
Detecting Suggestions in Peer Assessments

Gabriel Zingle, Balaji Radhakrishnan, Yunkai Xiao, Edward Gehringer, Zhongcan Xiao, Ferry 
Pramudianto, Gauraang Khurana, and Ayush Arnav 

Department of Computer Science 
North Carolina State University 

Raleigh, NC 27606 
+1 919-515-2066 

{gzingle, bradhak, yxiao28, efg, zxiao2, fferry, gkhuran, aarnav}@ncsu.edu 

ABSTRACT 
Peer assessment has proven to be a useful strategy for increasing 
the timeliness and quantity of formative feedback, as well as for 
promoting metacognitive thinking among students. Previous 
research has determined that reviews that contain suggestions can 
motivate students to revise and improve their work. This paper 
describes a method for automatically detecting suggestions in 
review text. The quantity of suggestions can be treated as a metric 
for the helpfulness of review text. Even before a review is 
submitted, the system can tell a reviewer when a review is lacking 
in suggestions and consequently advise that they be added. This 
paper presents several neural-network approaches for detecting 
suggestions and compares them against traditional natural language 
processing (NLP) methods such as rule-based techniques, as well 
as past machine-learning approaches.  

Our network-based classifiers outperformed rule-based classifiers 
in every experiment. Our neural-network classifiers attained F1-
scores in the low 90% range, outperforming the support vector 
machine (SVM) classifier whose F1-score was 88%. The naïve 
Bayes (NB) classifier had an F1-score of 84% and the rule-based 
classifier had an F1-score of 80%. As in other domains such as 
determining sentiment, we found that neural-network models 
perform better than the likes of naïve Bayes and support vector 
machines when classifying suggestions in text.   
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1. INTRODUCTION 
Peer assessment is known to have several advantages for student 
learning [1]. It provides students with prompt and rich feedback that 
helps them improve their performance and learning readiness [2]. 
It gives students an opportunity to learn from others by observing 
their approaches to solving a problem. Not only do students learn 
from the feedback they receive; they also benefit from reviewing 
others. In fact, they probably learn more from reviewing than they 
do from receiving feedback [3, 4, 5, 6, 7, 8]. Finally, reviews from 
other students may help instructors to assign more informed grades.  

However, these advantages can only be achieved with high-quality 
feedback. Nelson and Schunn [2] showed that high-quality 
feedback comprises several features, including suggestions on how 
to address problems in the work. Having concrete suggestions 
makes the feedback actionable for the reviewee and also trains the 
reviewer to solve problems [2], instead of just focusing on the 
existence of the problems. 

So it is desirable for peer reviews to contain suggestions, but it is 
not easy for the instructor to give students credit for making them. 
The instructor would have to look through each review and keep a 
tally. If this could be done automatically, particularly before the 
reviewer submits a review [9, 10], it could help reviewers to 
improve the quality of their feedback, which in turn would help 
reviewees to improve their work. 

2. LITERATURE REVIEW 
Before digging in further, we must first decide what constitutes a 
suggestion. Negi and Buitelaar [11] state that, due to the variation 
in the definition of suggestion, previous results may be 
incompatible with each other. In this paper, we define suggestions 
as comments that constitute advice for making improvements [12]. 

Suggestions normally contain some or all of the components of 
specificity [2]: locating the problem, identifying the problem, 
offering a solution to the problem. Specificity has proven to have a 
direct correlation to understanding. Understanding is found to be 
the only significant mediator that directly contributes to the 
likelihood of implementing the feedback, thus improving the 
student’s work. 

Some effort has been made to detect suggestions through 
conventional natural language processing. These NLP approaches 
usually utilize rules that match the feedback to a set of predefined 
linguistic patterns, as well as part-of-speech (POS) tagging and a 
carefully crafted thesaurus relevant to each domain on which the 
approach is going to be implemented [13, 14, 15]. The main 
drawback of these approaches is that they require the knowledge of 
engineers to define the rules and patterns in the software logic. 
However, it is almost impossible to foresee all possible rules and 
patterns that indicate the existence of suggestions in a text 
document. Thus, as the number of patterns and rules grow, it 
becomes very difficult for engineers to maintain the software. 

