abound. Machine Learning: ECML-97. M. Somerenand G.
Widmer, eds. Springer Berlin Heidelberg. 146–153.

[23] Pedregosa, F. et al. 2011 "Scikit-learn: Machine learning in
Python." Journal of machine learning research: 2825-2830.

[24] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science
Conference, 51-56 (2010)

[25] François Chollet. Keras: Deep learning library for theano and
tensorflow. https://github.com/keras-team/keras, 2015.

[26] Pennington, J. et al. 2014. "Glove: Global vectors for word
representation." Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP)

479 Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019)