Another approach that has shown promising results for detecting 
patterns is based on machine-learning techniques. For instance, 
researchers have utilized machine-learning methods such as SVM 
with some degree of success to find patterns that indicate the 
sentiment polarity of a text [9]. 

Machine-learning algorithms are able to discover patterns and rules 
automatically based on training samples [16]. For software 
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engineers, this is a game-changer since it allows them to keep the 
complexity of the software consistent and manageable. There are 
many machine-learning algorithms that can be used for classifying 
text as to whether it contains suggestions or not, such as decision 
trees (DT) and support vector machines [17]. Machine-learning 
approaches can usually outperform rule-based approaches once 
they are trained with sufficient and representative samples that have 
been labeled. However, obtaining labeled data is usually very 
expensive.  

Recently, the neural network approach has stood out for its ability 
to solve classification problems in different domains, e.g., image 
and voice recognition, and text classification [11].  This work tries 
to apply neural networks to suggestion detection and compares the 
results with the rule-based and traditional machine-learning 
classifiers. 

3. DATA 
In this experiment, we used a balanced dataset of peer reviews with 
a total of 3878 peer reviews, each labeled as containing a 
suggestion (1) or as not containing a suggestion (0). It is extracted 
from the Expertiza [18, 19] platform, which we would describe 
later on in this section. The dataset has two main components: (i) 
the input text, and (ii) a label indicating whether suggestions were 
present in the text. The datasets for the neural network classifiers 
were broken down into an 80–10–10% split for training, validation, 
and test sets. For the naïve Bayes classifier and the support vector 
machine classifier, split for training and test sets was 90-10%. All 
the models were trained and tested on the same dataset. 

The platform we mentioned in the previous paragraph, Expertiza, 
is a web-based peer-review system that allows students to exchange 
ideas and build shared knowledge. It facilitates anonymous reviews 
for students’ submissions. In this paper, we use reviews submitted 
to Expertiza to test our approaches. Authors who received reviews 
manually labeled 15,067 review comments as to whether they 
contained a suggestion. The labeling of these reviews was 
incentivized by giving extra credit to students in a class who tagged 
review comments. A team made up of the instructor, TAs, and 
authors of this paper went through the labels and removed labels 
assigned by students whose labels were clearly not trustworthy. 
Untrustworthy labels included random labels unrelated to review 
content, all no’s or all yes’s on reviews with obvious variety of 
status of containing suggestions. Inter-rater reliability of the dataset 
was calculated between each team of students labeling peer reviews 
with a Krippendorff alpha [20] of 0.69 before removing unreliable 
labels and 0.74 afterwards. Students receiving these reviews were 
an ideal choice for annotating these reviews, since the reviews were 
of their own work. Thus, they were capable of judging whether they 
really contained suggestions. In the preprocessing stage, entries that 
are invalid to the experiment, such as blank entries, duplicated 
entries, entries with unrecognizable symbols and marks, as well as 
html tags, were striped from the dataset. After preprocessing, the 
dataset contained 5,842 entries without suggestions, and 1,939 
entries with suggestions. 

With an imbalanced dataset, the process of machine learning is 
greatly compromised. Classifiers such as naïve Bayes that have 
been trained on too great a prevalence of a single label type can 
create a classifier that will only predict that single label. Machine-
learning algorithms tend to focus much more on a prevalent class 
and much less on rare cases, even if the rare cases are trustworthy 
[21]. 

One way to deal with this problem is to apply selection techniques. 
A well-known method is to down-sample the dataset. One should 
always keep all rare positive samples that need to be focused on and 
only prune out negative samples [22]. 

We applied this technique on our dataset in order to minimize the 
impact of an imbalanced dataset. Down-sampling kept all 1,939 of 
the positive cases in our dataset and randomly selected 1,939 
negative cases to form a new balanced dataset that we used for 
analysis. Table 1 shows sample review comments with their 
respective labels. The dataset is available upon request. 

4. METHODOLOGY 
This section describes the methodology for each classifier. Our 
input data for these Classifiers is document level review text instead 
of sentence level, frequently we would observe students describing 
their solutions in sentences or even paragraphs, and we believe 
keeping them in their original form would be beneficial for the 
study. Currently, we are rating the quality of a review based on the 
presence of a single suggestion. Later on, we can generalize our 
approach to count the number of sentences that contain suggestions. 

4.1 Traditional Machine Learning and Rule-
based Methods 
Section 4.1 discusses the formation of the rule-based, naïve Bayes, 
and support vector machine classifiers. Text preprocessing in the 
form of stop-word removal and stemming was not used except for 
stemming the data for the naïve Bayes classifier. The reason behind 
this was due to decreased classifier performance by experimenting 
with these preprocessing techniques and then testing the classifiers. 

4.1.1 Rule-based NLP Methods 
Part-of-speech tagging was used to determine the word class of 
each processed word. The relevant tags used for this classifier 
included MD (modal auxiliary), VB (verb, base form), VBZ (verb, 
present tense, 3rd person singular), VBP (verb, present tense, not 
3rd person singular), NNS (noun, common, plural), and NNP 
(noun, proper, singular). 

Table 1: Sample review comments. 

Review Comment Contains a 
suggestion? 

“Very well written and very obvious how 
much of an impact the refactoring had.” 

No 

“Yes, all the functionality are covered in 
the design document.” 

No 

“The test plan talks about automated tests, but 
then goes on and talks about 2 manual testing 
scenarios. Details for automation test cases are 
missing. If the team does not plan on writing 
automated test cases, then it should be 
mentioned in the documentation. Otherwise, 
the team should provide more details about the 
test plan for automated test cases.” 

Yes 

"Code is good. Just in tests, the code could've 
been reduced in some cases where same object 
is being mocked multiple times. " 

Yes 
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The idea and rules for this rule-based classifier were derived from 
Gottipati et al. [17]. We used pattern-matching and part-of-speech 
tagging methods, based on the work of Brun and Hagège [14], Bird 
et al. [13], and Marcus et al. [15]. The patterns we used are as 
follows.  

• The first rule utilized a pattern-matching technique that locates 
specific phrases and keywords that indicate the likely presence of a 
suggestion. The phrases used included “have more”, “suggestion”, 
“perhaps”, and “better if”.  

• The second rule uses part of speech tagging through the Natural 
Language Toolkit (NLTK) [13] to find a sequence of verb pairs in 
a review. If a word was tagged as a modal (MD) and the word 
directly following this was tagged as either of the verb types VB, 
VBZ, or VBP, then the review would be classified as a suggestion. 
For example, in the sentence “You should have included a diagram 
to visualize your results.” the words “should have” would be tagged 
as MD and VB respectively. This sentence would be classified as a 
suggestion.  

• Following Gottipati, the third rule also used POS tagging. 
Reviews were classified as a suggestion if a word tagged NNS or 
NNP was followed by a word of type VB, VBZ, or VBP. This is 
similar to rule 2 and it was used due to the fact that some words 
would be labeled with different tags depending on whether they 
were the first word in a sentence or were located within the 
sentence. An example of this rule would be the processing of a 
sentence such as “Could include more examples in your lab report.” 
where the words “Could include” are tagged as NNP and VBP 
respectively by the NLTK POS tagger. It is important to note that a 
word such as “Could” will be tagged as NNP or MD depending on 
whether it starts a sentence or not. This would classify the sentence 
as a suggestion. Rule three was later removed from the classifier 
due to decreased performance as discussed in the results section. 

4.1.2 Naïve Bayes 
The Naïve Bayes classifier was formed using a train-and-test split 
of 90-10%. The functionality for creating this classifier is provided 
by libraries from Scikit-learn [23]. A pipeline of transformers was 
used to facilitate the construction of the classifier. These 
transformers include a count vectorizer that converted a collection 
of text documents to a matrix of token counts for future use. Then 
the count matrix was transformed into a normalized tf-idf 
representation to form the linguistic features. These fractional 
counts from the tf-idf representation then enabled the naïve Bayes 
classifier to fit the model. As previously noted, stemming the data 
did result in a slight increase in classifier performance, therefore 
composing part of the preprocessing for the final model. 

4.1.3 Support Vector Machine 
The support vector machine classifier was formed using a similar 
approach to that of the naïve Bayes classifier. The train-and-test 
split was 90-10%. The same count vectorizer and tf-idf transformer 
were used to prepare the data as with the naïve Bayes model. Scikit-
learn’s [23] stochastic gradient descent training for a linear model 
was then used to form the support vector machine classifier. 

4.1.4 Tools: Traditional Machine Learning and 
Rule-based 
The Python natural language toolkit [13] was used for tokenization 
and part-of-speech tagging to prepare the text for analysis by the 
rule-based classifier. Stop-word removal from NLTK was 
attempted in the rule-based and naïve Bayes classifier, though later 
abandoned due to the exclusion of vital words for finding patterns 

for suggestions, which decreased classifier performance. The 
Python library Pandas [24] was used to read the dataset into a data 
frame for reference within the program. Scikit-learn [23] was also 
used to calculate and present the resulting F1-score for the 
classifiers. Scikit-learn provided feature extraction and linguistic-
feature processing for the naïve Bayes and support vector machine 
classifiers. The Scitkit-learn functionality utilized included a count-
vectorizer and tf-idf transformer to prepare the data for 
classification by these two classifiers. 

4.2 Artificial Neural-Network Methods 
Neural networks are a state-of-the-art method when it comes to 
classification. They generally tend to perform well across domains 
as well as across different types of data such as images, text, and 
speech. The core idea behind this work is to convert the task of 
detecting suggestions into a text-classification task and using neural 
networks to perform this classification. Neural networks work well 
for this kind of text classification. This is especially true for any 
kind of recurrent model, such as RNN or LSTM. Recurrent models 
are widely used for processing any kind of sequential data such as 
text, speech, and patterns. This is due to their inherent ability to 
process data in a sequential manner, one step of the sequence at a 
time. Thus, they are an ideal choice for tasks involving text, such 
as text classification and text generation.  

In this paper, we have focused on utilizing recurrent models to 
perform text classification. More specifically, we focus on LSTMs 
and bi-directional LSTMs to achieve the best performance. In 
addition to the aforementioned recurrent models, we also explore 
the feasibility of using convolutional neural networks (CNNs) to 
perform the same tasks. CNNs have traditionally been used to deal 
with images, but there has been a recent trend toward using them 
for text-classification tasks. CNNs are not as optimized as recurrent 
models are for inputs in the form of a sequence, but they offer other 
benefits such as significantly improved model training times. 
CNNs can be used either on their own or in conjunction with 
recurrent models such as LSTMs. We implemented both variants. 
As is the norm with applying CNN’s to text classification tasks, we 
used a 1-D CNN everywhere in this paper. 

4.2.1 LSTM 
LSTM networks are a type of RNNs (Recurrent Neural Networks). 
They improve upon RNNs by avoiding their single biggest pitfall, 
the inability to capture long-term dependencies. They incorporate 
memory into the network in the form of a cell state, thus allowing 
for relevant information to be retained for long periods of time. 
LSTMs are preceded by word embeddings, and these embeddings 
may be pre-trained or not. In this work, we used pre-trained word 
embeddings only with the Bi-LSTM model which will be discussed 
next. We do not use pre-trained word embeddings with the 
“vanilla” LSTM model. For the vanilla LSTM model, we use the 
embeddings trained as a part of the Keras [25] embedding layer. 
We use an LSTM of size 100 (100 hidden units). We use dropout 
as a regularization mechanism to try to combat overfitting. Finally, 
we use a sigmoid layer to make the predictions. 

 
Figure 1: LSTM Architecture 

In: 50 In: 50 In: 50,100 In: 50,100 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 100 Out: 100 Out: 1

--->

Input Embedding Dropout LSTM Dropout Dense
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Figure 1 shows the LSTM architecture that we implemented with a 
detailed description of its various layers and their respective shapes 
in Keras. 

4.2.2 Bidirectional LSTM 
Bidirectional LSTMs are an extension of LSTMs. A drawback of 
Vanilla LSTMs is that they can learn representations only from the 
previous time steps. This means that when processing a given word, 
the model only has access to all the words that came before this 
word. This way, the model might lose out on a lot of valuable and 
relevant information that might be present after the word that is 
currently being processed. In order to combat this problem, we need 
to be able to look ahead of the current word. A Bidirectional LSTM 
has the ability to use words both preceding and following the word 
being processed. This should give it an edge over a vanilla LSTM. 
We use the pre-trained Glove embeddings [26] in tandem with the 
bidirectional LSTM. We chose a Glove embedding that generates 
a 300-dimensional vector embedding for every word. The size of 
this bidirectional LSTM is 150 (150 hidden units). As with the 
vanilla LSTM, we use dropout for regularization and sigmoid as the 
final classification layer. 

Figure 2 shows the Bidirectional LSTM architecture that was 
implemented with a detailed description of its various layers and 
their respective shapes in Keras [25]. 

4.2.3 CNN 
CNNs are a type of feed-forward deep neural network that is 
primarily applied to data in the form of images. They require 
minimal pre-processing and are shift invariant. They are used in the 
domains of image and video recognition, recommender systems 
and, more recently, NLP.  They have already achieved human-level 
performance on image recognition and have recently made the 
transition to text classification, where they have been shown to 
work surprisingly well. CNNs work well with images because they 
preserve the 2D spatial orientation of the input image. In contrast, 
texts have a 1D orientation, wherein the sequence of the input 
words matter. So, we use a 1D CNN to be able to capture this 
orientation in text. Here we utilize a 1D CNN, followed by a dense 
layer of size 100. We continue to use sigmoid for the final 
classification. 

Figure 3 shows the CNN architecture that is implemented in this 
paper with a detailed description of its various layers and their 
respective shapes in Keras [25]. 

4.2.4 CNN + LSTM 
It is interesting to combine the CNN and the LSTM models. LSTM 
models are very well suited for text classification, but due to their 
inherent design and sequential processing, they take a long time to 
train. CNNs, on the other hand, are highly parallel in nature and 
process the entire data at once. This allows for very short training 
times, especially when compared to an LSTM. To avoid this 
shortcoming of LSTMs, we add a convolutional layer before the 
LSTM layer. This convolutional layer passes a filter over the input 
text and generates a high-level representation of the input. This 
high-level representation is then fed to the LSTM instead of the 
word embeddings. This has a significant positive effect on training 
times of the LSTM model. Thus we can achieve the best of both 
worlds by following a CNN with an LSTM, and reducing the 
training times of the LSTM while retaining its sequence-processing 
abilities. In this paper, we use a 1D CNN followed by an LSTM of 
size 100 (100 hidden units). As is the case with all other models, 
we stick with dropout for regularization and sigmoid for the final 
classification layer. 

Figure 4 shows the CNN+LSTM architecture that is implemented 
in this paper with a detailed description of its various layers and 
their respective shapes in Keras [25]. 

4.2.5 Tools: Artificial Neural Network 
Keras was the deep learning framework of choice that was used to 
implement the various neural network models. Scikit-learn’s 
classification report was used to generate metrics including 
precision, recall, and F1-Score.  The inbuilt tokenizer from Keras 
was used to tokenize the peer reviews before feeding them to the 
neural network models. 

For each of these networks, a series of hyper-parameters are 
isolated and tuned, which include parameters such as input batch 
size, number of memory states, recurrent dropout rate, dropout rate 
between layers, padding rules, CNN window size and stride size, 
activation methods, number of epochs to train. Based on 
classification accuracy on the validation dataset, we have tuned the 
network into their respective final stages and have achieved results 
described in the next section.  

5. RESULTS 
Table 2 displays the total number of suggestions present in the peer 
review dataset used for this experiment, along with a summary of 
the weighted average F1-scores. Dataset reformatting was 

accomplished prior to this so that the number of 
suggestions to non-suggestions resulted in a mostly 
equal proportion within the dataset. Abbreviations for 
the tables are as follows: Rule (as itself), NB (Naïve 
Bayes), SVM (Support Vector Machine), and N1-N4 
as the neural network classifiers (LSTM, BiLSTM, 
CNN, and CNN+LSTM respectively). 

From the results obtained by testing on the Peer 
Review dataset, we found that the LSTM, CNN, and 
CNN+LSTM neural network architectures 
outperform the other classifiers used in this 
experiment. This relates to our discussion in the 
literature section where the neural network 
approaches have demonstrated the greatest potential 

 
Figure 2: Bi-LSTM Architecture 

In: 50 In: 50 In: 50,300 In: 50,300 In: 300 In: 300

Out: 50 Out: 50,300 Out: 50,300 Out: 300 Out: 300 Out: 1

Embedding Dropout BiLSTM Dropout Dense

--->

Input

 
Figure 3: CNN Architecture 

 
Figure 4:  CNN+LSTM Architecture 

In: 50 In: 50 In: 50,100 In: 50,100 In: 48,100 In: 100 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 48,100 Out: 100 Out: 100 Out: 100 Out: 1

Dropout Dense

--->

Embedding Dropout Conv1D
GlobalMax

Pooling
DenseInput

In: 50 In: 50 In: 50,100 In: 50,100 In: 46,50 In: 11,50 In: 100 In: 100

Out: 50 Out: 50,100 Out: 50,100 Out: 46,50 Out: 11,50 Out: 100 Out: 100 Out: 1

Dense

--->

Input Embedding Dropout Conv1D MaxPooling LSTM Dropout
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for text classification tasks like suggestion detection. The BiLSTM 
classifier was the second best at detecting suggestions, followed by 
the support vector machine, rule-based, and naïve Bayes classifiers. 
Tables 3 and 4 display the extended breakdown of the results of the 
classifiers. 

These results show precision, recall, and F1-score as generated by 
the classification report function by Scikit-learn. The number of 
data points that are false and true is noted in the Support column. 
The rates of classification for both positives and negatives are 
included in the table as False and True, along with the support for 
each. Finally, the weighted average was used to demonstrate the 
classifier’s overall effectiveness by combining the metrics for 
positives and negatives using a weighting based upon the quantity 
in Support. 

The weighted average is calculated by taking the mean of the false 
and true predictions by their relevance in the dataset. In terms of 
these results tables, the weighted average is determined by 
multiplying the metric (precision, recall, or F1-score) of the false 
predictions by the percentage of these predictions over the whole 
dataset. The same calculation is made for the true predictions. Then 
the value calculated by the False row is added to the value 
calculated for the True row. 

The classifiers performed similarly on overall accuracy, with 
some deviation in the performance for False and True observations. 
The F1-scores of the classifiers ranged from 80% up to 93%, where 
the neural network classifiers were close in performance. Rule 3 of 
the rule-based classifier was removed due to the tagging of some 

words as NNS or NNP that were not indicative of a suggestion. This 
resulted in numerous false positive classifications and therefore a 
net loss of overall performance. Rule 2 can also have result in a 
high false-positive classification rate since it does not consider the 
context of a tagged pair of words within a sentence, although it was 
the most effective rule at finding suggestions. 

6. DISCUSSION AND FUTURE WORK 
In this study, we have compared the performance of a few neural 
network classifiers against a rule-based classifier on suggestion 
detection towards multiple datasets. We found that neural network 
classifiers outperformed existing rule-based and traditional 
machine learning classifiers across the board.  

Despite using a small dataset, we were able to obtain F1 scores in 
the low 90% range. This demonstrates the potential of the neural 
network classifiers. When large-scale datasets are obtained, 
classification scores in the upper 90% range will be probable, 
therefore reaching the high accuracy levels that some sentiment 
analysis models have obtained. 

One of the biggest challenges we’ve encountered in this study is the 
insufficient amount of readily labeled data in hand. Most of the 
times we would need to manually label datasets that we acquired. 
Larger datasets would help with tuning and training the classifier. 
They would also give us the opportunity to train on more balanced 
sets of data, while not excluding too large of a portion of the overall 
dataset. Larger training samples would help alleviate the concern 
that the models may not be able to generalize to new input strings 
that aren’t similar enough to the current training set. However, as 
noted in Section 2 we removed around 7000 duplicate observations 
from the dataset, indicating that there are commonly occurring 
review comments that the model would be tuned for. Additional 
pattern-matching phrases can be added to the rule-based classifier 
to improve its accuracy, although additional conditions would be 
required to consider the context of the phrases within a larger body 
of text. Also, the inclusion of more types of classifiers such as a 
decision tree can provide an extended comparison of what 
classifiers perform best for this text classification task. 

As discussed in the introduction, the domain of primary 
interest revolved around peer reviews. Later on, we might find a 
way to let instructors use the classifier to grade the quality of peer 
reviews. We would seek feedback on the effectiveness of the 
classifier, and suggestions for its improvement. This system could 
also notify the reviewer that a review should have more 

Table 3: Breakdown of accuracy of non-neural network classifiers on peer review 

Peer 
review 

Precision Recall F1 score Support 

Rule NB SVM Rule NB SVM Rule NB SVM Rule NB SVM 

False 0.76 0.87 0.87 0.88 0.81 0.90 0.82 0.84 0.89 1939 205 205 

True 0.86 0.80 0.89 0.73 0.87 0.85 0.79 0.83 0.87 1939 183 183 

Avg. 0.81 0.84 0.88 0.80 0.84 0.88 0.80 0.84 0.88 3878 388 388 

Table 4: Breakdown of accuracy of neural-network classifiers on peer review 

Peer 
review 

Precision Recall F1 score Support 

N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 All 

False 0.90 0.94 0.90 0.90 0.92 0.93 0.94 0.90 0.91 0.93 0.92 0.90 189 

True 0.92 0.93 0.94 0.90 0.90 0.94 0.90 0.90 0.91 0.93 0.92 0.90 199 

Avg. 0.91 0.93 0.92 0.90 0.91 0.93 0.92 0.90 0.91 0.93 0.92 0.90 388 

Table 2: Accuracy of classifiers  
on peer-review dataset 

# of comments  3878 

# containing suggestions.  1939 

F1 
score 

Rule  0.80 

NB  0.84 

SVM  0.88 

N1  0.91 

N2  0.93 

N3  0.92 

N4  0.90 
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suggestions. Furthermore, the reviewer could have the opportunity 
to identify any suggestions that were missed by the system. This 
would function as a useful method for generating labeled training 
data. These missed suggestions indicated by the reviewer could 
enable analysis in the form of determining what types of sentences 
are not being properly detected as suggestions. This system could 
be deployed as a supplement to instructor grading until enough data 
has been obtained to train a sufficiently accurate classifier for 
automatic suggestion extraction. 

7. CONCLUSION 
In this paper, we have demonstrated several models that parse and 
classify suggestions. The greater performance of neural network 
architectures over rule-based methods in this task demonstrates the 
advantage of classifiers that train on text in a certain domain, rather 
than following strict rules for classification. Furthermore, forming 
an extensive list of phrases and keywords that improve a rule-based 
classifier's performance in a domain is more time consuming than 
training a statistical classifier. While rule-based approaches have 
the advantage of being simpler to implement and not requiring data 
to train on, they are typically outperformed by statistical classifiers 
provided they have access to enough labeled data. 
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